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ABSTRACT

Brain regions that mediate action understanding must contain representations that are
action-specific and at the same time tolerate a wide range of perceptual variance.
Whereas progress has been made in understanding such generalization mechanisms in
the object domain, the neural mechanisms to conceptualize actions remain unknown.
In particular, there is ongoing dissent between motor-centric and cognitive accounts
whether premotor cortex or brain regions in closer relation to perceptual systems, i.e.,
lateral occipitotemporal cortex, contain neural populations with such mapping
properties. To date, it is unclear to which degree action-specific representations in
these brain regions generalize from concrete action instantiations to abstract action
concepts. However, such information would be crucial to differentiate between motor
and cognitive theories. Using ROI-based and searchlight-based fMRI multivoxel
pattern decoding, we sought for brain regions in human cortex that manage the
balancing act between specificity and generality. We investigated a concrete level that
distinguishes actions based on perceptual features (e.g., opening vs. closing a specific
bottle), an intermediate level that generalizes across movement kinematics and
specific objects involved in the action (e.g., opening different bottles with cork or
screw cap), and an abstract level that additionally generalizes across object category
(e.g., opening bottles or boxes). We demonstrate that inferior parietal and
occipitotemporal cortex code actions at abstract levels whereas premotor cortex codes
actions at the concrete level only. Hence, occipitotemporal, but not premotor, regions
fulfill the necessary criteria for action understanding. This result is compatible with

cognitive theories but strongly undermines motor theories of action understanding.
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INTRODUCTION

Neural populations capable of mediating action understanding need to be action-
specific and at the same time generalize across perceptual features from concrete
observed actions to more abstract levels (Figure 1A). Whereas similar
conceptualization problems have been intensively studied in the object recognition
domain (e.g., Konen and Kastner, 2008; Mur et al., 2010; Fairhall and Caramazza,
2013; Anzellotti et al., 2014; Cichy et al., 2014), the neural basis of action abstraction

remains unexplored.

There is an ongoing debate about the cortical substrates containing neural populations
that manage the balancing act between action specificity and feature generality.
Mirror neurons in ventral premotor cortex (PMv) were proposed to show such
properties and therefore have been suggested to represent the central computational
units of action understanding (Rizzolatti and Craighero, 2004; Rizzolatti et al., 2014).
However, criticism has been raised that mirror neurons might not show the degree of
generality as originally claimed (Kilner, 2011; Cook and Bird, 2013). Alternatively,
analogous to conceptualization in the object domain, more posterior regions in closer
proximity to the visual system, e.g., lateral occipitotemporal cortex (LOTC), might
generalize from perceptually variable instances of actions to abstract action concepts
(Oosterhof et al., 2013; Watson et al., 2013). However, the degree of generality of

action representations has not yet been established in any of these regions.

Here, we used cross-conditional multivoxel pattern (MVP) analysis of fMRI data to
identify action representations at three levels of representation: a concrete, an
intermediate, and an abstract level. Participants watched videos of eight actions (open
and close two different exemplars of bottles and boxes, each requiring different

kinematics) and responded to occasionally occurring catch trials. We decoded
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concrete actions by training a classifier with trials that display the opening or closing
of a particular bottle and testing it on different trials from the same conditions, i.e.,
within the same object exemplars and kinematics (Figure 1B, upper row). To decode
actions at an intermediate level, we trained the classifier with trials that display the
opening or closing of a particular bottle and tested it with trials that display the
opening or closing of a different bottle, i.e., across object exemplars and kinematics
(Figure 1B, middle row). To decode actions at an abstract level, we trained the
classifier with trials that display the opening or closing of a bottle and tested it with
trials that display the opening or closing of a box, i.e., across object category and

kinematics (Figure 1B, lower row).

Our design overcomes limitations of recent neuroimaging studies that use object-
directed actions to study action representations that generalize across kinematics
(Hamilton and Grafton, 2006, 2008), hand posture (Oosterhof et al., 2010), or
viewpoint (Oosterhof et al., 2012): By decoding not only across kinematics but also
across distinct objects and object categories, action outcomes differ perceptually at
intermediate and abstract levels, a condition that is crucial in order to disambiguate
whether identified representations are sensitive to the action or to concrete perceptual
features of an object’s state (e.g., a specific closed box). Importantly, the direct
comparison between different levels of abstraction allows more relative estimations of
the generalization capacities of action-coding neural populations in different regions

that supposedly provide the basis for action understanding.
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METHODS

Participants. Twenty-two healthy adults (11 females; mean age, 28 years; age range,
19-41 years) volunteered to participate in the experiment. All participants were right-
handed with normal or corrected-to-normal vision and no history of neurological or
psychiatric disease. Participants gave written informed consent prior to participation
in the study. The experimental procedures were approved by the Ethics Committee for

research involving human subjects at the University of Trento, Italy.

