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People track facial expression dynamics with ease to accurately
perceive distinct emotions. Although the superior temporal sulcus
(STS) appears to possess mechanisms for perceiving changeable
facial attributes such as expressions, the nature of the underlying
neural computations is not known. Motivated by novel theoretical
accounts, we hypothesized that visual and motor areas represent
expressions as anticipated motion trajectories. Using magneto-
encephalography, we show predictable transitions between fearful
and neutral expressions (compared with scrambled and static
presentations) heighten activity in visual cortex as quickly as 165
ms poststimulus onset and later (237 ms) engage fusiform gyrus,
STS and premotor areas. Consistent with proposed models of
biological motion representation, we suggest that visual areas
predictively represent coherent facial trajectories. We show that
such representations bias emotion perception of subsequent static
faces, suggesting that facial movements elicit predictions that bias
perception. Our findings reveal critical processes evoked in the
perception of dynamic stimuli such as facial expressions, which
can endow perception with temporal continuity.
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Introduction

Face perception provides a model for investigating fundamen-

tal issues of neural coding. For example, faces in the natural

environment are usually dynamic, and facial movements convey

critical social signals including gaze direction, speech-related

movements, and expressions of emotion and pain. This

epitomizes a central challenge for research in biological and

engineered visual systems: how can reliable and stable

perception result from such dynamic input? In the case of

facial movements, which express emotions, such percepts

likely arise from representations within a dorsally projecting

temporal lobe pathway, including the superior temporal sulcus

(STS; Haxby et al. 2000). However, less is known about the

neural mechanisms that the STS and associated visual areas

employ to derive expression percepts from face dynamics

(Calder and Young 2005). Many of the established findings

come from studies of static faces, which manifest implied

motion, but do not allow the visual system to represent

naturalistic movement trajectories, which unfold over time.

One hypothesis afforded by use of dynamic stimuli is that the

visual system employs anticipatory representations of sensory

trajectories of facial attributes. This is based on theories which

propose that perceptual representations (possibly encoded by

neuronal interactions with attractor dynamics [Akrami et al.

2008]) depend on prediction of sensory states (Rao and Ballard

1999; Giese and Poggio 2003; Treves 2004; Friston 2005). Many

of these models are motivated specifically to explain represen-

tation of stimulus dynamics (Giese and Poggio 2003; Jehee et al.

2006; Friston et al. 2008; Kiebel et al. 2008). Moreover,

empirical evidence is mounting that the visual system may

use such predictive coding at multiple levels (Murray et al.

2002; Bar et al. 2006; Summerfield et al. 2006, 2008;

Schweidrzik et al. 2007; Summerfield and Koechlin 2008),

beginning even in the retina (Hosoya et al. 2005). For low-level

vision, primary visual cortex appears to extrapolate apparent

motion trajectories, by ‘‘filling-in’’ trajectories through unseen

stimulus positions (Muckli et al. 2005; Larsen et al. 2006;

Sterzer et al. 2006). For higher level biological motion stimuli,

some have proposed the STS predicts visual patterns (Giese and

Poggio 2003; Kilner et al. 2007). More controversially, some

suggest that predictions rely partly on representations in motor

areas (Jeannerod 2001; Kilner et al. 2007) perhaps transmitted

by mirror neurons (van der Gaag et al. 2007). These latter

proposals attempt to explain evidence that STS and the motor

system respond concurrently to body actions (Saygin et al.

2004; Calvo-Merino et al. 2006; Dayan et al. 2007) and to faces

(Buccino et al. 2001; Sato et al. 2004; Montgomery and Haxby

2008). Importantly, predictability affects not just neural activity

but also perception: predictable point-light bodily action

sequences modulate perception of subsequent stimuli (Ver-

faillie and Daems 2002; Graf et al. 2007). However, no studies

have directly addressed 1) whether predictive mechanisms

operate in the STS, 2) whether these predictions contribute to

perception of face expressions, and 3) the timing of prediction-

related responses in different visual areas, especially with

respect to well-known evoked components such as M100 and

M170. Moreover, it has not yet been shown whether the motor

system is preferentially responsive to predictable facial move-

ments as usually encountered in our natural environment.

We addressed these questions using a combination of

magnetoencephalography (MEG) and behavioral measures to

examine effects of dynamic facial expressions, which varied in

their predictability. Specifically, our participants viewed dy-

namic stimuli that resembled naturalistic transitions between

fearful and neutral expressions. Evoked responses to these

were compared with those of unpredictable scrambled

transitions. These scrambled stimuli were random, unnatural,

and lacked a coherent trajectory, although they were closely

matched with the predictable stimuli for emotional image

content and the final image presented. We expected that

predictable transitions would engage visual areas including the

STS, resulting in heightened activity in these areas, relative to

scrambled stimuli. Indeed, we found that predictable
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expression dynamics evoked very early effects in primary visual

cortex (165 ms), followed by heightened activity in bilateral

visual cortex, right posterior STS and posterior fusiform gyrus

(237 ms). We also observed these effects in bilateral premotor

cortex. Although the motor system has been observed in prior

biological motion studies (Buccino et al. 2001; Jeannerod 2001;

