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Abstract Linear stability analysis is performed using a combination of two- 
dimensional Direct Simulation Monte Carlo (DSMC) [3] methods for the com- 
putation of the basic state and solution of the pertinent eigenvalue problem,     
as applied to the canonical boundary layer on a semi-infinite flat plate. Three 
different gases are monitored, namely nitrogen,  argon and air, the latter as        
a mixture of 79% N2 and 21% O2 at a range of free-stream Mach numbers 
corresponding to flight at an altitude of 55km. A neural network has been 
utilised to predict and smooth the raw DSMC data; the steady laminar pro-   
files obtained are in very good agreement with those computed by (self-similar) 
boundary layer theory,  under isothermal or adiabatic wall conditions, subject  
to the appropriate slip corrections computed in the DSMC method [1, 2]. 

The leading eigenmode results pertaining to the unsmoothed DSMC pro- 
files are compared against those of the classic boundary layer theory [32]. Small 
quantitative, but no significant qualitative differences  between the results of  
the two classes of steady base flows have been found at all parameters exam- 
ined. The frequencies of the leading eigenmodes at all conditions examined are 
practically identical, while perturbations corresponding to the DSMC profiles 
are found to be systematically more damped than their counterparts arising in 
the boundary layer at the conditions examined, when the correct velocity slip 
and temperature jump boundary conditions are imposed in the base flow pro- 
files; by contrast, when the classic no-slip boundary conditions are used, less 
damped/more unstable profiles are obtained, which would lead the flow to ear- 
lier transition. On the other hand, the DSMC profiles smoothed by the neural 
network  are  marginally  more  stable than their unsmoothed counterparts. 

A vortex generator (VG) introduced into the boundary layer downstream of 
the leading edge and pulsed at rather large momentum coefficient, Cμ = 0.27, 
and scaled frequency F + 0.98 [17], is used to generate linear perturbations 
that decay along the plate, as expected from the low value of the Reynolds 
number, Reδ = 290, in this numerical experiment. The damping rate dimin- 
ishes monotonically as the VG is placed at successive downstream positions 
along the plate. The characteristics of the oscillation generated in the boundary 
layer are predicted accurately by linear stability analysis of the undisturbed 
profile at the location of VG placement. Most interestingly, the effect of the 
generated perturbation is felt well outside of the boundary layer, generating os- 
cillations of the leading edge shock that synchronise with linear perturbations 
inside  the  boundary layer. 

Keywords Direct Simulation Monte Carlo Modal Linear Stability Rarefied 
Gases 

 
1 Introduction 

 
In recent decades considerable efforts have been devoted to the design of high- 
velocity flying vehicles, sub-orbital vehicles and microelectromechanical sys- 
tems [11, 34, 12] in all of which rarefied gas flows are encountered [22, 5, 30]. 
Depending  on  the  exact  value  of  the  Knudsen  number,  Kn,    modifications 
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to the boundary conditions used in the compressible Navier-Stokes equations 
are required, for the latter to properly capture flow physics. Flows in which 
0.01 Kn 0.1 belong to the slip regime and need require appropriate 
treatment of the wall boundary conditions to account for velocity slip and 
temperature jump[63]. At Kn > 0.1 alternative methodologies based on ki- 
netic theory, such as DSMC [3], moment equations [18] or numerical solu- 
tions of the full Boltzmann equation [9], are required. Although kinetic theory 
methods can be applied to all flow regimes [63, 9], their use in continuum and 
slip flow regimes is computationally very intensive and methods based on the 
Navier-Stokes equations are preferable. However, a main drawback of PDE- 
based description of compressible flows remains its inadequate description of 
the shock layer structure, as already discussed by Liepmann et al. [29]. 

Renewed interest in maneuverable sustained hypersonic flight at altitudes 
around 50 km inside the earth’s atmosphere brings to the fore the question of 
laminar-turbulent transition prediction on any part of the vehicle surface, and 
especially on axisymmetric vehicle forebodies and on lifting surfaces, typically 
modeled as circular-base cones and flat plates, respectively. Intense experi- 
mental and numerical efforts are underway [6, 53], mostly employing classic 
boundary layer linear stability theory [31–33, 10] to predict and control linear 
instability mechanisms leading boundary layer flow to transition and turbu- 
lence and prevent a multifold increase in the thermal protection requirements 
and decrease of vehicle range. Such linear stability analysis approaches either 
altogether exclude the shock from the analysis, or include it in the underlying 
(steady) base flow by appropriate modifications of the boundary  conditions 
used at the boundary-layer edge [55, 35]. In doing so, the internal shock layer 
structure (which is inaccessible to the Navier-Stokes equations) and its poten- 
tial effect on boundary layer  stability is either neglected or modeled through  
the boundary conditions. It would thus appear natural to apply kinetic theory 
methods to address linear flow instability; however, to-date it has not been 
demonstrated that kinetic theory methods can meet the  long  known  strin- 
gent requirements on the quality of the base flow (and its first and second 
derivatives) in order for reliable stability analysis results to be obtained [33]; 
examination of this issue is the first motivation of the present contribution. 

Recent results of application of global linear stability theory concepts to 
DSMC simulation results are encouraging. In a series of papers Tumuklu et al. 
[59, 61] demonstrated strong coupling between the shock structure and linear 
instability of a laminar two-dimensional separation bubble in Mach 16 ax- 
isymmetric flows over a 25◦   55◦ double-cone, as well as in Mach 7 flows over     
a 30◦ 55◦ double-wedge configuration [60]. On double-cones, the presence of λ-
shocks and oscillations of the detached and separation shocks at a Strouhal 
number, St, of 0.078 has been documented [61]. Subsequent extension of the 
analysis to 3-D, spanwise-homogeneous flow over the same double-wedge con- 
figuration by Sawant et al. [52, 51] showed the presence of linearly growing, self-
excited, small-amplitude, 3-D perturbations inside the separation bubble  as 
well as in the interior of separation and detached shock layers, which, in turn, 
leads to low-frequency unsteadiness of the triple point at St ∼ 0.02.The lat- 
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ter authors have also highlighted the importance of modeling the well-known, 
bimodal internal structure of shocks in hypersonic flows, where the internal 
nonequilibrium zone is shown to exhibit two-orders of mangitude larger am- 
plitude and lower frequency broadband, having mean St 0.01, than the 
equilibrium zone of freestream [49, 50]. 