Stimuli. The stimulus set consisted of three exemplars of eight actions (24 action
videos in total). The actions were opening and closing (two-level factor ACTION) of
four different objects (two bottles and two cosmetic boxes; two-level factor OBJECT
CATEGORY). One object exemplar of each object category had a screw cap, hence
requiring a wrist rotation, the other object exemplar was opened and closed with push
and pull kinematics, respectively (two-level factor KINEMATICS). Catch trials
consisted of three exemplars of the eight actions that ended with an additional action
step (moving, tilting or lifting the object; 24 catch trial videos in total). Action videos
were filmed from a 180° third person perspective using a Canon 5D Mark II camera
and edited in iMovie (Apple) and Matlab (MathWorks). All 48 videos were identical
in terms of action timing, i.e., the videos started with hands on the table moving
towards the object, followed by the object manipulation, and ended with hands
moving to the same position of the table. Videos were in black and white, had a

length of 2 s (30 frames per second), and had a resolution of 400 x 300 pixels.

For intermediate and abstract levels, we aimed targeting neural populations that are

capable of differentiating perceptually similar but conceptually dissimilar actions that
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at the same time generalize across conceptually similar but perceptually dissimilar
actions. Hence, “open a water bottle” and “close a water bottle” should be
perceptually more similar than “open a water bottle” and “open a wine bottle”
(intermediate level) or “open a bottle” and “open a box” (abstract level). To test if our
stimuli match these criteria, we estimated the visual similarity between the action
videos. To this end, we correlated each video with each other video frame by frame,
i.e., we correlated frame 1 of video A with frame 1 of video B, etc. We then averaged
the correlation coefficients across frames to obtain a mean correlation matrix of the 24
x 24 action videos (2 actions x 2 kinematics x 2 object categories x 3 action
exemplars). In a second averaging step, we computed the means of to-be-classified
actions (open vs. close bottle A, open vs. close bottle B, etc.), and of same actions
across object exemplar (intermediate; open bottle A vs. open bottle B, close bottle A
vs. close bottle B, etc.) and object category (abstract; open bottle A vs. open box B,
close bottle A vs. close bottle B, etc.). The results demonstrate that, in line with our
criteria, pixelwise similarities of to-be-classified actions were substantially higher (r =
0.54) than similarities of same actions at intermediate (¥=0.27) and abstract levels (r =
0.12), suggesting that to-be-classified actions are perceptually more similar (i.e., there
is fewer perceptual information that can be exploited by the classifier) than the actions

that are generalized at intermediate and abstract levels.

In the scanner, stimuli were back-projected onto a screen (60 Hz frame rate, 1024 x
768 pixels screen resolution) via a liquid crystal projector (OC EMP 7900, Epson
Nagano, Japan) and viewed through a mirror mounted on the head coil (video
presentation 6.9° x 5.2° visual angle). Stimulus presentation, response collection, and
synchronization with the scanner were controlled with ASF (Schwarzbach, 2011) and

the Matlab Psychtoolbox-3 for Windows (Brainard, 1997).
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Design of the fMRI experiment. Stimuli were presented in an event-related design.
In each trial, videos (2 s) were followed by a 1 s fixation period. 18 trials were shown
per block. Each of the nine conditions (eight action conditions plus one catch trial)
was presented twice per block. Five blocks were presented per run, separated by 12 s
fixation periods. Each run started with a 10 s fixation period and ended with a 16 s
fixation period. In each run, the order of conditions was first-order counterbalanced
(Aguirre, 2007). Each participant was scanned in a single session consisting of 12
functional scans and one anatomical scan. For each of the nine conditions there was a
total of 2 (trials per block) x 5 (blocks per run) x 12 (runs per session) = 120 trials per

condition.

Task. Participants were instructed to attentively watch the movies. They were asked
to press a button with the right index finger on a response button box whenever an
action was followed by an additional action step (moving, tilting or lifting the object).
Participants could respond either during the movie or during the fixation phase after
the movie. To ensure that participants followed the instructions correctly, they

completed a practise block outside the scanner.

Data acquisition. Functional and structural data were collected using a 4 T Bruker
MedSpec Biospin MR scanner and an 8-channel birdcage head coil. Functional
images were acquired with a T2*-weighted gradient echo-planar imaging (EPI)
sequence with fat suppression. Acquisition parameters were a repetition time of 2 s,

an echo time of 21 ms, a flip angle of 75°, a field of view of 192 mm, a matrix size of
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64 x 64, and voxel resolution of 3 x 3 x 2 mm. We used 43 slices, acquired in
ascending interleaved order, with a thickness of 2 mm and 15 % gap (0.3 mm). Slices
were tilted to run parallel to the superior temporal sulcus. We thereby covered the full
temporal lobe including the poles. In few participants the most superior part of
prefrontal and parietal cortex (approx. 1 cm) was not covered. In each functional run,
172 images were acquired. Before each run we performed an additional scan to
measure the point-spread function (PSF) of the acquired sequence to correct the

distortion expected with high-field imaging (Zaitsev et al., 2004).

Structural T1-weigthed images were acquired with an MPRAGE sequence (176
sagittal slices, TR = 2.7 s, inversion time = 1020 ms, FA = 7°, 256 x 224 mm FOV, 1

x 1 x 1 mm resolution).

