
 

 

Interpretive summary: Digital dermatitis and infrared thermographic imaging  1 

Anagnostopoulos A. et al. 2 

We investigated the association between bovine digital dermatitis lesions and the interdigital 3 

skin temperature measured by infrared thermography. All clinical stages of digital dermatitis 4 

were associated with increased foot skin temperature. Feet with active lesions were recorded 5 

having higher mean interdigital skin temperature, compared to feet with chronic, inactive 6 

digital dermatitis lesions and non-affected feet. This finding led to the development and 7 

validation of predictive models that use interdigital skin temperature readings, among other 8 

variables, as input in order to distinguish between feet affected with active digital dermatitis 9 

and non-affected feet or feet bearing chronic digital dermatitis lesions.  10 
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ABSTRACT 25 

Our aims were to (i) determine how interdigital skin temperature (IST), measured using 26 

infrared thermography, was associated with different stages of digital dermatitis (DD) lesions 27 

and (ii) develop and validate models that can use IST measurements to identify cows with an 28 

active DD lesion. Between March 2019 and March 2020, infrared thermographic images of 29 

hind feet were taken from 2,334 Holstein cows across four farms. We recorded the maximum 30 

temperature reading from infrared thermographic images of the interdigital skin between the 31 

heel bulbs on the hind feet. Pregnant animals were enrolled approximately one to two months 32 

pre-calving, re-assessed a week after calving and finally at approximately 50-100 days 33 

postpartum. At these time-points, IST and the clinical stage of DD (M-stage scoring system: 34 

M1-M4.1) were recorded in addition to other data such as the ambient environmental 35 

temperature, height, body condition score, parity and the presence of other foot lesions. A 36 

mixed effect linear regression model with IST as the dependent variable was fitted. Interdigital 37 

skin temperature was associated with DD lesions; comparing to healthy feet IST was highest 38 

in feet with M2 lesions followed by M1 and M4.1 lesions. Subsequently, the capacity of IST 39 

measurements to detect the presence or absence of an active DD lesion (M1, M2, or M4.1) was 40 

explored by fitting logistic regression models which were tested using ten-fold validation. A 41 

mixed effect logistic regression model with the presence of active DD as the dependent variable 42 

was fitted first. The average area under the curve (AUC) for this model was 0.80 when its 43 

ability to detect presence of active DD was tested on ten percent of the data that were not used 44 

for the model’s training; an average sensitivity of 0.77 and an average specificity of 0.67 was 45 

achieved. This model was then restricted so that only explanatory variables which could be 46 

practically recorded in a non-research, external setting were included. Validation of this model 47 

demonstrated an average AUC of 0.78 and a sensitivity of 0.88 and a specificity of 0.66 for 48 

one of the time-points (pre-calving). Lower sensitivity and specificity were achieved for the 49 



 

 

other two time-points. Our study adds further evidence to the relationship between DD and foot 50 

skin temperature using a large dataset with multiple measurements per animal. Additionally, 51 

we highlight the potential for infrared thermography to be utilised for routine on-farm diagnosis 52 

of active DD lesions.  53 
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INTRODUCTION 56 

Bovine Digital Dermatitis (DD) is a major cause of lameness in dairy cattle and is a disease of 57 

increasing economic and welfare importance (Evans et al., 2016). Digital dermatitis lesions are 58 

most frequently found on the plantar skin of the hind feet bordering the interdigital space. 59 

Lesion appearance can vary but lesions usually appear as circumscribed, erosive to 60 

papillomatous lesions surrounded by a ridge of hyperkeratotic skin bearing hypertrophied hairs 61 

(Read and Walker, 1998). Digital dermatitis is a multifactorial infectious disease and many 62 

bacterial species have been isolated from lesions; Spirochaetes, specifically Treponema 63 

species, have been demonstrated to play a key role in disease aetiopathogenesis (Evans et al., 64 

