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Abstract

Solar photovoltaic (PV) energy is becoming an increasingly vital source in electricity

grids for energy harvesting. Inspired by the regulatory incentives and plummeting cost,

the integration of utility-scale PV systems into the power grid is boosting. Nonetheless,

due to the natures of cloud movements, PV system exhibits rapid power ramp-rates (RR)

in the output profiles, which poses significant challenges for system operators to maintain

grid transient stability. In this context, this thesis focuses on the management of cloud-

induced solar PV intermittency. Three aspects for coping with solar intermittency are

addressed, namely, control, forecasting, and emulation.

Firstly, from the control aspect, two predictive PV power RR control (PRRC)

strategies are presented. To regulate system RRs, conventional methods are implemented

either by active power curtailment (APC) or energy storage control (ESS). However,

current APC method cannot deal with the ramp-down fluctuations, and the integration

of an ESS is still costly. On this point, two innovative PRRC strategies are proposed,

which are based on a solar nowcasting system. The first strategy does not require any

ESS. With the prior knowledge of upcoming RRs, PV generation can be regulated

before the actual shading occurs. The second strategy improves the conventional ESS

method with minimal support of energy storage. The results show that both of the

proposed strategies can effectively comply with RR regulations, and outperform the

conventional methods.

Then, in terms of forecasting, an improved sensor network-based spatio-temporal

nowcasting method is developed. The proposed nowcasting method overcomes the
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shortcomings that typically associated with existing sensor network-based nowcasting

methods, such as predictor mis-selection, inconsistent nowcasting, and poor model

adaptability. The experimental results reveal that the proposed nowcasting method

is more suitable for predicting system RRs. Subsequently, the operability of solar

nowcasting for PRRC practice is demonstrated. To that end, temporal issues related

to operational solar nowcasting are identified, and their effects on nowcasting and PV

control performance are evaluated.

Lastly, from the emulation aspect, this thesis sets forth a partial shading emulator

and a cloud shadow model, which can emulate the module-level responses of utility-scale

PV systems under passing clouds. Based on the emulation tools, the characteristics

of PV system RRs are comprehensively investigated across various system and cloud

shadow attributions. The results indicate that a utility-scale PV system can frequently

violate the RR limit imposed by grid operators. Hence, advanced RR control strategies

should be essential for system operators to comply with the RR regulations.
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detected at t+ ñtTs in ramp scenarios. . . . . . . . . . . . . . . . . . . . 55

3.7 Layout of the deployed XJTLU sensor network prototype, with 3 exterior

sensors and 2 interior sensors. Arrow in the top shows the dominate wind

direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.8 The preselection example for a moderate day on 2018 December 24. (a)

PV generation profiles and scenario recognition results, where the grey

line and blue line represent the recognized stationary and ramp scenarios

respectively, and the red line shows the scenario signal. (b) Results of

spatial predictor preselection using SRP. (c) Results of temporal predictor

preselection using SRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xv



Xiaoyang Chen Ph.D. Thesis

3.9 Nowcasting using SRP-Enet (red line) and measured PV generation

(black dotted line) for a period on 2018 December 24. Nowcasting results

before coordination (using stationary predictors only) is represented by

the blue solid line. After coordination, the predictions approach closer to

the actual peaks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.10 Nowcasting examples under typical weather conditions (a) sunny, (b)

cloudy, (c) rainy. The proposed SRP-Enet method approaches the closest

to the ramp peaks compared with other methods. . . . . . . . . . . . . . 65

3.11 Nowcasts before and after applying SRP to (a) LR, (b) LSTM, and (c)

Elastic-net models for a period on 2018 December 24. The measured PV

generation is represented by the black dotted line. . . . . . . . . . . . . 67

4.1 Layout of the NREL Oahu sensor network. The 9 sensors for empirical

study are marked by red, where the sensor DH4 is selected as the PAPC

target (marked by the red star). Surrounding the target sensor DH4,

other 8 sensors form a closed circular deployment. The scale of the map

is shown in the bottom left corner. . . . . . . . . . . . . . . . . . . . . . 76

4.2 An example of PAPC operating timeline exemplified under (H15s, R1s,

U5min). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Visualization of the 48 validation days. GHI is plotted using red solid

lines. The Ineichen-Perez clear sky irradiance is plotted in black dashed

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Scatter plots of deterministic nowcasts versus measurements for PV

systems with different capacities. Hexagon binning algorithm is used for

visualization; the color varies from red to lightblue while the number of

scatter points per bin varies from high to low. Each plot is drawn based

on 48 validation days. The daily means and standard deviations of FS

are indicated on the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . 97

xvi



Ph.D. Thesis Xiaoyang Chen

4.5 nCRPS distributions of the probabilistic nowcasts for PV systems with

different capacities. Each distribution plot is based on the whole 48

validation days. The daily means and standard deviations of nCRPS,

PICP, and PINAW are indicated on the plots. . . . . . . . . . . . . . . . 99

4.6 Boxplots for RSR and ECR of all models at the 3 PV systems. For

probabilistic nowcasts, the lower bound of 10% PI is applied to PAPC.

The probabilistic OLS method is annotated by OLS∗. . . . . . . . . . . 100

5.1 Electrical connections of an array of multi-string PV configuration. . . . 107

5.2 Emulated PV string characteristics under partial shading using Mat-

lab/Simulink and developed emulator, (a) I-V curve. (b) P -V curve.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 An example of generating fractals using the modified diamond-square

algorithm. (a) Generated 513×513 fractal surface. By introducing the

scaling factor λ = 1.6, the peaks tend to appear near the fractal center.

(b) Cloud shadow pattern obtained by inserting a cutting plane to the

fractal surface at h = 16, leading to a relative pattern size S equal to

50% of the total pixels. By initializing the fractal edge points to be

zero, the generated shadow pattern becomes marginal continuous without

fragments on the edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Synthesized shadow pattern with shadow intensity of 0.9. The darkest

pixel corresponds to an irradiance attenuation to 0.1 (10% of Gclear). . . 116

5.5 Flowchart of the proposed emulation methods. The numbers between

brackets in blocks indicate the emulation sequence. . . . . . . . . . . . 118

xvii



Xiaoyang Chen Ph.D. Thesis

5.6 Emulated (a) output power time-series and (b) resultant RRs calculated

with ∆t = 1 s for a 11.06 MW PV system under a horizontal shadow move-

ment at 10 m/s. The emulation takes 811 steps to complete, indicating

a shadow transition of 81.1 s. The maximum instantaneous RR reaches

2.23% at the instant 67 s, which is labeled in red. (c) Visualization of

model interactions at emulation step t = 0 s (top plot), 67 s (middle

plot), and 81.1 s (bottom plot). The PV field covers an area of 566.4 m

× 298 m, highlighted by dashed lines. . . . . . . . . . . . . . . . . . . . 120

5.7 Mean RR for the six studied PV systems with respect to different array

arrangements and system orientations. The performance of the most-

squared systems are plotted in red. The results are averaged onver 9

different cloud shadow patterns. . . . . . . . . . . . . . . . . . . . . . . 122

5.8 Mean and maximum instantaneous RRs of the 6 studied PV systems

under different shadow characteristics. The values of shadow intensity,

shadow size, and shadow velocity are normalized to their respective

featured values: 0.9, 100% system size, and 30 m/s. . . . . . . . . . . . . 126

5.9 Mean and maximum instantaneous RRs under different shadow properties

in terms of different system sizes. Exponential decay is observed for all

the shadow properties as the size of system expands. . . . . . . . . . . . 127

5.10 Scatter plots between the measured shadow intensity, shadow velocity

and shadow length. The medians and 90th percentiles are plotted in red

and blue lines respectively, showing that there are no clear correlations

between each two of the properties. . . . . . . . . . . . . . . . . . . . . 129

5.11 Cumulative distributions of RRs for the six studied systems. The medians

and 99th percentiles are plotted in blue solid and dashed lines respectively.

The portions that lie on the right side of RR limit (red solid line) indicate

the RR violations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xviii



Ph.D. Thesis Xiaoyang Chen

A.1 Solar sensor prototype, (a) water-proof shell, (b) inside configuration, (c)

PV panel for self-charging. . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Left. Example of solar sensor calibration with a pyranometer (β = 1.31,

α = 78.26). Right. Comparison of calibrated sensor measurements and

pyranometer readings during cloud transitions (temporal resolution of 1 s).144

B.1 The results of (a) OLS probabilistic nowcasts, and (b) PAPC on an

example operating day, following the operating timeline in Figure 4.2. . 146

D.1 Nine cloud shadow patterns used for generalization. . . . . . . . . . . . 150

E.1 Example of an identified shadow transition, with shadow intensity 0.75

and shading period 21.5 s. . . . . . . . . . . . . . . . . . . . . . . . . . 152

xix



List of Tables

1.1 An overview of several typified PRRC standards in different countries. . 4

2.1 Performance of DST nowcasting on the two example days. A RR limit of

10%/min is applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Comparison of PAPC, PEC, and ESS for the two example days. . . . . 32

2.3 Daily performance of DST model and proposed PRRC strategies over a

one-year period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Cost of PV installation in $/W. . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Parameters values for the economic analysis of a 1.5 MW PV system. . 37

2.6 Financial comparison among the four PRRC operating modes. . . . . . 37

3.1 Spatial distances in meters [m] between the sensors. The maximum

distance is found as 224 m between S2 and S4. The minimum distance is

found as 55 m between S4 and S5. . . . . . . . . . . . . . . . . . . . . . 56

3.2 Nowcasting performance for various PRRC time buffers. 30-s ahead

nowcasting is generated on 2018 December 24. . . . . . . . . . . . . . . 60

3.3 10-s ahead nowcasting performance of the proposed SRP-Enet method

and three benchmarking models with various training data points. The

results are averaged over the 10 days. . . . . . . . . . . . . . . . . . . . 62

3.4 Nowcasting performance of the proposed SRP-Enet and benchmarking

models at various forecast resolutions. The results are averaged over the

10 days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xx



Ph.D. Thesis Xiaoyang Chen

3.5 Nowcasting performance in different weather conditions. 10 typical days

are selected for each weather type. The results are averaged over the

respective days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Nowcasting performance before and after applying SRP. The results are

averaged over the 10 days. . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 PAPC performance using SRP-Enet and DST over the 10 cloudy days. 70

4.1 Overview of operational requirements for intra-hour, intra-day, and day-

ahead solar forecasting in CAISO. . . . . . . . . . . . . . . . . . . . . . 74

4.2 An illustration of PAPC operation under the nowcasting setting (H15s,

R1s, M5min). The timestamps marked by bold indicate the model up-

dating time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Performance of operational nowcasting and PAPC under (R1s,M5min),

but with various forecast horizons. The metrics are presented as daily

“mean ± standard deviation”. The column-wise best results are in bold

with gray shade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Same as Table 4.3, but the results are computed for different forecast

resolutions with (H15s,M5min). A larger value of R indicates a lower

forecast resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.5 Same as Table 4.3, but the results are computed for different forecast

model update rates with (H15s,R1s). Since the model update rate only

affects training accuracy, the performance of Perf remains the same. In

general, a larger value in M denotes a slower forecast model update rate. 95

5.1 Specification of the JAM72S09 395/PR PV module at STC. . . . . . . . 106

5.2 Performance comparison between the developed emulator and Mat-

lab/Simulink with different PV array sizes ( nm × ns) under partial

shading. The simulations are carried on PV module level. . . . . . . . . 112

xxi



Xiaoyang Chen Ph.D. Thesis

5.3 Emulation results for the six studied PV systems in terms of different

array arrangements and system orientations. The performance of the

most-squared systems are marked in bold. The results are averaged over

9 different cloud shadow patterns. . . . . . . . . . . . . . . . . . . . . . 123

5.4 System mean and maximum instantaneous RRs during all the identified

shadow transitions. The RR violations are calculated as the percentage

of RRs greater than 100 kW/s to the total RRs. . . . . . . . . . . . . . 131

5.5 Validation of the emulated RR characteristics of PV1 and PV10 systems

using one year observations of two practical PV plants, Sesma and Milagro

plants. The maximum RRs of the two practical plants are estimated

from the distribution plots. . . . . . . . . . . . . . . . . . . . . . . . . . 132

xxii



Nomenclature

AnEn Analog Ensemble

APC Active Power Curtailment

CAISO California Independent System Operators

CCF Cross-Correlation Coefficient

CMV Cloud Motion Vector

CSI Clear-Sky Index

CSMV Cloud Shadow Motion Vector

DNI Direct Normal Irradiance

DST Dynamic Spatio-Temporal

ECR Energy Curtailment Ratio

ESS Energy Storage System

FPPT Flexible Power Point Tracking

FS Forecast Skill

GFS Global Forecast System

xxiii



Xiaoyang Chen Ph.D. Thesis

GHG Greenhouse Gases

GHI Global Horizontal Irradiance

kNN k-Nearest Neighbors

Lasso Least Absolute Shrinkage and Selection Operator

LR Linear Regression

LSTM Long Short-Term Memory Recurrent Neural Networks

MCP Most-Correlated Pair

MPPT Maximum Power Point Tracking

NAM North American Mesoscale

nCRPS Normalized Continuous Ranked Probability Score

nMAE Normalized Mean Absolute Error

nMBE Normalized Mean Bias Error

nPMAE Normalized Peak Mean Absolute Error

NREL National Renewable Energy Lab oratory

nRMSE Normalized Root Mean Square Error

NWP Numerical Weather Prediction

OLS Ordinary Least Squares

PAPC Predictive Active Power Curtailment

PDM Peak Difference Minimization

PEC Predictive ESS Control

PeEn Persistence Ensemble

xxiv



Ph.D. Thesis Xiaoyang Chen

Pers Persistence Model

PI Prediction Interval

PICP Prediction Interval Coverage Probability

PINAW Prediction Interval Normalized Average Width

PRC Power Reserve Control

PRRC Power Ramp-Rate Control

PV Photovoltaic

QR Quantile Regression

RR Ramp-Rate

RSR Ramp Smoothing Rate

SOC State of Charge

SP Smart Persistence

SRP Scenario-Recognizable Preselection

SRP-Enet SRP-Based Elastic-Net

STC Standard Test Conditions

WMO World Meteorological organization

WRF Weather Research and Forecasting

xxv



Chapter 1

Introduction

1.1 Background

Electricity is vital for economic development and technological growth. It is a key factor

in modern urbanization and industrialization, to the extent that economic growth is

frequently measured in per capita power output of a country [1]. This ever-growing energy

demand leads to an increasing need for electricity generation and distribution. However,

globally, the reliance of electricity production is still on non-renewable pollution-causing

fossil fuels. Approximately two-thirds of the global carbon dioxide emissions are from

such fuel sources whose current share of energy production, if maintained, will inevitably

lead to a significant rise in average global temperature and other catastrophes [2]. The

World Meteorological Organization’s (WMO) provisional statement on the State of

Global Climate mentioned that the year 2019 witnessed one decade of unprecedented

elevated global temperature, retreating glaciers and record high sea levels due to the

greenhouse gas (GHG) emissions. The average global temperatures for the past five

(2015-2019) and ten (2010-2019) years were the highest in recorded history.

Fortunately, the rapid development of renewable energies such as solar, wind, or

tidal, has brought sweeping changes in the arena of energy generation and reveals the

potential of clean and sustainable energy for the future. Moreover, policies enacted

by international organizations and major players in world economy regarding carbon

1



PhD Thesis Xiaoyang Chen

Daily totals: 

Yearly totals: 

2.0 

730 876 1022 1168 1314 1461 1607 1753 1899 2045 2191 2337
kWh/kWp

2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 

Figure 1.1: Long-term average of PV power potential. Countries located above 45◦N
or below 45◦S latitudes show tremendous potential for harnessing solar energy. Data
source: Solargis.

taxation have paved the way for the renewables [3]. For instance, the European Union

has stated to reduce GHG emissions by 80% (from a 1990 baseline) and to produce

100% green energy from the renewables by 2050 [4]. In this context, the transition from

fossil fuels to clean energy resources has become a global development trend.

Among the renewable energies, solar photovoltaic (PV) energy is considered as one

of the most promising resources for energy harvesting, and gaining global popularity

in recent years. With ever dropping levelized cost of electricity (LCOE),1 the market

size of solar PV is boosting [5]. Figure 1.1 shows the long-term average of PV power

potential across the globe. By the end of 2019, over 115 GW PV systems are newly

added to the global PV market, which has raised the cumulative installed capacity to

well above 620 GW [6]. Nonetheless, as opposed to conventional energy source such as

fossil fuels, solar energy is perceived as an inconsistent resource. With the increasing

penetration of PV systems, there is a growing concern that the variable PV generation

can strain the grid [7].

1LCOE is the expected net present value of energy generation over the lifetime, offset by the system
costs in unit money per unit of produced energy
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1.1.1 Soalr Resource Intermittency

Due to the natures of sun movement and cloud transitions, solar resource exhibits

both long-term and short-term variabilities. Figure 1.2 depicts the variation of global

horizontal irradiance (GHI) during a typical day. In a coarse sense, solar resource

follows the diurnal cycle of sun movement, with peak appearing at solar noon and zero

from sunset to sunrise (see Figure 1.2(a)). In a finer view, the frequent cloud coverage

gives rise to the intermittent irradiance fluctuations (see Figure 1.2(b)), which brings

more uncertainties to the daily solar pattern. In this context, the short-term solar

variability—the “noise” caused by passing clouds—is termed as solar intermittency.
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Figure 1.2: (a) Time series plot for GHI measured on 2011 May 15 at Oahu, Hawaii
(black line). The red line shows the clear-sky GHI computed by the Ineichen-Perez
clear-sky model. (b) A zoomed view for 11:00-12:00.

In general, the long-term solar variability due to sun movement is precisely predictable

and only causes notable PV power variations over timescales of hours. Provided

with the solar position, target location, local time, and other meteorological variables

(e.g., extraterrestrial irradiance, aerosols, water vapor, etc.), a clear-sky model can be

developed to fully capture the diurnal trend in solar irradiance [8]. To give perspective,

Figure 1.2(a) demonstrates an example of retrieving clear-sky GHI based on the Ineichen-

Perez clear-sky model (see the red line) [9]. Owing to the high predictability of the daily
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solar cycle, grid operators have effectively exploited a series of system operations to

handle the peak-valley characteristics of PV generation, such as demand side management

or reserve capacity planning [10].

In contrast to long-term solar variability, the cloud-induced solar intermittency

is more challenging to manage, which impacts the resultant PV yield in timescales

of seconds. To quantify solar intermittency, the term ramp-rate (RR) is commonly

adopted as a measure of irradiance/PV power change rate [11]. When a utility-scale PV

system or accumulated high penetration is considered, the large power RRs can seriously

damage the grid transient stability, leading to voltage flicker, frequency deviations,

even blackouts [12]. Nonetheless, as PV system RRs are highly dependent on both the

endogenous factors that configure the PV systems (e.g., array arrangement, system size,

and orientation, etc,) and exogenous factors that are relevant to cloud properties (e.g.,

velocity, size, or intensity of the cloud shadows), the characteristics of RRs can vary

from plant to plant and day to day, which makes it difficult for grid operators to plan

adequate grid reserves [13]. In this sense, solar intermittency is becoming a key barrier

to promote high PV integration in modern power systems.

1.1.2 Power Ramp-Rate Control of PV Systems

In order to address the adverse effects of intermittent PV power generation that continue

to be integrated into the power grid, PV power ramp-rate control (PRRC) has been

imposed by grid operators in different countries. Given a predefined RR limit, PRRC

aims to constrain the PV output power change rate to a certain RR level, thereby

Table 1.1: An overview of several typified PRRC standards in different countries.

Region Upward RR Downward RR

Puerto Rico 10%/min 10%/min

Germany 10%/min 10%/min

Denmark 100 kW/s 100 kW/s

Hawaii 2 MW/min 2 MW/min

Ireland 30 MW/min No Req.
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Figure 1.3: An example RR scenario over a sudden 40% power drop follows a recovery.
Assuming a RR limit of 10%/s, PRRC is implemented based on (a) ESS, and (b) APC,
respectively.

reducing the fluctuation in the PV power injection. Table 1.1 summarizes several typified

RR standards introduced in [14–17]. To comply with PRRC requirement, PV output

power is typically mitigated by utilizing the energy storage system (ESS) [18–20], or

active power curtailment (APC) [21–23]. Figure 1.3 illustrates the control principles of

the two PRRC methods.

ESS is considered as the most straightforward way to achieve PRRC. As shown in

Figure 1.3(a), when PV power decreases faster than the RR limit, ESS releases energy

(discharge) to compensate the sudden power drop (area A1). When PV power increases

faster than the RR limit, ESS stores energy (charge) to suppress the rising PV generation

(area A2). Besides, to ensure the ESS operability, additional state of charge (SOC)

control is mandatory to maintain a SOC reference around 50% [24]. Most generally,

the ESS storage requirement needs to be determined from the worst case that the PV

generation decreases from full production to almost none within a very short period. In

this regard, the ESS power capacity should be designed equal to the rated power of the

PV system, and a doubled energy capacity is required [25]. Although integrating ESS

can effectively regulate PV system RRs, the high installation and maintenance cost is
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still hindering its large-scale application.

Since the utilization of ESS introduces additional costs, the APC method provides a

self-supporting solution to PRRC. The principle of APC is based on the flexible power

point tracking (FPPT) of the PV converters [26]. Different from the conventional PV

system operations that working under maximum power point tracking (MPPT), FPPT

allows users to flexibly modify the PV operating point to meet different operation

commands. Fig. 1.3(b) depicts the PRRC implementation with APC. Typically, the

application of APC is limited at the power ramp-up side, where the FPPT is activated

to curtail the surplus energy of A2. For the ramp-down RRs, however, APC becomes

invalid as no extra energy source can be used to compensate for the power drop. On

this point, one possible solution is to combine the APC and ESS methods [27]. In that,

the ESS is merely used to handle the ramp-down RRs, and the required ESS energy

capacity can be halved. Nonetheless, even with a halved capacity, the resultant financial

burden of deploying an ESS for utility-scale PV systems can still be heavy.

1.1.3 Solar Forecasting

Besides leveraging advanced control operations for PV systems, forecasting of the solar

irradiance and projected PV generation is becoming an increasingly important aspect

to cope with solar variabilities, which brings solar PV one step closer to being “grid-

friendly” [28]. In the field of energy meteorology, the two topics, namely, solar irradiance

forecasting and PV power forecasting, are jointly known as solar forecasting [29]. For

the former, solar forecasters are interested in forecasting the irradiance components,

such as GHI, or direct normal irradiance (DNI). For the latter, the forecast GHI or DNI

needs to be further converted into the solar-generated power, e.g., using an irradiance-

to-power conversion model [30]. Due to the limitation of input data resolution, solar

forecasting methods are conventionally categorized into three classes: 1) day-ahead

forecasting, 2) intra-day forecasting, and 3) intra-hour forecasting [31]. However, with

the recent advances in sensing technologies, data at higher spatial and temporal scales

become available. Hence, in this thesis, solar forecasting methods are classified into four
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categories, with the fourth class of methods being intra-minute forecasting.

Day-ahead solar forecasting

Day-ahead solar forecasting is normally used for power system economic planning and

unit commitment. It covers forecast horizons up to 48 h, depending on when forecasts

are issued [32]. In this case, numerical weather prediction (NWP) is often applied,

which takes a detailed physical description of the atmosphere into consideration and

directly simulates the irradiance fluxes at multiple levels in the atmosphere. Generally,

the performance of a NWP model can highly rely on the user’s knowledge on the physics

options. Furthermore, as most of the NWP models are not adapted specifically for solar

forecasting purposes, the NWP forecasts are commonly biased. As a result, statistical

post-processing such as the application of model output statistics and Kalman filtering

are often needed to empirically adjust the NWP output [33].

Intra-day solar forecasting

Intra-day solar forecasting covers a forecast horizon from 1 to 6 h and is often applied to

load following. Apart from NWP, satellite imaging is widely used for generating forecasts

at this timescale [34]. The satellite imaging-based approaches estimate solar irradiance

using cloud images captured by instruments onboard geostationary satellites. Both

physical and statistical models can be used to map the satellite images to irradiance [35].

To complete the forecast, cloud motion vector (CMV) fields between two consecutive

images are identified through cloud tracking algorithms, such as block matching [36]

or optical flow [37]. Subsequently, by projecting the CMV field 1-step ahead, the

areal irradiance forecasts can be obtained. One issue with satellite imaging-based

approaches is the spatial-inhomogeneous systematic bias potentially embedded in the

derived irradiance data [38]. On this point, site adaptation is considered as a must prior

to using these approaches [39].
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Intra-hour solar forecasting

Intra-hour solar forecasting covers forecast horizons from a few minutes to 1 h. It

is important for grid operators to optimally schedule spinning reserves and demand

response [40]. For timescales smaller than 1 h, the main factor causing changes in solar

irradiance is the presence of local clouds. At this stage, ground-based sky imagers are

frequently utilized. The sky imager is literally a bottom-up approach that uses a wide

angle (fish-eye) lens or curved mirror to project the full sky hemisphere onto a finite

range. An irradiance sensor is often deployed to map the image pixels to irradiance

values. The methodology for making forecast with sky imagers largely resembles the

satellite-based techniques, namely, given a deduced CMV, the irradiance fields are

propagated forward in time resulting in a final forecast. It should be noted that the

forecast horizon of a sky imager is typically restricted to ∼30 min due to the residence

time of clouds over the field of view. Besides the upper bound, the lower bound on the

forecast horizon of a sky imager is resulted from the circumsolar glare, which renders

forecast horizon shorter than 2 min inaccessible [41].

Intra-minute solar forecasting

Intra-minute solar forecasting, also known as solar nowcasting, is a new subdomain

of solar forecasting. It was not until the early 2010s, when modern solar forecasting

is considered to start, that the first papers on solar nowcasting appeared [29]. As it

provides forecasts at shorter time horizons, i.e., a few seconds to 1 min, solar nowcasting

has gained recognition in coping with solar intermittency and facilitating real-time PV

system control [42]. In contrast to intra-day or intra-hour forecasting that is based on

CMV measurement, intra-minute solar forecasting typically relies on the detection of

local cloud shadow motion vector (CSMV) fields. Most notably is the use of shadow

cameras [43], and wireless sensor network [44].

Whereas sky imagers take a bottom-up approach in generating irradiance maps

over an area, shadow cameras consider a top-down approach, by taking photos of the

ground from an elevated position below the clouds (e.g., 87 m above ground). With
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additional ground-based irradiance measurements, the detected shadow maps then can

be used to infer the future irradiance conditions. At present, the studies on shadow

cameras are quite rare; only a handful of works are available [45]. In this context, the

forecasting aspects of shadow camera applications are still hypothetical. However, as

shadow cameras bypass cloud geolocation, they present great potential of advantages

over sky imagers.

Instead of providing an explicit view of shadow movements, sensor network-based

approaches derive the cloud shadow information indirectly. As clouds propagate over a

sensor network, the frequent cloud coverage and opening show sequential peaks in sensor

readings. Consequently, CSMVs can be identified from the spatio-temporal correlations

among the sensors [46]. The final forecasts are then produced by advecting the CSMVs

into the future. The main advantage of sensor network-based solar nowcasting is that

it overcomes the challenges typically associated with camera-based approaches, such

as cloud-height estimation or pixel-to-irradiance conversion. Moreover, it is easy to be

generalized and adapted to different PV systems, as one can flexibly design or adjust

the network layout [47]. Nonetheless, forecast horizons of using a sensor network are

often limited by the size of the network. Therefore, the correspondence between spatial

scale of the network and forecast horizon requires further study.

