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Abstract

We introduce an algebraic proof system that manipulates multilinear arithmetic formulas.
We show that this proof system is fairly strong, even when restricted to multilinear arithmetic
formulas of a very small depth. Specifically, we show the following:

1. Algebraic proofs manipulating depth 2 multilinear arithmetic formulas polynomially sim-
ulate Resolution, Polynomial Calculus (PC) and Polynomial Calculus with Resolution
(PCR) proofs;

2. Polynomial size proofs manipulating depth 3 multilinear arithmetic formulas for the func-
tional pigeonhole principle;

3. Polynomial size proofs manipulating depth 3 multilinear arithmetic formulas for Tseitin’s
graph tautologies.

By known lower bounds, this demonstrates that algebraic proof systems manipulating depth 3
multilinear formulas are strictly stronger than Resolution, PC and PCR, and have an exponential
gap over bounded-depth Frege for both the functional pigeonhole principle and Tseitin’s graph
tautologies.

We also illustrate a connection between lower bounds on multilinear proofs and lower bounds
on multilinear circuits. In particular, we show that (an explicit) super-polynomial size separation
between proofs manipulating general arithmetic circuits and proofs manipulating multilinear
circuits implies a super-polynomial size lower bound on multilinear circuits for an explicit family
of polynomials.
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1. Introduction

This paper considers an algebraic proof system Formula Multilinear Calculus (fMC) that manipu-
lates multilinear arithmetic formulas. A multilinear proof (that is, an fMC proof) begins with an
initial set of multilinear polynomial equations representing the clauses of a CNF formula (where a
polynomial is multilinear if in each of its monomials the power of every variable is at most one),
and the goal is to prove that the CNF formula is unsatisfiable by showing the equations have no
0, 1 solutions over a given fixed field.

Specifically, let Q be a set of initial multilinear polynomial equations in the formal variables
{x1, . . . , xn, x̄1, . . . , x̄n} over some fixed field. A multilinear proof of the insolvability of Q is a se-
quence of multilinear polynomial equations, where each polynomial is represented as (an arbitrarily
chosen) multilinear arithmetic formula. The sequence uses the initial equations plus the polynomial
equations xi + x̄i − 1 = 0 and xi · x̄i = 0 (for all variables xi, x̄i) as axioms, and terminates with
the unsatisfiable equation 1 = 0. Derivations of polynomial equations in the sequence are done by
applying the following two basic algebraic inference rules to previous equations in the sequence:

◦ from p = 0 and q = 0 one can deduce α · p + β · q = 0, where α, β are elements of the field;

◦ from p = 0 one can deduce q · p = 0 , for any polynomial q such that q · p is multilinear.

(The inclusion of the equalities xi + x̄i − 1 = 0 and xi · x̄i = 0 forces the variables xi and x̄i to take
on only the Boolean values 0 and 1, where x̄i takes the negative value of xi.) If such a sequence
exists then there is no assignment of 0, 1 values that satisfies all the initial equations. Such a proof
of insolvability is then called a multilinear refutation of the initial polynomial equations.

We can obtain in this way a proof system for (unsatisfiable) CNF formulas. Given a CNF
formula F in the variables x1, . . . , xn we translate F to a system of multilinear polynomial equations
in the variables x1, . . . , xn, x̄1, . . . , x̄n. Each clause C of F translates into a multilinear polynomial
equation qC = 0. F is satisfiable if and only if the system of polynomial equations qC = 0, for all
clauses C of F , has a common root in the field, where the root also satisfies the axioms xi+x̄i−1 = 0
and xi · x̄i = 0 (for all variables xi, x̄i). For example, the CNF (x1∨x2∨¬x3)∧ (¬x2∨x4) translates
into the polynomial equations x̄1 · x̄2 · x3 = 0 , x2 · x̄4 = 0.

The minimal refutation size of a given set of initial polynomial equations (i.e., the number of
symbols that takes to write down the refutation of these equations) is a natural measure for the
strength of an algebraic proof system. In algebraic proof systems such as the Polynomial Calculus
(PC) and Polynomial Calculus with Resolution (PCR) (cf. Clegg et al. (1996)1, Alekhnovich et al.
(2002) for PC and PCR, respectively), one represents the polynomials inside refutations as explicit
sum of monomials. Then, the size of a PC or a PCR refutation is usually defined as the total number
of all monomials appearing in the refutation. On the other hand, in the multilinear proof system
presented in this paper, polynomials inside refutations are represented as multilinear arithmetic
formulas. Accordingly, the size of a multilinear refutation is defined to be the total size of all the
multilinear arithmetic formulas appearing in the refutation.

The aim of this paper is first, to show that algebraic proof systems manipulating multilinear
arithmetic formulas – and further, very small depth multilinear arithmetic formulas – constitute
rather strong proof systems, that are strictly stronger than PC, PCR and Resolution. Moreover,
such multilinear proof systems are capable of refuting efficiently (negations of) tautologies that were

1 In Clegg et al. (1996) the Polynomial Calculus was referred to as the Gröbner proof system.
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found hard2 for other proof systems, such as the bounded-depth Frege proof system. And second,
to illustrate a link between multilinear proofs and multilinear arithmetic circuit lower bounds.

1.1. Background and motivation. Understanding the efficiency of propositional proof systems
and in particular proving lower bounds on the size of propositional proofs are fundamental problems
in both logic and computational complexity. This area of research has gained much interest in the
last two decades. A propositional proof system is usually described by a finite set of inference rules
and axiom schemata. A propositional proof is then a derivation of some tautology, that applies
the prescribed inference rules to the set of axioms. We can sometimes take the dual view in which
proof systems establish that some formula is unsatisfiable by deriving false from the formula and
axioms. Thus, the proofs in such systems are usually called refutations.

In the course of investigating the complexity of different propositional proof systems, connections
were found between proofs manipulating Boolean formulas and proofs manipulating polynomials
over a field (cf. Beame et al. (1996)). Proof systems manipulating polynomials are called algebraic
proof systems. Algebraic proofs usually demonstrate that a collection of polynomial equations,
derived from the clauses of an unsatisfiable CNF formula, has no 0, 1 solutions over some fixed
field.

The Polynomial Calculus proof system (PC), introduced in Clegg et al. (1996), is a well studied
algebraic proof system. Fix some field F and let Q be a collection of multivariate polynomial
equations Q1 = 0, . . . , Qm = 0, where each Qi is taken from the ring of polynomials F[x1, . . . , xn].
In PC the fact that the collection Q has no 0, 1 solutions over the field F is proved by using the
following basic algebraic inference rules: from two polynomial equations p = 0 and q = 0, we can
deduce α ·p+β ·q = 0, where α, β are elements of F; and from p = 0 we can deduce xi ·p = 0, for any
variable xi (1 ≤ i ≤ n). A sequence of polynomials that uses Q1 = 0, . . . , Qm = 0 and x2

i − xi = 0
(for any variable xi) as initial polynomial equations, follows the above algebraic inference rules,
and ends with 1 = 0, is called a PC refutation of the polynomial equations Q1 = 0, . . . , Qm = 0.

In recent years intensive efforts were made to prove lower bounds on the maximal degree of
polynomials appearing in PC refutations of some set of initial polynomials (cf. Razborov (1998),
Impagliazzo et al. (1999), Buss et al. (2001), Ben-Sasson & Impagliazzo (1999), Alekhnovich et al.
(2000), Alekhnovich & Razborov (2001), Razborov (2002-2003)). These lower bounds imply a lower
bound on the size of the refutations only when polynomials are represented as a sum of monomials,
that is, as depth 2 arithmetic formulas. For instance, Impagliazzo et al. (1999) showed that any
degree lower bound that is linear in the number of variables implies an exponential lower bound on
the number of monomials in the refutation.

With respect to lower bounds on the refutation size of algebraic proof systems other than PC
and PCR (in which the size of refutations is measured by the number of monomials appearing in
the refutations), not much is known. Moreover, extending the PC proof system by allowing it to
manipulate general (i.e., not necessarily multilinear) arithmetic formulas makes this proof system
considerably strong (cf. Buss et al. (1996/97); Grigoriev & Hirsch (2003); Pitassi (1997)). In partic-
ular, such an extended PC proof system that manipulates general arithmetic formulas polynomially
simulates the entire Frege proof system, which is regarded as a rather strong proof system, and
for which no super-polynomial size lower bounds are currently known. Thus, if one seeks to prove

2 Given a proof system P and a tautology τ , we say that τ is hard for P , if there is no polynomial-size P -proof
of τ (or equivalently, if there is no polynomial-size P -refutation of ¬τ).
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size lower bounds on refutation size, it is more reasonable to concentrate on (apparently weaker)
extensions of PC (and PCR).

Furthermore, it is well known in proof complexity theory (cf. Beame & Pitassi (1998)) that
there is an (informal) correspondence between circuit-based complexity classes and proof systems
based on these circuits (i.e., proofs in which the proof lines3 consist of circuits from the prescribed
circuit-class). Moreover, super-polynomial size lower bounds on proofs manipulating circuits from
a given circuit-class were only found after super-polynomial size lower bounds were already proved
for circuits from the circuit-class itself. Keeping in mind this correspondence, it is important to
note that super-polynomial lower bounds on multilinear arithmetic formulas for the determinant
and permanent functions, as well as other functions, were recently proved in Raz (2004a,b) and
Aaronson (2004). On the other hand no super-polynomial lower bounds are known for general
arithmetic formulas.

In light of the aforesaid, the results of this paper show that algebraic proof systems manipulating
multilinear arithmetic formulas (even of a very small depth) constitute on the one hand fairly strong
proof systems extending PC and PCR — and on the other hand, the corresponding circuit-class (i.e.,
multilinear formulas) does have known super-polynomial lower bounds. This makes the multilinear
proof systems a prime target for attempts to prove refutation-size lower bounds.

Moreover, as mentioned above, the correspondence between proof systems and circuit-classes
is not a formal one, but instead it acts more as a working conjecture in proof complexity the-
ory. Nevertheless, using multilinear proofs we are able to pinpoint an interesting case where this
correspondence can be formulated explicitly.

1.2. Overview of proof systems. We now give a list of proof systems we consider in this paper
(we shall define these formally in the sequel). A proof sequence in some proof system is also called
a refutation if its terminal formula (or terminal polynomial equation) is false (or the unsatisfiable
polynomial equation 1=0).

The algebraic proof systems we consider are the following:

Polynomial Calculus, denoted PC (described above). A proof system for the set of unsatisfiable
CNF formulas written as an unsatisfiable set of polynomial equations over a field. Each polynomial
in a PC proof is represented as an explicit sum of monomials.
Polynomial Calculus with Resolution, denoted PCR. This is an extension of PC where for each
variable xi a new formal variable x̄i is added. The variable x̄i equals 1− xi. Each polynomial in a
PCR proof is represented as an explicit sum of monomials. PCR can polynomially simulate both
PC and Resolution.
Formula Multilinear Calculus, denoted fMC (described above). fMC is a proof system for the set
of unsatisfiable CNF formulas written as unsatisfiable set of multilinear polynomial equations over
a field. Each polynomial in an fMC proof is a multilinear polynomial represented as a multilinear
arithmetic formula (we consider arithmetic formulas that can use unbounded fan-in + (addition)
and × (product) gates). It is important to note that we allow each multilinear polynomial in an
fMC proof to be represented by an arbitrarily chosen multilinear formula. Hence, fMC can be
considered a semantic proof system which is probabilistically polynomial-time verifiable. This is in
contrast with the usual requirement that proofs should be polynomial-time verifiable (see discussion
in Section 2.3.5).

3 A formula (or circuit) in a proof sequence is sometimes referred to as a proof line.
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Depth-k Formula Multilinear Calculus, denoted depth-k fMC. This is a restriction of fMC to mul-
tilinear arithmetic formulas of depth at most k.
cMC and cPCR proof systems. The cMC proof system is similar to fMC, except that multilinear
polynomials are represented by multilinear arithmetic circuits (instead of multilinear arithmetic
formulas). In the same manner, cPCR is a proof system similar to PCR, except that polynomials
are represented by (general) arithmetic circuits (instead of sums of monomials).

Other proof systems (manipulating Boolean formulas) considered in this paper are:

Resolution. A proof system for unsatisfiable CNF formulas. Each Resolution proof-line consists of
a clause (i.e., a disjunction of variables or their negations). The last line of a Resolution refutation
is the empty clause, which has no satisfying assignment.
Bounded-depth Frege. Usually considered as a proof system for the set of Boolean tautologies. The
lines in a bounded depth Frege proof consists of constant-depth formulas over the connective not
and the unbounded fan-in connectives and, or. We can consider bounded-depth Frege to be also
a proof system for the set of unsatisfiable Boolean formulas, by treating a proof sequence (starting
from some initial set of unsatisfiable formulas) that ends with false, as a refutation.

We shall consider all the proof systems above to be proof systems for the set of unsatisfiable
CNF formulas (or polynomial translations of unsatisfiable CNF formulas). We shall say that a proof
system P2 polynomially simulates another proof system P1 if for any unsatisfiable CNF formula
F and a P1 refutation π of F , there exists a refutation of F in P2 of size polynomial in the size
of π. In case P2 polynomially simulates P1 while P1 does not polynomially simulates P2 we say
that P2 is strictly stronger than P1. Given an unsatisfiable CNF formula F , we say that P2 has an
exponential gap over P1 for F if there exists a polynomial size P2 refutation of F and the smallest
P1 refutation of F is of exponential size.

