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Abstract

In a decentralized system with m machines, we study the selfish scheduling problem where
each user strategically chooses which machine to use. Each machine incurs a cost, which is a
function of the total load assigned to it, and some cost-sharing mechanism distributes this cost
among the machine’s users. The users choose a machine aiming to minimize their own share of
the cost, so the cost-sharing mechanism induces a game among them. We approach this problem
from the perspective of a designer who can select which cost-sharing mechanism to use, aiming
to minimize the price of anarchy (PoA) of the induced games.

Recent work introduced the class of resource-aware cost-sharing mechanisms, whose decisions
can depend on the set of machines in the system, but are oblivious to the total number of users.
These mechanisms can guarantee low PoA bounds for instances where the cost functions of the
machines are all convex or concave, but can suffer from very high PoA for cost functions that
deviate from these families.

In this paper we show that if we enhance the class of resource-aware mechanisms with some
prior information regarding the users, then they can achieve low PoA for a much more general
family of cost functions. We first show that, as long as the mechanism knows just two of the
participating users, then it can assign special roles to them and ensure a constant PoA. We then
extend this idea to settings where the mechanism has access to the probability with which each
user is present in the system. For all these instances, we provide a mechanism that achieves an
expected PoA that is logarithmic in the expected number of users.

1 Introduction

In this paper we revisit a classic selfish scheduling problem: in a large decentralized system with
a set M of machines and a set N of registered users, each day some subset of these users enter
the system seeking to process some task. Each user assigns their task to one of the machines,
generating a cost that depends on the machine’s total load, and the cost of each machine is then
charged to its users, through some cost-sharing mechanism. The users’ goal is to minimize their
own share of the cost, so they strategically assign their task to the machine that would yield the
smallest cost share. However, their cost share depends on the congestion of each machine, and thus
on the strategic choices of all the other users currently in the system, giving rise to a game.

The need to better understand these games and to evaluate the efficiency of their outcomes lies
at the heart of Algorithmic Game Theory, and some of the first seminal papers in this literature
analyzed the price of anarchy (PoA) of such games, i.e., the extent to which the performance of
their Nash equilibria approximates the optimal performance. Much of this work, e.g., in congestion
games and network formation games, assumed that the users share the cost equally, in accordance
with the Shapley value cost-sharing mechanism (e,g., see Chapters 18 and 19, respectively, from
[27]). However, it soon became clear that the equal-sharing policy can lead to highly inefficient
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outcomes, even in very simple instances [2]. As a result, subsequent work focused on the design of
alternative, more sophisticated, cost-sharing mechanisms, with the goal of reducing the PoA.

The first to study the extent to which a designer can reduce the PoA using improved cost-
sharing mechanisms were Chen at al. [7]. One of their main goals was to analyze mechanisms
that are stable (i.e., guarantee the existence of pure Nash equilibria in the games they induce)
and decentralized (i.e., have limited information regarding the overall state of the system). Taking
the need for decentralization to an extreme, they focused on the class of oblivious cost-sharing
mechanisms1, which decide how to share the cost of each machine among its users without using
any information regarding the set of other users or machines that are present in the system. After
providing a precise characterization of stable mechanisms for network formation games (where the
resources that the agents use have constant cost-functions), they systematically analyzed their
performance. Building on this work, von Falkenhausen and Harks [28] and then Christodoulou et
al. [12] considered more general classes of cost functions. Among other results, von Falkenhausen
and Harks [28] showed that no oblivious cost-sharing mechanism can guarantee a PoA bound better
than linear function in the number of agents, even for instances with concave cost functions.

Motivated by this limitation of oblivious mechanisms, subsequent work introduced the model
of resource-aware mechanisms [11, 12]. Compared to oblivious mechanisms, resource-aware ones
are more informed: their decision regarding how to share the cost of a machine can also depend
on the set of other machines that are available in the system. Using this additional information,
Christodoulou et al. [12] managed to overcome the limitations of oblivious mechanisms and design
resource-aware mechanisms that achieve a constant PoA for convex and concave cost functions. On
the negative side, they showed that there exists a class of seemingly simple cost functions for which
no resource-aware cost-sharing mechanism can achieve a PoA better than O(

√
n).

These negative results suggest that it may be impossible for resource-aware mechanisms to
achieve a constant PoA for interesting cost functions beyond convex and concave. However, al-
though resource-aware mechanisms are more informed than oblivious ones, they are still severely
limited in terms of what they know about the users in the system. In this paper we enhance
resource-aware mechanisms with some prior information regarding the users in the system, and we
show that this is sufficient for us to design cost-sharing mechanisms that achieve low PoA for a
very broad class of cost functions.

1.1 Our Results

Our main results show that, using only a limited amount of prior information regarding the set of
users in the system, resource-aware cost-sharing mechanisms can guarantee a low price of anarchy
for a very wide class of selfish scheduling problems.

Cost functions. In contrast to prior work in cost-sharing mechanisms, which was mostly re-
stricted to either convex or concave cost functions, our positive result applies to a much larger class
of functions. Specifically, we consider any instance where the cost functions of the machines satisfy
a mild condition regarding how fast they can grow. We call a cost function bounded if it satisfies
the condition that c(`+1)/c(`) = O(1) for all ` > 0, i.e., that the relative jump in the cost function
can be upper bounded by some constant. Although the class of bounded functions does not capture
extreme examples of cost functions such as c(`) = ``, where c(`+ 1)/c(`) > `, it captures the vast
majority of functions that may characterize the cost incurred by some machine as a function of its

1Also known as uniform mechanisms.
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load. For example, it includes all polynomial and even exponential cost functions. Note that this
class also contains highly complicated functions that may not have a closed-form expression.

Games with two known users We first consider resource-aware mechanisms that are oblivious
to the set of users in the system, with the exception of just two users. The main idea behind
our proposed mechanism is to assign special roles to these two users, referred to as enforcers, and
carefully incentivize them to enforce an approximately efficient assignment in equilibrium. Using
this approach we manage to guarantee a constant PoA for instances with any combination of
bounded cost functions.

Theorem: For any class of scheduling games with two known users and bounded cost functions,
there exists a stable resource-aware cost-sharing mechanism that achieves a constant PoA.

Games with stochastic user arrivals. We then extend this idea to the case where each user
enters the system with some probability p, and the mechanism knows p but not the realization.
To achieve a good PoA bound for this class of instances we assign the role of the enforcer to more
users, depending on the value of p, and guarantee an expected PoA that is at most logarithmic in
the expected number of users.

Theorem: For any class of scheduling games with i.i.d. arrivals2 and bounded cost functions, there
exists a stable resource-aware cost-sharing mechanism that achieves an expected PoA of O(log(ñ)),
where ñ = p|N | is the expected number of users.

Technical obstacles Designing efficient cost-sharing mechanisms for such a wide family of in-
stances is quite demanding: the structure of the optimal assignment can change, depending on the
actual number, n, of users in the system, but the mechanism is oblivious to this number. So, how
can the mechanism approximate the optimal solution without knowing n? Prior work focused on
the case of concave or convex cost functions, and designed mechanisms leveraging the fact that the
corresponding optimal assignments are reasonably “well behaved”: for concave costs there always
exists an optimal solution where all the jobs are assigned to a single machine, and for convex costs
an optimal assignment can be reached using a simple greedy solution (e.g., [12, 8]). However, we
cannot expect to find such convenient structural properties when dealing with the vast family of
bounded functions, because the optimal assignment can change radically as a function of n.

To deal with this fundamental obstacle, we propose a novel solution: rather than trying to
implement the optimal assignment in equilibrium, we instead seek to implement a “well behaved”
alternative assignment implied by an online algorithm. This algorithm assigns jobs to machines
using a predetermined assignment sequence which is independent of the total number of jobs, n. We
prove that this algorithm has a constant competitive ratio and then carefully design our cost-sharing
mechanisms aiming to implement the outcome of this algorithm in equilibrium, thus inheriting a
good approximation guarantee. We believe this technique may be of independent interest.

1.2 Related Work

Our work extends the recent literature that uses resource-aware cost-sharing mechanisms to achieve
low PoA in different classes of games. Christodoulou and Sgouritsa [11] were the first to study this
family of mechanisms3, focusing on the class of network formation games (like Chen et al. [7] did

2We also extend this result to hold even if each bidder i arrives with a different probability, pi.
3In their paper, Christodoulou and Sgouritsa [11] refer to these mechanisms as universal instead of resource-aware.
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for the family of oblivious mechanisms). Unlike the scheduling games that we study in this paper,
network formation games take place over a graph: each agent is associated with a vertex of the
graph and needs to use a path connecting that vertex to a designated sink-vertex, and each edge
of the graph corresponds to a resource with a constant cost function. One can think of the games
in our paper as the special case where the graph has just two vertices (a source and a sink) and
several parallel edges: each edge corresponds to one of the machines, and every agent needs to
choose one of these edges in order to get from the source to the sink. From this perspective, our
games are more restricted in terms of the users’ strategy space, but quite more general in terms
of the classes of cost functions. Christodoulou and Sgouritsa [11] showed that when the graph is
outerplanar, then resource-aware mechanisms can outperform oblivious ones, but they also proved
that an analogous separation is not possible for general graphs. In subsequent work, Christodoulou
et al. [12] designed resource-aware mechanisms for the same class of scheduling games that we
study in this paper, and were able to achieve a constant PoA for instances with convex and concave
cost functions. In a recent paper, Christodoulou et al. [8] extended many of these results to more
general graphs, beyond parallel links, including directed acyclic or series parallel graphs with convex
or concave cost functions on the edges.