Sato et al. 2004; Saygin et al. 2004; Calvo-Merino et al. 2006;

Dayan et al. 2007; Montgomery and Haxby 2008), we show

motor activity specifically responsive to facial expression

predictability. Additionally, we tested whether the sensory

trajectories bias subsequent perception. On each trial, follow-

ing presentation of the predictable stimuli, participants saw

a static face (morphed midway between neutral and fearful)

and rated this face for fearfulness. We show behaviorally that

fear perception is biased in the direction predicted by the

preceding trajectory. Thus, exposure to dynamic stimuli seems

to prime the visual system to perceive facial expressions

consistent with the cause of the immediately preceding

sensory trajectory. Collectively, these results point to repre-

sentations of expressions that encode sensory trajectories.

Materials and Methods

Participants
We measured MEG-evoked fields in 22 participants (8 females).

Informed consent was obtained in accordance with procedures

approved by the joint ethics committee of the National Hospital for

Neurology and Neurosurgery and the Institute of Neurology, London.

Design
The paradigm consisted of a series of trials, where participants viewed

2 successive stimuli (S1 and S2), separated by an interstimulus interval.

For S1 presentations, we used morphed faces linearly interpolated

between fearful and neutral expressions to construct image sequences

that were predictable or scrambled. We also selected static S1 images

from these morph continua (Fig. 1a).

For predictable S1 sequences, participants viewed 6 morphed images

presented rapidly in order either from neutral to fearful (fear predict-

able) or from fearful to neutral (neutral predictable). These S1 sequences

(360 ms in duration) appeared as animated natural expressions evolving

in time and were predictable in the sense that the images followed

a coherent movement trajectory. In contrast, for scrambled stimuli, we

altered the fear- and neutral-predictable sequences so that the first 5

images were presented in a random order. Consequently, each

scrambled sequence included the same images as a corresponding

predictable sequence. The sixth image, the endpoint image, was also the

same as in the corresponding predictable sequence. The scrambled

sequences were constructed such that they never depicted any coherent

expression trajectory and image transitions could not be predicted from

the preceding transitions. We will hereafter refer to scrambled

sequences which are ‘‘fear scrambled’’ if they are scrambled versions of

fear-predictable sequences and ‘‘neutral scrambled’’ if they are scrambled

versions of neutral-predictable sequences.

These fear- and neutral-predictable sequences and their scrambled

versions conform to a 2 3 2 factorial design (Fig. 1b) with factors

‘‘sequence type’’ (predictable/scrambled) and ‘‘expression type’’ (fear-

ful/neutral). Our principal aim when analyzing MEG responses was to

test for a main effect of sequence type. To this end, we measured the

averaged MEG responses across trials to S1 faces from 100 ms

prestimulus until 500 poststimulus (Fig. 1c). Besides testing our

primary hypotheses concerning predictability of dynamic sequences,

we also included static S1 presentations to compare with previous

literature. Participants viewed static S1 faces for the same duration as

predictable and scrambled S1 sequences (360 ms). We matched the

expressions of the static S1 faces to the 3 possible endpoints of the

predictable and scrambled sequences: (28%, 45%, or 63% fearfulness).

Following presentation of S1 (Fig. 1c) and an 800-ms interstimulus

interval, participants then viewed a brief (250 ms) static target face

(S2). S2 faces always expressed 45% fearfulness, and participants rated

the fearfulness of S2 faces on a 4-point visual analog scale. Two

seconds then elapsed before the onset of the next trial. Our principal

aim when analyzing the behavioral data was to test whether

perception was biased by predictable sequences, relative to scrambled

sequences. A variation of this design was also tested behaviorally in

a pilot study in 8 participants using the same stimuli (plus 5 additional

identities), which (similar to the findings herein) showed ratings of

emotion in targets (compared with the endpoint-matched scrambled

sequences) that were biased according to the preceding emotion

trajectory direction.

Stimuli
We selected images of 7 facial identities (5 females) from the KDEF

database (Lundqvist et al. 1998). For each identity, we selected images

depicting fear and neutral expressions. Using landmark-based morphing

software (M.J. Gourlay; Georgia Institute of Technology, Atlanta, GA),

for each identity, we constructed a morph continuum consisting of 27

equally spaced images between the fearful (100%) and neutral (0%)

expression images, retaining the 11 images between 28% and 63% (Fig.

1a). These images were converted to grayscale and placed within a gray

oval mask (occluding hair, clothing, etc.). Regions of each image not

occluded by the mask were equated for luminance mean and range.