1.3. Our results. We prove three kinds of results. The results of the first kind are polynomial
simulations. The results of the second kind are upper bounds on the refutation size of combinatorial
principles that were found hard for other proof systems. Both the simulations and upper bounds
results are valid when one restricts the multilinear arithmetic formulas in the refutations to depth
at most 3. The third kind of result concerns the problem of proving multilinear arithmetic circuit
size lower bounds in connection to multilinear proof systems. Specifically, we show the following
simulation and upper bounds results:

1. Depth-2 fMC polynomially simulates Resolution, PC and PCR (Sections 4 and 5);

2. Depth-3 fMC over fields of characteristic 0 has polynomial-size refutations of the Functional
Pigeonhole Principle (Section 7);

3. Depth-3 fMC has polynomial-size refutations of the Tseitin mod p contradictions (for any p)
over fields of characteristic q - p , that include a primitive p-th root of unity (Section 8).

Haken (1985) has shown an exponential lower bound on the size of Resolution refutations of
the Functional Pigeonhole Principle. Moreover, exponential lower bounds on the size of Resolution
refutations of certain Tseitin mod 2 tautologies (that is, Tseitin tautologies based on expanding
graphs) are also known (see Ben-Sasson & Wigderson (1999); Urquhart (1987)). We conclude then,
by (1,2,3), that depth-3 fMC is strictly stronger than Resolution.
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From the known exponential lower bounds on PC and PCR refutation size of certain Tseitin
mod p tautologies (cf. Alekhnovich et al. (2000); Ben-Sasson & Impagliazzo (1999); Buss et al.
(2001)), we conclude by (1,3) that depth-3 fMC is strictly stronger than PC and PCR.

Note also that Razborov (1998) and subsequently Impagliazzo et al. (1999) have shown an
exponential-size lower bound on the size of PC (and PCR) refutations of a low-degree version of
the Functional Pigeonhole Principle. Our depth-3 fMC upper bound is also applicable to this
low-degree version (see Section 7 for a discussion).

Exponential lower bounds on the size of bounded-depth Frege proofs of the Functional Pigeon-
hole Principle were proved in Pitassi et al. (1993) and independently in Kraj́ıček et al. (1995).
Thus (2) shows an exponential gap of depth-3 fMC over bounded depth Frege for the Functional
Pigeonhole Principle. Similarly, an exponential lower bound on the size of bounded-depth Frege
proofs of certain Tseitin mod 2 tautologies was shown in Ben-Sasson (2002). Thus, (3) implies that
also for these Tseitin mod 2 tautologies, depth-3 fMC has an exponential gap over bounded-depth
Frege proofs.

In Section 5 we provide a general simulation result for multilinear proofs. Specifically, Let S be
a sequence of polynomials (not formulas) that forms a PCR proof sequence for some given set Q
of multilinear polynomials, and consider the corresponding sequence S′ of multilinear polynomials
formed by ‘multilinearization’ (see Definition 2.2) of the polynomials in S. Then, the general
simulation result essentially says that there is an fMC proof of Q of size polynomial in the total
size of all the multilinear formulas that compute the polynomials in S′.

By this general simulation we are able (in Section 6) to assert the following: Proving (an explicit)
super-polynomial size separation between algebraic proofs manipulating general arithmetic circuits
and algebraic proofs manipulating multilinear arithmetic circuits implies a super-polynomial size
lower bound on multilinear arithmetic circuits for an explicit family of polynomials.

2. Preliminaries

For a natural number m, we use [m] to denote {1, . . . ,m}.

2.1. CNF formulas. A CNF formula over the variables x1, . . . , xn is defined as follows. A literal
is a variable xi or its negation ¬xi. A clause is a disjunction of literals. We treat a clause as a set
of literals, that is, we delete multiple occurrences of the same literal in a clause. A CNF formula is
a conjunction of clauses.

The size of a clause is the number of literals in it. The size of a CNF is the total size of all the
clauses in it.

2.2. Arithmetic and multilinear circuits and formulas.

2.2.1. Arithmetic circuits and formulas. An arithmetic circuit is a directed acyclic graph
with unbounded (finite) fan-in and unbounded (finite) fan-out. Every leaf of the graph (i.e., a node
of fan-in 0) is labeled with either an input variable or a field element. A field element can also label
an edge of the graph. Every other node of the graph is labeled with either + or × (in the first case
the node is a plus gate and in the second case a product gate). We assume that there is only one
node of out-degree zero, called the root. The size of an arithmetic circuit C is the total number of
nodes in its graph and is denoted by |C|.

An arithmetic circuit computes a polynomial in the ring of polynomials F[x1, . . . , xn] in the
following way. A leaf just computes the input variable or field element that labels it. A field
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element that labels an edge means that the polynomial computed at its tail (i.e., the node where
the edge is directed from) is multiplied by this field element. A plus gate computes the sum of
polynomials computed by the tails of all incoming edges. A product gate computes the product of
the polynomials computed by the tails of all incoming edges. (Subtraction is obtained using the
constant −1.) The output of the circuit is the polynomial computed by the root.

The depth of a circuit C is the maximal number of edges in a path from a leaf to the root of C,
and is denoted by dp(C).

We shall consider only leveled circuits, that is, circuits where all the nodes of a given level
(excluding the bottom level nodes, i.e., the leaves) in the circuit-graph have the same labels, and
two consequent levels have different labels (i.e., the gates in any path in the circuit alternate between
plus and product gates). Any arithmetic circuit with unbounded fan-in gates can be transformed
into a leveled circuit that computes the same polynomial, with only a polynomial increase in the
size of the circuit. Hence, considering only leveled circuits is not a real restriction here.

We say that a variable xi occurs in an arithmetic circuit if xi labels one of the leaves of the
arithmetic circuit, i.e., xi is an input variable. We say that an arithmetic circuit has a plus
(product) gate at the root if the root of the circuit is labeled with a plus (product) gate.

An arithmetic circuit is an arithmetic formula if its underlying graph is a tree (with edges
directed from the leaves to the root).

2.2.2. Multilinear circuits and formulas. A polynomial is multilinear if in each of its mono-
mials the power of every input variable is at most one.

Definition 2.1. An arithmetic circuit is a multilinear circuit (or equivalently, multilinear arith-
metic circuit) if the polynomial computed by each gate of the circuit is multilinear (as a formal
polynomial, i.e., as an element of F[x1, . . . , xn]). Similarly, an arithmetic formula is a multilinear
formula (or equivalently, multilinear arithmetic formula) if the polynomial computed by each gate
of the formula is multilinear.

An additional definition we shall use extensively is the following:

Definition 2.2. Given a field F and a polynomial q ∈ F[x1, . . . , xn], we denote by M[q] the unique
multilinear polynomial equal to q modulo the ideal generated by all the polynomials x2

i − xi, for
all variables xi.

For example, if q = x2
1x2 + αx3

4 (for some α ∈ F) then M[q] = x1x2 + αx4 .

Notational conventions. We shall often abuse notation by identifying arithmetic formulas with
the polynomials they compute. For instance, if Φ is an arithmetic formula computing the polynomial
f , then M[Φ] is the multilinear polynomial M[f ], and not a formula (note that there can be many
arithmetic formulas computing a given polynomial). We can also write, for instance, Φ ·xi to mean
the polynomial f ·xi, or Φ+xi to mean the polynomial f +xi (we shall often state explicitly when
we refer to the polynomial and not the formula).

Also, given m formulas Φ1, . . . ,Φm, we usually write Φ1 + . . . + Φm and Φ1 × . . . × Φm to
designate the formula with a plus gate at the root with m children Φ1, . . . ,Φm, and product gate
at the root with m children Φ1, . . . ,Φm, respectively. When writing a formula like Φ1 × xi + Φ2,
then the × gate has clearly precedence over the + gate.
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2.3. Algebraic proof systems. Algebraic proof systems are proof systems for finite collections
of polynomial equations having no 0, 1 solutions over some fixed field. (Formally, each different
field yields a different algebraic proof system.) In this paper, all collections of polynomial equations
that are being refuted are translations of CNF formulas, according to a fixed translation scheme
we shall define explicitly below (Definition 2.5).

The lines of an algebraic refutation consists of polynomials pi over the given fixed field. Each
such proof line is interpreted as the polynomial equation pi = 0. If we want to consider the size of
algebraic refutations we should fix the way polynomials inside refutations are represented.

2.3.1. Polynomial Calculus. The Polynomial Calculus is a complete and sound proof system
for unsatisfiable CNF formulas translated to polynomial equations.

Definition 2.3. (Polynomial Calculus (PC)). Let F be some fixed field and let Q :=
{Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn]. Call the set of poly-
nomials x2

i − xi, for all variables xi ( 1 ≤ i ≤ n), the set of Boolean axioms of PC.
A PC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multivariate

polynomials from F[x1, . . . , xn] (each polynomial pi is interpreted as the polynomial equation pi =
0), where p` = g and for each i ∈ [`], either pi = Qj for some j ∈ [m], or pi is a Boolean axiom, or
pi was deduced from pj , pk , where j, k < i, by one of the following inference rules:

Product: from p deduce xi · p , for some variable xi ;

Addition: from p and q deduce α · p + β · q, for some α, β ∈ F.

All the polynomials inside a PC proof are represented as sums of monomials. A PC refutation of
Q is a proof of 1 (which is interpreted as 1 = 0) from Q.

The size of a PC proof is defined to be the total number of monomials appearing in the poly-
nomials of the proof. The degree of a PC proof is the maximum degree of the polynomials in the
proof.

Notice that the Boolean axioms have only 0, 1 solutions.

Note also that the formal variables of the PC proof system are x1, . . . , xn. In order to refute in
PC an unsatisfiable CNF formula in the variables x1, . . . , xn, we translate a CNF formula into a
system of polynomials as follows (again, a polynomial p is interpreted as the polynomial equation
p = 0). A positive literal xi translates into 1 − xi. A negative literal ¬xi translates into xi. A
clause, i.e., a disjunction of literals `1∨ . . .∨`k, translates into the product of the translations of the
literals `i. A CNF is translated into the set of polynomial translations of its clauses. For example,
(x1 ∨ x2 ∨¬x3)∧ (¬x1 ∨¬x4) translates into the two polynomials (1− x1) · (1− x2) · x3 and x1 · x4.
It is not hard to see that any assignment of 0,1 (where 0 is interpreted as false and 1 as true) to
the variables of a CNF formula F satisfies F if and only if it is a common root of the corresponding
system of polynomials, over any given field.

2.3.2. Polynomial Calculus with Resolution. The translation of CNF formulas into col-
lections of polynomials, discussed in the previous paragraph, makes PC unable to polynomially
simulate Resolution (see Definition 2.9 for polynomial simulations, and Definition 2.8 for Resolu-
tion). For instance, the clause

∨n
i=1 xi is translated into the polynomial Πn

i=1(1− xi). The number
of monomials in Πn

i=1(1 − xi) is 2n, exponential in the number of variables in the clause. For this
reason an extension of PC, denoted PCR, that is capable of simulating Resolution was defined as
follows (cf. Alekhnovich et al. (2002)).

9



Definition 2.4. (Polynomial Calculus with Resolution (PCR)). Let F be some fixed field
and let Q := {Q1, . . . , Qm} be a collection of multivariate polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n].
The variables x̄1, . . . , x̄n are treated as new formal variables. Call the set of polynomial equations
x2−x, for x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}, plus the polynomial equations xi + x̄i− 1, for all 1 ≤ i ≤ n,
the set of Boolean axioms of PCR.

The inference rules, proofs and refutations of PCR are defined the same as in PC (except that in
PCR the polynomials are taken from F[x1, . . . , xn, x̄1, . . . , x̄n]). Similar to PC, all the polynomials
in a PCR proof are represented as sum of monomials.

The size of a PCR proof is defined to be the total number of monomials appearing in the
polynomials of the proof. The degree of a PCR proof is the maximum degree of the polynomials
in the proof. The number of steps of a PCR proof is defined to be the number of polynomials in it
(i.e., the length of the proof sequence).

Note that the Boolean axioms of PCR have only 0, 1 solutions, where x̄i = 0 if xi = 1 and
x̄i = 1 if xi = 0.

2.3.3. Translation of CNF formulas. In the case of PCR, the polynomial translation of CNF
formulas is the following (this is the translation we shall also work with when dealing with multi-
linear proofs.)

Definition 2.5. (polynomial translation of CNF formulas). The literal xi translates into
x̄i. The literal ¬xi translates into xi. A clause, i.e., a disjunction of literals `1 ∨ . . .∨ `k, translates
into the product of the translations of its literals. A CNF is translated into the set of polynomial
translations of its clauses.

Note that this way the clause
∨n

i=1 xi translates into Πn
i=1x̄i, which consists of only one monomial

(see the discussion in the first paragraph of Section 2.3.2).
It is clear that any assignment of 0,1 values to the variables x1, . . . , xn of a CNF formula F

satisfies F if and only if it is a common root of the set of polynomial translations of the clauses of
F over the given fixed field (where each variables x̄i gets the negative value of xi , i.e., x̄i = 0 if
xi = 1 and x̄i = 1 if xi = 0).

2.3.4. Formula Multilinear Calculus. We now come to define proof systems manipulating
multilinear formulas.

Definition 2.6. (Formula Multilinear Calculus (fMC)). Fix a field F and let Q :=
{Q1, . . . , Qm} be a collection of multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] (the variables
x̄1, . . . , x̄n are treated as formal variables). Call the set of polynomials consisting of xi + x̄i− 1 and
xi · x̄i for 1 ≤ i ≤ n , the Boolean axioms of fMC.

