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Abstract

We say that a q-ary length n code is non-overlapping if the set of
non-trivial prefixes of codewords and the set of non-trivial suffices of
codewords are disjoint. These codes were first studied by Levenshtein
in 1964, motivated by applications in synchronisation. More recently
these codes were independently invented (under the name cross-bifix-
free codes) by Bajić and Stojanović.

We provide a simple construction for a class of non-overlapping
codes which has optimal cardinality whenever n divides q. Moreover,
for all parameters n and q we show that a code from this class is
close to optimal, in the sense that it has cardinality within a constant
factor of an upper bound due to Levenshtein from 1970. Previous
constructions have cardinality within a constant factor of the upper
bound only when q is fixed.

Chee, Kiah, Purkayastha and Wang showed that a q-ary length n
non-overlapping code contains at most qn/(2n − 1) codewords; this
bound is weaker than the Levenshtein bound. Their proof appealed to
the application in synchronisation: we provide a direct combinatorial
argument to establish the bound of Chee et al.

We also consider codes of short length, finding the leading term of
the maximal cardinality of a non-overlapping code when n is fixed and
q →∞. The largest cardinality of non-overlapping codes of lengths 3
or less is determined exactly.
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1 Introduction

Let u and v be two words (not necessarily distinct) of length n, over a finite
alphabet F of cardinality q. We say that u and v are overlapping if a non-
empty proper prefix of u is equal to a non-empty proper suffix of v, or if
a non-empty proper prefix of v is equal to a non-empty proper suffix of u.
So, for example, the binary words 00000 and 01111 are overlapping; so are
the words 10001 and 11110. However, the words 11111 and 01110 are non-
overlapping.

We say that a code C ⊆ F n is non-overlapping if for all (not necessarily
distinct) u, v ∈ C, the words u and v are non-overlapping. The following is an
example of a non-overlapping binary code of length 6 containing 3 codewords:

C = {001101, 001011, 001111}.

We write C(n, q) for the maximum number of codewords in a q-ary non-
overlapping code of length n. It is easy to see that C(1, q) = q. From now
on, to avoid trivialities, we always assume that n ≥ 2.

Non-overlapping codes were introduced by Levenshtein [10] in 1964 (un-
der the name ‘strongly regular code’; in later papers [11, 12] he refers to
‘codes without overlaps’). These codes are interesting for synchronisation
applications: they are comma-free codes with the strong property that an
error in a codeword or in a state of a certain decoding automaton does not
propagate into incorrect decoding of subsequent codewords.

Inspired by the use of distributed sequences in frame synchronisation
applications by van Wijngaarden and Willink [13], Bajić and Stojanović [2]
recently independently rediscovered non-overlapping codes (using the term
cross-bifix-free). See also [1, 3, 4, 5, 6, 13] for recent papers studying non-
overlapping (cross-bifix-free) codes and their applications to synchronisation.

Levenshtein [11, 12] provides a construction for non-overlapping codes
that has good performance when q = 2, and attributes this class of codes to
Gilbert [8]; see Construction 1 in Section 3 below. Chee, Kiah, Purkayastha
and Wang [6] rediscovered this construction, and verified by computer search
that it was optimal (in the sense of producing non-overlapping codes of
largest possible cardinality) for q = 2 and n ≤ 16, except when n = 9.
Levenshtein [12] suggests that the main question in the area is to prove or
contradict the question of whether this construction always produces opti-
mal non-overlapping codes. This question is still open for binary codes (for
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n 6= 9). The main aim of this paper is to provide a strongly negative an-
swer to this question, by giving a simple generalisation of the construction
(see Construction 2 in Section 3 below) that performs much better when q
is large. This new construction is almost optimal in the sense that its car-
dinality is within a constant factor of an upper bound on non-overlapping
codes due to Levenshtein [11]. Previously, constructions with this property
were only known when q is fixed. When n divides q the cardinality of the
new construction meets Levenshtein’s upper bound and so is optimal.