The assumption that the cost-sharing mechanism may have additional prior information re-
garding the users was also part of the model studied by Christodoulou and Sgouritsa [11] for the
case of network formation games. Specifically, rather than assuming that the source vertex of each
agent is chosen adversarially, they assumed that it is drawn from a distribution over all vertices.
The cost-sharing mechanism is aware of this stochastic process, so they designed a mechanism that
leverages this information to achieve a constant PoA. Following-up on this work Christodoulou et
al. [10] extended the constant PoA to also include Bayesian Nash equilibria.

Ensuring that a cost-sharing mechanism is stable can be quite demanding, so characterizations
of stable mechanisms can be very useful. Building on the impressive characterization of stable obliv-
ious mechanisms by Chen et al. [7], Gopalakrishnan et al. [16] provided a characterization for the
set of stable oblivious cost-sharing mechanisms. They proved that these mechanisms correspondend
to the class of generalized weighted Shapley values. Leveraging this characterization, Gkatzelis et
al. [15] analyzed this family of cost-sharing protocols and showed that the unweighted Shapley
value achieves the optimal price of anarchy guarantees for a large family of network cost-sharing
games.

Other papers on the design and analysis of cost-sharing protocols include Harks and von Falken-
hausen [19], who focused on capacitated facility location games, Marden and Wierman [22] who
considered a utility maximization model, and Harks et al. [17], who considered a model that im-
poses some constraints over the portions of the cost that can be shared among the agents. Also,
Harks and Miller [18] studied the performance of several cost-sharing protocols in a setting, where
each player can declare a different demand for each resource.

Finally, there are several other models in which cost-sharing has played a central role. For
example, Moulin and Shenker [26] focused on participation games, while Moulin [25] and Mosk-
Aoyama and Roughgarden [23] studied queueing games. Caragiannis et al. [6] recently also pointed
out some connections between cost-sharing mechanisms and the literature on coordination mecha-
nisms, which started with the work of Christodoulou et al. [9] and led to several papers focusing
on decentralized scheduling policies for machine scheduling games [20, 3, 5, 1, 21, 14, 13, 4]. Just
like the research on cost-sharing mechanisms, most of the work in coordination mechanisms studies
how the price of anarchy varies with the choice of local scheduling policies on each machine (i.e.,
the order in which to process jobs assigned to the same machine).
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2 Preliminaries

We analyze the scheduling games that arise in a decentralized system with a set M = {1, 2, . . . ,m}
of m machines and a set N = {1, 2, . . . , n} of n users. Each user owns a job and needs to schedule it
on one of the machines. Each machine j ∈M is characterized by a cost function cj : N→ R, where
cj(`) is the cost that the machine would incur for processing a total of ` jobs. The cost function
satisfies cj(0) = 0 and it is non-decreasing.

The strategy profile, s = (s1, s2, . . . , sn), of a scheduling game is a schedule, where si corresponds
to the machine that player i chooses for her job. We use Sj(s) = {i ∈ N : si = j} to denote the set
of players who scheduled their jobs on machine j in profile s, and `j(s) = |Sj(s)| to denote the load
on machine j in s. Therefore, the cost of machine j in this schedule is cj(`j(s)), and the overall
generated cost is C(s) =

∑
j∈M cj(`j(s)). For notational simplicity, apart from cj(`j(s)), we also

use cj(s) to denote the cost of machine j in s, since j’s load is directly implied by s.
Cost-Sharing Mechanisms. A cost-sharing mechanism is a protocol that determines the

cost of each agent using a machine. Formally, a cost-sharing mechanism Ξ defines at each schedule
s a nonnegative cost share ξij(s) for each j ∈ M and i ∈ Sj(s). Since the machine that i uses,
i.e., si, is implied by s, we also denote this cost share as ξi(s). In any schedule s, the cost of
each machine j must be fully covered by the agents using it, so

∑
i∈Sj(s)

ξi(s) ≥ cj(`j(s)). We use

Ĉ(s) =
∑

j∈M
∑

i∈Sj(s)
ξi(s) to denote the overall cost suffered by the users in s. Since the agents

pay at least the cost they generate, we have Ĉ(s) ≥ C(s) for every profile s. If there exists some
profile for which this inequality is strict, i.e., the cost suffered by the users is greater than the cost
that they generated, then we say that the cost-sharing mechanism uses overcharging.

Resource-Aware Mechanisms. In the class of resource-aware cost-sharing mechanisms, the
value of the cost-share ξij(s) for each i ∈ Sj(s) can depend on the set Sj(s) of agents using that
machine, on the set of machines M , and their cost functions, but not on the set N \Sj(s) of agents
using other machines. In this paper we enhance this class of mechanisms with some prior stochastic
information regarding the set N \ Sj(s), which enriches the set of cost-sharing functions that we
can implement, allowing us to achieve improved performance guarantees.

Pure Nash Equilibrium (PNE). A tuple (N,M, c,Ξ) of a set of agents, a set of machines
and their cost functions c = (cj)j∈M , and a cost-sharing mechanism, defines a scheduling game G.
The goal of every user in this game is to choose a machine that minimizes her own share of the
cost, determined by Ξ. A strategy profile s is a pure Nash equilibrium (PNE) of this game G if for
every player i ∈ N , and every strategy s′i ∈M

ξi(s) = ξi(si, s−i) ≤ ξi(s
′
i, s−i),

where s−i denotes the profile of strategies for all agents other than i. In other words, in a PNE s
no agent can decrease her cost share by unilaterally deviating from machine si to s′i if all the other
agents’ choices remain fixed.

Stability. In accordance with prior work, we restrict our attention to stable cost-sharing
mechanisms, i.e., ones that induce games possessing at least one PNE.

Price of Anarchy (PoA). To measure the performance of a cost-sharing mechanism in a
given game, G, we evaluate the total cost Ĉ(s) suffered by the users in the worst equilibrium s, and
compare it to the minimum total cost they could suffer. If we let Eq(G) be the set of all PNE of G
and F (G) denote the set of all its feasible schedules, then the price of anarchy (PoA) of game G is

PoA(G) =
maxs∈Eq(G) Ĉ(s)

mins∗∈F (G)C(s∗)
.
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Rather than evaluating the performance of cost-sharing mechanisms on a single game, we eval-
uate them on large classes of games. A class of scheduling games, G, is defined by a tuple (N , C,Ξ),
which comprises a universe of players N , a universe of cost functions C, and a cost sharing mecha-
nism Ξ. An instance of a scheduling game G ∈ G consists of some subset of users S ⊆ N , a set M
of machines with cost functions from C, and the cost sharing mechanism Ξ. The worst-case price of
anarchy of mechanism Ξ for a class of games G is then defined as PoA(G) = supG∈G PoA(G). We
also consider settings where the subset of agents, S, is drawn from N based on some distribution
P . In that case, we evaluate the expected price of anarchy of Ξ as

ExpectedPoA(G) = sup
M,c∈C|M|

{
E

S∼P
[PoA((S,M, c,Ξ))]

}
.

In other words, given an adversarial choice of machines M using cost functions from C, we evaluate
the expected PoA over the randomness of P in defining the subset of agents S.

Classes of Cost Functions. We say that a cost function is bounded if c(`+1)/c(`) = O(1) for
all ` > 0. Another class of functions that plays an important role in prior work is that of capacitated
constant cost functions. That is, functions such that c(`) = c when ` ≤ t and c(`) =∞ when ` > t,
for some positive constants c and t. Note that, although these cost functions are not bounded, one
of our first results shows that we can achieve a small PoA for them as well, as long as their capacity,
t, is at least 4. Finally, a 4-step function is a step function whose segments have length at least 4.
In other words, the value of a 4-step function does not change more than once within any interval
of length 4 in its domain. Note that capacitated constant functions with capacity at least 4 are a
special case of a 4-step function. Also, it is easy to verify that for any bounded cost function c′,
there exists a 4-step function c such that c(`) ≥ c′(`) and c(`)/c′(`) = O(1) for all ` > 04. This
means that we can always approximate a bounded cost function using a 4-step function, so in the
rest of the paper we assume that the cost functions are all 4-step functions.

Global Ordering. Our mechanisms, as well as many mechanisms in the related work (e.g.
[24, 12, 8]), use a global ordering π over the universe N of players in deciding how to distribute the
cost. Although the externality of the users in the games that we study is symmetric (e.g., they all
cause the same marginal increase in the cost of a machine), the mechanism needs to share the cost
unevenly among them to achieve a good PoA5. The global ordering provides a consistent way for
the mechanism to differentiate between these users. To ensure that no fairness concerns arise from
the asymmetry introduced by these mechanisms, we assume that this global ordering can change
periodically in a predetermined way, thus providing a symmetric treatment of the users over time.