2016). 65 

Accurate diagnosis of DD requires restraint of the cow in a hoof trimming chute to lift and 66 

examine each foot. This process is labour intensive and limits the number of cows which can 67 

be examined in a short period of time. Therefore, various diagnostic approaches to identify 68 

affected hind feet of cows in the milking parlour have been developed (Yang and Laven, 2019). 69 

Although inspecting hind feet in the parlour significantly improves the efficiency of DD 70 

diagnosis, early-stage or small lesions can be missed. Furthermore, as gross contamination of 71 

the distal limb can obscure DD lesions, the requirement to wash cows’ feet can potentially 72 

compromise udder hygiene (Oliveira et al., 2017). 73 

Infrared thermography has been widely used in veterinary medicine in order to detect 74 

temperature changes caused by inflammatory conditions including digital dermatitis and other 75 

lameness causing foot lesions (Wood et al., 2015). Measuring the maximum temperature of the 76 

plantar aspect of the hind feet and using a maximum temperature cut-off of 27 ℃, Stokes et al. 77 

(2012) achieved an 80 % sensitivity and 73% specificity in diagnosing the presence of any foot 78 

lesion. An increase in the temperature of the coronary band associated with the presence of DD 79 

lesions was described by Alsaaod et al. (2014). Using the difference in maximum temperature 80 



 

 

of the coronary band between front and hind feet and a cut-off in temperature difference of 81 

0.99 ℃ a combination of 89.1% sensitivity and 66.6% specificity was achieved.  82 

Digital dermatitis lesions can be classified according to the M-stage scoring system which is 83 

based on the gross appearance of the lesion (Berry et al., 2012). These stages can be broadly 84 

divided into active lesions (M1, M2 and M4.1) and healing or chronic lesions (M3 and M4 85 

respectively) (Zinicola et al., 2015). Active lesions are more likely to be painful whereas 86 

healing and chronic lesions are painless, although they can transition back to an active state 87 

(Palmer and O’Connell, 2015; Biemans et al., 2018). Given that active lesions are more painful 88 

and possibly more likely to be a source of infection (Beninger et al., 2018), they are the main 89 

focus of routine diagnostic and treatment efforts. As the M-stages differ in size, severity and 90 

histological profile, it is reasonable to assume that such differences may be reflected on the 91 

local skin temperature.  92 

The objectives of our study were to (i) determine how interdigital skin temperature (IST), 93 

measured using infrared thermography, was associated with different stages of DD lesions and 94 

(ii) develop and validate models that can use IST to identify cows with an active DD lesion.  95 

 96 

MATERIALS AND METHODS 97 

Farm selection  98 

The study was approved by the University of Liverpool Research Ethics Committee 99 

(VREC466ab, VREC269a). Data collection was conducted alongside a project on the 100 

aetiopathogenesis and genomic architecture of resistance to claw horn disruption lesions which 101 

enrolled 2,353 Holstein cows across four farms in the North of England and Wales. Farm 102 

selection for this project was based on proximity to the University of Liverpool Leahurst 103 

Campus and on farmers’ willingness to collaborate. 104 



 

 

Data collection 105 

All purebred Holstein cows with an expected calving date between March and December 2019 106 

were eligible for enrolment. Cows and nulliparous heifers were enrolled approximately 60 to 107 

30 days before their expected calving (“pre-calving”). Data were collected again at 108 

approximately one week (“calving”) and 50-100 days (“early lactation”) postpartum. 109 

At each assessment time-point (“pre-calving, “calving” and “early lactation”), thermal images 110 

of hind feet were taken and foot lesions from all limbs were recorded and graded according to 111 

severity. All feet were lifted and examined by a qualified veterinarian. DD lesions were scored 112 

using the M-stage scoring system. All other lesions were recorded based on the ICAR claw 113 

health atlas (Egger-Danner et al., 2014). Mobility score was recorded as described by the UK 114 

Agricultural and Horticultural Development Board (Reader et al., 2011). Body Condition Score 115 

