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The notion that Bayesian processes are fundamental to
brain function and sensory processing has recently
received much support, and a number of Bayesian
accounts of how the brain encodes the speed of moving
objects have been proposed that challenge earlier
mechanistic models. We measured the perceived speed
of low contrast patterns at both low (2.5 cd m�2) and
high (25 cd m�2) luminance in order to assess these
competing models of how the human visual system
encodes speed. At both luminance levels low contrast
stimuli are perceptually biased such that they appear
slower at slow (, 8 Hz) speeds but faster at higher (16
Hz) speeds. However, we find that the reversal of the
perceptual bias from under- to overestimation occurred
at slower speeds at low luminance. We also found that
the bias was greater at slow speeds at high luminance
but greater at fast speeds at low luminance. Moreover,
discrimination thresholds were found to be similar at
high and low luminance. These findings can be predicted
by models in which speed is encoded by the relative
activity within two broadly tuned temporal channels but
are inconsistent with Bayesian models of speed
encoding. We conclude that Bayesian processes cannot
adequately account for speed encoding in the human
visual system.

Introduction

Whereas knowledge of the speed of objects in the
environment is of critical importance, there is still no
consensus on the nature of the processes that underlie
the encoding of speed in the human visual system.
Much of the work that addresses this problem has
looked to biases in our perception of speed to inform
both formal and informal models of speed encoding.
Human speed perception has been shown to be readily
influenced by the contrast of the scene viewed (e.g.,

Hammett, Champion, Thompson, & Morland, 2007;
Thompson, 1982; Thompson, Brooks, & Hammett,
2006); and it is now well established that, at slow
speeds, low contrast stimuli appear to move more
slowly than their higher contrast analogues but,
conversely, they can appear to move more quickly at
higher speeds (. 8 Hz)1 (e.g., Thompson, 1982;
Thompson et al., 2006). For convenience and following
others (e.g., Brooks, 2001; Snowden, Stimpson, &
Ruddle, 1998), we will refer to these biases in perceived
speed as the Thompson Effect. This observation and
others has led Thompson (1982) and many others (e.g.,
Adelson & Bergen, 1986; Hammett, Thompson, &
Bedingham, 2000; Harris, 1980; Smith & Edgar, 1994;
Tolhurst, Sharpe, & Hart, 1973) to the suggestion that
speed may be encoded as the ratio of two mechanisms
tuned to low and high temporal frequencies (or ‘‘slow’’
and ‘‘fast’’ mechanisms) (Figure 1, left hand panel).
Whereas the physiological substrate of these mecha-
nisms is not known, one clear candidate may be the
subpopulations of Magno and Parvocellular cells
(hereafter referred to as M and P cells, respectively) in
the primate lateral geniculate nucleus (LGN) (De
Valois, Cottaris, Mahon, Elfar, & Wilson, 2000). The
logic of this ratio class of model rests upon the
assumption that speed is encoded as the relative activity
of ‘‘slow’’ and ‘‘fast’’ mechanisms—at slow speeds,
reducing contrast has proportionately less effect upon
the response of the ‘‘slow’’ mechanism (since it is most
sensitive to slower stimuli) and thus patterns appear
slower. Similarly, at fast speeds, reducing contrast will
have proportionately less effect upon the ‘‘fast’’
mechanism and will thus result in a perceptual speeding
up. The ratio model can therefore adequately account
for the Thompson Effect and other perceptual biases in
speed such as those induced by changes in luminance
and adaptive state (Hammett, Champion, Morland, &
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Thompson, 2005; Hammett et al., 2007; Thompson,
1981).