3 Online Scheduling Algorithm

The main obstacle that resource-aware mechanisms face in approximating the optimal solution
is that they do not know the number n of agents that are present in the system. Since the
optimal solution can change radically as a function of n, how can the cost-sharing mechanism try
to approximate it without knowing the value of n?

Rather than trying to implement the optimal assignment as an equilibrium, the main idea
behind our solution is to instead implement a much more “well behaved” allocation that, in turn,
closely approximates the cost of the optimal assignment. Specifically, we define an online algorithm,

4To verify this fact, note that given a bounded function c′, we can define a 4-step function c such that for every
k ∈ N, if ` ∈ [4k − 3, 4k] then c(`) = c′(4k). Clearly, c(`) ≥ c′(`) for all ` > 0. Also, since c′ is bounded, this means
that for every ` we have c(`)/c′(`) ≤ c′(`+ 4)/c′(`) = O(1).

5It is well known that the PoA is linear in the number of agents if we share the cost equally [2].
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called Delayed-OPT, which sequentially assigns jobs to machines using a predetermined order,
without knowing the value of n. We show that this algorithm has a constant competitive ratio
and then we design cost-sharing mechanisms aiming to implement the outcome of this algorithm
in equilibrium.

If A(n) is the outcome of the online algorithm and OPT(n) is the optimal allocation (i.e.
the feasible schedule with the minimum social cost) when the total number of jobs is n, then
the competitive ratio is equal to maxn{C(A(n))/C(OPT(n))}. To simplify the description of the
Delayed-OPT online algorithm, without loss of generality we normalize the costs functions. That
is, all costs are multiplied by the same constant such that the minimum non-zero cost is equal to 1.
For each k ∈ N, let ak = max{q ∈ N : C(OPT(q)) < 2k} be the largest number of jobs such that
the optimal social cost for scheduling these jobs remains less than 2k (Figure 1 shows two examples
for capacitated constant cost functions). Using this definition, let `∗jk denote the number of jobs
assigned to machine j in the optimal allocation when the total number of jobs is ak.

When the qth job arrives, the Delayed-OPT finds the smallest value of k such that for some
machine j ∈M the number of jobs, `j , assigned to it so far is less than `∗jk. Then, among all such

machines, the algorithm assigns this job to the one that has the smallest index6. The algorithm
then increments the value of `j by one and moves on to the next job. A formal description of the
Delayed-OPT algorithm is provided as Algorithm 1, below, and two examples of the induced
assignment are provided in Figure 1.
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Figure 1: These figures depict machines with capacitated constant cost functions. Figure (a) shows
three machines whose cost is 1, 2, and 15 for any load up to 1, 3, and 6, respectively (and the cost
becomes infinite for any load beyond that). Similarly, Figure (b) shows five machines whose cost
is 1, 2, 2, 2, and 7 for any load up to 1, 2, 2, 2, and 8, respectively. In both figures, the ak values
are given on the right, and each number inside the machines represents a job with the number
indicating the order of their arrival. The figures show how the Delayed-OPT algorithm assigns
the jobs to the machines, e.g. the first job is assigned to the first machine in both cases.

Lemma 1. If q ≤ ak′ for some k′ ∈ N, then the value of k computed by the algorithm in the
iteration corresponding to the qth job satisfies k ≤ k′.

6We assume that the machines have some arbitrary, but fixed, ordering indicated by their indices.
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ALGORITHM 1: Delayed-OPT Online Algorithm

1 q ← 0 // Initialize counter for the number of jobs

2 `j ← 0 for each j ∈M // Initialize all loads to zero

3 while there exist more jobs do
4 q ← q + 1
5 k ← min{k ∈ N | ∃j ∈M : `j < `∗jk}
6 j ← arg min{j ∈M | `j < `∗jk}
7 `j ← `j + 1 // Assign job to first machine that has not reached target load

Proof. Assume that this is not the case. This would mean that in that iteration of the algorithm,
for every machine j ∈M we have `j ≥ `∗jk′ . Summing over all j ∈M , this would yield∑

j∈M
`j ≥

∑
j∈M

`∗jk′ = ak′ .

But, since q =
∑

j∈M `j + 1, this contradicts the fact that q ≤ ak′ .

We now proceed to show that the competitive ratio of this algorithm is less than 4.

Theorem 2. The competitive ratio of the Delayed-OPT algorithm is less than 4.

Proof. Let k ∈ N be the minimum value such that n ≤ ak. The load that the algorithm assigns
on any machine j is no more than maxk′≤k{`∗jk′}. As a result, the cost of the Delayed-OPT
algorithm for n jobs is

C(A(n)) ≤
∑
k′≤k

C(OPT(ak′)) <
∑
k′≤k

2k
′
< 2k+1,

while the optimal cost is C(OPT(n)) ≥ C(OPT(ak−1 + 1)) ≥ 2k−1, leading to a competitive ratio
of less than 2k+1/2k−1 = 4.

The following lemma will be useful in the next sections.

Lemma 3. If cj(`) = cj(` + `′) for some machine j and some loads `, `′ > 0, then right after the
iteration that the Delayed-OPT algorithm assigns the `th job at machine j, it assigns the next
`′ jobs at the same machine.

Proof. Suppose that in the iteration that the Delayed-OPT algorithm assigns the `th job at
machine j it computes k to be the smallest value such that there exists a machine j′ with `j′ < `∗j′k.
Since the algorithm assigns the current job to machine j, at this iteration `j < `∗jk and j has the
smallest index among machines that satisfy this inequality.

Moreover, since the cost functions are all non-decreasing, the cost of machine j is the same for
all loads between ` and ` + `′, which means that `∗jk ≥ ` + `′. To better see this suppose on the
contrary that `∗jk < `+ `′. The allocation that assigns another job to machine j has the same cost
with current optimal allocation, i.e. C(OPT(ak)) = C(OPT(ak + 1)). This is a contradiction to
the definition of ak that needs to satisfy that C(OPT(ak)) < C(OPT(ak + 1)).

Overall, in the next iteration, `j < `∗jk and j should be the smallest index that satisfies this
inequality, otherwise this wouldn’t be true in the previous iteration. Therefore, the Delayed-OPT
algorithm assigns the next job to machine j and by induction it should assign all the following jobs
until the load of machine j becomes `+ `′. Figure 1 shows such examples.
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4 Resource-Aware Mechanism for Games with Two Known Users

In this section we consider resource-aware mechanisms that are oblivious to the set of users in the
system, with the exception of just two users. Formally, we consider classes of games such that for
every game G in this class, the set of agents, S, always contains two known agents. Note that the set
S is otherwise totally unrestricted and can also contain an adversarially chosen subset of the agents
from N , so this class of games is quite general. In fact, since the optimal allocation may very heavily
depend on the total number of agents that participate in the game, the aforementioned restriction
is seemingly benign. In what follows, we propose a resource-aware mechanism that assigns a special
role to the two known agents, leading to very efficient equilibria for any bounded cost function. In
fact we show that the assignment of every Nash equilibrium in the induced game is the same as
the outcome of the Delayed-OPT algorithm when scheduling |S| jobs.

As a warm-up, we first consider the games whose cost functions are drawn from the class of
capacitated cost functions, and then we go on to extend our result beyond this class.

4.1 Warm-up: A Class of Capacitated Constant Functions

In order to more clearly capture the intuition behind how our proposed mechanism works, we first
focus on games whose cost functions are capacitated constant, with a capacity of at least 4. That
is, for every machine j we have cj(`) = cj when ` ≤ tj and cj(`) =∞ otherwise, where cj > 0 and
tj ≥ 4 are constants7. Note that these cost functions are actually not bounded, since they jump
from some constant to infinity when their capacity is exceeded, so this section also shows that our
positive results can even be extended to cost functions beyond the class of bounded ones.

Before presenting our protocol, we make an important observation, that can be derived directly
from Lemma 3, regarding the allocation of the Delayed-OPT algorithm when the machines have
capacitated constant cost functions.

Observation 4. For any instance involving a set M of machines with capacitated constant cost
functions, there exists an ordering of the machines in M such that the Delayed-OPT algorithm
fills up machine j up to its capacity before assigning any job to any machine j′ that is later in the
ordering.

Let D = {1, 2} be the set of the two agents, called enforcers, who are guaranteed to participate,
and let R = S \ D be the rest of the agents, which we call regular agents. Also, given some set
of agents S′, let h(S′) be the first (highest priority) agent in S′ according to a global ordering π.
For simplicity we assume that the machines are renamed according to the ordering implied by the
Delayed-OPT algorithm (Observation 4), and let Zj =

∑
k≤j ck be the sum of the costs of the

first j machines in this ordering. Note that the value of Zj is strictly increasing with j by our
convention that cj > 0 for all j. Finally, to define the protocol we also use an arbitrarily small
positive value εj for each machine j to be used as a special charge for enforcers in some cases; εj
values are strictly decreasing values, i.e. εj > εj+1.

