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Abstract 9 

Ocean Drilling Program Site 658 lies under the North African summer dust plume, and ought to be 10 

an ideal target for optically stimulated luminescence (OSL) dating, since the main clastic input is 11 

far-travelled Saharan dust. However, OSL ages for coarse silt-sized quartz (40-63 µm) are 12 

systematically lower than independent age estimates when dose rates are calculated using a model 13 

which assumes detrital 238U, 232Th and 40K and excess 230Th and 231Pa. Ages which are in good 14 

agreement with independent age control are obtained from the coarse silt samples when a correction 15 

for authigenic uranium uptake is incorporated into the dose rate model. Authigenic uranium uptake 16 

occurs under reducing conditions, which are common at the sediment-water interface, and some 17 

degree of authigenic uranium correction may be required for most marine sediments. Using this 18 

revised dose rate model, ages produced using fine silt-sized quartz (4-11 µm) are up to 100% older 19 

than both independent and coarse silt ages. In addition, the fine silt ages show a consistent pattern 20 

of age decrease with depth over 1.5 m of core. 230Th data from Site 658 indicate that this site 21 

receives 3 times more sediment laterally than vertically. It is concluded that the fine silt at Site 658 22 

contains a substantial reworked component, making it unsuitable for dating. Conversely the coarse 23 

silt fraction, which settles through water at ~40 times the rate of fine silt, appears to be derived from 24 

dust input over the site at the time of deposition. Since prominent nepheloid (cloudy) layers occur in 25 
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various deep ocean basins, and the material suspended in these layers often consists of reworked 26 

fine silt-sized sediments, coarser material should be dated where possible.         27 

 28 
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 30 

1. Introduction 31 

Marine sediments are one of the most widely exploited archives of palaeoenvironmental information. 32 

At present, most chronologies are constructed by tuning marine proxies for global ice volume (δ18O) 33 

to the well understood variations in the Earth’s orbit (Lisiecki and Raymo, 2005), by the identification 34 

of event horizons (e.g. Sikes et al., 2000) and/or by radiocarbon dating. However, dating deep-sea 35 

sediments remains problematic. Chronologies based on δ18O records are dependent upon the accuracy 36 

of the climate change model assumed and necessarily obscure information regarding phasing of the 37 

events observed. Event horizons are only useful where their occurrence is reasonably frequent in the 38 

time period of interest. In addition, both techniques require approximately continuous sedimentation, 39 

and the absence of sediment reworking. Whilst a tremendously powerful geochronological tool, 40 

Accelerator Mass Spectrometry (AMS) radiocarbon dating is limited to the last 50-60,000 years and 41 

is subject to uncertainties due to variation in the atmospheric 14C concentrations and the marine 42 

carbon reservoir. The latter effect may introduce a substantial and temporally variable systematic 43 

error to a chronology (Sikes et al., 2000). In addition, chronologies can only be constructed using 44 

radiocarbon or the δ18O record where organic carbonates are preserved, which is not the case in areas 45 

with high clastic sedimentation rates (Sugisaki et al., 2010), or at sites below the carbonate 46 

compensation depth. These limitations to well established dating techniques have led several authors 47 

(Berger, 2006; Jakobsson et al., 2003; Stokes et al., 2003) to advocate the use of optically stimulated 48 

luminescence (OSL) methods to provide age control for deep-sea sediments. 49 

  50 



Although marine sediments were first dated using thermoluminescence techniques in 1979 (Wintle 51 

and Huntley, 1979) and using OSL techniques in 2003 (Jakobsson et al., 2003; Stokes et al., 2003), 52 

there are relatively few published luminescence chronologies for open ocean sediments. This absence 53 

is possibly explained by the complex dose rate measurements and calculations required, due to the 54 

presence of uranium-series disequilibrium in many deep sea sediments (Wintle and Huntley, 1979). 55 

For many terrestrial sediments it is valid to assume that the 238U, 235U and 232Th decay series are in 56 

secular equilibrium. Consequently, dose rates due to these decay series are effectively invariant over 57 

