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ABSTRACT: Pillar[n]arenes are supramolecular assemblies that can
perform a range of technologically important molecular separations which
are enabled by their molecular flexibility. Here, we probe dynamical
behavior by performing a range of variable-temperature solid-state NMR
experiments on microcrystalline perethylated pillar[n]arene (n = 5, 6) and
the corresponding three pillar[6]arene xylene adducts in the 100−350 K
range. This was achieved either by measuring site-selective motional
averaged 13C 1H heteronuclear dipolar couplings and subsequently
accessing order parameters or by determining 1H and 13C spin−lattice
relaxation times and extracting correlation times based on dipolar and/or
chemical shift anisotropy relaxation mechanisms. We demonstrate fast
motional regimes at room temperature and highlight a significant
difference in dynamics between the core of the pillar[n]arenes, the
protruding flexible ethoxy groups, and the adsorbed xylene guest. Additionally, unexpected and sizable 13C 1H heteronuclear dipolar
couplings for a quaternary carbon were observed for p-xylene adsorbed in pillar[6]arene only, indicating a strong host−guest
interaction and establishing the p-xylene location inside the host, confirming structural refinements.

1. INTRODUCTION

Host−guest chemistry is an important concept in the field of
supramolecular chemistry that is driven by the interactions of
molecular assemblies or ions via noncovalent interactions.1

These interactions play a vital role in the design of advanced
functional materials with exciting physical properties and
applications in processes, such as adsorption, catalysis, energy
storage, and molecular separations. Consequently, this area has
become of increasing importance over the past few decades,2−5

and a wide range of supramolecular assemblies that adapt to
guests6 has been discovered thanks to a large variety of tunable
structural motifs and properties (e.g., solubility, functionality,
and molecular flexibility). Among those, pillar[n]arenes (n =
5−15) have emerged as a novel class of easily functionalized
supramolecular macrocycles7−10 whose structure consists of
substituted phenolic moieties repeated n-times and connected
in the para position by methylene linkages (Figure 1). For
most values of n (except n = 7), the resulting architecture is a
symmetrical cylindrical structure (side view, Figure 1) leading
to a symmetrical polygon (top view) that yields a single
pentagonal and hexagonal cavity for n = 5 and 6, respectively,
and two pentagonal and/or hexagonal cavities for n > 7. The
cavity plays an important role in hosting appropriately sized
guest molecules for capture/molecular separation11−16 and
controlled delivery systems.17,18

Pillar[n]arenes (n = 5,6) have found the greatest interest,
mostly due to their relatively small cavity sizes that enable
them to host small molecules,10 combined with substituted
alkyl and branched chains that strongly affect the host−guest

properties.19−22 Perethylated pillar[n]arene (n = 5, EtP5; n =
6, EtP6) are examples of these substituted pillar[n]arenes that
contain ethoxy groups (Figure 1a,b) with EtP6 existing as two
polymorphs, a metastable EtP6-α phase and a crystalline EtP6-
β phase.23 Due to its large conformational flexibility, EtP6 has
been found to adsorb a number of guest molecules,14,23 and we
have recently shown that EtP6-β adapts during adsorption of
an o-xylene (oX)/m-xylene (mX)/p-xylene (pX) isomer
mixture to efficiently capture pX with a high selectivity of
90% to form pX@EtP6 (Figure 1c),23 while mX@EtP6
(Figure 1d) and oX@EtP6 (Figure 1e) are obtained by
adsorption of the respective xylene isomer into EtP6-β. This is
a step forward for the energy efficient separation of the xylene
isomers, which are widely used as chemical feedstocks.23,24

One important criterion for these supramolecular structures
is their adaptivity and flexibility that dictates the adsorption of
guest molecules in the cavity space and which are not yet
understood. This adaptive behavior is not trivial to probe,
especially in the solid state, given the requirements to access
experimentally measurable observables that depend on
dynamics and which need to be determined at the resolution
of each local chemical environment. Solid-state nuclear
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magnetic resonance (NMR), often in conjunction with
computational methods such as crystal structure prediction
(CSP) and diffraction-based approaches, provides detailed,
element-specific, and structural information on the atomic
scale and plays an important role in supramolecular
assemblies.25−31 For example, we took advantage of the very
high spectral resolution of the 13C NMR spectra of EtP5-α,
EtP6-α and EtP6-β to support the conformational energy
landscape exploration and identify the number of different
carbons in the asymmetric unit cell.23 NMR is also well suited
to probe site selective molecular flexibility given its sensitivity
to molecular motion over wide time scales from fast processes
(subnanoseconds via relaxation measurements) to slower
dynamics (milliseconds from line shape analysis), offering a
unique access to the qualitative and quantitative description of
motion.28,32

Recent 2H NMR work has focused on the molecular
dynamics on n-hexane-d14 in pillar[5]arene that showed that
the molecular diversity gave rise to different patterns of guest
uptake and release.33 Liquid state NMR has previously been
used to investigate conformational properties34−37 and assess
p-phenylene unit rotation in pillar[n]arenes, but little is known
regarding the adaptive behavior of these materials in the solid
state.
Here, we determine the dynamics of both guest-free EtP5-α

and EtP6-β and the three xylene-adsorbed perethylated
pillar[6]arenes over a range of time scale by probing site
selective 13C 1H heteronuclear dipolar couplings and accessing
1H and 13C correlation times as a function of temperature
(383−100 K). We find that the flexibility of the protruding
OCH2 groups in the guest-free pillar[n]arenes is reduced when
there are fewer phenolic moieties, or at temperatures below

298 K, as well as by adsorption of xylene isomers; by contrast,
other carbon groups have largely similar dynamics over the
temperature range studied. We identify intermolecular 13C 1H
dipolar couplings at low temperatures in pX@EtP6 which are
absent on both oX@EtP6 and mX@EtP6, which provides
evidence for the location of xylenes in the EtP6 architecture
and highlights the host−guest interactions. Finally, we exploit
variable temperature spin−lattice relaxation measurements to
access dynamics in the MHz regime, which confirm the
flexibility of the extruding ethoxy groups of these pillar[n]-
arenes as opposed to the carbon atoms located in the ring core.