This paper addresses the ability of DSMC to generate steady  and  un-  
steady laminar boundary layer flows of sufficient quality for linear stability 
analysis to be performed. Compressible laminar boundary layers developing   
on  a  semi-infinite  flat  plate  have  been  computed  by  Gallis  and   Torczynski 
[14] using the BGK model and by Kumar et  al.[28]  using  both  BGK  and  
DSMC simulations. Here, DSMC is employed to compute flows over  a range     
of Mach numbers, using three gases with distinct thermodynamic properties. 
The  base  flows  are  obtained  using  the  Open  Source  DSMC  code  SPARTA  
of the Sandia National Laboratory [15]. DSMC results on the wall-normal 
velocity and temperature gradients were used to formulate the velocity slip    
and temperature jump boundary conditions as described by the Maxwell/von 
Smoluchowski theory [37, 54] and later revised by Beskok et al. [2]. The DSMC 
data, smoothed using a neural network, are compared with those delivered by 
the boundary layer theory; such comparisons are permissible since the flows 
addressed are in the slip regime. Subsequently, both sets of profiles are anal- 
ysed with respect to their linear stability and the eigenspectra obtained are 
compared. Finally, a periodically pulsating jet is used as a vortex generating 
device in the  DSMC to  inject particles  into  the boundary layer  and analyse  
the characteristics of the oscillations observed in the boundary- and the shock 
layer. The frequency and damping rate of these oscillations are compared with 
the respective eigenvalues of the leading linear stability theory boundary layer 
perturbations. The paper is organised as follows: Section 2 presents the essen- 
tial implementation details of the DSMC simulations performed, as well of the 
smoothing approach employed. Section 3 presents in some detail the boundary 
layer equations and boundary conditions used to obtain comparison profiles; 
some details of the classic linear  stability  theory  problem  solved,  including 
the scales used to convert between dimensional and dimensionless results and 
enable comparisons close this section. In Section 4 the results obtained are 
presented; first, the comparisons of the steady laminar base states in two  of   
the three cases analysed are shown, followed by comparison of the eigenvalue 
spectra and amplitude functions pertaining to the DSMC and the boundary 
layer profiles. This section closes with the description of the introduction of 
boundary layer perturbations and the evolution and correlation of the gen- 
erated instability waves inside the boundary layer and along the shock layer. 
Concluding comments are offered in Section   5. 

 

2 The Direct Simulation Monte Carlo    method 
 

The Direct Simulation Monte Carlo (DSMC) method [4] is well established 
method of choice to simulate rarefied gas flows. Its implementation is based 
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on the ability to simulate a large (and ever increasing, commensurate with in- 
creasing computing capabilities) number of ’simulator’ particles, each of which 
represents a large (and ever decreasing, commensurate with increasing comput- 
ing capabilities) number of real gas molecules. The computational domain is 
divided in cells that define geometric boundaries and computational volumes, 
in which macroscopic flow parameters are computed by simulating motion and 
collisions of the aforementioned simulator particles [3]. The DSMC is an it- 
erative algorithm and can be decomposed in four steps. First, particles are 
moved to new positions during a time step. Second, indices are assigned to the 
particles moved in new cells. Third, collision pairs are selected and collisions  
are performed. Fourth, macroscopic flow properties are calculated by averag- 
ing temporally the microscopic properties of the flow and the procedure is 
restarted. By its very nature, DSMC lends itself to massive parallelization and 
the method, use of which is essential in the rarefied gas regime, is also gaining 
traction recently in performing slip (and even continuum) regime computations 
as computing hardware capabilities increase. Algorithmic and implementation 
details in the standard references of Bird  [3, 4]. 

 
 

2.1 DSMC  Implementation 
 

DSMC simulations performed herein have used the massively parallel open- 
source code SPARTA[15, 41] developed in Sandia National Laboratories, val- 
idations of which against several benchmark test cases have been presented 
elsewhere [24]. Computing resources for the present high-resolution simula- 
tions were made available on the Archer and Archer-2 UK supercomputing 
resources. In all of the cases run in this work the Variable Hard Sphere (VHS) 
model was used for all three gases analysed, argon, nitrogen and air as a mix- 
ture of nitrogen and oxygen. For the accurate modeling  of particle  collisions  
the near collision partner algorithm was used and collision partners were se- 
lected from within the distance the particle travels in one timestep [13]. Both 
adiabatic and isothermal interactions of the particles with the walls have been 
addressed. In the simulations that follow, air, argon and nitrogen have been 
used. In the case of air the Maxwell model was used with coefficients govern- 
ing surface accommodation set to zero. For argon, where no rotational degrees 
of freedom exist, the pre-collision and post-collision translational energies of 
particles at the wall is kept constant. Physical parameters of the gases and 
conditions simulated are shown in table 1, with further details on the DSMC 
parameters shown in table 2. A typical result for the streamwise velocity com- 
ponent of the steady state obtained in argon is shown in the upper part of  
figure 1. The lower part of the same figure  shows the evolution of pressure  at 
the edge of the boundary layer, y = 0.0014m, along the streamwise coordinate, 
x, over the entire length of the plate for both air and argon DSMC simulations. 
The effect of the evident small acceleration of the flow on the stability of the 
boundary layer  will be discussed in section   4. 
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2.2 DSMC Data Smoothing 
 
 

In statistical flow simulations, fluctuations in the flow parameters over a mean 
arise at each time step, making calculation of the derivatives of macroscopic 

flow parameters a rather challenging task. On the  other hand, well-resolved 
and accurate base flow quantities and their spatial derivatives are essential for 
the calculation of reliable linear stability results. Smoothing of the  DSMC data 

is thus required and it is well-known [48, 21] that choice of an inappropriate 
smoothing method can cause severe changes to the original data and can lead 
to incorrect interpretations of the results. In our past work different smoothing 
techniques have been utilised,  e.g.  the WPOD method discussed  by Tumuklu 

et al.[60]. Here we employ a stack autoencoder neural network, which we use in 
an unsupervised way in order to smooth the signal from the DSMC simulations 
of Cases 1 and 2. Deep learning neural networks such as this are widely used in 
several different fields such as computer vision, speech recognition and human 
tracking [19, 16]; some technical details of the present implementation   follow. 