As a brief summary, Figure 1.4 illustrates the spatial and temporal applicability of

current solar forecasting techniques, alongside with noting the associated forecasting

purposes.

1.1.4 Emulating and Characterizing Solar PV Ramp-Rates

Another important aspect to tackle solar PV intermittency is to characterize PV system

RRs during cloud transitions. As discussed very briefly in Section 1.1.1, the RR of

PV systems depends on both endogenous and exogenous factors. Endogenous factors

refer to the inherent attributions of a PV system, such as capacity, array arrangement,

or system orientation. On the other hand, exogenous factors are more relevant to the

properties of cloud shadows, i.e., shadow velocity, thickness, and size. To study PV
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Figure 1.4: Spatial and temporal scale coverages for standard solar forecasting techniques.
The potential applications of different forecasts are indicated on the top of the figure .

system RRs, current practice can be categorized into three classes—measurement-based

methods, simulator-based methods, and analytical methods.

As the name suggests, measurement-based methods aim to directly use data from

practical PV plants to evaluate RRs. Several typified works consist of using 5 min data

from 100 PV sites (243 kW in total) in Germany [48], 10 s and 1 min data from a 4.6 MW

PV system in the United States [49], and 1 s data from six PV plants ranging from 1 to

9.5 MW in Spain (18 MW in total) [50]. While a majority of these measurement-based

works are meant to analyze the effects of endogenous factors (e.g. system geographic

dispersions) on RRs, the exogenous factors are scarcely discussed. In order to match

with PV fluctuations, exhaustive sensing of cloud shadow transitions both in spatial

and temporal scales is desired. Unfortunately, such high-frequency measurements are
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typically unavailable for a practical PV system. Even if the measurements were made

possible, the analyses would be site-specific. Consequently, the presented results would

be difficult to generalize.

As an alternative to exploring practical PV systems, a wide range of studies are based

on computer-aided simulators (mostly Matlab/Simulink) [51–54]. The main advantage

of using a simulator is that it provides a flexible simulation layout that allows users

to easily adjust system configurations. Among the studies, the simulation resolution

is typically set on the module-level (one PV module is the basic simulation unit) to

retain sufficient accuracy of system behaviors under partial shading. However, due to

heavy computational burdens, the module-level simulations on the whole are limited on

evaluating the performance of a single or several PV arrays. In the case of simulating

a utility-scale PV system that contains tens even hundreds of arrays, the simulation

resolution needs to be downscaled, e.g., to string-level (all the modules in one string are

assumed to receive identical irradiance) to relieve the computational complexity. As a

consequence, the simulation accuracy decreases, and significant errors can rise especially

for partial shading analysis [55]. Besides, the shadings considered in these studies are

typically randomly assigned and assumed to be static. In another word, the shadow

patterns are generated without fully considering the natural shapes and dynamics of a

real shadow coverage. Although several works have devoted to deriving cloud shadow

models that can reproduce the spatial diversities of cloud natures, such as using fractals

[56], imaging systems [57], and random noise [58], the model applicability of interacting

with PV system simulations are seldom presented.

Instead of explicitly simulating PV systems and cloud shadows, several studies

also focus on the analytical modeling of PV power fluctuations. In [59], an analytical

model to quantify the output variability resulting from an ensemble of PV systems,

or a PV fleet is developed. The model demonstrates the ensemble variability of a PV

fleet as a function of the number of PV systems and the dispersion factor. However,

the model is only applicable when the PV systems within the fleet are identical and

equally-distributed. Moreover, it requires the measurements of a single PV system as

11



PhD Thesis Xiaoyang Chen

the input, which may hinder its practical application [60]. In order to simplify the

modeling process, the wavelet variability model has been introduced in [61], which

can simulate the production of an arbitrary fleet of PV system given the endogenous

PV system information and measurements from a single irradiance point sensor. The

wavelet model, however, on the whole is more akin to a statistical, or machine learning

approach that provides one-stop estimations of ensemble PV generation with limited

irradiance data as input, thus the relevant cloud shadow information is left as a black

box. In this regard, the model is typically utilized for studying the effects of endogenous

factors on RRs, but inferior to assess the cloud-induced fluctuations [62].

1.2 Research Motivation

As aforementioned, solar intermittency has become a major concern for grid operators

to maintain steady power system operations. From the technical aspects, PRRC of PV

systems provides an immediate solution to counteract the intermittent PV generation.

Nonetheless, as the large-scale application of ESS is not yet being commercially available,

and the APC method is limited at the power ramp-up side, existing PRRC practice still

show deficiencies in efficiently complying with the RR regulations. Therefore, PRRC

methods that can handle both upward and downward RR violations while minimizing

the reliance on ESS are strongly demanded. On this point, solar forecasting may provide

a remedy for improving current PRRC operations. Since clouds are the primary source

of large PV power fluctuations, accurate forecasts of cloud motions and resultant PV

generation may facilitate a more effective implementation of PRRC.

In terms of solar forecasting, referring to in Figure 1.4, the application of PRRC—a

function of real-time PV power control—lies within the scope of intra-minute forecasting

(or solar nowcasting). Whereas the applicability of shadow cameras on solar nowcasting

is still considered as underdeveloped, nowcasting with a sensor network becomes the

first priority for PRRC practice. In this regard, a reliable sensor network-based solar

nowcasting method that can cooperate with PRRC needs to be investigated. In addition,
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as a forecast always involves several operational time parameters such as forecast horizon,

forecast resolution, or forecast updating rate, the effect of these time parameters on

PRRC application should be evaluated as well.

On the other hand, emulating and characterizing PV system RRs under passing

clouds are also of high importance in order to manage solar intermittency. Since PV

system RRs vary with different PV configurations and cloud shadow properties, having

the prior knowledge of PV system RRs may offer a possibility to design the PV system

in a site-specific way, so that the effect of local cloud movements can be minimized,

and PRRC can be implemented more effectively. However, as current studies still

show deficiencies in comprehensively investigating PV system RRs rising from both

endogenous and exogenous factors, the characteristics of PV system RRs are still not

well evaluated. In this sense, modeling approaches to mimic the dynamic performance

of PV system RRs during cloud transitions should be explored.

1.3 Research Objectives

In light of the above motivation, the final goal of this thesis is to facilitate the mitigation

of solar PV intermittency arising from passing clouds. To this end, three aspects,

namely, control, forecasting, and emulation of cloud-induced PV power fluctuations are

addressed. More specifically, the following research questions are considered:

• Is it possible to improve the performance of conventional PRRC methods through

the integration of solar nowcasting information?

• How to ensure the reliability of sensor network-based nowcasting to better cooper-

ate with PRRC operations?

• How the time parameters in a forecast run can affect the forecast applicability on

PRRC?

• How to emulate the dynamic performance of PV systems during cloud transitions

so as to characterize PV system RRs?

13
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With these research questions, the objectives of this thesis can be summarized as

follows:

• Predictive PRRC of PV systems. As mentioned earlier, solar nowcasting

may offer a possibility to implement PRRC more efficiently. In this thesis, the

predictive PRRC strategies that integrate solar nowcasts into control process will

be developed. The effectiveness of the proposed control strategies will be validated

experimentally using nowcasts from a real sensor network.

• An improved spatio-temporal nowcasting framework for PRRC. To over-

come the limitations that are typically associated with sensor network-based

nowcasting, a novel spatio-temporal nowcasting framework will be developed. The

applicability of the proposed nowcasting method on predictive PRRC will be

evaluated under various control settings and weather conditions.

• Analysis of operational nowcasting for PRRC. Since solar nowcasting re-

volves around operational requirements from grid operators, e.g., time parameters,

an in-depth analysis of operational solar nowcasting for predictive PRRC will be

carried out. Thad said, an operational nowcasting platform will be set up, and the

performance of predictive PRRC will be evaluated in the operational environment,

following certain temporal requirements.

• Emulation of RRs for utility-scale PV systems during cloud transitions.

In order to characterize PV system RRs, emulation tools to mimic the interactions

between PV systems and cloud transitions will be developed. Based on emulation,

the effect of both endogenous and exogenous factors on PV system RRs will be

investigated.

1.4 Thesis Outline

This thesis summarizes the outcomes of the Ph.D. project. The main content of the

thesis is based on the collection of papers published during the Ph.D. study. Figure
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PV systems during cloud transitionsCh.5

An improved spatio-temporal 
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Solar Photovoltaic Power Intermittency Under Passing Clouds
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Reference PublicationsMain Content

Publication: J3

Outcome

Figure 1.5: Thesis structure and related publications.

1.5 illustrates the structure of the thesis, providing a guideline on how the content is

related to the reference publications.

This thesis is organized into six chapters. In Chapter 1, the background of the

research topic is introduced, alongside with the discussion of motivation and objectives

of this thesis. Chapter 2 focuses on the control of PV power RRs, in which two

predictive PRRC strategies are proposed based on the conventional ESS and APC

methods. Data from an irradiance sensor network is used to produce solar nowcasts

and evaluate the control performances. The following two chapters deal with the

forecasting of PV power RRs for PRRC. In Chapter 3, an improved sensor network-

based solar nowcasting method is developed, which considers the spatio-temporal

statistics separately for stationary and ramp scenarios. The effectiveness of applying

the developed nowcasting method to PRRC is also evaluated. Chapter 4 addresses
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the operability of solar nowcasting on PRRC, where the time parameters involved in

operational solar nowcasting are identified. To investigate the effect of different forecast

time parameters on PRRC, both deterministic and probabilistic solar nowcasting are

considered. In Chapter 5, the emulation of PV power RRs under passing clouds

is presented. The characteristics of RRs are analyzed for a range of utility-scale PV

systems, for both endogenous and exogenous factors. To mimic the behaviors of an

arbitrary partially shaded PV system, a partial shading emulator is developed, and a

fully customizable shadow model that can reproduce the natures of a real cloud shadow

is introduced. Finally, conclusion remarks of this thesis are summarized in Chapter 6,

and an outlook into future research is provided.
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Predictive PRRC of PV systems

2.1 Chapter Introduction

The escalating integration level of intermittent solar PV resources into the power grid

calls for a critical necessity to implement PRRC for modern PV systems. As discussed

earlier, conventional PRRC methods mainly rely on the utilization of ESS and APC.

Essentially, these approaches react to the erratic PV power fluctuations, and are termed

as reactive approaches. Nonetheless, as the high cost of ESS is still hindering its

extensive application and APC method cannot deal with ramp-down RRs, the reactive

approaches still show limitations to properly address the PRRC requirements. On the

other hand, the utilization of solar nowcasting enables a predictive approach, which

initiates the ramp-down function sufficiently before the passing clouds shade the PV

systems and potentially shrinks the required smoothing backup.

In this chapter, two predictive PRRC strategies will be presented. The first strategy

does not require any ESS. For ramp-down events, PV power can be curtailed before the

actual shading occurs. The second strategy requires only quarter of the energy capacity

of conventional ESS control. To provide solar nowcasts, a sensor network-based dynamic

spatio-temporal (DST) model is developed. The effectiveness of the nowcasting model

and control strategies will be verified on a real irradiance sensor network. The economic

analysis will also be provided to validate the feasibility of the proposed strategies.
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2.2 Sensor Network-Based Solar Nowcasting

Cloud transients dominate solar irradiance intermittency, while the resultant effects on

PV systems are primarily driven by cloud shadows on the ground level. In this section,

a sensor network-based cloud shadow tracking algorithm is introduced first. Then, by

integrating the derived CSMV information into the classical spatio-temporal model,

the DST nowcasting model is formulated, which tunes the regression coefficients in

accordance with real-time CSMV measurements.

2.2.1 Correlation-Based CSMV Detection

In this work, a semicircle sensor network configuration introduced in [63] is considered.

By sharing a same central sensor, N sensors are grouped into N − 1 sensor pairs.

An exemplified network deployment with N = 6 is shown in Figure 2.1, where di,

i = 1, 2, · · · , 6, denotes the distance between sensor Si and central sensor S0. It should

be noticed that to ensure the network to effectively sense the cloud shadow movements,

the distance between adjacent sensors should lie within the typical cloud dimension

range, e.g., 100 - 1000 m [64].
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Figure 2.1: An example of semicircle sensor network configuration, shading the same
central sensor S0. The red dashed line indicates the distance between the outer and
central sensors.
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In order to detect CSMVs, the most-correlated pair (MCP) algorithm previously

developed in [65] is performed on the sensor network. The basic principle of MCP is that

the outputs of two sensors can be highly correlated with a time lag when they are aligned

with the moving direction of CSMVs. To identify the time lag, the cross-correlation

coefficient (CCF) is calculated between the central sensor and all other sensors. The

sensor pair with the largest CCF is then selected as the MCP, and CSMV can be derived

from the time lag and spatial distance between the MCP. For instance, in the context

of Figure 2.1, the output time-series of the sensor Si, i = 1, 2, · · · , 6, and central sensor

S0 can be written as:

xTobsi,t =


xi,t−Tobs

...

xi,t−2Ts

xi,t−Ts

 , yTobst =


yt−Tobs

...

yt−2Ts

yt−Ts

 , (2.1)

where yTobst and xTobsi,t respectively denote the time-series (typically GHI or luminance)

of central sensor S0 and other sensors over an observation window Tobs, and Ts is the

sensor sampling time. To indicate the MCP, the sensor series xTobsi,t are shifted in time,

and the CCF is calculated with an increasing time shift δt, given by:

ρi,δt =
Cov(xTobsi,t+δt,y

Tobs
t )√

V ar(xTobsi,t+δt)

√
V ar(yTobst )

, (2.2)

where ρi,δt is the CCF calculated between sensors Si and S0, Cov(·) and V ar(·) indicate

the covariance function and variance function respectively. The sensor pair with the

largest ρi,δt is then selected as the MCP, and the corresponding δt indicates the time lag

between the MCP. Assuming sensors S1 and S0 are identified as the MCP, the CSMV

then can be found as:

~V =
~d1

δt
. (2.3)
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2.2.2 A Complete Network Deployment

In practice, various cloud shadows can approach PV systems in different directions. To

cover the omnidirectional shadow movements, multiple sub-networks can be deployed

around the target PV system to form a complete monitoring network, as shown in

Figure 2.2. Once a cloud shadow is approaching the PV system, a large drop can be

observed from the sensor readings, then the MCP algorithm will be activated to capture

the CSMV.
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Figure 2.2: An example of a complete monitoring network deployment, consisting of 8
sub-networks. The blue dashed line indicates the distance between the sub-network and
the target PV system.

Given the assumption of a persistent cloud shadow movement, if n sub-networks are

activated for MCP, the timing for the cloud shadow traveling from the ith sub-network

to the focal PV field can be estimated as :

∆ti =
Di

~Vi
, i = 1, 2, · · · , n, (2.4)

where ∆ti is the estimated cloud shadow traveling time from the ith sub-network to the

target PV system, ~Vi is the derived CSMV by ith sub-network, and Di is the distance

between the ith sub-network and target PV system. Typically, the distance D can vary

from a few hundred meters to several kilometers according to the local cloud velocity
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and required RR limit. In [66], the authors have suggested a maximum spatial distance

to be ∼10 km to maintain a sufficient correlation between sensors.

2.2.3 DST Nowcasting Model

Based on the derived CSMV information, a spatio-temporal model can be deployed

to make nowcasts for the target PV system. Given data from spatial predictors

(x1,t,x2,t, · · · ,xns,t) and corresponding temporal lags (τ1, τ2, · · · , τns), where xi,t =

(xi,1, xi,2, · · · , xi,t)>, i = 1, 2, · · · , ns, is the data from the ith spatial predictor, t is the

time instant, and ns is the number of spatial predictors, a spatio-temporal predictor set

can be formulated as:

Xt =



x1,t−τ1
>

x2,t−τ2
>

...

xns,t−τns

>


=


x1,1−τ1 x1,2−τ1 · · · x1,t−τ1

x2,1−τ2 x2,2−τ2 · · · x2,t−τ2
...

...
. . .

...

xns,1−τns
xns,2−τns

· · · xns,t−τns

 , (2.5)

and a spatio-temporal model takes the form of linear regression:

yt = Xtβ, (2.6)

where yt = (y1, y2, · · · , yt)> is the response, β = (β0, β1, · · · , βp) is the regression

coefficient, and p = ns · t is the total number of spatio-temporal predictors. In the case

of sensor network-based nowcasting, the model response is the normalized output data

of the target PV system, the spatial predictors are the normalized data collected by

all the sensors in the activated sub-networks, and the corresponding temporal lags are

obtained from the cloud shadow traveling time computed by Equation (2.4).

However, one issue with the model in Equation (2.6) is the inclusion of abundant

irrelevant predictors, i.e., the unshaded sensors. In most cases, these irrelevant predictors

only contribute to model variance instead of accuracy [67]. In order to exclude the

irrelevant predictors, we herein introduce a tuning parameter into the model, which is
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adjustable according to the real-time data collected by the sensors. At this stage, the

DST model is developed, given by:

yt = Xt(β + Λ), (2.7)

where Λ = (λ0, λ1, · · · , λp)> is the tuning parameter, and

λi =


∑p−m

j=1 β∗j ·
ρi∑m
i=1 ρi

if ρi ≥ 0.5

−βi if ρi < 0.5,

i = 0, 1, · · · , p, (2.8)

where λi is the tuning parameter for the ith regression coefficient, i.e., βi, m is the

number of relevant predictors,1 β∗j is the regression coefficient of the jth irrelevant

predictor, and ρi denotes the CCF calculated with the corresponding central sensor

for the ith relevant predictor. The tuning parameter ensures that the weak correlated

sensors (with CCF smaller than 0.5) are excluded from the model, and the more relevant

predictors can be assigned with larger weights.

2.3 Predictive PRRC Strategies

In this section, two predictive PRRC strategies are developed. The first strategy

improves the conventional APC method to make it practical for power drop conditions,

and no ESS is required. The second strategy aims to use the minimum ESS capacity

for control.

2.3.1 Strategy 1: Predictive APC Control

As mentioned earlier, the conventional APC method cannot cope with the downward

RR conditions since there is no extra energy available to mitigate the sudden power loss.

Nonetheless, as the utilization of solar nowcasting can provide additional time buffer,

1In this work, if the CCF between a sensor Si and the central sensor is greater than 0.5 (referred
as medium correlated in statistics), the sensor Si is considered as a relevant spatial predictor. In this
regard, m = number of relevant spatial predictors × corresponding temporal lags.
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Figure 2.3: Control principle of the proposed (a) PAPC method, and (b) PEC method,
respectively.

it may offer an opportunity to proactively regulate the upcoming RRs. Figure 2.3(a)

illustrates the control principle of the predictive APC (PAPC) approach.

For the upward RRs, PAPC works similar to the conventional APC method, where

the RRs are directly smoothed on the PV inverter level by FPPT (area A2). For the

downward RRs, the integration of solar nowcasting allows to predict the CSMV arrival

time ta and the resultant PV power change ∆P .2 Given a predefined RR limit of Rs

and system rated power of Prated, the proactive control time tc can be found by:

∆P

(ta − tc) · Prated
= Rs, (2.9)

where ta − tc defines the estimated control time buffer, i.e., ∆t, acquired from solar

nowcasting. In this way, the ramp-down curtailment (area A2 ) can be implemented prior

to the occurrence of the actual power drop. As a result, both upward and downward

RR violations can be mitigated solely based on APC, and no ESS is involved.

2It should be noticed that the forecast PV power change is a length-h/r time-series, where h and r
denote the forecast horizon and forecast resolution respectively. In this case, PAPC outputs its control
response at t = 0 for a complete timestamps from t = 1 to t = h/r, which is otherwise unachievable
using the “one-step-ahead” control algorithm such as greedy control. More on this in Section 4
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2.3.2 Strategy 2: Predictive ESS Control

Recall the conventional ESS control method displayed in Figure 1.3(a), the ESS storage

requirement should be determined from the worst case that the PV generation increases

or decreases dramatically at the rated operation mode (∆P = Prated) within a very

short period. In this regard, the required ESS power capacity should equal to the rated

power of the PV system. Moreover, in order to handle both positive and negative

fluctuations, a doubled ESS energy capacity is typically demanded. Given above, the

storage requirement of conventional ESS method can be summarized as: PESS
req = Prated

CESS
req = 2

∫
t Prated

, (2.10)

where PESS
req and CESS

req denote the ESS power and energy requirement for conventional

ESS control, respectively.

To reduce ESS storage requirement, a predictive ESS control (PEC) strategy is

herein proposed, whose principle is shown in Figure 2.3(b). In the case of PEC, solar

nowcasting is used to predict the CSMV arrival time ta1 , CSMV leaving time ta2 ,

and corresponding PV power change of ∆P . The PEC is then implemented based on

capturing the midpoint P ∗ between the power changes. For downward RRs, instead

of operating in the discharge mode consistently, ESS first charges before PV power

decreases to P ∗ (area a1). Then, these stored energy is in turn used for compensating

the energy loss of area a3. For upward RRs, before PV power reaches the predicted P ∗,

ESS first discharges to mitigate the sudden power increase of a4. In that, ESS earns

enough free space to absorb the energy of a2 after P ∗. For PEC, the proactive control

time tc can be found by:

1

2
· ∆P

∆t · Prated
= Rs, (2.11)

where ∆t = ta1− tc1 for downward RRs, and ta2− tc2 for upward RRs. It is worth noting

that by seeking the power midpoint P ∗, the total energy being absorbed or released
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always keeps equilibrium, which indicates the overall energy inside the ESS remains

unchanged. In this sense, for the ideal ESS or low self-discharging devices, it avoids the

extra SOC control since the SOC value can be reset automatically (see the red dashed

line in Figure 2.3(b)). However, as the sign of the first RR is typically unknown, to

handle both downward and upward RRs, the initial SOC should be set as 50%.

Referring to Figure 2.3(b), the maximum power through the ESS is half of the power

difference ∆P , and the smoothing of each RR event is separated into both charge and

discharge procedures. Considering the worst RR scenarios, that is, ∆P = Prated, the

storage requirement of PEC then can be determined as:

 PPEC
req = 1

2Prated

CPEC
req = 1

2

∫
1
2

∆t Prated

. (2.12)

Theoretically, compared with the storage requirement of conventional ESS control in

Equation (2.10), the required ESS power capacity of using PEC is halved, and the

energy capacity is reduced to the quarter.

2.3.3 Invalid Control Scenarios

In practice, control with perfect nowcasts as seen in Figure 2.3 are generally unavailable.

Owing to the inevitable forecast errors, performance of the two predictive PRRC

strategies can highly rely on the predictability of upcoming ramps. In that, two

quantities, namely, ramp peak occurrence time and ramp peak magnitude, are especially

of great importance.3 To give perspective, Figure 2.4 illustrates the invalid control

scenarios of PAPC and PEC under inaccurate predictions of ramp peak occurrence time

and ramp peak magnitude, respectively.

In terms of PAPC, it is found that when the predicted ramp peak is earlier or larger

than the actual condition, the control can be triggered in advance. As a result, more

PV generation is curtailed or wasted (see the red line in the top plot of Figure 2.4(a)

3The ramp peak occurrence time is different from cloud arrival time. The former defines the
occurrence timestamp of the largest RR, while the latter indicates the instant at which a CSMV is
about to affect the PV system.
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Figure 2.4: Exemplified control of downward RRs using PAPC and PEC under inaccurate
predictions of (a) ramp peak occurrence time, and (b) ramp peak magnitude.

and Figure 2.4(b)). On the other hand, if the predicted ramp peak is later or smaller

than the fact, the control time is delayed. In that case, an unexpected RR violation can

result (see the yellow line in the top plot of Figure 2.4(a) and Figure 2.4(b)). In terms

of PEC, the prediction errors in the ramp peak occurrence time and magnitude can lead

to a deviation in the identified midpoint P ∗. Consequently, the equilibrium between

energy absorption and release is broken, and the SOC value will not be set back to 50%

automatically. In addition, given the imperfect energy storage efficiency in practice, the

consistent non-equilibrium of SOC can eventually lead to an outage of ESS.
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2.4 Empirical Results

This section sets out the validation of the developed DST nowcasting and PRRC

strategies. Data from a real irradiance sensor network are used to simulate the operation

of PAPC and PEC. To evaluate the effectiveness of the proposed control strategies,

two comparative case studies are demonstrated, one with scattered clouds and another

with mostly clear sky conditions. The applicability of the work is further verified over a

one-year period of data. In addition, the economic comparison between different PRRC

strategies is provided.

2.4.1 Data

The data used in this work is obtained from Oahu solar measurement grid, an irradiance

sensor network installed by National Renewable Energy Laboratory (NREL), located in

Hawaii [68]. The network consists of 17 sensors, covering an area of approximately 1

km × 1.2 km, as shown in Figure 2.5. For each sensor, 1-s GHI data from March 20,

2010 to October 31, 2011 is available.
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DH8
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DH4
AP1 AP3
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AP7
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200 m
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Figure 2.5: Layout of the NREL Oahu sensor network. The 7 sensors for empirical
study are marked by red, where the sensor DH6 is selected as the focal system (marked
by the red star). Except for sensor DH6, other 6 sensors form a semi-circle sub-network.
The arrow in the top shows the wind direction. The scale of the map is shown in the
bottom left corner.
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Throughout this work, sensor DH6 is selected as the focal system, i.e., the target of

nowcasting and control. Since solar-generated power is of interest to PRRC, the GHI

measurements at DH6 need to be converted to PV power data. Due to the geographic

dispersion in practical PV systems, the diversity in irradiance variabilities can be greatly

relieved in PV power profiles [69]. To account for the effects of resource spreading, an

irradiance-to-power conversion model introduced in [50] is adopted, which is given by:

P (s) =
K

(
√
S/(2π · 0.02))s+ 1

·G(s), (2.13)

where P (s) and G(s) respectively denote the PV power and GHI data in the frequency

domain, K is the ratio of PV nominal power to the standard irradiance of 1000 W/m2,

and S is PV system area in hectares. Equation (2.13) shows that the system geographic

dispersion behaves as a first-order low-pass filter to irradiance variabilities, and the

variability becomes inversely proportional to the square root of PV system area. In this

work, data from DH6 are used to mimic a 1.5 MW PV system in Cintruénigo, Spain,

with S = 6.4 hectares [50].

To demonstrate the proposed nowcasting and PRRC strategies, 6 sensors surrounding

with DH6 are selected to form a semicircle sub-network, namely, DH7, DH2, DH5, AP1,

DH3, and DH4, among which sensor DH4 is used as the central sensor. With this

specific network deployment, we herein only consider the days with prevailing trade

wind direction from 0◦ to 90◦ as PRRC operating days. As a result, a total of 178 days

are filtered out from the whole dataset, in which the data of the first 50 days are used

for model training, while the left 128 days contribute to the validation set. After several

calibration tests, the sensor reading changes for triggering MCP algorithm is set as 100

W/m2, and the time window for CCF computation is 30 s.

It should be noticed that the cloud shadow traveling time in Equation (2.4) actually

defines the forecast horizon of the sensor network. In present context, according to [70],

the average distance between the sub-network and DH6 is ∼300 m (329 m between DH5

and DH6, 226 m between DH4 and DH6), and the average wind speed in the island is
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10 m/s. On this point, the average forecast horizon of this network deployment can be

estimated as 30 s. Given a sensor sampling time of 1 s, the largest detectable CSMV

velocity reaches 30 m/s, which should cover most of the weather conditions [71].

