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Abstract

The collection of 3D cell tracking data from live images of micro-tissues is a recent innovation made
possible due to advances in imaging techniques. As such there is increased interest in studying cell
motility in 3D in vitro model systems, but a lack of rigorous methodology for analysing the resulting
data sets. One such instance of the use of these in vitro models is in the study of cancerous tumours.
Growing multicellular tumour spheroids in vitro allows for modelling of the tumour microenvironment
and the study of tumour cell behaviours, such as migration, which improves understanding of these cells
and in turn could potentially improve cancer treatments.

In this paper we present a workflow for the rigorous analysis of 3D cell tracking data, based on the
Persistent Random Walk Model, but adaptable to other biologically-informed mathematical models. We
use statistical measures to assess the fit of the model to the motility data and to estimate model param-
eters, and provide confidence intervals for those parameters, to allow for parametrisation of the model
taking correlation in the data into account. We use in silico simulations to validate the workflow in 3
dimensions before testing our method on cell tracking data taken from in vitro experiments on glioblas-
toma tumour cells, a brain cancer with a very poor prognosis. The presented approach is intended to be
accessible to both modellers and experimentalists alike in that it provides tools for uncovering features
of the data set that may suggest amendments to future experiments or modelling attempts.

Keywords: three-dimensional cell migration, mathematical model, in silico modelling, persistent
random walk, mathematical oncology

1. Introduction and Background

The ability of a cell to migrate is fundamental to its survival. Cells migrate through all manner of
different environments, and in order to further our understanding of how systems in the body, both of
humans and other organisms, function normally and under the influence of disease, we should endeavour
to be able to describe cell motility under different conditions and rigorously test hypotheses about this
motion. One way to do this is using mathematical models.

It is becoming increasingly evident that mathematical models can aid discovery in the life sciences,
particularly when modelling complex phenomena such as cell migration and systems in which cells and
their properties are being studied e.g. in cancer research (Deisboeck et al., 2009; Anderson & Quaranta,
2008; Friedl et al., 2012; Lee, 2018). To be predictive, mathematical models of cell migration should
be informed by biology, dictating the relevant terms to be included in a model, the initial and boundary
conditions needed to constrain the system and providing model specific values of important cell motil-
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ity parameters. In return, these mathematical models can inform biology by analysing experimental
data, confirming or rejecting proposed cell motility hypotheses, testing a system’s sensitivity to model
parameters and being able to make quantitative predictions from numerous in silico simulations under
different conditions. This can aid biologists in deciding which experiments may be useful for a study
without wasting time, money or resources.

Much of the body of work concerning the study of cell motility includes studies which have been
conducted in 2D, or on single cells in 3D. Due to the advent of advanced techniques in microscopy and
in vitro models for studying cell motility in 3D, live 3D tracking of cells in tissues is now becoming
increasingly possible (Hoarau-Véchot et al., 2018; Yamada & Cukierman, 2007; Hakkinen et al., 2011;
Lee et al., 2014; Paul et al., 2016). This in turn has exposed major differences in the way that cells move
in 3D environments compared to 2D (Wu et al., 2018; Yamada & Cukierman, 2007; Antoni et al., 2015),
and how cells interact with their environment and each other, highlighting the need for new models of
cell migration in 3D. A major difference in 3D cell migration compared to 2D is the way that cells
interact with each other and the extracellular matrix (ECM) surrounding them in many different ways.
Further complexity arises because individual cells can behave very differently from each other in this
environment. Because of the complexity of this 3D system and the potential for cellular heterogeneity,
stochastic individual-based models capable of describing cells as individuals may be crucial to reveal
the underlying mechanisms of cell motility in 3D.

The recently developed biological methods for studying cell motility produce large datasets in the
form of cell tracks, and up to now there is a lack of mathematical tools to rigorously and systemati-
cally analyse this data, test proposed cell motility hypotheses and compare this analysis across different
models (Driscoll & Danuser, 2015; Friedl ef al., 2012). There are few mathematical models of 3D cell
motility in existence, much less in number than their 2D counterparts, though numerous biophysical
models are found in the literature (Schliiter et al., 2012; Paul et al., 2017; Wu et al., 2018). Rangarajan
& Zaman (2008) provide a helpful review of existing mathematical models of 3D cell motility, which
can be loosely categorised into force-based models, lattice-based models and stochastic models. Force-
based models focus on traction forces in cells due to the ECM and the protrusion of cells into it, as well
as drag and adhesion forces that arise as a cell moves. Zaman et al. (2005, 2006) make use of such a
model, calculating the forces on a cell at each time step in an attempt to describe the cell’s motility as
a function of time. Lattice-based Monte Carlo methods are based on a 3D lattice and a set of criteria
which dictates a cell’s movement at each time step (Zaman et al., 2007). Stochastic models are gen-
erally based around stochastic differential equations and random walks (Parkhurst & Saltzman, 1992;
Wu et al., 2015), the Persistent Random Walk (PRW) model being of particular interest to our current
work. Wu et al. (2014) investigated the fit of the PRW model to 3D motility data, concluding that the
model was incapable of describing motility in 3D, and adding an adjustment to the model in 2D to ex-
plain heterogeneity seen in experimental data. In a later work they propose the Anisotropic Persistent
Random Walk (APRW) model which they claim better describes motility data in 3D with consideration
of anisotropy in motility that the standard PRW model does not take into account (Wu et al., 2015).

The PRW model has long been used to describe cell motility in 2D (Gail & Boone, 1970; Dunn &
Brown, 1987; Stokes & Lauffenburger, 1991; Tranquillo & Lauffenburger, 1987; Dimilla et al., 1992),
though many have questioned whether the statistical measures defined by the model actually fit ex-
perimentally collected data. Most commonly these studies find that the Mean Squared Displacement
(MSD) of cells is found to follow a power law rather than being a linear function of time as the PRW
predicts (Dieterich et al., 2008; Upadhyaya et al., 2001; Metzner et al., 2015; Loosley et al., 2015;
Cherstvy et al., 2018). The Velocity Autocorrelation Function (VACF) is found to be better modelled by
a sum of two exponentials rather than a single exponential (Dieterich et al., 2008; Wu et al., 2014) and
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non-Gaussian distributions in cell velocities are found in some studies (Dieterich et al., 2008; Metzner
et al., 2015). These model properties are discussed in more detail below. Some studies have shown that
cells migrating in 3D, particularly cancer cells, display sub- or superdiffusive behaviour (Yurchenko
et al., 2019; Luzhansky et al., 2018; Takagi et al., 2008), meaning the PRW model description of the
MSD would over- or underestimate this quantity for a population of cells.