Figure 1. Stimuli and procedures. (a) A morph continuum for one face. S1
presentations comprised predictable and scrambled animated sequences constructed
using the 6 images between 28%--45% and 45%--63% and static images (28%, 45%,
and 63%). (b) Factorial design. The factor sequence type controls whether sequences
depict a coherent transition between neutral and fearful expressions or a scrambled,
unpredictable version of this transition. For the factor expression type, we describe as
‘‘fearful’’ sequences which transition predictably from neutral toward fear and the
scrambled versions of these sequences. We describe as ‘‘neutral’’ sequences which
transition predictably from fear toward neutral and scrambled versions of these
sequences. (c) For each trial, S1 presentations were followed by an 800 ms-blank
screen and then a static 250-ms target (S2) which participants rated for fearfulness.
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Predictable and scrambled sequences of images were constructed using

either the 6 morphs between 28% and 45% or those between 45% and

63% (Fig. 1a). For each identity, there were 4 predictable sequences

consisting of 360 ms animations in which the 6 images were presented

(60 ms each) in order either from neutral to fearful (fear predictable)

or from fearful to neutral (neutral predictable). Importantly (Fig. 1a),

fear-predictable sequences on the average finish on a more fearful

image (endpoints: 45% and 63%) than neutral-predictable sequences

(28% and 45%). It was therefore necessary to construct control stimuli

that were matched for endpoint. For this purpose, we constructed

scrambled sequences for which we randomized the order of all but the

endpoint image and presented this scrambled order as a 360-ms

animation. We also presented to participants static faces continuously

for 360 ms, which express zero image change. These were matched for

sequence endpoints (28%, 45%, or 63% fearfulness). Predictable

sequences entail consistently small transitions from image to image

compared with scrambled sequences, and the inclusion of a static

condition reduced this confound by showing that static faces evoke

smaller amplitude responses than the predictable sequences despite

having zero image change. All results we examined showed this

hypothesized reduced response to static faces. Although we tested

statistically for responses that were enhanced for static faces or for

scrambled faces (relative to the other conditions), we did not detect

any such effects. These predictable, scrambled, and static stimuli are all

denoted as S1. S2 targets were static 45% morph faces of each of the 7

identities.

Experimental Procedures
The experiment consisted of 6 scanning sessions. Each session

contained the same 84 trials, although in a random order, thereby

replicating all experimental conditions. Each of the 3 sequence

conditions (predictable, scrambled, and static) composed a third of

the trials (randomly intermixed), giving 168 trials per condition for

each participant. Each trial (Fig. 1b) began with the presentation of

a fixation cross for 500 ms, followed by an S1 stimulus that could be

predictable, scrambled, or static (360 ms). After a blank screen for 800

ms, an S2 static target face appeared for 250 ms. Following the offset of

S2, a blank screen was presented for 2000 ms. Participants rated the

fearfulness of S2 on a 4-point scale (‘‘1’’ was most neutral and ‘‘4’’ was

most fearful) using a button box in their right hands. Participants were

not told that the image was always 45% but that variation in expression

would appear small and to nevertheless try to use the whole scale. They

were given about a minute of experience with the stimuli to calibrate

their responses after which they typically reported perceiving variation

in expression of the targets.

MEG Data Acquisition and Analysis
We scanned participants while testing them with the aforementioned

behavioral paradigm and acquired all behavioral data reported here

during scanning. We acquired MEG recordings in a magnetically shielded

room using a 275-channel CTF system with SQUID-based third-order

axial gradiometers (VSM MedTech Ltd., Coquitlam, British Colombia).

Neuromagnetic signals were digitized continuously at a sampling rate of

480 Hz. Data were analyzed using SPM5 (Wellcome Trust Centre for

Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/spm/) and MATLAB

(The MathWorks, Natick, MA). The continuous time series for each

participant was subjected to a Butterworth band-pass filter at 0.5--50 Hz.

Baseline-corrected epochs were extracted from the data beginning 100

ms prior to S1 onset and ending 500 ms post-S1 onset (Fig. 1b). Epoched

trials for which the signal strength exceeded 3000 femtotesla were

discarded. Averaged sensor data were converted to 3-dimensional

spatiotemporal volumes by ‘‘stacking’’ 2-dimensional linearly interpolated

sensor images in peristimulus time. These 3-dimensional spatiotemporal

volumes were submitted to mass univariate general linear models using

conventional SPM procedures (Kilner et al. 2005). This enabled us to test

for responses in all 3 dimensions (2-dimensional sensor space and

peristimulus time). The resultant statistical parametric maps were

multiple comparison corrected by applying Gaussian random field

theory family-wise error (FWE) correction to small volumes encompass-

ing either occipital or temporal sensors.

When relevant sensor-space effects were identified, we then

identified the sources of these effects using source reconstruction as

implemented in SPM5. For each participant, we constructed a forward

model describing the transformation between dipolar sources distrib-

uted over the cortical surface, and the magnetic field distribution

measured by the MEG sensors. Sources were modeled using the 7204

vertex template cortical mesh available in SPM5, defined in the

standardized space of Talairach and Tournoux and coregistered to

the sensor locations via 3 fiducial marker positions (Mattout, Henson,

and Friston 2007). The gain matrix of the lead field model was

computed using a spherical head model (http://neuroimage.usc.edu/

brainstorm/), which has been shown to produce satisfactory recon-

structions of ventral temporal sources in face perception paradigms

(Henson et al. 2007). Source estimates were computed on the ensuing

canonical mesh using restricted maximum likelihood estimation to

invert the forward model (Mattout, Phillips, et al. 2007; Mattout et al.