However, subsequent to the popularization of
modelling brain processes as Bayesian operations (e.g.,
Jaynes, 1988) a number of workers (e.g., Ascher &
Grzywacz, 2000; Hürlimann, Kiper, & Carandini, 2002;
Stocker & Simoncelli, 2006; Weiss & Adelson, 1998;
Weiss, Simoncelli, & Adelson, 2002) have proposed an
alternative account of how the brain encodes speed.
Whereas the details of the models vary, this new class
of model shares the assumption that speed is encoded
as the product of a likelihood (the sensory signal
including noise) and a Bayesian prior that favors slow
speeds. The logic of this approach is based upon two
key ideas: (a) the observation that as the sensory
evidence becomes less precise (e.g., by a reduction in
signal-to-noise ratio), the proportional influence of the
prior on the product will increase and (b) the assertion
that visual experience is dominated by slow speeds and
hence the brain deploys a ‘‘slow’’ prior. Given these two
assumptions, it follows that reducing the sensory signal
(for instance by reducing contrast) must result in a
phenomenal slow-down. The well-established Thomp-
son Effect is thus broadly consistent with both the ratio
and Bayesian class of models of speed encoding, and
both approaches have had some degree of success in
modelling it (Ascher & Grzywacz, 2000; Hammett et

al., 2000; Stocker & Simoncelli, 2006; Thompson et al.,
2006).

Recently Vintch and Gardner (2014) have reported
that the fMRI BOLD population response in V1
effectively mirrors the contrast-induced perceptual
biases in speed experienced by their subjects and
suggest that these biases constitute evidence for the
encoding of perceptual priors for slow speed. However,
they also note that their results could be interpreted as
evidence for a scheme where speed was encoded by two
mechanisms whose gains varied differentially as a
function of speed.

Thus there are currently two competing accounts of
how speed is encoded in the human visual system that
are broadly consistent with much behavioral data. One
of the problems in resolving which (if either) approach
provides a more consonant framework for under-
standing speed encoding is that both class of models
tend to make similar predictions and, where they
diverge, can be readily modified to accommodate
empirical evidence. For instance, whereas Stocker and
Simoncelli’s (2006) model does not predict the reversal
in perceptual bias frequently found in the Thompson
Effect at higher speed, they note that their model
‘‘would be able to fit these behaviours with a prior that
increases at high speeds’’ (p. 583).

Figure 1. The ratio of the responses of low-pass and band-pass temporal filters (left panel) after Smith and Edgar (1994) provides a

monotonic code for speed that is consistent with under- and overestimation of speed at low contrast. Perceived speed of a low

contrast pattern encoded by a ratio model at high and low luminance is plotted in the right hand panel: Values below 1 indicate an

underestimation of perceived speed at low contrast, and values above 1 indicate an overestimation of perceived speed. The ratio

model shows a reduction in the underestimation of slow speeds and an overestimation of higher speeds at reduced luminance.

Details of the simulation may be found in the Appendix.
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There is therefore a need to identify cases where the
Bayesian and ratio approaches yield unequivocally
different predictions. In order to do so, we used the
logic and model invoked by Hammett et al. (2007) to
derive divergent predictions for Bayesian and ratio
class models of speed encoding. Hammett et al. (2007)
(see also Vaziri-Pashkam & Cavanagh, 2008) found
that low luminance (mesopic) patterns appeared faster
than higher luminance (photopic) patterns at fast (. 4
Hz) speeds. They demonstrated that a simple ratio
model comprising two temporally tuned mechanisms
could account for this perceptual bias if the gain of the
lower frequency channel is reduced proportionately
more than that of the higher frequency channel at low
luminance—an assumption that is consistent with the
known properties of retinal ganglion cells that project
to the M and P layers of the primate LGN (Purpura,
Kaplan, & Shapley, 1988). In such a scheme the
response of the lower frequency tuned mechanism is
reduced at low luminance (relative to its response to the
same contrast at high luminance) and thus the ratio
model yields an increase in perceived speed relative to
photopic levels. Thus this class of model predicts that
at low luminance the reduction in perceived speed at
low contrast will be attenuated since a proportionately
larger input to the ratio will be derived from the higher
frequency-tuned mechanism. Figure 1 shows the
qualitative effect of reducing luminance (and concom-
itantly the gain of the ‘‘slow’’ mechanism) predicted by
ratio models: The Thompson Effect is reduced at slow
speeds, increases at faster speeds, and the speed at
which the perceptual bias reverses is reduced. The
Bayesian approach posits that the precision of the
speed signal is reduced at low luminance. Since
reducing luminance effectively reduces the contribution
of the signal input equally for high and low contrast
patterns, Bayesian models predict that reducing lumi-
nance will have no effect upon the contrast-induced
perceptual bias but will increase discrimination
thresholds as the precision of the signal is reduced. In
order to test these predictions, we therefore measured
perceived speed and estimated discrimination thresh-
olds of low contrast patterns over a range of speeds and
at high and low luminance.