An fMC proof from Q of a polynomial g is a finite sequence π = (p1, ..., p`) of multilinear
polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] , such that p` = g and for each i ∈ [`], either pi = Qj for
some j ∈ [m], or pi is a Boolean axiom of fMC, or pi was deduced by one of the following inference
rules using pj , pk for j, k < i:

Product: from p deduce q · p , for some polynomial q in F[x1, . . . , xn, x̄1, . . . , x̄n] such that p · q
is multilinear;

Addition: from p, q deduce α · p + β · q, for some α, β ∈ F.
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All the polynomials in an fMC proof are represented as multilinear formulas. (A polynomial pi

in an fMC proof is interpreted as the polynomial equation pi = 0.) An fMC refutation of Q is a
proof of 1 (which is interpreted as 1 = 0) from Q.

The size of an fMC proof π is defined as the total sum of all the formula sizes in π and is
denoted by |π|.

Note that the Boolean axioms have only 0, 1 solutions, where x̄i = 0 if xi = 1 and x̄i = 1 if
xi = 0, for each 1 ≤ i ≤ n .

Remark. The product inference rule of fMC in Definition 2.6 allows a polynomial p to be multi-
plied by an arbitrary polynomial q as long as p·q is multilinear. We could have restricted this product
rule to allow a polynomial p to be multiplied only by a variable from {x1, . . . , xn, x̄1, . . . , x̄n} (not
occurring already in p). It is not hard to show that fMC refutations with such restricted product
rule can polynomially simulate fMC refutations as defined in Definition 2.6.

Definition 2.7. (Depth-k Formula Multilinear Calculus (depth-k fMC)). For a natural
number k, depth-k fMC denotes a restriction of the fMC proof system, in which proofs consist of
multilinear polynomials from F[x1, . . . , xn, x̄1, . . . , x̄n] represented as multilinear formulas of depth
at most k.

In order to refute an unsatisfiable CNF formula in fMC, we first translate the CNF formula into
a system of polynomials via the translation scheme in Definition 2.5. Note that this translation
scheme yields a set of multilinear monomials, since each literal occurs at most once inside a clause.
From now on, we shall assume that any CNF formula is translated to a system of polynomials via
Definition 2.5.

2.3.5. A discussion about the fMC proof system. It is important to clarify the following
matter. A proof in fMC, as defined in Definition 2.6, is a sequence of formal (multilinear) polyno-
mials, that is, (multilinear) elements of F[x1, . . . , xn, x̄1, . . . , x̄n]. The representation of multilinear
polynomials inside an fMC proof sequence is done by arbitrary multilinear formulas. Thus, each
polynomial in an fMC proof can be represented in more than one way by a multilinear formula
(in contrast to PC and PCR proofs, where each polynomial has a unique representation as a sum
of monomials (disregarding the order of monomials inside a polynomial)). This means that we
can think of the inference of new polynomials from previous ones, via the fMC inference rules,
as a semantic inference of polynomials from preceding ones, rather than a syntactic inference of
formulas from preceding formulas (the inference is semantic in the sense that any root of p in F is
also a root of q · p in F; and any common root of p and q in F is also a root of α · p + β · q, for any
α, β ∈ F).

Accordingly, when we talk about the size of an fMC proof (or refutation), we take into account
a specific choice of multilinear formulas representing each of the polynomials in the proof sequence
(naturally, we shall be interested in the most efficient way to represent each multilinear polynomial
by a multilinear formula).

It stems from the aforesaid, that fMC is not necessarily a propositional proof system in the
formal sense. Formally, a propositional proof system is defined to be a polynomial-time algorithm
A that receives a Boolean formula F (usually a CNF) and a string π over some finite alphabet
(“the (proposed) refutation of F”), such that there exists a π with A(F, π) = 1 if and only if F is
unsatisfiable (cf. Cook & Reckhow (1979)). The reason that fMC is not necessarily a propositional
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proof system in the formal sense is that it is an open question whether there exists a polynomial-
time algorithm that can decide the identity of two (multilinear) arithmetic formulas. Hence, it is
open whether there exists a polynomial-time algorithm that can verify the correctness of a given
refutation, represented as a sequence of multilinear formulas.

Nevertheless, it is known that there is a probabilistic polynomial-time algorithm that can verify
the identity of two given arithmetic formulas (cf. Schwartz (1980); Zippel (1979)). Thus, any
proof of fMC can be checked in polynomial-time (in the proof size) by a probabilistic algorithm (cf.
Pitassi (1997) for some facts about algebraic proof systems over arithmetic circuits and formulas).
Also, it is worth noting that for some restricted classes of arithmetic formulas (and circuits) there
are known deterministic polynomial-time algorithms that decide the identity of any two given
arithmetic formulas (and circuits) belonging to the prescribed classes (see for example Raz &
Shpilka (2004), Dvir & Shpilka (2005), Kayal & Saxena (2006)).

Grigoriev & Hirsch (2003) introduced algebraic proof systems over (general) arithmetic formulas
that are propositional proof systems in the above formal sense. This was done by augmenting the
system with, so-called, primitive rules that help demonstrating that two terms represent the same
polynomial (the primitive rules express associativity, commutativity, distributivity, etc.).

2.4. Resolution and bounded-depth Frege proof systems.

Resolution. Resolution is a complete and sound proof system for unsatisfiable CNF formulas.
For two clauses C and D, the resolution rule allows to derive C ∨D from C ∨ xi and D ∨¬xi. The
clause C ∨D is called the resolvent of the clauses C ∨ xi and D ∨ ¬xi on the variable xi.

Definition 2.8. A Resolution refutation for a CNF formula F is a sequence of clauses
C1, C2, . . . , C` , such that: (1) Each clause Cj is either a clause of F or a resolvent of two pre-
vious clauses in the sequence; (2) The last clause, C` , is the empty clause (which stands for false,
that is, the empty clause has no satisfying assignments). The size of a Resolution refutation is the
total size of the clauses in it.

Without loss of generality, we assume that no clause in a Resolution refutation contains both xi

and ¬xi (such a clause is always satisfied and hence it can be removed from the proof).

Bounded-depth Frege. We shall not need an explicit definition for the bounded-depth Frege
proof system in this paper. We only state several exponential gaps between multilinear refutations
and bounded depth Frege refutations for specific (families of) CNF formulas (based on known
exponential lower bounds on the sizes of bounded-depth Frege refutations of these CNF formulas).
For a formal definition of bounded-depth Frege see, e.g., Ben-Sasson (2002).

A Frege proof system is an implicationally complete proof system (meaning that given any set
of propositional formulas T , every formula that is semantically implied from T has a proof from T
in the system) whose proof lines consist of formulas over some finite complete set of connectives (a
complete set of connectives is one that can represent any Boolean function; usually the connectives
∧,∨,¬, which stand for and, or, not respectively, are used, augmented with the constant false).
A Frege proof system is specified by a finite set of sound and complete inference rules, rules for
deriving new propositional formulas from existing ones by (consistent) substitution of formulas for
variables in the rules.
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A bounded-depth Frege proof system is a Frege proof system whose proof lines consist of constant-
depth formulas, for some fixed constant (in the case of constant-depth formulas, the connectives
∧,∨ have unbounded fan-in). As mentioned above (Section 1.2), we can consider bounded-depth
Frege to be a proof system for the set of unsatisfiable Boolean formulas, by treating a proof sequence
(starting from some initial set of unsatisfiable formulas) that ends with false, as a refutation.

2.5. Polynomial simulations. When comparing the strength of different proof systems, we
shall restrict ourselves to CNF formulas only. That is, we consider propositional proof systems
such as Resolution and bounded-depth Frege as proof systems for the set of unsatisfiable CNF
formulas and we consider algebraic proof systems to be proof systems for the set of polynomial
translations (defined above) of unsatisfiable CNF formulas.

Definition 2.9. Let P1, P2 be two proof systems for the set of unsatisfiable CNF formulas. We say
that P2 polynomially simulates P1 if given a P1 refutation π of a CNF F , there exists a refutation
of F in P2 of size polynomial in the size of π. Given an unsatisfiable CNF formula F , we say that
P2 has an exponential gap over P1 for F , if there exists a polynomial size P2 refutation of F , and
the smallest P1 refutation of F is of exponential size. If either P1 or P2 are algebraic proof systems,
then we identify the CNF formula F with its translation to system of polynomial equations.

For the sake of convenience we shall sometimes write simply simulates to mean polynomially
simulates. Since we do not talk about other concepts of simulations, there should be no confusion.

3. Basic Manipulations of Arithmetic Formulas

In this section we shall prove simple propositions concerning manipulations of arithmetic formulas
in fMC. These propositions will be very useful in the sequel. In particular, we take special care to
maintain the depth of arithmetic formulas inside fMC refutations small (this makes the arguments
of this section and Section 5 a bit tedious).

Notational convention. We say that a polynomial f1 is subtracted from f2 in an fMC proof, if
f2 is added to −1 · f1 by the addition rule.

Also, recall that a constant from the field (e.g., −1) can label an edge in an arithmetic formula,
which means that the polynomial computed at the tail of the edge (i.e., the node where the edge
is directed from) is multiplied by this constant.

Proposition 3.1. Let Φ be a multilinear formula whose root is a plus gate. Let x ∈
{x1, . . . , xn, x̄1, . . . , x̄n} be some variable. Then there exists a multilinear formula Φ′ := x×Φ1+Φ2,
where x does not occur in Φ1,Φ2, such that:

(i) Φ′ and Φ compute the same polynomial;
(ii) |Φ1| = 2 · |Φ| and |Φ2| = |Φ| ;
(iii) dp(Φ1) = dp(Φ2) = dp(Φ) ;
(iv) The roots of both Φ1 and Φ2 are plus gates .

Proof. Let a be an element of the base field. Denote by Φ[a/x] the formula that results by
substituting each occurrence of x in Φ with a.

Let f be the polynomial computed by Φ. Consider the polynomial f as a polynomial in the
variable x only, denoted by f(x) (where now the coefficients of the variable x in f(x) also contain
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variables). Since f is multilinear, f(x) is of degree 1. Thus, by the Lagrange interpolation formula,
the following is equal to the polynomial f(x):

x · (f(1)− f(0)) + f(0)

(this equality can also be verified in a straightforward manner). Hence, the multilinear formula

x× (Φ[1/x]− Φ[0/x]) + Φ[0/x]

computes the polynomial f(x). When considering f(x) as a polynomial in all the variables occurring
in Φ, f(x) is precisely the polynomial f .

Therefore, letting Φ1 := Φ[1/x] − Φ[0/x] and Φ2 := Φ[0/x] concludes the proof (note that Φ1

is of the same depth as that of Φ, since the root of Φ is a plus gate, and since subtraction can
be achieved by labelling the edge going out of the root of Φ[0/x] with −1). (Also notice that if x
does not occur in Φ then the proof holds trivially, since Φ1 := Φ[1/x]−Φ[0/x] = Φ−Φ, which is a
formula computing the zero polynomial.) �

Proposition 3.2. Let Φ be a multilinear formula of depth d, whose root is a plus gate, and let
xi ∈ {x1, . . . , xn} be some variable. Then there is a multilinear formula

x̄i × xi × ϕ1 + x̄i × ϕ2 + xi × ϕ3 + ϕ4

that computes the same polynomial as Φ, and such that for all 1 ≤ j ≤ 4 :
(i) ϕj does not contain xi, x̄i ;
(ii) ϕj has depth at most d and size O(|Φ|) ;
(iii) ϕj has a plus gate at the root .

Proof. We simply apply Proposition 3.1 three times. Specifically, by Proposition 3.1, there are
two depth d and size O(|Φ|) multilinear formulas Φ1,Φ2 that do not contain x̄i , such that:

Φ = x̄i · Φ1 + Φ2 .

By Claim 3.1 again, there exist four depth d multilinear formulas ϕ1, ϕ2, ϕ3, ϕ4 that do not contain
xi, x̄i, where each formula is of size O(|Φ|), and has a plus gate at the root, such that:

x̄i · Φ1 + Φ2 = x̄i · (xi · ϕ1 + ϕ2) + Φ2 apply Claim 3.1 on Φ1, xi

= x̄i · xi · ϕ1 + x̄i · ϕ2 + Φ2

= x̄i · xi · ϕ1 + x̄i · ϕ2 + xi · ϕ3 + ϕ4 apply Claim 3.1 on Φ2, xi

(we treat here all formulas as the polynomials they compute; so the equalities are between polyno-
mials, and not formulas). �

We need the following claim for the proposition that follows.
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Claim 3.3. Let Φ1 be a depth d ≥ 2 multilinear formula computing the polynomial f . Let Φ2

be a multilinear formula for a monomial M (i.e., either a depth 1 multilinear formula having a
product gate at the root, or a single variable, or an element of the field). Assume that no variable
that occurs in Φ2 also occurs in Φ1. Then there is a multilinear formula for f ·M , with the same
gate at the root as that of Φ1, depth d and size O(|Φ1| · |Φ2|) .

Proof. The claim holds simply by distributivity of multiplication over addition.
If Φ1 has a product gate at the root then Φ1 × Φ2 is the desired multilinear formula (note this

formula is of depth d).
Assume that Φ1 has a plus gate at its root.
Recall that we consider all formulas to be leveled. Thus, for some m, there exist m multilinear

formulas ϕ1, . . . , ϕm , each either has an (unbounded fan-in) × gate at the root and depth ≤ d− 1,
or has depth 0 (i.e., is an input variable or a field element), such that Φ1 = ϕ1 + . . . + ϕm . We
can assume w.l.o.g. that dp(Φ2) = 1 (otherwise, we consider Φ2 to be the formula Φ2 × 1 ). For
all 1 ≤ i ≤ m , dp(Φ2 × ϕi) ≤ d − 1 . Thus, by distributivity of multiplication over addition, the
formula

Φ2 × ϕ1 + . . . + Φ2 × ϕm (3.4)

computes the polynomial f ·M and has size O(|Φ1| · |Φ2|) and depth d . Since, by assumption, no
variable that occurs in Φ2 also occurs in Φ1, (3.4) is a multilinear formula. �

Proposition 3.5. Let Φ = Φ1 + . . . + Φk be a multilinear formula of depth d. Let ϕ1, . . . , ϕk be
k formulas, where each ϕi is a multilinear formula of size ≤ s for a monomial (i.e., ϕi is either a
depth 1 multilinear formula having a product gate at the root, or a single variable, or an element
of the field). Denote by f the polynomial computed by ϕ1 ×Φ1 + . . . + ϕk ×Φk , and assume that
no variable that occurs in ϕi also occurs in Φi (for all 1 ≤ i ≤ k). Then f has a multilinear formula
of size O(s · |Φ|) and depth max {d, 2}.