 
An autoencoder is a deep learning neural network that is constructed in a 

way that it is able to copy its input to its output. In contrast with other neural 
networks only one hidden layer is used to represent the input data, such that 

the autoencoder network be viewed in two parts: the first is an encoder function 
h∗ = f (x), which is decoded in the second part, where the reconstruction of the 

input data is calculated as r∗ = g(h∗). Autoencoders can also work with 
incomplete/undercomplete and sparse data, such as the undersampled DSMC 
simulation profiles. An undercomplete set is trained such as the input copying 

task results in  the  hidden  layer  capturing  useful  properties  by  constraining 
it to have a smaller dimension than the input. A network that has learnt to 

represent undercomplete data is able to capture the most important underlying 
information; in the  case  of  the  DSMC  simulation  profiles,  this  information 
is the mean value of the quantities of interest, in which the noise level has been 

reduced. The learning procedure can be described as minimizing a loss function 
L(x, g(f (x))), where the L is a loss function penalizing the g(f (x)) or dissimilar 

to x; as an example an L function can be the mean-squared error. If the decoder 
is linear and L is the mean squared error then the undercomplete autoencoder 

learns the principal subspace of the training data as a side effect. 

 
In the present work the neural network is trained using four wall-normal 

velocity profiles, taken at locations x = 0.2, 0.3, 0.4 and 0.5 m from the plate 
leading edge, and a total of 1200 data points in each training set. After the 
network was trained, the smoothed wall-normal velocity profile at a single, 
randomly chosen location x = 0.7 m, was compared with simulation data to 
verify the quality of the neural network training; the result obtained for air at 
the parameters shown in tables 1 and 2 is shown in figure 3. 
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3 The Compressible Laminar Boundary   Layer 
 

For completeness, the equations governing the steady laminar two-dimensional 
compressible boundary layer, the boundary conditions used and the linear 
stability equations employed are summarised  here. 

 

3.1 Governing  equations  and boundary conditions 
 

The boundary layer equations on a Cartesian frame of reference read 

∂(ρ∗u∗) 
+ ∂x∗ 
∂(ρ∗v∗) 

= 0, (1) ∂y∗ 

ρ∗u∗ ∂u∗ 
+ ρ∗v∗ ∂u∗ 

= ρ∗u∗ du∗e  + 
  ∂   

(
μ∗ ∂u∗ \ 

, (2) 
       

∂x∗ 

∂h∗ 
 

 

∂y∗ 

∂h∗ 
 

 

e  e dx∗ 

dh∗ 

∂y∗ 

  ∂  
( 

 

 

∂y∗ 

∂T ∗ \ 
 

 

 

( 
∂u∗ \2 

 
 

 
 

     

         
an asterisk denoting dimensional quantities. The velocity along the streamwise 
and wall-normal direction are denoted by u∗ and v∗, respectively, ρ∗ is the flow 
density,  T ∗ is temperature and the subscript e denotes conditions at the edge  
of the boundary layer (as opposed to the subscript , which is reserved for (pre-
shock) free-stream conditions [20, 31, 7, 62]. 

At the values of the Knudsen number examined slip flow exists and the 
above equations require to be closed by wall boundary conditions that account 
for the velocity slip and temperature jump. The velocity slip and temperature 
jump boundary conditions used in this work are those of Von Smoluchowski 
[54] with a correction to the Maxwell conditions [37] as improved by Beskok et 
al.[2], who modified these boundary conditions to include higher order terms, 

1 3σ μ∗  ∂T ∗ 

u∗  = 

 
u∗ + (1 − σv)u∗ + σvu∗     + , (4)       v  

 
 

2−σT 
γ  T ∗ + σT T ∗ 

Ts
∗

lip =   Pr   γ+1   λ wall . (5) 
σT + 2−σT  

Here u∗λ and Tλ
∗ denote the values of the streamwise velocity and temperature 

respectively at a distance of one mean free path, λ, from the wall, while u∗wall 
is  the  velocity  of  a  moving  wall  and  Tw

∗
all  is  the  specified  wall  temperature, 

when isothermal simulations are performed. This form of the equations as 
reported by the authors allows these boundary conditions to obtain numerical 
solutions of the Navier-Stokes equations in the slip regime and up to very high 
Knudsen numbers, Kn 0.5 [2]. The accommodation coefficients for velocity  
and temperature [5, 1, 27] are denoted by σv and  σT ,  respectively,  and  are 
both taken equal to unity. The wall values delivered by equations (4-5) have  
been found to be in agreement with the slip velocities and temperature jumps 
computed  in  the DSMC, the  latter  shown  in table 3. 

∂y∗ ∂y∗ ∂y∗ ∂y∗ ∂x∗ 
∂y∗ ∂y∗ ∂y∗ ∂y∗ ∂x∗ ρ∗u∗ , (3) 

2 λ λ wall 8 ρ∗T ∗ ∂x∗ 
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3.2 Scaling of the boundary layer    equations 
 

In order to perform stability analysis all the dimensional components in equa- 
tions 1 - 4 are recast in non-dimensional form. The velocities u∗, v∗, density   
ρ∗, dynamic viscosity μ∗, and temperature, T ∗ are scaled by their respective 
boundary layer  edge  values to become: 

u = u∗/ue, v = v∗/ue, ρ = ρ∗/ρe, μ = μ∗/μe, T = T ∗/Te. (6) 

Spatial coordinates are scaled as proposed by  Mack [31],    introducing 

ξ∗ = x∗    and η =  
y∗ /

Re  , (7) 
 

 
with 

x∗ x 

ρ u x∗ 

Rex =   e  e 

μe 
. (8) 