(BCS) was assessed using a 1-5 scale with 0.25 increments (Ferguson et al., 1994). The sacral 116 

height was recorded to the nearest 5 cm. Ambient environmental temperature was recorded at 117 

the start and end of each data recording session. Data collection was the same at all three time-118 

points except at the “calving” time-point on one farm (farm three) during which only hind feet 119 

were inspected for lesions. All cows had routine foot-trimming conducted by farm or research 120 

staff at (or close to) the “pre-calving” and “early lactation” time-points. 121 

Thermal Imaging  122 

Images were taken of the plantar aspect of the foot from a 30 cm approximate distance using a 123 

thermal camera (FLIR E8-XT, FLIR Systems, Oregon, US). Feet were not washed prior to 124 

thermal imaging and the skin between the heel bulbs was not cleaned. Sole temperature was 125 

also recorded for the purposes of the main study; for this reason manure was quickly wiped off 126 

in cases where the sole was not visible. Emissivity value was set at 0.95. Using the FLIR Tools 127 



 

 

software and the maximum temperature search tool, a circular search area was chosen between 128 

the heel and the accessory bulbs and the maximum IST was recorded (Figure 1).  129 

Statistical analysis  130 

All data were recorded in Microsoft Access and analysed using R (R Development Core Team 131 

3.6., 2019). Records of feet at each assessment time-point were only included in subsequent 132 

analysis if IST had been recorded and if the hind foot had been inspected for lesions (2,349 133 

/2,353 cows). Additionally, records were excluded at each time-point if other data were missing 134 

(e.g. BCS); consequently records from 2,334 cows were retained for statistical analysis. The 135 

ambient temperature recorded at the start and end of each data collection session was averaged. 136 

If one of these measurements was missing then the single measurement was used instead 137 

(1,111/12,221 records); if both were missing (282/12,221 records) then the mean temperature 138 

recorded that day was used; finally, if no ambient temperature was recorded on that day then 139 

the mean of the farm at that assessment point was used. Parity was considered as a two-level 140 

variable which identified primiparous and multiparous animals. Farm and assessment time-141 

point were treated as four-and three-level categorical variables respectively. BCS was binned 142 

into three categories: ≤2.5, 2.75-3.25 and ≥3.5; similarly, sacral height was binned as: <145cm, 143 

145-150cm and >150cm. Mobility score (0-3) was kept as a four-level categorical variable. 144 

Foot lesions on hind feet other than DD were summarised into a single binary variable to 145 

indicate the presence or absence of a foot lesion other DD. Finally, foot was included as a two-146 

level variable (i.e. left-hind or right-hind). 147 

(i) Factors affecting IST 148 

Univariable linear regression analysis was conducted using IST as the dependent variable. 149 

Ambient temperature, farm, assessment time-point, parity, BCS, height, mobility score, foot, 150 



 

 

DD stage (healthy, M1-M4.1) and presence of non-DD foot lesions were analysed to assess 151 

their association with IST.  152 

All explanatory variables with P < 0.1 in the univariable analysis were fitted into a 153 

multivariable model using the lme4 package (Bates et al., 2015). An automated backwards 154 

stepwise selection process was performed using the MASS package (Venables and Ripley, 155 

1996), whereby the Akaike information criterion (AIC) was assessed following the removal of 156 

each covariate from the model. To account for the repeated measures within each cow, the cow 157 

identity was included as a random effect in the model. Once the most parsimonious model had 158 

been determined, the covariates were assessed for multicollinearity and all two-way 159 

interactions were assessed. Significant interaction terms (Wald chi-squared test < 0.05) were 160 

plotted to assess their biological plausibility and relevance. Residual errors were plotted to 161 

check for normality and homoscedasticity. The estimated marginal means for IST, as predicted 162 

by the model, were calculated for each stage of DD using the emmeans package (Lenth et al., 163 

2020). Pairwise comparisons were made using Tukey's Honestly Significant Difference test. 164 