2. EXPERIMENTAL SECTION

2.1. Materials Synthesis. Guest-free EtP5-α38 and EtP6-
β38 and the three xylene-adsorbed perethylated pillar[6]-
arenes23 were synthesized using established literature proce-
dures (Scheme S1).38 Prior to adsorption, powder X-ray
diffraction (PXRD, Figure S1) and NMR measurements, EtP5-
α and EtP6-β were dried and heated under vacuum at a
pressure of 10−3 mbar to 433 K for 2 h to ensure no solvation
and that the correct phases were obtained. pX@EtP6 and
mX@EtP6 were synthesized using the xylene vapor adsorption
method, whereas oX@EtP6 was prepared via solvent
evaporation with adsorption time longer than 12 h to ensure
the presence of one molecule of xylene per EtP6. Differential
scanning calorimetry (DSC) data on EtP6-β identifies a phase
change at 339 K (Figure S2). Thermogravimetric analysis
(TGA) data on pX@EtP6,23 mX@EtP6 (Figure S3), and oX@
EtP6 (Figure S4), combined with time-dependent sorption
data from 1H solution-state NMR spectroscopy spectra of
dissolved crystals and single-crystal X-ray diffraction data on

Figure 1. Crystal structures of (a) perethylated pillar[5]arene EtP5-α (obtained at 240 K), (b) perethylated pillar[6]arene EtP6-β (298 K), (c) p-
xylene in EtP6 pX@EtP6 (240 K), (d) m-xylene in EtP6 mX@EtP6 (298 K), and (e) o-xylene in EtP6 oX@EtP6 (100 K).23 The side and top
views are shown on the first and second rows. The pillar[n]arene host and xylene guests are denoted by “ball and stick” and “space filling” models,
respectively, with carbons shown in gray, oxygens in red, and protons omitted for clarity in the ball and stick model while shown in white in the
space-filling model. The two left panels of the third row provide the chemical structures of both EtP5-α and EtP6-β using color coding for different
carbon environments (CH3, orange; CH2, light blue; OCH2, green; CH, pink; CH2C

IV, yellow; OCIV, gray) consistent with those used throughout
the NMR spectra assignments. The three right panels of the third row show a magnified view of the through space interaction between the p-xylene
guest and EtP6 in pX@EtP6 (yellow circle) while no interaction is observed for mX@EtP6 and oX@EtP6 (see text for details).
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pX@EtP6, mX@EtP6, and oX@EtP6,23 establish the
stoichiometry of one xylene adsorbed per EtP6.
2.2. NMR Experiments. The 1H and 13C solid-state NMR

experiments at an external magnetic field B0 = 9.4 T were
performed on a Bruker Avance III HD NMR spectrometer
equipped with a 4 mm HXY triple-resonance magic angle
spinning (MAS) probe in double-resonance mode tuned to
Larmor frequencies of ν0(

1H) = 400.13 MHz and ν0(
13C) =

100.62 MHz. The B0 = 14.1 T NMR experiments were
performed on a 14.1 T Avance III DNP NMR spectrometer
equipped with a low temperature 3.2 mm HXY triple-
resonance MAS probe39 in double-resonance mode tuned to
ν0(

1H) = 600.25 MHz and ν0(
13C) = 150.93 MHz. All

experiments were obtained under MAS with the sample
spinning at νr = 12.5 kHz, unless otherwise specified. 1H pulses
and SPINAL-64 heteronuclear decoupling40 during 13C
acquisition were performed at a radio frequency (rf) field
amplitude of 83 kHz for all samples except the room
temperature cross-polarization (CP) experiments on the
guest-free samples where it was performed at 96 kHz. 13C
pulses were performed at a rf field of 60 and 70 kHz at 9.4 and
14.1 T, respectively. For all data obtained at 14.1 T, a
presaturation block consisting of 100 1H pulses separated by 1
ms was used (all pulse sequences are described in Figure S5
and Section S5 of the SI). For variable-temperature experi-
ments, zirconia drive caps were used at 9.4 T and Vespel caps
at 14.1 T. Additional 1H one pulse quantitative spectra were
obtained at B0 = 20 T on a Bruker Avance III NMR
spectrometer and under MAS at νr = 60 kHz using a 1.3 mm
HXY triple-resonance MAS probe in double resonance mode
tuned to a Larmor freuqency of ν0(

1H) = 850.13 MHz; spectra
were acquired with a rf field amplitude of 150 kHz.
In the variable-temperature CP experiments, the CP steps

were performed with a 13C rf field of 41 kHz (at 9.4 T) and 70
kHz (at 14.1 T) while the 1H rf field amplitude was ramped to
obtain maximum signal at approximately 65 kHz (at 9.4 T)
and between 70−96 kHz (at 14.1 T), dependent on samples
and temperatures. An optimized contact time of 1.5−3.0 ms
was used. Typically, 13C CP experiments were accumulated
with 2048 scans (at 9.4 T) and 32−2048 scans (at 14.1 T),
and used recycle delays of 1.3 × 1H T1

41 (with T1 being the
spin−lattice relaxation times measured as given below) that
corresponds to the maximum signal-to-noise per unit time.
Note that although 13C CP MAS experiments are not
quantitative, only 13C integration within a chemically distinct
carbon environment is given as its similar nature allows
comparison of the number of carbons to be estimated.
Variable temperature 1H and 13C spin−lattice relaxation

times T1’s were obtained with the saturation recovery and T1
Torchia42 pulse programs, respectively. In the saturation
recovery experiment, the magnetization is saturated by a
presaturation block consisting of 100 1H pulses separated by
10 ms at 9.4 T or 1 ms at 14.1 T, followed by magnetization
buildup during a variable τ delay and NMR detection. In the
T1 Torchia sequence,42 an initial 13C CP step creates 13C
magnetization which then decays during a variable delay τ and
13C detection is achieved using a two-step phase cycle to
account for the direct (unenhanced) 13C Boltzmann value
rather than CP enhanced values. The data obtained via
integrated intensities were fitted to stretch exponential
functions of the form of 1 − exp[−(τ/T1)

α] and exp[−((τ/
T1)