The Reynolds number  used  in  the linear  stability  analysis then becomes 

Re = Rex. (9) 

Substitution into the equations (1 - 3) yields the system solved for a zero- 
pressure-gradient compressible boundary layer: 

ρv − √ 1 (
ηg

  − g
  

= 0, (10) 
 

 d  
(
μ

du 
\ 

+ g 
du 

= 0, (11) 

 
 
 

where 

dη 
 d μ dθ dθ 

+ g 
dη Pr dη dη 

dη 
 
+ 2μ 

dη 

du  2 

dη 

 
= 0, (12) 

g = 
dg ≡  1 

ρu, (13) 

∗ ∗ 
θ = , (14) 

T0
∗     Te

∗ 
2 

T0
∗  = Te

∗ + e , (15) 
2c∗p 

∗ ≡ T = 1 + M θ, (16) 
 

Te 2 e 

and Pr is the Prandtl number defined as: 

Pr = . (17) 
κe 

The system of equations is closed by  considering the dependence of viscosity  
on  temperature  according to 

 
μ = μref 

  T    ω 

Tref 

 
, (18) 

x 
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 γR ∗   ∗ 

∇ (23) 

∇ −∇ ∇ 

T 

{ } 

 
where μref and Tref are reference viscosity and temperatures, the gas con- 

stant  c∗p  is  defined  as  cp  = , γ  =  cp/cv  and  ω  is  the  viscosity  exponent. Reference values for these γ−1 ts for the gases considered herein,  provided 
constan 

by Bird [3], are shown in tables 1 and 2. The boundary layer system of equa- 
tions can be solved subject to the boundary conditions 

u(η = 0) = uslip/ue (19) 

u(η → ∞) = 1 (20) 
T I(η = 0) = 0 or T (η = 0) = Tw (21) 

T (η → ∞) = 1. (22) 

Results obtained at uslip = 0 have been validated by comparison against stan- 
dard references [43, 38]. The wall-slip and temperature jump values arising in 
the present simulations are shown in table   3. 

 

3.3 Linear Stability Analysis 
 

Flow stability analysis is based on the compressible Navier-Stokes and conti- 
nuity equations, in dimensionless  form: 

∂ρ 
+   .(ρV) = 0, 

∂t 
 

∂(ρV) 1 
+   .(ρVV) = p + .σ (24) 

∂t Re 
 

ρ
  
∂T 

+(V.∇)T 
l
−Ec

  
∂p

+(V.∇)p
l 

= 
    1     ∇.(k∇T )+ 

Ec
  

1 
(∇V+∇V) : σ

l 

∂t ∂t RePr 
 
 

ρT 

Re  2 
(25) 

 

where, 

p = (26) 
γM 2 

 
σ = [μ(∇V + (∇V) )] + ∇[μ2(∇.V)] 

is the viscous stress tensor, V = u,v,w T is the velocity vector, ρ is the density, 
p is the pressure, T is the temperature, μ is the first coefficient of viscosity, 
μ2 is the second coefficient of viscosity and k is the thermal conductivity. The 
dimensionless parameters are the Mach number M , the Reynolds number Re, 
the Prandtl number Pr and the Eckert number Ec. 

The evolution in space and time of small amplitude perturbations imposed 
upon a base flow is very well described by the Linearized Navier-Stokes Equa- 
tions (LNSE). The linearization is made from the decomposition of the state 
vector q = (ρ, u, v, w, T ) into a steady laminar base flow and a small amplitude 
disturbance such as, 
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q(x, t) = q̄(x) + Eq̃(x, t), with   E « 1. (27) 

The O(1) equations resulting from the above are those which govern the base 
state and are satisfied by construction, the O(E2) equations are neglected, on 
account of smallness of the perturbation amplitudes, while the O(E) equations 
are the LNSE, that need to be solved, either as an eigenvalue problem (modal 
analysis) or as an initial value problem (non-modal analysis). In equation (27) 
the x is the space vector coordinator while t is time and E is a very small 
amplitude disturbance. 

The decomposition (27) is valid for one-, two- and three-dimensional base 
flows. In this work local analysis is performed, in which only the wall-normal 
spatial direction is taken as inhomogeneous in both the base flow and the 
amplitude functions. Two-dimensional parallel flow is assumed and only the 
streamwise velocity and temperature components extracted from the DSMC 
simulation are utilised. After performing separation of variables, the two ho- 
mogeneous directions are decomposed in Fourier space and the linearized equa- 
tions of motion are re-written as a system of ODE equations extensively dis- 
cussed by Mack [31–33]. Assuming x and z as the homogeneous spatial direc- 
tions, such that the base flow dependents only on the y spatial coordinate in      
a Cartesian frame of reference, modal perturbations can be written in a local 
context as: 

q̃(x, y, z, t) = q̂(y) expi(αx+βz−ωt) . (28) 

In a temporal framework, α and β are the wavenumbers in the streamwise 
and spanwise directions, respectively and ω is a complex eigenvalue solved 
for. Its real part, ωr, is related to the perturbation angular frequency, while 
the  imaginary  part,  ωi,  represents  the  damping  rate.  Dimensional  quantities 
are made dimensionless using an appropriate length scale, Lref and the edge 
streamwise velocity component, ue, as will be discussed shortly. 