(ii) Detection of active DD lesions using IST measurements 165 

The aim of this analysis was to determine the capacity of IST measurements to identify cows 166 

with active DD lesions. Univariable analysis included ambient temperature, IST, farm, 167 

assessment time-point, parity, BCS, height, mobility score, foot, and the presence of non-DD 168 

foot lesions. Interdigital skin temperature and ambient temperature were combined into a 169 

composite index. This index (adjusted IST) was calculated as the difference between the 170 

recorded IST and the predicted from the regression of IST on ambient temperature IST, centred 171 

around the mean ambient temperature recorded during the study. The formula used was: 172 

Adjusted IST= IST – (a - (b*(Ambient Temperature – Study Mean Ambient Temperature))). 173 

Values a (17.52) and b (0.49) are derived from the multivariable linear regression model 174 



 

 

describing the relationship between IST and Ambient temperature. The Study Mean Ambient 175 

Temperature refers to the overall across farms average of all Mean Ambient Temperatures 176 

recorded and is equal to 15.28℃. 177 

The multivariable model was constructed in a similar way as described above using the same 178 

R packages. All significant explanatory variables from univariable analysis were fitted and then 179 

removed in an automated stepwise process based on the resulting AIC of the model. Cow was 180 

included in the model as a random effect. Covariates were assessed for multicollinearity and 181 

all two-way interactions were assessed. This mixed effect model failed to consistently converge 182 

when potential interactions were included and therefore no interaction terms were included in 183 

the final model. In order to test the classification capability of this model, validation on 10% 184 

of the dataset was performed ten times. The dataset was randomly partitioned into a training 185 

dataset containing 90% of the animals and a testing dataset with the remaining 10%. The model 186 

was fitted on the training dataset and used to plot an ROC. The cutpointr package (Thiele, 187 

2019) was used to determine the optimal cut-off of predicted probability to detect the 188 

presence/absence of an active DD lesion for a maximum sensitivity whilst retaining a minimum 189 

specificity of 0.65. The model was then used to detect the presence of an active DD lesion on 190 

the testing dataset using the optimal cut-off to dichotomise results and calculate a confusion 191 

matrix. This process was repeated ten times and the results were averaged. The same model 192 

and validation process were fitted again but with the aim to detect only the presence of M2 193 

stage DD. 194 

A simpler, more practical model (“farm friendly”) was then considered that could theoretically 195 

be used to identify presence of active of DD in an external population from different farms. 196 

Specifically, assessment time-point, farm and the random cow effect were removed from this 197 

“farm friendly” model as they were specific to our study population. Furthermore, data that 198 

would be difficult to record would limit the practical application of the model and therefore the 199 



 

 

presence of other foot lesions was also excluded. As the random effect of cow was not retained 200 

in this model we fitted three models separately at each time-point to avoid the effects of 201 

clustering.  202 

RESULTS 203 

A total of 2,334 cows were included in this project, providing a total of 12,221 hind feet with 204 

lesion records and thermal images for analysis. Descriptive data for the study population are 205 

summarised in Table 1. 206 

(i) Association of IST with DD lesions  207 

The final linear mixed effect model with IST as the dependent variable included ambient 208 

temperature, farm, assessment time-point, parity, BCS, height, mobility score, foot, and 209 

presence of non-DD foot lesions as fixed effects, and cow as a random effect. Results from this 210 

model are presented in Table 2. The adjusted means for IST for each stage of DD are presented 211 

in Table 3 together with all pairwise comparisons between stages. All DD stages resulted in a 212 

statistically significantly higher IST compared to feet with no DD lesions; M2 lesions were 213 

associated with the highest IST. The ambient temperature alone explained a substantial 214 

proportion of the variation in IST (R2: 0.26). In the final model, the fixed effects component 215 

explained 42.04% of the variation in IST; 17.10% was explained by the random effect (cow). 216 