Methods

Subjects

Five (two male and three female) subjects aged
between 20 and 29 participated in this experiment. One
of the subjects (OH) was an author; the other four were
naı̈ve to the purpose of the experiment. All subjects had
normal or corrected-to-normal acuity.

Apparatus and stimuli

All stimuli were horizontally orientated sinusoidal
gratings of 2 c/8 generated using MATLAB 7.11
(MathWorks, Cambridge, UK) and displayed on an
EIZO 6600-M (Hakusan, Ishikawa, Japan) mono-
chrome monitor at a frame rate of 100 Hz. The monitor
was gamma corrected using the CRS Optical photo-
metric system (Cambridge Research Systems, Roches-
ter, UK). The Michelson contrast of the standard (fixed
speed) grating was 0.7, and the contrast of the test
(variable speed) grating was 0.1. During the control
conditions both the standard and test gratings were of
equal contrast (either 0.1 or 0.7). The spatial and
temporal phase of the standard and test gratings was
randomized. The display subtended 688 · 478 at a
viewing distance of 28.5 cm. Mean luminance was 25 cd
m�2 for the high luminance conditions and 2.5 cd m�2

in the low luminance conditions. In the low luminance
conditions 1 log unit neutral density filters (NDF)
(Thorlabs Inc., Newton, New Jersey, USA) were
inserted into drop-cell trial frames (Skeoch, Sussex,
UK) worn by subjects. Stimuli were presented through
two 68 diameter circular windows with hard edges.
Each window was located equidistant from the
horizontal center of the screen and separated by 28. A
small bright fixation spot was situated at the center of
the display.

Procedure

Two patterns were presented simultaneously for 500
ms to the right and left of a central fixation point. The
standard patterns (always presented on the left) were
drifting in a downward direction at one of four
temporal frequencies (2, 4, 8, and 16 Hz). The speed of
the test pattern was altered by a QUEST routine
(Watson & Pelli, 1983) depending on the subject’s
responses. For each block the QUEST procedure was
terminated after 50 trials, the data were fit to a
cumulative Gaussian function using the method of least
squares fit, and the 50% point of the function was
derived. The mean of five (three in the control
condition) such estimates was taken as the point of
subjective equality (PSE). Both patterns were presented
at equal luminance, in both the high or low luminance
conditions. A blank screen of mean luminance was
presented between each test pair, and subjects had to
press a mouse button in order for each test pair to be
presented. The subject’s task was to indicate which
pattern appeared faster, by pressing a mouse button.
Before beginning the experiment, subjects were dark
adapted for at least 5 min. The experiments were
conducted binocularly in a semidarkened room using a
chin and headrest.
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Results

At all temporal frequencies tested in the control
condition speed matching was near veridical at both
high and low luminance. For 0.1:0.1 contrast patterns,
a two-way ANOVA revealed no significant main effect
of temporal frequency, F(3, 32)¼ 1.06, p ¼ 0.379; no
significant main effect of luminance, F(1, 32)¼2.93, p¼
0.096; and no significant interaction between temporal
frequency and luminance, F(3, 32) ¼ 1.48, p ¼ 0.239.
Similarly, for patterns at 0.7:0.7 contrast, a two-way
ANOVA revealed no significant main effect of tempo-
ral frequency, F(3, 32)¼ 1.80, p¼ 0.167; no significant
main effect of luminance, F(1, 32)¼0.22, p¼0.638; and
no significant interaction between temporal frequency

and luminance, F(3, 32)¼ 0.17, p¼ 0.916, on the speed
match ratio.