A second aim of the paper is to simplify some of the arguments in the
literature on non-overlapping codes, either by providing purely combinatorial
arguments that do not rely on knowledge of any particular application of
these codes, or by providing (possibly weaker) bounds on code size that are
substantially easier to prove. As an example of the former, we reprove an
upper bound on C(n, q) due to Chee, Kiah, Purkayastha and Wang [6] using
a simple combinatorial argument; their proof required an understanding of
Bajic et al.’s analysis [3] of the variance of synchronisation time when a non-
overlapping code is used in a particular application. As an example of the
latter, we provide a lower bound on C(n, q) when q is fixed and n→∞ that
is weaker than a bound due to Gilbert [8] and Levenshtein [10], but avoids
the need to know any analytic combinatorics.

The remainder of the paper is structured as follows.
In Section 2, we recap two upper bounds on the cardinality of a non-

overlapping code. The first bound, due to Chee, Kiah, Purkayastha and
Wang [6] states that C(n, q) ≤ qn/(2n− 1). As mentioned above, Chee et al.
established their bound by appealing to the application in synchronisation
(deriving the bound from the fact that a certain variance must be posi-
tive). We provide a direct combinatorial proof of this bound. (Indeed, the
combinatorial derivation allows us to improve the bound slightly to a strict
inequality.) The upper bound due to Levenshtein [11] is always better than
the bound due to Chee et al., but requires a little analytic combinatorics: we
include this bound and its beautiful proof for completeness.

In Section 3 we turn to constructions for non-overlapping codes. We
describe the construction due to Levenshtein (rediscovered by Chee et al.)
and provide a simple argument to show that this construction has cardinality
within a constant of Levenshtein’s bound when q is fixed. We then describe
a generalisation of the construction that performs better when q is large, and
show that the codes that are produced are optimal when n divides q.

In Section 4 we consider non-overlapping codes of small length. We de-
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termine C(n, q) when n ≤ 3 exactly, and we calculate limq→∞C(n, q)/qn for
any fixed q.

Finally, in Section 5, we show that the new construction in Section 3
produces codes that are almost optimal for all parameters n and q.

2 Two upper bounds

We first provide a direct combinatorial proof of the following theorem, that
slightly strengthens the bound due to Chee et al. [6].

Theorem 1. Let n and q be integers with n ≥ 2 and q ≥ 2. Let C(n, q) be the
number of codewords in the largest non-overlapping q-ary code of length n.
Then

C(n, q) <
qn

2n− 1
.

Proof. Let C be a non-overlapping code of length n over an alphabet F
with |F | = q. Consider the set X of pairs (w, i) where w ∈ F 2n−1, i ∈
{1, 2, . . . , 2n−1} and the (cyclic) subword of w starting at position i lies in C.
So, for example, if C is the code in the introduction then (01111110011, 8) ∈
X.

We see that |X| = (2n − 1)|C|qn−1, since there are 2n − 1 choices for i,
then |C| choices for the codeword starting in the ith position of w, then qn−1

choices for the remaining positions in w.
Since C is non-overlapping, two codewords cannot appear as distinct

cyclic subwords of any word w of length 2n − 1. Thus, for any w ∈ F 2n−1

there is at most one choice for an integer i such that (w, i) ∈ X. Moreover,
no subword of any of the q constant words w of length 2n− 1 can appear as
a codeword in a non-overlapping code. So |X| ≤ q2n−1 − q < q2n−1.

The theorem now follows from the inequality

(2n− 1)|C|qn−1 ≤ |X| < q2n−1.

The above theorem has the advantage of an elementary proof. The fol-
lowing bound, due to Levenshtein [11], is stronger that the bound above, but
requires knowledge of some analytic combinatorics. The proof is short and
beautiful, so it is included for completeness.
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Theorem 2. Let n and q be integers with n ≥ 2 and q ≥ 2. Let C(n, q) be the
number of codewords in the largest non-overlapping q-ary code of length n.
Then

C(n, q) ≤ 1

n

(
n− 1

n

)n−1

qn.

Proof. Let C be a q-ary non-overlapping code of length n. We say that a
(finite) q-ary word s is C-free if no subword of s lies in C. In other words,
s is C-free if s cannot be written in the form ucv where c ∈ C, and u and
v are (possibly empty) q-ary words. Note that all sequences of length i with
i < n are C-free.

We write bi for the number of C-free q-ary sequences of length i. We have
bi = qi when i < n.