 217 

(ii) Identification of active DD lesions based on IST 218 

The results of the mixed effect logistic regression model with presence of active DD as the 219 

dependant variable are presented in Table 4. The final model included adjusted IST, farm, 220 

assessment time-point, parity, BCS, height, and presence of non-DD foot lesions as fixed 221 

effects and cow as a random effect. The AUC for this model was 0.97 when using 90% of the 222 



 

 

data in the training and was 0.80 when the model was fitted on the 10% of the data that were 223 

not used for model training. The ten-fold validation process produced an average sensitivity 224 

and specificity (achieved when the model predictions were applied on the 10% of the data that 225 

were not used to train the model) of 0.77 and 0.67 respectively (Table 5). Univariable analysis 226 

indicated that adjusted IST explained a substantial proportion of the variation in the probability 227 

of an active DD lesion being present (pseudo-R squared: 0.229). The relationship between 228 

adjusted IST and the model predicted probability of an active DD lesion being present is 229 

displayed in Figure 2. 230 

The mixed-effects model detecting only the presence of M2 stages of DD achieved and average 231 

AUC of 0.86 (when fitted on the 10% of the data not used for the training of the model). The 232 

ten-fold validation process produced a combination of 83.11% average sensitivity and 70.64% 233 

average specificity. 234 

The more practical (“farm friendly”) logistic regression model, with active DD as the 235 

dependant variable, included adjusted IST, height, BCS and parity as the only explanatory 236 

variables. Separate models were fitted for each assessment time-point and all explanatory 237 

variables remained significant (P < 0.05) in the model in each instance. The average AUC was 238 

0.78 for this model across all time-points and following a ten-fold validation. The average 239 

sensitivities and specificities achieved after ten-fold validation for this model at each 240 

assessment time-point are shown in Table 5. 241 

 242 

DISCUSSION 243 

We show here that DD lesions are strongly associated with IST (as measured with infrared 244 

thermography). M2 stage lesions were associated with the highest IST; all DD stages were 245 

associated with a statistically significant increase in IST comparing to feet with no DD lesions. 246 



 

 

The mixed effect logistic regression model was effective in identifying the presence of active 247 

DD with an AUC of 0.80; the more practical, “farm friendly”, model still achieved an AUC of 248 

0.78. When tested on 10% of the data the mixed effect model achieved an average sensitivity 249 

of 76.94% and an average specificity of 67.04%. The “farm friendly” model tested in the same 250 

way on the “pre-calving” data achieved an average sensitivity of 88.14% and an average 251 

specificity of 65.83%. However, sensitivity and specificity was lower at the other two time-252 

points. 253 

To the best of our knowledge, this is the first study to investigate differences in IST between 254 

different stages of DD lesions, utilising a large dataset. As expected, M2 stage lesions had the 255 

highest mean IST reading; these lesions cover a large area of the foot and are associated with 256 

severe inflammatory signs. M1 stage lesions also resulted in higher IT compared to M0 and 257 

M4 lesions. M3 lesions are considered to be healing lesions (Biemans et al., 2018; Döpfer et 258 

al., 2012); our data show that there were no significant IST differences between them and M1 259 

lesions (which are considered early-stage, active lesions).  260 

Foot skin temperature measurements have been previously found to be affected by many 261 

factors associated with the cows’ production stage and health and with environmental 262 

conditions (Alsaaod et al., 2015). Ambient temperature explained 10% of the variation in IST 263 

measurements in a study by Stokes et al. (2012). In our study, 25% of the variation in IST 264 

measurements was explained by ambient temperature. This may be due to the fact that our data 265 

collection lasted approximately 12 months, with the lowest ambient temperature being 1.6 ℃ 266 

and the highest 30.8 ℃. The difference in mean IST between right and left feet could be 267 

explained by the positioning and orientation of the chutes in different farms. In farm three, for 268 

example, where the largest amount of data was collected, the right side of the chute was always 269 

under shade while the same was not the case for the left side. Primiparous animals in farms two 270 



 