β] for the 1H and 13C T1 data, respectively, where α
(between 0.75 and 0.96) and β (between 0.60 and 0.88) are

the respective stretch exponential factors. Errors associated
from the T1 values are quoted to a 95% confidence level and
are smaller than the symbol sizes in all figures.
Variable-temperature 2D proton detected local field (PDLF)

spectra correlating 13C NMR spectra in the direct frequency
dimension ω2 with 13C 1H dipolar coupling spectra in the
indirect ω1 dimension were obtained using the windowed43

sequence (wPDLF)44 and R-type recoupling blocks.45 The
sequence starts with the reintroduction of the heteronuclear
13C 1H dipolar coupling under MAS during the rotor
synchronized evolution period t1 using the symmetry-based
R182

5 1H recoupling block46 which was optimized for maximum
signal around the 1H rf field amplitude of approximately 9 × νr
(112.5 kHz). R182

5 also removes the homonuclear 1H 1H
dipolar coupling46 and the 180° phase shift in the recoupling
block refocuses the (small) 1H chemical shift anisotropy
(CSA), while the synchronized 180° 13C pulse applied in the
middle of t1 prevents the same refocusing from occurring for
the heteronuclear 13C 1H dipolar coupling and refocuses the
13C chemical shift. The 13C CSA is averaged out over two rotor
periods. The 13C magnetization is therefore only modulated by
the 13C 1H dipolar coupling in t1 that yields a

13C 1H dipolar
coupling spectra in ω1. Polarization transfer to 13C is
subsequently achieved using the rotor synchronized PRinciples
of Echo Shifting using a Train of Observations (PRESTO)47

pulse sequence optimized for maximum signal for the
protonated resonances to a length of 16

9
× τr (142 μs),

where τr is the rotor period (80 μs), and by varying the
recoupling length of the R181

7 1H recoupling block (which is
also optimized to a similar 1H rf field of approximately 9 x νr
(112.5 kHz)). PRESTO is preferred to CP for polarization
transfer as 1H spin diffusion in the latter results in an increase
of the signal intensity for the zero frequency signal.44

Following Fourier transformation in the F1 dimension, an
effective dipolar coupling constant κRdCH (with κR the scaling
factor of the wPDLF sequence and dCH the dipolar coupling
constant, see SI Section S6 including Table S1 and Figure S6
for the experimental determination of κR) is obtained in the ω1
frequency dimension.44,48,49 The (scaled) 13C 1H dipolar
coupling spectra are then extracted at each 13C isotropic
chemical resonances (δiso) and the dipolar coupling values are
obtained from the distance between the outer singularities to
yield site-specific motional averaged dipolar coupling ⟨dCH⟩
values. Note that the small variation of these values obtained
from each carbon resonance for a particular carbon subgroup
(an example of which is given in Figure S7 for the CH3
resonance of EtP6-β) has been used to provide estimated
errors and we have chosen to give a single averaged ⟨dCH⟩
value for each carbon subgroup.
Static dipolar coupling constants dCH were calculated from

eq 1 and carbon proton bond lengths. These were obtained
from computed CSP23 data for the EtP5-α and EtP6-β
conformers or experimental low temperature high resolution
powder neutron diffraction data from o-xylene50 and m-, p-
xylenes51 crystal structures for the xylenes.
Temperature calibrations were preformed prior to NMR

data acquisition using either the 207Pb chemical shift
thermometer of Pb(NO3)2

52,53 or the 79Br T1s
54 of KBr

(extracted from polarization build-up curves using the
saturation recovery pulse sequence) according to procedures
outlined in the literature. All temperatures reported are actual
sample temperatures and have an estimated accuracy of ±10 K.
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NMR data were processed with TopSpin and MATLAB
R2019a.55 1H and 13C spectra were referenced to H2O at 4.8
ppm and the CH of adamantane at 29.45 ppm,56 respectively,
both relative to TMS primary reference at 0 ppm. Small
deviations in the observed isotropic chemical shifts (±0.7 ppm
in 13C CP MAS NMR spectra) is likely attributed to small
changes in shim coil temperatures during variable temperature
experiments.

3. RESULTS AND DISCUSSION
3.1. NMR Structural Analysis. The 13C CP MAS NMR

spectra of guest-free EtP5-α and EtP6-β (Figure 2a,b,23 Table
1) collected under MAS at 12.5 kHz and at a magnetic field of
9.4 T are extremely well resolved with full width at half-
maximum lines typically around 30 Hz (or 0.3 ppm at 9.4 T),
in agreement with the excellent crystallinity of these samples.
Each different chemical subgroup can be readily assigned, and
the remarkable resolution obtained enables the observation of

all nonequivalent magnetically distinct carbon atoms in the
asymmetric unit cells.23 The 13C CP MAS NMR spectra of all
xylene-adsorbed EtP6 adducts (Figure 2c−e) are all different
from EtP6-β and from each other, as previously identified by
CSP of the molecular conformational space. Therefore, the
spectral identification of the xylenes resonances (red daggers in
Figure 2c−e, Table 1) is not straightforward and is obtained
based on comparisons with well-established isotropic chemical
shift (δiso) values,

57−59 13C-edited NMR experiments (Figures
S8−S10) employing CP steps of various contact times,
including their spectral deconvolution (Figures S11−S13),
and the existence of CH dipolar couplings (Figures 3 and
S20−S22). A detailed discussion on the spectral assignment of
the xylenes-adsorbed EtP6 is available in Section S7 of the SI.
Variable−temperature 13C CP MAS NMR spectra (Figures

S14−S18) for all five materials were performed in the 383−
100 K temperature range (down to only 243 K for EtP5-α).
Upon cooling, significantly broader 13C NMR resonances are
observed at low temperature (e.g., from 30 Hz at 298 K to 60
Hz at 100 K for the CH resonance of EtP6-β at 14.1 T) as
anticipated from the macrocycles being trapped in a variety of
conformations and leading to inhomogeneous broadening.
There is minimal change in the intensity of the spinning
sidebands, which likely indicates that the 13C CSA is largely
unchanged in the temperature range studied here while also
suggesting that accessing 13C CSAs is likely not a suitable
method to obtain dynamics information in the kHz regime in
these materials. There is also no evidence of signal coalescence
due to chemical exchange.
Upon heating above 323 K, the 13C CP MAS NMR

spectrum of EtP6-β remains very well resolved and the number
of resonances halves (Figure S19) vs spectra at 298 K,
indicating a crystal structure of higher symmetry. This change
is in agreement with both the DSC data (Figure S2) that shows
an endothermic peak at 339 K, and with refined XRD data at
433 K that indicated a transition from triclinic P1 EtP6-β at
room temperature to a metastable triclinic P1 state at 339 K
with a half unit cell volume.23 In contrast, the 13C CP MAS
NMR spectrum of EtP5-α up to 383 K remains unchanged
upon heating (Figure S14), and no polymorphic transition is
observed. No change is also observed in the 13C CP MAS
NMR spectra of pX@EtP6 or oX@EtP6 up to 323−330 K
(Figures S16 and S18), which is consistent with TGA results
that show that the adsorbed xylenes are only lost from the
pores at temperatures exceeding about 348 K for pX@EtP623

and 340 K for oX@EtP6 (Figure S4).
The 13C CP MAS NMR spectrum of mX@EtP6 at 323 K