Nevertheless, the PRW model is historically one of the most widely used models of cell motility
and we use it here to demonstrate the power and usability of our framework. We provide mathemati-
cal tools to analyse 3D cell tracking data, using statistical measures to validate the model and provide
parameter estimates to allow for parametrisation of the model in specific cases. We believe the frame-
work is adaptable and the description presented in this paper is meant as a starting point to demonstrate
a rigorous protocol for such analysis. Whilst our framework is based on the PRW model, we present
it as a method for analysing 3D cell tracks, easily adapted to different models and the inclusion of
biologically-informed terms in the governing equation of a model. We first carry out in silico simula-
tions of the model to build the framework and then test it using experimental data from U87 glioblastoma
(GBM) cell tracks in vitro, a subset of the data found in Richards et al. (2018).

Our workflow is tested using tumour cells from GBM, a particularly fatal brain tumour for which
treatment methods inevitably fail due to the highly proliferative and invasive nature of the cells. The
recent rise of the field of mathematical oncology (Rockne ef al., 2019) has seen many mathematical
models attempt to describe many different aspects of cancer. This area of research aims to use math-
ematical models to assist in the fight against cancer, a disease which is characterised by excessive cell
motility, especially invasion of cells into healthy tissue. Improving our understanding of cell motility
will thus likely improve mathematical models in this field and eventually lead to better outcomes for
patients with fatal brain tumours like GBM. Models of tumours in 3D are becoming increasingly pre-
dictive due to data-integration and increased knowledge of the tumour microenvironment that comes
with an ability to replicate experimentally the conditions found in this environment.

Many models of tumours in 3D are found in the literature, together describing a range of features
of tumours in a 3D environment. Data-integrated continuum models are a popular choice due to the
wide range of analytical tools available for investigating these systems. The ability to integrate experi-
mental data into these models makes them suitable for predicting survival times and potential treatment
regimens for individuals (Hathout et al., 2016; Swanson et al., 2008; Colombo et al., 2015; Rockne
etal., 2015; Agosti et al., 2018; Jackson et al., 2015). However, these continuous models are incapable
of modelling individual cells in a tumour, and due to the inherently stochastic nature of cell motility,
and cancer in particular, it is evident that discrete, stochastic models will be needed to further this field
of study. Stochastic models of tumours and cancer cells broadly fall into one of two categories: agent-
based models which can be on- (Gerlee & Nelander, 2012; Hamis et al., 2019; Scianna & Preziosi, 2014)
or off-lattice (Lowengrub et al., 2010; Macklin et al., 2010) and those based on stochastic differential
equations and random walks (Stein et al., 2007; Antonopoulos & Stamatakos, 2015; Antonopoulos et al.,
2019; Wu et al., 2015), both of which attempt to use the properties of individual cells to elucidate the
population behaviour under different conditions. We note that cell-based and continuum models of cell
motility can be connected using scaling techniques, as described in (Othmer & Xue, 2013), for example.

The rest of this paper is set out as follows. We continue this introduction with an overview of the
theory of the PRW model and the statistical measures used to both test the goodness of fit and estimate
model parameters. Then follows a description of how we used the model to simulate in silico cell
trajectories with known parameter values and checked our framework was able to extract good estimates
for these parameter values directly from the trajectories. We present and discuss these simulations
in 3 dimensions before discussing the parameters and the output of the framework. We finally test
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the framework on 3 sets of experimental tracking data taken from in vitro tumour spheroid models of
glioblastoma U87 cells to see if the PRW model really can describe their migration in 3D.

The Persistent Random Walk Model

The Persistent Random Walk (PRW) model has long been used as a way to describe random cell motil-
ity. The model, derived from the stationary, mean-reverting Ornstein-Uhlenbeck (OU) process (Dunn
& Brown, 1987), describes a correlated random walk in velocity which sees the correlation between
subsequent velocities of the same cell decay over time (see section 1 of the Supplementary Information
for more details). A cell’s velocity in a subsequent time step is assumed to be conditional on the velocity
in the current time step with past velocities having no influence, and tends to be in the same direction.
Cells are assumed to be identical, and independent - no interaction between cells is modelled.

In 1D, the probability density p(v,t) of velocity v at time ¢ is assumed to be governed by the OU
process and can be described by the Fokker-Planck equation
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Here, « is the diffusion coefficient which represents the magnitude of random movement accelerations,
and f is the drift coefficient which represents the velocity decay rate (Stokes & Lauffenburger, 1991).
The time evolution of this OU process can be described by a stochastic differential equation (SDE) for
cell velocity:

dv=—Bvdt+odW(t), (1.2)

where v is the velocity and W (¢) is the Wiener process. In 1D, for an initial distribution of velocity
taking the value vy with probability one, the solution of this equation is the Gaussian distribution with
mean i = voe " and variance 6% = %(1 —e 2By,

In 2D, Stokes & Lauffenburger (1991) express o and 8 in terms of more intuitive parameters:
P = 1/P, the persistence time of a cell; and S = / ¢/, the root mean squared speed (RMSS) of cells
at steady state. More generally, in n-dimensions, Campos et al. (2010) express the process in terms
of the persistence time P = 1/f3, and D, the spatial diffusion coefficient of the cells in n-dimensional
physical space:

1 V2D
dv=—pvdi+ = dW(1). (1.3)

In n-dimensions, the diffusion coefficient is related to the RMSS of cells at steady state by D = SZP/n,
and thus we can relate the original parameters of the OU process & and 3 to the intuitive parameter S

by S = \/an/2B.

Statistical Measures for Comparison

To decide on whether the PRW model is an appropriate model for a given dataset and if this is the case to
estimate what the correct values of S and P are, we must implement statistical measures. Such statistical
measures are drawn from the model using equation 1.3. More details on the derivations are provided in
sections 2, 3 and 4 of the Supplementary Information.
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The first such measure, the Mean Squared Displacement (MSD) is commonly used when looking at
cell motility, and for the PRW model in n-dimensions is given by (Campos et al., 2010)

t t
MSD(t) :anP(e*PJrIt—J—l) :2SZP2(e*%+ﬁ—1). (1.4)

We see the PRW model displays classic diffusion behaviour of MSD tending to a linear function of time,
i.e. MSD(t) — 2S?Pt as t — oo,

Secondly, we use the Velocity Autocorrelation Function (VACF) for the PRW model given in n-
dimensions at time ¢ by (Campos et al., 2010)

nD _
—e P =5%

o~

VACEFE(t) = (1.5)
The VACF quantifies the correlation between cell velocity at time O and at time ¢. This is calculated at
a population level, averaging over all cells for each time. The correlation decays at rate 1/P, meaning
that cells ‘forget’ their previous velocity over times long compared with P.