 

and three had higher IST readings than multiparous animals; similar findings have been 271 

reported previously (Nikkhah et al., 2005). 272 

When the mixed effect model identifying the presence of active DD lesions was validated on 273 

10% of the data, the average achieved sensitivity was 76.94% and the average achieved 274 

specificity was 67.04%. The practical, “farm friendly” model produced similar results when it 275 

was validated on data from the “pre-calving” time-point (average sensitivity of 88.14%, 276 

average specificity of 65.83%). A threshold for minimum specificity of 65% while aiming for 277 

maximum sensitivity was set in this analysis because, when attempting to maximise the sum 278 

of sensitivity and specificity, the produced cut-off would result in high specificity values 279 

(>85%) but poor sensitivity values (<50%). Decreased specificity when aiming for better 280 

sensitivity was associated with the fact that M1 lesions had similar mean IST to M3 lesions. In 281 

addition, other lesions (especially severe sole ulcers, white line disease and toe ulcers) were 282 

also found to substantially increase the IST. Investigating every different foot lesion separately 283 

was beyond the scope of the present study but could be the aim of future work. The predictive 284 

capabilities of our models appear to be better than models developed previously that used 285 

infrared thermography to predict oestrus (Talukder et al., 2014) but worse than models 286 

developed to use infrared thermography for identification of subclinical mastitis (Polat et al., 287 

2010). Given the accuracy of our models in detecting active DD, even in M1 and M4.1 stages, 288 

an automated system recording the IST of each foot during milking could potentially be 289 

developed and utilised for routine in-parlour diagnosis of DD; such a system could be 290 

particularly useful in large dairy herds. Utilising such a setup, daily measurements of IST and 291 

machine learning approaches, sensitivity and specificity could improve further. Similar 292 

approaches are being taken for the automatic detection of bovine mastitis (Xudong et al., 2020). 293 

Utilising different cut-off values for identification of presence of active DD lesions farmers can 294 

opt for increased sensitivity or specificity. The former will lead to early identification and 295 



 

 

treatment of most DD lesions but will also mean that a number of cows will be flagged without 296 

actually being affected with DD.  297 

Our study does have some limitations that need to be taken into consideration. The farms used 298 

here had a relatively low prevalence of active DD lesions; including farms with higher 299 

prevalence of active DD lesions would have improved our study’s external validity. 300 

Thermographic images were obtained from lifted feet and this cannot be the case if an 301 

automatic system for in parlour detection is to be developed. The area we targeted can be 302 

targeted without lifting the feet so we could argue that we could obtain similar results obtaining 303 

thermographic images in the parlour; however, we cannot be certain that our models’ 304 

performance would remain the same in that case. 305 

CONCLUSION 306 

Our study shows that infrared thermography could be utilized for the diagnosis of active cases 307 

of DD. Models detecting the presence of DD had acceptable sensitivity and specificity and may 308 

be implemented in routine monitoring of foot health in commercial dairy farms. Further studies 309 

addressing some of our study’s limitations are warranted before such systems become 310 

commercially available. 311 
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Table 1. Descriptive statistics of the studied population. Lameness prevalence is defined as a 396 

mobility score of 2 or 3 397 

 Farm 

 1 2 3 4 

Enrolled multiparous animals 96 187 1100 360 

Enrolled primiparous animals 36 52 450 72 

Total Enrolled  132 239 1550 432 

Reassessed at “calving” time-point  124 214 1475 404 

Reassessed at “early lactation” time-point  124 212 1393 396 

Animals with IST1 measurements (“pre-calving”) 111 193 1406 407 

Animals with IST1 measurements (“calving”) 123 198 1403 380 

Animals with IST1 measurements (“early 

lactation”) 116 203 1297 378 

 

BCS3 3.25 (3-3.5) 3.25 (3-3.5) 3.25 (3-3.5) 3.25 (3-3.5) 

Height4 (cm) 150 (145-155) 150 (145-155) 150 (145-155) 150 (145-155) 

