
Number fields without small generators

Jeffrey D. Vaaler∗ and Martin Widmer†

Abstract

Let D > 1 be an integer, and let b = b(D) > 1 be its smallest divisor.
We show that there are infinitely many number fields of degree D whose
primitive elements all have relatively large height in terms of b, D and
the discriminant of the number field. This provides a negative answer to
a questions of W. Ruppert from 1998 in the case when D is composite.
Conditional on a very weak form of a folk conjecture about the distribution
of number fields, we negatively answer Ruppert’s question for all D > 3.

1 Introduction

Let L be a number field of degree D, and for α ∈ L let

H(α) =
∏
v∈ML

max{1, |α|v}
dv
D

be the absolute multiplicative Weil height of α. Here ML denotes the set of
places of L and for each place v we choose the unique representative | · |v that
either extends the usual Archimedean absolute value on Q or a usual p-adic
absolute value on Q, and dv = [Lv : Qv] denotes the local degree at v. As is
well-known H(α) is independent of the number field L containing α, and hence
H(·) extends to a function on the algebraic numbers Q.

From now on let L ⊂ Q be a number field of degree D > 1. We are interested
in bounds, expressed in terms of the degree D and the absolute discriminant ∆L

of L, for the smallest height of a generator. It is convenient to use the following
invariant, introduced by Roy and Thunder [7],

δ(L) = inf{H(α);L = Q(α)}.

By Northcott’s Theorem [6, Theorem 1] the infimum is attained, and hence, δ(L)
denotes the smallest height of a generator of the extension L over Q. Silverman
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[10, Theorem 1] has shown that

δ(L) ≥ D−
1

2(D−1) |∆L|
1

2D(D−1) . (1.1)

The following example due to Ruppert [8, p.18] and Masser [7, Proposition
1]) shows that in this general situation the exponent 1/(2D(D − 1)) cannot be
improved. Let p and q be primes that satisfy 0 < p < q < 2p. Let α = (p/q)1/D,
and let L = Q(α). Then, by the Eisenstein criterion, L has degree D, and p
and q are both totally ramified in L. Hence, (pq)D−1|∆L, and thus

H(α) = q
1
D ≤ (2pq)

1
2D ≤ 2

1
2D |∆L|

1
2D(D−1) . (1.2)

Ruppert [8, Question 1] asked whether the exponent is always sharp, more
precisely he proposed the following question.

Question 1.1 (Ruppert, 1998). Is there a constant CD such that for all number
fields L of degree D

δ(L) ≤ CD|∆L|
1

2D(D−1) ?

In fact Ruppert used the naive height Hnaive(α) which is defined as the
maximum norm of the coefficient vector of the minimal polynomial of α over Z.
It is well-known [2, Lemma 1.6.7] that 2−1H(α) ≤ Hnaive(α)1/D ≤ 2H(α); here
D denotes the degree of α. This shows that Ruppert’s question is equivalent to
the one stated above. Ruppert [8, Proposition 2] himself answered this question
in the affirmative for D = 2. The aim of this note is to answer Ruppert’s
question in the negative for all composite D.

Theorem 1.2. Let b = b(D) > 1 be the smallest divisor of D, and suppose γ
is a real number such that

γ <

{
1/(D(b+ 1)) : if b ≤ 3,
1/(2D(b+ 1)) + 1/(Db2(b+ 1)) : otherwise.

Then there exist infinitely many number fields L of degree D satisfying

δ(L) > |∆L|γ .

Note that for composite D > 4 we have

1

2D(b+ 1)
+

1

Db2(b+ 1)
>

1

2D(
√
D + 1)

>
1

2D(D − 1)
.

Thus, Theorem 1.2 provides a negative answer to Question 1.1 for all composite
D. In fact, we prove a stronger result, namely: let F be any number field of
degree D/b; when enumerated by the modulus of the discriminant, the subset
of all degree b extensions L of F , defined by δ(L) > |∆L|γ , has density 1 (for
the precise statement we refer to Corollary 4.1).
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Our proof strategy requires a good lower bound for the number of degree D
fields with bounded modulus of the discriminant. Essentially optimal bounds
are available when D is even or divisible by 3, and if D is composite we still
have some useful bounds. However, a folk conjecture (sometimes attributed
to Linnik) predicts the asymptotics cDT as T goes to infinity, for some con-
stant cD > 0. Unfortunately, the best general lower bounds are only of order
T 1/2+1/D2

which is just slightly weaker than what we need. Therefore, our next
result is conditional.