We finally consider the stationary speed distribution of the population. At steady state, velocities
should follow an n-dimensional Gaussian distribution according to the PRW model. For 3D this implies
that the speed, u, follows a Maxwell-Boltzmann distribution with density

3\ s
f(M,S) = <271752> drtu“e 252. (16)
More detail on this distribution is given in section 4.2 of the Supplementary Information.

2. Using the PRW model to describe cell motility
In silico tests

In order to use the PRW model to describe motility in 3D, we have created a workflow to rigorously
assess the fit of the PRW model to cell tracking data by using the dataset to parametrize the model
before verifying the fit using the statistical measures outlined above. This framework involves: inputting
formatted cell tracking data; estimating S and P; verifying model fit using additional statistical measures.
A diagram of the workflow is provided for clarity in Figure 1. Validation of our framework is important
to ensure our method extracts the correct parameters S and P; it also allows us to assess if the model is
appropriate for the data. In order to validate the workflow, we used in silico data generated from the 3D

SDE
dv= lVcltJr\/z—SZdW(t) (2.1)
P 3P ’ ‘

with specified values of S and P. This allowed us to create a data set similar to the experimental set
and conduct the validation tests with prior knowledge of the parameters. Refinement of the method
was then carried out until the estimates were sufficiently accurate. Cell tracking data entered into the
framework must be an array outlining the positions and velocities of each cell at each time point. If
only positions within tracks are available, as will be seen in the experimental data later, the velocity of
each cell at each time point is estimated from the difference in the current and previous position divided
by the time step. For the in silico data sets we numerically simulate equation 2.1 along with dx/dr =



6 of 25 M. Scott, R. N. Bearon and K. Zychaluk

v using MATLAB’s simByEuler function (MATLAB 2017a, Financial Toolbox) to simultaneously
obtain both cell positions and velocities in the data set. In addition to S and P, it is necessary to specify
the numerical time step, dt, the total time of the simulation, df x Nperiods, with Nperiods being the
number of simulation periods, the number of cells N, and the initial position and velocity vectors Xo and
v for all cells. Figure 2(a,b) shows 3D sample plots of the tracks generated by the workflow.

‘ A In-silico
In-vitro experimental numerical simulations of random-

tracks walk model (e.g. PRW), with sample N
parameters

Calculation of RMSS, MSD & speed distribution
(as function of time)
Calculation of VACF (as function of lag time)

v

Statistical Analysis for parameter estimation (mean & »
confidence intervals) & model goodness of fit

A

¢ No, revise | |
‘ Is the model a good fit? framework
Yes,
framework
Has workflow been validated

validated for these
Yes parameters?

Model validated &
para_meters No
estimated

FiG. 1. Diagram of the workflow. An overview of the flow of the framework described. Code to carry out this analysis can be
found at https://github.com/m-scott22/PRW3DCellMotilityFramework

No, revise
model

S estimate

Parameter S is defined as the root mean squared speed of cells once the system reaches steady state. The
root mean squared speed (RMSS) at time ¢ across all cells is calculated in 3D as

RMSS(1) = \/(ve(1)2 + 1,12 +7:(0)?), 2.2)

where the average <> is over all cells, and the 3D components of the velocity at time ¢ are given by
vi(t), vy(t) and v,(r). We take the average of RMSS(t) at all times to obtain an overall estimate of S, S,

5= Ly Russ —IT\/ 2 2 2 23
=7 LRMSS() = 7 b/ (el vy (12 v:(0)%), 23)
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FIG. 2. Examples of cell trajectories. a) in silico data with parameters S = 1, P = 1, df = 0.05 and NPeriods = 1000. Cells are
initialised at the origin, Xo = 0, with speed S and orientation sampled uniformly from the unit sphere. Plot shows tracks from 10
cells as example trajectories. b) in silico data with parameters S = 25, P = 0.1, dt = 0.05 and NPeriods = 480. Initial positions and
velocities as in a). Plot shows tracks from 10 cells as example trajectories. ¢) Experimental in vitro images with green indicating
location of cell nuclei, and purple the overlay of cell tracks identified using tracking software, from Richards ez al. (2018). Inset
of zoomed in tracks & scalebar. d) The corresponding experimental trajectories from c) plotted within the framework. Initial
positions and velocities taken from first entries for each track.
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as it is assumed that experimental data would initially be at steady state.

The framework outputs a plot of the RMSS time series from which an estimate of S is obtained, and a
histogram of the speed distribution at specified time points with the corresponding Maxwell-Boltzmann
density function with estimated parameter S overlaid. This is depicted in Figure 3 for a simulation with
S =1and P = 1. In this simulation, all cells had initial speed of 1, allowing us to obtain the stationary
speed distribution more rapidly. Plots c(i)-(iv) demonstrate how the speed distribution of cells settles to
the stationary distribution.

We will also look at a confidence interval for the S estimate. The calculated RMSS values at each
time point form a time series when taken in sequence, which can be modelled as an autoregressive
process of lag 1 (see section 5.1 of the Supplementary Information for more details). This means the
current value of the process depends on the past only through the value of the process in the previous
time step. We use the fact that the mean of this time series is S to construct a 95% confidence interval
for S.

Due to the serial correlation present in the data, we use an adjustment to the sample size when
calculating the confidence interval for a sample mean. The calculation of this adjusted sample size, or
effective sample size, is taken from Zwiers & von Storch (1995) and is calculated as

- Nperiods
B Nperiods—1 ’
1+ 2275?0 ’ (1 - Npefiods) Pf

2.4)

Ne

where Nperiods is the number of observations in the RMSS time series and p; is the lag-1 correlation
coefficient obtained using the MATLAB autocorr function (MATLAB R2006a, Econometrics Tool-
box) which calculates the sample autocorrelation coefficient for the time series using neighbouring time
points.

We use the following formulae to obtain a 95% confidence interval for the estimate of S, S. For
n, > 30 we can assume normality and calculate the interval using

[Siz(o.ozs) \/S’T] , 2.5)

where s is the sample standard deviation of the RMSS values, Z(0.025) is the critical value of the
Cumulative normal distribution at 0.975 and n, is the equivalent sample size as above. When n, < 30
we must use the 7-distribution with n, — 1 degrees of freedom, thus the interval here is calculated using

~ S
[Sitnel (0.025) \/;7} . (2.6)

An example 95% confidence interval for § from the in silico data in Figure 3 where S = 1 and § = 0.9973
is [0.9937,1.0010].