Proof. We show that for all 1 ≤ i ≤ k, there exists a multilinear formula Φ′
i of size O(s · |Φi|)

that computes the polynomial computed by Φi × ϕi , and such that one of the following holds:
(i) dp(Φ′

i) = dp(Φi) and the gate at the root of Φ′
i is the same as that of Φi;

(ii) dp(Φ′
i) = 2 and the root of Φ′

i is a plus gate.
Therefore, the multilinear formula Φ′

1 + . . . + Φ′
k computes the polynomial f , and has depth

max {d, 2} and size O(
∑k

i=1 |Φi| · s) = O(s · |Φ|) .

Case 1: Assume that dp(Φi) ≥ 2, for some 1 ≤ i ≤ k. Then by Claim 3.3, the polynomial
computed by Φi × ϕi has a multilinear formula Φ′

i of depth dp(Φi) and size O(s · |Φi|) , with the
same gate at the root as Φi.
Case 2: Assume that dp(Φi) < 2, for some 1 ≤ i ≤ k. Then we can switch to a new formula Φ′′

i

that computes the same polynomial as Φi, such that dp(Φ′′
i ) = 2 and Φ′′

i has a plus gate at the
root4. Thus, we can apply Case 1 on Φ′′

i . �

4 If Φi = a, for a a variables or a field element, then switch to a× 1+0. If Φi has a product gate at the root, then
switch to Φi + 0. If Φi is a sum of variables (and/or field elements) with constant coefficients, α1xi1 + . . . + αmxim ,
then switch to (α1xi1 × 1) + . . . + αmxim .
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Proposition 3.6. Let Φ2 + Φ1 be a multilinear formula of depth d , where Φ2 computes the
polynomial f2 (possibly the zero polynomial) and Φ1 computes the polynomial f1. Assume that
Φ1 contains neither the variable xi nor x̄i . Let d′ := max {d, 2}. Then the polynomials f2 + f1 · x̄i

and f2 + f1 · (1−xi) can be proved from one another in depth-d′ fMC proofs of size O(|Φ2|+ |Φ1|).

Proof. Start from the Boolean axiom xi + x̄i − 1, and multiply it by f1 in order to get:

(xi + x̄i − 1) · f1 . (3.7)

If we subtract (3.7) from
f2 + f1 · x̄i , (3.8)

we get
f2 + f1 · (1− xi) . (3.9)

Similarly, if we add (3.7) to (3.9), we get (3.8).

Open parentheses in (3.7), (3.9) and (3.8), and observe that by Proposition 3.5 these three
polynomials have all multilinear formulas of depth at most d′ and size O(|Φ2|+ |Φ1|). �

4. Soundness and Completeness of fMC

We show in this section that fMC is a sound proof system. Then we show a simple completeness
proof, by demonstrating a depth-2 fMC simulation of Resolution. In fact, this simulation also stems
from the simulation of PCR by depth-2 fMC (Section 5), since PCR simulates Resolution.

Proposition 4.1. fMC is a sound proof system. That is, if there exists an fMC refutation of a
system of multilinear polynomials Q over a field F then the system of multilinear polynomials Q
has no common root in F with 0, 1 values.

Proof. Note that the inference rules of fMC are sound: Any root of p in F is also a root of q · p
in F; and any common root of p and q in F is also a root of α · p + β · q (for any α, β ∈ F).

Let π = (p1, . . . , p`) be an fMC refutation of Q. Any pi in π is either a Boolean axiom or a
polynomial from Q or pi was deduced from previous polynomials in π by one of the inference rules.

Then, by the soundness of the inference rules, any common root of the system Q that also
satisfies the Boolean axioms in F, is also a root of pj ∈ π, for all j ≤ ` (by induction on the
refutation length). Since by definition, the last polynomial in π (i.e., p`) is 1, then there exists no
common root of the system Q and the Boolean axioms in F. This means that Q has no common
root in F with 0, 1 values. �

We show now that fMC is complete for (polynomial translations of) CNF formulas, when
the lines of the refutations consist of depth 2 multilinear formulas. Note that any CNF formula
translates via Definition 2.5 into a system of multilinear monomials. In particular, we prove that
any Resolution refutation of an unsatisfiable CNF can be transformed into a depth-2 fMC refutation
of (the polynomial translation of) that CNF, with at most a polynomial increase in size.
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Proposition 4.2. Depth-2 fMC polynomially simulates Resolution.

Proof. Let π be a Resolution refutation of some CNF formula. By induction on the number of
clauses in π, we show how to translate each step in π into a depth-2 fMC proof, with at most a
polynomial increase in size.

Recall that a clause is a set of literals, hence, each literal occurs only once in a clause. The base
case are the initial clauses, which translate into multilinear monomials via Definition 2.5.

Let C,D be two clauses such that C ∨D is the resolvent of C ∨xi and D∨¬xi on the variable
xi. Denote by E the clause containing the common literals of C and D. Thus, there exist two
clauses A,B having no common literals such that C = A ∨ E and D = B ∨ E. By definition of
the resolution rule, A,B, E do not contain the variable xi (recall that we assume without loss of
generality that no clause in a Resolution refutation contains both xi and ¬xi and we also delete
multiple occurrences of the same literal in a clause, and so C,D contains neither xi nor ¬xi).

For a given clause K, denote by qK the polynomial translation of K (via Definition 2.5).
By induction hypothesis we have already the multilinear monomials qA∨E∨xi = qA · qE · x̄i and
qB∨E∨¬xi = qB · qE · xi. We need to derive the monomial qC∨D = qA∨B∨E = qA · qB · qE with an
fMC proof of size polynomial in the sizes (i.e., number of literals) of A,B, E.

By Proposition 3.6 we can prove from qA · qE · x̄i the multilinear polynomial qA · qE · (1 − xi),
with a polynomial-size depth-2 fMC proof. Now, multiply qA · qE · (1−xi) by qB. Since the literals
in A,B and E are pairwise disjoint, we get a multilinear polynomial qA · qE · qB · (1− xi).

The polynomial qB · qE · xi is multiplied by qA, which yields the multilinear polynomial qA · qE ·
qB · xi. Adding qA · qE · qB · (1− xi) and qA · qE · qB · xi we arrive at qA · qE · qB.

Notice that it is possible to represent each arithmetic formula in the simulation with a depth 2
formula (i.e., as a sum of monomials). �

5. Simulation Results

In this section we prove a general simulation result for fMC (Theorem 5.1). Specifically, we show
the following: Let π be a PCR refutation of some initial collection of multilinear polynomials Q
over some fixed field. Assume that π has polynomially many steps (i.e., the number of proof lines
in the PCR proof sequence is polynomial). If the ‘multilinearization’ (i.e., the result of applying
the M[·] operator – see Definition 2.2) of each of the polynomials in π has a polynomial-size depth
d multilinear formula (with a plus gate at the root), then there is a polynomial-size depth-d fMC
refutation of Q. (Note that we only require that the number of steps in π is polynomial. The size
(i.e., the total number of monomials) of the PCR proof might not be polynomially-bounded.)

A simple consequence of the simulation result is that any PC and PCR refutations of a set of
initial multilinear polynomials over some fixed field can be simulated by a depth-2 fMC refutation.
Since CNF formulas are translated into sets of multilinear polynomials (via Definition 2.5), this
shows that with respect to (translations of) CNF formulas, depth-2 fMC is at least as strong as
PC and PCR.

Another merit of the simulation result is that it can help in proving upper bounds for fMC
refutations. In particular, we shall use it in proving the upper bound for the Functional Pigeonhole
Principle in Section 7.

Theorem 5.1. Fix a field F and let Q be a set of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q. For each pi ∈ π, let
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Φi be a multilinear formula for the polynomial M[pi]. Let S be the total size of all formulas Φi,
i.e., S = Σm

i=1|Φi|, and let d ≥ 2 be the maximal depth of all formulas Φi. Assume that the depth
of all the formulas Φi that have a product gate at the root is at most d−1. Then there is a depth-d
fMC refutation of Q of size polynomial in S.

Corollary 5.2. Depth-2 fMC polynomially simulates PC and PCR.

Proof. Since PCR obviously simulates PC it is sufficient to consider only PCR proofs. Recall
that the size of a PCR proof is the total number of monomials in it. Note also that given any
multivariate polynomial q, the total number of monomials in q is greater or equal than the total
number of monomials in M[q].

Given a PCR proof π := (p1, . . . , pm), represent each multilinear polynomial M[pi] as a sum of
monomials, and denote this multilinear formula by Φi. Each Φi is of depth at most 2.

Let |π| denote the size of the PCR proof π, i.e., the number of monomials in π, and let ` ≤ n
be the total number of variables that appear in the polynomials in π. In light of Theorem 5.1, we
need to show that the total size of all the formulas Φi is polynomial in |π|. Since |π| ≥ `, it suffices
to show that the total size of all the formulas Φi (for 1 ≤ i ≤ m) is O(` · |π|).

Since each Φi is a sum of (multilinear) monomials then the total size of all the formulas Φi is
just the total size of all the monomials occurring in Φ1, . . . ,Φm (ignoring constant factors). Each
multilinear monomial in Φ1, . . . ,Φm is of size O(`). Thus (by the first paragraph of this proof),
the total size of all the formulas Φi is O(` · |π|) . �

Proof of Theorem 5.1. Denote by U the sequence of multilinear polynomials M[p1] , . . . ,M[pm].
Suppose that π contains an instance of the PCR product rule: from pi deduce x · pi, for some
x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}. Then U contains the polynomials M[pi] and M[x · pi]. Note that
M[x · pi] does not necessarily equal x ·M[pi]. Thus, an instance of a PCR product rule in π does
not necessarily turn into an instance of an fMC product rule in U . This means that the sequence
U does not necessarily form a legitimate fMC proof sequence.

Nevertheless, with at most a polynomial increase in size, it is possible to turn U into a depth-d
fMC proof. That is, we build from the sequence U a depth-d fMC refutation of Q, denoted π′. The
size of π′ will be polynomial in the total size of all formulas in U . This is done by adding to U
new depth-d fMC proof sequences that simulate all instances of the PCR product rule occurring in
π (that is, depth-d fMC proof sequences of M[x · pi] from M[pi], according to the notations of the
previous paragraph).

Claim 5.3 and Lemma 5.4, that follow, illustrate how to build a depth-preserving small multi-
linear proofs of M[x · pi] from M[pi].

Claim 5.3. Let Φ1 and Φ2 be two multilinear formulas with a plus gate at the root for the
polynomials f1, f2, respectively. Assume that both Φ1 and Φ2 contain neither xi nor x̄i. Let
d := max {dp(Φ1),dp(Φ2), 2}. Then there is a depth-d fMC proof of xi ·f1 +xi ·f2 from xi ·f1 +f2

with size O(|Φ1|+ |Φ2|).
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Proof. Apply the following fMC proof sequence:

1. xi · f1 + f2 hypothesis
2. (1− x̄i) · (xi · f1 + f2) product of (1)
3. xi · x̄i Boolean axiom
4. (xi · x̄i) · f1 product of (3)
5. (1− x̄i) · (xi · f1 + f2) + (xi · x̄i) · f1 (2) plus (4)
6. xi + x̄i − 1 Boolean axiom
7. (xi + x̄i − 1) · f2 product of (6)
8. (1− x̄i) · (xi · f1 + f2) + (xi · x̄i) · f1 + (xi + x̄i − 1) · f2 (5) plus (7)

Note that the last line 8 is equal to xi · f1 + xi · f2 .

We need to make sure that each polynomial in the above proof sequence has a depth d multilinear
formula of size O(|Φ1|+ |Φ2|).

The polynomials in lines 3,6 can obviously be written as constant size depth 1 multilinear
formulas.

Considering all other lines in the proof sequence; First open parentheses. We get a sum of
constant number of terms, where each term is a product of f1 or f2 with a multilinear monomial
(or a field element, e.g. −1). For example, line 2 equals: xi · f1 + f2 − x̄i · xi · f1 − x̄i · f2 .

Thus, by Proposition 3.5, the polynomials in all the lines of the above proof sequence have
depth d multilinear formulas of size O(|Φ1|+ |Φ2|). �

Lemma 5.4. Let pi be a polynomial from F[x1, . . . , xn, x̄1, . . . , x̄n], and let x ∈
{x1, . . . , xn, x̄1, . . . , x̄n}. Let Φ be a multilinear formula for M[pi] having a plus gate at the
root and let d := max {dp(Φ), 2}. Then there is a depth-d fMC proof of M[x · pi] from M[pi], of
size O(|Φ|).

Proof. We assume that x = xi for some xi ∈ {x1, . . . , xn} (the case of x ∈ {x̄1, . . . , x̄n} is
similar).