Quaternary timescales. This remains true for 232Th in marine sediments since thorium is highly 58 

insoluble and is incorporated into marine sediments, in equilibrium with its daughters, within the 59 

detrital component.  Conversely, the geochemistry of both uranium decay series makes it likely that 60 

they will be in disequilibrium in late Quaternary ocean sediments. In the oxidising conditions found 61 

in most seawater, uranium is highly soluble. However, long-lived isotopes in both uranium decay 62 

series (230Th in the 238U series and 231Pa in the 235U series) are insoluble and are removed from the 63 

water column by sorbtion to the surface of settling particles (Henderson and Anderson, 2003) 64 

meaning that they are initially found in excess (relative to isotopes earlier in the relevant decay series) 65 

in many marine sediments. These isotopes have half-lives which are similar to the timescales over 66 

which OSL dating is applicable (75 and 32.8 ka for 230Th and 231Pa respectively) causing the dose 67 

rate due to these isotopes and their decay products to evolve as the sediment ages. Consequently, OSL 68 

dating of marine sediments is complicated by the need to demonstrate the absence of excess activity 69 

in the uranium decay series (Jakobsson et al., 2003; Sugisaki et al., 2010; Sugisaki et al., 2012) or to 70 

quantify excess activity and incorporate the resulting time-dependant dose rate changes into age 71 

calculations (Stokes et al., 2003; Wintle and Huntley, 1979). This study compares AMS 14C and 72 

quartz OSL chronologies produced for a core from Ocean Drilling Program (ODP) Site 658.  73 

 74 

2 Materials and methods 75 



Core 658B was the second of three cores recovered from a water depth of 2,263 m off Cap Blanc, 76 

Mauritania (20°45’N, 18°35’W) during ODP Leg 108 (Ruddiman et al., 1988). Trade winds cause 77 

strong upwelling over the site, leading to high surface productivity and high biogenic particle fluxes 78 

to the seafloor. Biogenic carbonate comprises 40-60% by mass of the sediment, with the remainder 79 

being terrigenous dust (deMenocal et al., 2000). The high terrigenous dust flux is due to the site’s 80 

location beneath the axis of the summer African dust plume (Figure 1). Core 658B is an ideal target 81 

for testing OSL dating in the marine realm since: (1) It has a high accumulation rate (c.18 cm/ka, 82 

deMenocal et al., 2000); (2) Terrigenous dust input should provide a substantial well-bleached 83 

quartz component; (3) Neighbouring core 658C has a well dated dust flux record covering the last 84 

22 ka (deMenocal et al., 2000) and (4) the excess 230Th (230Thxs) record for core Core 658C (Adkins 85 

et al., 2006) may be used to calculate excess activity in Core 658B. 86 

 87 

Independent chronological data for Core 658B were obtained from two sources. Firstly, 18 samples 88 

from core depths ranging from ~2.3-10.9 m (effectively the upper ~8.5 m of core since the 89 

uppermost 2.3 m appears to replicate underlying material) were dated by AMS 14C on 150-250 µm  90 

Globigerinoides bulloides tests. Fifteen of these AMS 14C measurements yielded finite ages (Table 91 

S1). Secondly, dated stratigraphic markers in Core 658C (deMenocal et al., 2000) and the LR04 92 

benthic δ18O stack (Lisiecki and Raymo, 2005) were identified in Core 658B (Table S2). Both 93 

approaches yield a similar age-depth relationship, though the Core 658B AMS 14C ages show age 94 

inversions especially below 7 m, towards the upper limit of the technique (Figure 2). There is no 95 

apparent lithological change at 7 m, and it is possible that the age inversions are due to reworking of 96 

foraminiferal tests or variable reservoir effects.   97 

 98 

2.1 Equivalent dose determination 99 

Samples were obtained from a 66 mm diameter split core at the ODP East Coast Repository, 100 

Lamont-Doherty Earth Observatory, USA. Since collection in 1986, the core had been refrigerated 101 



and kept moist via damp sponges inserted at the ends of each core section, but no attempt had been 102 

made to shield the core from light. Paired samples were taken every ~25 cm through the uppermost 103 

11 m of the core by inserting short sections of 20 mm diameter opaque tubing. Under subdued 104 

orange lighting the sediment was extruded and the outer ~8 mm was discarded to avoid core barrel 105 

smearing. The light exposed upper ~8 mm was removed and used for carbonate content and dose 106 

rate analysis. The middle ~8 mm of the sample was dispersed in deionised water and sieved at 150 107 