Let i ≥ n. Let P be the set of q-ary words of length i that begin with
a C-free word of length i − 1. Let Q be the set of C-free words of length i.
Let T be the set of words beginning with a C-free word of length i− n, and
ending in a codeword. We have |P | = qbi−1, |Q| = bi and |T | = |C|bi−n. For
any code C, P \Q ⊆ T . However, the fact that C is non-overlapping implies
that P \ Q = T . Thus qbi−1 − bi = |C|bi−n. This recurrence, together with
the facts that b0 = 1 and bi = qbi−1 for i < n, imply that

∞∑
i=0

biz
i =

1

1− qz + |C|zn
.

The radius of convergence R of the power series above is finite, and R−1 is
equal to the largest modulus of a root of the polynomial f(z) := 1−qz+|C|zn.
Since the coefficients bi in the power series are all non-negative, Pringsheim’s
Theorem (see [7, Theorem IV.6, page 240], for example) implies that R−1 is
a root of f . In particular, f has a root on the positive real axis.

We note that f(0) > 0, and a short calculation shows that f(z) has a
unique minima at z = z0, where

z0 =

(
q

n|C|

)1/(n−1)

.

Since f has a root on the positive real axis, we must have f(z0) ≤ 0. More
explicitly, we find that

1− q
(

q

n|C|

)1/(n−1)

+ |C|
(

q

n|C|

)n/(n−1)

≤ 0
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and so

|C|1/(n−1) − q
( q
n

)1/(n−1)
+
q

n

( q
n

)1/(n−1)
≤ 0.

Rearranging this inequality gives us the bound we require.

3 Constructions of non-overlapping codes

Let F = {0, 1, . . . , q − 1}. The following class of non-overlapping codes
of length n over F was proposed by Levenshtein [10, 11]; Gilbert [8] also
considered this class of codes in the context of synchronisation applications.
The codes were recently rediscovered by Chee et al. [6].

Construction 1 (Levenshtein [10, 11]; Gilbert [8]; Chee et al. [6]). Let k be
an integer such that 1 ≤ k ≤ n − 1. Let C be the set of all words c ∈ F n

such that:

• ci = 0 for 1 ≤ i ≤ k (so all codewords start with k zeroes);

• ck+1 6= 0, and cn 6= 0;

• the sequence ck+2, ck+3, . . . , cn−1 does not contain k consecutive zeroes.

Then C is a non-overlapping code.

The binary non-overlapping code C of length 6 given in the introduction
is an instance of Construction 1 with k = 2.

It is not hard to see that the construction above is indeed a non-overlapping
code. Chee et al. show that the construction is already good for small pa-
rameters. Indeed, they show that for binary codes, Construction 1 (with the
best choice of k) achieves the best possible code size whenever n ≤ 16 and
n 6= 9.

It less clear how to choose k in general so that C is as large as possible,
and what the resulting asymptotic size of the code is. However, Gilbert [8]
and Levenshtein [10] show that when q is fixed, and k is chosen appropriately
(as a function of n), we have that

|C| & q − 1

qe

qn

n

where e is the base of the natural logarithm, and n→∞ over the subsequence
n = (qi − 1)/(q − 1). (See also Chee et al. [6].) This lower bound on C(n, q)
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shows that Theorems 1 and 2 are tight to within a constant factor when q
is fixed. The following elementary lemma is also sufficient to establish this.
The lemma is included because its proof is simpler than Levenshtein’s lower
bound: it avoids the use of any analytic combinatorics. Note however that
the lower bound of the lemma is substantially weaker than the bound of
Levenshtein [10] if q is allowed to grow.

Lemma 3. Let q be a fixed integer, q ≥ 2. Then the codes in Construction 1
show that

lim inf
n→∞

C(n, q)/(qn/n) ≥ (q − 1)2(2q − 1)

4q4
,

Proof. We begin by claiming that when 2k ≤ n − 2 the number of q-ary
sequences of length n− k − 2 containing no k consecutive zeros is at least

qn−k−2 − (n− 2k − 1)qn−2k−2.