By Proposition 3.2, there are multilinear formulas ϕ1, ϕ2, ϕ3, ϕ4 such that

M[pi] = x̄i · xi · ϕ1 + x̄i · ϕ2 + xi · ϕ3 + ϕ4 (5.5)

(the equality here is between polynomials), where for all 1 ≤ j ≤ 4 : (i) ϕj does not contain xi, x̄i ,
and (ii) ϕj has depth at most d and size O(|Φ|) , and (iii) ϕj has a plus gate at the root.

Multiply the Boolean axiom x̄i · xi by ϕ1, to get

x̄i · xi · ϕ1 . (5.6)

Subtract (5.6) from (5.5). We arrive at the polynomial

x̄i · ϕ2 + xi · ϕ3 + ϕ4 . (5.7)

By (i,ii,iii) above, both ϕ1 and ϕ2 + ϕ3 + ϕ4 have depth at most d and size O(|Φ|) multilinear
formulas that do not contain xi, x̄i . Therefore, by Proposition 3.5, both (5.6) and (5.7) have
multilinear formulas of depth at most d and size O(|Φ|).
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By Proposition 3.6, we can derive from (5.7), with a depth-d fMC proof of size O(|Φ|),

(1− xi) · ϕ2 + xi · ϕ3 + ϕ4 ,

which is equal to
xi · (ϕ3 − ϕ2) + (ϕ2 + ϕ4) . (5.8)

Since all formulas ϕj have plus gates at their root, then (ϕ3 − ϕ2) and (ϕ2 + ϕ4) have multilinear
formulas of depth dp(Φ) and size O(|Φ|). Thus, by Claim 5.3, there is a depth-d fMC proof of

xi · (ϕ3 − ϕ2) + xi · (ϕ2 + ϕ4) = xi · ϕ3 + xi · ϕ4 , (5.9)

from (5.8), where the size of the proof is O(|Φ|).
Now, multiply the Boolean axiom x̄i · xi by (ϕ1 + ϕ2) , and add the result to (5.9). We obtain

x̄i · xi · ϕ1 + x̄i · xi · ϕ2 + xi · ϕ3 + xi · ϕ4 = M[xi · pi] . (5.10)

Similar to (5.7), polynomial (5.10) can be written as depth d multilinear formula of size polynomial
in O(|Φ|). �

Concluding the proof of Theorem 5.1. Recall that U is the sequence of multilinear formulas
Φ1, . . . ,Φm (corresponding to the polynomials M[p1] , . . . ,M[pm]).

Let pj , pk (for j < k ∈ [m]) be some instance of the PCR product rule in π. That is, the
polynomial pk = x · pj is deduced from pj , for some x ∈ {x1, . . . , xn, x̄1, . . . , x̄n}. We can assume
that both Φj and Φk have plus gates at their root, and so by assumption both have depth at most d
(if Φ`, for ` ∈ {j, k}, has a product gate at the root, then by assumption the depth of the formula is
at most d− 1; hence, we can let Φ` be the formula Φ` + 0). Thus, by Lemma 5.4 there is a depth-d
fMC proof of M[pk] = M[x · pj ] from M[pj ] of size O(|Φj |). We denote this proof (sequence) by
Sk. For all instances of the PCR product rule in π, replace the formula Φk in U with the proof
sequence Sk, excluding the first formula of Sk (note that Φj the first formula of Sk, already appears
in U). Let π′ denote the new sequence of formulas obtained from U by this process.

Now, π′ is easily seen to be a depth-d fMC refutation of Q: (i) π′ ends with M[pm] = M[1] = 1;
(ii) Every arithmetic formula in π′ is a multilinear formula of depth at most d; and (iii) For every
formula Ψi in π′, computing the polynomial qi, either Ψi was added to π′ as a formula in some
proof sequence Sj (as defined above), or qi is the result of applying M[·] on some polynomial p`

from π (that is, qi = M[p`] for some ` ∈ [m]).
In the first case of (iii), Ψi is either an axiom of fMC, or a formula that was deduced by one of

fMC’s inference rules from preceding formulas in Sj .
In the second case of (iii), p` is either a (multilinear) polynomial from Q, or a Boolean axiom of

PCR, or p` was deduced by one of the two PCR inference rules from some preceding polynomials
in π. If p` is the Boolean axiom xj + x̄j − 1 of PCR, for some j ∈ [n], then qi = p` is also a Boolean
axiom of fMC. If p` is the Boolean axiom x2

j − xj , for some j ∈ [n], and so qi = 0 (thus, qi can be
discarded from the proof; formally, the zero polynomial can be deduced from any polynomial, by
the fMC inference rules).

In case p` was deduced by the PCR product rule from some preceding polynomial pk (k < ` ∈
[m]) in π, then by definition of S`, qi stems from preceding polynomials in S` by an fMC inference
rule. Moreover, instances of the PCR addition rule in π are transformed in π′ into legal instances
of the fMC addition rule, as M[·] is easily seen to be a linear operator. �
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6. Separations of Algebraic Proof Systems and Multilinear Circuit Lower
Bounds

In this section we use Theorem 5.1 to link the separation of certain algebraic proof systems to the
problem of proving multilinear arithmetic circuit lower bounds. Specifically, we show that if there
is a set of multilinear polynomials Q, for which there exists an explicit polynomial-size refutation
manipulating general arithmetic circuits (i.e., not necessarily multilinear), then proving a super-
polynomial lower bound on the refutation size of Q in a proof system manipulating multilinear
circuits implies a super-polynomial lower bound on the size of multilinear circuits computing an
explicit polynomial (see Section 2.2.1 and Definition 2.1 for definitions of arithmetic circuits and
multilinear circuits, respectively). In fact, this result can be generalized further (see remark after
the proof of Theorem 6.4). We shall exploit the fact that we work with algebraic proof systems
(like fMC) in which polynomials are represented by arbitrarily chosen arithmetic formulas (this
fact enabled us to prove the general simulation result in Theorem 5.1).

The following defines algebraic proof systems that manipulate general and multilinear arithmetic
circuits:

Definition 6.1. (cMC, cPCR).
(i) The cMC (for Circuit Multilinear Calculus) proof system is identical to fMC, except that
multilinear polynomials in cMC proof sequences are represented by multilinear circuits (instead of
multilinear formulas). The size of a cMC proof π is defined to be the total sum of all the circuit-sizes
in π.
(ii) The cPCR (for Circuit Polynomial Calculus with Resolution) proof system is identical to PCR,
except that polynomials in cPCR proof sequences are represented by (general) arithmetic circuits
(instead of explicit sums of monomials). The size of a cPCR proof π is defined to be the total sum
of all the circuit-sizes in π.

We now reiterate Theorem 5.1 where instead of dealing with depth d multilinear formulas we
deal with multilinear circuits (not necessarily of constant-depth):

Proposition 6.2. Fix a field F and let Q be an unsatisfiable set of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q. For each pi ∈ π let Φi

be a multilinear circuit for the polynomial M[pi] and let S be the total size of all the multilinear
circuits Φi. Then there is a cMC refutation of Q of size polynomial in S.

Proof. First notice that any manipulation of arithmetic formulas presented in Section 3 is also
applicable to multilinear circuits. Thus, by a straightforward inspection of the proof of Theorem
5.1, one can verify that when substituting the phrases ‘depth d multilinear formulas’ by ‘multilinear
circuits’ and ‘depth-d fMC’ by ‘cMC’, Theorem 5.1 still holds. �

Corollary 6.3. Fix a field F and let Q be an unsatisfiable set of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. Let π = (p1, . . . , pm) be a PCR refutation of Q, with a polynomial (in n)
number of steps.5 Assume that every cMC refutation of Q is of super-polynomial size. Then there
exists a polynomial pi ∈ π such that M[pi] has no polynomial-size multilinear circuit.

5 Again (as in Section 5), we only require that the number of steps is polynomial. The size of the PCR proof
might not be polynomially bounded.

21



Proof. The statement follows immediately from Proposition 6.2, as if all polynomials M[pi] (for
all 1 ≤ i ≤ m) had polynomial-size multilinear circuits, there would have been also a polynomial-
size cMC refutation of Q, which contradicts the assumption. �

Recall from Definition 2.9 that a proof system P1 has a super-polynomial (resp., exponential)
gap over a proof system P2 for a family Q := {Qn}n∈N of unsatisfiable sets of polynomials over a
field, if there exist polynomial-size P1 refutations of Q and every P2 refutation of Q is of super-
polynomial (resp., exponential) size. In this case we shall also say that Q super-polynomially (resp.,
exponentially) separates P1 from P2. In case we also have explicit polynomial-size proofs of Q in
P1 then we shall say that we have an explicit super-polynomial (resp., exponential) separation of
P1 from P2 for Q. The term explicit here means that there is a Turing machine that for any given
input-size n (given to the machine in unary representation) outputs the proof of Qn in P1 and runs
in time polynomial in the size of the proof (similarly, we can speak about an explicit (family of)
polynomials).

Theorem 6.4. Fix a field F and let Q be an unsatisfiable set of multilinear polynomials from
F[x1, . . . , xn, x̄1, . . . , x̄n]. Assume that there is an explicit super-polynomial (resp., exponential)
size separation of cPCR from cMC for Q. Then there exists an explicit multilinear polynomial g
with no polynomial-size (resp., sub-exponential size) multilinear circuit.

Proof. Let (Θ1, . . . ,Θm) be the explicit polynomial-size cPCR proof sequence of Q (every Θi is
an arithmetic circuit). For all 1 ≤ i ≤ m let pi be the polynomial computed by Θi (in other words,
we can view (p1, . . . , pm) as a PCR refutation of Q). By assumption m is polynomially bounded
by n and any cMC refutation of Q (of any depth) is of super-polynomial size (resp., exponential
size) in n. Thus, by Corollary 6.3 there exists an 1 ≤ i ≤ m such that M[pi] has no polynomial-size
(resp., sub-exponential size) multilinear circuit.

Let z1, . . . , zm be new variables and consider the polynomial g :=
∑m

j=1 zj ·M[pj ]. Then g has
no polynomial-size in n (resp., sub-exponential size in n) multilinear circuit (over F) (as if there
was such a multilinear circuit Ψ computing g, we could have obtained a polynomial-size in n (resp.,
sub-exponential size in n) multilinear circuit for M[pi] by substituting every occurrence of zj in Ψ,
for j 6= i, by 0, and every occurrence of zi in Ψ by 1). (Note that the number of variables in g is
polynomially bounded by n, since m is polynomially bounded by n.) �

Remark. Theorem 6.4 can be generalized further for any (reasonably defined) pair of arithmetic
circuit-classes C1, C2 that are at least as strong as multilinear formulas (that is, when considering
C1, C2 instead of arithmetic circuits and multilinear circuits, respectively).

Specifically, denote by C1PCR the proof system that is similar to PCR, where polynomials
are represented by C1-circuits (instead of explicit sums of monomials); and denote by C2MC the
proof system that is similar to fMC, where multilinear polynomials are represented by C2-circuits
(instead of multilinear formulas). It is not hard to see that if C2 is any (reasonably defined)
arithmetic circuit-class that contains the class of multilinear formulas, then Proposition 6.2 is still
valid when one considers C2-circuits and C2MC refutations instead of multilinear circuits and cMC
refutations, respectively.

Thus, the same reasoning that was described above (i.e., in Corollary 6.3 and Theorem 6.4)
implies that if there is an explicit super-polynomial (resp., exponential) size separation of C1PCR
from C2MC for some unsatisfiable set of multilinear polynomials Q, then there exists an explicit
multilinear polynomial g with no polynomial-size (resp., sub-exponential size) C2-circuit.
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(In a similar manner, we can speak of C1PCR versus C2PCR refutations instead of C1PCR
versus C2MC refutations. We thus obtain that an explicit super-polynomial (resp., exponential)
size separation of C1PCR from C2PCR for some unsatisfiable set of polynomials Q implies the
existence of an explicit polynomial g (not necessarily multilinear) with no polynomial-size (resp.,
sub-exponential size) C2-circuit.)

7. The Functional Pigeonhole Principle

In this section we show that there is a polynomial size depth-3 fMC refutation of the Functional
Pigeonhole Principle over fields of characteristic 0.

The Functional Pigeonhole Principle FPHPm
n with m pigeons and n < m holes states that there

is no injection from m pigeons to n holes. As a propositional formula it is usually formulated as
follows:  ∧

i∈[m]

∨
k∈[n]

xi,k ∧
∧

i∈[m]

∧
k<l∈[n]

(¬xi,k ∨ ¬xi,`)

 −→
∨

i<j∈[m]

∨
k∈[n]

(xi,k ∧ xj,k) , (7.1)

where each propositional variable xi,j designates that the pigeon i is mapped to the hole j. It is clear
that if m > n then FPHPm

n is a tautology. The negation of (7.1), formulated as an unsatisfiable
CNF formula, consists of the following clauses:

∀i ∈ [m], xi,1 ∨ . . . ∨ xi,n

∀i ∈ [m]∀k < ` ∈ [n], ¬xi,k ∨ ¬xi,`

∀i < j ∈ [m]∀k ∈ [n], ¬xi,k ∨ ¬xj,k

(7.2)

The term functional (in Functional Pigeonhole Principle) comes from the second set of polynomials,
that force each pigeon i ∈ [m] to be mapped to at most one hole. The three sets of clauses in (7.2)
translate via Definition 2.5 to the following set of polynomials, denoted ¬FPHPm

n :

Pigeons : ∀i ∈ [m], x̄i,1 · · · x̄i,n

Functional : ∀i ∈ [m]∀k < ` ∈ [n], xi,k · xi,`

Holes : ∀i < j ∈ [m]∀k ∈ [n], xi,k · xj,k

(7.3)

Haken (1985) showed an exponential lower bound on the size of Resolution refutations of the
Functional Pigeonhole Principle (where the number of holes is n and the number of pigeons is
n + 1).