Brief description of the protocol. The enforcers are charged with the small value εj for
using machine j only in two cases: i) if they are together in j along with at least one regular agent
(if there were no regular agent, the enforcers should cover the cost of the machine) and the load of
machine j doesn’t exceed its capacity tj , ii) if the enforcer is alone in j and the load of machine j

7The assumption of cj > 0 for all j is w.l.o.g. because if there are machines with zero cost, we may charge
everybody with 0, unless the machine load exceeds its capacity, in which case everybody is charged with infinity. In
both the Delayed-OPT algorithm and any Nash equilibrium those machines are firstly occupied up to their capacity
and then other machines are used resulting in a PoA equal to the one that ignores those machines.
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exceeds its capacity tj . In any other case they pay Zj . Regarding the regular agents, the highest
priority regular agent always pays a non-zero charge. More specifically, if machine j’s load doesn’t
exceed tj , the highest priority regular agent pays the cost of j, cj , if the machine is full (i.e. its
load equals tj) and there is no enforcer in j; otherwise, meaning when j’s load is less than tj or
there is an enforcer in j, the highest priority regular agent pays Zj . The rest of the regular agents
are charged with 0 if j’s load doesn’t exceed tj . If j’s load exceeds tj , then everybody is charged
with infinity.

Protocol. Given a strategy profile s, the cost share of any enforcer i ∈ D for using machine j is

ξi(s) =


εj if `j(s) ≤ tj and D ⊂ Sj(s)

εj if `j(s) > tj and D ∩ Sj(s) = {i}
Zj otherwise.

The cost share of any regular agent i ∈ R for using machine j is

ξi(s) =



0 if `j(s) ≤ tj and i 6= h(Sj(s) ∩R)

cj if `j(s) = tj , D ∩ Sj(s) = ∅ and i = h(Sj(s) ∩R)

Zj if `j(s) = tj , D ∩ Sj(s) 6= ∅ and i = h(Sj(s) ∩R)

Zj if `j(s) < tj and i = h(Sj(s) ∩R)

∞ otherwise.

The main idea behind this protocol is that in the equilibrium if agents use some machine, all
machines with lower indices should be full (i.e. its load equals its capacity). As we mentioned
above, Zj values are strictly increasing. As a result if some agent is charged Zj in machine j, she
prefers to deviate to a non-full machine (non-full means that its load is less that its capacity) with
smaller index. Such an agent exists when the machine is not full or when an enforcer is using
it. However, there is no such agent when the machine is full with only regular agents, where the
importance of enforcers comes in place as we explain next. We note here that it is crucial to keep
the budget balance in full machines without enforcers so that we do not lose in efficiency too much.

If a machine that is not used by the Delayed-OPT algorithm is full with only regular agents,
enforcers are going to disrupt them and push them to machines with lower indices. The reason is
because εj values are decreasing, so enforcers prefer to occupy machines with higher indices. So,
if an enforcer deviates to a full machine j, the load of that machine will exceed capacity and the
enforcer will be charged εj .

The cases where the charges of the enforcers are high (Zj) are crucial in order to guarantee
stability as we show in Theorem 6.

Theorem 5. The PoA for the class of capacitated constant cost functions, assuming two enforcers,
is constant.

Proof. It is sufficient to show that the social cost of any Nash equilibrium is constant away from
the cost induced by the Delayed-OPT algorithm, which in turn is constant away from the cost
of the optimal allocation.

In fact we show that under any pure Nash equilibrium, the allocation is the same with the
outcome of the Delayed-OPT algorithm; that is for any used machine r, all prior machines j < r
are fully used. Then, it is easy to check that, regarding the overcharging, each enforcer may ”cause”
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some regular agent to pay at most the cost of the outcome of the Delayed-OPT algorithm and
each enforcer itself may pay some arbitrarily small value εj .

8

For the sake of contradiction suppose that in some Nash equilibrium there exist machines j < r
such that machine r is used and machine j is not full. Let r be the largest possible such index.

• If r is not full, or if it is full and has at least one enforcer, there exists an agent paying Zr
and if he deviates to j he should pay at most Zj < Zr, so he has an incentive to deviate
(Figure 2).

• If r is full with only regular agents, there exists an enforcer in an earlier machine j′ < r
paying at least εj′ . That enforcer has an incentive to deviate to r where he will pay εr < εj′

(Figure 3).

c1

1

cj

j

cr

r

highest priority
regular agent

deviates

(a)

cj

j

cr

r

highest priority
regular agent

deviates
enforcer

(b)

Figure 2: In this figure we assume that machine j is not full and there exists a non empty machine
r, with r > j (where r is the maximum such index). If machine r is either not full (a) or has an
enforcer (b), then there is always a regular agent from r that prefers to deviate to j.

c1

1

cj

j

cj′

j′

enforcer

cr

r

dev
iates

Figure 3: In this figure we assume that machine j is not full and there exists a non empty machine
r, with r > j (where r is the maximum such index). If machine r is full with only regular agents,
then any enforcer prefers to deviate to r.

In both cases there exists an agent with an incentive to deviate to another machine which is a
contradiction to our assumption that this is a Nash equilibrium.

Theorem 6. The protocol for the class of capacitated constant cost functions, assuming two
enforcers, is stable.

8There is no Nash equilibrium where the enforcers are charged more than some εj , unless there is no regular agent
where we again have the same overcharging.
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Proof. In order to show stability, we create a strategy profile that is an equilibrium for any set of
agents S ⊆ N as long as D ⊆ S.

Let n be the number of agents in the system, where n − 2 of them are regular agents, since
there exist two enforcers. Suppose that r machines are occupied based on the Delayed-OPT
algorithm, with the first r− 1 machines being fully occupied and machine r having nr ≤ tr agents.
The strategy profile we create depends on the value of nr.

Case of nr ≤ 2. In this case, we create a strategy profile where the enforcers use the last full
machine r− 1 (unless r = 1, meaning that there is no regular agent, and the enforcers use machine
1 which is a Nash equilibrium). The regular agents are placed according to the outcome of the
Delayed-OPT algorithm such that in the last machine r the lowest priority agents are placed
(Figure 4 (a)). Next we show that nobody has an incentive to deviate from this strategy profile
and therefore it is stable.

The enforcers are currently charged with εr−1 and if they deviate to any previous machine j
with j < r− 1 they will be charged with εj > εr−1. Moreover, if they unilaterally deviate to r they
will be charged Zr > εr−1 because they will be the only enforcer there. Deviating to any other
machine j with j > r will result in an even higher charge, since the enforcer will be alone there.
Overall, enforcers have no incentive to deviate.

From the regular agents’ perspective, nobody has an incentive to deviate to a full machine j′ < r
because its load then will exceed its capacity resulting in infinity charges. Additionally, no agent
currently located to some machine j ≤ r has an incentive to deviate to an empty machine j′ > r,
because he is currently charged at most Zj and if he deviates to j′, he will be charged Zj′ > Zj .
The last case to check is if an agent currently located to some machine j < r, has an incentive to
deviate to r. Note that if he deviates to r, the machine will still not be full and he will be the
highest priority agent, as in r we allocated the lowest priority agents; therefore, he will be charged
Zr > Zj , where Zj is the maximum he may currently be charged.

Case of nr > 2. In this case, we create a strategy profile where the enforcers use that last machine
r. The regular agents are placed according to the outcome of the Delayed-OPT algorithm such
that in the last machine r the lowest priority agents are placed (Figure 4 (b)). Similar arguments
hold in this case in order to show that nobody has an incentive to deviate from this strategy profile.

More specifically the enforcers are currently charged with εr and any deviation will result in a
charge of either εj with j < r or Zj with j > r, which are both strictly greater than εr.

Regarding the regular agents, as before, nobody wants to deviate to a full machine or to a
machine j > r. Any agent currently using some machine j < r is charged with at most Zj and if
he deviated to machine r he would pay at least Zr > Zj because he would be the highest priority
agent in r.

In Section A we give some intuition on the need of the restrictions we assume here, namely the
need of at least two enforcers and the capacities being at least 4 . Both restrictions are important
in order to guarantee stability.

4.2 Bounded Cost Functions

In this section we extend the result of Section 4.1 to the class of bounded cost functions. For
simplicity, we focus on the class of 4-step cost functions which naturally generalize the capacitated
cost functions considered above; as we discussed in Section 2, any bounded cost function can be
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Figure 4: This figure shows the stable outcomes when the Delayed-OPT algorithm allocates in
the last machine (a) at most two agents and (b) more than two agents.

approximated by a 4-step cost function, so our results directly extend to bounded cost functions as
well.

A key difference between the segments of 4-step functions and the capacitated constant functions
is that having a single job in a segment may have two meanings in the respective machines with
capacitated constant functions: it may be considered as i) having a single job in the machine
with capacitated constant function corresponding to that segment or ii) having an overload in the
machine with capacitated constant function corresponding to the previous segment of the step
function. In order to overcome this ambiguity we slightly change our protocol in order to handle
those two cases consistently and get the same results.