P estimate

The VACF is used to estimate P. This is done by first calculating the VACF from 3D data using

VACFE(t) = ((v(0) - vx(1)) + (1y(0) - vy (1)) + (v2(0) - v(1))) , 2.7)
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FIG. 3. Example in silico output from the framework in 3D for 1000 cells with NPeriods = 1000, dt = 0.05 and S =P = 1.
Cells are initialised at the origin, xo = 0, with speed S and orientation sampled uniformly from the unit sphere. a) RMSS over time
(grey line, green online) with estimated speed 8 =0.9973 (solid black line, red online) 95% confidence interval [0.9937,1.0010]
(n, = 51) (black dashed lines). b) Calculated MSD vs time (solid black line) with model predicted MSD (thin black line, red
online) and a straight line fitted to the calculated MSD (black dashed line), enabling S and P estimates to be verified through the
gradient of the line being equated to 25%P. The inferred P estimate here is 2 = 0.9806, whilst the framework estimated value is
P =0.9951 with 95% confidence interval [0.9232, 1.0791]. ¢) Histograms of cell speed distributions at ¢ =i 0.25, ii 0.5, iii 2.5
and iv 25, and Maxwell-Boltzmann distribution (black curve, red online) with estimated parameter § = 0.9973 overlaid.

where the average <> is over all cells. From equation 1.5, we can estimate — 1 /P as the gradient of a plot
of In(VACF) against r. We note that we are using a special case of the O-U process in which correlations
in the increments of v,,vy and v, are absent, simplifying the VACF calculation and thus potentially
affecting the model’s ability to describe any data sets where these correlations may be present.

To obtain an estimate of the gradient of this line, we consider a simple linear regression model
fitted to the observed In(VACF) values and in doing so directly calculate the estimate for P. Given
that our observations are serially correlated, and thus the errors involved in fitting this regression line
will also be correlated, we fit this line using feasible generalised least squares (FGLS) instead of the
traditional ordinary least squares (OLS) method. To this end we use the MATLAB fgls function
(MATLAB R2014b, Econometrics Toolbox) to obtain the line of best fit along with estimates for the
slope coefficient and its corresponding standard error estimate.(See Supplementary Information Section
5.2.2 for more details).

As VACEF tends towards zero there is increasing noise in the estimate of In(VACF), and an estimate
of P that uses all of this data would be erroneous. Figure 4, particularly plot a(i), shows just how noisy
the data can be. To ensure the estimates are not affected by this noise, we only fit our regression model
to a subset of data points by implementing a cut-off value. Observations of In(VACF) falling below this
value are excluded from the dataset.

To determine this new subset, we systematically try a range of cut-off values for In(VACF), the line
being fitted only to those values above the cut-off, by defining a cut-off test vector with equally spaced
entries between the minimum and maximum values of In(VACF). We subsequently calculate the mean
squared error (MSE) for each fit and choose the cut-off for which the subset includes the most data
points such that MSE < 0.5, and proceed as above using the £gls function to carry out the rest of the
analysis. This choice of MSE cut-off will depend on the simulation parameters, for example number
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of cells N, the required accuracy of parameter estimates and MSE obtained from fitted models, but the
methodology provides a repeatable and adjustable method for estimating P and the cut-off is one of the
parameters that is easily changed. We also restrict the search to subsets with more than 5 data points to
allow FGLS to be used, as we are fitting 4 parameters in the regression model (intercept, slope, variance
and autocorrelation).

To obtain an estimate, P we apply the fg1s function to the resulting subset of In(VACF), choosing to
fit to — In(VACF) to simplify the algebra and make P =1/ [§, where ﬁ is the estimated slope coefficient.
We can then obtain a confidence interval for our P estimate by building the 95% confidence interval for
slope coefficient ﬁ as

(B =B 121~ 0/2) SEg, By = B+1-2(1 - a/2) SEg

where 7 is the number of data points in the subset, o = 0.05, t,,_, denotes the 7-distribution with n — 2
degrees of freedom and SEg is the estimated standard error of B, and transforming this to obtain the
95% interval for P as -

{ﬁu ’ ﬁj
This formula can also be used to calculate a 99% confidence interval where necessary by setting @ =
0.01.

The plots in Figure 4 are formed from fitting the regression model to In(VACF), and show how
different In(VACF) data sets force subsets of this data of different lengths to be used for FGLS fitting
and subsequent P estimation, according to the MSE cut off algorithm explained above. We expect this
regression line to have an intercept, which is also fitted in the model, at ln(S2), and so it can be useful to
compare this value to the estimated intercept given by the regress function as another way of assessing
how well the PRW model can explain a dataset. Figure 4 shows examples of the framework output
In(VACF) plots for S = 1, P =1 and 10 and where dt is taken to be 0.01, 0.1 and 1, and the choice
of cut-off is determined by the above algorithm. This produces P estimates, along with their 95%
confidence intervals, of 2 = 0.9893 [0.9473, 1.0352], P = 1.0919 [0.9999, 1.2505] and P = 1.1497
[1.0661, 1.2474] for input parameters S = 1, P =1 and P =10.3752 [9.9281, 10.8644], P =9.8853
[9.5095, 10.2919] and P = 10.3866 [9.8946, 10.9032] for inputs of S = 1, P = 10 for dt as stated in
the above order. Numerical simulations of stochastic differential equations, and associated statistical
measures, are strictly valid in the limit as df — 0. In our simulations, when the persistence time, P, is
comparable to dt, we see the reduction in predictive power; for example when df = P = 1, as in figure
3a(iii), the confidence interval doesn’t include what we know to be the true value of P. More details of
the exact process of estimating P are given in section 5.2 of the Supplementary information.

Mean Squared Displacement

Upon calculating estimates for both S and P, the theoretical MSD from equation (1.4) can be compared
with the calculation from the data:

MSD(t) = ((x(r) = x(0))* + (¥(r) = (0))* + (z(r) —2(0))), (2.8)

where the average <> is over all cells and the position vector at time ¢ is given by (x(),y(¢),z(¢)).
Figure 3b) shows a plot of the calculated MSD vs model MSD for S = 1,P =1 as an example.