Pitassi et al. (1993) and independently Kraj́ıček et al. (1995) showed exponential lower bounds
on the size of proofs of the Functional Pigeonhole Principle in bounded depth Frege (again, where
the number of holes is n and number of pigeons is n + 1).

Razborov (1998) and subsequently Impagliazzo et al. (1999) showed exponential lower bounds on
the size (and degree) of PC-refutations of a different low degree version of the Functional Pigeonhole
Principle. In this low degree version the Pigeons polynomials of (7.3) are replaced by 1 − (xi,1 +
. . .+xi,n), for all i ∈ [m]. This low degree version is not a translation of a CNF formula. Our upper
bound is also applicable to this low-degree version of the Functional Pigeonhole Principle (however,
this would not yield a separation of fMC from PC and PCR as we consider all proof systems in
this paper as proof systems for (polynomial translations of) CNF formulas).
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Grigoriev & Hirsch (2003) showed a polynomial size refutation of the Pigeonhole Principle (i.e.,
polynomials (7.3) without the Functional axioms) for a formal (see Section 2.3.5) propositional proof
system, denoted F-PC, that manipulates general arithmetic formulas. Their refutation works with
general arithmetic formulas of constant-depth.

The main theorem of this section is:

Theorem 7.4. Let F be a field of characteristic 0 and let m, n be natural numbers such that
m > n. Then depth-3 fMC over F has a refutation of ¬FPHPm

n of size polynomial in n .

By the discussion above we have:

Corollary 7.5. Depth-3 fMC over fields of characteristic 0 has an exponential gap over Resolution
and bounded-depth Frege for the Functional Pigeonhole Principle.

Since depth-3 fMC polynomially simulates Resolution then by Corollary 7.5 depth-3 fMC is
strictly stronger than Resolution. In Section 8 we shall see another example of an exponential gap
of depth-3 fMC over Resolution, as well as over PC and PCR (over any field having a primitive
p-th root of unity, for some p). This will be proved via Tseitin’s graph tautologies.

Remark. Note that in order to prove Theorem 7.4, it is enough to show that there is a depth-3
fMC proof of ¬FPHPm

n of size polynomial in the number of pigeons m. The reason is that for any
m > n, ¬FPHPn+1

n is an unsatisfiable subset of ¬FPHPm
n . Thus, a refutation of ¬FPHPn+1

n of
size polynomial in the number of pigeons n + 1 is also a refutation of ¬FPHPm

n .

The rest of this section is devoted to prove Theorem 7.4.

For all k ∈ [n], let us fix the following abbreviation:

yk := x1,k + . . . + xm,k . (7.6)

This means that the variables yk are not formal variables of fMC, but rather a shorthand, i.e.,
in the actual proofs the variables yk are replaced by the righthand side of (7.6). Throughout this
section we use the variables yk only according to this abbreviation.

Lemma 7.7. Let the variables yk (for all k ∈ [n]) be the abbreviations as defined in (7.6). Then
there is a polynomial size (in m) depth-3 fMC proof from ¬FPHPm

n of

m− (y1 + . . . + yn) . (7.8)

Proof. For all pigeons i ∈ [m], replace one by one each variable x̄i,j , for j ∈ [n], in the Pigeons
axioms of (7.3) with (1− xi,j). We arrive at:

(1− xi,1) · · · (1− xi,n) . (7.9)

By Proposition 3.6, this can be done with a depth-3 fMC proof of size polynomial in n . Polynomial
(7.9) is equal to: ∑

J⊆[n]

(−1)|J |
∏
j∈J

xi,j
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(where we define
∏
j∈∅

xi,j := 1), which is equal to the following depth 3 multilinear formula of

polynomial size in n:

1− (xi,1 + . . . + xi,n) +
n−1∑
k=1

n∑
`=k+1

xi,k × xi,` ×
∏
j>`

(1− xi,j)︸ ︷︷ ︸
(?)

. (7.10)

Note that the term (?) is a sum of O(n2) polynomials, where each polynomial in this sum
has a depth 2 multilinear formula of size O(n) and computes some product of a Functional axiom
xi,k ·xi,` (for k < `). Thus, there is a polynomial size in n depth-3 fMC proof of (?) from ¬FPHPm

n .
Therefore, for every pigeon i ∈ [m] we can subtract the term (?) from equation (7.10) in order to
get:

1− (xi,1 + . . . + xi,n) . (7.11)

We thus get:
1− (x1,1 + . . . + x1,n)
...
1− (xm,1 + . . . + xm,n)

(7.12)

Since for all k ∈ [m], yk = x1,k+. . .+xm,k, summing all (7.12) polynomials together and rearranging
the terms, we get:

m− (y1 + . . . + yn) . �

By Lemma 7.7, in order to prove Theorem 7.4 it remains to show a short depth-3 fMC refutation
of (7.8) and ¬FPHPm

n . In light of Theorem 5.1, it is sufficient to follow the following two steps:

Step 1: Show a PCR refutation π of m− (y1 + . . . + yn) and ¬FPHPm
n , where the number of

steps in π (i.e., the number of proof lines) is polynomial in m (note that we do not speak
about the size (i.e., the number of monomials) of the PCR refutation).

Step 2: Show that for each polynomial p ∈ π from Step 1, there is a polynomial-size (in m) depth
3 multilinear formula for M[p] with a plus gate at the root (over fields of characteristic 0).

7.1. Step 1: a PCR refutation of m− (y1 + . . .+ yn) and ¬FPHPm
n . For 1 ≤ i ≤ n, define

the abbreviation

Gi :=
i∑

k=1

yk .

Hence, m− (y1 + . . . + yn) can be written as

m−Gn . (7.13)

In order to refute (7.13) (and ¬FPHPm
n ), we shall show a PCR proof from ¬FPHPm

n of

Gn · (Gn − 1) · · · (Gn − n) . (7.14)

Using (7.13), we will be able to substitute each occurrence of Gn in (7.14) with m. We arrive at
m!/(m− n− 1)! > 0. By multiplying m!/(m− n− 1)! with its inverse in the field we arrive at 1,
which is the terminal polynomial.

We make use of the following claim:
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Claim 7.15. For any 1 ≤ k ≤ n , there is a PCR proof of y2
k−yk from ¬FPHPm

n of a polynomial
number of steps.

Proof. Add together all Holes axioms pertaining to hole k and multiply the result by 2, we get:∑
i6=j∈[m]

xi,k · xj,k . (7.16)

Add together all PCR Boolean axioms of the form x2
i,k − xi,k , for all 1 ≤ i ≤ m:

m∑
i=1

(x2
i,k − xi,k) . (7.17)

Adding (7.16) with (7.17), we get:

m∑
i=1

(x2
i,k − xi,k) +

∑
i6=j

xi,k · xj,k

= x2
1,k + . . . + x2

m,k +
∑
i6=j

xi,k · xj,k − (x1,k + . . . + xm,k)

= (x1,k + . . . + xm,k)2 − (x1,k + . . . + xm,k)
= y2

k − yk

�

7.1.1. A PCR proof of Gn · (Gn − 1) · · · (Gn − n) .. We shall need the following claim:

Claim 7.18. For all 1 ≤ i ≤ n and all 0 ≤ r ≤ i and any polynomial q there are PCR proofs
having polynomially (in m) many steps of

q · (Gi − r) · (Gi − r − 1) · · · (Gi − i)

from the polynomial q.

Remark. The existence of such a PCR proof having polynomially many steps is clear, since the
proofs start from some polynomial q and derive a product of it q · q0 (for q0 = (Gi − r) · (Gi − r −
1) · · · (Gi− i)), where also q0 has a formula of size polynomial (in m) (note that if q1 is a polynomial
and Φ is a formula computing another polynomial q2, then q1 · q2 can be proved in PCR from
q1, with polynomially in |Φ| many steps (this can be shown simply by induction on the structure
of Φ)). Our goal, however, is to describe the PCR proof explicitly, in order to show later (in Step
2) that every polynomial p in the proof sequence has small corresponding multilinear formula for
M[p].

Proof. Apply the following proof sequence (we skip here, and in the sequel, obvious proof
sequences, e.g., a sequence of additions is described in one line; we also describe in one line a
sequence of proof lines of the same form, e.g., line 2. Thus, line numbers come for convenience only,
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and do not represent necessarily the actual positions of the lines in the proof sequence):

1. q hypothesis
2. q · xj,k, for all j ∈ [m], k ∈ [i] product of (1)
3. q ·Gi add together all polynomials from (2)
4. q · (Gi − r) subtract r · q (a scalar product of (1)) from (3)
5. q · (Gi − r) · xj,k, for all j ∈ [m], k ∈ [i] product of (4)
6. q · (Gi − r) ·Gi add together all polynomials from (5)
7. q · (Gi − r) · (Gi − r − 1)

subtract q · (Gi − r) · (r + 1) (a scalar product of (4)) from (6)

Continue in the same manner to reach q · (Gi − r) · (Gi − r − 1) · · · (Gi − i). �

The PCR proof of Gn · (Gn − 1) · · · (Gn − n) is described by induction:

The base case is to show a PCR proof of G1 · (G1 − 1) = y1 · (y1 − 1) = y2
1 − y1 , which follows

from Claim 7.15.

The induction step is to show a PCR proof of Gi+1 · (Gi+1 − 1) · · · (Gi+1 − i − 1) from Gi ·
(Gi − 1) · · · (Gi − i) . This is shown in the following lemma (see a close proof in Grigoriev & Hirsch
(2003)).

Lemma 7.19. For every 1 ≤ i < n, there is a PCR proof of Gi+1 · (Gi+1 − 1) · · · (Gi+1 − i − 1)
from Gi · (Gi − 1) · · · (Gi − i) and ¬FPHPm

n having polynomially (in m) many steps.

Proof. Apply the following PCR proof sequence:

1. yi+1 · (yi+1 − 1) by Claim 7.15
2. Gi · (Gi − 1) · · · (Gi − i) hypothesis
3. Gi · (Gi − 1) · · · (Gi − i) · xj,i+1, for all j ∈ [m] product of (2)
4. Gi · (Gi − 1) · · · (Gi − i) · yi+1 add together all polynomials from (3)
5. Gi · (Gi − 1) · · · (Gi − i) · (yi+1 − 1) subtract (2) from (4)

Now use (1) to substitute Gi in (5) by Gi + yi+1 = Gi+1:

6. (Gi − 1) · · · (Gi − i) · yi+1 · (yi+1 − 1) by (1) and Claim 7.18
7. (Gi + yi+1) · (Gi − 1) · · · (Gi − i) · (yi+1 − 1) add (5) and (6)
= (Gi+1) · (Gi − 1) · · · (Gi − i) · (yi+1 − 1)

Continue in a similar manner to substitute all Gi’s in (7) by Gi+1, to reach:

8. (Gi+1) · (Gi+1 − 1) · · · (Gi+1 − i) · (yi+1 − 1) .

By multiplying (2) with yi+1 (in a similar manner as above) we get Gi · (Gi − 1) · · · (Gi − i) · yi+1,
and by substituting in it, as was demonstrated above, all Gi by Gi +(yi+1−1) = Gi+1−1 we arrive
at:

9. (Gi+1 − 1) · (Gi+1 − 2) · · · (Gi+1 − i− 1) · yi+1

Multiplying (8) by (Gi+1 − i− 1) and (9) by Gi+1 (both by Claim 7.18), and subtracting the two
resulting polynomials we arrive finally at:

Gi+1 · (Gi+1 − 1) · · · (Gi+1 − i− 1) . �
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7.1.2. Concluding the PCR refutation. Assume we have already the following polynomials
inside a PCR proof sequence (due to Section 7.1.1):

m−Gn , (7.20)

and
Gn · (Gn − 1) · · · (Gn − n) . (7.21)

We shall substitute each occurrence of Gn in (7.21) by m . Specifically, apply the following PCR
proof sequence:

1. (m−Gn) · (Gn − 1) · · · (Gn − n) product of (7.20) (by Claim 7.18)
2. m · (Gn − 1) · · · (Gn − n) add (1) and (7.21)
3. m · (m−Gn) · (Gn − 2) · · · (Gn − n)

product of (7.20) (by Claim 7.18)
4. m · (m− 1) · (Gn − 2) · · · (Gn − n) add (3) and (2)
. . .

Continuing in the same manner, we arrive finally at

m · (m− 1) · · · (m− n) = m!/(m− n− 1)! > 0 . (7.22)

By multiplying (7.22) by the inverse of m!/(m− n− 1)! in the field, we get the polynomial 1.

7.2. Step 2: multilinearization of polynomials. In this section we show that for every poly-
nomial p occurring in the PCR proof described in Step 1, the corresponding multilinear polynomial
M[p] has a polynomial-size (in m ) depth 3 multilinear formula (over fields of characteristic 0).

7.2.1. Symmetric polynomials. A renaming of the variables in X is a permutation σ ∈ S`

(the symmetric group on [`]) such that xi is mapped to xσ(i) for every 1 ≤ i ≤ `.

Definition 7.23. Given a set of variables X = {x1, . . . , x`}, a symmetric polynomial f over X
is a polynomial in (all the variables of) X such that renaming of variables does not change the
(formal) polynomial.

For example, 1 + x1 + x2 + x1 · x3
2 + x2 · x3

1 is a symmetric polynomial over X = {x1, x2} .