Let agents D = {1, 2} be the two agents/enforcers who are guaranteed to participate, and let
R = S \ D be the regular agents. Before describing the protocol we need to give some further
definitions; Figure 5 gives some intuition for some of the following definitions.

4.2.1 Preliminaries

We first provide an alternative definition of a 4-step function. In the rest of the paper, we will
be assuming that all the machine cost functions are 4-step functions.

Definition 7. A function c is called 4-step function if the following are true: there are steps of
lengths t(1), t(2), · · · ≥ 4 such that for all k and all x ∈ [1 +

∑k−1
k′=1 t(k

′),
∑k

k′=1 t(k
′)] we have that

c(x) = c

(
k∑

k′=1

t(k′)

)
= c̃(k)

That is the cost function increases only when an extra step needs to be used. If any number of
jobs between one and t(1) are undertaken by this machine, the cost is c̃(1). Then if one more job
is added the cost jumps to c̃(2) and then the cost for t(1) + 1 up to t(1) + t(2) jobs remains c̃(2),
and so forth. Note that trivially all functions on natural numbers are 1-step functions.

Length and cost of a segment. According to Definition 7, we define segment k of machine
j to be the kth step of machine j’s cost function cj and has length tj(k) and cost c̃j(k).

Last used segment κj(`j(s)) = κj(s). For each machine j and profile s, we denote by κj(s)
the last segment that is used in machine j under s. It holds that cj(s) = c̃j(κj(s)).

Machine’s excess wj(`j(s)) = wj(s). For each machine j and profile s, we denote by wj(s)
the number of jobs occupying the last segment of machine j under s if that segment is not filled
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to capacity. If the number of jobs fill the last segment to capacity then we set wj(s) to 0. More
formally,

wj(s) =

{
`j(s)−

∑κj(s)−1
k=1 tj(k) if `j(s) >

∑κj(s)−1
k=1 tj(k)

0 otherwise

Segment order φ. Lemma 3 implies that the Delayed-OPT algorithm fills up a segment up
to its capacity before assigning any job to any other segment. Therefore, a priority order on the
segments can be derived according to the Delayed-OPT algorithm that assigns for every machine
j and segment k a number φj(k). The function φ respects the order of the machine step costs, i.e.
it is strictly monotone.

Definition of Zj(k). Similarly to the case of capacitated constant functions, we define

Zj(k) =
∑
j′

max
k′:φj′ (k

′)≤φj(k)
c̃j′(k

′),

which is the aggregate cost of all machines if all segments up to φj(k) in the priority order are
occupied. W.l.o.g. the Zj(k) values are strictly increasing according to the order defined by φ.
This is by assuming non-zero costs which is w.l.o.g. according to footnote 7, and additionally if
two consecutive segments have the same cost, we may assume that they are merged into a single
segment.

Definition of εj(k). We also use an arbitrarily small positive value εj(k) for each segment k
of machine j to be used as a special charge for enforcers in some cases; εj(k) values are strictly
decreasing values according to the order φ, i.e. if φj(k) > φj′(k

′) then εj(k) < εj′(k
′).

First two machines. We further distinguish two machines 1 and 2 to be the first and the
second machines, respectively, to be used by the Delayed-OPT algorithm.

Highest priority agents h(S′). Given some set of agents S′, hi(S
′) is the ith agent in S′

according to the global ordering π.

Protocol. Given a strategy profile s we next define the cost shares of the agents. For simplicity,
we drop the dependency on the load and on s since there is no ambiguity. The cost share of any
enforcer i ∈ D using machine j is

ξi(s) =


εj(κj) if wj 6= 1 and D ⊂ Sj
εj(κj − 1) if wj = 1, D ∩ Sj = {i} and κj > 1

Zj(κj) otherwise.

The cost share of any regular agent i ∈ R using machine j is

ξi(s) =



cj if wj = 0, D ∩ Sj = ∅ and i = h1(Sj ∩R)

Zj(κj) if wj = 0, D ∩ Sj 6= ∅ and i = h1(Sj ∩R)

Zj(κj) if wj = 1 and i ∈ {h1(Sj ∩R), h2(Sj ∩R)}
Zj(κj) if wj /∈ {0, 1} and i = h1(Sj ∩R)

0 otherwise.

Theorem 8. The PoA for the class of 4-step cost functions, assuming two enforcers, is constant.
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w1(A) = 0

c̃1(1) φ1(1) = 1

c̃1(2) φ1(2) = 5

c̃1(3) φ1(3) = 11

w2(A) = 0

φ2(1) = 2

φ2(2) = 3

φ2(3) = 6

φ2(4) = 9

w3(A) > 0

φ3(1) = 4
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Figure 5: This figure shows an example of the first four machines in the order that are used by
the Delayed-OPT algorithm. The cost functions belong to the class of 4-step functions. In the
figure, c̃1(k) is the cost of machine 1 when the kth step/segment is used but not the (k + 1)th,
and t4(k) is the length of the kth step/segment of machine 4. The φj(k) values show the order
that the Delayed-OPT algorithm fills the segments. In this example, the allocation A of the
Delayed-OPT algorithm fully uses the first 6 segments and also part of the 7th segment. The
excess of all machines but the third are 0 and machine 3 has positive excess since its 2nd segment
is not fully used.

Proof. We will show that the total cost of any induced pure Nash equilibrium, assuming two
enforcers, is constant away the total cost induced by the Delayed-OPT algorithm which in turns
is a constant approximation to the cost of the optimal allocation. In order to show this, we will
show that any pure Nash equilibrium s has the same allocation with the Delayed-OPT algorithm
allocation A. This means that for any machine j the load in s and A are the same, i.e. `j(s) = `j(A).

Claim 9. For any Nash equilibrium s, `j(s) = `j(A) for all j.

Proof. For the sake of contradiction suppose that there exists some Nash equilibrium s with different
allocation than A. Then there should be a machine r with `r(s) > `r(A). If there are many machines
with more load in s than in A, we choose r to be the one with the maximum φr(κr(s)).

For any machine j, with `j(s) ≤ `j(A), it holds that the last segment of machine j under A
precedes the last segment of machine r under s according to segment order φ, i.e. φj(κj(A)) <
φr(κr(s)), meaning that overall φr(κr(s)) is the maximum among used segments under s. The
reason is that, if l is the last machine used by the Delayed-OPT algorithm, the excess of all
other machines different than l is 0 under A, and therefore if r 6= l, κr(s) is not used in A; by
the definition of φ order, φj(κj(A)) < φr(κr(A) + 1) ≤ φr(κr(s)). If r = l, it trivially holds that
φj(κj(A)) < φr(κr(A)) ≤ φr(κr(s)).

Next we show that under s either a regular agent or an enforcer has an incentive to deviate
leading to a contradiction.

• If there is at least one enforcer in machine r, or κr(s) is not full, i.e. wr(s) 6= 0, the highest
priority regular agent in r, h1(Sr(s) ∩ R), is paying Zr(κr(s)). If this agent deviated to any
machine j, with `j(s) < `j(A) (there exists at least one because `r(s) > `r(A)), the total load
on that machine would be at most `j(A) and therefore the agent’s payment would be at most
Zj(κj(A)) < Zr(κr(s)).
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• If machine r has only regular agents and 0 excess, i.e. wr(s) = 0, there exists an enforcer in
some machine j′ 6= r that is charged with at least εj′(κj′(s)). If he deviated to machine r,
the excess of that machine would become 1 and he would be the only enforcer in machine
r, therefore, he would be charged with εr(κr(s)) < εj′(κj′(s)), where the inequality holds
because φr(κr(s)) is the maximum among used segments under s.

Theorem 10. The protocol is stable.

Due to space limitations we refer the reader to the appendix for the proof of the theorem.

5 Resource-Aware Mechanism for Games with Stochastic Arrivals

In this section we study the case of stochastic arrivals, where each agent i appears in the system
with probability pi and the mechanism has access to p = (p1, p2, . . . , p|N |). Let S be the random
set of the arriving agents and M be a set of machines whose cost functions are from the class of
4-step functions. We design a cost sharing scheme with the goal of minimizing the expected price
of anarchy defined as follows:

ExpectedPoA(G) = sup
M,c∈C|M|

{
E

S∼P
[PoA((S,M, c,Ξ))]

}
.

Our main theorem (Theorem 14) bounds the expected price of anarchy of our protocol in
relation to the expected number of arriving agents ñ = ES∼p[|S|]. For the sake of simplicity in this
section we prove the case of identical agents that is pi = p for all i. The proof for the general case
(Theorem 16) can be found in the appendix. We show that for the case of independently arriving

agents there exists a protocol using 3 + b3 log(p|N |)
− log(1−p)c enforcers that achieves an expected price of

anarchy of at least

ExpectedPoA(G) = O

(
log

(
E
S∼p

[|S|]
))

= O(log ñ) .

Protocol. The protocol is similar to the one we defined with the guaranteed enforcers. However
rather than using the two guaranteed agents as the enforcers we choose an appropriate set of
enforcers using the distributional information we have. In order to guarantee stability for any
number of enforcers we adjust the cost sharing protocol by adding two rest points for enforcers
where they pay 0 share; we further slightly modify the cost shares of enforcers to include cases
where many enforcers use the same machine.