2008). This inversion proceeded by modeling covariance components

using multiple sparse priors (Friston, Harrison, et al. 2008). The

hyperparameters on these multiple sparse priors were estimated using

a greedy search (Friston, Chu, et al. 2008). This algorithm was deployed

under group constraints (Litvak and Friston 2008), which provides an

optimal mixture of empirical sparse priors on sources that is consistent

over participants. By factorizing participant-specific and source-specific

variation, the reconstructed activity across different participants can be

attributed to the same set of empirically determined sources. This

yielded source reconstructions for each experimental condition and for

each participant. A temporal contrast was used to summarize responses

at specific times of interest. This entailed multiplying the data with a (8-

ms standard deviation [SD]) Gaussian window, centered on the

peristimulus time of interest, and computing the sum of squared

activity at each source. Contrasts were smoothed on the canonical

mesh using a graph Laplacian (diffusion coefficient of 0.8) and

projected to standard anatomical image space for between-participant

analysis. To ensure isotropic smoothness, the contrast images were

smoothed with a 3-dimensional Gaussian filter (8-mm full-width at half-

maximum). The contrasts were analyzed using the same procedures

used for the sensor data, namely conventional statistical parametric

mapping (with whole-brain random field theory control over FWE at

the cluster level).

Results

Behavioral Results

Behavioral analysis of the fear perception of S2 faces proceeded

using 21 participants (one participant was excluded from

analysis because behavioral results showed extreme outlying

scores, >3 SDs). Figure 2 shows fear perception of S2 faces,

normalized to the Z-score of the sample responses. As

hypothesized, subjects’ perception was biased by predictable

sequences compared with the scrambled sequences. We tested

the contrast (fear predictable–fear scrambled) – (neutral

predictable–neutral scrambled), t(20) = 1.76, P = 0.055. Thus,

predictable sequences (when compared against scrambled

sequences) biased perception to the expression consistent

with the cause of the preceding sensory trajectory.

We also found a main effect of expression type, in which

fearful sequences (regardless of predictability) heightened S2

fear perception compared with the neutral sequences ([fear

predictable + fear scrambled] – [neutral predictable + neutral

scrambled]), F1,20 = 19.43, mean square error (MSE) = 0.56, P =
0.001. Note that we used identical images for the fearful and

neutral sequences, the only difference was their sequence

endpoints (Fig. 1a,b). Thus, the endpoints prime fear per-

ception of the S2 morphs. We found matching results for the

static S1 faces: fearfulness of static S1 faces (28%, 45%, or 63%)

strongly enhanced fear perception of S2 faces, reflected by
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a significant main effect of static S1 fearfulness, F2,40 = 13.93,

MSE = 0.09, P < 0.0001.

MEG Responses to S1 Sequences

At the between-participant (group) level, we specified general

linear models to test (in sensor space and source space) our

principal contrast between the 2 types of S1 sequence:

predictable versus scrambled (i.e., the main effect of sequence

type). In sensor space, we performed t-tests for every

point (voxel) in the 3-dimensional space defined by the 2-

dimensional MEG sensor-space projections and time. For S1

responses, significant voxels showed well-defined spatiotem-

poral clusters, each with a peak time and sensor-space location.

For S2 responses, trends toward predictability-related effects

(when scrambled stimuli were used as a control) were not

robust and are not detailed here.

Predictable S1 sequences evoked the earliest responses

(Fig. 3a) around 165 ms peaking at right occipital sensors

(peak voxel P < 0.05, FWE corrected). Figure 3b shows the

time course of a sensor that was located near the peak voxel

and also clearly shows the M100 component (Liu et al. 2002).

Note that there was no significant main effect of expression

type or an interaction (Fig. 3c). Also note that responses to

predictable sequences are heightened relative to responses to

static S1 faces. As this effect (165 ms) arose prior to the onsets

of the endpoint images (shown at 300--360 ms), it can only

reflect responses to the first 1 or 2 image transitions. This

means that the increased response to the predictable sequen-

ces, as compared with the scrambled and static S1 faces, is

evidence for computations due to the coherent trajectories of

the stimuli.

Having identified this early effect in sensor space, we then

localized the anatomic sources causing this effect by perform-

ing source reconstructions within a time window of 160--170

ms for every participant in every condition. These reconstruc-

tions were analyzed using a general linear model identical to

that used for sensor-space analysis. Figure 4a shows the results

for the main effect of sequence type (predictable > scrambled),

and Table 1 shows the anatomic locations of areas that survived

a cluster-level FWE correction of P < 0.05. Sensitivity to

predictable S1 sequences was observed in right visual cortex,

peaking in Brodmann area 18 and extending into area 17.