2.4.2 Results of DST Nowcasting

To evaluate the performance of DST nowcasting, we consider two example days on July

31, 2010 and January 20, 2011, one with frequent irradiance changes and another with

mostly clear sky. Prior to nowcasting, data from the 7 sensors are transformed into

clear-sky index (CSI), in order to remove the diurnal trends in time-series. That said,

the predictors and response in Equation (2.7) are composed of the converted CSI data.

Given a sensor Si at time t, the CSI is defined as:

k∗i,t =
xi,t

xclr
i,t

, (2.14)

where k∗i,t is the CSI for sensor Si at time t, xi,t denotes the measured GHI (sub-network)

or PV power (DH6), and xclr
i,t is the clear-sky expectations. In this work, the Ineichen-

Perez clear-sky model is utilized to retrieve xclr
i,t . After prediction, the nowcast CSI

values are converted back to GHI or PV power using current clear-sky expectations.

Figure 2.6 illustrates the DST nowcasting results for the two example days. It can

be seen that the predictions are only produced when large PV power RRs are observed.

Moreover, the time interval between two consecutive predictions is inconsistent. Due to

the various cloud shadow velocities detected by the sub-network, the forecast horizon

naturally differs with different CSMVs. During the two example days, the maximum

forecast horizon is found to be 1 min on 17:00 of the cloudless day, while the minimum

forecast horizon is 15 s on 12:38 of the overcast day.

The overall performance of DST nowcasting on the two days is summarized in Table

2.1, where a RR limit of Rs = 10%/min is considered. It can be observed from Table

2.1 that the PV generation experiences more RR violations on the overcast day. Among

the 135 RR violations, 133 RR violations are effectively captured by the DST model.
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Figure 2.6: DST nowcasting results (red dots) and measured PV generation at DH6
(black line) on (a) July 31, 2010, and (b) January 20, 2011.

Table 2.1: Performance of DST nowcasting on the two example days. A RR limit of
10%/min is applied.

Overcast day Cloudless day

Actual RR violations 135 27

Predicted RR violations 133 27

Forecasting horizon [s] 15-30 30-60

nMAE [%] 6.5 5.5

The two missed RR violations have a RR of −10.3%/min and −10.2%/min respectively,

which are very close to the RR limit. In that case, the unavoidable measurement and

nowcast errors may lead to an omission on these RRs. For the cloudless day, all the 27

RR violations are successfully identified. To quantify the errors in the magnitude of

measured and actual RRs, the normalized mean absolute error (nMAE) is computed,

which is given by:

nMAE =
1
n

∑n
i=1 |P̂i − Pi|

1
n

∑n
i=1 Pi

× 100%, (2.15)
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where P̂i and Pi denote the predicted and measured PV generation at the ith time step,

respectively. For the two example days, the nowcasting nMAE on the RR magnitude is

found as 6.5% and 5.5%, respectively.

2.4.3 Results of Predictive PRRC Strategies

Figure 2.7 and Figure 2.8 show the PRRC performance using PAPC and PEC strategies

respectively, under the RR limit of 10%/s. In addition, a detailed comparison of different

PRRC strategies is displayed in Table 2.2, in which the conventional ESS control is

used as a benchmark, denoted by ESS. Referring to Equation (2.12), the simulation

considers an ESS storage requirement of PPEC
req = 0.75 MW and CPEC

req = 62.5 kW·h for

PEC method, while a setup of CESS
req = 250 kW·h and PESS

req = 1.5 MW is used for the

conventional ESS control.

During the overcast day, it can be seen from Table 2.2 that PEC produces 3 less RR

violations than the PAPC method. Besides the two violations caused by RR omission,

another 7 and 4 RR violations have been observed for PAPC and PEC respectively, which

is resulted from the invalid control scenarios illustrated in Figure 2.4. Theoretically, the
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Figure 2.7: PRRC results on July 31, 2010 using (a) PAPC and (b) PEC.
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Figure 2.8: PRRC results on January 20, 2011 using (a) PAPC and (b) PEC.

Table 2.2: Comparison of PAPC, PEC, and ESS for the two example days.

Overcast day Cloudless day

PAPC PEC ESS PAPC PEC ESS

Energy capacity [kW·h] - 62.5 250 - 62.5 250

Power capacity [kW)] - 0.75 1.5 - 0.75 1.5

Charge-discharge times - 266 135 - 54 27

Final SOC [%] - 53 50 - 50 50

RR violations 9 6 0 1 0 0

Energy curtailment [%] 12.4 - - 0.91 - -

ESS charge-discharge times of PEC should equal to 270, twice than the conventional

ESS control. However, due to the unexpected RR violations, the charge-discharge cycle

of PEC reduces to 266, which has led to the SOC deviation from 50% to 53% at the

end of the operating day. For PAPC, the total energy being curtailed during the day is

886.5 kW·h, which equal to 12.4% of the total generation.

During the cloudless day, all the ramp events are effectively captured. The only RR

violation occurs at around 17:00 by using PAPC, where the predicted RR occurrence

time is 10% larger and 20 s later than the actual condition, leading to a 30-s RR violation.
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Table 2.3: Daily performance of DST model and proposed PRRC strategies over a
one-year period.

PAPC (Dry) PEC (Dry) PAPC (Rainy) PEC (Rainy)

Max Min Avg Max Min Avg Max Min Avg Max Min Avg

Nowcast nMAE [%] 8.5 0.26 5.8 8.5 0.26 5.8 12.3 2.23 6.6 12.3 2.23 6.6

Ramp omission 6 0 2 6 0 2 10 0 5 10 0 5

Control failures 10 2 6 8 0 4 12 3 8 10 0 5

Energy curtailment [%] 14.2 0.26 6.6 - - - 13.5 0.22 5.3 - - -

Charge-discharge times - - - 272 30 144 - - - 236 24 132

Final SOC [%] - - - 59 44 53 - - - 56 48 52

For PEC, the daily charge-discharge times are twice than the conventional ESS method

as expected, and the final SOC is set back to 50% successfully. The energy curtailment

of PAPC in this day is 66.2 kW·h, accounting for 0.91% of the total generation.

2.4.4 Validation Over One-Year Observations

To validate the applicability of the work, the DST nowcasting model and PRRC strategies

are implemented over a full year of data, i.e., 128 days of validation set. The 128 sample

days are classified into two groups according to the climate types, namely, 70 days from

May to September as the dry season, and 58 days from October to April as the rainy

season. The simulation results are shown in Table 2.3.

In terms of DST nowcasting, it can be observed from Table 2.3 that the nowcast

accuracy generally decreases in the rainy season, with an average 0.8% increase in

nMAE compared with the dry season. As the cloud shadow effect diminishes during

the precipitation, the CSMV can become more difficult to detect. In addition, the mete-

orological variables such as ambient temperature or relative humidity can also change

frequently in the rainy season. Under these circumstances, the temporal correlations

among the sensors reduce significantly, thus the RRs can become more challenging to

predict. Despite the low RR predictability in the rainy season, the overall performance

of DST nowcasting is quite promising. Over the one-year observations, 95.8% (9810

of 10,240) RR violations are successfully identified by the DST model, and the annual

nMAE comes to 6.2%. These results validate the effectiveness of the developed DST
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nowcasting method, which ensures the functionality of the following predictive PRRC

strategies.

In terms of PRRC, in the dry season, the higher irradiance intensity and more

ramp events have resulted in more energy curtailment for PAPC. The use of PEC also

requires the ESS operation mode to switch more frequently, with 12 time more per day

on average. According to Table 2.3, the PEC method is found to generally outperform

the PAPC in terms of control failures, with two and three fewer daily RR violations on

average than PAPC in the dry and rainy seasons respectively. However, as illustrated

in Figure 2.4, the invalid control scenarios can break the SOC equilibrium for PEC,

which may strain the ESS in the long run. On this point, the average daily final SOC

of PEC method is found as 53% after 128 operating days, which can still be acceptable

for long-term consistent operations.

2.4.5 Economic Analysis

In this section, the feasibility of the proposed PRRC strategies are evaluated from the

economic aspect. In terms of PEC, the integration of an ESS can increase the overall

investment of a PV system. On the other hand, even though the ESS is not required for

PAPC, the power generation is often suppressed, leading to production waste. Besides,

the deployment and maintenance of a nowcasting system also brings extra expenditure

for system operators. Hence, the economic value of the proposed PRRC strategies

requires further investigation.

Table 2.4 shows the $/W cost of a utility-scale PV system concluded in [72]. Referring

to Table 2.4, the overall installation cost of a 1.5 MW PV system should equal to

Table 2.4: Cost of PV installation in $/W.

Component Cost [$/W]

Module 0.64

Inverter 0.09

Structure and Electrical components 0.26

Other 0.50

Total 1.49
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Cpv = $2, 235, 000. In terms of the nowcasting system, we estimate the cost of a

sensor sub-network as $150. For a 1.5 MW PV system, 20 sub-networks should be

enough to enclose the whole system, leading to an installation cost of $3000. With

additional considerations of sensor maintenance and contingencies, the operating cost

of a sensor network nowcasting system is estimated as $0.05/W. On this basis, the

total investment of a 1.5 MW nowcasting-integrated PV system can be found as

(1.49 + 0.05) $/W× 1.5 MW + $3000 = $2, 313, 000. Assuming an annual average energy

generation of E kW·h for a 1.5 MW PV system and a PV panel lifetime of Y years, the

economic analysis will be conducted under the following PRRC operating modes: 1)

PAPC method, 2) PEC method, 3) conventional ESS control, and 4) no reaction.

1) PAPC method: In [73], it has been shown that the RR limit of 10%/min

can be frequently violated, i.e., more than 100 times, in a cloudy day. Consequently,

significant energy production can be curtailed by using PAPC. Considering an annual

average energy curtailment due to PAPC to be Ec kW·h, the PV generation cost under

PAPC operating mode can be found as:

$papc =
(E − Ec) · Y
Cpv + Cnowcast

, (2.16)

where Cnowcast denotes the cost of deploying a nowcasting system. In this case, Cnowcast =

0.05 $/W × 1.5 MW + $3000 = $78, 000.

2) PEC method: To involve the cost of an energy storage device, the lead-acid

battery is herein considered, which is perhaps the most commonly-used ESS type for

large-scale industrial application [74]. The overall cost of integrating a lead-acid battery

can be calculated as:

$la =
Cla · I ·N

η
, (2.17)

where Cla is the lead-acid battery cost in $/kW·h (including capital and operating

cost), I is the installed battery capacity in kW·h, N is the total battery replacements

during PV lifetime Y years, and η is the battery efficiency. In a general sense, given an
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average battery life of y years, N = Y/y. However, as PEC method doubles the ESS

charge-discharge cycles, the lifespan of a battery is halved. As a result, the battery

replacement can be doubled, which equals to 2Y/y. On the basis of Equation (2.17),

the PV generation cost using PEC operating mode is given by:

$pec =
E · Y

Cpv + Cnowcast + $la
. (2.18)

3) Conventional ESS control: The generation cost of conventional ESS method

can also be found based on Equation (2.17), but with different battery replacements,

i.e., Y/y, and battery capacity, denoted by N ′ and I ′ respectively. Given a resultant

battery cost of $′la, the PV generation cost is obtained by:

$ =
E · Y

Cpv + $′la
. (2.19)

4) No reaction: In this operating mode, no reaction is performed during ramp

events. Although the overall investment is reduced (no need for ESS and nowcasting

system), the PV system owners could be penalized by grid operators due to frequent

RR violations. In this sense, a weekly PV generation model considering RR violation

utilized [75], which is given by:

 Qweek = Qweek−1 − (RRCweek−1 −RRClimit)

Pweek = Prated ·Qweek

, (2.20)

where Qweek and Qweek−1 are penalty factors which regulate the maximum PV generation

of current and previous weeks, RRCweek−1 denotes the total number of RR violations in

percentage during last week, RRClimit is the predefined RR violation limit in percentage,

and Pweek is the weekly maximum allowable PV generation. Based on Equation (2.20),

given a resultant annual energy generation of e kW·h, the PV generation cost is then
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Table 2.5: Parameters values for the economic analysis of a 1.5 MW PV system.

E Y y Ec $la I N η I′ N ′ e

[kW·h] [years] [years] [kW·h] [$/kW·h] [kW·h] [%] [kW·h] [kW·h]

2,447,781 24 2 198,490 136.5 62.5 24 70 250 12 2,150,000

Table 2.6: Financial comparison among the four PRRC operating modes.

Operating

mode

Annual

generation [kW·h]

Overall

generation (kW·h)

Additional

cost ($)

Total PV

generation cost ($)

Cost in

$/kW·h

1 2,249,291 53,982,984 78,000 2,313,000 0.042

2 2,447,781 58,746,744 370,500 2,605,500 0.044

3 2,447,781 58,746,744 585,000 2,820,000 0.048

4 2,150,000 51,600,000 NA 2,235,000 0.043

calculated as:

$ =
e · Y
Cpv

. (2.21)

Table 2.5 lists the parameter values for the 1.5 MW PV system based on former

simulation results and [72]. It should be noticed that different parameter values can

significantly influence the final PV generation cost. Besides, PV site location. local

market regulations, and selection of RR limit can also vary from case to case. The

analysis herein presented is meant to be illustrative and give a broad comparison among

the four options.

Table 2.6 displays the PV generation cost of the four PRRC modes. It can be seen

that the use of PAPC method shows the least PV generation cost of $0.042/kW·h.

Compared with mode 4, the use of PAPC even produces 5% more of total energy

generation. In terms of PEC, its generation cost is found $0.042/kW·h more than the

PAPC method. However, the use of ESS improves the PV system flexibility, which

enables the PV system to participate in grid auxiliary services, thus making extra

revenues [76]. Moreover, given the low occurrence of the worst RR scenarios, there are

possibilities to shrink the required ESS size further [27]. In this regard, the generation
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cost of PEC method could become more competitive. In general, both PAPC and

PEC strategies have presented to be more economical for PRRC than conventional

ESS control. Although mode 4 shows a similar generation cost to the PEC method,

the potential risk of RR violations would prohibit its large-scale application. Again,

it is worth noting that the selection between the PAPC and PEC methods is highly

dependent on the local conditions. By adapting different parameters into Equations

(2.16)-(2.21), the final choice can be made accordingly.

2.5 Chapter Conclusion

The chapter presents two PV PRRC strategies based on the newly developed DST

nowcasting method. The proposed PRRC methods take action in advance according to

the predicted cloud shadow arrival time and the resultant output power. The PAPC

method is approved to be effective to handle the ramp-down RR scenarios, which is

difficult for conventional APC methods. The output power can be effectively smoothed

without using any ESS. The second strategy PEC enhances the system performance with

minimal support from energy storage. The method shows the advantage by neglecting

the dedicated SOC control algorithm. In comparison with the conventional solution, the

proposed PEC strategy halves the required ESS power capacity, and the energy capacity

size is almost reduced to the quarter. The performance of the developed nowcasting

model and PRRC strategies are evaluated on a real irradiance sensor network, by

simulating the power output of a 1.5 MW solar plant. The results show that the DST

nowcasting model can effectively capture the RR events, with an average nMAE smaller

than 7%. Furthermore, both of the proposed PRRC methods are proved to be capable

of smoothing the PV RRs and outperform the conventional method. The selection

criteria for the two proposed PRRC strategies has also been provided.
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Chapter 3

An Improved Spatio-Temporal

Nowcasting Framework for

PRRC

3.1 Chapter Introduction

In previous chapter, a DST nowcasting model has been developed for predictive PRRC

implementations. Whereas the model can effectively capture the ramp events, its

forecast horizon varies with different CSMV velocities, which is undesirable from a grid

operator’s perspective. Moreover, when a stricter RR limit is applied, e.g., in timescales

of seconds, the MCP algorithm may fail to identify the most relevant predictors since a

shorter time window would be used for calculating CCF. In that case, the nowcasting

accuracy could deteriorate, leading to more control failures. In view of the above, this

chapter aims to develop an improved sensor network-based spatio-temporal nowcasting

method for PRRC, which can preselect the spatio-temporal predictors more efficiently

as well as providing consistent solar nowcasts. However, before moving forward, we

digress and take a revisit to sensor network-based solar nowcasting, to facilitate the

understanding of subsequent materials.
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3.1.1 A Revisit to Sensor Network-Based Solar Nowcasting

As mentioned earlier, nowcasting using a sensor network relies on the construction

of spatio-temporal predictors. When clouds propagate over a sensor network, one

can preselect sufficient lagged time-series data (temporal predictors) collected by the

neighboring sensors (spatial predictors) as predictors for the focal location. Depending

on how the cloud information is coupled, the sensor network-based nowcasting can

be subdivided into two categories: cloud tracking-based methods and spatio-temporal

correlation-based methods.

The cloud tracking-based methods aim to describe the cloud information with

CSMVs. Solar nowcasts are then produced by transposing the generated power map

in the direction of CSMV. Various CSMV tracking strategies have been introduced

in the literature, such as the MCP method [77–79], or peak matching method [80].

The main advantage of using the cloud tracking-based method is that it provides an

accurate measure of the time lag between the measured data at the sensors and focal

PV system. In another word, the temporal predictors can be adequately preselected.

However, these methods often produce nowcasts of variable prediction horizons (such

as the DST model), which is limited by the network dimension and CSMV velocity.

Although a peer-to-peer method is proposed in [46] to provide consistent solar nowcasts

with a fixed prediction horizon, numerous PV references (202 rooftop systems) over a

wide geographic dispersion (∼1400 km2) are required. Furthermore, a simple persistence

model or multivariate regression model is typically used in these methods, which often

includes insufficient or irrelevant spatial predictors. Consequently, the model becomes

inferior to adapt various CSMVs.

Instead of explicitly deriving the CSMV, spatio-temporal correlation-based methods

consider the cloud information indirectly. Solar nowcasts are generated by exploiting the

spatio-temporal correlations observed among the predictors. However, the number of

predictors can become very large as the number of sensors in the network increases. In

this situation, several works have implemented the regularized model such as the lasso

(least absolute shrinkage and selection operator) for parameter shrinkage [67, 81, 82],
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Figure 3.1: Summary of conventional sensor network-based nowcasting methods. Two
categories can be identified according to the way of extracting cloud information.

which is able to filter out the highly correlated predictors. The prediction horizon using

these methods can be set as a fixed value, which equals to the resolution of training

data. However, the methods listed above only consider the homogeneous CSMV impacts

through both space and time, and depend on known or empirically estimated CSMV

movements. When the CSMV changes frequently, the model may fail to timely adapt

the cloud dynamics, leading to the inclusion of both irrelevant spatial and temporal

predictors. As a result, the nowcasting performance becomes much worse [83].

Figure 3.1 demonstrates the flowchart of the two conventional sensor network-

based nowcasting methods. As previously discussed, these methods have shown some

limitations in terms of:

• Lack of a fast and comprehensive preselection mechanism for both spatial and

temporal predictors.
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• Difficulties to provide consistent solar nowcasts with a fixed forecast horizon while

maintaining cloud dynamics.

• Poor model robustness to adapt frequent CSMV changes.

3.1.2 Contributions of Current Work

To address the above issues, a scenario-recognizable preselection (SRP) method is

herein developed for sensor network-based solar nowcasting. The proposed SRP method

establishes a comprehensive spatio-temporal predictor preselection framework, which

enables the most-relevant predictors to be selected in absence or presence of CSMVs.

Solar nowcasting with a constant prediction horizon is also achieved using a regularized

model, i.e., elastic-net, and the nowcasts can be complemented by the CSMV tracking

results when CSMV is detectable. The effectiveness of the SRP-based elastic-net (SRP-

Enet) model is validated on a real irradiance sensor network, and a total of 5 case

studies are presented for detailed evaluation. Compared with conventional methods,

the proposed method significantly improves the nowcasting accuracy, with the feature

that the predictions approach closer to the actual ramp peaks. The feasibility of the

proposed method on PRRC application is also demonstrated.

3.2 Network Redesign

For a proper design of a sensor network, it is supposed to provide online and high

sampling measurements with appropriate spatial resolution to support PV nowcasting

applications. The network should also be able to capture the omnidirectional CSMVs.

Additionally, it should have a flexible infrastructure and low investment in order to be

coupled with various PV systems.

In this work, a concentric sensor network configuration with two cross layers is

adopted. The sensor developed herein is made from a mini solar cell. From each sensor,

the short-circuit current of the solar cell is measured at 1-s resolution, and mapped

to GHI data through a pre-tuned conversion model. The converted GHI data is then
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Figure 3.2: Concentric network configuration example of a 5 MW PV system, covering
an area of 0.15 km2. Totally 32 sensor are used to enclose the PV system (16 exterior
sensors, and 16 interior sensors). Distance between the exterior and interior layer is
around 60 m.

packed and sent to the local server via LoRa wireless communication. More details

about the sensor development can be found in Appendix A. Figure 3.2 shows an example

layout of the sensor network, where the focal PV system covers an area of 0.15 km2,

and rated at 5 MW. In order to reduce the packet loss rate and data transfer delays, an

optimal wireless communication distance is found to be within 500 m. Similar to the

network design in Figure 2.1, to prevent a single CSMV from fleeing between the sensor

separations, the distance between two adjacent sensors should be less than 200 m. With

the above considerations, totally 32 sensors would be deployed to enclose the whole PV

system, with 16 exterior and interior sensors respectively, separated by around 60 m.

Compared with other network configurations mentioned in [46, 78, 80], the developed

sensor network greatly reduces the required sensor numbers and geographical dispersion.

More importantly, it is easy to be generalized and adapted to different PV systems.

Last but not least, the network is flexible, and one can conveniently add or remove

sensors, even a layer.
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3.3 Proposed SRP-Enet Nowcasting

The flowchart of the proposed SRP-Enet nowcasting method is shown in Figure 3.3.

As previously discussed, the nowcasting performance can be highly dependent on the

ability to capture the spatio-temporal components of the irradiance field. In this regard,

the nowcasting method proposed here decomposes the irradiance dynamics into two

scenarios, namely, ramp scenarios where there are high possibilities for PV power

fluctuations, and stationary scenarios where more smoothed PV generation is likely to

be produced. Then, two different spatio-temporal predictor preselection approaches are

implemented based on the recognized scenarios. The consistent PV nowcasts with a

fixed prediction horizon are provided in stationary scenarios, and complemented by the

nowcasts in ramp scenarios when CSMVs are available. A detailed description of the

SRP-Enet nowcasting method is presented as following.
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Stationary ScenariosSpatial Predictors

 Temporal Predictors

Data Downsampling
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Figure 3.3: A complete flowchart of the proposed SRP-Enet nowcasting method. The
SRP-Enet consists of three main blocks, namely scenario recognition, spatio-temporal
predictor preselection, and nowcasting strategy. The numbers between parentheses
indicate the corresponding sections for detailed description.
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3.3.1 Scenario recognition

Suppose Φ = {S1, S2, . . . , SN} is the complete set of a sensor network, where N =

card(Φ) is the cardinality of the set, indicating the overall sensor numbers, Φext and

Φint denote the two subsets of Φ, i.e., the exterior sensor set and interior sensor set

respectively, where N ext = card(Φext), N int = card(Φint), and N ext+N int = N . Given

the instantaneous measurements of two sensors Si, Sj at time t, i.e., xi,t and xj,t, the

irradiance time-series can be decomposed into two scenarios:

Stationary scenario: A stationary scenario will be identified if the absolute

measurement difference between arbitrary two sensors in the network is less than

a predefined threshold value σ:

∀ Si, Sj ∈ Φ, |xi,t − xj,t|≤ σ. (3.1)

Ramp scenario: A ramp scenario will be identified if there exists a pair of exterior

and interior sensors whose absolute measurement difference is greater than a

predefined threshold value σ:

∃ Si ∈ Φext, Sj ∈ Φint, |xi,t − xj,t|> σ. (3.2)

Based on Equations (3.1) and (3.2), the real-time sensor data stream is processed

and labeled as “stationary” x̄i,t or “ramp” x̃j,t, where the hats “−” and “∼” denote the

stationary scenario and ramp scenario respectively. A scenario recognition signal ζt is

then generated, given by:

ζt =

 0, stationary scenario

1, ramp scenario
. (3.3)

It should be noticed that a stationary scenario reveals not only a clear-sky condition,

but also a sky with complete cloud coverage, under which a smooth sensor output

series can be observed as well. In addition, the recognition of each scenario requires
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at least two sensor measurement profiles, which enhances the reliability of recognition

(the occurrence of simultaneous measurements error by multiple sensors is significantly

decreased).

3.3.2 Spatio-Temporal Predictor Preselection

In ramp scenarios, due to the rapid movements of CSMVs, a fast spatio-temporal

predictor preselection algorithm is demanded to cope with cloud dynamics. However,

the sensor data in stationary scenarios typically present to be much smoother and less

featured in fluctuations, which slows the preselection process. If the ramp scenarios

share a similar preselection mechanism to stationary scenarios, the CSMV information

may not be reported in time, leading to a significant delay for PRRC. Thus for the

proposed SRP method, two different preselection strategies are adopted based on the

former scenario recognition.

Preselection in stationary scenarios

For stationary scenarios, the 1-s resolution sensor data need to be first downsampled to

h-resolution, since the consistent nowcasts with a fixed forecast horizon of h is required.

Given the time instant t, the output time series of an arbitrary sensor Si ∈ Φ and focal

PV system can be found by:

X
Tobs
i,t =


x̄i,t−Tobs

...

x̄i,t−2h

x̄i,t−h

 , Y
Tobs
t =


ȳt−Tobs

...

ȳt−2h

ȳt−h

 , (3.4)

where X
Tobs
i,t and Y

Tobs
t respectively denote the time series of sensor measurements and

focal PV system outputs over an observation window Tobs.

To indicate the most-relevant spatio-temporal predictors among the sensor network,

similar to Equation (2.2), the correlation coefficient, i.e., ρi,δt, is calculated between
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Figure 3.4: An example of determining the threshold correlation coefficient ρlimit for
a network with 5 sensors. In this case, sensor data collected over 6 hours are used to
generate the distribution, leading to the peak probability set {Pmax

ρlimit1
, · · · , Pmax

ρlimit5
}. In

this case, Pmax
ρlimit3

is found as the minimum peak, thus ρlimit = 0.8 is selected as the
threshold.

each sensor and the target system, with an increasing time shift δt at an interval of

h. Then a threshold correlation coefficient ρlimit is applied, and only the sensors with

max(ρi,δt) > ρlimit are selected as spatial predictors. Consequently, the spatial predictor

preselection in stationary scenarios can be formulated as:

Φ = {Si}, if max(ρi,δt) > ρlimit, (3.5)

where Φ represents the stationary spatial predictor set, and n̄s = card(Φ) denotes the

number of spatial predictors.

Notice that the selection of ρlimit varies case by case, which depends on the net-

work configuration, local meteorological conditions, etc. Figure 3.4 shows an exam-

ple of finding a proper ρlimit for a network with 5 sensors. For a group of choices

{ρlimit1 , ρlimit2 , · · · , ρlimitk}, each element will be fed to Equation (3.5), and the cor-

responding probability distribution of n̄s will be calculated. For each probability

distribution of n̄s, the maximum probability value is recorded, and appended to the set

{Pmax
ρlimit1

, Pmax
ρlimit2

, · · · , Pmax
ρlimitk

}. A proper ρlimit is then indicated by the minimum value
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in the set, given by:

ρlimit = argmin
ρlimitj

({Pmax
ρlimit1

, Pmax
ρlimit2

, · · · , Pmax
ρlimitk

}), j = 1, 2, · · · , k. (3.6)

The reason for seeking the minimum probability peak is that a smaller probability peak

always contributes to a smoother distribution (as shown by the red distribution in

Figure 3.4). In this regard, the high-relevant spatial predictors are more likely to be

selected.