We note from equation 1.4 that in the limit as # — o, the expression for MSD becomes MSD(t) =
252Pt, the equation of a straight line with a slope of 25%P. Fitting a regression model to the calculated
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MSD vs ¢ plot, making use of FGLS since the MSD observations from each time step will depend on
previous MSD observations, we can also infer P using $ as

slopemsp

P="—
252

with slopeysp being the estimated slope coefficient from the FGLS fit to the MSD vs ¢ plot.

In doing so for data shown in Figure 4, for simulated data with parameters S = 1, P = 1 we obtain
P =0.9141,0.9533, 0.9845 for dr = 0.01,0.1, 1, and § = 0.9978, 0.9993, 1.0020 respectively and for
simulated parameters S = 1, P = 10, we obtain P= 3.6942,9.4376,9.7890 for dt = 0.01,0.1,1, and
§ =1.0097, 0.9943, 1.0007 respectively. For each of these datasets we took NPeriods to be 1000. We
posit that the total simulation time for the dataset in Figure 4b(i) is not large enough compared to P,
10, to use the fact that MSD(t) — 2S%Pt as ¢t — oo to justify a linear fit to the data, hence the very poor
estimate of P found through this method. In this case a non-linear fit of equation 1.4 should be carried

out to infer an estimate for P.

a(i) 0 a(ii) 0 a(iii) O
-1 -1 -1
I i o
2 2 2
2/.2 < -2 < -2
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-4 -4 -4
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-0.5 -0.5 -0.5
w [y i
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FIG. 4. Estimation of P using In(VACF) with algorithmic cut-off points for line fits. Calculated values of In(VACF) are shown
(main black line) with FGLS line fits (straight black line, red online). FGLS line fits differ in length in each panel due to subsets
of In(VACF) data of varying length used in the estimation of P, according to the MSE cut off algorithm defined in the main text.
a) S = 1,P =1, Nperiods = 1000, i dr = 0.01, ii dr = 0.1 and iii dr = 1 respectively for 1000 cells. P estimates from left to right
along with 95% confidence intervals are P =0.9893 [0.9473, 1.0352], P = 1.0919 [0.9999, 1.2505] and P = 1.1497 [1.0661,
1.2474]. b) S =1,P = 10, Nperiods = 1000, i df = 0.01, ii df = 0.1 and iii dr = 1 respectively for 1000 cells. P estimates from left
to right along with 95% confidence intervals are P =10.3752[9.9281, 10.8644], P = 9.8853 [9.5095, 10.2919] and £ = 10.3866
[9.8946, 10.9302].
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Discussion of Model Parameters and output

Estimation of parameters from in silico data allows us to validate our method and assess the accuracy
of our estimates. Having demonstrated our framework can successfully extract these values from 3-
dimensional in silico simulations, we will go on to estimate S and P from experimental data in the
next section, and also check that the workflow is robust for in silico data generated from experimental
estimates for S and P.

It is clear from Figure 3 that the simulated speeds follow the Maxwell-Boltzmann distribution after
enough time has passed for the stationary distribution to be reached. This means we can be reasonably
confident that the RMSS will be a good estimate of S in a population that follows the PRW model, and
this is confirmed by the narrow confidence intervals calculated for the examples given.

We can also consider the velocity distribution for each of the components of the velocity which
we assume to be Gaussian. For consistency, we conduct an Anderson-Darling test using the function
(MATLAB adtest, Statistics and Machine Learning Toolbox, R2013a) on each of the components
of velocity (vy,vy,V;) to check that the assumption is indeed satisfied. If this assumption is violated
then we wouldn’t expect speeds to follow the Maxwell-Boltzmann distribution which depends on these
Gaussian velocities. The Anderson-Darling test was conducted at each time point across all cells with
the final time point being taken particularly into consideration. For all in silico data sets in the paper,
the Anderson-Darling test showed that at the final time point all components of velocity were normally
distributed, hence giving further confidence in the S estimate.

When we are looking at estimating P we also need to be careful with the timescale we are simulating
over. The simulation interval df needs to be much smaller than P to be able to see the persistence in
velocity over several time periods and subsequent decay of the velocity autocorrelation. We should also
ensure that the total simulation time is much larger than P to be able to see the effect of the decay in
correlation. We should therefore get a more accurate P estimate with values of dt much smaller than P
and a high number of simulation periods.

We also note that the choice of MSE threshold is important here. When testing the framework with
in silico data, estimates of both S and P were seen to be robust to MSE choice, even when the threshold
was as small as 0.05. The MSE should not be too large, but overfitting to the in silico data could lead
to poor prediction in experimental datasets. The MSE threshold was thus set at 0.5 to be consistent
with the chosen threshold for the experimental data sets in our analyses. In practice the MSE threshold
should be set based on the dataset being investigated, it being sensitive to sample size. The choice will
be dependent on the amount of data once observations have been removed as per the cut-off algorithm,
and values of MSE that an investigator deems acceptable in relation to the context of the experimental
data itself.

Figure 4 shows the framework output when different values of dt are used and demonstrates how P
estimates vary as dt varies between 0.01 and 1. We would expect estimates to become more accurate as
dt decreases, and this is seen here when P = 1 but not when P = 10, possibly due to the way that we
choose a subset of data to use when estimating P. In reality the choice of dt, number of cells and the
number of simulation periods may be restricted by the data from an experiment, and so consideration of
how to amend the framework in these cases may be necessary.

Experimental Data

After validating the method using pre-determined parameter values for in silico data, we can now reli-
ably use it to extract parameter values from a 3D experimental dataset. The cell tracking data used here
was obtained from in vitro tumour spheroids consisting of glioblastoma cells. These spheroids were
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grown and imaged with a Light Sheet Fluorescent Microscope, as described in Richards ef al. (2018),
and of importance here is the fact that images were collected every 3 minutes over a 24 hour period,
meaning there are 480 periods of 0.05 hours in the dataset. Though the spheroids were in some instances
treated with drugs, the 3 datasets we use are all controls.

The data is in the form of individual cell tracks, there being a velocity at each time step for each cell
as required. Plots of the tracks from one of these control spheroids are shown in Figure 2 d) compared to
the experimental image in 2 ¢). There were 3780, 3861 and 3808 cells in each of the three experimental
data sets though only cell tracks that are recorded as starting at time O are included in the analysis, thus
we analyse the 549, 929 and 1054 cells with such tracks for 149, 93 and 78 periods of 0.05 hours in
control spheroid datasets 1, 2 and 3 respectively, meaning we look at time periods of 7.5, 4.7 and 3.9
hours.