Preprocessing. Data were analyzed using BrainVoyager QX 2.4 (Brainlnnovation) in
combination with the BVQX Toolbox and custom software written in Matlab

(MathWorks).

Distortions in geometry and intensity in the echo-planar images were corrected on the
basis of the PSF data acquired before each EPI scan (Zeng and Constable, 2002). The
first 4 volumes were removed to avoid T1 saturation. The first volume of the first run
was aligned to the high-resolution anatomy (6 parameters). Data were 3D motion
corrected (trilinear interpolation, with the first volume of the first run of each
participant as reference), followed by slice time correction and high-pass filtering
(cutoff frequency of 3 cycles per run). Spatial smoothing was applied with a Gaussian
kernel of 8 mm FWHM for univariate analysis and 3 mm FWHM for MVPA. Note

that smoothing up to 8 mm FWHM can increase the sensitivity in MVP correlation
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analysis whereas, in MVP decoding, smoothing between 0 and 8 mm showed no
substantial increases or decreases in decoding accuracy (Op de Beeck, 2010). A
recent study, however, revealed that smoothing between 2 and 3 mm FWHM had best
effects on MVP decoding (Gardumi et al., 2014). For group analysis, both anatomical
and functional data were transformed into Talairach space using trilinear

interpolation.

Cortex-based alignment. For each hemisphere and participant, surface meshes of the
border between grey and white matter were segmented and reconstructed. Resulting
surfaces were smoothed and inflated. In addition, spherical surface meshes were
generated and morphed to a standard spherical surface. On the basis of multiscale
surface curvature maps (which reflect the gyral/sulcal folding pattern) with four
coarse-to-fine levels of smoothing, the standardized spherical surfaces of all
participants were aligned to an average spherical surface using a coarse-to-fine
moving target approach (Fischl et al., 1999; Goebel et al., 2006). Transformation
matrices of the established correspondence mapping were used to align surface maps
entering statistical group analyses. In addition, average folded and inflated group
surfaces of both hemispheres were created. Statistical maps were projected onto these

group surfaces.

MVP analysis. Multivoxel pattern analysis was carried out using a linear support
vector machine (SVM) classifier as implemented by LIBSVM (Chang and Lin, 2011).
MVP analysis was carried out both ROI- and searchlight-based. The ROI analysis

(see section ROI Analysis) was used to directly investigate the level of abstractness
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(concrete, intermediate, abstract) represented in core regions involved in action
observation, i.e., ventral premotor cortex (PMv), anterior intraparietal sulcus / inferior
parietal lobe (IPL), and lateral occipitotemporal cortex (LOTC). Note that we
included IPL due to its prominent role in action observation, despite the fact that it is
not well suited to differentiate between motor and cognitive theories. One the one
hand, IPL is typically counted to the motor system as its homologue in the monkey
has been reported to contain mirror neurons (Fogassi et al., 2005) and is suggested to
encode motor and visuospatial aspects of actions such as object affordances (Fagg and
Arbib, 1998) as well as action outcomes and intentions (Fogassi et al., 2005;
Rizzolatti et al., 2014). On the other hand, IPL is considered to belong to a
supramodal semantic system (Binder and Desai, 2011) and shows high degrees of
abstraction in object recognition and thus classical properties of the ventral “what”
stream (Konen and Kastner, 2008; Fairhall and Caramazza, 2013). Motor and
cognitive views therefore do not offer opposing predictions regarding generalization
capacities in IPL. The searchlight analysis (see section Surface-based Searchlight
Analysis) was carried out to identify putative additional regions representing action

concepts.

ROI Definition. ROIs were defined separately for each participant on the basis of
univariate statistical maps using a similar approach as described in Oosterhof et al.
(Oosterhof et al., 2010). In brief, to constrain peak cluster identification in individual
contrast maps and thus to avoid possibly arbitrary selection decisions of the
experimenter (Oosterhof et al., 2012), individual ROIs were defined as circles around
the peak vertex of individual statistical surface maps that lie within a circle of 12 mm

radius centered around the group peak vertex. To this end, we first computed a group

10
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random-effects (RFX) general linear model (GLM). Design matrices contained
predictors of the 8 (ACTION x OBJECT CATEGORY x KINEMATICS) conditions,
catch trials, and of 6 parameters resulting from 3D motion correction (X, y, z
translation and rotation). Each predictor was convolved with a dual-gamma
hemodynamic impulse response function (Friston et al., 1998). Each trial was
modeled as an epoch lasting from video onset to offset (2 s). The resulting reference
time courses were used to fit the signal time courses of each voxel. To identify the
group peak vertices, we contrasted all eight conditions vs. baseline (where baseline is
defined as all time points not modeled in the design matrix). The resulting group
contrast was projected on the cortex-based aligned group surface and peak vertices
were identified in anatomically defined cortical regions in both hemispheres (ventral
precentral gyrus, anterior intraparietal sulcus, posterior middle temporal gyrus). To
identify individual peak vertices, we computed single-subject GLM contrasts [all
eight conditions vs. baseline] in volume space using design matrices as described
above. After projecting the resulting individual maps on the surface, peak vertices
were identified within circles of 12 mm radius centered around the group peak
vertices. Finally, disc-shaped ROIs (12 mm radius) were defined around the

individual peak vertex of each participant.