To see this, note that any sequence that fails the condition of containing no
k consecutive sequences of zeroes must contain k consecutive zeros starting
at some position i, where 1 ≤ i ≤ n − k − 2 − (k − 1). Since there are
n−2k−1 possibilities for i, and qn−2k−2 sequences containing k zeros starting
at position i, our claim follows. Thus, if C is the non-overlapping code in
Construction 1,

|C| ≥ (q − 1)2(qn−k−2 − nqn−2k−2) =

(
q − 1

q

)2

qn(q−k − nq−2k).

The function q−k − nq−2k is maximised when k = logq(2n) + δ, where δ is
chosen so that |δ| < 1 and k is an integer. In this case, the value of q−k−nq−2k
is bounded below by (2q − 1)/(4nq2) (this can be shown by always taking δ
to be non-negative). Thus

|C| ≥
(

(q − 1)2(2q − 1)

4nq4

)
qn.

When the alphabet size q is much larger than the length n, Construction 1
produces codes that are much smaller than the upper bound in Theorem 2.
The following generalisation of Construction 1 does not have this drawback;
indeed the construction often produces optimal non-overlapping codes. We
discuss this issue further later in this section, and in Sections 4 and 5 below.
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Let S ⊆ F k. As in the proof of Theorem 2, we say that a word x1x2 · · ·xr ∈
F r is S-free if r < k, or if r ≥ k and xixi+1 · · ·xi+k−1 6∈ S for all i ∈
{1, 2, . . . , r − k + 1}.
Construction 2. Let k and ` be such that 1 ≤ k ≤ n− 1 and 1 ≤ ` ≤ q− 1.
Let F = I ∪ J be a partition of a set F of cardinality q into two parts I and
J of cardinalities ` and q− ` respectively. Let S ⊆ Ik ⊆ F k. Let C be the set
of all words c ∈ F n such that:

• c1c2 · · · ck ∈ S;

• ck+1 ∈ J , and cn ∈ J ;

• the word ck+2, ck+3, . . . , cn−1 is S-free.

Then C is a non-overlapping code.

For example, suppose that n = 6, ` = 2, F = I ∪ J = {0, 1} ∪ {2}, k = 2
and S = {00, 01, 10}. Then

C = {002022, 002112, 002122, 002122, 002202, 002212,

012022, 012112, 012122, 012122, 012202, 012212,

102022, 102112, 102122, 102122, 102202, 102212}.

It is easy to see that Construction 1 is the special case of Construction 2
with ` = 1, I = {0} and S = {0k}.

The case of Construction 2 when k = n − 1 and S = Ik is of special
interest, as it produces optimal codes for an infinite collection of parameters.
In this case, C is the set of words of length n whose first n− 1 components
lie in I, and whose final component lies in J . If n divides q, we may choose
I and J to be such that |I| = ((n− 1)/n)q and |J | = (1/n)q, so

|C| = |I|n−1|J | = 1

n

(
n− 1

n

)n−1

qn.

Combining this observation with Theorem 2, we see that the following theo-
rem holds.

Theorem 4. Let n and q be positive integers such that n ≥ 2 and q ≥ 2. Let
the largest non-overlapping code have cardinality C(n, q). When n divides q,

C(n, q) =
1

n

(
n− 1

n

)n−1

qn.

Moreover, Construction 2 provides codes of cardinality C(n, q).
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It seems surprising that such a simple construction produces optimal non-
overlapping codes for a wide range of parameters. One way of providing some
intuition about this is as follows. When we heavily restrict the allowed short
suffixes of a code (by mandating that last symbol of each codeword lies in a
small set J), we can make the code non-overlapping by imposing a very mild
restriction on the majority of each codeword (that the first n − 1 symbols
lie in a large set I). However, optimal non-overlapping codes are very large,
and so we cannot restrict the suffices that appear in such a code much: this
means J cannot be too small.

4 Non-overlapping codes of small length

This section considers non-overlapping codes of fixed length n, when the
alphabet size q becomes large. In this situation, Construction 1 produces
codes that are much smaller than the upper bound in Theorem 2. To see this,
note that there are at most qn−k codewords in a code C from Construction 1,
since the first k components of any codeword are fixed. So, since k is positive,
|C| ≤ qn−1 and therefore |C|/(qn/n) ≤ n/q.