Figure 4b shows the mean adjusted responses at the peak

voxel, which approximates the pattern of effects observed in

sensor space.

We observed another effect in sensor space later in

peristimulus time showing similar sensitivity to the predict-

able sequences (Fig. 5a). This manifested as a dipolar field

pattern, which was sustained for about 100 ms, showing

a right lateral negativity (peaking at 237 ms) and a left medial

positivity (peaking at 230 ms). Peak voxels were P < 0.05 FWE

corrected. As before, the predictable sequences heightened

responses compared with the static S1 faces, as well as to the

scrambled sequences. As this dipolar topography bears some

similarity to that of the well-studied M170 component (Liu

et al. 2002), we illustrate in Figure 5b the relationship of this

effect to the M170 by selecting lateral temporal sensors from

the right and left hemisphere which express both this

predictability-sensitive response and the M170 (see also

Supplementary Fig. 1).

We performed source reconstructions within a window of

232--242 ms for every participant in every condition and then

submitted these reconstructions to the identical general

linear model used for sensor-space analysis. Figure 6a shows

the statistical parametric map for the contrast predictable >

scrambled, and Table 1 reports peaks for clusters which

survived a FWE cluster-level correction of P < 0.05. We found

a large right occipital response, subsuming Brodmann areas

17, 18, and 19 and extending ventrally into right posterior

fusiform gyrus. There was also a smaller cluster in left

occipital cortex, area 18. We observed another cluster in

right posterior STS, near the temporal-parietal junction.

Figure 6b shows the patterns of adjusted response means at

the peak voxel in the right fusiform gyrus and posterior STS,

which approximate the pattern of effects observed in sensor

space. We also observed sensitivity to predictable dynamics in

bilateral premotor areas. These were located in dorsal

midprecentral gyrus, primarily in Brodmann area 6 in both

hemispheres, but extending ventrally into Brodmann area

44 in the right hemisphere.

Figure 2. Behavioral results. Z-normalized means and standard errors of fear ratings to S2 faces following fear-and neutral-predictable sequences, scrambled sequences, and
static S1 faces expressing 28%, 45%, and 63% fearfulness. Participants’ fear perception is biased in the direction predicted by the preceding predictable sequence.
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Discussion

We measured evoked MEG responses to dynamic sequences of

facial expressions, which varied in the predictability of

movement trajectories. Predictable sequences comprised natu-

ralistic and coherent transitions between fearful and neutral

facial expressions. In contrast, scrambled sequences were

formed of the same images but subtended unnatural facial

motion. Our findings demonstrate neuronal representations of

coherent, predictable motion trajectories, which first arose

(165 ms) in low-level occipital areas and later (237 ms) engaged

the posterior fusiform gyrus and STS, areas known to contribute

to face perception and biological motion perception. Also at this

later time, the presence of predictable movement heightened

activity in premotor areas. Effects were robust and reproducible

in sensor and source space. Importantly, we observed effects of

the predictable trajectory on behavior. Participants’ fear

perception of subsequent (S2) static target faces was biased

toward the expression causing the preceding predictable

sequence (S1), underscoring a role for the representation of

dynamics in the perception of facial expressions.

Representations of Facial Expression Trajectory

We found, as hypothesized, that the right posterior STS shows

heightened responses to predictable sensory trajectories,

compared with scrambled presentations with no coherent

Figure 3. Early occipital effects in sensor space. (a) Statistical parametric map of
the t-statistic in sensor space at 165 ms for the contrast predictable [ scrambled,
showing a cluster peaking at occipital sensors. (b) Time course of response at
a sensor (denoted by magenta cross in [a]) near the peak occipital effect. The M100
deflection is labeled, and the arrow indicates the effect of predictable dynamics. (c)
Mean adjusted responses at the occipital peak showing activation height over
conditions, at 165 ms including 90% confidence intervals (based on between-
participant variability). Predictable S1 sequences produce greater activation than
scrambled and static.

Figure 4. Occipital effects around 165 ms in source space. (a) Statistical parametric
map of the t-statistic in source space (Montreal Neurological Institute coordinate: z5
4) for the contrast predictable [ scrambled, thresholded at P\ 0.005 uncorrected
and showing sensitivity to predictable S1 sequences in right visual cortex, and
Brodmann areas 17 and 18. (b) Mean adjusted responses at peak voxel in right
occipital cortex including 90% confidence intervals (based on between-participant
variability).