Figure 2 plots the ratio of the match speed for the
low contrast stimuli to the standard speed. A value
greater than one represents an overestimate of the
perceived speed of low contrast with respect to high
contrast patterns, and a value less than one represents
an underestimate of the perceived speed of low contrast
with respect to high contrast patterns. The results
clearly indicate that low contrast patterns appear
slower for most speeds tested. In line with many other
studies, our results also indicate that the perceptual bias
in speed reverses at faster speeds such that low contrast
patterns appear faster at fast speeds. A two-way
ANOVA revealed a significant main effect of temporal
frequency, F(3, 32) ¼ 428.05, p , 0.001; a significant

Figure 2. The ratio between perceived speed and physical speed of the low contrast (0.1) pattern is plotted as a function of speed at

high (open symbols) and low luminance (closed symbols). Subjects’ initials are indicated in the top left of each panel, the average

across subjects is indicated in the lowermost right panel. The broken horizontal line represents a veridical match. Speed match values

greater than 1 indicate an overestimation of matched speed; values less than 1 indicate an underestimation of matched speed. Error

bars represent 61 SEM.

Journal of Vision (2015) 15(2):9, 1–9 Hassan & Hammett 4



main effect of luminance, F(1, 32)¼ 177.20, p , 0.001;
and a significant interaction between temporal fre-
quency and luminance, F(3, 32) ¼ 6.50, p , 0.010, on
the speed match ratio. The results clearly indicate that
the speed at which this reversal in perceptual bias
occurs varies with luminance. At high luminance, the
perceived speed of low contrast patterns is underesti-
mated for temporal frequencies up to 8 Hz but
overestimated at 16 Hz. At low luminance a similar
reversal in the bias occurs but at a lower frequency—
only frequencies less than 8 Hz were underestimated.
One-sample t tests at 8 Hz revealed that there was no
significant difference between perceived and veridical
speed at low luminance (t¼ 0.89, df¼ 4, p¼ 0.422), but
at high luminance, perceived speed was significantly
lower than veridical (t¼�16.15, df ¼ 4, p , 0.001).

Following Freeman, Champion, and Warren (2010)
we calculated the average standard deviations of the
underlying cumulative Gaussian psychometric func-
tions for our control conditions in order to estimate
speed discrimination thresholds at high and low
luminance. Figure 3 plots these thresholds as fractions
of the standard speed for test and standard patterns of
0.1 and 0.7 contrast. A two-way ANOVA revealed no
significant main effect of temporal frequency, F(3, 32)¼
2.08, p¼ 0.122; no significant main effect of luminance,
F(1, 32)¼ 0.79, p¼ 0.379; and no significant interaction
between temporal frequency and luminance, F(3, 32)¼
0.34, p ¼ 0.793.

Similarly, for test and standard patterns with a
contrast of 0.7, a two-way ANOVA revealed no
significant main effect of temporal frequency, F(3, 32)¼
0.41, p¼ 0.743; no significant main effect of luminance,
F(1, 32)¼ 0.30, p¼ 0.587; and no significant interaction
between temporal frequency and luminance, F(3, 32)¼
0.10, p¼ 0.958, on estimated discrimination thresholds.

At both high and low luminance the estimated
discrimination thresholds as fractions of the standard

speed were not affected by changes in contrast. At low
luminance, a two-way ANOVA revealed no significant
main effect of temporal frequency, F(3, 32)¼ 1.42, p¼
0.253; no significant main effect of contrast, F(1, 32)¼
1.69, p ¼ 0.202; and no significant interaction between
temporal frequency and contrast, F(3, 32)¼ 0.70, p¼
0.553. At high luminance, a two-way ANOVA revealed
no significant main effect of temporal frequency, F(3,
32)¼ 0.05, p¼ 0.981; no significant main effect of
contrast, F(1, 32) ¼ 0.06, p ¼ 0.808; and no significant
interaction between temporal frequency and contrast,
F(3, 32) ¼ 0.42, p ¼ 0.735.