We saw in Section 3 that the codes given by Construction 2 are optimal
whenever n divides q. The next theorem shows that the Construction 2 is
close to optimal when q is large, even when n does not divide q.

Theorem 5. Let n be a fixed positive integer, n ≥ 2. Then

lim inf
q→∞

C(n, q)/qn =
1

n

(
n− 1

n

)n−1

.

Proof. The upper bound follows from Theorem 2. For the lower bound, we
use Construction 2 in the special case when k = n − 1 and S = Ik. In this
case (in the notation of Construction 2) C is the set of words whose first
n − 1 components lie in I, and whose final component lies in J . So here
|C| = `n−1(q − `).

Let ` = d((n− 1)/n)qe. Since q − ` ≥ (1/n)q − 1, we find that

|C| = 1

n

(
n− 1

n

)n−1

qn −O(qn−1),

and so the theorem follows.
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The following two theorems provide the precise values of C(n, q) when
n = 2 and n = 3 respectively.

Theorem 6. A largest q-ary length 2 non-overlapping code has C(2, q) code-
words, where C(2, q) = bq/2c dq/2e.

Proof. Construction 2 in the case n = 2, k = 1, ` = bq/2c and S = Ik

provides the lower bound on C(2, q) we require.
Let C be a q-ary non-overlapping code of length q. Let I be the set of

symbols which occur in the first position of a codeword in C, and let J be
the set of symbols that occur in the final position of a codeword in C. Since
C is non-overlapping, I and J are disjoint. Thus

|C| ≤ |I||J | ≤ |I|(q − |I|) ≤ bq/2cdq/2e.

In the following theorem, [x] denotes the nearest integer to the real num-
ber x.

Theorem 7. A largest q-ary length 3 non-overlapping code has C(3, q) code-
words, where C(3, q) = [2q/3]2(q − [2q/3]).

Proof. Construction 2 in the case n = 3, k = 2, ` = [2q/3] and S = Ik

provides the lower bound on C(2, q) we require.
Let C be a q-ary non-overlapping code of length q of maximal size. Let

F be the underlying alphabet of C, so |F | = q.
Let I be the set of symbols which occur in the first position of a codeword

in C. Let J be the complement of I in F , so |J | = q − |I|. Since C
is non-overlapping, the symbols that occur in the final component of any
codeword lie in J . So we may write C as a disjoint union C = C1∪C2, where
C1 ⊆ I × I × J and C2 ⊆ I × J × J .

Let X be the set of all pairs (b, c) ∈ I × J such that abc ∈ C for some
a ∈ I. Define

C1 = {abc | a ∈ I and (b, c) ∈ X},
C2 = {bcd | (b, c) ∈ (I × J) \X and d ∈ J}.

Clearly C1 ⊆ C1. Moreover, C2 ⊆ C2, since whenever bcd ∈ C is a codeword,
the fact that C is non-overlapping implies that (b, c) 6∈ X. But C = C1 ∪C2

is a non-overlapping code, and so C = C as C is maximal.
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We have

|C| = |C| = |X||I|+ (|I||J | − |X|)|J | = |X|(|I| − |J |) + |I||J |2.

If |I| ≤ |J |, then the maximum value of |C| is achieved when |X| = 0, at
maxi∈{1,2,...,bq/2c} i

2(q − i). If |I| > |J |, the maximum value of |C| is achieved
when |X| = |I||J |, at maxi∈{bq/2c,bq/2c+1,...,q−1} i

2(q − i). Thus

|C| ≤ max
i∈{1,2,...,q−1}

i2(q − i) = [2q/3]2(q − [2q/3]),

and so the theorem follows.

It would be interesting to know if the following conjecture is true:

Conjecture 1. Let n be an integer such that n ≥ 2. For all sufficiently
large integers q, a largest q-ary non-overlapping code of length n is given by
Construction 2 in the case k = n− 1 (and some value of `).