Theorem 1.3. Suppose that D > 3, and suppose that there exist constants
cD > 0 and νD > 1/2 + 1/(D − 1) such that the number of degree D fields
L ⊂ Q with absolute value of the discriminant no larger than T is at least
cDT

νD for all T large enough. Then there exists γ > 1/(2D(D − 1)) such that
there are infinitely many number fields L of degree D with

δ(L) > |∆L|γ .

Thanks to [1], the hypothesis of Theorem 1.3 is satisfied for D = 5, and
hence we get an unconditional negative answer to Question 1.1 for D = 5.
Furthermore, Theorem 1.3 shows that most likely the answer to Question 1.1 is
“no” for all D > 3. However, our method sheds no light on the case D = 3.

In this article we use Vinogradov’s notation � and � at various places.
The involved constants are allowed to depend on all quantities except on the
parameter T , which is introduced in the next section.

2 Enumerating fields: discriminant versus delta-
invariant

Any number field is considered a subfield of the fixed algebraic closure Q. Let
k be a number field, let m = [k : Q], let L/k be a finite extension of degree
d = [L : k] > 1, and put D = [L : Q] = md. For the remainder of this paper we
set

C = Cd(k) = {L ⊂ Q; [L : k] = d}, (2.1)

and for a subset S ⊂ C, and γ ≥ 0 we set

Sγ = {L ∈ S; δ(L) > |∆L|γ}. (2.2)

We want to enumerate the fields in S in two different ways: once by the dis-
criminant (more precisely, the modulus thereof), and once by the delta invariant
δ(·). Thus we introduce the counting functions

N∆(S, T ) = |{L ∈ S; |∆L| ≤ T}|,
Nδ(S, T ) = |{L ∈ S; δ(L) ≤ T}|.
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Note that both cardinalities are finite; the first one by Hermite’s Theorem, the
second one by Northcott’s Theorem. Next we introduce the set of generators of
fields of S

PS = {α ∈ Q;Q(α) ∈ S},

and its counting function

NH(PS , T ) = |{α ∈ PS ;H(α) ≤ T}|.

Again, the above cardinality is finite by Northcott’s Theorem.
The proof of Theorem 1.2 is based on two simple observations, the first of

which, is presented as the following proposition.

Proposition 2.1. Suppose there are positive reals η, θ, and γ < η/θ such that
N∆(S, T )� T η and NH(PS , T )� T θ for all T large enough. Then

lim
T→∞

N∆(Sγ , T )

N∆(S, T )
= 1.

Proof. Directly from the definitions we get

N∆(S\Sγ , T ) ≤ Nδ(S\Sγ , T γ) ≤ Nδ(S, T γ).

The map α → Q(α) yields a surjection from {α ∈ PS ;H(α) ≤ T γ} to {L ∈
S; δ(L) ≤ T γ}. Hence, we have

Nδ(S, T
γ) ≤ NH(PS , T

γ).

On the other hand, by the hypothesis,

NH(PS , T
γ)� T γθ,

and

N∆(S, T )� T η,

provided T is large enough. We conclude

lim
T→∞

N∆(S\Sγ , T )

N∆(S, T )
= 0,

whenever γ < η
θ which proves the proposition.

3 Bounds for the counting functions

In view of Proposition 2.1 we want to find a set S ⊂ C that maximizes the ratio
η/θ. Taking S = Cb(F ) ⊂ C as the set of fields that contain a fixed extension
F/k of degree d/b does not affect η in a negative way as we shall see in Lemma
3.1, but it positively affects θ as we shall see in Lemma 3.2. This is the second
simple but important observation for the proof of Theorem 1.2.

We start with lower bounds for η, that is, lower bounds for N∆(Cb(F ), T ).
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Lemma 3.1. Let b = b(d) > 1 be the smallest divisor of d, and let F be an
extension of k of degree d/b. Then we have

N∆(Cb(F ), T )� T 1/2+1/b2 (3.1)

for all T large enough. If d is even or divisible by 3 then we even have

N∆(Cb(F ), T )� T, (3.2)

for all T large enough.

Proof. First we recall that for L ∈ Cb(F ) we have |∆L| = |∆F |bNF/Q(DL/F ),
where NF/Q(·) is the absolute norm, and DL/F is the relative discriminant.
Thus, counting fields in Cb(F ) with |∆L| ≤ T is the same as counting fields in
Cb(F ) with NF/Q(DL/F ) ≤ T/|∆F |b. Therefore, Ellenberg and Venkatesh’s [5,
Theorem 1.1] shows that

N∆(Cb(F ), T ) ≥ c′T 1/2+1/b2

for some c′ = c′(b, F ) > 0 and all T large enough. This yields (3.1). For (3.2)
we note that the conjectured asymptotic formula

N∆(Cb(F ), T ) = cT + o(T ),

where c = c(b, F ) > 0, has been proven by Datskovsky and Wright for b = 2 [3,
Theorem 4.2] (see also [4, Corollary 1.2]) and for b = 3 [3, Theorem 1.1]. This
proves the lemma.