Discussion

There is currently no consensus on how speed is
encoded in the human visual system. Both Bayesian
and ratio class models have been proposed and
previous investigations have found perceptual biases
consistent with both class of model. Recently, Sotir-
opoulos, Seitz, and Seriès (2014) reported that a model
that combined Stocker and Simoncelli’s (2006) Bayes-
ian model with Thompson et al.’s (2006) ratio model
accounted for their measurements of the Thompson
Effect better than a Bayesian model alone. However,
the model required 10 free parameters, and the
resultant best fitting parameters render the temporal
filters underlying the ratio stage to be both effectively
low-pass with the peak and cut-off of the ‘‘m’’ filter at
around 2 Hz and 20 Hz respectively. Thus whereas the
large number of parameters does allow for a good fit to
the data, the underlying filters lose the physiological
plausibility of the original fixed parameter model
proposed by Perrone (2005).

Very recently, Vintch and Gardner’s (2014) finding
that the population response in V1 mirrors the

Figure 3. Estimated discrimination thresholds are reported as fractions of the standard speed for test and standard patterns of equal

contrast (left panel, 0.1, right panel, 0.7), at high (open symbols) and low (closed symbols) luminance. Data points represent the

mean of five subjects. Error bars represent 61 SEM.
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contrast-induced perceptual biases in speed and flicker
gave further weight to a Bayesian approach. However,
Vintch and Gardner’s measurements were restricted to
speeds no faster than 4 8/s (well below the speeds at
which a reversal in perceptual bias may be expected)
and, whereas pointing to the consistency of their results
with a Bayesian prior, they also note that their results
are consistent with a two-channel model of speed where
the prior can be considered as a frequency-dependent
difference in the gain of the mechanisms. We therefore
set out to provide a direct test of the predictions of ratio
and Bayesian class models of speed encoding by
assessing the effect of luminance upon the Thompson
Effect: An early slow prior should be readily differen-
tiated from a ratio mechanism upon the basis of the
effect of luminance on speed biases. A ratio model of
speed encoding that incorporates known luminance-
induced changes in gain (Purpura et al., 1988) predicts
that the perceptual bias will be greater at slow speeds at
high luminance and greater at fast speeds at lower
luminance.

In order to evaluate the effect of the luminance
reduction upon Bayesian models, we followed the logic
of Freeman et al. (2010). They observed that a
reduction of the slope of the underlying psychometric
function (and thus discrimination threshold) should
yield less certainty and therefore a slower perceived
speed. We estimated the slopes of the underlying
psychometric functions of our control conditions at 0.1
and 0.7 contrast (Figure 3). There is no significant
difference between low and high luminance discrimi-
nation thresholds, nor is there any significant difference
in discrimination thresholds at high and low contrasts.
Thus, the Bayesian class of model predicts that
luminance should have no effect on the contrast-
induced bias in our measurements since the discrimi-
nability of the patterns is equally affected by the
luminance reduction. Moreover, given the lack of any
significant difference in discrimination thresholds
between high and low contrast, Bayesian models would
also not predict perceptual biases as a function of
contrast.

Our results clearly indicate that the perceived speed
of low contrast patterns is under-estimated at slow
speeds and over-estimated at faster speeds as has
previously been reported. We also find that this shift in
perceptual bias is influenced by the average luminance
of the image: At lower luminance there is significantly
less reduction in perceived speed, greater increase in
perceived speed, and a concomitant reduction in the
speed at which the bias is reversed. This increase in
perceived speed and the associated reduction in the
speed at which the perceptual bias reversed at low
luminance is predicted by the ratio class of model (e.g.,
Hammett et al., 2007) that incorporates the biologically
plausible (Purpura et al., 1988) assumption that the

gain of the lower temporal frequency tuned mechanism
reduces proportionately more at low luminance.