µm, with the >150 fraction consisting of foraminiferal tests, and the <150 µm fraction being used 108 

for dating. The dating fraction was sequentially treated with HCl, H2O2 and H2SiF6 to remove 109 

carbonate, organic matter and feldspars respectively. The resulting mixture was separated into fine 110 

silt (4-11 µm) and coarse silt (40-63 µm where present) fractions via Stokes settling and wet sieving 111 

respectively. 112 

 113 

All OSL measurements presented in this study were carried out using a Risø TL/OSL-DA-15 114 

automated dating system (Bøtter-Jensen et al., 2000). Optical stimulation of single aliquots was 115 

carried out using a blue (470 ± 30 nm) light emitting diode (LED) array with a nominal power density 116 

of 18 mW/cm2. Infra-red (IR) stimulation was carried out using an IR (870 nm) laser diode array. 117 

OSL was measured using an Electron Tubes Ltd 9235QB photomultiplier tube with 7.5 mm of Hoya 118 

U-340 filter interposed between the sample and photomultiplier. Irradiation was carried out using a 119 

40 mCi 90Sr/90Y beta source, calibrated relative to the National Physical Laboratory, Teddington 120 

Hotspot 800 60Co γ-source (Armitage and Bailey, 2005). Single-aliquot equivalent doses (De) were 121 

determined using the single-aliquot regenerative-dose (SAR) method (Galbraith et al., 1999; Murray 122 

and Wintle, 2000). OSL signals were measured at 125 °C and growth curves were fitted using a 123 

saturating exponential function. No dependence of De upon preheating regime was found (Figure S1) 124 

and a preheating regime of 260 °C, 10 s for PH1 (the pre-heat prior to measurement of Ln or Lx) and 125 

220 °C, 10 s for PH2 (the pre-heat prior to measurement of Tn or Tx) was adopted for subsequent 126 

measurements. Dose recovery experiments (Roberts et al., 1999; Wallinga et al., 2000) were 127 



performed on the coarse silt fractions of samples 11B, 19A and 27A (De = 23, 44 and 77 Gy 128 

respectively) using this preheating regime, yielding dose recovery ratios of 0.99 ± 0.01, 0.98 ± 0.01 129 

and 0.98 ± 0.01 respectively. When calculating De, aliquots were rejected where the recycling ratio 130 

(Murray and Wintle, 2000) or IR depletion ratio (Duller, 2003) differed from unity by more than two 131 

standard deviations, or where the sensitivity corrected luminescence intensity in response to a 0 Gy 132 

regeneration dose exceeded 5% of the sensitivity corrected natural luminescence intensity (Table S3). 133 

 134 

2.2 Dose rate detremination 135 

The environmental dose rate for samples from core 658B consists of alpha, beta and gamma 136 

components, since the overlying water completely shields the ocean floor sediments from cosmic 137 

rays. 238U and 232Th and bulk K concentrations were measured using ICP-MS (Table S4). Burial 138 

230Thxs for all samples was assumed to be the mean value (36.6±9.3 Bq/kg) measured by Adkins et 139 

al. (2006) for Core 658C over the time period 2-18.5 ka. Adkins et al. (2006) determined 230Thxs 140 

using a VG Plasma Quad 2 ICP-MS, reporting <1% counting statistics errors and 0.17 Bq/kg 141 

procedural blanks.  Initial 231Paxs (3.38±0.87 Bq/kg) was calculated using the 0.093 production 142 

activity ratio of 231Pa/230Th (Henderson and Anderson, 2003). Time independent dose rates were 143 

calculated from 238U and 232Th and K concentrations, assuming equilibrium in both decay series, 144 

using the standard conversion factors (Adamiec and Aitken, 1998). The additional time dependant 145 

dose contribution due to 230Thxs and 231Paxs, and the final age calculation, were performed using the 146 

method outlined by Stokes et al. (2003). Both coarse and fine silt dose rates were corrected for 147 

alpha efficiency (0.04±0.02), alpha and beta attenuation and water content (Aitken, 1985). Water 148 

contents were taken from the relevant ODP initial report (Ruddiman et al., 1988). The above dose 149 

rate calculation is referred to as the “Marinexs” dose rate model hereafter. Dose rates and ages 150 

calculated using the Marinexs model are presented in Table S5.  151 

 152 

3 Results and discussion 153 



Coarse silt OSL ages calculated using the Marinexs model are shown alongside the independent 154 

chronological data in Figure 2. It is clear that the coarse silt OSL ages underestimate the 155 

independent ages by a considerable amount. 156 

 157 

Whilst uranium forms soluble species in oxidising conditions, under suboxic or anoxic conditions it 158 

is reduced to its insoluble tetravalent state (Henderson and Anderson, 2003). This situation 159 

frequently occurs at or near the sediment-water interface, resulting in the incorporation of 160 

authigenic uranium in marine sediments. Especially high authigenic uranium concentrations occur 161 

where high surface productivity leads to a high organic matter flux to the sea bed, since this 162 

material consumes oxygen during its decay (Henderson and Anderson, 2003). Consequently it 163 

might be expected that sediments from ODP site 658 will have a high authigenic uranium content. 164 