Substituting equation (28) into the compressible LNSE the one-dimensional 
eigenvalue problem introduced and solved by [32, 33] is obtained. Written in 
compact form this  reads 

Lq̂ = ωq̂, (29) 

where q̂ is an one-dimensional amplitude function. The solution of this eigen- 
value problem determines if the flow is stable or unstable in a modal stability 
context [57]. This depends on the sign of the imaginary part of the complex 
parameter  ω.  If  ωi < 0 then the flow  is  modally  stable  and the perturbations 
decay in time. Otherwise, if ωi > 0 the flow is modally  unstable  and the per- 
turbations grow exponentially. The eigenvalue problem (29) is solved using the 
Li near Global instability for H ypersonic T ransition (LiGHT ) code [45, 46, 58, 
44]. The in-house code is written in Fortran  and it is suite of subroutines for  
the massively parallel solution of complex non-symmetric eigenvalue problems 
(EVP) and Singular Value Decomposition (SVD) problems arising in  linear  
fluid flow instability. In this paper, the local stability version of the code is  
used. 
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3.3.1 Spatial discretization 
 

The wall-normal direction η, introduced in (7) is discretized using high-order 
spectral collocation based on Chebyshev Gauss-Lobatto (CGL) points x∗j , 

x∗ = cos 
iπ 

, j = 0, N. (30) 
 

j N 
The solution of boundary-layer problem requires clustering of points close to 
the wall. Therefore, the well-tested mapping [56, 39, 46] is  used: 

1 x∗ 
ηj = l 

1 + s + x∗j 

 
, (31) 

where s = 2l and l = η 1 /(1 − 2η 1 ). In boundary layer linear stability problems 
half of the collocation points are placed between the wall and the parameter 
η 1 [36]; here η 1 = 0.2 has been used. 

   

2 2 

 
4 Results 

 
4.1 Gas  conditions  and geometric parameters 

 
Three sets of cases have been investigated: in Case 1 (air) and Case 2 (argon)  
the same free-stream conditions, T∞ = 190 K, P∞ = 34.04  Pa,  have  been  
used, corresponding to flight at an altitude of      55 km. In Case 3 (nitrogen)      
a set of parameters was chosen in order to obtain Mach 9 flow in the free- 
stream. The details of the simulation conditions are summarized in 1. For the 
first two cases these specific parameters were selected in order to try to obtain    
a M 4.5 at the edge of the boundary layer and compare results in relation to 
Mack’s second mode. Air was simulated as a gas mixture of 79% Nitrogen (N2) 
and 21% Oxygen (O2). Due to the relatively low Mach number no chemical 
reactions between the N2  and O2  have  been   considered. 

The full set of parameters used in the simulations can be found in table 1.   
In all three cases the flat plate upon which the boundary layer develops has a 
thickness of d = 0.5 mm and a circular  nose with radius r = 0.5mm; in the   
first two  cases the plate has a length of L = 1 m, while in the third case the  
plate length is shortened to L = 0.15 m, in order to keep the cost of unsteady 
DSMC computations that will be described in 4.3 within reasonable limits. In 
order for the domain to accommodate all flow effects expected a height of 0.4m 
was used in Cases 1 and 2, while a domain height of 0.05m was used in Case 3. 
Two-dimensional DSMC simulations were performed, the parameters of which 
are shown in table 2. The east side of the domain is defined as inflow, where 
particles enter the simulation domain and the west side as  outflow,  where 
every particle crossing the boundary is deleted. North and south sides are 
defined as symmetry planes, where every particle that hits these boundaries is 
specularly reflected back in the simulation domain. In the third case the surface 
boundary condition is set to diffuse reflection with full surface accommodation. 
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In all three cases in order to assure accuracy of particle collisions the collision 
partners were selected within a sphere with radius equal to the distance that  
the particle travels in one timestep according to the near-neighbor algorithm 
[13]. On the flat plate surface either isothermal or adiabatic diffuse reflection 
boundary condition has been imposed. Isothermal results  were  reported  in 
[25, 26] and here mostly adiabatic calculations are shown. Finally, in order to 
ensure numerical (DSMC) as well as physical (spatial and temporal) accuracy 
the cell size in each of the domains employed has been kept below one mean 
free path λ, while the time-step employed led to every particle entering a cell 
required on average five time steps to cross    the cell. 

Figure 4 shows a comparison of velocity and temperature pro√files for argon 
and air at a given location x = 0.7 m along the plate, where Rex ≈ 200, 
as obtained by DSMC and the compressible similar zero pressure gradient 
boundary layer equations. The different properties of the gases result in sub- 
stantially different boundary layer velocity and (especially) temperature pro- 
files, the wall temperature for Ar being 75% higher than that of air. When 
comparing the DSMC and boundary layer predictions it can be seen that the 
former is marginally thicker than the latter. The quantitative differences ob- 
served are attributed to the mild pressure gradient of the DSMC results at       
the streamwise location monitored, as well as to the slightly different value of 
the Prandtl number, which is taken to be constant in the boundary layer ap- 
proximation. Analogously good quantitative comparisons of base flow profiles 
obtained by DSMC under the isothermal wall boundary condition and com- 
pressible boundary layer solutions subject to slip velocity and temperature  
jump boundary conditions have been discussed recently in   [25]. 

 

4.2 Linear stability analysis of steady boundary layer profiles obtained by 
DSMC 

 
Eigenspectra pertaining  to the DMSC- and boundary-layer profiles obtained  
for air in Case 1 and Argon in Case 2 at a given two-dimensional wavenumber    
α = 0.2 are respectively shown in figures 5 and 6; the corresponding amplitude 
functions can be found in figures 7 and 8. In the plots showing the amplitude 
functions of air the location of the generalised inflection point (GIP) is also 
indicated by a dashed horizontal line. Both sets of results show that the linear 
instability properties of the profiles extracted from the DSMC simulations and 
those computed in the corresponding boundary layer approximation are qual- 
itatively identical and actually in close quantitative agreement. Only damped 
eigenvalues  have  been  found √at  all  sets  of  parameters,  as  expected  from  the 
relatively low values of Re = Rex. 

Interestingly, figure 5 also includes the eigenspectra of compressible bound- 
ary layer profiles in which the classic no-slip boundary condition is imposed, as 
well as that calculated from the neural network smoothing. The least damped 
discrete mode corresponding to the no-slip boundary layer profile is less stable 
than that pertaining to the profile in which the slip boundary conditions (4-5) 
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o  (32) 
∞ 

have  been imposed. The implication is that imposition of the no-slip bound-  
ary condition in the base flow profile leads to theoretical prediction of earlier 
boundary layer transition. On the other hand, the least damped discrete eigen- 
value pertaining to the smoothed data is marginally more stable  than that of  
the  raw  DSMC profiles. 