(Figure S17), however, shows the disappearance of the
adsorbed xylene peaks and accounts for m-xylene desorption
from the pores (Figure S3). Upon cooling this sample back to
room temperature, the 13C CP MAS NMR spectrum (data not
shown) indicates that the material has not returned back to
EtP6-β as this polymorph is only formed above 433 K.23 We
ascribe this difference of behaviors between mX@EtP6 and
pX@EtP6/oX@EtP6 to the smaller cavity of the former
preventing the m-xylene guest (Figure 1) to be fully
accommodated in the pores and facilitating this removal
upon heating.

3.2. Temperature-Dependent Motional Averaged
Site-Selectivity in Guest-Free Pillar[n]arenes and Xy-
lene-Adsorbed Pillar[6]arenes. Heteronuclear dipolar
couplings are dependent on distance and motion,60 and the

Figure 2. 13C CP MAS NMR spectra of (a) EtP5-α, (b) EtP6-β, (c)
pX@EtP6, (d) mX@EtP6, and (e) oX@EtP6 obtained at a magnetic
field of 9.4 T. The spectra for EtP5-α and EtP6-β are identical to
those previously published.23 Spectral assignments are given in the
figure (see Figure 1) and are obtained from known δiso,

13C-edited CP
experiments (Figures S8−S10), spectral deconvolution (Figures S11−
S13), and 2D PDLF data (see below). The red daggers (†) denote
signals arising from the xylene guests. The CH3 originating from the o-
xylene guest in (e) is unidentifiable due to spectral broadening and
overlapping resonances with the CH3 signals of the EtP6 host.
Asterisks (*) and hashes (#) denote spinning sidebands and
amorphous impurities, respectively.
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Table 1. 13C NMR Assignments, 13C Isotropic Chemical Shifts δiso from Spectral Deconvolution, Calculated Static Dipolar
Coupling Constants dCH, Experimentally Found Motional Averaged Dipolar Coupling Constants ⟨dCH⟩, and Order Parameters
⟨SCH⟩ for Protonated Carbons in EtP5-α, EtP6-β, pX@EtP6, mX@EtP6, and oX@EtP6 at 298 and 243 K

298 K, 9.4 T 243 K, 14.1 T

assignment 13C δiso (ppm)a dCH (kHz)b ⟨dCH⟩ (kHz)
c ⟨SCH⟩

d ⟨dCH⟩ (kHz)
c ⟨SCH⟩

d

EtP5-α
CH3 14−17 −23.1 −7.2 ± 0.5 0.31 ± 0.02 −7.5 ± 0.5 0.32 ± 0.02
CH2 28−38 −23.0 −23.3 ± 0.8 1.01 ± 0.04 −22.8 ± 0.8 0.98 ± 0.04
OCH2 61−68 −22.8 −18.4 ± 0.7 0.81 ± 0.03 −19.8 ± 0.7 0.87 ± 0.03
CH 111−124 −23.8 −23.8 ± 0.8 1.00 ± 0.03 −23.4 ± 0.8 0.98 ± 0.04
EtP6-β
CH3 14−18 −23.1 −7.2 ± 0.5 0.31 ± 0.02 −7.2 ± 0.5 0.31 ± 0.02
CH2 27−35 −23.0 −22.4 ± 0.8 0.97 ± 0.04 −21.7 ± 0.8 0.94 ± 0.04
OCH2 62−67 −22.8 −18.1 ± 0.7 0.79 ± 0.03 −18.3 ± 0.7 0.80 ± 0.03
CH 111−118 −23.8 −23.9 ± 0.8 1.00 ± 0.04 −23.4 ± 0.8 0.98 ± 0.03
pX@EtP6
CH3 13−16 −23.1 −6.9 ± 0.5 0.30 ± 0.02 −7.3 ± 0.5 0.32 ± 0.03
CH3

e 18−21 −23.7 −7.0 ± 0.5 0.30 ± 0.03 −7.1 ± 0.5 0.30 ± 0.02
CH2 27−38 −23.1 −21.6 ± 0.8 0.94 ± 0.04 −21.3 ± 0.8 0.92 ± 0.04
OCH2 61−65 −22.9 −18.4 ± 0.7 0.80 ± 0.03 −19.2 ± 0.7 0.84 ± 0.03
CH 110−118 −23.8 −22.4 ± 0.8 0.94 ± 0.03 −22.5 ± 0.8 0.95 ± 0.04
CHe 129−130 −23.7 −21.6 ± 0.8 0.91 ± 0.04 −22.6 ± 0.8 0.95 ± 0.04
mX@EtP6
CH3 14−17 −23.1 −6.9 ± 0.5 0.30 ± 0.02 −7.0 ± 0.5 0.30 ± 0.02
CH3

e 21−22 −24.4 −6.2 ± 0.5 0.25 ± 0.02 −6.7 ± 0.5 0.27 ± 0.03
CH2 31−34 −23.1 −22.2 ± 0.8 0.96 ± 0.04 −21.2 ± 0.8 0.92 ± 0.04
OCH2 62−66 −22.8 −19.2 ± 0.7 0.84 ± 0.03 −20.0 ± 0.7 0.88 ± 0.03
CH 111−117 −23.7 −23.5 ± 0.8 0.99 ± 0.03 −23.2 ± 0.8 0.98 ± 0.03
CHe 126−131 −24.0 −22.5 ± 0.8 0.94 ± 0.04 −22.3 ± 0.8 0.93 ± 0.03
oX@EtP6
CH3 14−17 −23.1 −7.1 ± 0.5 0.31 ± 0.02 −7.0 ± 0.5 0.30 ± 0.02
CH3