Given the set of arriving agents S and a strategy profile s we next define the cost shares of the
agents. Let D ⊆ S be the set of enforcers in S and R = S \D be the set of regular agents in S.
For simplicity, we drop the dependency on the load and on s since there is no ambiguity. The cost
share of any enforcer i ∈ D using machine j is

ξi(s) =


0 if j ∈ {1, 2}, wj ∈ {0, tj(κj)− 1} and D ∩ Sj = {i}
εj(κj) if wj 6= 1, D ∩ Sj ⊃ {i}, R ∩ Sj 6= ∅ and i ∈ {h1(Sj ∩D), h2(Sj ∩D)}
εj(κj − 1) if wj = 1, D ∩ Sj = {i} and κj > 1

Zj(κj) otherwise.
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The cost share of any regular agent i ∈ R using machine j is (the same as in Section 4.2)

ξi(s) =



cj if wj = 0, D ∩ Sj = ∅ and i = h1(Sj ∩R)

Zj(κj) if wj = 0, D ∩ Sj 6= ∅ and i = h1(Sj ∩R)

Zj(κj) if wj = 1 and i ∈ {h1(Sj ∩R), h2(Sj ∩R)}
Zj(κj) if wj /∈ {0, 1} and i = h1(Sj ∩R)

0 otherwise.

We refer the reader to the appendix for the proof of the following theorem.

Theorem 11. The protocol is stable for any number of enforcers.

Next we continue with upper bounding the expected price of anarchy of our protocol. First we
prove two important lemmas on how far the cost of any Nash equilibrium may be from the cost of
the allocation A of the Delayed-OPT algorithm, conditioned on the number of enforcers in the
system. We distinguish two cases of having at least three enforcers or at most two enforcers in the
system. In the first case, the proof is similar to the one of Theorem 8, but we now need at least
three enforcers because based on the protocol at most two enforcers may pay 0 cost shares; those
enforcers have no incentive to deviate to machines that are not used in A and are full with regular
agents.

Lemma 12. If d ≥ 3 enforcers arrive then the cost of the Nash equilibrium is no more than d+ 3
times the cost of the allocation A of the Delayed-OPT algorithm, by ignoring the arbitrarily
small charges of εj(k) values.

Proof. Since we have two rest points for the enforcers (first case of the cost shares), meaning that
at most two enforcers may pay 0 in any Nash equilibrium s, if d ≥ 3 enforcers appear in the system,
then at least one of them must pay a non-zero share. Following the proof of Theorem 8 we can
easily infer that s uses the exact same allocation as the Delayed-OPT algorithm (Claim 9). Next
we need to bound the overcharging cost. Note that any cost share Zj(κj(A)) for some j is no more
than the cost of A. As a result we simply need to bound the number of agents charged with such
a cost share. Let dj be the number of enforcers in machine j.

First, we examine the machines other than the last machine used by the Delayed-OPT al-
gorithm. By definition, such machine j will have zero excess, wj(A) = 0. Therefore, if there are
only regular agents there will be no overcharging. If there are only enforcers the overcharging is
djZj(κj(A)) which is at most dj times the total cost of A. If there is at least one enforcer and at
least one regular agent, then we have at most one regular agent paying Zj(κj(A)) and either one
enforcer is paying 0 or two enforcers are paying the arbitrarily small value εj(κj(A)). In any case,
the overcharging is at most dj times the total cost of A, by ignoring the εj(κj(A)) values.

Second, let’s consider the last machine r used by the Delayed-OPT algorithm. At most two
regular agents are charged with Zr(κr(A)) (if wr(A) = 1). It is also possible that all the enforcers
are charged with Zr(κr(A)) and therefore, the total overcharging in machine r is at most dr + 2
times the total cost of A, by ignoring again the εr(κr(A)) values.

Overall, the overcharging is at most d + 2 times the total cost of A and as a result, the total
cost of s is no more than d+ 3 times the total cost of A.

Lemma 13. If r regular agents and d ≤ 2 enforcers arrive then the cost of the Nash equilibrium
s is no more than r + d times the cost of the allocation A of the Delayed-OPT algorithm, by
ignoring the arbitrarily small charges of εj(k) values.
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Proof. If the allocation of s is not the same as A, there must be some machine j such that `j(s) <
`j(A). This implies that any agent can deviate to this machine and pay at most Zj(κj(A)). As a
result the cost of any agent (enforcer or regular) under s is no more than Zj(κj(A)) which is upper
bounded by the total cost of A. Therefore, the total cost of s is no more than r+ d times the total
cost of A.

Next we upper bound the price of anarchy in the special case where the agents arrival proba-
bilities are identical, that is pi = p for all i ∈ N . Note that in this case the expected number of
agents is ñ = ES∼p[|S|] = p|N |.

Theorem 14. For independently arriving agents with identical probabilities p and for the class of
4-step cost functions, there exists a protocol using |D| = 3 + b3 log(p|N |)

− log(1−p)c enforcers that achieves
an expected price of anarchy of

ExpectedPoA(G) = O(log( E
S∼p

[|S|])) = O(log ñ) .

Before proceeding with the proof of Theorem 14, we state the following lemma. The proof of
the lemma is in the appendix.

Lemma 15. If we choose a set of enforcers D such that |D| = 3 + b3 log(p|N |)
− log(1−p)c then

P[d ≤ 2] E
S∼p

[|S| | d ≤ 2] ≤ 9 ,

where P is the probability symbol and d = |S ∩D| is a random variable depending on p.

Proof. (Theorem 14) Let S be a random set of arriving agents, G be the corresponding game,
Eq(G) be the set of Nash equilibria for G and A be the allocation of the Delayed-OPT algorithm
for the set S. Moreover, let d = |S ∩D| be a random variable depending on p. Combining both
Lemmas 12 and 13 we get that the expected ratio of the cost of the worst case equilibrium to the
cost of the allocation of the Delayed-OPT algorithm is

E
S∼p

[
maxs∈Eq(G) Ĉ(s)

C(A)

]
= P[d ≤ 2] E

S∼p
[|S| | d ≤ 2] + P[d ≥ 3] E

S∼p
[d+ 3 | d ≥ 3] . (1)

We can bound the second summand of Equation (1) as

P[d ≥ 3] E
S∼p

[d+ 3 | d ≥ 3] ≤ E
S∼p

[d+ 3 | d ≥ 3]

≤ E
S∼p

[d | d ≥ 0] + 6 = p|D|+ 6 . (2)

Combining Lemma 15, Equation (1) and Equation (2) we get that

E
S∼p

[
maxs∈E(G) Ĉ(s)

C(A)

]
≤ p|D|+ 15 ≤ b3 log(p|N |)

(
p

− log(1− p)

)
c+ 18

≤ 3 log(p|N |)
(

p

− log(1− p)

)
+ 18

≤ 3 log(p|N |) + 18 = 3 log ñ+ 18 , (3)

where the last inequality is due to ( p
− log(1−p)) ≤ 1 for p ≥ 0. The fact that the cost of the

Delayed-OPT algorithm outcome is a constant approximation to the optimum cost completes
the proof.
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Next we upper bound the price of anarchy when the agents arrival probabilities are not neces-

sarily identical. For pi being the probability that agent i arrives, ñ = ES∼p[|S|] =
∑|N |

i=1 pi is the
expected number of agents. The proof of the theorem is in the appendix.

Theorem 16. For independently arriving agents with not necessarily identical probabilities and
for the class of 4-step cost functions, there exists a protocol that achieves an expected price of
anarchy of

ExpectedPoA(G) = O(log( E
S∼p

[|S|])) = O(log ñ) .
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Roughgarden. The price of stability for network design with fair cost allocation. SIAM J.
Comput., 38(4):1602–1623, 2008.

[3] Yossi Azar, Lisa Fleischer, Kamal Jain, Vahab S. Mirrokni, and Zoya Svitkina. Optimal
coordination mechanisms for unrelated machine scheduling. Operations Research, 63(3):489–
500, 2015.

[4] Sayan Bhattacharya, Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Coordina-
tion mechanisms from (almost) all scheduling policies. In 5th conference on Innovations in
theoretical computer science, pages 121–134. ACM, 2014.

[5] Ioannis Caragiannis. Efficient coordination mechanisms for unrelated machine scheduling.
Algorithmica, 66(3):512–540, 2013.

[6] Ioannis Caragiannis, Vasilis Gkatzelis, and Cosimo Vinci. Coordination mechanisms, cost-
sharing, and approximation algorithms for scheduling. In Nikhil R. Devanur and Pinyan Lu,
editors, Web and Internet Economics - 13th International Conference, WINE 2017, Bangalore,
India, December 17-20, 2017, Proceedings, volume 10660 of Lecture Notes in Computer Science,
pages 74–87. Springer, 2017.

[7] Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. Designing network protocols for good
equilibria. SIAM Journal on Computing, 39(5):1799–1832, 2010.