The optimized time shift for each selected spatial predictor is located where the

correlation coefficient reaches the maximum, given by:

γi = argmax
δt

(ρi,δt), Si ∈ Φ. (3.7)

The number of temporal predictors, n̄t is then indicated by the largest γi:

n̄t =
max(γi)

h
, Si ∈ Φ. (3.8)

An example of seeking the optimized time shift for an individual sensor is illustrated in

Figure 3.5, and the procedures will be conducted for all the sensors simultaneously.

Finally, the preselected stationary spatio-temporal predictors can be written as:

Xt =
[
x̄i,t−h x̄i,t−2h · · · x̄i,t−n̄th︸ ︷︷ ︸

n̄t

]
, Si ∈ Φ, (3.9)

where Xt ∈ R1×(n̄s×n̄t).
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Figure 3.5: An example of seeking the optimized time shift between an individual sensor
and focal PV system in a stationary scenario, with ρlimit, h = 10 s, over an observation
window Tobs 240 s. (a) The original time series of sensor measurements (red line) and
focal system outputs (blue line). (b) The sensor measurement series is shifted with an
optimized δt. (c) The correlation plot in regard to an increasing δt, and the optimized
time shift γ̄i is found as 40 s (n̄t = 4), when the correlation coefficient reaches the
maximum, 0.927.

49



PhD Thesis Xiaoyang Chen

Preselection in ramp scenarios

In ramp scenarios, CSMV becomes the vital determinant for spatio-temporal predictor

preselection. Two factors, namely cloud shadow size and cloud shadow velocity affect

the spatial and temporal correlations among the sensors respectively. On one hand, the

unshaded sensors under different CSMV coverage sizes can introduce irrelevant spatial

predictors. On the other hand, various cloud shadow velocities can rise changeable time

lags between the sensor measurements and focal system. Hence, a faster preselection

algorithm capable of capturing CSMV dynamics is demanded. At this stage, the peak

difference minimization (PDM) algorithm is developed, which allows an online CSMV

tracking, and can update the spatio-temporal predictors adaptively.

The basic principle of PDM is that the cloud shadow transitions in ramp scenarios

will show negative and positive peaks in sensor readings, and influence the exterior

and interior sensors sequentially. Once the sensors with similar peaks are matched,

the corresponding time lag between the sensor readings is available, and the CSMV

can be derived. Notice that an assumption has been made that the CSMV remains

approximately unchanged during the transition. As shown in last chapter, the traveling

time for a CSMV passing through a network may merely last for a few minutes. It is

therefore reasonable to think that the assumption can hold within such a short time

period.

Algorithm 1 shows the implementation of PDM. A trigger signal is first defined to

control the activation of the algorithm, initialized to zero. When an exterior sensor

Si ∈ Φext is first observed to experience a sudden value change ∆x̃i,t0 at time instant t0,

the trigger signal will be set to 1, and PDM will be activated to estimate a time buffer

∆t to support PRRC. In this sense, a CSMV has to be computed before t0 + ∆t (the

estimation of ∆t varies with different CSMVs and PRRC regulations). Then PDM will

keep tracking other value changes among the rest of sensors. Within the predefined

time interval, PDM tries to identify as many sensor value changes as possible, and

all the recorded sensors are appended to a new set Φ̃, implicating the selected spatial

predictors. As a result, only the sensors with sudden value changes (the shaded sensors)
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Algorithm 1 Peak Difference Minimization

Input: Sensor set: Φ, Φext and Φint, Sensor sampling time: Ts, Error tolerance: ε, Alignments
of sensor pairs: ~di,j .

Output: Spatial predictor set: Φ̃, Global CSMV: ~V .
1: initial Φ̃ = {∅}, trigger = 0, δt = 0;
2: for Si ∈ Φext do
3: Record the first sudden sensor reading change, ∆x̃it0 ;
4: trigger = 1;
5: Estimate the required time buffer for PRRC, ∆t;
6: Append sensor Si to Φ̃;
7: end for
8: if trigger == 1 then
9: while t < t0 + ∆t do

10: for Sj ∈ {Φ− Φ̃} do

11: Record another sudden reading change, ∆x̃jt ;

12: Append sensor Sj to Φ̃;
13: for δt = 0; δt ≤ t0 + ∆t− t; δt += Ts do
14: τi,j = argmin

δt

(|∆x̃i,t0 −∆x̃j,t0+δt|< ε);

15: end for
16: end for
17: end while
18: end if
19: if Φ̃ ∩ Φint 6= {∅} then

20: for Sj ∈ {Φ̃− Si} do

21: ~V =
∑ ~di,j

τi,j
;

22: end for
23: return Φ̃, ~V ;
24: end if

are considered as spatial predictors, and the unshaded sensors can be excluded.

To determine the peak similarity, instead of comparing the peak values directly,

PDM checks how close the value changes are. The biggest advantage of comparing the

value changes is that the differencing can eliminate the inherent sensor calibration errors.

A small positive value ε is then applied as an error tolerance to control the confidence

level of peak samilarity. With an increasing time shift δt, two sensors Si and Sj are said

to be correlated at τi,j once the difference between their value changes is smaller than ε.

Together with the known spatial distance ~di,j , the global CSMV, ~V is obtained. Notice

that only when the intersection of set Φ̃ and set Φint is not empty would PDM output

the results. In another word, the CSMV should cover at least one interior sensor. In
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case of a CSMV that only covers exterior sensors, it is deemed to cause no impact on

the focal PV system, thus there is no need for preselection.

Subsequently, the time lag between the selected sensors and focal PV system can be

estimated by:

γ̃i =
~Di

~V
, Si ∈ Φ̃, (3.10)

where ~Di is the spatial distance between the sensor Si and the focal PV system. The

number of temporal predictors is determined by the largest γ̃i:

ñt = max(
γ̃i
∆t

), Si ∈ Φ̃. (3.11)

Finally, the preselected ramp spatio-temporal predictors can be formulated as:

X̃t =
[
x̃i,t−Ts x̃i,t−2Ts · · · x̃i,t−ñtTs︸ ︷︷ ︸

ñt

]
, Si ∈ Φ̃, (3.12)

where X̃t ∈ R1×(ñs×ñt), and ñs = card(Φ̃) indicates the number of selected spatial

predictors.

A complete preselection function

At this stage, a complete spatio-temporal preselection mechanism can be formed, where

the following functions should apply:

 ns = sel(card(Φ), card(Φ̃), ζt)

nt = max(sel(
γi
∆t

,
γ̃i
∆t

, ζt))
, (3.13)

and

Xt =
[
xi,t−ts xi,t−2ts · · ·xi,t−ntts

]
, Si ∈ sel(Φ, Φ̃, ζt), (3.14)
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where sel(a, b, ζt) is the selection function, which outputs a when ζt = 0 (stationary

scenarios), and outputs b when ζt = 1 (ramp scenarios). In this way, different prediction

preselection strategies can be automatically applied based on the scenario recognition

signal.

Notice that although the use of the largest time lag γ̃i in Equations (3.8) and (3.11)

may result in irrelevant temporal predictors included in the model, the computational

complexity is greatly reduced. This problem will be further addressed in the following

section, where a penalized model is introduced for additional predictor filtering.

3.3.3 Nowcasting Strategy

Nowcasting model

As above mentioned, the preselection in both scenarios may introduce irrelevant temporal

predictors. On this point, a penalized regression model becomes useful to provide further

predictor filtering. The ridge regression and lasso are two frequently used penalized

regression models. The former penalizes the residual sum of squares using an `2-penalty,

while the latter takes `1-penalty. The biggest advantage of ridge regression is its stability

and strong tolerance to small changes in model inputs. However, the ridge regression

estimates always retain a whole set of predictors. In contrast, lasso can completely

exclude the unexpected predictors from the model by shrinking their parameters to zero.

Nonetheless, lasso may lose effectiveness when strong collinearity or aggregation effect is

observed among the predictors, which is just the case for the sensors under a same cloud

coverage. Consequently, only few or even one predictor is selected, and the model become

less interpretable. In this work, we introduce the elastic-net, whose regularization term

is a convex combination of `1-penalty and `2-penalty. The integration of both `1 and `2

penalties allows elastic-net to learn a sparse model with fewer zero weights than lasso,

while maintaining the stability as ridge regression.

Given a dataset with n predictors and m samples X ∈ Rm×n, and responses
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Y ∈ Rm×1, the elastic-net estimator is given by:

βEnet = argmin
β

{
‖Xβ − Y ‖22 + λα‖β‖1 + λ(1− α)‖β‖22

}
, (3.15)

where βEnet ∈ Rn×1 is the regression parameter, and λ > 0 is the regularization param-

eter which regulates the strength of the penalty. The larger the value of regularization

parameter λ, the greater the amount of shrinkage and thus the parameters become more

robust to collinearity. Specially, the elastic net transforms into ridge regression when

α = 0, and becomes lasso when α = 1. In this work, all the parameters are selected

using the k-fold cross validation.

Coordinated nowcasts

In stationary scenarios, a fixed forecast horizon of h is available. However, the forecast

horizon in ramp scenarios, i.e., ñtTs, is limited by the size of the network and CSMV

velocities. The larger the CSMV velocity and the smaller the network dimensions,

the shorter prediction is provided. To aggregate the predictions in two scenarios, a

coordinated framework is developed, as shown in Figure 3.6.

In the stationary scenarios, the spatio-temporal correlations among the sensors

present to be more stable due to the steady irradiance resources. In this sense, the

stationary predictor set Xt is only updated for each time interval ∆T to adapt the

gradual attributes change, e.g. ambient temperature, pressure and humidity, etc. In

the ramp scenarios, beside updating the ramp predictor set X̃t, the latest preselected

stationary predictors is also used for consistent PV nowcasting at t + h. Then the

t + h nowcast with resolution of h is upsampled to the 1-s sequence, with backward

interpolation. When the CSMV is detected, the interpolated value at t+ ñtTs will be

replaced by the nowcasting result. The value sequence is then downsampled back to h

by calculating the mean of the sequence. In this way, consistent PV nowcasts with a

fixed forecast horizon of h becomes available in both of the scenarios, while the cloud

dynamics is contained.
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Figure 3.6: Flowchart of the developed coordinated nowcasting. The consistent PV
nowcasts with a fixed forecast horizon at t+ h is available in stationary scenarios. The
forecasts are further complemented when the CSMV is detected at t + ñtTs in ramp
scenarios.

3.4 Results

In this section, data from a concentric network prototype deployed in XJTLU, Suzhou,

China, are considered, whose layout is shown in Figure 3.7. The network consists of

3 exterior sensors Φext = {S2, S3, S4} and 2 interior sensors Φint = {S1, S5}. Another

sensor is used to mimic the generation of a 5 MW PV system based on the irradiance-

to-power conversion model in Equation (2.13). The specific network deployment is

displayed in Table 3.1. The central server is equipped with Intel Core i7 2.9-GHz CPU,

and all the processing is carried out using Python. The system is operated continuously

from November 1, 2018 to April 1, 2019. Due to the limited experimental configuration,

only the data measured in the days with dominated wind directions from 0◦ to 60◦

north are used. After several calibration tests, the correlation coefficient threshold is

found as ρlimit = 0.8, the threshold value for scenario recognition is chosen to be σ =

2.5, and the error tolerance of PDM is set as ε = 5.
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Figure 3.7: Layout of the deployed XJTLU sensor network prototype, with 3 exterior
sensors and 2 interior sensors. Arrow in the top shows the dominate wind direction.

Table 3.1: Spatial distances in meters [m] between the sensors. The maximum distance
is found as 224 m between S2 and S4. The minimum distance is found as 55 m between
S4 and S5.

S1 S2 S3 S4 S5 PV

S1 - 58 100 193 168 130

S2 58 - 116 224 200 185

S3 100 116 - 116 122 152

S4 193 224 116 - 55 158

S5 168 200 122 55 - 100

3.4.1 Error Metrics

To evaluate the proposed nowcasting strategy, three error metrics are used in this

work, namely, the normalized root mean square error (nRMSE), forecast skill (FS), and

normalized peak mean absolute error (nPMAE).

Given the measured PV generation Pt, and the predicted power P̂t at time instant t,

nRMSE is given by:

nRMSE =

√
1
m

∑m
t=1(Pt − P̂t)2

1
m

∑m
t=1 Pt

× 100%. (3.16)
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The FS proposed in [84] is given by:

FS = 1− nRMSE

nRMSEp
(3.17)

where nRMSEp is the nRMSE produced by the persistence model. The metric FS

equals to 1 for a perfect forecast, and takes a negative value when the proposed model

is inferior to the persistence model.

In the case of PRRC, it has been shown in Figure 2.4 that the forecast accuracy on

RR peak values (both positive and negative) is critical for control implementations. In

this regard, the nPMAE is herein proposed, given by:

nPMAE =

1
mp

∑mp

t=1|P
p
t − P̂

p
t |

1
mp

∑mp

i=t P
p
t

× 100%, (3.18)

where mp is the number of peaks, P pt and P̂ pt denote the measured and predicted peak

values respectively.

3.4.2 Results of Predictor Preselection using SRP

To demonstrate the effect of SRP preselection, we consider a preselection example on a

day with moderate variability, on 2018 December 24. In this example, consistent PV

nowcasts with a prediction horizon h = 10 s are generated. Thus the data processed in

stationary scenarios are averaged into 10-s intervals. In addition, a fixed PRRC time

buffer for PDM is chosen as ∆t = 5 s, and the stationary predictors is set to be updated

for each ∆T = 10 min.

Before implementing SRP, the scenario recognition signal is generated to describe

the real-time PV dynamics, as shown in Figure 3.8(a). In this case, 13% data points

are identified as “ramp”. Figure. 3.8(b) and Fig. 3.8(c) show the spatial and temporal

preselection results respectively. It can be seen that 5 spatial predictors, that is, a

whole set of sensors are mostly selected in stationary scenarios, and at least 3 spatial

predictors are included. This indicates that strong spatial correlations are observed
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Figure 3.8: The preselection example for a moderate day on 2018 December 24. (a) PV
generation profiles and scenario recognition results, where the grey line and blue line
represent the recognized stationary and ramp scenarios respectively, and the red line
shows the scenario signal. (b) Results of spatial predictor preselection using SRP. (c)
Results of temporal predictor preselection using SRP.

among the sensors during these periods. In ramp scenarios, fewer spatial predictors are

selected. Except for the two necessary along-wind sensors, PDM typically preselects

one, and maximum two (in very few cases) additional spatial predictors. The selection

is mainly limited by the predefined PRRC time buffer, which is fixed as 5 s in this case.

On this point, the effect of varying ∆t will be further studied in Section 3.4.4.

For the temporal predictor preselection, it can be seen that only few or even no

temporal predictor is selected in stationary scenarios (0 in most cases). This is mainly

due to the steady irradiance received during these periods, which greatly relieves the

solar temporal dynamics. In ramp scenarios, 8 predictors are mostly selected, implicating

a time lag of 8 s. Considering an average distance of 56.5 m between the focal system

and interior sensors (S4 and S5), the average detected CSMV velocity is estimated as 7

m/s. Notice that the actual wind speed during the day has been reported as 6.5 m/s,

which proves the proposed SRP method to be effective to track CSMV.
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3.4.3 Results of Coordinated Nowcasting

Once the spatio-temporal predictors are preselected, the 10-s ahead nowcasting is

generated by coordinating the results in the two scenarios. For each prediction, only

the adjacent 720 data points (approximately 20% data of the whole day) are used for

training, implicating the most recent 120 and 12 minutes data respectively for stationary

and ramp scenarios. The workflow to produce nowcasts is similar to the previous

chapter, namely the GHI data from sensors are transformed to CSI, then the nowcast

CSI are converted back to GHI or PV power data for evaluation. For a single nowcast,

the processing time can be controlled within 10 ms, which makes the proposed method

feasible for real-time control.
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Figure 3.9: Nowcasting using SRP-Enet (red line) and measured PV generation (black
dotted line) for a period on 2018 December 24. Nowcasting results before coordination
(using stationary predictors only) is represented by the blue solid line. After coordination,
the predictions approach closer to the actual peaks.

To visualize the coordination effects, a snapshot from 14:05 to 14:30 is plotted in

Figure 3.9. It can be seen that the coordination improves the nowcasts significantly.

Before coordination, only stationary predictors are fed into the model, thus it performs

better when less fluctuations are observed. For the nowcasts during large ramps, the

performance deteriorates as the predicted values always fail to reach the ramp peaks.

After coordination, the ramp predictors begin to enter the model, making it more

adaptive to fast moving CSMVs. As a result the nowcasts generated by stationary
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predictors are further complemented, with the predicted values approaching closer to

the ramp peaks. During this specific time period, the nPMAE before coordination is

found as 15.80%, and reduces to 8.47% (43.4% improvements) after coordination. For

the nowcasts of the entire day, the nRMSE, FS, and nPMAE are 4.71%, 0.40, 7.98%,

respectively.

3.4.4 Case Study 1: Nowcasting under Various PRRC Time Buffers

The previous example assumes a fixed PRRC time buffer. In practice, however, the

required time buffer can vary from case to case according to different PRRC regulations.

Therefore, in this case study, we investigate the effect of various PRRC time buffers

on nowcasting accuracy. Recall the coordination flowchart in Figure 3.6, the ramp

predictor set ought to be updated before time t+ h, implicating ∆t < h. Otherwise the

prediction becomes useless. In this sense, we herein consider the 30-s ahead nowcasting

to provide more choices of ∆t. The results are depicted in Table 3.2.

Table 3.2: Nowcasting performance for various PRRC time buffers. 30-s ahead nowcast-
ing is generated on 2018 December 24.

∆t [s] nRMSE [%] nPMAE [%] FS

2 5.05 10.56 0.36

5 4.71 7.98 0.40

10 4.64 7.07 0.41

20 5.35 12.05 0.32

30 5.68 16.87 0.27

60 5.68 16.87 0.27

It can be seen from Table 3.2 that the accuracy reduction with different time buffers

is marginal. The use of 5-s and 10-s time buffers generate comparable results, and

outperform the other cases. This result aligns with the discussions in Section 4.2. With

an average wind velocity of 6.5 m/s, it generally takes 8 s for a CSMV to arrive the focal

PV system. Hence, to effectively preselect the relevant predictors in a ramp scenario, a

searching time near 8 s is preferred. However, for PRRC applications, the CSMV has

to be identified before it reaches the focal system. In this regard, the 5-s choice seems
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to be superior to the 10-s case although the 10-s time buffer offers slight improvements.

It is also found that when ∆t > 10 s, the nowcasting performance begins to

deteriorate. This is due to the slow preselection process that may not be able to timely

update the ramp predictors. For the case of ∆t = 20 s, there is only a 10-s interval

before generating nowcasts (since the ramp predictors should be updated before t+ 30

s). Consequently, only the CSMVs occurred between t and t+ 20 can be identified. As

∆t further increases, eventually there would be no CSMV being reported (such as the

30-s and 60-s cases). As a result, only stationary predictors are fed into the model, and

the model becomes less robust in ramp scenarios with larger nPMAE errors. On the

other hand, when the time buffer is insufficient (such as the 2 s case), fewer predictors

are preselected, which also hinders the nowcasting performance.

3.4.5 Case Study 2: Nowcasting using Various Training Data Lengths

In this case study, we evaluate the effect of training data length on the nowcasting

performance. The 10-s ahead nowcasts are generated as the previous example. In

addition, another 9 cloudy days with similar wind directions are selected for validation

(totally 10 days). To benchmark the proposed SRP-Enet method, the persistence (Pers),

linear regression (LR), and long short-term memory recurrent neural networks (LSTM)

models are used.

The Pers is the most commonly-used and simplest type of solar nowcasting model. It

assumes the conditions (irradiance, temperature, cloud coverage, etc.) remain the same

between t and t+ h. Thus, Pers model only shows promising results at very short time

horizons, making it a standard for benchmarking solar nowcasting [31]. On the other

hand, LR is a universal benchmark model for spatio-temporal forecasting. When a short

prediction horizon is desired, the strong linearity between the measurements of sensors

and focal PV system makes the regression-based models a priority for predictions [67].

Furthermore, in order to compare with the recent advances in AI-enhanced technology,

the LSTM model, which is typically applied to time-series forecasting, is included for

comparison as well [85]. The LSTM model used here is constructed with 50 neurons in
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the first hidden layer and 1 neuron in the output layer. The model is fit for 50 epochs

with a batch size of 10. The LR and LSTM models use the same training data length as

the proposed method. Moreover, the CSMV information is unknown to the two models,

thus sufficient predictors are assumed, i.e. a whole set of 5 spatial predictors and 10

temporal predictors. The Pers model directly transforms the measurements of sensor

S5 to PV generation. The results are displayed in Table 3.3.

Table 3.3: 10-s ahead nowcasting performance of the proposed SRP-Enet method and
three benchmarking models with various training data points. The results are averaged
over the 10 days.

Training length Metrics Pers LR LSTM SRP-Enet

360

nRMSE (%) 8.24 8.82 9.92 6.57

nPMAE (%) 18.20 19.96 14.70 12.67

FS - -0.07 -0.20 0.20

720

nRMSE (%) 8.24 6.74 8.34 5.83

nPMAE (%) 18.20 15.92 14.61 8.57

FS - 0.18 -0.01 0.29

1080

nRMSE (%) 8.24 6.70 8.19 6.18

nPMAE (%) 18.20 15.21 14.37 10.42

FS - 0.19 0.01 0.25

1440

nRMSE (%) 8.24 6.63 7.91 6.29

nPMAE (%) 18.20 14.90 14.08 11.24

FS - 0.20 0.04 0.24

1800

nRMSE (%) 8.24 6.58 7.64 6.37

nPMAE (%) 18.20 14.62 13.97 11.78

FS - 0.20 0.07 0.23

It is an interesting finding that the proposed SRP-Enet method generates the best

nowcasts with 720 data points (20% training length). As the training data length further

increases, its performance deteriorates instead. This is mainly due to the effects of

SRP, where the predictors are constantly updated. As a result, data collected several

hours ago may not be suitable to fit the latest predictors. For LR and LSTM models,

their accuracies decrease when the training data become fewer. Even when the data

is sufficient such as using 1800 points (data collected within 5 hours, accounting for
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40% of the whole data set), due to the large number of irrelevant predictors, their

performances are still inferior to that of of SRP-Enet. Furthermore, it can be seen that

the more advanced LSTM model is beaten even by a simple LR model in the tests. This

observation is consistent with the discussions in [67] that the regression-based methods

could be more suitable in solar nowcasting.

We note that the “curse” of training data length may be relaxed in practical

operations by using historical data with similar meteorological conditions. In this

regard, the performance of LSTM-type models may be further improved. However, this

case study verifies that the proposed SRP-Enet method can use much fewer training

data while achieving similar or better results than the other models, which makes it

more advantageous when historical data are unavailable.

3.4.6 Case Study 3: Nowcasting with Various Forecast Resolutions

In previous studies, performance of the SRP-Enet along with several benchmarking

models is evaluated at a forecast resolution of 10 s. In this case study, nowcasts with

various forecast resolutions are presented. Data from the selected 10 days are averaged

into 10, 20, 30, 60, and 300 s intervals, respectively. Based on the results from case

study 2, the most recent 20% data are used for training. Table 3.4 shows the nowcasting

results.

It can be concluded from Table 3.4 that the proposed SRP-Enet method shows

better performance than the benchmarking models for all the forecast resolutions. For

the nowcasts within 60 s, cloud dynamics still dominate the accuracy, thus the inclusion

of temporal predictors in the model can significantly improve the nowcasts. For r =

300 s, the impacts of CSMV are greatly relieved thanks to the well-known temporal

smoothing effect [70]. In this case, the inclusion of unnecessary temporal predictors is

likely to deteriorate the nowcasts, which accounts for the unacceptable results of the LR

model. Although the redundant temporal predictors are also included in the SRP-Enet,

the inherent regularized term of elastic-net model provides a supplementary predictor

filtering. Thus the SRP-Enet is still comparable to the Pers model. It is also observed
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Table 3.4: Nowcasting performance of the proposed SRP-Enet and benchmarking models
at various forecast resolutions. The results are averaged over the 10 days.

r [s] Metrics Pers LR LSTM SRP-Enet

10

nRMSE (%) 8.24 6.74 8.34 5.83

nPMAE (%) 18.20 15.92 14.61 8.57

FS - 0.18 -0.01 0.29

20

nRMSE (%) 7.84 6.00 7.33 4.86

nPMAE (%) 15.34 12.58 13.22 7.26

FS - 0.23 0.06 0.35

30

nRMSE (%) 6.91 5.67 6.84 4.59

nPMAE (%) 10.59 9.53 10.07 6.88

FS - 0.18 0.01 0.34

60

nRMSE (%) 5.53 4.92 5.37 4.24

nPMAE (%) 8.28 7.82 8.15 6.32

FS - 0.11 0.03 0.23

300

nRMSE (%) 2.35 4.02 2.59 2.30

nPMAE (%) 4.50 7.08 5.11 3.95

FS - -0.7 -0.1 0.02

that as the forecast resolution expands, the nPMAE differences between the models

decreases rapidly. This also verifies the temporal smoothing effect at larger forecast

resolutions.

3.4.7 Case study 4: Nowcasting in Different Weathers

So far the studies have shown that the proposed SRP-Enet model is able to produce better

results in cloudy days. In this case study, we investigate the nowcasting performance in

different weathers, namely, the sunny, cloudy, and rainy days. For each weather type,

10 days are selected during the experimental days. Based on the previous studies, 20%

data are used for training to generate 10-s ahead PV nowcasts. Figure 5.4 shows the

examples of nowcasting in the 3 typical weather conditions.

It can be seen from Figure 5.4 that the SRP-Enet nowcasts approach to the ramp

peaks closely in all weather conditions, which is otherwise unachievable using other

methods. This property should become especially important for PRRC operations.
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Figure 3.10: Nowcasting examples under typical weather conditions (a) sunny, (b)
cloudy, (c) rainy. The proposed SRP-Enet method approaches the closest to the ramp
peaks compared with other methods.

Table 3.5 depicts the nowcasting performance during the respective 10 days. It is evident

from Table 3.5 that the SRP-Enet method generally outperforms the benchmarking

methods in all weathers, with an apparent reduction in terms of nPMAE. In the cloudy

days, the SRP-Enet nowcasts show an average nRMSE and nPMAE improvements

over 13.5% and 41.3% compared with the benchmarking methods. At first glance, the

SRP-Enet does not show as much nRMSE improvements in sunny days as it does in

cloudy days. Due to the infrequent cloud coverages in the sunny days, even a large error

in the predicted power fluctuations may not significantly influence the nRMSE. In this

regard, the nRMSE is unfaithful to tell the reliability of the nowcasts. On the other hand,

the nPMAE, which aims to describe the ability of predicting PV ramps, becomes useful.

In sunny days, the nPMAE improvements by the SRP-Enet is more than 20% over the

other methods. Another observation can be made is that the SRP-Enet nowcasts in the

rainy days present to be inferior to Pers in terms of nRMSE. As the CSMV diminishes

in precipitation, the raining periods can be often recognized as stationary scenarios.