The acoustic branches pertaining to all four base flow profiles are prac- 
tically identical, as are (rather surprisingly), the frequencies of the leading 
discrete modes of the raw DSMC profile and that of the boundary layer  sub-  
ject to boundary conditions (4-5). The quantitative differences in the damping 
rates between the air and argon  damping  rate  results may  be attributed to  
the nonzero pressure gradient present in the DSMC results, seen in figure 1 
(lower); consequently, DSMC profiles are found to be stronger damped in their 
boundary  layer counterparts. 

The results shown are representative of others obtained at different com- 
binations of the (Re, α, β) parameters and not shown here for brevity. To the 
best of the authors’ knowledge these results establish, for the first time, the 
ability of the kinetic-theory based DSMC approach to predict steady laminar 
base flows of sufficient quality to be in close agreement with the established, 
Navier-Stokes/boundary-layer-equations-based linear stability theory [31–33]. 
Our results also demonstrate that imposition of the no-slip boundary condition 
on the base flow profiles leads to prediction of less damped / more unstable 
leading discrete eigenmodes compared to those found when the slip boundary 
condition is imposed. 

 
4.3 Vortex Generator definition and evolution of waves introduced in the 
boundary  layer 

In the presently studied Case 3, vortical perturbations are introduced inside   
the boundary layer by a jet of high-density particles through an orifice of 
diameter Do =  1 mm, placed at xo =  1 cm from the leading edge. The  jet 
pulsates periodically at an excitation frequency fe = 277.77kHz and particles 
are injected with a velocity magnitude of Uo = 4000 m/s at an angle of 60 
degrees to the plate, at a temperature of To = 245.45 K. Each time the jet fires 
about 105 particles enter the domain and the mass flow rate that passes from 
a surface with a length of 20 computational cells is ṁ  = 3.76 × 10−4 kg/s. The 
reduced momentum coefficient, Cμ, and reduced frequency, F +, corresponding 
to the jet actuation are respectively defined [17] as 

  ρoU 2Do Cμ = = 0.268, 
ρ∞U 2 Lx 

and 
F + = 

fexo = 0.983. (33) 
Ue 

Here, Ue is the local edge velocity at the location xo of the orifice. On account    
of  the  rather  large  jet  velocity,  Uo,  chosen  in  the  simulations,  the   reduced 
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momentum coefficient is substantially  larger  than  that  which  was  found  to 
be adequate for the excitation of linear perturbations in the boundary layer 
experiments of Greenblatt and Wygnanski [17], while the reduced frequency 
value is of the same  order  of  magnitude  as  that  found  in  experiments.  A  
full discussion of technical details regarding the implementation of the jet 
generation can be found in [40]; here  the  essential  details  are  outlined. At  
the start of the simulation, properties of the particle group that is going to be 
inserted such as number density, velocity components and thermal temperature 
are defined. At every  timestep  inside  each  grid  cell  that  overlaps  with  one 
or more emitting surface elements the number of particles to be added is 
computed, according to eq. (4.22)  in  Bird  [3].  The  number  of  particles  to  
be inserted is based on the molecular  flux  calculated  by  this  equation  and 
also from properties like the ratio fnum of the injected particles  to those in   
the flow, the overall  number  density,  velocity  components  and  temperature 
of the injected particles, as well as the fraction of the surface element that 
overlaps with the corresponding insertion grid cell and the cell orientation with 
respect to the streaming velocity.  All of these properties  can be user-defined,  
as detailed in [40]. 

A qualitative image of the perturbations generated can be seen in figure 9.  
In the lower image of this figure two white lines are marked, one inside in the 
boundary layer at a distance 0.001m from the plate surface, and another one 
close to the shock, at a distance 4.4 mm from the flat plate and at an angle φ   = 
13.19◦ to the plate. On these lines unsteady flow data are extracted and post- 
processed; results will be discussed shortly. In figure 10 (upper) the evolution  
in time of the total number of particles in the simulation is shown. Immediately 
after the jet firing has started at t = 0, an increase in the number  of particles  
can be seen, as expected due to the addition of new particles in the simulation 
domain and a steady state is reached after t  0.2 ms. As the injection of  
particles continues, a new periodic state is arrived at around t 0.54 ms, as 
shown in the inset figure. Results discussed in what follows are extracted from 
the DSMC simulation during this time window, in which a zero-net-mass state, 
in which the number of particles entering and exiting the simulation domain     
is the same, has been established. At around t 0.67 ms the  injection  of 
particles ceases and the flow returns to its previously established steady state,  
as evidenced, for example, by the streamwise velocity profile at x = 0.05 m, 
shown before (’pre’) and after (’post’) the action of the vortex generator in the 
lower  part of figure 10. The entire evolution can be seen in a video submitted   
as Supplemental Material to this    article. 

Figure 11 presents the wall-normal component of the velocity as a function 
of the streamwise spatial coordinate at a height of 1.5 mm, at two successive 
timesteps, t1 = 0.549 and t2 = 0.551 ms, within the time interval 0.54     t 
0.66 shortly  after  the  zero-net-mass  injection  conditions  shown  in  figure 10 
had been established. This quasi-periodic signal, as well as others extracted at 
different heights within the boundary layer, but not shown here for brevity, can 
be seen to decay exponentially with x along the downstream spatial direction.  
In order to compare the characteristics of this signal with the theoretical   result 
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of the least damped linear instability, an exponential curve fit was constructed, 
in the form 

y = Aeσx + C (34) 

the parameters taking the values A = 508.86,σ =  40.32 and C = 25.60;   
the curves resulting from damping rates with an error bar of 10% are also 
indicated on this figure. 