ef −23.7
CH2 28−38 −23.2 −23.8 ± 0.8 1.03 ± 0.04 −22.2 ± 0.8 0.96 ± 0.04
OCH2 62−66 −22.7 −18.3 ± 0.7 0.81 ± 0.03 −18.8 ± 0.7 0.83 ± 0.03
CH 111−116 −23.9 −23.8 ± 0.8 1.00 ± 0.04 −22.8 ± 0.8 0.96 ± 0.04
CHef 128−129 −23.6 −17.0 ± 0.7 0.72 ± 0.03 −18.8 ± 0.7 0.80 ± 0.03

aRange of 13C δiso obtained at room temperature are given for each carbon subgroup. Exact δiso for all individual carbons are provided in Tables
S2−S6. bStatic dipolar coupling constants were calculated as described in the text in Section 3.2 and eq 1. cOnly the short-range ⟨dCH⟩ constants
are given (see text for details). Errors are estimated from the uncertainty in the determination of the position of the outer singularities of the 13C 1H
dipolar coupling spectra. dEstimated errors are calculated from the errors in ⟨dCH⟩.

eSignals from xylenes. fOverlapping resonances between the
guest and the host in the 13C CP MAS NMR spectrum of oX@EtP6 prevents spectral assignment of the CH3 and only allow tentative assignment of
the xylene CH carbons.

Figure 3. (a) 13C CP MAS spectrum, (b) PDLF spectrum and (c) selected site-specific 13C 1H dipolar spectra for guest-free EtP6-β. Spectral
assignments are given in the figure and correspond to those previously published.23 The data presented above was obtained at 298 K and 9.4 T.
⟨dCH⟩ is measured using the outer singularities of the dipolar coupling spectra as highlighted in the Experimental Section. Vertical light gray lines
indicate the static limit dipolar coupling constants dCH calculated from eq 1 and the computed CH distances obtained at the DFT level on the
various conformers identified by CSP.23 Asterisks (*) denote spinning sidebands.
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magnitude of this dipole−dipole coupling is given by the
following expression for 13C 1H

μ
π

γ γ
= −

ℏ
r

d
8CH

0
2

C H

CH
3

(1)

where dCH is the dipolar coupling constant between the 13C
and 1H nuclei in Hz, μ0 is the vacuum permittivity, ℏ is the
reduced Planck constant, γC and γH are the respective
gyromagnetic ratios for the 13C and 1H nuclei, and rCH is the
distance between the carbon and hydrogen atoms. Motional

averaged dipolar couplings ⟨dCH⟩ can be obtained by two-
dimensional (2D) proton detected local field (PDLF)43,44,61

experiments that correlate the 13C isotropic chemical shifts
with their corresponding 13C 1H dipolar spectra, providing site-
selective heteronuclear dipolar coupling constants (see the
Experimental Section for further details).
The room-temperature 13C CP MAS NMR spectrum of

EtP6-β is given in Figure 3a with the corresponding 2D PDLF
spectrum (Figure 3b) showing dipolar coupling for all
protonated carbons as expected (Figure 3c) and allowing the

Figure 4. (Left) Temperature dependency of the motional averaged CH dipolar coupling order parameters ⟨SCH⟩ and (right) selected 13C 1H
dipolar coupling spectra of the OCH2 signals at various temperatures for (a) guest-free EtP5-α (stars), (b) guest-free EtP6-β (circles), (c) pX@
EtP6 (squares), (d) mX@EtP6 (diamonds), and (e) oX@EtP6 (triangles). The different carbon subgroups can be identified with the following
color coding for CH3 (orange), CH2 (light blue), OCH2 (green), and CH (pink) (Figure 1). Data recorded at room temperature have been
collected at both 9.4 and 14.1 T. Error bars in ⟨SCH⟩ (ΔSCH) are consistently smaller than 0.04 and are obtained from estimated errors in the
determination of ⟨dCH⟩ and small variations in the dipolar coupling values across one carbon subgroup (see Figure S7); these errors are less than
the symbol size. Data below 243 K were not recorded for EtP5-α. The dotted line in (b) indicates a polymorphic transition in EtP6-β from triclinic
P1 to a metastable triclinic P1 state with higher symmetry at 339 K (see Figure S2). Dashed lines in (c) and (d) represent the onset temperatures at
which xylenes are lost as identified by the TGA data for pX@EtP623 and oX@EtP6 (Figure S4) and both TGA data (Figure S3) and changing
NMR spectrum (Figure S17) for mX@Et6. Vertical light gray lines in the dipolar coupling spectra indicate the static limit dipolar coupling
constants dCH.
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corresponding 13C 1H dipolar spectra to be extracted at each
13C shifts which revealed significant ⟨dCH⟩ differences between
each carbon subgroup. For example, smaller ⟨dCH⟩ of −7.2 ±
0.5 and −18.1 ± 0.7 kHz are obtained for the CH3 and OCH2
carbons of the ethoxy group, respectively, while larger values of
−22.4 ± 0.8 and −23.9 ± 0.8 kHz are extracted for the CH2
and CH carbons of the pillar[6]arene backbone ring (Tables 1
and S3). While no dipolar coupling splitting is apparent for the
quaternary OCIV carbons, partially resolved small couplings of
−2.9 ± 0.3 kHz are obtained for the CH2C

IV carbons and is
likely due long-range through space coupling to the nearby
methylene CH2 ring group. Similar long-range dipolar
couplings (−4.0 ± 0.3 and −6.1 ± 0.5 kHz) can also be
observed for the CH3 and CH2 environments, respectively,
which arise from spatial proximity with protons on the nearby
carbons.
Motion can be quantified by a site-specific order parameter

⟨SCH⟩ (eq 2, Table 1 and Figure 4) that compares ⟨dCH⟩ with
the static limit dipolar coupling constants dCH in the absence of
motion and ranges from 0 for isotropic motion to 1 for a rigid
system

⟨ ⟩ =S
d
dCH

CH

CH (2)