5 Good constructions for general parameters

This section shows that Construction 2 is always good, in the sense that
it produces non-overlapping codes of cardinality within a constant factor of
the upper bound given by Theorem 2 for all parameters. This is implied by
the proof of the theorem below. Up to now, we have only used the special
case of Construction 2 when S = Ik. However, in this section we require
more general sets S to avoid ‘rounding errors’ for some sets of parameters.
We mention that the issue of rounding errors also arises in work due to
Guibas and Odlyzko [9] on prefix-synchonized codes. The class of prefix-
synchronized codes is not the same as non-overlapping codes: the codes of
Construction 1, but not all codes of Construction 2, are prefix-synchronised.
Nevertheless, optimal prefix-synchronized codes are also large (close in size to
qn/n) and rounding errors cause interesting behaviour in the constructions of
such codes: see Theorem 2 of [9] and the discussion following its statement.

Theorem 8. There exist absolute constants c1 and c2 such that

c1(q
n/n) ≤ C(n, q) ≤ c2(q

n/n)

for all integers n and q with n ≥ 2 and q ≥ 2.
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Proof. The existence of c2 follows by the upper bound on C(n, q) given by
Theorem 2. Indeed, Theorem 2 shows that we may take c2 = 1

2
. (If we are

only interested in codes of large length then c2 may be taken to be close to
1/e, where e is the base of the natural logarithm.) We prove the lower bound
by showing that there exists a constant c1 such that for all choices of n and
q, one of the constructions given by Construction 2 contains at least c1(q

n/n)
codewords.

Let (n1, q1), (n2, q2), . . . be an infinite sequence of pairs of integers where
ni ≥ 2 and qi ≥ 2. It suffices to show that C(ni, qi)/(q

ni
i /ni) is always

bounded below by some positive constant as i → ∞. Suppose, for a con-
tradiction, that this is not the case. By passing to a suitable subsequence
if necessary, we may assume that C(ni, qi)/(q

ni
i /ni) → 0 as i → ∞. If the

integers qi are bounded, then Lemma 3 gives a contradiction. If the inte-
gers ni are bounded, we again have a contradiction, by Theorem 5. So we
may assume, without loss of generality, that the integer sequences (ni) and
(qi) are unbounded. By passing to a suitable subsequence if necessary, we
may therefore assume that (ni) and (qi) are strictly increasing sequences (and
that ni and qi are sufficiently large for our purposes below). In particular,
we may assume that ni →∞ and qi →∞ as i→∞.

Let ki = dlog2 2nie, and set si = bqkii /(2ni)c. Let Fi be a set of size qi.

Let Ii ⊆ Fi have cardinality `i, where `i = ds1/kii e. Let Ji be the complement
of Ii in Fi. Let Si be a subset of Ikii of cardinality si. Note that such a set
Si exists, by our choice of `i.

Let Ci be the qi-ary non-overlapping code of length ni given by Construc-
tion 2 in the case k = ki, ` = `i, I = Ii, J = Ji and S = Si. Then

|Ci| = |S|(qi − `i)2fi (1)

where fi is the number of S-free sequences of length ni−ki−2. We now aim
to find a lower bound on |Ci|.

Since qi →∞ as i→∞, we see that

qkii /(2ni) ≥ q
log2(2ni)
i /(2ni) = 2(log2(qi)−1)(log2(2ni) →∞.

Hence
|S| ∼ qkii /(2ni) (2)

as i→∞.
Note that

(2ni)
(1/ki) ≥ 2log2(2ni)/2 log2(2ni) = 21/2,
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and hence

s
1/ki
i ≤

(
qkii
2ni

)1/ki

≤ 2−1/2qi.

Since (1− 2−1/2)2 > (1/12), we see that

(qi − `i)2 > (1/12)q2i (3)

for all sufficiently large i.
The number of S-free q-ary sequences of length r is at least qr − (r− k+

1)|S|qr−k, since every word that is not S-free must contain an element of S
somewhere as a subword. So the number of S-free q-ary sequences of length
r is at least qr − r|S|qr−k = qr(1− r|S|q−k). Thus

fi ≥ qni−ki−2
i (1− (ni − ki − 2)|Si|q−kii

≥ 1

2
qni−ki−2
i (2− 2ni|Si|q−kii )

∼ 1

2
qni−ki−2
i ,

(4)

the last step following from (2).
Now (2), (3) and (4) combine with (1) to show that |Ci| > (1/50)(qni

i /ni)
for all sufficiently large i. This contradiction completes the proof of the
theorem.
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