The steady laminar boundary layer profile at x = 0.04 m was subsequently 
analysed at the parameters shown in Table 3. Figures 12 and 13 respectively 

present the eigenspectrum and the eigenfunctions of the leading damped modes 
of this flow, as predicted by solution of the eigenvalue problem pertaining to the 
DSMC profile; the respective dimensionless and dimensional results are shown 
in table 4. Figure 13 presents the amplitude functions of the least damped flow 

perturbation, denoted as Mode 1, alongside the second in significance linear 
perturbation at these parameters, denoted as Mode 2 and identified as the 

compressible analog of a Tollmien-Schlichting (TS) wave. Interesting as it may 
be, the fact that a TS wave exists in the eigenspectrum of the steady laminar 

DSMC profile is less significant than the ability of the kinetic theory to capture 
as damped periodic oscillation the leading eigenmode of the underlying steady 
boundary layer profile. The  dimensional  value  of  the  damping rate obtained 

in the stability analysis is used as σ to construct the curve-fit equation (34) 
plotted in figure 11, where an error bar corresponding to 10% deviation from 

the value of σ used is also indicated. The results leave little doubt that the 
damped oscillation generated by the action of the pulsating jet is that captured 

as Mode 1 in the linear stability analysis of the steady laminar DSMC profile. 
Finally, figure 14 presents the wall-normal velocity component inside the 

boundary layer, already shown in figure 11, alongside the value of the same 
quantity along the oblique line shown in figure 9 below the shock. It can clearly 

be seen that the oscillation inside the boundary layer is synchronized with the 
footprint of the shock oscillation. In order to quantify the oscillations, the two 

signals are Fourier transformed and the result is shown in the lower part of the 
figure 14. It can be seen that the wavenumber of the oscillation inside the 

boundary layer, 
1 α 

= 
Lx 2πLref 

≈ 100 
m

, (35) 

can also be found in the signal measured below the shock, although the peak 
wavenumber of the shock oscillation is slightly  displaced  toward  lower  val- 
ues; in other words, the waves propagating along the shock are found to have 
slightly larger wavelengths than those inside the  boundary  layer.  Addition- 
ally, it is interesting to note that the lower wavenumber content of the shock 
oscillation is consistently higher than that inside the boundary layer. The di- 
mensional frequency of the leading damped mode inside the boundary layer  
can be computed from the (dimensionless) result for ωr by 

f = ω 
    ue  

r 2πLref 
≈ 288.6 kHz, (36) 

and is seen to be within 4% of the jet oscillation frequency. 
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5 Summary 
 

Laminar hypersonic flows of air, argon and nitrogen over a flat plate have been 
computed  by  highly-resolved  DSMC  simulations  in  the  Mach  number range 
4.5  Ma  9. Boundary layer  profiles extracted  from the DSMC simulations  
have  been analysed with respect to their linear modal  instability. Results in   
air and argon have been compared with those pertinent to the corresponding 
compressible zero pressure gradient boundary layer profiles, in which wall slip 
was taken into consideration. In both gases the acoustic branches obtained in 
the DSMC and the boundary layer analyses were indistinguishable, while the 
leading members of the discrete spectrum of the DSMC profiles were found      
to have practically identical frequencies with their boundary layer counter- 
parts. Owing to the pressure gradient in the DSMC simulations, the DSMC 
profiles were found to be consistently more stable than those in the model 
boundary layer, the differences being smaller in air than in argon. Smoothing  
of the DSMC profiles was found to marginally stabilize the flow. By contrast, 
imposition of no-slip in the boundary layer profile  that modeled the DSMC  
data was found to have the opposite effect, which can lead to prediction of 
earlier transition location. However, only quantitative and no qualitative dif- 
ferences were found throughout the range of parameters explored. The results 
obtained demonstrate, for the first time, that the kinetic approach delivers 
flowfields that satisfy the stringent linear stability analysis requirements of 
accuracy of the steady basic flow and its derivatives   [23, 8, 47]. 

Subsequently, the boundary layer developing on the flat plate was per- 
turbed by zero net mass flux jet oscillations and two important points were 
demonstrated. Firstly, despite the relatively large  momentum  injection  into 
the boundary layer, the unsteady perturbations generated within the DSMC 
framework are consistent with predictions of linear local stability theory of the 
underlying steady laminar profile set up when the action of the jet oscillation 
ceases. Secondly, the oscillations inside the boundary layer are synchronized 
with those generated along the leading-edge shock during the unsteady jet mo- 
tion: the wavenumbers of the leading perturbation inside the boundary layer  
and that of the wave propagating along the shock are  practically  identical, 
while the relative difference in the frequency of the shock oscillation and that   
of the leading eigenmode of the steady DSMC profile is less than 4%. 

In this respect, the  DSMC  method,  which  fully  resolves  the  shock  layer 
at all compressible flow conditions, may  be  optimally  suited  to  interrogate 
the coupled shock layer and boundary layer regions with respect to the linear 
stability properties of the supersonic or hypersonic field in question. 
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Case 1 Case 2 Case 3 
Air Ar N2 

Mach  number, M∞,   [-] 4.74 5.11 9.39 
Reynolds number, ReL,  [-] 60354 71394 11859 
Prandtl number, Pr,  [-] 0.72 2/3 0.72 
Specific  gas  constant,  R,   [J kg−1 K−1] 287.00 208.13 296.80 
Ratio of specific heats,  γ  [-] 7/5 5/3 7/5 
Plate  length, L,   [m] 1.0 1.0 0.1 
Nose radius, r0,  [m] 5 × 10−4 5 × 10−4 5 × 10−4 

Free-stream  velocity,  u∞ [m s−1] 1310 1310 3000 
Free-stream  temperature, T∞  [K] 190 190 245 
Free-stream  density,  ρ∞ [kg m−3] 6.04 × 10−4 8.60 × 10−4 6.04 × 10−4 

Free-stream  viscosity,  μ∞,   [N s m−2] 1.311 10−5    1.578 10−5    1.528 10−5 

Reference  viscosity,  μref   [N s m−2] 1.719 10−5    2.117 10−5    1.656 10−5 

Reference  temperature, Tref   [K] 273 273 273 
Wall  temperature, Tw   [K] Adiabatic Adiabatic 245.45 

Table  1   Gas constants, plate geometry and pre-shock free-stream  conditions 

 
Case 1 Case 2 Case 3 

Air Ar N2 
 

Knudsen number, Kn 0.0187 0.0212 0.0897 
Number of Particles,  Np, [-] 1.2 109 1.2 109 7.2 108 