However, the meteorological features such as ambient temperature or humidity can

change rapidly during these periods. Thus, an interval of ∆T = 10 min for updating

stationary predictors may not response to these sudden changes in time.
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Table 3.5: Nowcasting performance in different weather conditions. 10 typical days are
selected for each weather type. The results are averaged over the respective days.

Weather Metrics Pers LR LSTM SRP-Enet

Sunny

nRMSE (%) 2.71 2.37 3.19 2.35

nPMAE (%) 6.64 5.98 7.02 4.81

FS - 0.13 -0.18 0.13

Cloudy

nRMSE (%) 8.24 6.74 8.34 5.83

nPMAE (%) 18.20 15.92 14.61 8.57

FS - 0.18 -0.01 0.29

Rainy

nRMSE (%) 4.59 5.01 5.65 4.92

nPMAE (%) 7.86 9.26 10.99 7.17

FS - -0.09 -0.23 -0.07

We have noticed that in some areas, additional weather types such as snowstorm

and sandstorm may also be observed. In these cases, however, the proposed SRP-Enet

forecasting can still be utilizable, since the sensors can feel the snow drop or sand cover

as similar as the PV system is experiencing (the sensor material, tilt angle etc. are

similar to the focal PV system).

3.4.8 Case study 5: applying SRP to all the models

The last case study in this chapter evaluates the effects of SRP. Nowcasts with and

without uing SRP are studied for all the models. When SRP is unavailable, sufficient

spatio-temporal predictors, i.e., a full set of spatial predictors ns = 5 with temporal

lag nt = 10, are considered. The configurations of this case study are identical to case

study 4, namely, generating 10-s ahead nowcasts with a training length of 20%. The

results are generalized on the 10 cloudy days to exclude the non-cloud factors (such as

the sudden change of temperature and humidity in rainy days). Figure 3.11 shows the

snapshots of nowcasts using different models before and after applying SRP.

Before SRP, a large number of irrelevant predictors are fed to the models. Conse-

quently, the LR nowcasts typically become much more fluctuated than expected, and

the LSTM nowcasts present to be lagging to the measurements. Benefiting from its
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Figure 3.11: Nowcasts before and after applying SRP to (a) LR, (b) LSTM, and (c)
Elastic-net models for a period on 2018 December 24. The measured PV generation is
represented by the black dotted line.

penalty term, the elastic-net produces much smoother nowcasts than LR, and there is

no lag between the predicted and measured time series. However, it is still far beyond

satisfactory since it always fails to reach the ramp peaks. After SRP, it can be seen

that the nowcasts for all the models are significantly improved. With proper predictors

preselected, the LR nowcasts become more stable. The lagging issue of LSTM is also

relieved. More importantly, all the nowcasts approach closer to the ramp peaks.

The error metrics before and after applying SRP for the models are shown in Table

3.6. It is observed that although the benchmarking models use the similar predictors,
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Table 3.6: Nowcasting performance before and after applying SRP. The results are
averaged over the 10 days.

Metrics LR LSTM Elastic-Net

Before

nRMSE (%) 6.74 8.34 6.18

nPMAE (%) 15.92 14.61 10.36

FS 0.18 -0.01 0.25

After

nRMSE (%) 6.12 6.58 5.83

nPMAE (%) 10.02 10.27 8.57

FS 0.26 0.20 0.29

their performances are still inferior to the elastic-net based nowcasts. This observation

validates the effectiveness of the penalty term of the elastic-net model, which is able to

provide additional predictor reduction. In this case, the nRMSE improvements after

applying SRP are found as 9.19%, 21.1%, and 5.66%, respectively for the LR, LSTM,

and elastic-net models. The nPMAE improvements are found as 37.06%, 29.71%, and

17.28%, respectively.

3.5 Application to Predictive PRRC

In this section, we demonstrate the practical application of the proposed SRP-Enet

nowcasting on predictive PRRC. Especially, we draw the attention on PAPC since it

does not involve any external auxiliary device such as ESS, thus the value of nowcasts

can be more properly quantified.1

To evaluate the performance of PAPC, two metrics are used, namely, the ramp

smoothing rate (RSR) and energy curtailment ratio (ECR). The RSR assesses the

reduction in RR violations after PAPC, which is defined as:

RSR = 1−
∑n′

t=1 I(|R∗t |, Rs)∑n′

t=1 I(|Rt|, Rs)
× 100%, (3.19)

1Recall Figure 2.4, for the PEC method, even though the nowcasts could contain large errors, the
use of an ESS can still help to smooth out the RRs. In this case, it would become unclear how the more
accurate nowcasts can benefit control process. Hence, to show the value of the proposed nowcasting
method, we herein only demonstrate PAPC but not PEC.
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where R∗t and Rt are the RR at time t after and before PAPC respectively, and Rs is

the required RR limit. I(|R∗t |, Rs) is 1 if |R∗t |> Rs, and equals to 0 otherwise. Generally,

a larger RSR indicates less RR violations, and the regulated output power becomes

smoother. The ECR quantifies the amount of curtailed energy due to PAPC, given by:

ECR = 1−
∑n′

t=1 P̃t∑n′

t=1 Pt
× 100%. (3.20)

In most cases, one wishes ECR to be small so that more production can be extracted

from PV systems. Typically, ECR needs to be interpreted together with RSR since less

curtailment may introduce more RR violations.

Before implementing PAPC, a RR limit Rs should be first defined. In this study, we

follow the regulation in [15], where the maximum allowed RR is suggested to be 100

kW/s for the PV systems above 11 kW. It should be noticed that in case of PRRC, the

time buffer ∆t in PDM is no longer a fixed value. Given the first sensor reading change

at t0, the control time buffer equals to

∆t = tc − t0 (3.21)

where tc is the proactive control time defined in Equation (2.9), which changes with

different CSMVs.

Table 3.7 shows the PAPC performance over the 10 cloudy days. According to

the previous case studies, the 10-s ahead PV nowcasts are generated with a training

data length of 20%. To benchmark the proposed SRP-Enet method, the DST model

developed in previous chapter is considered. Since the DST nowcasting works only when

ramp violations are observed, the metrics except for nPMAE are discarded. It can be

concluded from Table 3.7 that the proposed SRP-Enet method generally outperforms

the DST model. In both moderate and highly variable days, the SRP-Enet method

achieves lower nPMAE and higher RSR. It is also observed that in highly variable days,

the DST method seems to sacrifice less energy. However, this is mainly due to its more

control failures. In another word, the energy has not been fully curtailed to smooth out
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Table 3.7: PAPC performance using SRP-Enet and DST over the 10 cloudy days.

Moderate Highly variable

Metrics DST SRP-Enet DST SRP-Enet

nPMAE (%) 8.09 7.25 10.08 9.96

RSR (%) 95.99 96.05 95.47 96.42

ECR (%) 2.23 1.66 2.89 3.05

the ramp-down fluctuations due to the nowcasting errors. We note that the effective

use of DST model should require a larger and denser sensor network. However, the

feasibility and simplicity are also important considerations for practical application.

According to the results presented above, the proposed SRP-Enet method is proved to

be more reliable than DST model when fewer sensors are considered.

3.6 Chapter Conclusion

This chapter presents a novel sensor network-based PV nowcasting method with a

newly developed spatio-temporal predictor preselection, which can be used for PAPC.

Compared with the conventional PV nowcasting methods, the main improvements of

the proposed method can be summarized as:

• The proposed SRP preselection establishes a comprehensive predictor preselection

mechanism for both spatial and temporal predictors in absence or presence of

CSMVs.

• The proposed SRP preselection decomposes the PV dynamics into two scenarios,

and the results in two scenarios can be coordinated to provide consistent PV

nowcasts at a fixed forecast horizon, with CSMV information well contained.

Specifically, the use of the developed SRP preselection on different models shows

an average nRMSE and nPMAE improvements over 11% and 25% respectively.

• The proposed SRP-Enet nowcasting reveals strong adaptability under various

weather conditions, especially in the highly cloudy days, with an average nRMSE
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and nPMAE improvements over 13.5% and 41.3% respectively. In addition, it is

able to use fewer training data while achieving similar or better results than the

benchmarking models which use a larger training set.

The feasibility of integrating SRP-Enet nowcasts to PAPC operation is also evaluated

through practical experiments. The results show that the use of SRP-Enet nowcasts on

PAPC outperforms the previously developed DST model, with less control failures and

energy curtailment.
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Chapter 4

Analysis of Operational

Nowcasting for PRRC

4.1 Chapter Introduction

In previous two chapters, the feasibility of integrating solar nowcasting into PRRC

operations have been demonstrated. While the practices therein presented could

potentially bring in more nowcasting applications in the field of PRRC, an important

issue—operability—is left out.

In a general sense, the operability denotes the operational nature of solar forecasting

[86]. Since the main purpose of generating solar forecasts is to assist in power system

operations, the forecasts ought to follow certain operational requirements in terms

of temporal issues, such as forecast horizon, resolution, or update rate [87]. As grid

integration involves a variety of timescales that relate to different system operations, the

operational requirements naturally differ. To give perspective, Table 4.1 summarizes the

operational forecasting requirements used by California Independent System Operators

(CAISO) [88], where three different forecast requirements for intra-hour, intra-day,

and day-ahead solar forecasting are enacted, corresponding to power balance, real-

time market, and day-ahead market operations, respectively. While the operational
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Table 4.1: Overview of operational requirements for intra-hour, intra-day, and day-ahead
solar forecasting in CAISO.

Forecast type Target horizon System operation Operational forecasting requirement

Intra-hour 15 min-1 h Power balance The real-time economic dispatching of

CAISO requires thirteen 5-min forecasts

to be submitted 7.5 min prior to the

operating hour. The process repeats every

5 min.

Intra-day 1 h-1 day Real-time market The short-term unit commitment of

CAISO requires 5-h-ahead forecasts to be

submitted 75 min before the operating

hour, with a 15-min forecasting resolution.

The process repeats every hour.

Day-ahead > 1 day Day-ahead market CAISO requires the hourly day-ahead

forecasts to be submitted at 5:30 a.m.

on the day before the operating day,

corresponding to a 18.5-42.5-h-ahead

forecasting horizon.

forecasting has been carefully addressed in intra-hour, intra-day, and day-ahead solar

forecasting studies [87, 89, 90], such temporal issues are often overlooked in solar

nowcasting practices.

In light of the above, this chapter aims to address the operability of solar nowcasting

by demonstrating an operational solar nowcasting practice on PAPC.1 Specifically,

various temporal issues related to operational solar nowcasting will be clarified, and

their impacts on operational nowcasting and PAPC will be investigated. To perform

PAPC, both deterministic and probabilistic nowcasts will be considered.

4.2 Design of PAPC Operating Environment

This section elaborates the PAPC operation design. Several implementational issues,

i.e., time parameters, data, PAPC algorithm, and operating timeline are clarified.

1As discussed in Chapter 3, to quantify the effect of nowcasting settings more properly, we herein
only consider the PAPC implementation to exclude the support from ESS.
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4.2.1 Temporal Issues in Operational Solar Nowcasting

Previously in [87], four time parameters are introduced to fully characterize the temporal

issues in operational forecasting, namely, forecast horizon, forecast resolution, forecast

lead time, and forecast rolling update rate. Nonetheless, as the above time parameters

are specially defined in intra-day and day-ahead forecasting scenarios, the situation

slightly changes when it comes to solar nowcasting.

Firstly, given that intra-day and day-ahead solar forecasting are commonly applied

in power systems research, forecast lead time is typically required by system operators to

schedule grid reserve capacities, unit commitment, and economic dispatch [91]. However,

such prior scheduling is no longer needed in terms of PAPC, since the high reaction

speed of FPPT (typically < 1 s) enables nearly real-time PV power control [92]. Besides

the forecast lead time, the forecast rolling update rate needs to be reconsidered for solar

nowcasting as well. For intra-day and day-ahead solar forecasting, the forecasts are often

run much further into the future than the required lead time. In this case, it is natural

to consider the forecast rolling update rate to refresh that forecast, thus providing more

accurate and valuable information for system operators. However, involving rolling

forecasts may become infeasible for solar nowcasting in practice, as it could be too

computationally intensive to update the nowcasts every several seconds [93].

Based on the above viewpoints, three time parameters for operational solar now-

casting are herein defined, namely, forecast horizon (H), forecast resolution (R), and

forecast model update rate (M).2 Analogous to the intra-hour, intra-day, and day-ahead

forecasting cases, the forecast horizon denotes the time span from the first to the last

required nowcasts in each submission, and the forecast resolution is the temporal resolu-

tion of the required nowcasts. The forecast model update rate, on the other hand, is a

newly defined time parameter for solar nowcasting. As noted in previous chapters, the

performance of solar nowcasting can be highly characterized by intra-day meteorological

2In principle, these time parameters should be termed as nowcast horizon, nowcast resolution, and
nowcast model update rate. However, to keep consistency with the the intra-hour, intra-day, and
day-ahead forecasting cases, the word “forecast” is used. Moreover, as solar nowcasting is also known as
intra-minute solar forecasting, the naming generally applies.
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variations, such as wind speed, cloud motions, or temperature. In this regard, the

nowcasting models or the predictors need to be constantly updated to adapt the frequent

weather changes. With above definitions, a triplet can be used to denote the temporal

requirements in operational solar nowcasting, i.e., (H,R,M). For example, if the 5-s

nowcasts out to 30 s are required, and the nowcast model is updated every 10 min, the

triplet (H30s, R5s, M10min) fully describes such temporal requirements.

4.2.2 Data and Implementation of PAPC

The empirical part of this chapter considers the same dataset as Chapter 2, i.e., the

Oahu solar measurement grid, as shown in Figure 4.1. To demonstrate PAPC, sensor

DH4 is selected as the focal system, i.e., the target of nowcasting and control. Since

solar-generated power is of interest as to PAPC operations, the GHI measurements at

DH4 are converted to PV power data using the similar irradiance-to-power conversion

model in Equation (2.13). Moreover, in order to produce isotropic nowcasts, we herein

only consider 8 sensors with approximate proximities to DH4 as predictors (marked by

red circles in Figure 4.1). The sensor pairwise distance varies from 103 m (DH4 and

DH5) to 226 m (DH4 and DH6).

DH1

DH7

DH9

DH6

DH8

DH2

DH4
AP1 AP3

AP4

AP7

AP6

AP5

200 m

DH3
DH10

DH11

DH5

Figure 4.1: Layout of the NREL Oahu sensor network. The 9 sensors for empirical
study are marked by red, where the sensor DH4 is selected as the PAPC target (marked
by the red star). Surrounding the target sensor DH4, other 8 sensors form a closed
circular deployment. The scale of the map is shown in the bottom left corner.
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Given the above operation setup, the PAPC is implemented as follows. Assuming

the nowcasts are produced with the forecast horizon h and resolution r, and the control

sampling time of PAPC is ts. For an arbitrary nowcast run at time t, a nowcast series

with length h/r is available:

P̂t = {P̂t+r, P̂t+2r, · · · , P̂t+h}, (4.1)

where P̂t denotes the nowcast for DH4 at time t. However, to integrate the nowcasts

into PAPC design, the forecast resolution should match the control sampling time. In

this case, the nowcasts with resolution r needs to be downscaled3 to ts, leading to a

length-h/ts nowcast series:

p̂t = {p̂t+ts , p̂t+2ts , · · · , p̂t+h}, (4.2)

where p̂t denotes the downscaled nowcast for P̂t. Based on Equation. (4.2) and the

instantaneous measurement at DH4, PAPC firstly constructs a time series St,

St = {Pt, p̂t+ts , p̂t+2ts , · · · , p̂t+h}, (4.3)

where Pt is the measurement of DH4 at time t, and the length of St is 1 + h/ts. Given

Equation. (4.3), a resultant RR series can be calculated as:

Rt = {R̂t, R̂t+ts , R̂t+2ts , · · · , R̂t+h−1}, (4.4)

where

R̂t+i·ts =
St[i+ 2]− St[i+ 1]

ts
, (4.5)

is the RR calculated between the (i+ 2)th and (i+ 1)th elements of time series St, and

i = 0, 1, · · · , h/ts − 1. Finally, by identifying the location and value of the minimum RR

3In this work, the downscaling is performed by linear interpolation.
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in Rt, denoted by k and R̂min respectively, PAPC takes the following operations:

p̃t+i =


p̂t+i if R̂min ≥ −Rs

p̂t+i+1 +Rs · ts if R̂min < −Rs,
(4.6)

where i = k − 1, k − 2, · · · , 1, Rs is the required RR limit, and p̃t is the power signal for

FPPT. It should be noticed that the power signal may be invalid as it becomes greater

than the maximum available power. In that case, p̃t = Pt.

4.2.3 Operating Timeline

According to Section 4.2.1, it is now clear that in order to integrate operational solar

nowcasting into PAPC, three time parameters should be involved, i.e., H, R, and M.

At this point, a PAPC operating timeline is designed, which will be used throughout

this chapter. Figure 4.2 depicts an example timeline, exemplified under the nowcasting

setting (H15s, R1s, U5min). As PAPC only works during the daytime, the operation is

assumed to start at 7:30:00 and lasts for 10 hours. In contrast to the hourly or day-ahead

solar forecasting which looks several days into the history, solar nowcasting relies mostly

on data collected on the actual operation day to make inference. It has been shown

in Chapter 3 that when sensor network-based nowcasting is considered, training with

recent data (e.g., several hours) often leads to a higher nowcast accuracy than using

longer training length, as the spatio-temporal correlations within the network could

change frequently. In this regard, this work uses the most recent 1-h data for training

at each model updating stage. Notice that for 1-s measurements, the 1-h training data

leads to a length-3600 training set, which is large enough for the nowcasting models

considered in this work.

Based on Figure 4.2, the process of constructing St for PAPC is displayed in Table

4.2. Firstly, the nowcast submission starts at 7:30:00, and fifteen 1-s nowcasts are

produced for the period of 7:30:01-7:30:15 (the second column in Table 4.2). Referring

to Equation (4.3), S1 should cover the period of 7:30:00-7:30:15 (the last column in
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operation starts at 7:30:00 A.M.

7:30:007:29:457:29:307:29:15

15-s ahead 1-s resolution nowcasts

10 hrs PAPC operation

5 min model update rate

1 hr training length

Time in a day7:29:006:29:45 7:35:007:30:15 17:30:00

Figure 4.2: An example of PAPC operating timeline exemplified under (H15s, R1s,
U5min).

Table 4.2: An illustration of PAPC operation under the nowcasting setting (H15s, R1s,
M5min). The timestamps marked by bold indicate the model updating time.

Submission time Forecast timestamps St timestamps

07:30:00 07:30:01-07:30:15 07:30:00-07:30:15

07:30:01 07:30:16 07:30:01-07:30:16

07:30:02 07:30:17 07:30:02-07:30:17
...

07:35:00 07:35:15 07:35:00-07:35:15
...

17:30:00 17:30:15 17:30:00-17:30:15

Table 4.2). At 7:30:01, the second nowcast is submitted, which contains, however, only

a single nowcast for 7:30:16. To construct S2, the same nowcasts as S1 for the period

of 7:30:02-7:30:15 will be used. Then together with the instantaneous measurement at

7:30:01 and a new nowcast for 7:20:16, S2 can be formed. The process continues until

the end of the operation day. It should be noticed that for each nowcast submission,

a complete nowcast time series, that is, fifteen 1-s nowcasts are actually available.

However, as mentioned earlier, such rolling operation could bring more confusions for

PAPC.4 Hence, except for the first nowcast submission, a single 15-s ahead nowcast is

produced for the rest.

4Let us consider an example here. Suppose the operation follows the rolling manner and the control
sampling time is 1 s, then at t = 1, we have S1 = {P1, p̂2, p̂3, · · · , p̂16}. At t = 2, PAPC is tuning P2,
and S2 = {P2, p

∗
3, p
∗
4, · · · , p∗17}, where p∗ denotes the downscaled nowcast produced at t = 2. In this

case, there are multiple nowcasts produced at the same timestamp, i.e., p̂3 and p∗3, p̂4 and p∗4, · · ·, p̂16
and p∗16. The confusion comes as which nowcast should be used.
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4.3 Nowcasting Methods

In this section, the nowcasting models applied to PAPC are introduced. A total of eight

models, i.e., four deterministic and four probabilistic models, are considered for GHI

nowcasting, most of which come from two recent solar forecasting benchmark articles

[94, 95]. In addition, the error metrics for both deterministic and probabilistic nowcasts

are explained.

4.3.1 Nowcasting Setup

At each model updating stage, the nowcasting models are built based on a size n-by-p

training matrix, consisting of n samples and p predictors,

Xtrain =



x>1

x>2
...

x>n


=


x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

...
...

. . .
...

xn,1 xn,2 · · · xn,p

 , (4.7)

and a length-n training response vector containing CSI values at DH4,

ytrain = ( y1 y2 · · · yn )>. (4.8)

Provided one has n′ nowcasts to be made, whose index resumes from n, a test matrix

can be written as:

Xtest =



x>n+1

x>n+2

...

x>n+n′


=


xn+1,1 xn+1,2 · · · xn+1,p

xn+2,1 xn+2,2 · · · xn+2,p

...
...

. . .
...

xn+n′,1 xn+n′,2 · · · xn+n′,p

 . (4.9)
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By looping through the rows of Xtest, a vector of nowcasts,

ŷtest = ( ŷn+1 ŷn+2 · · · ŷn+n′ )>, (4.10)

can be obtained.

Recall the operating timeline, the training process is based on the data collected

during the last 1 hour. In this regard, Xtrain should contain n = 3600/r samples, where

r is the forecast resolution. Moreover, to identify the spatio-temporal predictors that to

be fed into Xtrain, the SRP method developed in Chapter 3 is used. On the other hand,

the value of n′ is determined by the forecast model update rate. For instance, given

M5min, n′ = 300/r.

4.3.2 Models for Deterministic Nowcasting

In this work, four models are considered for deterministic nowcasting: 1) smart per-

sistence (SP), 2) ordinary least squares (OLS) regression, 3) lasso regression, and 4)

k-nearest neighbors (kNN) regression. While the first three methods are often used as

reference models in deterministic solar forecasting [94], kNN regression is selected to

typify the pattern-matching-based methods. Notice that the more advanced artificial

intelligence methods are excluded in this work. This is because that most of AI-based

methods require longer training period that is far below the solar nowcasting require-

ments [93]. Moreover, it has been reported in Chapter 3 that the regression-based

methods are generally more suitable for solar nowcasting, due to the strong correlations

between predictors and response.

Smart persistence

The SP model refers to a persistence model on CSI. It assumes the nowcast CSI

time-series is equal to the most recent available CSI measurements. Given the time
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parameters (Hh, Rr), the SP model can be written as:

( ŷt+r ŷt+2r · · · ŷt+h ) = ( yt+r−h yt+2r−h · · · yt ). (4.11)

For instance, given the exemplified operating timeline in Figure 4.2, the measured CSI

values at DH4 from 7:29:46 to 7:30:00 will be directly used as nowcasts for the period of

7:30:01-7:30:15.

OLS regression

Regression is a statistical process for estimating the relationships among variables.

Mathematically, a linear regression model is given by:

yi = x>i β + εi, (4.12)

where i = 1, · · · , n, β are the regression coefficients, x are the predictors, y is the

response, and εi is a zero-mean, homogeneous error. Given training data Xtrain and

ytrain, the OLS estimator for β is

βOLS = argmin
β

||Xtrainβ − ytrain||22. (4.13)

Lasso regression

Instead of minimizing the sum of squared errors as in OLS, the lasso regression penalizes

the residual sum of squares using the `1-penalty, which often shrinks the regression

coefficients of uncorrelated predictors to exactly zero. The lasso estimator is given as

βlasso = argmin
β

||Xtrainβ − ytrain||22+λ||β||1, (4.14)

where λ is a tuning parameter that regulates the strength of the penalty. In this work,

λ is selected using k-fold cross validation.
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kNN regression

As one of the simplest pattern matching methods, a kNN model uses its training set

as a feature space. By specifying a query vector of current feature state, the k closest

samples will be identified based on some distance measure, e.g., Euclidean distance. In

a regression task, the k neighbors are unified to produce a collective prediction.

In the present context, the row vectors in Xtest, i.e., the preselected p predictors

are used as queries during pattern matching. For a row vector in the test set, x>∗ ,

the Euclidean distances between x>∗ and each row of Xtrain are computed, and the

CSI observations that correspond to the k smallest Euclidean distances are selected.

Subsequently, based on the individual responses from the k neighbors, ỹ1, ỹ2, · · · , ỹk, a

collective prediction can be formed by:

ŷ =

∑k
i=1 βiỹi∑k
i=1 βi

, (4.15)

where

βi =
1− di

dmax − dmin
, (4.16)

is the weight for the ith neighbor, di is the Euclidean distance between the ith neighbor

and x>∗ , and dmax and dmin are the maximum and minimum values among the Euclidean

distance set respectively. In this work, the value of k is set to be 30, which follows the

choice in [96].

4.3.3 Models for Probabilistic Nowcasting

Since the aforementioned SP, OLS, and kNN methods can also be extended to proba-

bilistic models, we herein adopt the same three methods for probabilistic nowcasting,

namely, persistence ensemble (PeEn), OLS with normal predictive distribution, and

analog ensemble (AnEn). In addition, as a representative of nonparametric approaches,

the quantile regression (QR) is considered as well. In this work, the results of probabilis-
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tic nowcasting are recorded in terms of quantiles. For each model, a set of 19 quantiles

is considered:

Q = {0.05, 0.1, 0.15, · · · , 0.9, 0.95}. (4.17)

Persistence ensemble

Whereas the SP model considers the most recent available CSI values as nowcasts,

PeEn takes the CSI values recorded at N most recent available timestamps to create

an ensemble, and thus an empirical predictive distribution. Following the operating

timeline, PeEn in this work uses the last 1-h measurements at DH4 to form an ensemble,

i.e., N = 3600/r, where r is the required nowcast resolution. For example, given the

submission process depicted in Table 4.2, instead of submitting a single nowcast at

7:30:01, which equals to the CSI of DH4 at 7:29:46, 1-h of CSI values at DH4 from

6:29:46 to 7:29:46 (N = 3600) are used to produce an empirical distribution. Based on

the predictive distribution, the 19 quantiles are then estimated.

OLS with normal predictive distribution

Recall the OLS estimator in Equation (4.13), with a new sample of predictors, x∗, the

predicted response is:

ŷ∗ = x>∗ β
OLS. (4.18)

For OLS, the variance of this prediction can be formulated by:

V(ŷ∗) = s2 · x>∗ (X>trainXtrain)−1x∗, (4.19)
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where s2 is an unbiased estimate of sample error variance V(ε∗). Subsequently, since

the prediction error ε̂∗ = y∗ − ŷ∗, the variance of ε̂∗ can be written as:

V(ε̂∗) = V(ε∗) + V(ŷ∗)

= s2 + s2 · x>∗ (X>trainXtrain)−1x∗.
(4.20)

The probabilistic OLS nowcasts are obtained by assuming the errors follow a normal

distribution. In that, the qth quantile of the probabilistic nowcast can be found by

ŷ∗ + zq
√
V(ε̂∗), where zq is the qth quantile of a standard normal distribution. For

instance, when q = 0.5, zq = 0; and when q = 0.95, zq = 1.645.