The following theorem is due to M. Ben-Or (cf. Theorem 5.1 in Shpilka & Wigderson (2001)):

Theorem 7.24. (Ben-Or) Let F be a field of characteristic 0 and let X be a set of ` vari-
ables {x1, . . . , x`}. For any multilinear symmetric polynomial over X (over the field F) there is a
polynomial-size (in `) depth 3 multilinear formula. Moreover, this formula is a leveled multilinear
formula with a plus gate at the root.

We need the following simple properties (given without a proof):
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Proposition 7.25. Fix a field F and let X be a finite set of variables.

◦ If p, q are two symmetric polynomials over X, then the product p · q is also a symmetric
polynomial over X;

◦ If p is a symmetric polynomial over X, then M[p] is a multilinear symmetric polynomial over
X.

From Theorem 7.24 and Proposition 7.25 we get:

Corollary 7.26. Let F be a field of characteristic 0 and let X be a set of ` variables. If p is a
product of (one or more) symmetric polynomials over X (over the field F), then M[p] has a depth
3 multilinear formula of size polynomial (in `), with a plus gate at the root.

We shall also need the following more general proposition, which might be interesting by itself:

Proposition 7.27. Let F be a field of characteristic 0. For a constant c, let X1, . . . , Xc be c
finite sets of variables (not necessarily disjoint), where Σc

i=1|Xi| = ` . Let f1, . . . , fc be c symmetric
polynomials over X1, . . . , Xc (over the field F), respectively. Then, there is a depth 3 multilinear
formula for M[f1 · · · fc] of size polynomial (in `), with a plus gate at the root.

Remark. Note the difference between Corollary 7.26 and Proposition 7.27. Corollary 7.26 speaks
about a (finite) unbounded product of symmetric polynomials over the same set of variables. On the
other hand, Proposition 7.27 speaks about a product of constant number of symmetric polynomials
over different (but not necessarily disjoint) sets of variables.

Proof. We shall need the following two basic claims (given without a proof).

Claim 7.28. Let X be a set of ` variables x1, . . . , x`, and let p1, p2 be two multilinear polynomials
over X such that for all 0, 1 assignments to x1, . . . , x`, p1(x1, . . . , x`) = p2(x1, . . . , x`). Then p1 = p2

as formal polynomials.

Since symmetric polynomials are invariant under renaming of variables then restricted to 0, 1
assignments the values of symmetric polynomials are determined only by the number of 1’s in their
input variables. Formally, if p is a symmetric polynomial of degree d from F[X] in ` variables,
then there is a polynomial h of degree at most d in one variable, such that for 0, 1 assignments to
x1, . . . , x`, p(x1, . . . , x`) = h(x1 + . . .+x`). Hence, if we let Y1, . . . , Ym be pairwise disjoint subsets
of X = {x1, . . . , x`}, such that

⊎m
i=1 Yi = X, then we have the following:

Claim 7.29. Let p be a symmetric polynomial from F[X] of degree d, then there is a polynomial
h of degree at most d in m variables, such that for all 0, 1 assignments to x1, . . . , x`,

p(x1, . . . , x`) = h

∑
xi∈Y1

xi, . . . ,
∑

xi∈Ym

xi

 .
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We are now ready to prove Proposition 7.27. Let X :=
⋃c

i=1 Xi. Let m := 2c and partition X
into at most m disjoint subsets as follows. For every J ⊆ [c], let XJ :=

⋂
i∈J Xi \

⋃
i∈[c]\J Xi and

define the abbreviation
zJ :=

∑
xi∈XJ

xi . (7.30)

(This way, the variables in Xi are exactly the variables that occur in all zJ , such that i ∈ J ⊆ [c].)
Let J1, . . . , Jm be all the subsets of [c], and let zk denote zJk

, for every 1 ≤ k ≤ m.
We clearly have,

M

[
c∏

i=1

fi

]
= M

[
c∏

i=1

M[fi]

]
. (7.31)

By Proposition 7.25, for all 1 ≤ i ≤ c, M[fi] is a (multilinear) symmetric polynomial. Thus, by
Claim 7.29, for all 1 ≤ i ≤ c there exists a polynomial gi(y1, . . . , ym) of degree at most ` (with at
most m variables), such that M[fi] = gi(z1, . . . , zm) for all assignments of 0, 1 values to the variables
in Xi (note that gi(y1, . . . , ym) is not necessarily a multilinear polynomial in the yj ’s).6

Hence, by (7.31) for all assignments of 0, 1 to the variables in X,

M

[
c∏

i=1

fi

]
= M

[
c∏

i=1

gi(z1, . . . , zm)

]
(7.32)

(note that the multilinearization operator M[·] in the right hand side of (7.32) operates on the
polynomial

∏c
i gi(z1, . . . , zm) considered as a polynomial in the X variables).

Therefore, by Claim 7.28, the two sides of (7.32) are equal as formal polynomials (over X).
Since c and m are constants,

∏c
i gi(y1, . . . , ym) can be written as a sum of polynomially many

monomials in the variables y1, . . . , ym. Thus, when substituting zj ’s for yj ’s (for all 1 ≤ j ≤ m),∏c
i gi(z1, . . . , zm) can be written as a sum of polynomially many products of the form

∏m
j=1 z

ej

j

(where the ej ’s stand for some non-negative integers). Hence, by linearity of M[·], the right hand

side of (7.32) can be written as a sum of polynomially many terms of the form M
[∏m

j=1 z
ej

j

]
. It

remains only to prove the following:

Claim 7.33. Every polynomial of the form M
[∏m

j=1 z
ej

j

]
(where the ej ’s stand for some non-

negative integers) has a depth 3 multilinear formula (in the variables in X) of size polynomial in
` and a plus gate at the root .

Proof. Since the sets of variables that occur in each of the zj ’s are pairwise disjoint,

M
[∏m

j=1 z
ej

j

]
=
∏m

j=1 M
[
z

ej

j

]
. For every 1 ≤ j ≤ m, z

ej

j is a product of symmetric polynomi-

als (in (not necessarily all) the variables in X). Thus, by Corollary 7.26, M
[
z

ej

j

]
can be written as

a sum of polynomially (in `) many products of linear polynomials (in other words, a polynomial-
size leveled depth 3 multilinear formula with a plus gate at the root). Since m is a constant,∏m

j=1 M
[
z

ej

j

]
can be written as a sum of polynomially many terms, where each term is a product

of (polynomially many) linear polynomials over disjoint sets of variables. In other words, we have
reached a polynomial-size (in `) depth 3 multilinear formula. �

6 For any 1 ≤ k ≤ m, the variable yk actually occurs in gi if and only if i ∈ Jk. The other variables yk are still
indicated for ease of writing.
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This completes the proof of Proposition 7.27. �

7.2.2. Concluding Step 2. It is important to note that all the polynomials that appeared in
Step 1, are polynomials in the formal variables xi,j , x̄i,j , for i ∈ [m], j ∈ [n], only.

For 1 ≤ k ≤ n define,
Xk := {xi,j | i ∈ [m], j ∈ [k]} .

Notice that the variables in Xk are exactly the variables that occur in y1, . . . , yk (according to the
abbreviation yk := x1,k + . . . + xm,k ).

The following lemma concludes Step 2, and thus the proof of Theorem 7.4:

Lemma 7.34. For every polynomial p in the PCR refutation of Step 1, the corresponding multilin-
ear polynomial M[p] has a multilinear formula of size polynomial in m and depth at most 3 (when
the underlying field is of characteristic 0); and further, if the depth of the multilinear formula is 3
then it has a plus gate at its root.

Proof. Case 1: p is an axiom of ¬FPHPm
n or a Boolean axiom of PCR.

Notice that all the polynomials of ¬FPHPm
n (7.3) are multilinear, and have polynomial-size (in

n < m) multilinear formulas of depth 1. The multilinear polynomials corresponding to the Boolean
axioms of PCR have constant size depth ≤ 1 multilinear formulas: M

[
x2

i − xi

]
= 0 and xi + x̄i−1

is already multilinear.
Case 2: p is a polynomial in the PCR proof sequence of y2

i − yi (for 1 ≤ i ≤ n) (Claim 7.15).
Note that (7.16) is already multilinear and has size O(m2) and depth 1 multilinear formula.

Further, applying M[·] on (7.17) yields the zero polynomial.
Case 3: p is a polynomial in the PCR proof of Gn · (Gn − 1) · · · (Gn − n) (Section 7.1.1).

It is sufficient to consider the polynomials that occur in the PCR proof sequences described in
the proofs of Claim 7.18 and Lemma 7.19. It is straightforward to verify that every such polynomial
is a product of a constant number of symmetric polynomials (over different, but not necessarily
disjoint, sets of variables). Thus, by Proposition 7.27, it follows that M[p] has depth 3 multilinear
formula of size polynomial in m and a plus gate at the root.

For example, consider a typical proof line: line 7 of the PCR proof sequence presented in the
proof of Lemma 7.19:

(Gi+1) · (Gi − 1) · · · (Gi − i) · (yi+1 − 1) .

Note that Gi+1 is a symmetric polynomial over Xi+1; and (Gi − 1) · · · (Gi − i) is a symmetric
polynomial over Xi (as a product of symmetric polynomials over Xi); and yi+1 − 1 is a symmetric
polynomial over {x1,i+1, . . . , xm,i+1}.
Case 4: p is a polynomial in the PCR proof sequence in Section 7.1.2.

It is straightforward to verify that p is a symmetric polynomial over Xn, as a product of
symmetric polynomials over Xn. Thus, by Corollary 7.26, the lemma holds for p . �
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8. Tseitin’s Graph Tautologies

In this section we show an exponential gap of depth-3 fMC over Resolution, PC, PCR and bounded-
depth Frege for certain Tseitin’s graph tautologies (over any characteristic). Specifically, we show
that for any p the Tseitin mod p formula (see Definition 8.1) has a polynomial-size depth-3 fMC
refutation over any field of characteristic q - p that includes a primitive p-th root of unity.

We shall consider the generalization of the Tseitin’s graph tautologies, given in Buss et al.
(2001). This generalization can be formulated as a CNF formula, which in turn can be reduced to a
more convenient form (we observe that this reduction is efficiently provable in depth-2 fMC). Given
this latter form, the refutations of the generalized Tseitin formulas follow in a rather straightforward
manner, and we show that such refutations can be done efficiently in depth-3 fMC.

It is worth noting that Grigoriev & Hirsch (2003) have shown a polynomial-size constant depth
refutation of the Tseitin mod 2 principle in a formal proof system manipulating general arithmetic
formulas of constant-depth (denoted F-NS).

Preparatory to the generalized Tseitin principle we start by describing the (original) Tseitin
mod 2 principle (cf. Tseitin (1968)). Let G = (V,E) be a connected undirected graph with an odd
number of vertices n. The Tseitin mod 2 tautology states that there is no sub-graph G′ = (V,E′),
where E′ ⊆ E, so that for every vertex v ∈ V , the number of edges from E′ incident to v is odd.
This statement is valid, since otherwise, summing the degrees of all the vertices in G′ would amount
to an odd number (since n is odd), whereas this sum also counts every edge in E′ twice, and so is
even.

The Tseitin mod 2 principle can be generalized to obtain the Tseitin mod p principle, as
was suggested in Buss et al. (2001). Let p ≥ 2 be some fixed integer and let G = (V,E) be a
connected undirected r-regular graph with n vertices and no double edges. Let G′ = (V,E′) be the
corresponding directed graph that results from G by replacing every (undirected) edge in G with
two opposite directed edges. Assume that n ≡ 1 (mod p). Then the Tseitin mod p principle states
that there is no way to assign to every edge in E′ a value from {0, . . . , p− 1}, so that:

(i) For every pair of opposite directed edges e, ē in E′, with assigned values a, b, respectively,
a + b ≡ 0 (mod p); and

(ii) For every vertex v in V , the sum of the values assigned to the edges in E′ coming out of v is
congruent to 1 (mod p).

The Tseitin mod p principle is valid, since if we sum the values assigned to all edges of E′ in
pairs we obtain 0 (mod p) (by (i)), where summing them by vertices we arrive at a total value of
1 (mod p) (by (ii) and since n ≡ 1 (mod p)).

As a propositional formula (in CNF form) the Tseitin mod p principle is formulated by assigning
a variable xe,i for every edge e ∈ E′ and every residue i modulo p. The variable xe,i is an indicator
variable for the fact that edge e has an associated value i. The following are the clauses of the
Tseitin mod p CNF formula, as translated to polynomials (we call it the Tseitin mod p formula to
emphasize that it is a translation of a CNF formula). (To be consistent with Buss et al. (2001) we
use the notation BTSG,p which stands for ‘Boolean Tseitin mod p’.)
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Definition 8.1. (Tseitin mod p formula (BTSG,p)). Let p ≥ 2 be some fixed integer and let
G = (V,E) be a connected undirected r-regular graph with n vertices and no double edges, and
assume that n ≡ 1 (mod p). Let G′ = (V,E′) be the corresponding directed graph that results
from G by replacing every (undirected) edge in G with two opposite directed edges.

Given a vertex v ∈ V , let the edges in E′ coming out of v be ev,1, . . . , ev,r and define the
following set of polynomials:

MODp,1(v) :=

{
r∏

k=1

xev,k,ik

∣∣∣∣ i1, . . . , ir ∈ {0, . . . , p− 1} and
r∑

k=1

ik 6≡ 1 mod p

}
.