Authigenic uranium isotopes (238Uauth and 234Uauth) are incorporated into marine sediment at the 165 

seawater  activity ratio of 234U/238U = 1.146 (Robinson et al., 2004), and without any supported 166 

decay products. For dating purposes, 238Uauth instantly attains equilibrium with the next two decay 167 

products (234Th and 234Pa) since neither is long-lived. Conversely, 234U has a half-life of 245 ka and 168 

hence will not approach equilibrium with its parent (234Pa) over the applicable age range of quartz 169 

OSL dating. However, since authigenic uranium is incorporated into the sediment at an activity 170 

ratio of 234U/238U of 1.146, 234Uauth may be treated as being in equilibrium with 238Uauth for the 171 

purposes of estimating dose rates. The slight excess activity of 234Uauth over 238Uauth has a negligible 172 

impact upon dose rates since the decay of 234U contributes a small proportion of the dose rate due to 173 

the 238U decay series (11% of alpha, 0.5% of beta and 0.1% of gamma). Since both 234U and its 174 

decay product 230Th are long-lived (half-lives of 245 and 75 ka respectively), the ingrowth of 175 

234Uauth decay products is negligible over the 0-50 ka timeframe covered by this study. 176 

Consequently, in this study the dose rate due to authigenic uranium may be approximated by 177 

assuming secular equilibrium from 238Uauth-
234Uauth, and no dose from the decay products of 234Uauth. 178 

Since most of the alpha, beta and gamma energy in the 238U decay series is emitted at or below 234U 179 



(Stokes et al., 2003), the dose rate must be corrected to account for authigenic uranium uptake 180 

where it occurs. 181 

 182 

The authigenic uranium content of a marine sediment may be calculated from the measured 238U 183 

and 232Th activities (or the activities calculated from the measured concentrations), since the 232Th 184 

is entirely detrital, and the 238U/232Th activity ratio of crustal rocks and pelagic marine sediments is 185 

0.8±0.2 (Anderson et al., 1989). Equation 1 was used to calculate authigenic uranium contents of 186 

Core 658B samples 187 

 188 

Uauth = 238Um-0.8*232Thm         (Eq. 1) 189 

 190 

where 238Um and 232Thm are the measured activities of 238U and 232Th respectively (Yu et al., 1999). 191 

This calculation was performed for all samples in this study (n=29), adding a 20% uncertainty to the 192 

Uauth activity, and the mean 238Uauth/
238Um ratio was 0.77±0.18. In the Marinexs dose rate model, the 193 

entire detrital 238U decay series is assumed to be in equilibrium, which will result in an overestimate 194 

of the true dose rate due to uranium where authigenic uranium uptake has occurred. Ages were 195 

recalculated using the revised “Marinexs+auth” dose rate model, in which the dose rate due to 238Uauth 196 

is calculated assuming equilibrium to 234U, with no dose from the decay products of 234Uauth, and the 197 

detrital 238U (238Um - 238Uauth) decay series is assumed to be in equilibrium throughout. In the 198 

Marinexs+auth dose rate model, all other components are calculated as in the Marinexs dose rate 199 

model. Coarse silt OSL ages calculated using the Marinexs+auth dose rate model (Table S6) are in 200 

good agreement with the independent chronological data (Figure 3a), indicating that the age 201 

underestimation observed when using the Marinexs dose rate model is caused by the failure of this 202 

model to account for authigenic uranium uptake. The mean ratio of Marinexs/ Marinexs+auth dose rate 203 

ages is 0.73±0.05.  204 

 205 



Ages were calculated, using the Marinexs+auth dose rate model, for the 16 samples for which 206 

equivalent doses had been measured on fine quartz silt (Table S7, Figure 3b). The fine silt ages do 207 

not increase monotonically with depth, nor do they agree with the independent chronological data 208 

or the paired coarse silt ages where available (~4-6.5 m). All fine silt OSL ages are older than 209 

corresponding coarse silt OSL ages and independent age control. Together these discrepancies are 210 

taken to indicate that the dose rate model is correct, but that the fine silt equivalent doses do not 211 

represent the dose experienced since the deposition of these particles at ODP Site 658. It has been 212 

suggested that in many marine contexts coarse silt might be preferential to fine silt for dating since 213 