Lameness prevalence (“pre-calving”) 2.73% 8.29% 7.55% 5.21% 

Lameness prevalence (“calving”) 11.67% 9.14% 8.78% 8.18% 

Lameness prevalence (“early lactation”) 18.58% 11.39% 7.13% 5.12% 

Feet with active DD2 lesions / Total feet evaluated 

(“pre-calving”) 5% 4.14% 2.83% 1.97% 

Feet with active DD2 lesions / Total feet evaluated 

(“calving”)  5.42% 4.31% 4.89% 1.85% 

Feet with active DD2 lesions / Total feet evaluated 

(“early lactation”) 3.98% 0.25% 3.80% 1.62% 

 398 

1IST: Interdigital skin temperature 399 

2DD: Digital dermatitis 400 

3-4Median, 25th and 75th percentile 401 

  402 



 

 

Table 2. Results from the mixed effect multivariable linear regression model examining 403 

factors affecting interdigital skin temperature 404 

Explanatory Variables  Levels Estimate SE6 P-value 

Intercept1 
 

21.45 0.53 <0.001 

BCS2 2 -0.29 0.17 0.100  
3 -0.05 0.19 0.801 

Mean Ambient Temperature  Continuous 0.49 0.01 <0.001 

Height3 2 0.30 0.16 0.053  
3 0.01 0.18 0.936 

Foot Back right -0.20 0.06 <0.001 

Mobility 1 0.25 0.08 0.001  
2 1.32 0.14 <0.001  
3 1.68 0.41 <0.001 

Parity4 2 -0.55 0.49 0.260 

Digital Dermatitis M1 1.67 0.31 <0.001  
M2 5.10 0.24 <0.001  
M3 0.81 0.24 0.001  
M4 0.37 0.11 0.001  

M4.1 2.62 0.36 <0.001 

Other lesion5 1 0.15 0.07 0.022 

Farm 2 -3.24 0.58 <0.001  
3 -2.75 0.46 <0.001  
4 -0.94 0.54 0.080 

Time-point Calving -2.60 0.32 <0.001  
Early Lactation -1.79 0.33 <0.001 

Interactions  
    

Parity2xFarm2 
 

-1.60 0.61 0.009 

Parity2xFarm3 
 

-2.85 0.49 <0.001 

Parity2xFarm4 
 

-1.33 0.57 0.019 

Farm2xFresh 
 

1.37 0.37 0.000 

Farm3xFresh 
 

1.68 0.30 <0.001 

Farm4xFresh 
 

0.46 0.33 0.169 

Farm2xEarly lactation 
 

0.60 0.37 0.111 

Farm3xEarly lactation 
 

-0.38 0.31 0.221 

Farm4xEarly lactation 
 

0.73 0.34 0.031 

Parity2xFresh 
 

2.40 0.16 <0.001 

Parity2xEarly lactation 
 

2.28 0.17 <0.001 
1The Intercept automatically includes the first level of all factors fitted 405 
2BCS: 1 = <2.5, 2 = 2.75-3.25, 3 = ≥3.5 406 
3Height: 1 = <145cm, 2 = 145-150cm, 3 = >150cm 407 
4Parity: 1 = Primiparous, 2 = Multiparous 408 
5 Other lesion: 0 = Absence, 1 = Presence of other foot lesion 409 
SE: standard error 410 
 411 
 412 

  413 



 

 

Table 3. Estimated marginal means (EMM) for each stage of digital dermatitis (DD) and 414 

pairwise comparison of means using Tukey's honestly significant difference test 415 
 416 

 417 

Digital Dermatitis  Group EMM * SE  
M0 26.60 0.15  
M1 28.30 0.34  
M2 31.70 0.28  
M3 27.40 0.28  
M4 27.00 0.18  