Analog ensemble

The term “analog” was firstly used in [97] to describe the weather patterns that resemble

each other. In the solar forecasting literature, AnEn is widely designed to cooperate

with NWP forecasts, due to its fast computation speed [98]. From a machine learning

context, AnEn can be thought as a probabilistic version of kNN method. Given a

feature query, AnEn searches the k most relevant analogs in the database. Then these

analogs are used jointly to form a predictive distribution. In this work, the similar 30

neighbors identified by kNN are also used for AnEn, and the 19 quantiles are generated

based on the estimated distribution.

Quantile regression

Unlike OLS regression that provides a framework for estimating conditional mean

models, QR defines a regression model based on conditional quantile functions. Given

the qth conditional quantile, QR solves:

βQR = argmin
β

n∑
i=1

ρq(yi − x>i β), (4.21)

where ρq(u) = u(q− Iu<0) is a piecewise linear function for some q ∈ (0, 1). When u > 0,

ρq(u) has a gradient q, whereas when u < 0, ρq(u) has a gradient q − 1. To produce the
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19 quantiles, each element in the quantile set Q is fed to the QR model. Hence, a total

of 19 QR models are built at each model updating stage.

4.3.4 Evaluation Metrics

Metrics for deterministic nowcasting

Three metrics are used in this work to evaluate the deterministic nowcasts, namely,

the normalized mean bias error (nMBE), nRMSE, and FS. Whereas nMBE is used to

assess the systematic bias in the nowcasts, nRMSE is used to evaluate whether the

nowcasts contain large errors. Finally, FS is used to determine the improvement of each

model over the reference model, in this case, the SP model. Besides the nRMSE and

FS defined in Equations (3.16) and (3.17), the nMBE is give by:

nMBE =
1
n′
∑n′

t=1(P̂t − Pt)
1
n′
∑n′

t=1 Pt
× 100%. (4.22)

where n′ is the number of nowcasts, and P̂t and Pt are the predicted and measured PV

power at time t respectively.

Metrics for probabilistic nowcasting

To evaluate the probabilistic nowcasts, the prediction interval coverage probability

(PICP), prediction interval normalized average width (PINAW), and normalized contin-

uous ranked probability score (nCRPS) are used.

The PICP is given by:

PICP =
1

n′

n′∑
t=1

εt × 100%, (4.23)

where εt equals to 1 if the observation at time t falls inside the lower and upper bounds of

the prediction interval (PI); otherwise εt is 0. PICP quantifies the reliability of nowcasts,

and is evaluated at a nominal coverage probability, i.e., (1− α)× 100%. Theoretically,

PICP should be greater than (1 − α) × 100% so that the probabilistic nowcasts can
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be considered as reliable. In this work, α = 0.1 is considered, which corresponds to a

nominal coverage probability of 90%, that is, the 90% PI. Given the quantiles in Eq.

(4.17), the 90% PI is obtained based on the probabilistic nowcasts at q = 0.05 and

q = 0.95.

The PINAW quantifies the average width of PI, which is defined as:

PINAW =
1

n′

∑n′

t=1(Ut − Lt)
Pmax − Pmin

× 100%, (4.24)

where Ut and Lt denote the upper and lower bounds of the PI respectively, and Pmax

and Pmin are the maximum and minimum values of observations. Generally, a smaller

PINAW corresponds to a narrower predictive distribution, which is desirable as the

nowcasts becomes sharper. Nonetheless, since a nowcast can be sharp but completely

exclude the target, solely using PINAW could be unfaithful to indicate the nowcasting

quality. On this point, PINAW should be interpreted together with PICP.

Lastly, nCRPS compares the cumulative distribution function of the probabilistic

nowcasts and observations, which is given by:

nCRPS =
1
n′
∑n′

t=1

∫∞
0 (F P̂t(x)− 1(x− Pt))2

dx
1
n′
∑n′

t=1 Pt
, (4.25)

where F P̂t is the cumulative distribution function of the predicted P̂t, and 1(x− yt) is

the Heaviside step function shifted to Pt. From the view of deterministic nowcasting,

nCRPS reduces to mean absolute percentage error. In this sense, a lower nCRPS

indicates a more accurate probabilistic nowcast.

4.4 Empirical Study

In this section, following the operation design described in Section 4.2, a total of four

case studies are presented. The first three case studies aim to evaluate the effect of time

parameters on operational solar nowcasting and PAPC performance. Both deterministic

and probabilistic nowcasts are applied to various PAPC operating scenarios. In the
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Figure 4.3: Visualization of the 48 validation days. GHI is plotted using red solid lines.
The Ineichen-Perez clear sky irradiance is plotted in black dashed lines.

last study, PAPC operation is extended to three different PV systems, to quantify the

impacts of system capacities. Throughout the four case studies, 48 cloudy days are

identified from the whole dataset (see Figure 4.3), which contributes to over 1.7 million

data points for validation.5 To perform PAPC, the empirical validation considers a

control sampling time of 1 s, and a RR limit of 25 kW/s. Furthermore, since PAPC

performance can be highly dependent on nowcasting accuracy, isolating the nowcast

error is of interest. On this point, PAPC with perfect nowcasts is also demonstrated,

denoted as Perf.

5Since PAPC mainly works for cloudy days, we herein only opt the days with rapid irradiance
variations. However, as rainfall can also cause rapid irradiance changes, days with high humidity are
excluded. The overall data is 10-h operation × 3600 nowcasts per hour × 48 days = 1,728,000.
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4.4.1 Case Study 1: The Effect of Various Forecast Horizons

In this case study, we evaluate the effect of forecast horizons on operational solar

nowcasting and PAPC. The 10, 15, 30, and 60-s ahead nowcasts are produced under

the nowcasting setting (R1s,M5min). Based on Equation (2.13), data from DH4 are

used to mimic a practical PV system in Sesma, Spain, with a capacity of 0.99 MW and

an area of 4.2 Ha [69]. In order to assess the performance of probabilistic nowcasts on

PAPC, the metrics RSR and ECR are calculated using the lower bounds of 10%, 50%,

and 90% PIs, respectively (See Appendix B for more details). The results are displayed

in Table 4.3.

In terms of deterministic nowcasting, it can be seen from Table 4.3 that in general,

all models show increasing nMBE and nRMSE errors as the forecast horizon expands.

Nonetheless, the OLS, lasso, and kNN models show the highest FS for H15s. This may

be due to the fact that during the 48 validation days, the network is dominated by trade

winds with an angle of approximately 60◦ from north, and an average wind speed from

5 m/s to 11 m/s. As a result, the most relevant predictors would become DH5 with lags

from 10 to 20.6 On this point, once the forecast horizon is greater than 30 s, abundant

irrelevant predictors enter the models, and it becomes more difficult to approach the

optimized predictors, thus the model accuracy deteriorates rapidly. In this case, lasso

outperforms the other methods thanks to its `1-penalty (see the H60s case), from which

additional predictor filtering is available.

In terms of probabilistic nowcasting, all models show increasing PINAW and nCRPS

as the forecast horizon increases. In the other words, the sharpness and accuracy of the

probabilistic nowcast is decreasing. As to calibration, PICPs of OLS and QR show a

similar tendency as FS in deterministic nowcasts, i.e., the PICP increases before forecast

horizon reaches 30 s, and decreases for the 30-s and 60-s ahead nowcasts, which is again,

owing to the poor model predictability when H ≥ 30 s. On the other hand, PeEn and

AnEn have relatively flat PICPs across all the horizons. This is due to the fact that

6Recall the spatial distance between DH4 and DH5, i.e., 103 m, it yields a temporal lag from 10.3 s
to 20.6 s.
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Chapter 4. Analysis of Operational Nowcasting for PRRC

PeEn and AnEn only generate nowcasts based on the past measurements, and no

training refinement, e.g., predictor preselection, is involved. Among these models,

OLS shows the best coverage, while AnEn is found to have the highest sharpness

(with the smallest PINAW). The predictive distributions from PeEn, however, are

not sharp. Since the goal of probabilistic forecasting is to maximize the sharpness of

the predictive distribution subject to calibration, OLS seems to be the best option to

generate decent probabilistic nowcasts. Notice that it is possible to decrease/increase the

number of ensemble members to make PeEn/AnEn more reliable, at a cost of decreasing

calibration/sharpness. However, such trade-off is beyond the scope of current paper.

Regarding PAPC, the results of Perf reveal that for ideal nowcasts, the control

performance improves as forecast horizon increases, with increasing RSR and nearly

unchanged ECR. The similar trend can be observed for both deterministic and proba-

bilistic models across the H5s, H10s, and H15s cases. However, when the forecast horizon

is beyond model predictability, i.e., the H30s and H60s cases, the increasing nowcasting

errors have led to a rapid growing in ECR. Furthermore, it is an interesting finding that

all models produce even better RSR results than Perf. For deterministic models, the

models with negative nMBE, i.e., lasso and kNN, are found most likely to have a larger

RSR. This is because when the nowcasts underestimate the targets, it is identical to

provide additional “reserves” for PAPC operation. In some cases, these reserved power

could compensate the deficiency in a shorter forecast horizon, thus more ramps can be

regulated.7 In terms of probabilistic models, PINAW is found to be highly related to

RSR. More specifically, a larger PINAW typically leads to a higher RSR. Moreover, it

is observed that PAPC using larger PIs can significantly improve the RSR. This is now

foreseeable since expanding PIs is analogous to increasing the amount of reversed power.

7Let us consider a 5-s ahead nowcasting example here. Given measurements {1000, 1000, 1000, 1000,
800} in kW, a sudden power drop of 200 kW/s occurs at t = 5 s. Under a RR limit of 25 kW/s, Perf
outputs {1000, 975, 950, 925, 800}, which still leads to a 125 kW/s violation. To fully smooth the
ramp, the forecast horizon needs to be expanded to 8 s. However, when a negatively biased nowcast is
considered, e.g., 900 kW at t = 1 s, the output becomes {900, 875, 850, 825, 800}. In this case, the
ramp can be successfully regulated.

91



PhD Thesis Xiaoyang Chen

4.4.2 Case Study 2: The Effect of Different Forecast Resolutions

In this case study, operational nowcasts and PAPC with various forecast resolutions

are presented. The PAPC setting is identical to the previous study, namely, a RR

limit of 25 kW/s is applied to the Sesma 0.99 MW system. Moreover, based on the

results from case study 1, the nowcasting setting (H15s,M5min) is considered to ensure a

proper model predictability. On this basis, data from DH4 are aggregated (summed up)

into 1, 3, 5, and 15 s resolutions, from which fifteen-, five-, three-, and one-step-ahead

nowcasts are generated at each nowcast run, respectively. Nonetheless, since PAPC

requires a similar nowcasting interval as control sampling time, i.e., 1 s, the aggregated

nowcasts need to be downscaled before PAPC use. To this end, this case study uses the

stepwise-averaging method to disaggregate nowcasts. Simply speaking, each aggregated

nowcast is downscaled by its mean value. It should be noticed that for each forecast

resolution, the nowcasting metrics are calculated based on the corresponding aggregated

dataset. The PAPC metrics, instead, are computed using the original DH4 data.8 The

results are depicted in Table 4.4.

It can be observed from Table 4.4 that both deterministic and probabilistic models

show increasing nowcasting accuracy, i.e., smaller nRMSE and nCRPS, as the forecast

resolution expands from 1 s to 5 s. In general, when a lower forecast resolution is

considered (a larger value of R), the temporal variability in solar time-series is greatly

relieved. Hence, it is much easier to produce accurate nowcasts for a highly-aggregated

dataset. However, it is also found that for R15s, the accuracy of all models, except for

SP and PeEn, decreases rapidly. The poor performance of the 15-s resolution nowcasts

may be due to the shrinkage of training data length. Recall the operating timeline in

Figure 4.2, the R15s case solely uses 3600/15 = 240 data points to make inference, thus

the model training could be divergent. On the other hand, SP and PeEn are found to

benefit more from the temporal smoothing in large forecast resolutions, with increasing

8For example, given an original dataset D = {1000 W, 900 W, 800 W} in a resolution of 1 s, if the 3-s
resolution nowcasts are of interest, the dataset needs to be aggregated into D∗ = {2700 W}. Provided a
nowcast P∗ = {2400 W}, it should be further downscaled into P = {800 W, 800 W, 800 W} for PAPC
use. While the nowcasting metrics are calculated using D∗ and P∗, the PAPC metrics are based on D
and P.
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nowcasting accuracy across all scenarios.

In terms of PAPC, it can be concluded from the performance of Perf that both

RSR and ECR increase for a lower forecast resolution. Similar to the previous finding,

deterministic models with negative nMBE and probabilistic models with larger PINAW

are found to produce higher RSR. Among these models, SP and PeEn show consistent

improvements in PAPC across all resolutions. With little surprise, SP even outperforms

Perf in the case of R15s, with a comparable RSR but a much smaller ECR. The

reason could be traced to the downscaling step. As the forecast resolution increases,

the downscaling error also increases. Since the downscaling method herein used is more

analogous to a persistence model on the mean values, the error variance caused by

downscaling can be smaller for the SP nowcasts.

4.4.3 Case Study 3: The Effect of Various Forecast Model Updating

Rates

This case study evaluates the last time parameter in operational solar nowcasting, that

is, the forecast model update rate. For each operation day, four model update rates are

considered, i.e., 5, 15, 30, and 60 min. Moreover, to isolate the downscaling errors, the

15-s ahead 1-s resolution nowcasts are generated. Similar to the previous case studies,

PAPC is implemented for the Sesma PV system with a RR limit of 25 kW/s. The

results of nowcasting and PAPC are displayed in Table 4.5.

Compared with the forecast horizon and forecast resolution, the effect of forecast

model update rate seems to be more straightforward—except for SP and PeEn, all

models show monotonically decreasing nowcasting performance asM increases (a slower

model updating rate). This is no surprise since the nowcast time series often carries

considerably large amount of variabilities, in that, refreshing the nowcasting models in

a higher frequency clearly produces more accurate nowcasts. On the other hand, as the

SP and PeEn models do not involve any training process, varying the forecast model

update rate reveals no effect on their performance.

As to PAPC, it is noted from Table 4.5 that the differences arising from various
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forecast model updating rates are small. For the M5min and M60min cases, the PAPC

metrics for both deterministic and probabilistic models typically show less than 1%

variations. From the system operators’ point of view, this is encouraging, since a slower

model updating rate means a smaller memory storage, thus the better applicability.

4.4.4 Case Study 4: The Impact of PV Capacities on Operational

Solar Nowcasting and PAPC

So far the studies have been dealing with various nowcasting settings. From a system

operator’s perspective, it is natural to wonder how the nowcasting and PAPC can behave

on different PV systems. With this viewpoint, this case study moves the focus from the

“extrinsic” nowcasting settings to an inherent property of PV systems, that is, system

capacity. Besides the aforementioned 0.99 MW system in Sesma, we herein consider

another two PV systems located in Milagro, Spain—a 0.143 MW system with an area

of 0.63 Ha, and a 9.5 MW system with an area of 52 Ha [69]. In this case study, the

nowcasts are generated under the nowcasting setting (H15s,R1s,M5min).

Figure 4.4 shows the deterministic nowcasting results for the three PV systems.

A direct column-wise comparison leads to the conclusion that the nowcasts become

more convergent to the measurements as system capacity increases. Such reduction

in the spread of scatter plots indicates a decreasing nRMSE in the nowcasts. In the

case of 0.143 MW system, the mean nRMSEs for SP, OLS, lasso, and kNN models are

found as 20.65%, 12.38%, 12.86%, 13.70%. While for the 9.5 MW system, the mean

nRMSE reduces to 7.27%, 5.81%, 6.76%, 7.37%, respectively. Nonetheless, the skills

of all models (except for SP) are observed to decrease in larger PV systems. As the

performance of solar nowcasting is dominated by the movements of cloud shadows, a

larger PV system often suffers less from cloud transitions thanks to the well-known

geographic smoothing effect [99]. In this regard, the system predicability improves, thus

even a naive model, e.g., persistence model, is able to produce quite reliable results.
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Figure 4.4: Scatter plots of deterministic nowcasts versus measurements for PV systems
with different capacities. Hexagon binning algorithm is used for visualization; the color
varies from red to lightblue while the number of scatter points per bin varies from high
to low. Each plot is drawn based on 48 validation days. The daily means and standard
deviations of FS are indicated on the plots.
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In terms of probabilistic nowcasting, Figure 4.5 depicts the distributions of nCRPSs

of the three PV systems. It is evident from Figure 4.5 that the probabilistic nowcasts of

a larger PV system typically have a smaller mean and standard deviation of nCRPS.

In addition, all probabilistic nowcasts show increasing sharpness as system capacity

increases, with higher PICP but slightly wider PINAW. Among these methods, QR

is found to have the best accuracy in nCRPS, whereas OLS again reveals the optimal

balance between PICP and PINAW. It is also observed that the performance of AnEn

improves rapidly when a larger system is considered. Compare the results of 9.5 MW

case to the 0.143 MW case, the PICP of AnEn increases over 10%. Given AnEn often

produces the sharpest nowcasts, it can be inferred that AnEn could be more preferable

for utility-scale PV systems.

Figure 4.6 presents the resulting PAPC performance. Notice that owing to the rare

cases of RR > 25kW/s for the 0.143 MW system (less than 10 violations during the

validation days), a RR limit of 10 kW/s is applied here instead. To allow an ‘apples

to apples’ comparison between deterministic and probabilistic nowcasts, the 10% PI

of probabilistic forecasts is used for PAPC. As Figure 4.6 shows, both RSR and ECR

performance deteriorate substantially for larger PV systems, for all models. While a

mean RSR ∼95% can be observed for all models in the 0.143 MW case, only PeEn reveals

a mean RSR higher than 80% for the 9.5 MW system, at a cost of mean ECR greater

than 20%. As system capacity increases, a larger PV system typically shows larger

power variations in magnitude during irradiance changes, thus it becomes more difficult

to follow the 10 kW/s RR limit. In addition, since it is much easier for larger systems

to violate the RR limit, PAPC can be triggered more frequently. As a consequence,

more power generation is curtailed. It is also observed that SP has generated more

reliable PAPC results for larger PV systems. In the 9.5 MW case, SP becomes the

best option among all methods, with the second highest RSR and low ECR. This again

indicates that SP is able to benefit more from the system geographic smoothing. As

a probabilistic version of SP, PeEn also reveals superiority in larger systems, where it

shows the highest RSR as usual, but increasingly comparable ECR.
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Figure 4.5: nCRPS distributions of the probabilistic nowcasts for PV systems with
different capacities. Each distribution plot is based on the whole 48 validation days.
The daily means and standard deviations of nCRPS, PICP, and PINAW are indicated
on the plots.
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4.5 Chapter Conclusion

This chapter presents a study on the operability of solar nowcasting, which demonstrates

an operational solar nowcasting practice for PAPC. Three time parameters related to

operational solar nowcasting are proposed, namely, forecast horizon, forecast resolution,

and forecast model update rate. The effect of the three time parameters on operational

solar nowcasting and PAPC are evaluated through four case studies. The main findings

are summarized as follows:

• In general, the accuracy of both deterministic and probabilistic nowcasting de-

creases for a longer forecast horizon, a higher forecast resolution, and a slower

forecast model updating rate. However, such tendency could disappear for the

forecast horizon and resolution, as the skill of the nowcasting—the measure of

goodness of the nowcasts against a reference model, is of interest. In that case,

the effect of forecast horizon is found subject to the local wind speed, where all

models show the highest skill as the forecast horizon matches the temporal lags

among the predictors. In addition, due to the shrinkage of training data length,

nowcasting produced at a lower resolution can show inferior skill to that at a
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higher resolution.

• In the ideal case, i.e., assuming the nowcasts are perfect, the performance of

PAPC improves as the forecast horizon increases, with a boost in RSR and nearly

unchanged ECR. Moreover, both RSR and ECR are found to increase for a

lower forecast resolution. On the other hand, the practical PAPC performance

is observed highly dominated by the nowcasting results, especially in terms of

nMAE (deterministic) and PINAW (probabilistic). More specifically, under the

similar nowcasting skills, the negatively-biased (negative nMAE) deterministic

nowcasts and the wider (a larger PINAW) probabilistic nowcasts are more likely

to generate better PAPC results. Among the three time parameters, the forecast

model updating rate is found to have the minimal impact on PAPC, with less

than 1% variations between the 5-min and 60-min model updating rates.

• Besides the time parameters, the capacity of a PV system also reveals notable

effects on the performance of operational nowcasting and PAPC. Generally, both

deterministic and probabilistic models show increasing nowcasting accuracy as the

system capacity increases, whereas the skills of all models are found to decrease.

Due to the geographic smoothing effect, the nowcast time series of a larger PV

system typically contains less variabilities, thus all models are able to produce

comparable nowcasting results. In contrast, the performance of PAPC is found to

deteriorate as system capacity increases. As the magnitude of the power variations

increases in larger PV systems, it becomes more difficult to follow the required

RR limit (in unit of power). However, it should be noticed that the situation will

reverse when a RR limit is defined in percentage of capacity, in which a smaller

PV system can suffer more from the RR violations.
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Chapter 5

Emulation of RRs for

Utility-Scale PV Systems During

Cloud Transitions

5.1 Chapter Introduction

In Chapter 4, it has been shown that the nowcasting and PRRC performance can vary

greatly with different PV systems. Underestimating PV system RRs may trigger failures

of PRRC, thus violating RR regulations. Overestimating RRs may result in unnecessary

deployment of ramping sources, leading to the expenditure of operational costs. In

this sense, having the knowledge of system1 RR characteristics becomes crucial for PV

system operators.

As discussed in Section 1.1, current studies still show some deficiencies to investigate

PV system RRs. The main limitations are:

• Exhaustive sensing of cloud shadow transitions both spatially and in time are

unavailable for most existing utility-scale PV systems. Thus the studies using

data from practical PV systems are typically limited to the analyses of endogenous

1Throughout this section, the term “system” refers to the PV system.
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factors.

• Due to heavy computational burdens, most studies that are based on the computer-

aided simulators are constrained to evaluate a single or several PV arrays. While

a utility-scale system can be simulated by downscaling the simulation resolution,

the simulation fidelity decreases. Moreover, difficulty also arises for integrating

the natures of cloud shadows into simulations.

• The analytical modeling of PV power fluctuations, though more efficient, often

contains certain simplifications of cloud shadings (e.g., assumes a statistically

invariant and isotropic cloud field), which makes it inferior for studying the RR

characteristics with respect to cloud shadow properties.

In this context, the goal of this work is to comprehensively investigate the RRs

of utility-scale PV systems during cloud shadow transitions, for both endogenous and

exogenous factors, and in resolution of module-level. For this purpose, this work first

sets forth a partial shading emulator, which can emulate the module-level responses

of utility-scale systems under passing clouds. In order to reproduce the cloud shadow

natures, a fractal-based cloud shadow model is introduced. The cloud shadow model

considers both the characteristics of irradiance transitions and the spatial diversities of

cloud coverages. Based on the developed emulation tools, the effects of two endogenous

factors, namely PV array arrangement and system orientation, and three exogenous

factors, namely shadow intensity, shadow velocity, and shadow size on RRs are explored

for a series of utility-scale PV systems ranging from 1 MW to 60 MW. The cloud

shadow transitions identified from real measurements are also exploited to assess the

characteristics of RRs in reality.

5.2 Methodology

This section elaborates the modeling process of utility-scale PV systems and cloud

shadows. Based on the mathematical model of a single PV module, a partial shading
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emulator is developed to emulate the behaviors of PV strings under partial shading,

and a PV matrix is constructed to model the aggregation of PV arrays. The cloud

shadow model is based on a modified fractal approach, which allows user-defined shadow

properties to be synthesized. The synthesized shadow pattern is stored in a matrix form

as well. A detailed description of the emulation process is presented as following.

5.2.1 Modeling of PV systems

Mathematical model of PV module

In this study, an experimentally verified mathematical model of PV module presented

in [100] is adopted. The model is based on the well-known one-diode PV cell model

that provides the following relationship between cell current and voltage:

I = Iph − Io(e
V +RsI
AVT − 1)− V +RsI

Rp
, (5.1)

where I is the cell current, Iph is the light-generated current that is affected by in-

stantaneous irradiance value, Io is the dark saturation current, V is the cell voltage,

Rs and Rp are the series and parallel resistances, A is ideality factor, and VT is the

thermal voltage. The thermal voltage can be further represented by VT = kT/q, where

k is the Boltzmann constant, T is the cell temperature, and q is the electron charge.

The model for a PV module is then obtained by scaling the parameters of Equation

(5.1) by the number of series-connected cells. The PV module model takes two inputs,

namely the irradiance value and module temperature, and outputs the corresponding

I-V characteristic curve.

In the case of module-level emulation, each cell in a module is assumed to receive the

uniform irradiance, and the voltage losses across internal bypass diodes are considered

using a single diode (multiplied by the number of bypass diodes). Notice that although

one PV cell should be the smallest unit that can be used for emulation, the differences

arising from using a module as the basic unit have been found moderately small especially

for partial shading analyses, since the scale of a cloud is typically much larger than a
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Table 5.1: Specification of the JAM72S09 395/PR PV module at STC.

Parameter Specification

Number of cells, Ns 72

Short-circuit current, Isc 10.27 A

Open-circuit voltage, Voc 49.64 V

Current at MPP, Impp 9.76 A

Voltage at MPP, Vmpp 40.48 V

Power at MPP, Pmpp 395.08 W

Temperature coefficient on PV current, Ki 0.06 %/◦C

Temperature coefficient on PV voltage, Kv -0.3 %/◦C

Number of bypass diodes, Nbypass 3

module [55]. In this regard, PV module-level emulation should be accurate enough for

the analysis presented in this work. The parameters of the PV module model are fitted

to the characteristics of the JAM72S09 395/PR PV module, which is specially designed

for utility-scale system integration. The specification of the PV module at standard

test conditions (STC) is displayed in Table 5.1.

PV array topology

The internal array topology is critical for the performance of utility-scale PV systems.

The series-parallel array topology with central inverters has been preferred by a majority

of existing systems for its simplicity of installation and low cost. However, the main

drawback comes as the use of single MPPT typically causes significant power mismatch

losses in the partially shaded PV modules [101]. To counteract partial shading effects,

a range of array topologies have been developed, such as multi-string, total-cross-tied,

bridge-link, or honey-comb [102]. Among these, the multi-string topology has been

suggested to be a big potential for future large-scale integration due to its flexibility

[103] and commercial availability [104]. To this end, this study will mainly focus on the

multi-string topology. Notice it has been reported in [105] that different array topologies

can only contribute to small power fluctuation differences during cloud transitions. In

this context, the results presented in this work can also be meaningful for evaluating
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other array topologies.
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Figure 5.1: Electrical connections of an array of multi-string PV configuration.

Figure 5.1 shows the layout of multi-string array topology. Multiple modules are

connected in series to form a PV string. The output of each string is modulated by an

independent DC/DC converter, which is controlled for MPPT. The common DC bus is

linked to the grid through a centralized DC/AC inverter. In this way, the partial shading

effects are minimized at string level since each PV string is individually extracted and

processed. Given a PV array composed of ns strings in columns, with each string

series-connected by nm modules in rows, a multi-string PV system with a× b arrays
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can be constructed in matrix form, given by:

Π =



Γ11 Γ12 . . . Γ1b

Γ21 Γ22 . . . Γ2b

...
...

. . .
...