[8] George Christodoulou, Vasilis Gkatzelis, Mohamad Latifian, and Alkmini Sgouritsa. Resource-
aware protocols for network cost-sharing games. In Péter Biró, Jason D. Hartline, Michael
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A Additional Discussion Regarding our Results

In this section we briefly address some more technical aspects regarding our results and its compar-
ison to prior work. We first discuss the type of overcharging that we use in our mechanisms, and
compare it to the types of overcharging that has been used in prior work. We then provide some
(partial) justification and intuition behind some limits that we require on the number of enforcers,
and the capacities of the capacitated constant cost functions.

Power of overcharging. At the core of our cost-sharing mechanism lies the ability of enforcers
to penalize other agents through overcharging. In fact, the total amount of overcharging that our
mechanism enforces can depend not only on the number of agents using a machine, but also on
the actual set of agents (e.g., on whether one of them is an enforcer or not). This is in contrast to
the way that some prior cost-sharing mechanisms have used overcharging, e.g., in [12, 8]. In fact,
the result of Christodoulou et al. [12], showing that no resource-aware mechanism can achieve a
PoA better than O(

√
n), even if it uses overcharging, assumes that the amount of overcharging

would depend only on the number of users, not the set of users of the corresponding machine. In
light of this observation, one could argue that our mechanisms in this paper do not only leverage
the additional information that they have, relative to prior-free resource-aware mechanisms; they
actually also leverage the ability to introduce overcharging in a more flexible way.

Restriction on the number of enforcers. Let’s assume that there was only one enforcer
appearing in the system. Consider a number of agents such that in the allocation of the Delayed-
OPT algorithm the last machine r is fully used, i.e., nr = tr agents are allocated in machine r. The
enforcer should not have an incentive to deviate to machines full of regular agents and therefore,
he should pay at most εr−1. Moreover, he should pay more than εr+1 so he deviates to machine
r + 1 if it is full of regular agents. This is the reason we assume the monotonicity on the εj values
and we allocate the enforcer in machine r.

Consider now a number of agents such that in the allocation of the Delayed-OPT algorithm
machine r is used by nr = tr − 1 agents. In the stable outcome, if we allocate the enforcer to any
full machine j, he has an incentive to deviate to the last machine, make it full and pay εr < εj .
Therefore, the only option is to allocate the enforcer to the last machine r. In order for such
allocation to be an equilibrium, he should be charged with some ε′r < εr−1 so he has no incentive to
deviate to prior machines full of regular agents. By considering now nr = tr−2 and using the same
arguments we can show that if the enforcer uses machine r, he should be charged with something
strictly less than εr−1. Similarly, for any nr we can show that the enforcer should be charged with
an amount strictly less than εr−1, and therefore the same should hold for nr = 1. But for nr = 1
the enforcer would be alone in r and hence, he should pay at least cr which leads to a contradiction.
Considering enforcers in pairs resolves this issue and results in the existence of stable outcomes.
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Restriction on the capacities. This was derived from the need to distinguish between the two
cases in the proof of Lemma 6. First notice that the two enforcers should be together, otherwise
they have an incentive to deviate to a machine full of regular agents. Suppose now that nr = 2
agents use the last machine r based on the allocation of the Delayed-OPT algorithm. If both
enforcers were placed in machine r, one of them should be charged with at least cr/2 and still have
an incentive to deviate to a full machine. Therefore, for nr ≤ 2, in any equilibrium the enforcers
do not use r.

One the other hand, in the case that nr = tr − 1, if no enforcer was placed in machine r, the
lowest priority agent i in machine j that the enforcers use, may have an incentive to deviate to
machine r. This could be the case because agent i is currently charged with Zj , which could possibly
be greater than cr, where cr would be the maximum charge of agent i if he deviated to machine r;
the reason is that r would become full. This means that for nr = tr− 1, in any equilibrium at least
one enforcer should use machine r (this automatically means that tr should be different than 1).

Overall, the above two points indicate the restriction of tr− 1 > 2, which results in the require-
ment of tj ≥ 4 for all machines j.

B Missing Proofs from Section 4

B.1 Proof of Theorem 10

We next show how we construct a strategy profile that is a Nash equilibrium. Let A be the
allocation according to the Delayed-OPT algorithm and let r be the last machine used by the
Delayed-OPT algorithm. We will consider cases based on the excess of that machine, wr(A), and
its load, `r(A). For any other machine j 6= r note that j has 0 excess, i.e. wj(A) = 0.

For the construction of the Nash equilibrium we allocate the agents the same way as the
Delayed-OPT algorithm does, but we need to carefully assign the enforcers and regular agents
to the appropriate machines in order to ensure stability. The following assignment guarantees
stability.

• If only one machine is used by the Delayed-OPT algorithm, then simply allocating any
agent to this machine would be Nash equilibrium.

• If more than one machine is used by the Delayed-OPT algorithm, we distinguish between
two cases based on the values of wr(A) and `r(A).

– wr(A) 6= 1 and `r(A) > 2: We allocate the two enforcers to machine r and the regular
agents in a way such that the allocation coincides with A by ensuring that agents paying
non-zero cost shares are the highest priority agents, with the lowest among them to be
allocated to machine r.

Obviously, regular agents paying 0 have no incentive to deviate. If an enforcer from
machine r deviated to another machine j then the excess would increase to 1 and the
enforcer would pay εj(κj(A)), but ,by the definition of the εj(k) values, this is higher
than his current payment of εr(κr(A)). Finally, regarding regular agents with non-zero
cost shares, if they deviated to machine r they would have the highest priority and pay at
least Zr(κr(A)) which is more than their current charge. If they deviated to any machine
j 6= r, they would increase the excess to 1 and pay Zj((κj(A) + 1)) > Zr(κr(A)).
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– wr(A) = 1 or `r(A) = 2: We allocate the two enforcers to machine r′ 6= r that is the
last machine used by the Delayed-OPT algorithm before r.9 We allocate the regular
agents in a way such that the allocation coincides with A by ensuring that agents paying
non-zero cost shares are the highest priority agents with the two lowest among them (or
the one lowest, if `r(A) = 1) to be allocated to machine r.

Similarly, regular agents paying 0 have no incentive to deviate. If an enforcer from
machine r′ deviated to another machine j 6= r the same argument as before holds. If he
deviated to machine r, he would be the only enforcer and the excess of r would become
either 2 or 3, meaning that his charge would be Zr(κr(A)). Finally, regarding regular
agents with non-zero cost shares, the same arguments as before hold.

C Missing Proofs from Section 5

C.1 Proof of Theorem 11

We show how we construct a strategy profile that is a Nash equilibrium similarly to Theorem 10.
Let A be the allocation according to the Delayed-OPT algorithm and let r be the last machine
used by the Delayed-OPT algorithm. We will consider cases based on the excess of that machine,
wr(A) and its load, `r(A).

If only one machine is used in the Delayed-OPT algorithm then simply allocating any agent
to this machine would be Nash equilibrium. Next we consider separately the cases of no enforcer,
one enforcer and at least two enforcers.

• Only regular agents

– If wr(A) 6= tr(κr(A))− 1, we assign agents according to A making sure that the highest
priority agents are responsible for non-zero costs, i.e. if an agent has a cost share of 0
then all lower priority agents have a cost share of 0. Additionally we ensure that among
the agents paying non-zero cost, the lowest priority agents are allocated to machine r;
in other words, if wr(A) = 1 we ensure that the two highest priority agents in machine
r have the lowest priority among agents with non-zero cost shares and if wr(A) 6= 1 we
ensure that the one highest priority agent in machine r has the lowest priority among
agents with non-zero cost shares.

Every agent with 0 cost share has no incentive to deviate. Consider some agent with
non-zero cost share. Deviating to some machine j 6= r would increase the excess to 1
causing the two highest priority agents to pay a non-zero cost share equal to Zr(κr(A)+
1) > Zr(κr(A)). Currently there is only one agent charged with non-zero cost share
in machine j, and therefore the deviating agent would have one of the two highest
priorities which means that the deviation is not profitable. If the agent deviated to r,
since wr(A) 6= tr(κr(A))−1 and the agent has higher priority than any agent in machine
r, he would pay either Zr((κr(A) + 1)) if wr(A) = 0 or Zr(κr(A)) otherwise. In either
case this is not a desirable deviation.

– If wr = tr(κr(A)) − 1 then we may need to alter the allocation A as follows. Let j be
the machine with the highest total cost cj(A) according to A. We move one agent from
machine j to machine r (or do nothing if j = r). Similarly as above, we make sure that

9We do not assign the enforcers to machine r, because in the cases that the excess is 1 and there are two enforcers
or there is no regular agents, the enforcers pay a high cost.
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the highest priority agents are responsible for non-zero costs and the lowest priority of
those are placed in machine j.

We claim that this assignment is a Nash equilibrium. Naturally agents that have 0
cost share have no incentive to deviate. If an agent with non-zero cost deviates to
some machine j′ 6= j will result in excess of 1 and will pay Zj′(κj′(A) + 1) > Zr(κr(A)).
Deviating to machine j will result in 0 excess and since the agent has the highest priority
will pay the total cost of the machine. But since this agent was already paying the total
cost of another machine and the cost of machine j is the highest the deviation is not
profitable.