M4.1 29.30 0.38  
Contrast Estimate* SE P-value 

0 - 1 -1.67 0.31 <0.001 

0 - 2 -5.10 0.24 <0.001 

0 - 3 -0.81 0.24 0.011 

0 - 4 -0.37 0.11 0.010 

0 - 5 -2.62 0.36 <0.001 

1 - 2 -3.43 0.38 <0.001 

1 - 3 0.86 0.38 0.209 

1 - 4 1.30 0.31 0.001 

1 - 5 -0.96 0.46 0.304 

2 - 3 4.29 0.33 <0.001 

2 - 4 4.73 0.26 <0.001 

2 - 5 2.48 0.42 <0.001 

3 - 4 0.44 0.25 0.499 

3 - 5 -1.81 0.42 <0.001 

4 - 5 -2.25 0.36 <0.001 

 418 

*Estimated marginal means and estimates of comparison are measured in ℃ 419 

For the contrast of Digital Dermatitis (DD) stages, they are represented by the factor levels: 420 

M0=0, M1=1, M2=2, M3=3, M4=4 and M4.1=5  421 



 

 

Table 4. Results from mixed effect logistic regression model with active digital dermatitis as 422 

the dependant variable  423 

 424 

Fixed effects: Levels Estimate SE6 P value 

Intercept1 
 

-9.060 0.699 <0.001 

Adjusted IST2 Continuous  0.317 0.019 <0.001 

Height3 2 0.538 0.347 0.121  
3 0.566 0.380 0.136 

BCS4 2 0.137 0.331 0.679  
3 -0.351 0.364 0.335 

Farm  2 0.239 0.419 0.568  
3 0.860 0.324 0.008  
4 -0.716 0.391 0.067 

Other lesion5 1 0.629 0.144 <0.001 

Parity6 2 -0.095 0.195 0.626 

Stage Fresh 0.371 0.155 0.017  
Early lactation 0.005 0.185 0.979 

Random Effect 
 

Variance Std. Dev. 
 

Cow ID 
 

3.301 1.817 
 

 425 

1The Intercept automatically includes the first level of all factors fitted 426 
2adjusted IST: The estimate for this continuous variable refers to the increase in predicted 427 
probability for every 1℃ increase of adjusted interdigital skin temperature. 428 
2Height: 1 = <145cm, 2 = 145-150cm, 3 = >150cm 429 
3 BCS: 1 = <2.5, 2 = 2.75-3.25, 3 = ≥3.5 430 
4Other lesion: 0 = Absence, 1 = Presence of other foot lesion     431 
5 Parity: 1 = Primiparous, 2 = Multiparous 432 
6SE: standard error 433 
 434 
  435 



 

 

Table 5 Mean model sensitivity and specificity from ten-fold validation for logistic regression 436 

models. The mixed effect models assessed all stages simultaneously 437 

 438 

 439 
 

"Farm-friendly" model Mixed effect model1  Mixed effect model 22  
Pre-calving Calving Early-lactation All stages All stages 

Mean Sensitivity 88.14% 69.66% 69.07% 76.94% 83.11% 

Mean Specificity 65.83% 65.98% 67.42% 67.04% 70.64% 
 440 

1Refers to the mixed effect logistic regression model with stages M1, M2 and M4.1 treated as 441 

active stages  442 

2 Refers to the mixed effect logistic regression model with only M2 treated as active stage  443 

  444 



 

 

Figure 1. Measurement of interdigital skin temperature. Circular tool used to measure the 445 

maximum interdigital skin temperature (Bottom red mark). This image demonstrates that as 446 

long as the tool stays between the heel and accessory bulbs, the area covered does not affect 447 

the final reading. 448 

 449 

 450 

 451 
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Figure 2. Plotted predicted probability of presence of an active digital dermatitis lesion against 453 

adjusted interdigital skin temperature (IST) (results from the mixed effect logistic regression 454 

model). Points represent feet and are coloured based on their stage on the M scoring system 455 

(M0 to M4.1). The horizontal line represents a cut-off taken based on predicted probability. 456 

Feet with probability higher than the line are classified as active cases.  457 

 458 