Γa1 Γa2 . . . Γab


, (5.2)

and

Γpq =



(γpq
11 , χ

pq
11) (γpq

12 , χ
pq
12) . . . (γpq

1ns
, χpq

1ns
)

(γpq
21 , χ

pq
21) (γpq

22 , χ
pq
22) . . . (γpq

2ns
, χpq

2ns
)

...
...

. . .
...

(γpq
nm1, χ

pq
nm1) (γpq

nm2, χ
pq
nm2) . . . (γpq

nmns
, χpq

nmns
)


, (5.3)

where Π ∈ Ranm×bns and Γpq ∈ Rnm×ns , p = 1, · · · , a, q = 1, · · · , b, are the matrix

representations of the entire PV system and an individual PV array respectively. Each

element in the array matrix is a pair of variables, where γpqij and χpqij respectively denote

the irradiance and temperature of the module in the ith row and jth column of the array

Γpq. The I-V characteristic of each module is then obtained by assigning corresponding

γpqij and χpqij to the PV module model.

Emulating partial shading effects

The PV model presented in [100] only considers the characteristics of a single module.

When it comes to an aggregation of modules such as a PV string or array, however,

the aggregated system output can be limited by the shaded modules under passing

clouds. In this case, the module-integrated bypass diodes provide an alternative current

path, and both current and power curves of a PV string or array can exhibit multiple

peaks [106]. For the studied multi-string configuration, distributed MPP trackers are

integrated at string level, thus the characteristic of each string should be considered
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individually.

To account for the partial shading effects, most simulator-based studies are dedicated

to deriving the characteristics of bypass diodes using physical models or complex

intelligent schemes. Although accurate, the complicated modeling process and heavy

computations have limited these studies to small-scale PV systems (typically several

PV arrays) [107]. At this stage, a partial shading emulator is developed, which does not

require the explicit modeling of bypass diodes, and the behaviors of a partially shaded

PV string can be emulated based on the I-V curves of series-connected modules. The

principle of the emulator is based on two verified analytical statements presented in

[108]: For a PV string consisting of nm modules, with each module sharing a similar

open-circuit voltage Voc at STC, then

1) the PV string contains nm regions, and separated by amount equal to Voc, that is

((j − 1)Voc, jVoc), where j = 2, · · · , nm;

2) the bypass diodes of shaded modules are activated near Voc, 2Voc, · · · , (nm− 1)Voc

of the string.

Algorithm 1 demonstrates the implementation of the proposed emulator, where the

computer functions are written in verbatim. The emulator takes the I-V characteristics

of nm series-connected PV modules as inputs, denoted by:

I = (Î1 · · · Înm)> V = (V̂1 · · · V̂nm)>, I,V ∈ Rnm×m, (5.4)

where vectors Îj = (ij1 · · · ijm) and V̂j = (vj1 · · · vjm), j = 1, · · · , nm, represent the I-V

characteristic of the jth PV module in the string. m is a user-defined value that declares

the number of points needed in Equation (5.1) to find the I-V curve. In another word,

each pair of (vjk, ijk), k = 1, · · · ,m, denotes a single point on the I-V curve of the

jth module. We herein use m = 100 as suggested in [100]. Since a greater irradiance

value always contributes to a higher peak on the I-V curve, the emulator first sorts

I and V in descending order with respect to Îj [1], that is ij1, leading to the sorted
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Algorithm 1 Partial Shading Emulator

Input: I-V characteristics of nm PV modules: I = (Î1 · · · Înm)> and V = (V̂1 · · · V̂nm)>,
Module open-circuit voltage: Voc.

Output: String I-V characteristic with nm series-connected PV modules: Ĩ and Ṽ .

1: Ĩ ← (∅), Ṽ ← (∅), X̂ ← (∅) . Initialization
2: I∗ ← sort(I) . Sort I with respect to Ij [1]
3: V∗ ← sort(V, I∗) . Sort V with respect to I∗

4: for j = 1 : nm do . Loop to create voltage regions
5: V∗[j] ← V∗[j] + (j − 1) · Voc + Vbypass . Statement 1
6: if j ≥ 2 then
7: x ← argminx(Îj−1[x] ≤ Îj [1])
8: X̂[−1] ← x . Indexes of cross-points
9: end if

10: end for
11: for j = 2 : nm − 1 do . Loop to combine the curves
12: Ṽ ← V̂j [X̂[j − 1] : X̂[j]] . Statement 2

13: Ĩ ← Îj [X̂[j − 1] : X̂[j]]
14: end for
15: Ṽ [1 : X̂[1]] ← V̂1[1 : X̂[1]]. . The first voltage region
16: Ĩ[1 : X̂[1]] ← Î1[1 : X̂[1]]
17: Ṽ [X̂[−1] : −1] ← V̂nm [X̂[−1] : −1] . The last region
18: Ĩ[X̂[−1] : −1] ← Înm [X̂[−1] : −1]

vectors I∗ and V∗. Then refer to statement 1, all the elements in V∗ are increased by

(j − 1) · Voc + Vbypass to create nm voltage regions, where Vbypass is the voltage drops

across the bypass diodes in a module. In order to determine the activation points of

bypass diodes, the emulator seeks the cross-points between each Îj-V̂j and Îj−1-V̂j−1

curves, which gives the vector X̂ = (x1 · · ·xnm−1). Each element xj denotes the index

or position of the bypass diode activation between the jth and (j − 1)th module. Then

according to statement 2, the slices Îj [xj−1 : xj ] and V̂j [xj−1 : xj ], that is (ijxj−1 · · · ijxj )

and (vjxj−1 · · · vjxj ), are stripped and appended to vectors Ĩ and Ṽ respectively. Joined

by the first and last voltage regions, the vectors Ĩ and Ṽ finally contribute to the

emulated I-V characteristic for the entire PV string under partial shading.

An example of emulating a PV string with three modules under irradiance 1000

W/m2, 800 W/m2, 200 W/m2, and temperature 25◦C is illustrated in Figure 5.2. To
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Figure 5.2: Emulated PV string characteristics under partial shading using Mat-
lab/Simulink and developed emulator, (a) I-V curve. (b) P -V curve.

benchmark the emulations, a verified Matlab/Simulink model introduced in [109] is used.

It can be seen that the emulated curves are separated by Voc, 2Voc and 3Voc respectively,

forming 3 regions, which aligns with the previous two statements. Compared with

Matlab simulations, the results obtained from the emulator match well both in current

and power curves. The most notable difference can be observed at the voltage at about

90 V in region 2. The main reason for this variation is that the emulator simplifies the

effects of bypass diodes without fully considering its series and parallel resistance, and a

constant forward voltage drop of Vbypass = 2.1 V is assumed for each module (3 bypass

diodes with 0.7 V for each). In this case, the maximum available string power is found as

663.2 W and 659.5 W respectively using the developed emulator and Matlab/Simulink,

leading to 0.56% MPP error.

Table 5.2 further compares the two methods with different array sizes (nm × ns)

and number of shadings in terms of computational time and MPP error (benchmarked

by Simulink results). It can be seen from Table 5.2 that only small MPP error exists

between the developed emulator and Simulink model. Generally, the error increases as
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Table 5.2: Performance comparison between the developed emulator and Mat-
lab/Simulink with different PV array sizes ( nm × ns) under partial shading. The
simulations are carried on PV module level.

Array size Number of
Computational time [s]

MPP error [%]

shadings Emulator Simulink

5×1

1 0.008 1.07 0.08

2 0.008 1.26 0.52

5 0.019 1.31 0.58

10×1

1 0.008 2.68 0.05

5 0.022 2.86 0.45

10 0.035 3.10 0.62

10×2

1 0.008 6.57 0.04

10 0.034 6.84 0.37

20 0.065 6.95 0.44

10×6

1 0.008 10.39 0.02

30 0.093 26.26 0.05

60 0.163 34.11 0.09

10×10

1 0.008 162.17 0.01

50 0.127 271.59 0.02

100 0.241 443.25 0.04

more shaded modules are involved. However, it decreases rapidly as array size expands.

In the case of modeling a 10 × 10 PV array (∼ 40 kW), there are only 0.03% MPP

differences between emulating a single and full modules of shading, with the latter

producing 0.04% MPP error. Thus we can conclude that for modeling a utility-scale PV

system that contains multiple arrays, the error can further decrease. With regard to

the computational time, it only takes 0.0019 s and 0.241 s respectively for the emulator

to emulate the fully shaded 5×1 and 10×10 arrays, and the time barely changes when

the number of shadings remains the same. On the contrary, the Simulink model is

found to be more sensitive to both array size and number of shadings. For simulating

a fully shaded 10×10 array, it takes 443.25 s for one simulation. Although one can

perform advanced intelligent algorithms to further optimize the Simulink model, e.g.,

use curve fitting to derive the effects of bypass diodes, the simulation of one single
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shadow transition over a PV array with 168 modules can still reach up to 1038 s [105].

The situation becomes even worse when it comes to a utility-scale system. The above

results reveal that the developed emulator can achieve a good compromise between

accuracy and efficiency for the module-level emulations of large-scale PV systems.

It should be noticed that the developed emulator is not only applicable for PV

systems with multi-string topology. Once PV strings are emulated by the emulator, the

I-V characteristic of paralleled strings can be easily obtained by cumulating their Ĩ,

but selecting the minimum Ṽ since the voltage across the paralleled strings should be

equal and limited by the smallest one. In this way, a PV array with arbitrary module

and string connections can be emulated.

5.2.2 Cloud shadow modeling

Shadow pattern generation using fractals

In this section, we deal with the modeling of cloud shadow patterns. To reproduce

the irregular shapes of cloud shadows, a fractal approach introduced in [56] is adopted,

where fractals are created using the diamond-square algorithm. Given the fractal pixels

N × N , fractal dimension D, and a constant σ, the algorithm is recursive and takes

log2(N − 1) stages to complete. At each stage, the center points are calculated as the

mean of four corner points in the same square plus a random variable as a function

of D and σ. The edge points are obtained in a similar way but based on their three

neighbors. The output of the algorithm is a three-dimensional fractal surface. We refer

the readers to the original publication for more details.

In this work, the algorithm is further modified, in particular by initializing all pixels

along four fractal edges to be zero. In addition, a scaling factor λ = D/2 is introduced

to penalize σ to σ/λ at each stage. In this way, discontinuities at fractal boundaries

are resolved, and peaks can only appear near the fractal center, which more closely

resembles an actual cloud. The parameters D and σ herein used are adapted to generate

low-altitude cumulus clouds as suggested in [56], which gives two fractal dimension

values D1 = 1.9 and D2 = 1.35, and σ = 20. In this case, λ is calculated as (D1 +D2)/2.
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Figure 5.3: An example of generating fractals using the modified diamond-square
algorithm. (a) Generated 513×513 fractal surface. By introducing the scaling factor
λ = 1.6, the peaks tend to appear near the fractal center. (b) Cloud shadow pattern
obtained by inserting a cutting plane to the fractal surface at h = 16, leading to a
relative pattern size S equal to 50% of the total pixels. By initializing the fractal edge
points to be zero, the generated shadow pattern becomes marginal continuous without
fragments on the edges.

The cumulus clouds are considered since these clouds are the primary concern for PV

system operations [42].

An example of creating a fractal surface with N = 513 is shown in Figure 5.3(a).

It can be seen that all edge points are set to zero and the peaks of the fractal tend to

appear near the center as expected. The fractal surface is an intermediate that allows

a cloud shadow pattern to be generated by inserting a cutting plane of height h. The

points with heights greater than h are regarded as the shadow pattern while the other

points below h are discarded. The relative pattern size S is defined as the number of

non-zero pixels in the shadow pattern. Figure 5.3(b) shows a shadow pattern instance

generated with h = 16. We can see that the generated shadow pattern is marginally

continuous without fragments on the four edges, which is otherwise unachievable using

conventional fractal approaches. In this case, the relative shadow size S equals to

131,585 pixels, accounting for 50% of the total fractal pixels.

For practical applications, one can customize an arbitrary shadow size by assigning
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a pixel dimension to the relative pattern size. A pixel dimension of d means that each

pixel accounts for a geographic dimension of d2 m2. Since the emulation resolution

herein considered is a PV module, the pixel dimension is set equal to the shorter

dimension of the module. Given a user-defined shadow size of s m2, and the module

geographic dimension of d1 × d2, where d1 and d2 represent the module length and

width respectively, a proper h then can be found by:

h = argmin
µ

(|Sµ · min(d2
1, d

2
2)− s|< ε), hmin ≤ µ ≤ hmax, (5.5)

where Sµ denotes the relative pattern size obtained at height µ, min(a, b) is a selection

function that returns the smaller value between a and b, hmin and hmax are the minimum

and maximum heights of the fractal surface respectively, and ε is the error tolerance.

After several calibration tests, the value of ε is set as 2.

Synthesis of shadow thickness

The pattern shown in Figure 5.3(b) is still far from mimicking a real shadow since the

shadow thickness is not well-interpolated. To this end, the shadow intensity α is defined,

given by:

α = 1− Gt
Gclear

, (5.6)

where Gt is the irradiance under cloud coverage, and Gclear is the clear-sky irradiance.

The shadow intensity describes the attenuation of irradiance during cloud shadow

transitions, and a larger shadow intensity indicates a lower irradiance value.

To synthesize the shadow thickness with shadow intensity of α, the shadow pattern

is decomposed into K layers by linearly interpolating K − 2 new cutting surfaces

between hmax and hs, where hs is the h value determined by Equation (5.5), and
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K = hmax − hs + 1. The pixel values of the kth layer, that is ωk can be found by:
ωk = 1, k = 1

ωk =
1− α
K
· (K − k), 1 < k < K

ωk = 1− α, k = K

. (5.7)
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Figure 5.4: Synthesized shadow pattern with shadow intensity of 0.9. The darkest pixel
corresponds to an irradiance attenuation to 0.1 (10% of Gclear).

Figure 5.4 shows an example of synthesizing shadow thickness for the pattern in

Figure 5.3(b), with α = 0.9. It can be seen that the thickness of the synthesized shadow

pattern becomes clearer, which makes it resemble an actual shadow more. For this

pattern, the darkest pixel value is 0.1, corresponding to a full irradiance attenuation of

90%. Since the shadow pattern is an image with N×N pixels, it can also be represented

in a matrix form. The shadow matrix Ω is given by:

Ω =



ω11 ω12 . . . ω1N

ω21 ω22 . . . ω2N

...
...

. . .
...

ωN1 ωN2 . . . ωNN


, ∈ RN×N , (5.8)
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where the element ωij , i = 1, · · · , N , j = 1, · · · , N describes the shadow intensity of one

pixel, covering a geographic dimension of d m × d m.

5.3 Case Study: A Complete Emulation Process

In this section, we demonstrate a case study of applying the proposed modeling methods

to emulate PV generation during shadow transitions. The studied PV system is assumed

to consist of 7 × 20 arrays, and each array is composed of 5 strings, series-connected by

40 modules. It has also been assumed that both adjacent PV strings and arrays are

separated by 2 m, and there are no gaps between series-connected modules. According

to the data sheet of JAM72-S09 395/PR PV module, the module dimension is 1.98 m

in length and 1 m in width. With this configuration, the geographic dimension of an

individual PV array is 79.2 m × 13 m, and rated at 79.016 kW, which is close to a

typical PV array of utility-scale PV systems [103]. The entire system covers an area

of 566.4 m × 298 m, and rated at 11.06 MW. The system is initialized to be operated

under uniform irradiance of 1000 W/m2, and a constant module temperature of 25 ◦C

is considered.

Figure 5.5 illustrates the flowchart of the complete emulation process. Following the

numbers between brackets in blocks, the emulation is conducted as follows:

Step 1 : Determine the parameters of the PV system configuration, and construct a

PV matrix Π. As aforementioned, we can specify the module geographic dimension d1

= 1.98 m and d2 = 1 m, array configuration nm = 40, ns = 5, and array arrangement a

= 7, b = 20. Then the PV matrix is obtained in the form of matrices (5.2) and (5.3),

where the elements are initialized as (1000, 25). Notice that to account for the gaps,

additional rows and columns of zeros have been interpolated into the PV matrix (See

Appendix C).

Step 2 : Generate a fractal surface by specifying the parameters of the fractal model.

The suggested parameter values are D1 = 1.9, D2 = 1.3, σ = 20, and λ = 1.6.

Step 3 : Specify the shadow size and pixel dimension d (d = 1 m in this case), then
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Figure 5.5: Flowchart of the proposed emulation methods. The numbers between
brackets in blocks indicate the emulation sequence.

insert a cutting plane to the fractal surface according to Equation (5.5).

Step 4 : Specify the shadow intensity, and synthesize shadow thickness using Equation

(5.7). For demonstrative purpose, we herein adopt a similar shadow pattern shown in

Figure 5.4, leading to a shadow intensity of 0.9 and shadow size of 513 m × 513 m. The

shadow matrix Ω is then obtained.

Step 5 : Normalization. So far we have developed the PV matrix Π and shadow ma-

trix Ω. However, the elements of the two matrices show different geographic dimensions

as the element in PV matrix denotes a 1.98 m × 1 m area, while an element in shadow

matrix indicates a geographic dimension of 1 m × 1 m. In order to normalize the two

matrices, the PV matrix are split into (d1/d)× (d2/d) elements (in this case 1.98 × 1

elements). The normalized PV matrix Π∗ shows an element geographic dimension of 1

m × 1 m. Details about the matrix normalization can be found in Appendix C.

Step 6 : Interaction of the PV and shadow matrices. To emulate the dynamic

shadow transitions, one can consistently move the shadow matrix over the normalized

PV matrix. In this case study, we consider a horizontal cloud shadow movement, thus

the shadow matrix should affect the PV matrix column by column. The emulation

starts as the shadow matrix is about to enter the PV matrix, and ends as the shadow
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matrix completely leaves the PV matrix. During interactions, the intersection of the

two matrices indicates the shading on the PV system. Recalling Equation (5.6), the

module irradiance under cloud coverage then can be calculated as (1−ωij) · 1000, where

ωij ∈ Π∗
⋂

Ω. At each moving step, the PV matrix is updated and fed to the developed

emulator.

Step 7 : Time-series conversion. The output of step 6 is a time-independent power

sequence. In order to assign temporal attributes to the sequence, the shadow velocity

should be specified. In this context, a constant shadow velocity of 10 m/s is considered.

Since the shadow matrix travels at 1 column per step, the distance of which equals to

the module width (1 m), it should take the shadow 0.1 s for a single moving step. Then

the output power sequence can be converted to time-series.

Step 8: Calculate PV system RRs.

Figure 5.6(a) and Figure 5.6(b) display the emulated system output power and

resultant RRs calculated with ∆t = 1 s respectively. The emulation takes 811 steps

to complete, indicating a shadow transition of 81.1 s. To make the emulation more

intuitive, Figure 5.6(c) further visualizes the model interactions, where the PV field is

highlighted by dashed lines, and the shadow moves horizontally from right to left. It

can be observed from Figure 5.6(a) and Figure 5.6(b) that the PV output power and

resultant RRs are not exactly symmetrical as the shadow is entering and leaving the

system. Referring to Figure 5.4, the right part of this particular shadow pattern presents

to be thicker and sharper than the left part. As a consequence, the RR changes faster

as the right part of the shadow is affecting the PV field. This asymmetry is similar to

the variabilities observed at realistic utility-scale PV systems [110], thus yielding the

necessity of reproducing the shadow natures. During the shadow transition, the system

mean RR is found to be 0.60%/s, and the maximum instantaneous RR reaches 2.23%/s

at 67 s when the shadow center is leaving the PV field (see the middle plot of Figure

5.6(c)).
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Figure 5.6: Emulated (a) output power time-series and (b) resultant RRs calculated
with ∆t = 1 s for a 11.06 MW PV system under a horizontal shadow movement at 10
m/s. The emulation takes 811 steps to complete, indicating a shadow transition of 81.1
s. The maximum instantaneous RR reaches 2.23% at the instant 67 s, which is labeled
in red. (c) Visualization of model interactions at emulation step t = 0 s (top plot), 67 s
(middle plot), and 81.1 s (bottom plot). The PV field covers an area of 566.4 m × 298
m, highlighted by dashed lines.
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5.4 Results

In this section, PV system RRs due to both endogenous and exogenous factors during

cloud shadow transitions are investigated. In addition, a total of 3747 cloud shadow

transitions identified from real measurements are utilized for assessing the RR charac-

teristics in reality. Six PV systems ranging from 1 MW to 60 MW are emualted. The

modeled array configuration is identical to the previous case study, that is, consisting of

40 × 5 modules and covering an area of 79.2 m × 13 m. Throughout the emulations,

the system is initialized under uniform irradiance of 1000 W/m2. Moreover, a constant

module temperature of 25 ◦C is considered for simplicity. During fast shadow transitions,

the module temperature differences within a large-scale PV system are typically small,

which can only lead to slight impacts on system operations [111].

5.4.1 Effects of Endogenous Factors: Array Arrangement and System

Orientation

Two endogenous factors are investigated herein, namely array arrangement and system

orientation. For each studied PV system, four different array arrangements are evaluated,

with increased number of arrays in row while decreased in column. To account for

system orientations, the PV matrix is rotated accordingly. A system orientation of 90◦

denotes an array configuration same as Figure 5.1, where the PV strings are aligned in

columns, and the orientation angle decreases as the system rotates in clockwise. Nine

different cloud shadow patterns have been produced for generalization, with N = 513,

S = 50% total pixels, and α = 0.9 (see Appendix D). The shadows are assumed to move

horizontally at a fixed velocity of 10 m/s. Notice that the parameter values selected

here, i.e. shadow intensity, shadow velocity, and shadow size, are only for demonstrative

purpose, a detailed evaluation on the effects of these so-called exogenous factors will be

further addressed in Section 5.4.2. The emulation results are shown in Figure 5.7 and

Table 5.3.

It can be seen from Figure 5.7 and Table 5.3 that the systems with longer dimension
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Figure 5.7: Mean RR for the six studied PV systems with respect to different array
arrangements and system orientations. The performance of the most-squared systems
are plotted in red. The results are averaged onver 9 different cloud shadow patterns.

in width typically experience the largest and smallest RR at orientation around 90◦ and

0◦ respectively, while systems with longer dimension in length show an opposite result.

This indicates that the system RR becomes the largest as the shadow moves along the

system longer dimension, and becomes the smallest as the shadow moves along the

shorter dimension.

It is also observed that for systems whose dimensions are smaller or comparable to

shadow diameters (513 m × 513 m), such as PV1 and PV5 systems, the arrangements

that are closer to a shape of square reveal less sensitivity to system orientations (see the

cases of 2 by 7 and 3 by 21 arrangements). As the system becomes more elongated, the

effect of system orientation presents to be stronger. Regarding systems larger than PV5,

though, the system dimensions become much larger than shadow diameters, thus the

spatial dispersion within the PV plant can greatly reduce the ramp magnitudes. In these

cases, variations of RR due to system orientations become the slightest for the longest

arrangement (more arrays aligned in rows), and largest for the widest arrangement

(more arrays aligned in columns). Referring to the array configuration in Figure 5.1, it

implies that the in-plant spatial smoothing increases as the system elongates in the
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same direction of string alignment. This is foreseeable since a system with more strings

aligned in columns would suffer more from partial shading effects. However, it should

be noticed that although the most square-like alignments produce larger RRs than the

elongated alignments in these cases, there are only slight differences in terms of RR

variations, which means the square-like alignments are still advantageous to counteract

the orientation effects.

These findings suggest that for the areas with a regular cloud shadow moving

direction, one should place PV arrays in an elongated alignment, with system longer

dimension in the same direction of string alignment, and in perpendicular to the

shadow movements. While for the areas with unknown or frequently changing shadow

movements, a squared system alignment is preferred to minimize the effects of system

orientations.

5.4.2 Effects of Exogenous Factors: Shadow Intensity, Shadow Veloc-

ity, and Shadow Size

In this subsection, we evaluate the effects of exogenous factors that come from three

shadow properties, i.e. shadow intensity, shadow velocity, and shadow size on PV system

RRs. Each factor is studied by means of control variates, where the other two factors

are fixed at their featured values. The featured values of shadow intensity, velocity,

and size are selected as 0.9, 30 m/s, and 100% system size, which approximate the

maximum observations from real measurements (see Figure 5.10 in Section 5.4.3). The

maximum observations are considered since these worst RR scenarios are the main

concerns for system operations e.g., storage sizing [27], PV plant planning and control

[112]. Furthermore, based on the results from previous subsection, we herein only

consider the most square-like arrangements in Table 5.3, so that the system orientation

effects are minimized. Similarly, the results are generalized with the nine cloud shadow

patterns. It should be stipulated that although shadow moving direction is a notable

factor that affects system performance as well, the effects are identical to changing

system orientations. In this regard, the effects of shadow moving directions are not
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reiterated here, and a constant horizontal shadow movement will be considered in the

remainder of this paper.

The mean and maximum instantaneous RRs of the six studied PV systems due to

different shadow properties are shown in Figure 5.8. To visualize the effects more intu-

itively, the values of shadow intensity, shadow size, and shadow velocity are normalized

to their respective featured values. It can be seen that both mean and maximum RRs

increase linearly with the increasing shadow velocity. This is reasonable since the shadow

velocity presents to be linear to the cloud transition interval. However, this linearity

disappears for the case of shadow intensity. Instead, a logarithmical growth is observed.

This nonlinearity between the shadow intensity and RRs should be largely caused by the

geographic dispersion of a PV system, as a result of which the system power fluctuations

can be significantly smoother than the irradiance fluctuations. Similar observations

have also been reported in [69] for practical large-scale PV systems, where the system

geographic dispersion is found as a low-pass filter to irradiance fluctuations. Notice that

when a smaller system, e.g., a single PV array is considered, the effects of geographic

dispersion are greatly reduced. In this case, the shadow intensity can become linear to

both mean and maximum instantaneous RRs [113]. In terms of shadow size, it shows

the strongest effects on system maximum instantaneous RR. When the shadow size

increases to 20% of system size, the maximum instantaneous RR increases to 3.88%/s,

3.39%/s, 3.23%/s, 1.86%/s, 1.48%/s, and 1.08%/s respectively for the PV1, PV5, PV10,

PV20, PV40, and PV60 systems, corresponding to 36.78 kW/s, 168.72 kW/s, 318.98

kW/s, 367.35 kW/s, 598.63 kW/s, and 648.43 kW/s. However, it is beaten by shadow

intensity when comes to mean RR. This is mainly due to a longer cloud transition

interval required in case of an expanded shadow size, where the mean ramp-rate, to

some extent, are alleviated in temporal scale. As the shadow intensity increases to 0.2,

it leads to mean RR of 2.16%/s, 1.26%.s, 1.05%/s, 0.82%/s, 0.42%/s, and 0.29%/s

for the systems respectively, corresponding to 20.48 kW/s, 62.71 kW/s, 103.69 kW/s,

161.95 kW/s, 169.88 kW/s, and 174.11 kW/s.
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Figure 5.8: Mean and maximum instantaneous RRs of the 6 studied PV systems under
different shadow characteristics. The values of shadow intensity, shadow size, and
shadow velocity are normalized to their respective featured values: 0.9, 100% system
size, and 30 m/s.
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Figure 5.9: Mean and maximum instantaneous RRs under different shadow properties
in terms of different system sizes. Exponential decay is observed for all the shadow
properties as the size of system expands.

Figure 5.9 further illustrates the effects of exogenous factors on different system sizes.

It can be seen that for all the studied shadow properties, both mean and maximum

instantaneous RRs decrease exponentially as system size increases. This exponential

decay is also in line with the observations of practical large-scale PV systems presented

in [99].