Table 1
Anatomical sources sensitive to predictable dynamics

Area Talairach
(x, y, z)

P value,
uncorrected

P value
FWE corrected

160�170 ms, predictable [ scrambled
Right medial occipital 12, �78, 4 P\ 0.001 P\ 0.001

232�242 ms, predictable [ scrambled
Right medial occipital 6, �82, 2 P\ 0.001 P\ 0.001
Right posterior fusiform 26, �84, 16 P 5 0.003
Left medial occipital �14, �88, 40 P 5 0.002 P\ 0.001
Right STS 50, �66, 36 P 5 0.001 P\ 0.001
Left precentral gyrus �42, �14, 32 P 5 0.001 P\ 0.001
Right precentral gyrus 58, 8, 16 P 5 0.003 P\ 0.001
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trajectory. This is consistent with studies showing the STS is

responsive to stimuli depicting facial and bodily actions,

including head pose (Andrews and Ewbank 2004), yawning

(Schürmann et al. 2005), eye gaze, and facial expressions of

emotion (Haxby et al. 2000; Calder and Young 2005; Furl et al.

2007) and pain (Simon et al. 2006). Posterior STS expresses

activity common to slowly evolving mouth and hand move-

ments, whereas responses in mid-STS are selective for mouth

movements (Thompson et al. 2007) and responds more to

biological point-light displays of body actions that are

coherent than when they are scrambled (Grossman and Blake

2002). Our findings go beyond a demonstration that STS

represents facial expressions or bodily actions and suggests

further that this representation entails recognition of co-

herent facial trajectories.

Interestingly, we observed a hierarchical timing of

predictability-related activity. Predictability effects emerged

first in early visual cortex after only an image transition or 2

and then later spread to higher visual areas. This hierarchical

response pattern is particularly notable as it is predicted by

extant theories. For example, Giese and Poggio (2003)

propose that earlier visual areas code information over

relatively short time scales, even as near-instantaneous ‘‘snap-

shots.’’ Higher areas (STS and perhaps premotor cortex) then

integrate these lower level representations over longer time

scales and respond only if snapshots transition ‘‘as predicted.’’

This approach therefore hypothesizes a hierarchical organi-

zation in which higher areas (which are sensitive to predict-

able information) require longer time scales for response than

lower level areas. Bayesian models constitute another

Figure 5. Sensor space effects at 237 ms. (a) Statistical parametric map of the t-statistic in sensor space at 237 ms for the contrast predictable[ scrambled, showing peaks
over left medial and right lateral temporal sensors. (b) Time courses of response at sensors in left and right hemispheres shown in the red circles in (a). The M170 deflections are
labeled, and the arrows indicate sensitivity to predictable dynamics. (c) Mean adjusted responses at lateral temporal voxels in left and right hemisphere showing pattern of
effects in sensor space at 237 ms including 90% confidence intervals. Predictable S1 sequences produce greater activation than scrambled and static.
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important class of predictive hierarchies (Friston 2005).

Recent applications of Bayesian models to dynamic stimulus

representation have led to a convergent prediction: higher

levels may be sensitive to progressively longer temporal scales

(Kiebel et al. 2008).

Empirically, a recent functional magnetic resonance imaging

study (Hasson et al. 2008) provides evidence for a similar

hierarchical response patterns to dynamic visual information as

we observed. They examined responses to dynamic sequences

from movies and reported that the sensitivity to temporal

structure in STS responses spans longer time periods than that of

lower level visual areas. These authors similarly propose a visual

hierarchy of temporal receptive fields, which accumulates

information over progressively longer temporal windows, with

STS accumulating over longer time periods than lower level

areas. Our results are therefore predicted by these models and

are consistent with the results of Hasson et al. (2008). The early

occipital response to predictable dynamics (according to this

view) reflects accumulations over a shorter time interval and

thereby responds sooner than the fusiform/STS, which accumu-

lates information over longer intervals. From this perspective,

activity around 237 ms might reflect a first response to the

ongoing integration of information at a temporal scale relevant

for the recognition of facial expressions.

Figure 6. Source space effects around 237 ms. (a) Statistical parametric map of the t-statistic in source space for the contrast predictable [ scrambled, thresholded at P\
0.005 uncorrected and showing effects in bilateral occipital cortex, right STS, right fusiform gyrus, and bilateral premotor areas. (b) Mean adjusted responses of all conditions at
peak voxels in right fusiform, STS, and right premotor cortex including 90% confidence intervals.
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In addition to STS, evoked fields sensitive to predictability of

S1 dynamics also showed sources localized to posterior

fusiform gyrus. This area may relate to nearby face-selective

areas such as fusiform and occipital face areas, which show

robust face-selective activations (Kanwisher and Yovel 2007).

Prior accounts claim that ventral temporal areas comprise

a pathway (distinct from the dorsal pathway including the STS)

that represents invariant facial information, supporting identity

perception (Haxby et al. 2000). We therefore did not

hypothesize fusiform areas would be sensitive to predictable

dynamics, although similar findings have been reported (Gross-

man and Blake 2002). We note, however, that this area is rather

posterior, compared with the classic ‘‘fusiform face area,’’ and

so may correspond more closely to the more posterior, face-

selective ‘‘occipital face area.’’