• Exactly one enforcer

– If wr(A) 6= tr(κr(A)) − 1, we put the enforcer to either machine 1 or 2 depending on
which of them has excess of 0 (always one of them has) so that the enforcer pays 0. We
allocate arbitrarily the rest of the agents according to A making sure that the highest
priority agents are responsible for non-zero costs, ensuring that the lowest priority agents
among them are allocated to machine r.

Since the machine that the enforcer occupies (machine 1 or 2) has excess 0 the enforcer
pays 0 and has no incentive to deviate. The same arguments as in the case of only
regular agents can be used here in order to show that no regular agent has an incentive
to deviate.

– If wr(A) = tr(κr(A))−1 then we allocate the enforcer to either machine 1 or 2 depending
on which of them has excess of 0; let f be that machine. We first assign the regular
agents according to A and then adjust the assignment as follows. Let j be the machine
with the maximum total cost cj(A) according to A. If Zf (κf (A)) > cj(A) we change
j to be f . Then we move one agent from machine j to machine r, unless j = r, and
similarly as above, we make sure that the highest priority agents are responsible for
non-zero costs and the lowest priority among them are placed in machine j.

The enforcer pays 0 since machine f has either excess 0 or excess tf (κf (A) − 1) and
therefore the enforcer has no incentive to deviate. If any agent deviated to some machine
j′ 6= j would result in a cost Zj′(κj′(A)+1) > Zr(κr(A)). Deviating to machine j would
result in a cost share equal to either Zf (κf (A)) if j = f or cj(A) otherwise. Since we
picked j such that the cost share of deviating to be the maximum, the deviation is not
profitable.

• At least two enforcers
Let d be the number of enforcers that arrive and f be either machine 1 or 2 as long as it is
different from r; f has excess of 0. We allocate the agents according to A and we assign the
spots to enforcers and regular agents as follows:

– wr(A) 6= 1 and `r(A) > 2
We allocate the enforcers in pairs, following their priority order from high to low, to
machines with increasing εj(κj(A)), starting from machine r; in the case that d is odd,
we assign only one enforcer to machine f . If there are more enforcers, we allocate one
more enforcer based on the priority order to machine f in the case that d is odd and the
rest of the enforcers are allocated arbitrarily.

– `r(A) ≤ 2
Similarly as above, we allocate the enforcers in pairs as above but by ignoring machine
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r. If there are more enforcers we allocate the next pair10 to machine r if `r(A) = 2 or
the next enforcer to machine r if `r(A) = 1. If there are more enforcers we allocate the
next one to machine f if it has only one enforcer and the rest arbitrarily.

– wr(A) = 1 and `r(A) > 2
We start allocating the enforcers as in the second case with the only difference that we
if we allocate a pair of enforcers in machine r, we make sure that the highest priority
pair of enforcers is allocated in r.

We allocate the regular agents arbitrarily making sure that the highest priority regular agents
are charged with non-zero cost shares, ensuring that machine r has the lowest priority among
them.

Obviously, agents paying 0 have no incentive to deviate.

If an enforcer deviated to machine r and the first case applies where wr(A) 6= 1 and `r(A) > 2,
then machine r has already the two highest priority enforcers and therefore the deviating
enforcer would pay either Zr(κr(A) + 1) or Zr(κr(A)) both of which are not profitable. If
an enforcer deviated to r and `r(A) ≤ 2 then either he would be the only enforcer or r had
no regular agent; in both cases the deviating enforcer would pay Zr(κr(A)). If an enforcer
deviated to r and `r(A) > 2 but wr(A) = 1, the excess of r would become 2 and machine
either r has already the two highest priority enforcers or it has no enforcer, meaning in both
cases that the deviating enforcer would pay Zr(κr(A)).

If an enforcer deviated to another machine j then the excess increases to 1. If there was already
at least one enforcer then the deviating enforcer would pay Zj(κj(A) + 1) > Zr(κr(A)). If
there was no other enforcer then the deviating enforcer would pay εj(κj(A)) but by our
assignment this must be higher than the current payment of the enforcer.

Finally if any regular agent with non-zero cost share deviated to r, he would be the highest
priority agent and pay Zr(κr(A) + 1) or Zr(κr(A)) and if he deviated to j 6= r he would
increase the excess to 1 and pay Zj(κj(A) + 1) > Zr(κr(A)).

C.2 Proof of Lemma 15

We consider two cases with respect to the expected number of agents.
If p|N | ≤ 1,

P[d ≤ 2] E
S∼p

[|S| | d ≤ 2] ≤ E
S∼p

[|S| | d ≤ 2] ≤ p|N \D|+ 2 ≤ p|N |+ 2 ≤ 3 .

10Note that there would be a pair of enforcers because if d is odd, we would have allocated odd number of enforcers
so far and if d is even we would have allocated even number of enforcers so far.
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If p|N | > 1,

P[d ≤ 2] E
S∼p

[|S| | d ≤ 2]] ≤ (P[d = 0] + P[d = 1] + P[d = 2])(p|N \D|+ 2)

≤ ((1− p)|D| + (1− p)|D|−1p|D|+ (1− p)|D|−2p2|D|2)(p|N |+ 2)

≤ (1 + p|D|+ p2|D|2)(1− p)|D|−2(p|N |+ 2)

≤ 3(p|N |)2(1− p)|D|−2(p|N |+ 2)

≤ 9(p|N |)3(1− p)|D|−2

≤ 9(p|N |)3(1− p)
log

(
1

(|N|p)3

)
log(1−p)

= 9(p|N |)3 1

(p|N |)3
= 9.

where the last inequality comes from the fact that |D| − 2 = 1 + b
log

(
1

(|N|p)3

)
log(1−p) c ≥

log
(

1
(|N|p)3

)
log(1−p)

C.3 Proof of Theorem 16

Let S be a random set of arriving agents, G be the corresponding game, Eq(G) be the set of Nash
equilibria for G and A be the allocation of the Delayed-OPT algorithm for the set S. Moreover,
let d = |S ∩D| be a random variable depending on p = (p1, p2, . . . , p|N |). Similarly to the proof of
Theorem 14, combining both Lemmas 12 and 13 we get that the expected ratio of the cost of the
worst case equilibrium to the cost of the allocation of the Delayed-OPT algorithm is

E
S∼p

[
maxs∈Eq(G) Ĉ(s)

C(A)

]
= P[d ≤ 2] E

S∼p
[|S| | d ≤ 2] + P[d ≥ 3] E

S∼p
[d+ 3 | d ≥ 3] . (4)

W.l.o.g. assume p1 ≥ p2 ≥ · · · ≥ p|N |. Then we designate the set of enforcers D to be the

agents associated with the highest probabilities such that
∑|D|

i=3 pi = 3 log ñ (we always designate
as enforcers the two agents with the highest probability). We first bound the probability P[d ≤ 2]
for the case that ñ > 1 as follows.

P[d ≤ 2] = P[d = 0] + P[d = 1] + P[d = 2]

=

|D|∏
i=1

(1− pi) +

|D|∑
j=1

pj ·
|D|∏

i=1,i 6=j
(1− pi) +

|D|∑
k=1

pk ·
|D|∑

j=1,j 6=k
pj ·

|D|∏
i=1,i/∈{j,k}

(1− pi)

≤
|D|∏
i=3

(1− pi)

1 +

|D|∑
j=1

pj +

|D|∑
k=1

pk ·
|D|∑

j=1,j 6=k
pj


≤

(∑|D|
i=3(1− pi)
|D| − 2

)|D|−21 +

|N |∑
j=1

pj +

|N |∑
k=1

pk ·
|N |∑
j=1

pj


≤

(
1−

∑|D|
i=3 pi
|D| − 2

)|D|−2
· 3ñ2 = 3ñ2

(
1− 3 log ñ

|D| − 2

)|D|−2
≤ 3ñ2e−3 log ñ = 3ñ2

1

ñ3
=

3

ñ
,
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where the second inequality comes from the AM/GM inequality:
(∏k

i=1 xi

)1/k
≤ 1/k

∑k
i=1 xi, and

the final inequality follows from the fact that (1−x/k)k ≤ e−x. As a result, we can bound the first
summand of (4) by 9 as follows.

If ñ ≤ 1, then

P[d ≤ 2]E[|S| | d ≤ 2] ≤ E[|S| | d ≤ 2] ≤ ñ+ 2 ≤ 3 , (5)

otherwise,

P[d ≤ 2]E[|S| | d ≤ 2] ≤ 3

ñ
(ñ+ 2) ≤ 9 . (6)

Similarly to Equation (2) we can bound the second summand of (4) as

P[d ≥ 3]E[d+ 3 | d ≥ 3] ≤ E[d | d ≥ 0] + 6 ≤
|D|∑
i=1

pi + 6 ≤
|D|∑
i=3

pi + 8 = 3 log ñ+ 8 (7)

Combining Equations (4), (5), (6) and (7) completes the proof of the theorem.
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