Others (e.g., Thompson et al., 2006) have pointed
out that Bayesian approaches do not predict the
reversal in perceptual bias found here and elsewhere,
and Hammett et al. (2007) noted that the finding that
stimuli appear faster at mesopic than at photopic levels
was also inconsistent with Bayesian models. Our new
finding that the perceived slowing of low contrast
patterns is greater at high luminance provides a strong
challenge to the plausibility of Bayesian accounts of
speed encoding since they predict that lower contrast
patterns should have the same relative perceived speed
at either luminance and cannot explain the shift in
frequency at which the bias reverses. Conversely, the
perceptual biases induced by luminance and contrast
(Hammett et al., 2007; Thompson, 1982; Thompson et
al., 2006; Vaziri-Pashkam & Cavanagh, 2008) and the
effect of luminance we find here are all consistent with a
simple, biologically plausible two-mechanism ratio
model.

Conclusions

Bayesian approaches to characterizing brain func-
tion have become very popular in recent years and have
been used to model a range of processes such as
perceived speed under smooth pursuit, sensorimotor
learning and tactile perception (Freeman et al., 2010;
Goldreich & Tong, 2013; Körding & Wolpert, 2004).
Indeed, the impressive range of studies proposing a
Bayesian characterization of sensory processes (Geisler
& Kersten, 2002; Langer & Bülthoff, 2001) led Körding
and Wolpert (2006) to suggest that ‘‘the Bayesian
process may be a fundamental element of sensory
processing’’ (p. 321). Among the evidence cited by
Körding and Wolpert to support this suggestion was
Stocker and Simoncelli’s (2006) Bayesian model of
speed encoding. However, their model (like all pure
Bayesian models) fails to predict the reversal in
perceptual bias found at higher speeds in the Thomp-
son Effect and is inconsistent with both previous work
that has manipulated luminance (e.g., Hammett et al.,
2007; Vaziri-Pashkam & Cavanagh, 2008) and the
results presented here.

It is important to stress that our data may be
consistent with a range of models of speed encoding
other than ratio models, and it is not our intention to
make any strong claim in support of ratio models upon
the basis of our results. Indeed, it is appropriate to
acknowledge that the basis of proposed ratio models is
itself ad hoc in nature and rests upon assumptions
regarding gain changes with luminance that rely upon
relatively sparse evidence. However, the evidence we
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report here, and previous reports of perceptual biases in
speed perception, are not readily reconciled with
Bayesian accounts of speed encoding in the human
brain.

Keywords: speed, contrast, luminance, Bayesian,
ratio, model
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Footnote

1 Not all studies (e.g., Hawken, Gegenfurtner &
Tang, 1994; Stone & Thompson, 1992) find evidence of
a reversal (i.e., an over-estimation) at high speed, most
likely due to disparate stimulus parameters (see
Hammett & Larsson, 2012).
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Appendix

The simulation in Figure 1 used the temporal filters
originally proposed by Smith and Edgar (1994) for
their close fit to behavioral data. They take the form m

¼ 300e�0.5(x � 10)/(24 þ x) and p ¼ 15 000e�0:5ðx�50Þ2=ð17Þ

where m and p define the sensitivity of the ‘‘fast’’ and
‘‘slow’’ mechanisms. The simulation assumes that their
responses (M and P) are determined by a modified
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Naka-Rushton relation such that sensitivity at any
given temporal frequency, w, and contrast, c, is given

by P(x,c)¼ c:pðxÞ
jcj:pðxÞþap

andM(x,c)¼ c:mðxÞ
jcj:mðxÞþam=x

where am
and ap are the semisaturation constants. In the high
luminance simulation these values were set to 0.13 and
1.79 which is consistent with the known properties of
M and P cells (Blakemore & Vital-Durand, 1986;
Derrington & Lennie, 1984; Hicks, Lee, & Vidyasagar,
1983; Kaplan, Lee, & Shapley, 1990; Schiller & Colby,

1983). The value of amvaried inversely as a function of
frequency such that the contrast response became more
compressive at higher frequencies, consistent with
physiological reports (Kaplan & Shapley, 1986). In the
low luminance condition the values were set to 0.15 and
8.95 in order to simulate a large reduction in gain of the
P mechanism (Purpura et al., 1988). Speed, S, at each
contrast, c, was calculated as the ratio of the two

mechanisms’ responses such that S(x,c)¼ Mðx;cÞ
Pðx;cÞ .
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