Interestingly, we observed premotor activity concomitant

with activity in temporal lobe visual areas. This is consistent

with several studies of biological motion that report

motor system activity including Brodmann areas 6 and 44

(Buccino et al. 2001; Jeannerod 2001; Sato et al. 2004; Saygin

et al. 2004; Calvo-Merino et al. 2006; Dayan et al. 2007;

Montgomery and Haxby 2008). Similarly, we also found

greater activity in Brodmann area 6 (extending into 44 in

the right hemisphere) when stimulus dynamics conveyed

a predictable action sequence relative to stimuli that were

unnatural. We therefore also show premotor cortex

responses to biological motion and further extend these

findings by showing such responses are sensitive to predict-

able facial expression trajectories.

We note that ‘‘simulation’’ (Keysers and Gazzola 2006;

Gallese 2007; Hurley 2008) and ‘‘common coding’’ (Hommel

et al. 2002) theories posit that representations of one’s own

motor acts are recruited when representing the actions of

others. Kilner et al. (2007), for example, hypothesize that

simulated motor acts provide predictions to the visual system.

Although we cannot conclusively demonstrate these motor

simulations on the basis of our data, our results suggest that

paradigms using dynamic facial expressions may provide

a context for exploring whether motor simulation plays any

role in visual action prediction.

Relationships to M100 and M170 Components

There has been much interest in 2 robust MEG responses to

faces: the M100 and the M170 (Liu et al. 2002). In particular,

the M170 has been shown to be face selective and may relate

to midfusiform gyrus activation (Furl et al. 2007). We observed

an occipital effect at 165 ms (at the same time as the M170).

At this time, however, there was no predictability effect on

the M170 peaks (Fig. 5), which are situated distant to the

significant 165 ms occipital effect (Supplementary Fig. 1).

Therefore, we cannot easily conclude that the bipolar

deflections typically associated with the M170 (Liu et al.

2002; Furl et al. 2007) show sensitivity to predictable

sequences. However, we observed a late-onset sustained

response, with similar (but reduced) field topography to

the M170 (Supplementary Fig. 1, 237 ms). Similar post-

M170 sustained responses have been previously observed

in response to facial expressions and associated with STS

activity (Furl et al. 2007). Perhaps predictability effects are

associated with this sustained response, rather than the M170

itself.

Predictability Effects on Behavior

We used behavioral measures to demonstrate that perception is

biased by anticipatory representations. We examined the

influences of exposure to face expression trajectories on fear

perception of subsequent (S2) static faces. Although S2 faces

always depicted the same mixture (45%) of fear and neutral

expressions, participants’ fear perception shifted in the direction

of the expression predicted by the preceding trajectory.

We designed the behavioral paradigm to reduce or eliminate

potential confounding explanations for these effects, such as

capture by apparent motion and repulsive aftereffects, where

static S1 facial expressions bias expression perception of S2

faces away from the S1 expression (Webster et al. 2004). We

consequently used a long 800-ms interstimulus interval and

relatively short duration S1 faces (360 ms) and eliminated the

oft-used preexposure period (Webster et al. 2004): Experi-

mental parameters intended to attenuate aftereffects. As

aftereffects seem to depend also on the size of the expression

difference between the S1 and S2 stimuli, we chose S1 stimuli

that were close to S2 face expression (Fig. 1a).

As known perceptual biases such as aftereffects do not

explain our results, it is more likely that expression perception

relies on a representation that hierarchically encodes the

predicted motion trajectory, which sensitizes the visual system

to detect expressions that are consistent with this trajectory.

The closely related representation momentum effect (where

memory for a sequence endpoint is biased in the direction of

the sequence; Freyd and Finke 1984; Hubbard and Bharucha

1988; Thornton and Hubbard 2002; Hubbard 2008) has also

been shown for facial expressions (Yoshikawa and Sato 2008).

These representational momentum effects reflect memory for

the last stimulus, after it has already been perceived. Our

finding, however, gives direct evidence that trajectories distort

the instantaneous perception of a face. Similar effects have

been reported for low-level visual trajectories (Ramachandran

and Anstis 1983) and such effects can be modeled using

continuous attractors in neuronal networks (Treves 2004). In

addition to this predictive bias, we also observed that static S1

faces produced large expression priming effects on perception

of S2 faces (Fig. 2). This finding is probably not surprising

because static sequences are the most predictable sequence.

Conclusion

We show that low levels of the visual system detect predictable

structure in dynamic face expressions as quickly as 165 ms and

that higher level regions associated with face perception

respond to sensory trajectories within the next 100 ms.

Predictions based on these representations may sensitize the

visual system to detect subsequent stimuli that are consistent

with the cause of the preceding sensory trajectory. These

findings raise important questions concerning neural function

at different levels of the visual system, particularly with respect

to mechanisms in the STS. These neural mechanisms speak

directly to how we employ our visual experience to make

sense of the continual changes involved in even the simplest

everyday social interactions.
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Calvo-Merino B, Grèzes J, Glaser D, Passingham RE, Haggard P. 2006.