90% of grains within the nepheloid (cloudy) layer in non-polar deep oceans, which results from 214 

sediment reworking, consist of grains with a diameter of 0.5-8.5 µm (Berger, 2006). Also, the 215 

230Thxs record from ODP core 658C indicates that over the last 20 ka, this site has received 3 times 216 

more sediment laterally than vertically, though this ratio is quite variable (Adkins et al., 2006). 217 

Since 50 µm grains settle through water at ~40 times the rate of 8 µm grains, the coarse silt fraction 218 

is more likely to be incorporated via sea surface aeolian input immediately prior to deposition than 219 

is the fine silt fraction. Consequently, the discrepancy between coarse silt and fine silt OSL ages at 220 

site 658B is attributed to ocean floor reworking, without exposure to sunlight, of the latter.     221 

 222 

4 Conclusions 223 

Disequilibrium in the 238U and 235U decay series due to precipitation of insoluble isotopes from the 224 

water column is a well-known phenomenon in marine sediments (Wintle and Huntley, 1979). With 225 

appropriate 230Thxs measurements, the effect of this disequilibrium on dose rates can be accounted 226 

for  (Stokes et al., 2003). At ODP Site 658, authigenic uranium uptake represents an important 227 

additional source of disequilibrium. A simple dose rate correction is proposed, which appears 228 

suitable for sediments which are much younger than the half-life of 234U. However, more complex 229 

dose rate corrections will be required in older samples where significant ingrowth of 234Uauth decay 230 

products has occurred. It is probable that authigenic uranium uptake in marine sediments could 231 



disguise quite large 230Thxs activities where secular equilibrium is diagnosed on the basis of 232 

226Ra/238U activity ratios determined using high-resolution gamma spectrometry (e.g. Jakobsson et 233 

al., 2003). Consequently, it is prudent to calculate authigenic uranium uptake for all samples when 234 

dating open ocean sediments.  235 

 236 

Coarse silt (40-63 µm) OSL ages from site 658B are internally consistent and in good agreement 237 

with independent age control. Conversely, fine silt (4-11 µm) yielded older ages for all samples, 238 

and dates did not increase monotonically with depth. It appears likely that seafloor reworking of 239 

fine silt caused these ages to be unrepresentative of the timing of sediment formation at the sampled 240 

position. This result potentially limits the applicability of OSL dating to marine sediments, since the 241 

coarse silt component at site 658B results from its location under the North African summer dust 242 

plume. However, since the deep ocean nepheloid layer contains little material >10 µm, it is possible 243 

that accurate ages for sediment formation could be obtained from silts only slightly coarser than the 244 

4-11 µm fraction measured here.  245 

 246 
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Figures  254 

 255 

 256 

Figure 1: Location of ODP Site 658 under the summer African dust plume (grey). Redrawn from 257 

deMenocal et al. (2000). 258 

  259 



 260 

Figure 2: Chronological models for Core 658B. Filled circles represent independent age estimates 261 

determined using AMS 14C on foraminifera from Core 658B and the solid line represents an age-262 

depth relationship determined by matching stratigraphic events to external dated stratigraphies, 263 

assuming constant sedimentation between these tie points. The dashed line represents the age-depth 264 

relationship beyond 18 ka, assuming that the 22 cm/ka sedimentation rate observed between 2.37 265 

and 5.15 m core depth continues. Open circles represent coarse silt OSL ages calculated using the 266 

Marinexs dose rate model. 267 

 268 



 

 

Figure 3: Independent age estimates and OSL ages for Core 658B. a) Independent age estimates and 269 

coarse silt OSL ages calculated using the Marinexs+auth dose rate model. b) Coarse silt and fine silt 270 

OSL ages calculated using the Marinexs+auth dose rate model, plotted alongside the independent age-271 

depth model. Core 658B AMS 14C ages have been removed from panel b for clarity. 272 
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