Parameter estimation using framework applied to experimental data

Upon running the data through our framework we were able to obtain estimates for parameters S and P
along with 95% confidence intervals as S, =27.3137 um/h [25.2892,29.3382], P, =0.0863h (5.18 min)
[0.0697, 0.1130], $» = 26.9272 um/h [25.9613, 27.8930], P, = 0.0789h (4.73 min) [0.0677, 0.0946] and
S35 = 28.0600 um/h [27.3979, 28.7222], P; = 0.0976h (5.86 min) [0.0804, 0.1241]. In the calculations
of the confidence intervals for § we found effective sample sizes of n, = 16.6,19.5 and 29.5, resulting
from sample autocorrelations of 0.8064, 0.6635, and 0.4617 at lag 1. Output plots from the framework
can be seen in Figure 5 for each of the three spheroids.

Our speed estimates agree well with the estimate of 27um/h obtained from the same dataset for cells
located inside the spheroid boundary in Richards ez al. (2018). In terms of our estimates for P, there are
very few sources in the literature which predict persistence time for any type of cell, less so for GBM
cells, but we note Stein et al. (2007) carried out similar analysis to ours studying GBM U87 cells from
2D projections of 3D images and obtained a value of 8 = 9.3/h, corresponding to P = 1/ = 0.1075h
which is similar to the values we find.

Our estimates for both S and P are additionally very consistent across the controls, making them
fairly reliable for this experiment. We can also again infer P from the MSD calculations for comparison,
using $1,$, and S5 as specified above and obtaining corresponding values for 2 of 0.0940h, 0.1289h,
0.1017h, all of which are reasonably consistent with the estimates taken from the VACF.

Looking closer at the regression line fitted to In(VACF) we can gain a further two estimates for S,
those coming from studying the intercept of the regression line and the actual experimental value of the
autocorrelation function at time 0, which the model says are equal to In(S?) (from equation 1.5). For
control spheroid 1 the experimental value is 7.2049 leading to an S estimate of §; = 36.6880um/h and
the value predicted by the regression is 7.4978 giving an S estimate of §; = 42.4743um/h. Similarly for
spheroid 2 we get ln(ﬁg) = 6.7969 giving S, = 29.9177um/h and a regression intercept of 7.0927 giving
S» = 34.6865um/h. Finally for spheroid 3 we obtain In(S3) = 6.8386 giving S5 = 30.5480um/h and re-
gression intercept 7.1186 giving S3 = 35.1386um/h. Compared to the estimates from the model frame-
work obtained through RMSS, independently of P, the predictions from the regression overestimate in
each case, though the experimental values are also above the values that the framework estimates. We
suggest that the most reliable method of estimating S is still the one using the RMSS as this encompasses
the definition of parameter S and provides the estimates closest to those found by experimentalists.

As further validation that our framework should be able to correctly extract parameters from the
data, Figure 6 shows the framework output for a realistic set of parameter values as informed by running
the experimental data through the framework (S = 25, P = 0.1, dt = 0.05, NPeriods = 100, 550 cells).
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This shows that our framework is still capable of estimating S and P accurately when the experimental
parameter values are used, even with the restricted dr value. The estimated value of P is 0.0996 with
95% confidence interval [0.0978, 0.1015], which includes the true value of P = 0.1. This is a good sign
we can be reasonably confident in our intervals for P that come from the experimental data P estimates.

By conducting this analysis we are able to explore 'realistic’ parameters in the framework and see
how well it is capable of estimating parameters of this magnitude. This enables us to see if we can
indeed make accurate predictions about the experimental data using the framework, but also to test
the robustness of it when parameters take values similar to these. For example we have estimated
P to be around 0.1, and since we need df << P to see persistence over several time intervals, we
should determine whether the framework can handle values of P which are quite close to dt, as in the
experimental case where dt is 0.05. We see from the output of this in silico simulation with experimental
parameters that the framework is capable of handling such parameters, and thus can go on to make
conclusions about the experimental data knowing that any discrepancies arising are not down to the
framework’s estimation capabilities, but to experimental errors or biological phenomena.
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FIG. 5. Framework outputs for experimental spheroids, data from Richards er al. (2018). (i) RMSS vs time (grey line,
green online) with estimated average speed (solid black line, red online) and 95% confidence intervals (black dashed lines). (ii)
Velocity autocorrelation, calculated In(VACF) (main black line) and FGLS fit (straight black line, red online). (iii) Histogram of
speeds with Maxwell-Boltzmann density with parameter S overlaid (black curve, red online). (iv) Calculated MSD vs time plot
(black line) and model predicted MSD (thin black line, red online) with line fit (black dashed line). Each row corresponds to an
independent control spheroid.

Probing model assumptions using framework applied to experimental data

We shall now highlight some fundamental differences depicted in Figure 5 between model predictions
and experimental observations, and where possible propose rigorous statistical tests to examine whether
the PRW model should be rejected. By comparing figure 6, which shows a very good fit of model to in
silico data, to figure 5 we have confidence that differences between model predictions and observations
are not due to sample size or parameter values in this case, but instead that perhaps the PRW model is
not sufficient to describe this data.

To undertake statistical tests to determine whether the PRW model should be rejected, we choose to
consider in more detail a subset of cell tracks which last the full length of the experiment. Firstly, we
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see that the Maxwell-Boltzmann distribution appears unable to completely explain the speed distribution
data. If we consider only the final cell speeds in each of these tracks (Figure 7a,b,c(iii)), we have a set
of independent speeds which should follow the Maxwell-Boltzmann distribution, as we are looking at
a fairly large number of cells (76, 71 and 56) over a long time (149, 93 and 78 periods respectively).
We can first conduct the Anderson-Darling test on the velocities in the experimental data sets and upon
doing so, even if we restrict the test to just the full length tracks in each data set, we are still led to reject
the null hypothesis in all cases. This suggests that the velocities are not normally distributed and so
consequently we shouldn’t expect the speeds to follow the Maxwell-Boltzmann distribution.

Further, carrying out a Kolmogorov-Smirnov test (MATLAB kstest, Statistics and Machine Learn-
ing Toolbox, R2006a) on the final cell speeds of full length tracks for each control spheroid with pa-
rameter S as estimated from the data through our framework, we see that in all cases this test instructs
us to reject the null hypothesis that the data follows the Maxwell-Boltzmann distribution. Furthermore,
we see from Figure 7a,b,c(iv) that the mean speeds of each cell with a full length track are not clustered
around the mean of the expected Maxwell-Boltzmann distribution based on the estimated speed param-
eter S. This leads us to believe that each cell monitored over the full experiment isn’t itself displaying
speeds following the Maxwell-Boltzmann distribution with this parameter S.