5.4.3 PV System RRs under Identified Shadow Transitions

In the previous subsection, PV system RRs along with several exogenous factors are

evaluated with empirically selected values. In this subsection, a total of 3747 shadow

transitions identified from real measurements are applied to assess and quantify the PV

system RRs in reality. Similarly, only the most square-like systems in Table 5.3 are

considered in order to exclude the system orientation effects. The emulation period

ranges from 6 s to 396 s according to different PV system capacities and shadow
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transitions.

The cloud shadow transitions are exploited using solar irradiance data collected over

6 months from XJTLU sensor network (see Chapter 3). For each sensor, GHI data with

a sampling time of 1 s is available. In order to exclude potential measurement errors,

the 10% shadow intensity limit is applied. The shadow velocity is calculated using the

most correlated pair algorithm previously introduced in Section 2.2.1, which is based

on the time lags between a central sensor and its neighbors. Notice that to precisely

measure the shadow size, a dense sensor network dispersed over a wide area is required.

Unfortunately, such measurements are currently unavailable. In this regard, we measure

the shadow length instead, which is a production of shadow velocity and sensor shading

period. To obtain the shadow pattern, Equation (5.5) is modified so as to determine a

proper h with a specified shadow length L, and the fractal surface are generated with

N = L. Other parameters of the cloud shadow model are set equal to the previous

example, where D1 = 1.9, D2 = 1.35, σ = 20, and λ = 1.6. (More information about

the sensor network and identification of shadow transitions can be found in Appendix

E).

The scatter plots of the three measured shadow properties are displayed in Figure 5.10.

It can be seen that both medians and 90th percentiles remain approximately constant,

indicating that there are no clear correlations between each two of the properties. In

the identified shadow transitions, the medians of the shadow intensity, shadow velocity,

and shadow length are 0.40, 9.09 m/s, and 161.32 m. The 90th percentiles are 0.65,

13.34 m/s, and 418.80 m respectively.

As previously mentioned, various RR regulations have been imposed by different

utilities, where the RR limit differs in terms of time step ∆t and measuring unit (unit

of power or unit of percentage). In this work, we follow the state-of-art RR regulation

stipulated in Danish grid code, where the maximum RR is suggested to be 100 kW/s

for systems above 11 kW [15]. The Danish RR limit is studied since it is enacted

specially for large-scale PV systems, and (probably) is the most rigorous regulation

among existing standards (RR limit at second level). Notice that for other choices of
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Figure 5.10: Scatter plots between the measured shadow intensity, shadow velocity
and shadow length. The medians and 90th percentiles are plotted in red and blue
lines respectively, showing that there are no clear correlations between each two of the
properties.

RR limit (e.g., 10%/min required as Germany [14] and Puerto Rico [16]), one can follow

the same process described in Figure 5.5, but calculate RRs with different time steps.

The comparison of different RR limits can become another huge topic, which may be

possible in a future study.

Figure 5.11 shows the cumulative distributions of RRs during the identified shadow

transitions for the six studied systems, where the portions that lie on the right side

of RR limit (red solid line) indicate the percentages of RR violations. The system

performance in terms of mean and maximum instantaneous RRs, and RR violations are

129



PhD Thesis Xiaoyang Chen

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 3.53.0

PV20 (19.75 MW)

2.5

0.0

0.2

0.4

0.6

0.8

1.0

PV1 (0.948 MW)

0.0 2.5 5.0 7.5 10.0 12.5 15.0

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

System RRs [%/s]

0.0 2.0 4.0 6.0 8.0

PV5 (4.977 MW)

0.0 1.0 2.0 4.0 5.0 6.03.0 7.0

PV10 (9.875 MW)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.60.0 0.5 1.0 1.5 2.0

PV40 (40.448 MW) PV60 (60.04 MW)

RR limit 100 kW/s99th percentileMedian

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.11: Cumulative distributions of RRs for the six studied systems. The medians
and 99th percentiles are plotted in blue solid and dashed lines respectively. The portions
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Table 5.4: System mean and maximum instantaneous RRs during all the identified
shadow transitions. The RR violations are calculated as the percentage of RRs greater
than 100 kW/s to the total RRs.

System Mean RR [kW/s] Max. RR [kW/s] RR violations [%]

PV1 15.93 156.58 0.02

PV5 59.15 468.61 17.11

PV10 92.95 695.33 44.03

PV20 95.35 714.82 44.19

PV40 97.10 916.56 48.18

PV60 109.47 960.49 51.57

further summarized in Table 5.4. It can be observed that the RR limit is seldom

violated for the PV1 system, with over 99% of the shadow transitions complying with

the regulation. Referring to Figure 5.8, it almost requires a shadow with all featured

property values to cause a RR of 100 kW/s (10.55%/s) on PV1 system, which is the

rare cases among the measurements (48 of 3747 shadows). As the system capacity

increases, the RR limit approaches closer to the medians (blue solid line), implicating

that the system has experienced more RR violations. During the identified shadow

transitions, the maximum RRs of the 6 systems are found as 156.58 kW/s, 468.61 kW/s,

695.33 kW/s , 714.82 kW/s, 916.56 kW/s, and 960.49 kW/s respectively, which have

all exceeded the RR limit. For the PV60 system, RR violations should account for

51.57% of total RRs, that is, over half of time the system would be of concerns for grid

operators.

To validate the emulations, Table 5.5 further compares the characteristics of the

emulated PV1 and PV10 systems with two practical PV plants of similar capacities

presented in [50], namely Sesma (0.99 MW) and Milagro (9.5 MW) plants. The

characteristics of Sesma and Milagro plants are obtained based on one year practical

power measurements with 1 second resolution. As displayed in Table 5.5, the 90th

percentiles of RR distributions for the Sesma and Milagro plants are reported as 6%/s

and 3%/s respectively, indicating that 90% of the observed RRs should be less than
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Table 5.5: Validation of the emulated RR characteristics of PV1 and PV10 systems
using one year observations of two practical PV plants, Sesma and Milagro plants. The
maximum RRs of the two practical plants are estimated from the distribution plots.

System Capacity [MW] 90th percentile [%/s] Max. RR [%/s]

PV1 0.948 5.18 16.52

Sesma 0.99 6.00 ≈ 13.00

PV10 9.875 2.12 7.04

Milagro 9.5 3.00 ≈ 6.00

6%/s and 3%/s respectively for the 0.99 MW and 9.5 MW systems. For the emulated

RR distributions, the 90th percentiles of the PV1 (0.948 MW) and PV10 (9.875 MW)

systems are found as 5.18%/s and 2.12%/s respectively, which generally match the

Sesma and Milagro plants. To bring more insights on the RR distribution, e.g., the

outlier, we also compare the maximum RR between the emulations and measurements

(notice that the value of maximum RR is not directly provided in [50], thus we estimate

it from the distribution plots). It can be seen from Table 5 that the differences in

maximum RRs between the emulated PV1, PV10 systems and Sesma, Milagro plants

are practically small. Considering the errors brought by different system configurations

(approximate 1 % according to Figure 5.7), the emulated systems can be promising to

describe the practical PV systems.

5.5 Chapter Conclusion

This chapter presents a comprehensive study on the RRs of utility-scale PV systems

under passing clouds. Compared with previous studies, this work is carried out based on

the emulations of utility-scale PV systems at a higher resolution i.e., module-level. The

irradiance characteristics and spatial diversities of real cloud coverages are also considered

in more detail. To emulate the module-level behaviors of a partially shaded PV system,

a partial shading emulator is proposed. Compared with conventional computer-aided

simulators, the proposed emulator significantly improves the computational efficiency
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while retaining promising accuracy. In order to reproduce the cloud shadow natures, a

modified fractal approach is developed, which allows user-defined shadow properties

to be synthesized. Based on the developed emulation tools, the PV system RRs due

to both endogenous factors (i.e., PV array arrangement and system orientation) and

exogenous factors (i.e., shadow intensity, shadow velocity) have been investigated.

The characteristics of the RRs are evaluated for a series of utility-scale PV systems

ranging from 1 MW to 60 MW. The main findings can be summarized as:

• The most square-like array arrangement reveals the least sensitivity to system

orientations. As the system expands, however, the in-plant spatial smoothing

can also significantly dampen the orientation effects, and the smoothing becomes

stronger as the system elongates in the direction of string alignment.

• Regarding the exogenous factors, the mean and maximum instantaneous RRs

appear to be linear to the shadow velocity, while a logarithmical growth is observed

for both shadow intensity and shadow size. Moreover, the shadow intensity and

shadow size are found to dominate system performance in terms of mean and

maximum instantaneous RRs respectively. As system capacity increases, the effects

of all the studied exogenous factors decrease in an exponential decay manner.

In order to characterize the RRs in reality, a total of 3747 cloud shadow transitions

identified from real measurements are also explored. For the Danish 100 kW/s RR limit,

it is found that a utility-scale PV system can frequently violate the regulation even

if the multi-string array configuration is considered, which inherently counteracts the

partial shading effects. On the whole, a system with larger capacity presents to suffer

more from ramp violations. Specially in the case of a 60 MW system, more than 50% of

the identified cloud shadow transitions have triggered ramp violations.
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Chapter 6

Conclusions and Outlook

6.1 Summary of Contents

The short-term PV power intermittency caused by passing clouds is becoming a major

concern for grid operators. As the penetration of PV systems boosts, the rapid power

fluctuations pose more challenges to maintain grid transient stability. In this context,

the main focus of this thesis is on facilitating the mitigation of solar PV intermittency.

Specifically, this thesis revolves around control, forecasting, and emulation of cloud-

induced PV power RRs. A brief summary of this thesis is presented as follows.

In Chapter 1, the demands and challenges for mitigating solar PV intermittency

is discussed. To address the adverse impacts from the PV systems, PRRC has been

widely imposed by grid operators. As current PRRC strategies still show limitations

to efficiently comply with RR regulations, solar forecasting, especially intra-minute

forecasting or nowcasting, provides a remedy to enhance the controllability of PV

systems. On the other hand, emulation of PV system RRs during cloud transitions can

offer a better understanding on the RR characteristics for system operators. With the

prior knowledge of system RRs, PV intermittency may be managed more effectively.

In Chapter 2, two novel PRRC strategies are presented, which utilize the sensor

network-based solar nowcasting. The first strategy, termed as PAPC, does not require

any external storage systems. During ramp-down events, the integration of a nowcasting
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system allows to suppress the PV generation before the actual cloud shading occurs. The

second strategy, FEC, reduces the required ESS capacity to quarter of the conventional

method. Moreover, it shows an advantage by neglecting the dedicated SOC control

operations. Economic analysis is also demonstrated to validate the feasibility of the

proposed strategies.

As the two predictive PRRC strategies highly rely on the accurate predictions of

upcoming RRs, Chapter 3 develops an improved sensor network-based solar nowcasting

method, which can optimally preselect the spatio-temporal predictors for nowcasting

models. The proposed SRP preselection method enables a fast and precise predictor

preselection in different scenarios, and provides consistent PV nowcasts with cloud

information interpolated. The experimental results reveal that the proposed method has

strong robustness in various weather weather condition, with fewer training data needed.

Moreover, compared with conventional methods, the proposed method significantly

improves the nowcasting accuracy, with predicted ramps approaching closer to actual

ramp peaks. The effectiveness of the developed SRP-Enet model for PAPC is also

evaluated. The results show that the proposed method can be promising to improve the

performance of PRRC.

Chapter 4 brings forth the operability of solar nowcasting on PRRC implemen-

tations. To that end, three time parameters involved in operational solar nowcasting

are identified, i.e., forecast horizon, forecast resolution, and forecast model updating

rate. Based on an actual irradiance sensor network, both deterministic and probabilistic

nowcasting are generated, and integrated into PAPC operations. The empirical studies

reveal that the performance of both operational solar nowcasting and PAPC are highly

characterized by the choice of time parameters. In addition, the PV system capacity

also shows notable impacts on the results.

In Chapter 5, the emulation of cloud-induced system RRs is addressed. With the

objective of producing high-resolution and high-accuracy emulations of utility-scale

PV systems under passing clouds, a partial shading emulator is proposed, which can

efficiently mimic the behaviors of a partially shaded PV system, in accuracy of PV
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module level. Then a fully customizable shadow model that can reproduce the natures of

a real cloud shadow is introduced. Based on the developed emulation tools, system RRs

rising from two endogenous factors i.e., PV array arrangement and system orientation,

and three exogenous factors i.e., shadow intensity, shadow velocity, and shadow size are

studied. Furthermore, in order to assess the RRs in reality, a total of 3747 cloud shadow

transitions exploited from real measurements have been applied for emulations. The

results reveal that the RRs caused by passing clouds are critical problems for system

operations, and a larger system can suffer more from ramp violations, indicating that

PRRC strategies should be essential for contemporary utility-scale PV systems.

6.2 Outlook

At this stage, it is clear that the mitigation of solar PV intermittency relies on the

joint efforts by solar forecasters and system operators. On one hand, solar forecasters

quantify the solar resource dynamics, and provide decent solar forecasts for system

operators. On the other hand, system operators make the best use of the forecasts to

enhance system stability. Clearly, to advance the integration of PV systems further,

it is necessary to unify the knowledge from the two fields. Hence, in what follows, an

outlook into future studies is presented. From both a solar forecaster’s and a system

operator’s point of view, various research topics in demand are discussed.

6.2.1 From A Solar Forecaster’s Perspective

From solar irradiance to PV power forecasting

To bridge solar forecasting and power system operations, a natural requirement is to

forecast the solar-generated power. However, as most modern solar forecasting works

dig heavily on exploring new input features for solar irradiance forecasting, PV power

forecasting is less addressed [114].

Generally, the approaches for converting irradiance to PV power can be classified

into parametric and and nonparametric ones [30]. Nonparametric approaches conceive
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the PV system as a black box, which aim to derive a one-stop model for direct irradiance-

power mapping. The irradiance-to-power conversion model used in this thesis comes

to this category. On the other hand, parametric approaches usually consist of three

modeling process—separating diffuse horizontal irradiance from the GHI forecasts using

a separation model [115]; converting the horizontal irradiance components to the POA

(plane of array irradiance) irradiance with a transposition model [116]; and a PV system

model to convert the POA irradiance to output power [117].

Since the conversion involves several procedures, it is therefore of interest to study

how the errors can propagate from solar irradiance forecasts to PV power forecasts.

Besides, as shown in Chapter 5, PV power generation can be highly characterized by

both endogenous and exogenous factors. On this point, the effects of different system

and meteorological attributions on PV power forecasting need to be further clarified.

Probabilistic solar forecasting

A weather forecast is intrinsically five-dimensional, spanning space, time, and probability

[118]. In that, solar forecasts ought to be essentially probabilistic. According to Chapter

4, it is evident that probabilistic solar nowcasting can favor PAPC by offering more

implementational flexibilities—one can apply different PIs or quantiles of a probabilistic

nowcast to the control, under a trade-off between RSR and ECR. Besides the PAPC

application, probabilistic solar forecasting also reveals monetary and reliability benefits

over deterministic equivalents, in terms of market bidding [119], battery management

[120], power system auxiliary services [121], and economic scheduling [122], etc.

Given the above evidence, clearly, it is more advantageous for system operators to

integrate probabilistic solar forecasting into their decision-making process. In fact, the

probabilistic forecasts can be flexibly post-processed into deterministic forecasts, if only

a single best guess is of interest. In that case, one may either summarize the predictive

distribution through a statistical functional, or combine the component forecasts [123].

As the value of probabilistic forecasting being exploited, it is believed that probabilistic

solar forecasting will become a trending topic.
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Forecast reconciliation

In case study 2 of Chapter 4, it is observed that the low-resolution nowcasts typically

improve the performance of PAPC. In this regard, it reveals a necessity to produce more

accurate nowcasts at a larger R.

Given the high-resolution measurements, if the forecasts at a lower resolution are

expected, one can simply aggregate the data before forecasting. However, as aggregating

the dataset can significantly reduce the length of training data, the forecasting models

could be underfitting. Alternatively, one can aggregate several high-resolution forecasts

into a low-resolution forecast, which is known as forecast aggregation. However, due to

the modeling errors, the forecasts are in general not aggregated consistent (e.g., the

sum of three 1-s resolution forecasts is not equal to the single forecast made using 3-s

resolution data). This problem is not properly addressed until a recent work in [124],

where a regression-based temporal reconciliation framework is proposed to unify all

forecasts produced at different resolutions.

In [125], such temporal reconciliation is firstly applied to solar forecasting. In

general, it is found that reconciliation methods not only provide consistent forecasts,

but also improve the forecasting accuracy at different hierarchy levels. As the forecast

reconciliation is still at an early stage in solar forecasting community, this aspect ought

to be studied in depth to provide system operators with new insights.

6.2.2 From A System Operator’s Perspective

Coordination with PV power reserve control

In Chapter 4, it is found that PAPC performance presents a high correlation with metrics

nMAE (deterministic) and PINAW (probabilistic). In general, deterministic nowcasts

with a smaller negative nMAE, and probabilistic nowcasts with a larger PINAW are more

likely to produce better PAPC results, especially in terms of RSR. This finding implies

that operating PV power below its maximum available power could bring additional

benefits to PAPC. From a system operator’s point of view, such operation is referred as

139



PhD Thesis Xiaoyang Chen

power reserve control (PRC) [126].

Given the maximum available power Pavai, and the required amount of reserved

power ∆P , PRC is described as Ppv = Pavai − ∆P , where Ppv is the regulated PV

power. While ∆P is a user-defined value, Pavai often needs to be estimated [127]. In this

regard, PRC can be directly linked to PAPC, as the ith nowcast made at timestamp t

in PAPC can be also used as Pavai for t + i. In fact, in most cases, PRC and PRRC

are simultaneously required by system operators [15]. Based on this viewpoint, it is

necessary to seek a way to coordinate both control operations.

Towards a unified PRRC standard

As the penetration of PV systems keeps growing, PRRC is becoming a universal

requirement to facilitate grid operations. As of now, a range of PRRC regulations have

been imposed by different grid operators (see Table 1.1). Besides the different timescales

at which these standards are enacted, one major concern is the unit of RR limit. For

example, given the Danish 100 kW/s RR limit, it can be seen in Chapter 5 that a 60

MW system can frequently exceed the limitation. On the other hand, a 1 MW system

is found seldom violating the regulation. In this regard, one may conclude that a larger

PV system could suffer more from RR violations. However, the situation reverses when

a RR limit is set up in percentage of capacity. In that case, it leads to a conclusion that

a smaller system is more likely to violate the regulation. For PV system operators, such

conflicted conclusion apparently can mislead the PRRC options.

Another confusion comes from the calculation of RR. Provided with the Puerto Rico

10%/min RR limit, there are actually several ramp calculation methods available—one

may use the difference between two endpoints of any 60-s interval, or use the minimum

and maximum values between two endpoints, or use the whole differencing sum of the

60-s time series. Besides, the “10%/min” can also be expressed in different schemes, e.g.,

5%/30 s, 1%/6 s, 0.16%/1 s, etc. For each scheme, different ramp calculation methods

also apply. Therefore, when enacting a PRRC regulation, it is suggested that the RR

limit should be more carefully defined with specific averaging time.
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Lastly, when it comes to a regulation, the penalty of violating the rule naturally

needs to be declared. Due to the extra cost for system operators to comply with RR

regulations, e.g., forecasting system deployment, power curtailment, and ESS installation,

it is worthwhile considering penalties on RR violations, so that the monetary value

of PRRC can be quantified, and the ESS can be more properly sized. Unfortunately,

until the writing of this thesis, such penalty is not yet being imposed in a standard

regulation.

In light of the above, there is an urgent need to promote a unified PRRC standard.

However, unifying does not mean that all regulations should necessarily share a similar

RR limit. Instead, they ought to be formulated under a unified framework, including

unit, the way of calculating RR, and revolving around penalty.

141



PhD Thesis Xiaoyang Chen

142



Appendix A

Sensor Deployment

The sensor developed herein is based on a 5 cm × 5 cm mini solar cell. Sensing directly

using a solar cell shows advantages of presenting more similar characteristics to the

target PV systems, e.g. the sensitivity to ambient temperature, humidity, etc. Hence,

the sensor becomes more reliable on detecting CSMV impacts, with less measurement

variances caused by “non-cloud” factors.

The basic theory behind is that the short-circuit current of a solar cell can be quasi-

linear to the GHI it receives [128]. In this sense, once we can measure the instantaneous

short-circuit current of the solar cell, and establish an appropriate conversion model,

the corresponding GHI can be derived. Given a tuning parameter β and intercept α, a

linear conversion model can be written as:

G = β · GSTC
ISCS

· ISC + α, (A.1)

where G and ISC denote the measured GHI and short-circuit current respectively,

and GSTC and ISCS correspond to the GHI and short-circuit current at standard test

conditions (GSTC = 1000 W/m2 with cell temperature of 25◦C or 298 K).

In order to obtain the short-circuit current of the solar cell, a small precise resistor

(0.1 Ω) is connected in shunt. In this way, the current through the resistor can be

estimated as the short-circuit current. For each sensor, the short-circuit current is
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(a) (b) (c)

Figure A.1: Solar sensor prototype, (a) water-proof shell, (b) inside configuration, (c)
PV panel for self-charging.

Figure A.2: Left. Example of solar sensor calibration with a pyranometer (β = 1.31,
α = 78.26). Right. Comparison of calibrated sensor measurements and pyranometer
readings during cloud transitions (temporal resolution of 1 s).

recorded at 1-s resolution using a STM32 micro-controller, powered by a Li-Po battery.

After converting the short-circuit current to GHI using Equation (A.1), the GHI data are

packed and transmitted to the local server via a LoRa wireless communication module.

To assure a consistent and autonomous outdoor operation, the sensor is equipped with

a water-proof shell and a PV panel for self-charging, see Figure A.1. The cable-less

configuration also provides more flexibilities to the network design.

Regarding the calibration, a commercial pyranometer is placed closely to each

sensor, and data from a total of 12 hours are applied. Figure A.2 shows a calibration

example for a single sensor. In this case, the regression parameters β and α are found

as 1.31 and 78.26, respectively. The calibrated sensor measurements are compared
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with the pyranometer readings over several cloud transition periods, and the mean

absolute error is found to be 1.25%. It should be noticed that for a more accurate

measurement, the individual cell temperature information is demanded. However, the

additional temperature data will occupy more communication channels, which can halve

the number of sensors in the network.
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Probabilistic Nowcasts for PAPC

Figure B.1 shows an example of applying probabilistic solar nowcasts to PAPC operation.

Three different PIs, i.e., 10%, 50%, and 90% PIs are extracted from the predictive

distributions generated by OLS.

Figure B.1: The results of (a) OLS probabilistic nowcasts, and (b) PAPC on an example
operating day, following the operating timeline in Figure 4.2.
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To implement PAPC, the lower bounds of the PIs are fed into the control process

described in Equations (4.1)-(4.6). Referring to Figure B.1(b), PAPC with wider PIs

will sacrifice more energy for smoothing. In this example day, the RSRs using 10%,

50%, and 90% PIs are 95.83%, 97.22%, and 98.09, while the ECRs are found as 6.26%,

16.28, and 35.20, respectively.
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Reconstruction of PV Matrix

Consider a PV array consisting of 2 strings, with each string series-connected by 2

modules (nm = 2, ns = 2), a PV system composed of 2× 2 (a = 2, b = 2) arrays then

can be modeled as:

Π =
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where Π ∈ R4×4, and the PV arrays are framed in grey. Each element in matrix (C.1)

is composed of a pair of variables, indicating the received irradiance and temperature of

a module respectively, and covering a geographic dimension of 1.98 m × 1 m. Notice

that the module temperature will be omitted in the following matrices for simplicity.

To transform the PV matrix into the same geographic dimension as the shadow

matrix, that is 1 m × 1 m, each element in matrix (C.1) is split into (1.98/1) × (1/1)

elements. Since the number of elements should be an integer, the 1.98 elements are

rounded up to 2, which gives the normalized PV matrix:
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Πn =
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where Πn ∈ R8×4, and a PV module is denoted by two elements grouped in braces,

with each element showing a geographic dimension of 1 m × 1 m (this gives a module

dimension of 2 m × 1 m). When interacted with the shadow matrix, we take the mean

value of the two braced elements as the irradiance value received by a PV module.

To account for the gaps between adjacent PV strings and arrays, additional rows

and columns of zeros can be interpolated. Given a geographic dimension of 1 m × 1 m,

a gap of 2 m in rows and columns can be modeled by inserting two rows and columns

of zeros respectively. A complete PV matrix with string and array gaps interpolated is

represented by:
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where Π∗ ∈ R10×10.
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Nine Shadow Patterns

Figure D.1 shows the nine cloud shadow patterns used in Section 4.1 and Section 4.2

for generalization. The shadow patterns are produced with N = 513, S = 50% total

pixels, and α = 0.9.
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Figure D.1: Nine cloud shadow patterns used for generalization.
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Appendix E

Identification of Shadow

Characteristics

This appendix introduces the identification of shadow characteristics using XJTLU

sensor network. The network is composed of 6 sensors, and measures GHI data with

sampling time of 1 s. Notice that although it can be feasible to measure the shadow

intensity and shadow velocity based on a sensor network, the shadow size still remains

problematic since the measurements can be limited by network dimensions. In this

regard, we measure the shadow length instead. As an alternative, advanced imaging

systems (e.g., sky imagers and shadow cameras) can also be promising for cloud shadow

detection. However, difficulties can rise during the conversion from cloud conditions to

ground level irradiance due to the inaccurate measurement of cloud base height. For

practical applications, one may use a combination of multiple measuring systems to

obtain more precise shadow properties. The method presented herein is only meant to

provide a possible solution when sensor network measurements are available.

E.1 Shadow velocity

To identify the shadow velocity, the MCP algorithm previously introduced in Section

2.2.1 is performed on the sensor network. In this case, sensor S3 is selected as the
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central sensor, and the 6 sensors can form 5 sensor pairs.

E.2 Shadow intensity

Figure E.1 shows an example of an identified shadow transition, which is based on the

measurements of central sensor S3. As suggested in [64], a shadow transition is identified

when an irradiance drop is followed by steady shading and then by an irradiance rise.

During the shadow transition, irradiance drops from 802.2 W to 200.8 W (the minimum

value), thus the shadow intensity is found as 0.75.
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Figure E.1: Example of an identified shadow transition, with shadow intensity 0.75 and
shading period 21.5 s.

E.3 Shadow length

The shadow length is calculated as the product of shadow velocity and shading period.

For the shadow transition shown in Figure E.1, the shading period is 21.5 s. Consider a

shadow velocity of 10 m/s, it then leads to a shadow length of 215 m.

In order to generate a shadow pattern, however, Equation (5.5) requires a shadow

size as input. Since we only measure the shadow length, the equation should be modified,

which is given by:

h = argmin
µ

(|Lµ · d− L|< ε), hmin ≤ µ ≤ hmax, (E.1)
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where Lµ ≤ N denotes the number of non-zero pixels in a single row of shadow matrix

obtained at height µ, d is the pixel dimension, L is a user-defined shadow length, and ε

is the error tolerance (we use ε = 2 after several calibration tests). The equation states

that given a cutting plane of height µ and the resultant shadow matrix Ωµ, if there

exists a row in the matrix Ωµ whose non-zero pixels satisfy the relationship in Equation

E.1, then the height µ will be used for shadow generation.
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