⟨SCH⟩ obtained for each carbon subgroup in EtP6-β are found
to be 0.31 ± 0.02 for CH3, 0.97 ± 0.04 for CH2, 0.79 ± 0.03
for OCH2, and 1.00 ± 0.04 for CH (Table 1) at room
temperature. There is therefore no (or limited) motion for the
CH2 and CH carbons situated in the arene core of the
pillar[n]arene ring. However, both CH3 and OCH2 carbons in
the ethoxy group show motional averaging caused by dynamics
which is ascribed to rotational and librational motions of these
carbons. While this effect is fairly small for the OCH2 carbon
(⟨SCH⟩ = 0.79), motion is particularly pronounced for the CH3
group which ⟨dCH⟩ is approximately one-third of the dCH
yielding ⟨SCH⟩ = 0.31 and indicates an increase of motion
further away from the arene core.
The temperature dependency of ⟨SCH⟩ was obtained by

measuring site selective ⟨dCH⟩ for EtP5-α from 383 K down to
243 K (Figure 4a, Table 1) and for EtP6-β over an extended
temperature range from 383 K down to 100 K (Figure 4b). In
EtP6-β (and for all samples), the ⟨SCH⟩ values for the CH3
groups remain largely constant at 0.31 ± 0.02, indicating that
this group still possesses significant motion even at 100 K. This
is consistent with temperatures lower than 100 K required to
“freeze” the rapid 3-site hopping motion of CH3 in various
biomolecules.62−64 In contrast, the ⟨SCH⟩ values of the OCH2
increase significantly upon cooling from 0.79 ± 0.03 at 298 K
to 0.95 ± 0.03 at 100 K, supporting reduction in motion and
lower flexibility by the pillar[n]arene at lower temperatures. In
EtP5-α, while the room temperature ⟨SCH⟩ values for the CH3,
CH2, and CH carbon subgroups are virtually identical to those
determined for EtP6-β (Table 1), a difference was observed for
the OCH2 group upon cooling. An increase in ⟨dCH⟩ from
−18.3 ± 0.7 kHz in EtP6-β to −19.8 ± 0.7 kHz in EtP5-α is
observed as evidenced by larger splitting of the outer
singularities in the 13C 1H dipolar spectra at 243 K (Figure
4b) and results in slightly larger ⟨SCH⟩ values in EtP5-α (0.87
± 0.03) than in EtP6-β (0.80 ± 0.03). Similarly, at higher
temperature (383 K), the 13C 1H dipolar coupling spectra of
the OCH2 group yield larger ⟨dCH⟩ values (−16.6 ± 0.7 and
−14.5 ± 0.6 kHz) and smaller ⟨SCH⟩ values (0.73 ± 0.03 vs

0.64 ± 0.03) in EtP5-α than in EtP6-β, respectively. This
indicates more restricted motion and increased hindrance
which is likely due to the reduced void space of the smaller
EtP5-α cavity versus EtP6-β.
Variable-temperature 2D PDLF NMR experiments were also

recorded on the three guest-adsorbed xylene adducts in EtP6
to access ⟨dCH⟩ and ⟨SCH⟩ (Table 1, Figure 4c,d,e for pX@
EtP6, mX@EtP6, and oX@EtP6, respectively). There, the
trends are largely similar to EtP6-β with temperature
independent ⟨SCH⟩ around 1 for the CH2 and CH carbons in
the pillar[n]arene core, around 0.3 for the CH3, and increasing
toward 1 for the OCH2 group as temperatures are lowered into
the static regime. Although the room temperature ⟨SCH⟩ values
for the CH3, CH2, and CH carbons are within error of each
other for EtP6-β and the xylene-adsorbed adducts, there is a
slight increase in the room temperature ⟨SCH⟩ values obtained
for the OCH2 group in EtP6-β/oX@EtP6/pX@EtP6 vs mX@
EtP6 (Table 1). This small difference is enhanced further upon
cooling to 243 K, and the data therefore seems to suggest
marginally slower dynamics of the OCH2 group in mX@EtP6
than in EtP6-β, oX@EtP6/pX@EtP6. In contrast to the latter
two phases, the xylene in mX@EtP6 lies on top of the EtP6
host rather than within the void space, as illustrated in Figure
1; therefore, the interaction of the m-xylene with the
protruding ethoxy groups is likely to cause slower dynamics,
at least for the OCH2 subgroup. These experiments therefore
highlight small change in structure flexibility between guest-
free and guest-adsorbed EtP6 assemblies.
The room-temperature PDLF data on the three xylene

adducts (Figures S20−S22) also partially resolved the dipolar
coupling observed in the xylenes themselves. While the
corresponding ⟨dCH⟩ for the xylene CHs in pX@EtP6 and
mX@EtP6 indicate limited motion with ⟨SCH⟩ values found in
the 0.91−0.94 ± 0.04 range (Table 1), the xylene CHs in oX@
EtP6 show considerably more motion with smaller ⟨SCH⟩
values of 0.72 ± 0.04 at 298 K. This indicates that the o-xylene
has a significant amount of spatial freedom to allow for
mobility and that the CH and CH3 motion of the xylene is not
completely limited upon loading into the EtP6 cavity at room
temperature.

3.3. Host−guest Interaction Probed by Dipolar
Coupling in Xylene-Adsorbed Pillar[6]arenes. No large
dipolar coupling is observed at room or low temperatures for
the quaternary carbons of either xylenes or pillar[6]arene host
as expected (Figures 5a and S20−S23); however, surprisingly,
upon cooling pX@EtP6 to 100 K, strong dipolar couplings of
−23.4 ± 0.8 kHz were observed for the CH2C

IV carbon
(Figures 5b and S24c). These couplings in pX@EtP6 do not
originate from either of the CHs in the xylene (at 129.4 and
129.8 ppm) or a long-range interaction in the EtP6
architecture (no coupling is observed in the CH2C

IV of
EtP6-β as revealed in Figure 3 at room temperature and Figure
S23 at 100 K) but rather from the CH2C

IV carbons (125−131
ppm). Therefore, this coupling was ascribed to intermolecular
heteronuclear dipolar coupling between the quaternary
CH2C

IV carbon of the EtP6 host and protons of p-xylene
identifying EtP6 p-xylene spatial interaction and strong host−
guest interaction. These results are in sharp contrast to the 100
K PDLF data for mX@EtP6 and oX@EtP6 adducts (Figures
S25 and S26, respectively) for which no coupling is observed
for CH2C