All of this suggests that the cell speeds are not what we would expect if the cells behaved as per the
model, and so there are some cells travelling quite a bit faster and some cells quite a lot slower than the
estimated mean speed (estimated mean speed = standard deviation, spheroid 1: 27.3137 4+ 0.0027 um/h,
spheroid 2: 26.9272 + 0.0028 um/h, spheroid 3: 28.0600 £ 0.0026 pum/h). This provokes interesting
biological questions about why some cells are able to travel at higher speeds than their counterparts and
perhaps looking at where these cells lie in the spheroid would provide some insight into this difference
and differences in motility mechanisms across cells. Upon plotting individual cell speeds across the
experiment we see that there are indeed some cells with abnormally high speeds at certain times, and
the peaks in speed are coming from the same cells, generally those with higher mean speeds overall,
though their speed is not consistently higher than we would expect. These plots can be seen in Figure
1 in section 6 of the Supplementary information. We could probe this more by looking more in detail
at how the speed distributions vary over time, monitoring when this shift in the peak of the distribution
happens and when the high-speed outliers become so, to determine whether these mean speeds are so
high due to extreme values at later times, or are simply down to chance.

Secondly, in Figure 5, we see that the RMSS appears to be a function of time, with the data suggest-
ing a linear decrease, in conflict with the underlying assumptions of the PRW model. We questioned
whether this trend for decreasing RMSS over time is due to the decreasing number of tracks involved
in the calculation as time goes on, due to initial filtering of the data according to the start time of a
track. However RMSS plots created with only the full length tracks as used in Figure 7 show a similar
downward trend (data not shown) and thus more data is needed to investigate this changing of speed
with time. We are also assuming here that the system is already in steady state due to the cells being
grown for 3 days before the tracking started and time Oh is 3 hours after the spheroid has been placed in
the microscope chamber. This assumption could be wrong and could explain the decrease in speed over
the time interval we are considering. Nevertheless, it is clear that the RMSS time series plot is one of
the first indicators from the framework of whether a dataset has a constant average speed, and thus one
of the first ways to assess the suitability of the PRW model to describe a dataset.

Thirdly, in Figure 5, we see that for all of the control spheroids, the model MSD underpredicts the
calculated MSD, leading us to take care with the P estimates inferred from the MSD calculations. This
underprediction agrees with the previously observed superdiffusive nature of cells in 3D (Yurchenko
et al., 2019; Luzhansky et al., 2018; Takagi et al., 2008).
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Finally, in Figure 5, the plots of In(VACF) against time, for which the PRW model predicts to be
linear with slope —1/P, show a reasonable fit. Moreover the noise in the data leads the method for
estimating P to only use a small subset of data points when fitting the straight lines, possibly affecting
the reliability and accuracy of our estimates. The nonlinear nature of the In(VACF) plots suggests
there may be some biological factors which stop the model from being able to accurately estimate
P from these plots. In this framework we are assuming that all cells are identical and independent,
which is intuitively unrealistic, and accounting for possible differences in persistence time between
cells could enable us to better estimate what these parameter values may be. It has been suggested in
the literature (Wu et al., 2014; Yurchenko et al., 2019; Takagi et al., 2008) that populations of cells
may have several subpopulations with different persistence times. We don’t explore this idea here, but
one could change the framework accordingly to account for this by using a different governing model
that allows for heterogeneity in individual values of population parameters. The statistical measures
calculated in the framework currently based on the PRW model could not be adjusted sufficiently to
account for significant heterogeneity in the population, the model itself assuming that there is one S and
one P value for the entire population.

To illustrate this we ran a heterogeneous in silico data set through the framework which consisted
of just 2 possible S values. This data set consisted of 100 cells and was run for 1000 periods. We gave
half of the population S = 1 and the rest S = 3, whilst keeping P = 1 for all cells. We would expect to
retrieve § = 2, P = 1 from the framework in this case. The framework gave S = 2.2638[2.2081,2.318],
P =1.5272[0.9811,3.4445]. We see from this small experiment alone that introducing even a small
amount of heterogeneity has meant that the estimate of S is poor and the confidence interval doesn’t
contain the true value. We also see that the P estimate is poor and has a much wider confidence interval
than we have seen with homogeneous data. Thus it is our suggestion that if significant heterogeneity
in the data is present then a model different from the PRW model should be used in the framework to
ensure that estimates are not biased in this way.

Discussion and conclusions

We present an example of a rigorous combined mathematical and statistical approach for analysis of 3D
cell tracking data using stochastic models. The framework we have developed provides tools for calcu-
lating various statistical measures for testing goodness of fit and for parametrising the given model, here
demonstrated using the Persistent Random Walk model. This model has been chosen in the knowledge
that it is perhaps not complex enough to fully capture the motility seen in GBM spheroids, but is one
of the most popular stochastic models used in cell motility. The ill-fitting nature of the model though
allows us to exploit the framework and show its potential in uncovering features of a data set that may
be missed by less rigorous analysis or a more well-fitting, but not optimal model. We also make clear
the distinction between the PRW model in all 3 physical dimensions, and how the governing equation
changes based on the dimension-dependent diffusion coefficient, something which has not previously
been stated as clearly.

Our framework outputs parameter estimates along with confidence intervals and uses statistical mea-
sures to provide them, all of which take into account serial correlation in the data. This has been lacking
in the literature in this context until now, to the best of our knowledge. We believe the approach we
present is adaptable to other models and data sets by simulating in silico data sets using the model of
choice and using statistical measures appropriate for the data being studied in the same way we have
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FIG. 6. Testing in silico output based on experimental parameters for 550 cells over 100 simulation periods with dr = 0.05
and S =25,P =0.1. Cells are initialised at the origin, X9 = 0, with speed S and orientation sampled uniformly from the unit
sphere. a) RMSS over time is shown (grey line, green online) with estimated average speed § = 25.0458 (solid black line, red
online) and 95% confidence interval [24.9091,25.1825] (n, = 40) (black dashed lines). b) Calculated In(VACF) vs time (main
black line) with FGLS line fit (straight black line, red online) giving P =0.0996 with 95% confidence interval [0.0978, 0.1015].
¢) Histogram of speeds with Maxwell-Boltzmann density with parameter S overlaid (black curve, red online). d) Calculated MSD
vs time (black line) with model predicted MSD (thin black line, red online) and a straight line fitted to the calculated MSD (black
dashed line). The inferred P estimate from the MSD calculations is 2 = 0.0962.
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demonstrated to compare the model with the data. It is the consistency and thoroughness of the approach
which allows for elucidation of possible reasons for mismatch between a model and a data set, but also
suggest routes for further exploration of 3D cell tracking data sets such as the ones we explore here.