ROI MVPA. The following steps were done for each participant and ROI separately.
Within each individual ROI (230 vertices on average), beta weights were estimated on
the basis of 5 trials per condition and run resulting in two beta estimates per condition
and run. Design matrices thus contained 16 predictors of action conditions, 2 catch
trials predictors, and the 6 predictors of the 3D motion correction parameters.

Predictors were orthogonal to each other (highest correlation in any of the runs and

11
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any of the participants was R* = 0.12; overall mean: R* = 0.009). In total, there were
24 beta estimates per condition for each vertex (i.e., 24 multivariate beta patterns per
condition). Classification accuracies were computed using leave-one-out cross
validation, i.e., the classifier was trained using the data of 23 patterns and tested on its
accuracy at classifying the unseen data from the remaining pattern. This procedure
was carried out in 24 iterations, using all possible combinations of training and test
patterns. The classification accuracies from the 24 iterations were averaged to give a
mean accuracy score per test. To decode actions at the concrete level, the classifier
was trained to discriminate between open and close bottle A and tested on open vs.
close bottle A (Figure 1B, upper row). The same classification procedure was
repeated for the remaining 3 objects and the mean of all 4 tests was computed. To
decode actions at the intermediate level, the classifier was trained to discriminate
between open and close bottle A and tested on open vs. close bottle B (Figure 1B,
middle row). Again, the classification procedure was repeated for bottle B - bottle
A, box A - box B, box B = box A, and the mean of the 4 tests were computed.
Decoding at the intermediate level therefore targeted action representations that
generalize across object exemplars (exemplar A and B) and kinematics (screw and
push/pull). To decode actions at the abstract level, the classifier was trained to
discriminate between open and close bottle A and tested on open vs. close box B
(Figure 1B, lower row). The classification procedure was repeated for bottle B 2 box
A, box A - bottle B, box B = bottle A, and the mean of the 4 tests was computed.
Decoding at the abstract level therefore targeted action representations that generalize
across object categories (bottles and boxes) and kinematics (screw and push/pull). For
the intermediate and abstract levels (“across object” classification) we also used the

leave-one-out cross validation procedure to ensure that the results are as comparable
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as possible to the results of the concrete level (“within object” classification). The
mean classification accuracy for each abstraction level, ROI, and participant was
entered into a one-tailed one-sample t-test against the classification expected by
chance (50%). Statistical results were FDR-corrected for the number of one sample ¢

tests, i.e., 6 ROIs x 3 levels = 18 tests (Benjamini and Yekutieli, 2001).

To assess statistical significance of the differences between decoding accuracies of
different abstraction levels and regions, a repeated measures ANOVA with
ABSTRACTION LEVEL, ROI, and HEMISPHERE and post hoc paired samples ¢
tests were used. Within each region, we considered the following three possible

scenarios:

(1) “Concrete only” regions. A region encodes action information at the concrete
level but not at intermediate and/or abstract levels (Figure 1C). In this case, three
criteria must be met: (a) Significant decoding at the concrete level, (b) no significant
decoding at intermediate and/or abstract levels, and (c) significant differences

between concrete and intermediate and/or abstract levels, respectively.

(2) “All levels” regions. A region encodes action information at all levels of
abstraction (Figure 1D). In this case, two criteria must be met: (a) Significant
decoding at concrete, intermediate, and abstract levels, and (b) significant differences
between concrete and intermediate and between intermediate and abstract levels,
respectively. A stepwise decrease from concrete to abstract is expected because in the
concrete decoding, action information from all three levels can be exploited by the
classifier whereas for the intermediate decoding only information from the
intermediate and abstract level can be exploited and for the abstract decoding only

abstract action information can be exploited.
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(3) “Abstract only” regions. A region encodes action information at the abstract level
only (Figure 1E). In this case, two criteria must be met: (a) Significant decoding at
concrete, intermediate, and abstract levels, and (b) no significant differences between
concrete and intermediate and between intermediate and abstract levels, respectively.
No differences between the three levels are expected because in all three levels the
same (abstract) information is picked up by the classifier.

Across regions, we further examined double dissociations of abstraction level and
region. To do so, we considered the following scenarios: In case region X encodes
concrete action information only and region Y encodes abstract action information
only (Figure 1C and E, respectively), an interaction of ABSTRACTION LEVEL and
ROl is expected. However, in case region X encodes concrete action information only
and region Y encodes actions at both concrete and more abstract levels (Figure 1C
and D, respectively), no interaction of ABSTRACTION LEVEL and ROI is
expected. This is because region Y should show higher decoding accuracies for
concrete compared to abstract levels. Importantly, the relative differences between
concrete and intermediate/abstract levels can be similar in region X and Y, in which
case no interaction would be observed. Hence, for the case that region Y, but not
region X, encodes actions at intermediate and abstract levels the following criteria
must be met: (a) significant decoding accuracies for concrete, intermediate and
abstract levels in region Y, (b) a significant main effect of ABSTRACTION LEVEL,
(c) a significant main effect of ROI, and (d) significant decoding differences between

region X and Y at intermediate and abstract levels.