IVs suggesting an absence of host−guest interaction
or that the coupling is still averaged out at 100 K.
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These results strongly support the structures illustrated in
Figure 1. In particular, in pX@EtP6, p-xylene is located in the
center of the EtP6 cavity which is stabilized by strong π−π
stacking with two aromatic rings from EtP6 (Figure 1c),
yielding strong ⟨dCH⟩ between the CH2C

IV carbons of the
pillar[6]arene backbone with p-xylene protons. It is also likely
that this coupling arises preferentially from the aromatic
protons of p-xylene rather than the methyl protons due to
methyl group rotation as discussed above. In oX@EtP6, similar
rotational dynamics prevent coupling of the methyl protons of
o-xylene located inside the cavity to the EtP6 backbone while
the aromatic protons are positioned outside the cavity (Figure
1e) from which a small static dipolar coupling would only be
expected (0.44 kHz based on the smallest 4.1 Å distance with
the EtP6 CH2C

IV carbon). The small EtP6 cavity in mX@EtP6
is too small to host m-xylene (Figure 1d), resulting in this
xylene to be excluded and the absence of dipolar coupling
interaction with EtP6.
3.4. Temperature-Dependent Relaxation Studies of

Guest-Free and -Absorbed Pillar[n]arenes. T1 relaxation
is a measure of the time for the spin population to recover to
equilibrium after a perturbation and is mediated by fluctuations
of the local magnetic fields, as quantified by the correlation
times of the motion τc with corresponding frequencies τc

−1 on
the order of the Larmor frequency, i.e., MHz. Site-specific 13C
spin−lattice relaxation rates T1

−1 for all carbons have been
obtained versus temperatures in the 383−243 K and 298−100
K temperature range at 9.4 T (Figures S27) and 14.1 T
(Figures S28), respectively, for EtP6-β, all xylene-adsorbed
EtP6 adducts and EtP5-α (data only available at 9.4 T for this
phase). 1H T1

−1 were also obtained (Figures S27−S29) and
suggest the same similar motional process likely due to the lack
of resolution (for a discussion of the 1H data, Section S10 of
the SI). Illustration of the 13C T1s obtained at room
temperature and 9.4 T are given in Tables S2−S6 for EtP5-
α, EtP6-β, pX@EtP6, mX@EtP6, and oX@EtP6, respectively,
and we have chosen to give a single T1 value (with associated
errors) for each carbon subgroup as these are within errors of
each other. The following general trend is observed in all of the

guest-free and xylene-adsorbed pillar[n]arenes: the CH3 group
has the shortest T1 (approximately 2 s at room temperature) of
all the carbon environments, as it is well-known that methyl
groups are relaxation sinks due to their facile three-site
hopping motions and efficient 13C 1H heteronuclear dipole−
dipole coupling relaxation; the 13C T1 of the OCH2 moieties
are also relatively short (approximately 20−40 s) and likely
due to rotation around the O−C bond; these T1 are in contrast
with the ones of the CH2/CH groups that are in the 102 s
range and suggest limited motional freedom and rigidity of
these pillar[6]arene core groups; OCIV and CH2C

IV carbons
yield the longest T1 as the dominant relaxation mechanism of
CSA (see below) is less efficient than dipolar coupling to 1H
for these nonprotonated carbons. Note that upon loading of p-
and m-xylene, the OCH2 group shows an increase in T1 at
room temperature, suggesting that guest addition lowers the
flexibility of the pillar[n]arenes. oX@EtP6 shows a reduction
in nearly all T1 in comparison to EtP6-β; however, this is likely
attributed to the more amorphous nature of this material.
The 13C T1

−1 rates for each carbon subgroup in EtP5-α,
EtP6-β, and the xylene-adsorbed adducts typically increase
with increasing temperatures (Figure S28b), pass through
maxima at 165−168 K (at 14.1 T) for the majority of
resonances (excluding the CH2 in pX@EtP6, CH in oX@EtP6
and the CH3, CH2, CH, and OCIV in mX@EtP6), and then
decrease. At these T1

−1 maxima, the motion is near the 13C
Larmor frequency ω0,C (in rad·s−1) with the following
expression eq 3 being satisfied65

ω τ ≈ 0.620,C c (3)

leading to a τc value of 6.5 × 10−10 s for these materials.
Assuming negligible contribution from spin-rotation and

scalar coupling relaxation mechanisms, 13C T1
−1 rates can

generally be expressed (eq 4)

= +
i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzT T T

1 1 1

1 1 dd 1 CSA (4)

as the sum of both 13C 1H heteronuclear dipolar coupling (eq
5)

μ
π

γ γ τ
ω ω τ

τ
ω τ

τ
ω ω τ

=
ℏ

+ −

+
+

+
+ +

i
k
jjjjj

y
{
zzzzz

i
k
jjj

y
{
zzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

T
n

r
1

10 4 1 ( )

3
1

6
1 ( )

1 dd

0
2

H
2

C
2 2

CH
6

c

0,C 0,H
2

c
2

c

0,C
2

c
2

c

0,C 0,H
2

c
2

(5)

and 13C CSA relaxation (eq 6)65,66
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mechanisms with n the number of protons attached to 13C,
ΔδC the (reduced) anisotropy (sensitivity of the chemical shift
interaction to the orientation), and ηC asymmetry parameter
(deviation from axial symmetry) of the second rank 13C
chemical shift tensor with principal components δ11, δ22 and
δ33 as defined in Section S12 of the SI (all other terms are
defined above). The local magnetic fields fluctuation term of
the CSA expression is magnetic field dependent and propor-
tional to the square of the Larmor frequency and anisotropy.