Number  density, [Np m−3] 1.297 1022    1.297 1022    1.297 1022 

Timestep, dt,  [s] 1.8 10−8 1.8 10−8 1.8 10−9 

Transient period [timesteps] 300000 300000 250000 
Samples 80000 80000 Instant 
Mean free path,  λ,  [m] 9.11 10−5     8.91 10−5     1.01 10−4 

Power law exponent,  ω, [-] 0.75 0.81 0.74 
 

Table  2    DSMC simulation parameters 
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Mach √number, Me, [-] 

 
 

40.296 47.537 148.850 
 
 

Table 3   Boundary layer parameters 
 
 
 
 
 
 
 

Spanwise wavenumber,  β [   ] 
cBL ωr [-] 0.1818 0.1846 - 
DSMC ωr [-] 0.1824 0.1850 0.3169 
cBL ωi [-] -0.0029 -0.0021 - 
DSMC ωi [-] -0.0039 -0.0039 -0.0206 
cBL Dimensional frequency, f [kHz] 11.523 11.586   - 
DSMC Dimensional frequency,  f [kHz] 11.557 11.610 288.640 
cBL  Amplification/damping rate, [1/m]  -0.91  -0.64   - 
DSMC  Amplification/damping rate, [1/m]  -1.21  -1.21  -40.32 

 
Table 4   LST parameters and results 

 Case 1 
Air 

Case 2 
Ar 

Case 3 
N2 

 
4.55 

 
4.50 

 
6.99 

Re = Rex, [-]  214.0 213.7 78.1 
Streamwise  location, x, [m] 0.70 0.70 0.04 
Slip velocity, uslip,   [m s−1] 24.28 34.89 103.62 
Edge velocity, ue,  [m s−1] 1301.7 1291.5 2924.0 
Edge  temperature,  Te,  [K] 202.90 238.41 421.00 
Edge  density,  ρe,   [kg m 3 

− ]    
Edge pressure, pe,   [Pa] 

6.91 × 10 4 9.59 × 10 4 1.19 × 10 3 

Edge  viscosity,  μe,   [N s m−2] 
Wall  temperature,  Tw [K] 

1.376 × 10−5 

887.77 
1.896 × 10−5 

1469.66 
2.282 × 10−5 

416.73 
 

 Case 1 
Air 

Case 2 
Ar 

Case 3 
N2 

Length scale, Lref  [mm] 
 

3.269 
 

3.276 
 

0.511 
Streamwise  wavenumber,  α [−] 0.20 

0 
0.20 

0 
0.32 

0 
 



Linear stability analysis of hypersonic boundary layers computed by a kinetic approach   19 
 

 
 

 

 
 
 
 

 

  
 

Fig. 1 Upper: Streamwise velocity component at steady state in the DSMC simulation for 
argon. Lower: Pressure along the plate at the boundary layer edge (y = 0.0014m) for argon 
and air. 
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Fig. 2 Schematic of the Stack Autoencoder Neural Network used to smooth DSMC simu- 
lation data. [42] 

 
 

 

 
 

Fig.  3  Comparison of raw DSMC data and the smoothed profiles at x = 0.7m, obtained  
by the neural network discussed in section 2.2 for air at the parameters of tables 1 and 2 
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Fig. 4 Velocity and temperature profiles obtained by DSMC in argon and air (solid) at x = 
0.7m and comparison with corresponding boundary layer solutions (dashed). The velocity 
slip computed in DSMC and calculated by equations (4-5) is shown in table  3. 
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Fig. 5 Eigenvalue spectra of raw and smoothed DSMC data, compared with compressible 
boundary layer (cBL) spectra under slip and no-slip boundary conditions on the base flow at 
the parameters of Case 1. The discrete eigenvalue obtained on the profiles including velocity 
slip and temperature jump for the boundary layer is ωBL = 0.181859 − 0.00298i, while that 
corresponding to the raw DSMC data is ωDSMC = 0.182390 − 0.00396i. 
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Fig. 6 Eigenvalue spectra of DSMC and compressible boundary  layer  (cBL)  profiles  for 
argon at the parameters of Case 2. The respective discrete eigenvalues are ωBL = 0.184651 − 
0.00209i and ωDSMC = 0.185048 − 0.00396i. 

ω
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Fig. 7 Normalized amplitude functions of linear perturbations in air, at the parameters of 
figure 5. The location of the generalized inflection point (GIP) is indicated by a horizontal 
line 
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Fig. 8  Normalized amplitude functions of linear perturbations in argon, at the parameters  
of figure 6. 
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Fig. 9 Comparison of steady state (above) and disturbed velocity field (below). The white 
lines show the measurements positions close to the shock and in the boundary layer. The 
measurements close to the shock where taken along a 14-degree angle line. 
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Fig. 10 Upper: Total number of particles in the simulation as a function of time. The inset 
shows a magnified view of mass-neutral oscillations generated. Lower: Wall-normal velocity 
component, sampled at steady state at x  = 0.05m, and instantaneous velocity obtained     
at t = 0.75ms, after the jet stops emitting; the location of the shock is clearly visible at       
y ≈ 0.015m. 
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Fig. 11 Wall-normal velocity component inside the boundary layer at a height of 0.0015m 
from the wall, as a function streamwise coordinate; black and red indicate raw data at two 
successive time steps. Also shown in an exponential curve of the form y = Aeσx + C with 
A = 508.86,σ = 40.32 and C = 25.60. On the curve fit, a 10% error bar in the damping 
rate σ is also marked. 

Vy at 0.549ms 
Vy at 0.551ms 
Exponential Fit 
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Fig. 12  Eigenvalue spectrum of the DSMC profile of nitrogen flow at Me = 6.99, 
√

Rex = 
78.1 and wavenumbers α = 0.321 and β = 0; quantitative results for the least-damped 
discrete mode are shown in table 4. 
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Fig. 13 Normalized disturbance amplitude functions corresponding to the leading discrete 
damped mode shown in in figure 12. Shown with dashed lines are the amplitude functions 
of the second in significance Mode2, actually a TS wave. 
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Fig. 14 Upper: Streamwise disturbance amplitude as extracted from the DSMC signal in 
the boundary layer (black) and in the shock (red). Lower: Fourier decomposition of two 
signals using the same color code. 
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