Surface-based Searchlight MVPA. To identify any additional regions coding

actions at different levels of abstraction we carried out a surface-based (Oosterhof et

14
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al., 2010) searchlight pattern classification (Kriegeskorte et al., 2006). For each
participant and hemisphere, we transformed volume time courses into surface mesh
time courses. Volume time courses were sampled along the mesh vertex normal from
-1 to 3 mm. GLM computation and MVPA classification was carried out using
identical parameters and procedures as for the ROl MVPA. The classification
accuracy was assigned to the central vertex. Resulting individual surface accuracy
maps were anatomically aligned using the transformation parameters of the cortex-
based alignment. Aligned maps were entered into a one-sample t-test to identify
vertices where classification was significantly above chance. We reasoned that
wherever actions can be decoded at the intermediate level (action classification across
object exemplar) actions should also be decodable at the concrete level (action
classification within object exemplar). Likewise, wherever actions can be decoded at
the abstract level (action classification across object class) actions should also be
decodable at both the concrete (action classification within object exemplar) and the
intermediate level (action classification across object exemplar). We therefore entered
statistical maps for the intermediate and abstract levels into a conjunction analysis:
For the intermediate level, a conjunction of the maps for concrete and intermediate
level was computed. For the abstract level, a conjunction of the maps for concrete,
intermediate, and abstract level was computed. Conjunctions were computed by
outputting the minimum ¢ value for each vertex of the input maps (Nichols et al.,
2005). Finally, maps were corrected for multiple comparisons at p = 0.05 at the
cluster level, using a cluster size algorithm (Forman et al., 1995) based on Monte
Carlo simulations (1000 iterations) as implemented in BrainVoyager 2.4. An initial
voxelwise threshold of p < 0.005 and an estimate of the spatial correlation of voxels

of the statistical maps were used as input in the simulations.
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RESULTS

Behavioral results. All participants identified catch trials with high accuracy. Mean
error rates were 5.0 = 0.8%, (SEM). Reaction times for correct responses (measured

with respect to video onset) were 1953 + 25 ms (SEM).

Univariate fMRI results. To determine ROIs for subsequent MVP analysis, we
computed a group contrast of all eight conditions (ACTION x OBJECT CATEGORY
x KINEMATICS) vs. baseline (see section ROI Definition in the Methods). This
revealed widespread activations within left and right ventral and dorsal premotor
cortex, IPS, and occipitotemporal cortex extending dorsally into posterior IPS and
ventrally into middle and inferior temporal gyrus. Peak Talairach coordinates
identified in the group contrast for the ROI MVPA were: -47/0/27 (left PMv), 53/0/36
(right PMv), -43/-36/39 (left IPL), 35/-35/46 (right IPL), -43/-69/-2 (left LOTC), and

43/-65/1 (right LOTC).

In addition, we computed a univariate contrast “open” vs. “close” (collapsed across
object category and kinematics) to test for putative univariate effects. This contrast
revealed no significant effects (even after applying very liberal correction thresholds
of p = 0.05 at the voxel level). The lack of significant differences in the univariate

contrast suggests that the activation levels were comparable over the two actions.

ROI MVPA results. In a ROI-based multivoxel pattern analysis, we investigated the

degree of generality of action representations (see Methods for details of the

16
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procedure) in regions typically associated with action observation, i.e., PMv, IPL, and

LOTC (Figure 2).

In IPL and LOTC, we could decode actions at all levels of abstraction, while in PMv,
we could only decode actions at the concrete level (FDR corrected alpha = 0.034). A
three-way repeated measures ANOVA with the factors Abstraction Level x ROI x
Hemisphere revealed main effects of Abstraction Level (F(2,378) = 10.23, p < 0.001)
and ROI (F(2,378) = 18.93, p < 0.001). No effects of Hemisphere and no interactions
were observed (all p > 0.1). Post-hoc paired samples 7 tests revealed that decoding
accuracies for intermediate and abstract levels were significantly higher in IPL
compared to PMv and in LOTC compared to PMv (Tables 1). In addition, accuracies
in PMv differed significantly between concrete and abstract levels (Table 2).
Together, these results demonstrate that IPL and LOTC, but not PMv, encode actions

at abstract levels of representation.

A second observation is that LOTC showed significantly stronger decoding for the
concrete compared to intermediate and abstract levels, whereas IPL showed relatively
similar decoding accuracies across all levels (Table 2). This indicates that LOTC
contains both concrete and more abstract representations whereas IPL contains
abstract action representations only suggesting that generalization from perceptual to
conceptual action representations takes place in LOTC (see section ROl MVPA in the

Methods for a detailed description of expected patterns of results).