Next we establish an upper bound for NH(PCb(F ), T ). Recall that k is a
number field of degree m, and also recall the notation C = Cd(k) from (2.1).

Lemma 3.2. We have for all T > 0

NH(PC , T )� Tmd(d+1). (3.3)

With the notation of Lemma 3.1, in particular,

NH(PCb(F ), T )� Tmd(b+1). (3.4)

Proof. First we note that Q(α) ∈ C = Cd(k) implies [k(α) : k] = d. Therefore,

NH(PC , T ) ≤ |{α ∈ Q; [k(α) : k] = d,H(α) ≤ T}|.

Now Schmidt [9, Theorem] has shown that

|{α ∈ Q; [k(α) : k] = d,H(α) ≤ T}| ≤ C(m, d)Tmd(d+1).

Therefore NH(PC , T ) ≤ C(m, d)Tmd(d+1), which proves (3.3).
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4 Density results

Recall the notation in (2.2).

Corollary 4.1. Let b = b(d) > 1 be the smallest divisor of d, and suppose γ is
a real number such that

γ <

{
1/(md(b+ 1)) : if b ≤ 3,
1/(2md(b+ 1)) + 1/(mdb2(b+ 1)) : otherwise.

Let F be an extension of k of degree d/b and let B = {L ∈ C;F ⊂ L}. Then

lim
T→∞

N∆(Bγ , T )

N∆(B, T )
= 1.

Proof. First note that B = Cb(F ). Thus (3.1) yields N∆(B, T ) � T 1/2+1/b2

for T large enough. If d is even or divisible by 3 then by (3.2) we even have
N∆(B, T )� T for T large enough. On the other hand (3.4) gives NH(PB , T )�
Tmd(b+1). Applying Proposition 2.1 with S = B yields the statement.

So almost all fields in B = Cb(F ) satisfy δ(L) > |∆|γ . Note that, of course,
B is an infinite set, and so Theorem 1.2 follows from Corollary 4.1 by taking
k = Q.

Corollary 4.2. Suppose γ < 1/(md(d+ 1)) and suppose d is even or divisible
by 3 then

lim
T→∞

N∆(Cγ , T )

N∆(C, T )
= 1.

Proof. Let F be an extension of k of degree d/2 if d is even, and of degree d/3
otherwise. Hence, C ⊃ C2(F ) or C ⊃ C3(F ) respectively, and so we conclude
from (3.2) that N∆(C, T ) � T . Furthermore, by (3.3) we have NH(PC , T ) �
Tmd(d+1). Applying Proposition 2.1 with S = C yields the statement.

Finally, to prove Theorem 1.3 we apply Proposition 2.1 with S = C, k = Q,
η = νD > 1/2 + 1/(D − 1) and θ = D(D + 1) (for the latter we have applied
(3.3)). As η/θ > 1/(2D(D−1)) we conclude that there exists γ > 1/(2D(D−1))
such that there exist infinitely many number fields L of degree D that satisfy

δ(L) > |∆L|γ .

This proves Theorem 1.3.

5 Cluster points

We consider the set of values

log δ(L)

log |∆L|
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as L runs over all number fields of fixed degree D > 1. What are the cluster
points of this set? Combining (1.1) and (1.2) gives the smallest cluster point

lim inf
[L:Q]=D

log δ(L)

log |∆L|
=

1

2D(D − 1)
.

What about the largest cluster point? With b = b(D) as in Theorem 1.2 the
latter implies that

lim sup
[L:Q]=D

log δ(L)

log |∆L|
≥
{

1/(D(b+ 1)) : if b ≤ 3,
1/(2D(b+ 1)) + 1/(b2(b+ 1)D) : otherwise.

If D is odd [11, Theorem 1.2] or if the Dedekind zeta-function associated to the
Galois closure of L satisfies the Generalized Riemann Hypothesis for all number
fields L of degree D, then [11, Theorem 1.3]

lim sup
[L:Q]=D

log δ(L)

log |∆L|
≤ 1/(2D).

However, the best known unconditional general upper bound for the largest
cluster point is 1/D, see, e.g., [12, Lemma 4.5]. It might be an interesting
problem to study the distribution of the cluster points, and to locate new cluster
points.
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