13C relaxation generally arises from 13C−1H heteronuclear
dipole−dipole coupling for protonated carbons with small

Figure 5. Comparison of selected CH2C
IV 13C 1H dipolar spectra for

(a) EtP6-β and (b) pX@EtP6 obtained at 298 K and 9.4 T and at 100
K and 14.1 T. The polarization transfer to 13C during the PRESTO
block of 2D PDLF sequence was optimized for maximum signal on
the protonated resonances (see Section 2.2), which accounts for the
signal-to-noise of these quaternary carbon resonances.
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CSA, i.e., CH3, OCH2, and CH2, and from 13C CSA for
quaternary aromatic carbons, i.e., OCIV and CH2C

IV, as
confirmed by comparing the magnitude of the local dipolar
and CSA magnetic fields term in eqs 5 and 6. For example, in
mX@EtP6 (similar observations were made on the other
materials), the calculated local dipolar magnetic fields term for
CH3 (6 × 109 s−2) is 2 orders of magnitude larger than the
calculated CSA term (8 × 107 s−2 at 14.1 T assuming a typical
13C ΔδC for this carbon of 25 ppm),67 while for OCIV, the CSA
term largely dominates even at the lower magnetic field (1 ×
109 s−2 at 9.4 T with a 13C ΔδC of −142 ppm vs 4 × 107 s−2 for
dipolar). However, for the remaining aromatic CH sites, 13C
relaxation derives from cross terms between dipolar and CSA
interactions68 as both local magnetic field contributions are
comparable (2 × 109 s−2 for dipolar vs 1−3 × 109 s−2 at 9.4−
14.1 T for CSA using an aromatic CH with a 13C ΔδC of −147
ppm)69 and is further suggested by the slight magnetic field
dependency of the T1.

13C T1
−1 maxima and dominant relaxation mechanism(s)

allow experimental access to the local magnetic fields term by
combining eq 3 and either eq 5 (for heteronuclear dipolar
coupling relaxation), eq 6 (for CSA relaxation), or eq 4 (for
both mechanisms). For example, in keeping with mX@EtP6,
the experimentally determined local dipolar magnetic fields
term for CH3 (3 × 109 s−2) compares well with the calculated
value (6 × 109 s−2). These equations were then used to obtain
τc for all materials (CH3, OCH2, and OCIV in Figure 6a−e;
CH2, CH, and CH2C

IV in Figure S30a−e) and the room-
temperature τc are the shortest for the CH3 and OCH2 groups
supporting motion. The temperature dependence of the
correlation frequencies τc

−1 was subsequently modeled with
an Arrhenius equation of the form

τ τ= −− − i
k
jjj

y
{
zzz

E
RT

expc
1

c,0
1 a

(7)

with τc,0
−1, Ea, and R the attempt frequency, activation energy of

the thermally activated motional process, and universal gas
constant, respectively, and are given in Table 2 for 13C and
Table S7 for 1H. The Ea for CH3 in EtP6-β (6 kJ mol−1) is
significantly smaller than in EtP5-α (11 kJ mol−1) and is likely
due to the smaller ring size of the latter hindering molecular
rotation. Upon addition of any guest of EtP6-β, the Ea for CH3
increases to 8−10 kJ mol−1 which suggests restricted motion
caused by their spatial proximities. No significant difference is
however observed between the different guest-adsorbed
materials or for OCH2 groups. There, much smaller changes
in T1 and τc times are measured and would therefore indicate
that, within the temperature range probed, all materials
experience the same motional processes.
τc were also extracted for the methyl groups of the xylene

guests in both pX@EtP6 and mX@EtP6, and the temperature
dependency of their frequencies was used to extract Ea values
(Figure S31a,b). Activation energies are small (1−3 kJ mol−1,
Table 2) and significantly less than the ones determined for the
CH3 groups of the host (10 kJ mol−1 in pX@EtP6; 8 kJ mol−1

in mX@EtP6), indicating that the CH3 groups have
significantly higher degree of motion in the xylenes than
pillar[6]arene. Additionally, further comparison between the
xylene CH3’s in pX@EtP6 vs mX@EtP6 reveals higher Ea in
the former and supports the xylene location inside the arene
core.

4. CONCLUSIONS
We employed variable-temperature multinuclear NMR experi-
ments to provide detailed understanding of the dynamics in
guest-free perethylated pillar[n]arene (n = 5,6) and xylenes-
adsorbed pillar[6]arenes. Site-selective 13C 1H dipolar spectra,
enabled by the highly resolved 13C CP MAS NMR spectra,
permit the quantification of order parameters that reveal

Figure 6. (Left) 13C spin−lattice relaxation rates T1
−1 against

correlation times τc and (right) corresponding 13C correlation
frequencies τc

−1 Arrhenius plots. Data shown in black and blue
outlines were obtained at 9.4 and 14.1 T, respectively, for (a) guest-
free EtP5-α (stars), (b) guest-free EtP6-β (circles), (c) pX@EtP6
(squares), (d) mX@EtP6 (diamonds), and (e) oX@EtP6 (triangles).
Selected carbon subgroups have been plotted here with the following
color coding for CH3 (orange), OCH2 (green), and OCIV (gray)
(Figure 1) while plots giving the three other carbons are given in
Figure S30. The associated errors are smaller than the symbol sizes. In
the left panels, the solid (−) lines are those obtained from a dipolar
coupling relaxation mechanism (eq 5) for CH3 (orange) and
OCH2(green) and the dotted (··) lines from a CSA relaxation
mechanism (eq 6) for OCIV(gray) at both fields, using the
experimentally determined local magnetic fields terms (values from
EtP6-β were used for EtP5-α as no T1 minimum was found in the
temperature range studied). A T1 minima was found for OCIV in oX@
EtP6 in the temperature range studied at 9.4 T; therefore, this data
was used to extract correlation times and is plotted for this series. In
the right panels, the lines are fit to the experimental data using the
Arrhenius equation.
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differential dynamics properties. Protruding carbons were
found to have faster dynamics than those in the core, while
the larger void size of EtP6-β than EtP5-α results in a less
restricted OCH2 motion. 13C 1H dipolar spectra also identified
spatial proximity in pX@EtP6, not detected in oX@EtP6 and
mX@EtP5, demonstrating significantly strong π−π stacking of
p-xylene located in the center of the void validating structural
models. Temperature-dependent correlation frequencies from
relaxation times measurements tentatively suggest oX@EtP6 to

have the largest size conformation and show extensive
motional dynamics of the perethylated and xylene methyl
carbons.
This work demonstrates the capture of structural trans-

formations resulting from host−guest interactions and mo-
tional effects in adaptative pillar[n]arene materials, which
could have implications for processes such as competitive
loading, molecular separation, and drug release. This adds to
our understanding of motion in flexible molecular solid state
systems and opens up new perspectives in the rational design
of materials with enhanced physical properties.
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