Finally, in all regions, decoding accuracies for intermediate and abstract levels were
at similar levels and did not show significant differences (Table 2) suggesting that
generalization from concrete (object-specific) to abstract (object-category-

independent) action representations does not require an additional, intermediate
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(object-independent but object-category-specific) abstraction step (see section ROI

MVPA in the Methods for a detailed description of expected patterns of results).

Searchlight MVPA results. A searchlight analysis corroborated the findings of the
ROI MVPA (Figure 3 and 4, Table 3): At the concrete level, we decoded actions in
both hemispheres throughout the occipitotemporal cortex, postcentral sulcus (poCS),
intraparietal sulcus (IPS), and ventral as well as dorsal premotor cortex. At
intermediate and abstract levels, we decoded actions in bilateral posterior middle
temporal gyrus (pMTGQ) / inferior temporal sulcus (pITS) and poCS (at the junction to

anterior IPS), but not in areas anterior to the postcentral sulcus.

DISCUSSION

Our results demonstrate that LOTC, but not PMv, encode the actions “open” and
“close” at abstract levels of representation, i.e., independently of the concrete objects
and object categories involved in the actions and the kinematics required to
manipulate these objects. This finding provides evidence that LOTC and IPL contain
neural populations that are action-specific and at the same time generalize across
perceptually different instantiations of an action and thus fulfill the necessary criteria
for action understanding. On the contrary, PMv codes actions at a concrete level only.
We found no regions anterior to postcentral gyrus that contain action representations
that generalize across involved object exemplars or categories. The presence of
abstract action representations in LOTC and the lack of such representations in
premotor cortex seriously questions the motor-centric view that premotor and/or

inferior prefrontal cortex provides the basis of action understanding (Rizzolatti et al.,
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2014). Instead, our results provide clear support for cognitive accounts that suggest
action understanding to be associated with perceptual functions, similar to object

recognition.

Our searchlight analysis at the intermediate and abstract level revealed a cluster in left
LOTC that closely overlapped with the region identified in a meta analysis on
conceptual action processing using picture compared to verbal stimuli (Watson et al.,
2013). This finding raises the question to which degree information decoded at the
intermediate and abstract levels can be regarded perceptual vs. conceptual. Based on
our design, we can narrow down a few alternatives: (1) Could decoding be driven by
low-level perceptual differences between open and close across decoding levels? Our
study was designed to target neural populations that are sensitive to the difference
between perceptually similar but conceptually dissimilar actions and at the same time
generalize across perceptually dissimilar but conceptually similar actions. Using
perceptual similarity analysis (see methods), we ensured that perceptual differences
between to-be-decoded actions (e.g. open vs. close water bottle) are smaller than
perceptual differences between same actions across decoding levels (e.g. open water
bottle vs. open wine bottle; open bottle vs. open box). This makes it unlikely that
decoding at intermediate and abstract levels was driven by low-level perceptual
similarity. In line with this view, only at the concrete level, where low-level visual
features were likely to contribute to the decoding between open and close, we found
above chance decoding throughout visual cortex, including early visual areas. (2)
Could decoding be driven by similarities of action-specific motion patterns for open
and close across decoding levels? Because different kinematics were required for
open and close at the intermediate and abstract level (screw vs. push/pull), we can

rule out that decoding at these two levels relied on fine-grained motion patterns of
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hands and fingers. In addition, movements for open and close were actually mirror-
like: Not only is open the exact reverse of close, and vice versa, but also in the initial
and end phases of each action hand and arm movements are highly similar (hands
towards vs. away from object). Therefore, decoding is unlikely to be based on the
coarse-grained movement trajectories of arms and hands. So what is the systematic
difference between open and close across object exemplars and categories that could
be picked up by our classifier? We consider it likely that decoding at the intermediate
and abstract level relied on neural populations that are sensitive to the specific change
of an object’s state (e.g. in case of closing: from open to closed, but not vice versa)
independent of the concrete means of the manipulation. However, we do not know if
the generalization capacities of these neuronal populations are limited to (a) manual
actions (or comprise also the opening of a trashbin with the foot), (b) containers (or
comprise also the opening of a door), (c) transitive actions (or comprise also the
opening of the mouth or the eye), or (d) physical actions (or comprise also figurative
use of action concepts, e.g. opening a business). Finally, (¢) we do not know whether
the change of the object’s state has to be intentionally induced by an actor or whether
the same neural populations would also respond to a door that is opened by the wind.
These considerations are certainly very exiting and exemplifies our limited
knowledge about the architecture underlying action representations. Notably,
however, they are of little relevance for the goal of our study, i.e., a comparison of the

relative abstraction capacities of regions involved in action observation.