The Tseitin mod p formula, denoted BTSG,p, consists of the following multilinear polynomials,
where each polynomial is easily seen to be a translation of a clause (via Definition 2.5):

1.
p−1∏
i=0

x̄e,i , for all e ∈ E′

(expresses that every edge is assigned at least one value from 0, . . . , p− 1);

2. xe,i · xe,j , for all i 6= j ∈ {0, . . . , p− 1} and all e ∈ E′

(expresses that every edge is assigned at most one value from 0, . . . , p− 1);

3. x̄e,i · xē,p−i and xe,i · x̄ē,p−i,
7

for all two opposite directed edges e, ē ∈ E′ and all i ∈ {0, . . . , p− 1}
(expresses condition (i) of the Tseitin mod p principle above);

4. MODp,1(v) , for all v ∈ V

(expresses condition (ii) of the Tseitin mod p principle above).

Note that for every edge e ∈ E′, the polynomials of (1,2) in Definition 8.1, combined with the
Boolean axioms of fMC, force any collection of edge-variables xe,0, . . . , xe,p−1 to have exactly one
true variable xe,i, for some i ∈ {0, . . . , p− 1}. Also, it is easy to verify that, given a vertex v ∈ V ,
any assignment σ of 0, 1 values (to the relevant variables) satisfies both the clauses of (1,2) and the
clauses of MODp,1(v) if and only if σ corresponds to an assignment of values from {0, . . . , p− 1}
to the edges coming out of v that sums up to 1 (mod p).

Definition 8.2. Let G = (V,E) be an undirected graph, and let ε > 0. The graph G has expansion
ε if for any subset S ⊆ V of vertices with |S| ≤ |V |/2, |N(S)| ≥ (1 + ε)|S|, where N(S) is the set
of all vertices from V incident to vertices in S.

Theorem 8.3. (Buss et al. (2001)) Let q ≥ 2 be a prime such that q - p and let F be a field
of characteristic q. Let G be an r-regular graph with n vertices and expansion ε > 0. Then, any
PCR-refutation (over F) of BTSG,p requires degree Ω(n).

It can be proved that there exist constants r, ε > 0 and an infinite family of r-regular graphs
{Gi}∞i=1, such that every Gi has ε expansion and ni vertices, and ni tends to infinity as i tends
to infinity (cf. Alon (1986)). Thus, for each Gi pertaining to such a family, the corresponding set

7If i = 0 then xē,p−i and x̄ē,p−i denote xē,0 and x̄ē,0, respectively.
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BTSGi,p contains only linear in ni many polynomials (since for each vertex v in Gi, MODp,1(v)
defines < pr many polynomials). Notice also that every polynomial in BTSGi,p is a multilinear
monomial and has a constant number of variables. So we conclude that the total number of
variables in BTSGi,p is linear in ni and the total number of monomials in BTSGi,p is also linear in
ni.

By Theorem 8.3, BTSGi,p has a linear in ni degree lower bound. By the previous paragraph,
this means that BTSGi,p has a linear in the total number of variables degree lower bound. By the
size-degree tradeoff proved in Impagliazzo et al. (1999), a linear (in the number of variables) lower
bound on the degree of PCR refutations implies an exponential (in the number of variables) lower
bound on the size of PCR refutations (this tradeoff was proved for PC (Corollary 6.3 in Impagliazzo
et al. (1999)), but it is also valid for PCR as was observed in Alekhnovich et al. (2002)). Therefore,
we have:

Corollary 8.4. Let q ≥ 2 be a prime such that q - p and let F be a field of characteristic q. For
infinitely many n, there is a graph G with n vertices, such that the Tseitin mod p formula BTSG,p

has polynomial-size (i.e., it has polynomially in n many monomials), and any PCR refutation over
F of BTSG,p has size exponential in n (i.e., the refutation has exponentially many monomials in
n).

We shall show now that if the field F in Corollary 8.4 contains a primitive p-th root of unity,
then for any G there is a polynomial-size depth-3 fMC refutation of BTSG,p (over F). For this
purpose, we first transform the Tseitin mod p formula into the following multiplicative version (cf.
Buss et al. (2001)):

Definition 8.5. (multiplicative Tseitin mod p (TSG,p)). Let F be a field of characteristic
q - p having a primitive p-th root of unity, denoted by ω (that is, ω 6= 1 and p is the smallest positive
integer such that ωp = 1). Let G′ = (V,E′) be the graph corresponding to G as in Definition 8.1.

Define the abbreviation ye :=
p−1∑
i=0

xe,i · ωi for every edge e ∈ E′. The multiplicative Tseitin mod p,

denoted TSG,p, is the following set of multilinear polynomials over F:

1. ye · yē − 1 , for all two opposite directed edges e, ē ∈ E′ ;

2.
r∏

j=1
yej − ω , for all v ∈ V , where e1, . . . , er are the edges coming out of v.

We emphasize that the formal variables of TSG,p are xe,i for all e ∈ E′ and i ∈ {0, . . . , p− 1}.
(In Buss et al. (2001) TSG,p also included the polynomials yp

e − 1 for all edges e ∈ E′. We shall not
need these polynomials for the upper bound.)

Notice that every Boolean assignment to the xe,i variables (where e ∈ E′ and i ∈ {0, . . . , p− 1})
that satisfies the polynomials in lines (1,2) and line (3) in BTSG,p, also satisfies the polynomials in
line (1) in TSG,p. Indeed, let ρ be a Boolean assignment that satisfies the polynomials in lines (1,2)
and line (3) in BTSG,p. Then, by lines (1,2) in BTSG,p there is exactly one variable xe,i from the
variables xe,0, . . . , xe,p−1 in ye that is set to 1 by ρ, and similarly there is exactly one variable xē,j

from the variables xē,0, . . . , xē,p−1 in yē that is set to 1 in ρ. Thus, under the assignment ρ, ye = ωi

and yē = ωj . By line (3) in BTSG,p we have that i + j = 0 (mod p), and so ye · yē = ωi · ωj = 1
under the assignment ρ. Similar reasoning shows that every Boolean assignment to the xe,i variables
(where e ∈ E′ and i ∈ {0, . . . , p− 1}) that satisfies the polynomials in lines (1,2) and line (4) in
BTSG,p, also satisfies the polynomials in line (2) in TSG,p.
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The previous paragraph shows that BTSG,p semantically implies TSG,p. In fact, by Buss et al.
(2001) there is a PCR-proof of TSG,p from BTSG,p, such that all the polynomials in the proof are
of degree at most pr:

Lemma 8.6. (Buss et al. (2001)) For any r-regular graph G, and for any field F of characteristic
q - p that includes a primitive p-th root of unity, there is a PCR-proof (over F) of TSG,p from
BTSG,p, where the degrees of the polynomials in the proof are at most pr.8

Corollary 8.7. For any r-regular graph G with n vertices, and for any field F of characteristic
q - p that includes a primitive p-th root of unity, there is a depth-2 fMC (over F) proof of TSG,p

from BTSG,p of size polynomial in n, assuming r is a constant.

Proof. Since r and p are constants, then by Lemma 8.6 there is a PCR-proof of TSG,p from
BTSG,p of constant-degree. The results of Clegg et al. (1996) imply that any constant-degree PCR-
proof can be transformed into a polynomial-size (in the number of variables) PCR proof. The
number of (formal) variables in BTSG,p (and, hence TSG,p) is 2prn, in other words, polynomial in
n. Thus, there is a PCR-proof of TSG,p from BTSG,p of size polynomial in n. By Corollary 5.2,
there is also such a depth-2 fMC proof of size polynomial in n. �

The following is the main theorem of this section:

Theorem 8.8. Let F be a field of characteristic q - p that includes a primitive p-th root of unity.
Let G be an r-regular graph with n vertices. Then, there is a depth-3 fMC polynomial-size (in n)
refutation of BTSG,p over F.

Proof. By Corollary 8.7, we first derive the polynomials of TSG,p from BTSG,p, with a depth-2
fMC proof of size polynomial in n.

Given TSG,p, the refutation idea is straightforward: Recall that we interpret a polynomial t in
an fMC proof sequence as the equation t = 0. Thus, the first axiom of TSG,p interprets as ye ·yē = 1,
and the second axiom interprets as

∏r
i=1 yei = ω. Therefore, the multiplication of all polynomials∏r

i=1 yei , for all v ∈ V , equals 1, by the first axiom. On the other hand, by the second axiom, this
multiplication equals ωn = ω (since n ≡ 1 (mod p)). So we reached ω = 1, a contradiction.

More formally, the depth-3 fMC refutation goes as follows. For any v ∈ V , denote by E′
v the

set of edges from E′ that come out of v. Let v0 be some vertex in V . Apply the following depth-3
fMC proof sequence:

1.
∏

e∈E′
v0

ye − ω hypothesis

2.

( ∏
e∈E′

v0

ye − ω

)
·

∏
v∈V \{v0}

∏
e∈E′

v

ye =
∏

e∈E′
ye − ω ·

∏
v∈V \{v0}

∏
e∈E′

v

ye

product of (1)

Now, choose a different vertex v1 6= v0 from V .

3.
∏

e∈E′
v1

ye − ω hypothesis

8 This result was proved in Buss et al. (2001) for PC, when one replaces in TSG,p and BTSG,p every occurrence
of x̄i (for any 1 ≤ i ≤ n) by 1− xi. Lemma 8.6 clearly stems from this.
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4.

( ∏
e∈E′

v1

ye − ω

)
· ω ·

∏
v∈V \{v0,v1}

∏
e∈E′

v

ye

= ω ·
∏

v∈V \{v0}

∏
e∈E′

v

ye − ω2 ·
∏

v∈V \{v0,v1}

∏
e∈E′

v

ye product of (3)

5.
∏

e∈E′
ye − ω2 ·

∏
v∈V \{v0,v1}

∏
e∈E′

v

ye add (2) and (4)

Continuing in the same manner for all other vertices v ∈ V , we arrive at
∏

e∈E′ ye − ωn, which
equals

6.
∏
e∈E′

ye − ω ,

over F, since n ≡ 1 (mod p).
We now substitute by 1 each product ye ·yē in (6), for any two opposite directed edges e, ē ∈ E′.

Specifically, choose a pair of opposite directed edges e0, ē0 ∈ E′.

7. ye0 · yē0 − 1 hypothesis
8. (ye0 · yē0 − 1) ·

∏
e∈E′\{e0,ē0}

ye =
∏

e∈E′
ye −

∏
e∈E′\{e0,ē0}

ye product of (7)

In the same manner, let e1, ē1 ∈ E′ be another pair of opposite directed edges. We can multiply
ye1 · yē1 − 1 by

∏
e∈E′\{e0,ē0,e1,ē1} ye and reach

∏
e∈E′\{e0,ē0} ye −

∏
e∈E′\{e0,ē0,e1,ē1} ye. Adding this

to (8) yields
∏

e∈E′ ye−
∏

e∈E′\{e0,ē0,e1,ē1} ye. Continuing this process for all other pairs of opposite
directed edges from E′, we arrive finally at

9.
∏
e∈E′

ye − 1 .

Subtracting (9) from (6) we reach 1− ω. Since, ω 6= 1, then 1− ω has an inverse in the field, so by
multiplying 1− ω by its inverse we arrive at the terminal polynomial 1.

It is easy to verify that when replacing every variable ye with its corresponding polynomial∑p−1
i=0 xe,i · ωi (which constitutes a depth 1 multilinear formula with a plus gate at the root), ev-

ery polynomial in the above proof sequence can be written as a depth 3 multilinear formula of
polynomial-size (in n) with a plus gate at the root. �

By Corollary 8.4 and Theorem 8.8, we conclude that:

Corollary 8.9. Over fields of any characteristic q that include a primitive p-th root of unity,
where q - p, depth-3 fMC has an exponential gap over PC and PCR for Tseitin mod p formulas
(when the underlying graphs are appropriately expanding).

It is known that the Tseitin mod 2 formulas have only exponential-size refutations in Resolution
(again, when the underlying graphs are appropriately expanding; see Ben-Sasson & Wigderson
(1999); Urquhart (1987)). Moreover, Ben-Sasson (2002) proved an exponential lower bound on
bounded-depth Frege proof-size of such Tseitin mod 2 formulas. Therefore, by Theorem 8.8:
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Corollary 8.10. Over fields of characteristic different than 2 depth-3 fMC has exponential gap
over Resolution and bounded-depth Frege for Tseitin mod 2 formulas (when the underlying graphs
are appropriately expanding).

Notice that the refutation of the Tseitin mod p formula described in the proof of Theorem 8.8
uses only depth 3 multilinear formulas, with constant number of product gates (in other words,
the root is a plus gate with a constant fan-in), or depth 2 multilinear formulas (by Corollary
8.7). Dvir & Shpilka (2005) (Theorem 6.10) showed a deterministic polynomial-time algorithm
for deciding the identity of such formulas – i.e., a polynomial-time algorithm that receives two
(leveled) multilinear formulas of depth 3 with a constant fan-in plus gate at the root, and answers
whether the two formulas compute the same polynomial. Thus, depth-3 fMC proof systems for
which all depth 3 multilinear formulas appearing in proofs have a constant fan-in plus gate at
the root constitute formal propositional proof systems (see Section 2.3.5) (note that these proof
systems can manipulate any kind of depth 2 or depth 1 multilinear formulas; we only restrict the
way depth 3 multilinear formulas appear). Therefore, by Corollaries 8.9 and 8.10, we have the
following:

Corollary 8.11. Depth-3 fMC proof systems for which all depth 3 multilinear formulas appearing
in proofs have a constant fan-in plus gate at the root, are sound and complete formal proof systems.
Moreover, these formal proof systems are strictly stronger than PC, PCR and Resolution, and have
an exponential gap over bounded-depth Frege (for Tseitin mod 2 formulas, when the underlying
field has characteristic different than 2 and the underlying graphs are appropriately expanding).
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Sam Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov & Jiř́ı
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Armin Haken (1985). The intractability of resolution. Theoret. Comput. Sci. 39(2-3), 297–308. ISSN
0304-3975.
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