
3DSIG: STRUCTURAL BIOINFORMATICS AND COMPUTATIONAL BIOPHYSICS
J"ALNASIR,"H"SHANAHAN" ID 019 DUBLIN, JULY 2015

PDB-HADOOP: PARALLELISING USER APPLICATIONS ON THE
PROTEIN DATABANK USING APACHE HADOOP

Jamie Alnasir1,*, Hugh Shanahan2
dept. of Computer Science, Royal Holloway University of London. jamie.al-nasir.2013@rhul.ac.uk

We present a framework that facilitates parallel execution of protein structure analysis tools to be carried out
on the entire (or subsets of) the Protein Databank (PDB) using the Apache Hadoop platform. Our design
enables structural Biologists to use the Hadoop platform without having to explicitly write Map-Reduce code. It
is easily scalable and uses a mapper architecture that functions on a stand-alone basis or can be extended to
include further Map-Reduce operations.

INTRODUCTION
The protein databank consists of models of the
macromolecular structures of proteins, nucleic acids
and complex assemblies derived from x-ray
crystallographic, NMR and electron microscopy
techniques Abola et al. (1997); Berman et al. (2000).
As of December 5th 2014 there are 105,383 structures
deposited there. High throughput analyses of these
structures are a feature of Computational Biology (e.g.
identifying binders to ligands). Traditionally, this is
carried out using batch-based systems using inhouse
computational resources but new software
architectures are coming to the fore.
PDB-Hadoop is a framework designed to enable
Structural Biologists to run their software on all or a
fraction of the entire PDB using Apache Hadoop, a
software platform that allows for the processing of
large scale datasets using clusters consisting of
commodity hardware O’Driscoll et al. (2013).
PDB-Hadoop leverages the scalability of Hadoop in
order to provide an easy to use means of concurrently
executing software on the protein databank, where the
software in question (e.g. protein ligand docking) runs
on one entry in the protein databank at a time. The
user is not required to implement their own Map-
Reduce applications or re-write their existing code for
the Map-Reduce formalism. However, PDB-Hadoop is
implemented so that it ensures this approach is still
available for users wishing to exploit data aggregation
properties of the Map-Reduce method. Hadoop not
only runs on local clusters but has also been
implemented on commercial cloud providers such as
Amazon’s Elastic Map-Reduce Taylor (2010) and
Microsoft’s Azure HDInsight Nadipalli (2013).

APPROACH
The architecture of the PDB-Hadoop framework is
based on Hadoop streaming. It employs a map step
that encapsulates and handles the execution of the
analysis software according to user-set parameters.
A feature termed Post-processing has been
incorporated into PDB-Hadoop which allows the user
the opportunity to process the output of each job prior
to saving to HDFS with a user defined script (or shell
command such as grep), hence the user may create the
output required for each PDB entry.

The execution of PDB-Hadoop is outlined in figure (1).
Scheduling of the tasks is carried out using YARN
(Yet Another Resource Negotiator) which is standard
as of Apache Hadoop V2.0.

FIGURE 1. Architecture of PDB-Hadoop. The cluster used is
comprised of a Master node and 5 Slave nodes (each node is 4x
Genuine Intel Core i5 CPUs, 2.67 GHz, 32 Gb RAM in total).
YARN was allocated a total of 28 Gb of RAM and a container size
of 4 Gb on each node of the cluster.

RESULTS
We will present comparisons between running
equivalent jobs using the OpenLava batch scheduler
with PDB-Hadoop on the same cluster. This will
highlight performance increases when using PDB-
Hadoop for structural calculations jobs and molecular
docking of a putative oligopeptide ligand with entries
in the protein databank.

DISCUSSION
PDB-Hadoop is an efficient and scalable framework
for the concurrent execution of code utilising Apache
Hadoop which does not require the users to re-write
their applications according to the Map-Reduce
formalism. We believe performance gains observed
are a result of the efficient use of concurrency by
YARN (Yet Another Resource Negotiator).

REFERENCES

1. Abola, E. E., Sussman, J. L., Prilusky, J., and Manning,
N. O. (1997). Protein Data Bank archives of three-
dimensional macromolecular structures. Methods in
enzymology, 277, 556–71.

2. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G.,
Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne,
P. E. (2000). The Protein Data Bank. Nucleic acids
research, 28(1), 235–42.

3. Nadipalli, R. (2013). HDInsight Essentials. Packt
Publishing Ltd.

4. O’Driscoll, A., Daugelaite, J., and Sleator, R. D.
(2013). ’Big data’, Hadoop and cloud computing in
genomics. Journal of biomedical informatics, 46(5),
774–81.

5. Taylor, R. C. (2010). An overview of the
Hadoop/MapReduce/HBase framework and its current
applications in bioinformatics. BMC bioinformatics, 11
Suppl 1, S1.

6. Trott, O. and Olson, A. J. (2010). AutoDock Vina:
improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and
multithreading. Journal of computational chemistry,
31(2), 455–61.

53