We found that not only LOTC but also IPL encodes action information at abstract
levels of representation. Motor and cognitive theories do not offer opposing
predictions regarding the generalization capacities in IPL. Our findings in IPL are

therefore not suited to differentiate between the two views. However, there seems to
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be general agreement that IPL is associated with representing action outcomes, either
in the sence of proximal physical end states or more distal long-term goals (Hamilton
and Grafton, 2007; Oosterhof et al., 2013; Rizzolatti et al., 2014). Recently, anterior
IPL has been shown to encode functional knowledge of how to achieve particular
outcomes that generalize across motor and sensory information, e.g., decorate room
and dress up (Leshinskaya and Caramazza, 2015). This suggests, in line with our
findings, that the notion of IPL encoding concrete action outcomes (in the sense of
physical end states in the world) is too narrow and needs to be expanded to non-

motoric and non-sensory outcomes and purposes.

Notably, the abstraction from concrete actions (open a specific bottle) to intermediate
(open bottle) and abstract (open) represents levels of a conceptual action hierarchy,
which is qualitatively different from hierarchies that describe different levels from
muscle activation to movements, goals, and intentions of one and the same concrete
action (Csibra, 2007; Hamilton and Grafton, 2007; Kilner et al., 2007). Importantly,
previous studies that disentangled levels of the latter hierarchy (e.g. the goal vs. the
kinematics of an action) were not designed to identify conceptual action
representations because the investigated actions always involved the same objects and
therefore an action feature that was perceptually constant for the tested
representations (for an exception focusing on the performance of tool-related
pantomimes, see Chen et al., 2015). These studies cannot disambiguate if an
identified representation would be triggered by a concrete action element (e.g. a
specific opened box) or by any instantiation of that action independent of the concrete
object. Only the latter case fulfills the necessary criteria for action understanding.
This ambiguity might explain why some studies found action goal-specific and

kinematic-independent representations in premotor cortex (Majdandzic et al., 2009) or
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inferior frontal gyrus (Hamilton and Grafton, 2008). In the light of this reasoning and
our results, it seems likely that representations in these regions code concrete
perceptual action features, like the estimated end state of an action, or possibly also
even lower level perceptual and motion differences between concrete instantiations of
“open” and “close”. This interpretation is in line with the observation that mirror
neurons in monkey’s premotor cortex are not independent of, but in fact modulated

by, low-level features of an observed action (Cook and Bird, 2013).

One may argue that, although PMv does not code abstract actions, simulation of the
concrete action in PMv is necessary to activate conceptual action information in
LOTC and IPL. However, given that premotor cortex receives visual input only
indirectly via the dorsal pathway from LOTC and IPL or via the ventral pathway from
LOTC and IFG (Kilner, 2011; Nelissen et al., 2011; Turken and Dronkers, 2011) this
option seems unparsimonious because it implies that information is first processed in
LOTC and IPL, then sent to PMv to enable a motor simulation of the action, and
finally sent back to posterior regions where conceptual action information is
activated. A more ecological explanation would be that action understanding is a
function of LOTC and IPL and action-specific activation of neurons in PMv rather
follows or runs in a parallel to action understanding. In line with this view, Papeo et
al. (2014) showed that repetitive TMS applied to the posterior middle temporal gyrus
(pPMTG) abolished the distinction between action and non-action verbs in the
precentral gyrus. The hypothesis that action understanding is not causally related to
activation of motor circuits in PMv is further corroborated by the observation that
congenital absence of motor representations (Vannuscorps et al., 2013) or damage to

premotor or motor cortex following stroke (Negri et al., 2007; Kalenine et al., 2010;
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but see Pazzaglia et al., 2008) does not necessarily result in deficits in action

understanding.

If premotor cortex is not required for action understanding, what role could it play in
action observation? One hypothesis is that observed actions activate associated motor
responses (Hickok, 2013). Although this is possible, one might argue that similar
motor responses should be expected for the intermediate level, i.e., observing the
opening of two different bottles should not be associated with two different responses.
A different theory suggests that motor circuits are exploited to simulate and anticipate
perceptual consequences of observed actions (Csibra, 2007; Kilner, 2011). This view
would be in line with the observation of PMv involvement in anticipatory processing
of dynamic stimuli in general (Schubotz, 2007; Press and Cook, 2015) and in
generating predictions of action outcomes in particular (Jeannerod, 2006; Csibra,
2007). Our finding that PMv codes concrete, but not abstract, action information

supports this view.
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FIGURE CAPTIONS

Figure 1: Investigated levels of abstraction (A). The concrete level (red) describes

actions based on perceptual stimulus properties like concrete kinematics and object
exemplars involved in the action. The intermediate level (green) generalizes across
kinematics and object exemplars. The abstract level (blue) generalizes across
kinematics and object category. Decoding scheme (B). Different abstraction levels
were isolated by training a classifier to discriminate the opening and closing of a
specific bottle or box and tested it using actions involving either the same object
(concrete), a different object from the same object category (intermediate), or an
object from a different object category (abstract; see Methods for details of the
procedure). Expected patterns of results for different regions coding actions at
concrete but not intermediate and abstract levels (C), at concrete, intermediate and
abstract levels (D), and at the abstract level only (E). Dotted line represents
decoding accuracy at chance = 50% (for Details, see Methods, Section ROI

MVPA).