Seeing or doing? Influence of visual and motor familiarity in action

observation. Curr Biol. 16:1905--1910.

Dayan E, Casile A, Levit-Binnun N, Giese MA, Hendler T, Flash T. 2007.

Neural representations of kinematic laws of motion: evidence for

action-perception coupling. ProcNatl Acad SciUSA. 104:20582--20587.

Freyd JJ, Finke RA. 1984. Representational momentum. J Exp Psychol

Learn Mem Cogn. 10:126--132.

Friston K. 2005. A theory of cortical responses. Philos Trans R Soc Lond

B Biol Sci. 360:815--836.

Friston K, Harrison L, Daunizeau J, Keibel S, Phillips C, Trujillo-

Barreto N, Henson R, Flandin G, Mattout J. 2008. Multiple sparse

priors for the M/EEG inverse problem. Neuroimage. 39:1104--1120.

Friston KJ, Chu C, Mourão-Miranda J, Hulme O, Rees G, Penny W,

Ashburner J. 2008. Bayesian decoding of brain images. Neuroimage.

doi: 10.1016/j.neuroimage.2007.08.013.

Friston KJ, Trujillo-Barreto N, Daunizeau J. 2008. DEM: a variational

treatment of dynamic systems. Neuroimage. 41:849--885.

Furl N, van Rijsbergen NJ, Treves A, Friston KJ, Dolan RJ. 2007.

Experience-dependent coding of facial expression in superior

temporal sulcus. Proc Natl Acad Sci USA. 104:13485--13489.

Gallese V. 2007. Before and below ‘theory of mind’: embodied

simulation and the neural correlates of social cognition. Philos

Trans R Soc Lond B Biol Sci. 362:659--669.

Giese MA, Poggio T. 2003. Neural mechanisms for the recognition of

biological movements. Nat Rev Neurosci. 4:179--192.

Graf M, Reitzner B, Corves C, Casile A, Giese M, PrinzW. 2007. Predicting

point-light actions in real-time. Neuroimage. 36(Suppl 2):T22--T32.

Grossman ED, Blake R. 2002. Brain areas active during visual perception

of biological motion. Neuron. 35:1167--1175.

Hasson U, Yang E, Vallines I, Heeger DJ, Rubin N. 2008. A hierarchy of

temporal receptivewindows inhumancortex. JNeurosci. 28:2539--2550.

Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural

system for face perception. Trends Cogn Sci. 4:223--233.

Henson RN, Mattout J, Singh KD, Barnes GR, Hillebrand A, Friston K.

2007. Population-level inferences for distributed MEG source

localization under multiple constraints: application to face-evoked

fields. Neuroimage. 38:422--438.

Hommel B, Müsseler J, Aschersleben G, Prinz W. 2002. The Theory of

Event Coding (TEC): a framework for perception and action

planning. Behav Brain Sci. 24:849--878.

Hosoya T, Baccus SA, Meister M. 2005. Dynamic predictive coding by

the retina. Nature. 436:71--77.

Hubbard TL. 2008. Representational momentum and related displace-

ments in spatial memory: a review of the findings. Psychon Bull Rev.

12:822--851.

Hubbard TL, Bharucha JJ. 1988. Judged displacement in apparent

vertical and horizontal motion. Percept Psychophys. 44:211--221.

Hurley S. 2008. The shared circuits model (SCM): how control,

mirroring, and simulation can enable imitation, deliberation, and

mindreading. Behav Brain Sci. 31:1--22.

Jeannerod M. 2001. Neural simulation of action: a unifying mechanism

for motor cognition. Neuroimage. 14:S109.

Jehee JF, Rothkopf C, Beck JM, Ballard DH. 2006. Learning receptive

fields using predictive feedback. J Physiol Paris. 100:125--132.

Kanwisher N, Yovel G. 2007. The fusiform face area: a cortical region

specialized for the perception of faces. Philos Trans R Soc Lond B

Biol Sci. 361:2109--2128.

Keysers C, Gazzola V. 2006. Towards a unifying neural theory of social

cognition. Prog Brain Res. 156:379--401.

Kiebel SJ, Daunizeau J, Friston KJ. 2008. A hierarchy of time-scales and

the brain. PLoS Comput Biol. 4:e1000209.

Kilner J, Friston KJ, Frith CD. 2007. Predictive coding: an account of the

mirror neuron system. Cogn Process. 8:159--166.

Kilner JM, Kiebel SJ, Friston KJ. 2005. Applications of random field

theory to electrophysiology. Neurosci Lett. 374:174--178.

Larsen A, Madsen KH, Lund TE, Bendeson C. 2006. Images of illusory

motion in primary visual cortex. J Cogn Neurosci. 18:1174--1180.

Litvak V, Friston K. 2008. Electromagnetic source reconstruction for

group studies. Neuroimage. 42:1490--1498.

Liu J, Harris A, Kanwisher N. 2002. Stages of processing in face

perception: an MEG study. Nat Neurosci. 5:910--916.
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