The framework as a package is useful for experimentalists looking to analyse tracking data without
necessarily having the mathematical or statistical background required to carry out such rigorous anal-
ysis, but there is also great benefit for modellers alike in being able to test potential models for a data
set with the same consistent, thorough method of testing, allowing for direct comparison of population
level statistics between models. There are also benefits to those looking at initial analysis of a data set
before moving on to more complex considerations by way of the plots that the framework outputs, as
well as quantitative descriptions of population and individual track characteristics such as speeds and
correlations in velocity.

The framework has been tested on in silico datasets in 3 dimensions through the use of statistical
measures MSD, VACF and speed histograms, before being applied to experimental 3D cell tracking
data collected from GBM tumour spheroids. Results show that the PRW model may not be complex
enough to describe these particular data sets well, as shown by the experimental data having different
speed distributions and MSDs than predicted by the model. Though others have reached this conclusion
before for other cells types (Wu et al., 2014; Dieterich et al., 2008; Metzner et al., 2015; Upadhyaya
et al., 2001; Cherstvy et al., 2018; Loosley et al., 2015), we have done so with statistically significant
proof and through following the same rigorous procedure for each data set. These findings allow us
to question what about the model itself and the biology needs further investigation, likely taking into
account the proliferative and heterogeneous nature of cancer cells. For example our investigation of the
cell speed distribution allows us to see that although the bulk of the cells are travelling as we expect,
there are some outliers moving particularly fast and there is surely an interesting biological reason
behind this.

In this analysis, we were grateful to have a large dataset to work with, though we excluded any tracks
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that did not begin at the start of the experiment, greatly reducing our available data. We were however
still able to reach the conclusions above and reject the PRW model for the data, with strong evidence
to back this up. This demonstrates that it is not the amount of data that is vital here, but experimental
parameters such as the frequency with which measurements are taken, and the length over which cells
are studied. This is just one example of how iterating between mathematical models and experiments
will elucidate new directions for modelling and study of biological systems.

We also note that it would be possible to switch the frequentist statistical analysis conducted in the
framework currently with its Bayesian equivalents, which comes with its own set of advantages and
disadvantages. We have replicated the analysis in this work using Bayesian methodology and obtain
comparable estimates with the frequentist approach (Scott, 2021), thus leading us to recommend that a
potential user of the framework chooses the methodology that suits them.

Cancer is a complex condition in which cells interact with each other and with many other molecules
within a tumour microenvironment. Cells can also vary between themselves, and are capable of chang-
ing their own behaviour in response to certain stimuli. This presents a problem with creating models
simple enough to test certain motility hypotheses for a dataset such as the one we have been working
with, given the wide range of conditions that would need to be taken into account. This challenge only
increases when drugs are brought into the system and so there is plenty of scope for the model to be
adapted to incorporate any or a range of these complications. We do however see the potential of a
framework such as ours to be able to estimate motility parameters under different conditions, particu-
larly when spheroids are treated with drugs.

In future work we would endeavour to consider problems outlined throughout the paper such as
ensuring the suitability of experimental data for this framework and how to make use of all available
data when carrying out the analysis. We could further consider adapting the model so that the alternative
ideas about MSD, VACF and velocity distributions may be studied rigorously (Yurchenko et al., 2019;
Luzhansky et al., 2018; Takagi et al., 2008). We would also hope to be able to add alternative terms
into the model to better describe how the cells are moving in response to chemical stimuli in addition
to random motion. Cells are known to have a 3-step migration cycle (Lauffenburger & Horwitz, 1996;
Mitchison & Cramer, 1996) consisting of protrusion of the cell’s leading edge, adhesion of this region
to the underlying substrate and then contraction of the cell body causing detachment of the rear of
the cell, which has been incorporated into some cell migration models, though cells in 3D change the
mode of their migration depending on the geometry of their environment (Wolf et al., 2013; Wu et al.,
2018; Mierke, 2015). A lot of the differences between 2 and 3D cell migration are as a result of the
Extracellular Matrix (ECM) which surrounds cells in 3D. For example, the availability of space for cells
to move through (Wolf et al., 2013; Tozluoglu et al., 2013), resistance cells face from the ECM, the
viscosity and stiffness of the matrix (Zaman et al., 2005, 2006; Wang et al., 2014), and the presence
or absence of matrix proteins (Fraley et al., 2015; Wu et al., 2018) can all affect the migration of a
cell in 3D. Thus, following suit of others in the field, incorporating terms that describe the influence
of the ECM would no doubt improve the model fit, as well as considering other phenomena such as
chemotaxis, haptotaxis and gradients in nutrients, and more specific to cancer, angiogenesis, hypoxia
and necrosis.

It would also be informative to add cell-cell interactions into the model, as this may be one of the
reasons for the mismatch between the PRW model and the experimental data. In order to study this
further one could look to models of 3D cell motility that include interaction terms such as the Vicsek
model (Vicsek et al., 1995; Czirok et al., 1999; Liu, 2010), that of Septilveda ef al. (2013) or of Matsiaka
et al. (2019). Generating in silico data from any of these models and running this data through the
framework would reveal whether interactions do need to be included in the model, evidenced by further
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mismatch. This would allow rigorous study of how interactions affect the statistical measures and
parameter estimates and potentially suggest sensible avenues of exploration for alternative models to
place within the framework.

In order to consider the issues discussed here, it would be beneficial to obtain data collected from the
entire spheroid. A drawback of the imaging data collected is that there was difficulty penetrating into
the centre of the spheroid, and thus only around half of the movements of the cells within the spheroid
were able to be tracked (Richards, 2016). Information on the behaviour of trajectories throughout the
spheroid would facilitate investigation into correlations between trajectory location and cell behaviour,
elucidating spatial effects and how crowding may impact migration and proliferation.

For now, we present this framework as a data-driven, rigorous methodology for testing whether a
cell tracking dataset could reasonably be described by a given model. It provides statistical measures
for assessing how realistic the model is for a data set, and tests whether we can obtain estimates of
population level parameters using individual cell properties, paving the way for future interrogation of
cell tracking data and investigation of cell motility in 3D.

Code used for the framework can be found at https://github.com/m-scott22/PRW3DCellMotilityFramework
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