Figure 2: ROI MVPA results. Mean classification accuracies for decoding at concrete

(red), intermediate (green), and abstract (blue) levels. Error bars indicate standard
error of mean, asterisks indicate statistical significance (different from 50% =

chance, red = FDR corrected for the number of tests).
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Figure 3: Mean accuracy maps of the searchlight MVPA at each abstraction level

(concrete, intermediate, abstract). Individual accuracy maps were cortex-based
aligned, averaged, and projected onto a common group surface (both flat maps and
lateral views of inflated hemispheres). Decoding accuracy at chance is 50%.
Abbreviations: CS: central sulcus, IFS: inferior frontal sulcus; IPS: intraparietal
sulcus, ITS: inferior temporal sulcus, PrCS: precentral sulcus, PoCS: postcentral

sulcus, SFS: superior frontal sulcus; STS: superior temporal sulcus.

Figure 4: Statistical maps of the searchlight MVPA. For intermediate and abstract

levels, conjunctions (i.e., lowest common ¢ value per vertex) of
concrete/intermediate and concrete/intermediate/abstract levels, respectively, were
used (see Methods for details). Alignment and projection procedures are the same
as in Figure 3. Outlines around clusters indicate clusters surviving cluster size
correction (dark red: concrete, dark green: intermediate, dark blue: abstract;
thresholded at p = 0.005, corrected cluster threshold p = 0.05). Abbreviations: CS:
central sulcus, IFS: inferior frontal sulcus; IPS: intraparietal sulcus, ITS: inferior
temporal sulcus, PrCS: precentral sulcus, PoCS: postcentral sulcus, SFS: superior

frontal sulcus; STS: superior temporal sulcus.
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Table 1: Results of post hoc paired samples 7 tests between ROIs (mean decoding
accuracies collapsed across hemispheres; two-tailed)

PMv-IPL PMv-LOTC IPL-LOTC
{(21) P {(21) P {(21) P
Concrete -1.784 0.088 -4.450 <0.001* -2.845 0.009*
Intermediate -2.253 0.035* -3.507 0.002* -1.082 0.291
Abstract -2.440 0.023* -3.140 0.005* -0.990 0.333

*Significant p-values (FDR corrected for number of tests).

Table 2: Results of post hoc paired samples 7 tests between abstraction levels (mean
decoding accuracies collapsed across hemispheres; one-tailed)

concrete-intermediate concrete-abstract intermediate-abstract

{(21) P {(21) P {(21) P
PMv 1.314 0.101 1.962 0.031* 0.599 0.277
IPL 1.392 0.089 1.671 0.054 0.051 0.479
LOTC 3.369 0.001* 3.517 0.001* -0.012 0.504

*Significant p-values (FDR corrected for number of tests).
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Table 3: Clusters identified in the searchlight MVP analysis for action decoding at
concrete, intermediate, and abstract levels

Cluster Peak
Region t P Accuracy size t p Accuracy X y z
Concrete
left PMTG/LOTC ~ 4.978 0.0007 56.5 25017 12.027  <1.0E-07 61.9 -45 -69 -1
left PoOCS/SMG 4.038 0.0013 54.7 2932 6.808 1.0E-06 56.8 -54 -20 30
right pMTG/LOTC 5.256  0.0005 56.6 24802 10.381  <1.0E-07 62.6 43 71 5
right IPS 4.096 0.0014 55.1 5417 8.167 <1.0E-07 58.3 48 -25 37
right PoCS/SMG  3.929 0.0017 54.5 1791 6.382 3.0E-06 56.3 52 27 24
right SPL 3.816  0.0021 54.2 1515 5.479 2.0E-05 55.8 27 -50 59
Intermediate
left pMTG/ITS 4.163 0.0031 53.8 3558 6.946 1.0E-06 55.8 -42 719 1
left LO 3.607 0.0096 53.0 1040 4.877 8.0E-05 54.2 -18 91 14
left PoCS 3.617 0.0062 53.9 732 5.132 4.4E-05 55.7 -51 -26 34
left lingual gyrus ~ 3.507 0.0146 53.6 647 4477 2.1E-04 54.9 -14 72 -14
right poCS/alPS  3.595 0.0028 54.3 752 5.012 5.8E-05 56.0 37 -34 43
Abstract
left pMTG/ITS 3.475 0.0130 53.4 547 4.222 3.8E-04 54.5 -41 -76 -4
left PoCS 3.433 0.0110 54.3 265 4.233 3.7E-04 55.4 -51 -29 36

Size in mm’. Thresholded at p = 0.005, corrected cluster threshold p = 0.05. Abbreviations: IPS, intraparietal
sulcus; ITS, inferior temporal sulcus; LO, lateral occipital cortex; LOTC, lateral occipitotemporal cortex; pIPS,
posterior intraparietal sulcus; pMTG, posterior middle temporal gyrus; PoCS, postcentral sulcus; SMG,
supramarginal gyrus; SPL, superior parietal lobe.
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