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A dilute suspension of motile micro-organisms subjected to a strong ambient flow, such as algae

in the ocean, can be modelled as a population of non-interacting, orientable active Brownian

particles (ABPs). Using the Smoluchowski equation (i.e. Fokker-Planck equation in space and

orientation), one can capture the non-trivial transport phenomena of ABPs such as taxes and

shear-induced migration. This work presents a method to transform the Smoluchowski equation

into a physically-relevant transport equation analytically and an asymptotic approximation to

the transformation. The approximation recovers the effective diffusivity given by the generalised

Taylor dispersion (GTD) model in a quiescent flow as a dispersion tensor, but the approximation

does not generate singularities in strain-dominant flows like the GTD model. The transformation

has also unveiled the shear trapping mechanism previously shown by Bearon & Hazel (2015) and

other new drift and dispersion mechanisms caused by the interactions between the orientational

dynamics and the passive advection/diffusion of ABPs. Using gyrotactic suspensions in shear

flow as an example, we show that the approximation is more accurate than the GTD model by

accounting for shear trapping and the other new mechanisms for drift and dispersion. Lastly, we

show that the dispersion from the translational diffusion can be negative, while the dispersion

from the interaction between the rotational diffusion and the particles’ motility can be highly

asymmetric, in contrast to the positive definite effective diffusivity of the GTD model. The results

open a new perspective on the nature and physical origin of the dispersion of ABPs in a general

flow field.

1. Introduction

The transport of orientable micro-organisms or particles in a suspension is of fundamental

importance for many ecological, medical and engineering applications. For example, the non-

trivial macroscopic transport of motile species of phytoplankton is responsible for the formationof

an ecological hotpot (Durham et al. 2009, 2013). The shape-dependent sedimentation of the non-

motile species in turbulent water (Voth & Soldati 2017) may also be a significant factor affecting

the carbon sequestration process in the ocean, a crucial process in the earth’s carbon cycle. On

the medical front, modelling the transport of bacteria helps us understand how they spread or

propagate collectively on surfaces through swarming (see review by Koch & Subramanian 2011).

In engineering, controlling the transport of bottom-heavyalgal species in bioreactors may improve

the harvesting of biofuel (Croze et al. 2013).

The macroscopic transport of particles is a key component in modelling the complex dynamics

and rich collective behaviour of a suspension. While individual particles can be modelled with

the Stokes equations given their small size (1-10 `m for bacteria and 10-100 `m for algae), the

emergent behaviour or the flow environment is often at a larger length scale than the individuals

(see review by Koch & Subramanian 2011; Elgeti et al. 2015; Clement et al. 2016; Bees 2020).
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The difference in length scale poses a significant challenge to the modelling of their collective

behaviour.

Some of these emergent behaviours are the result of many-body interactions between particles.

For example, bacterial turbulence and spontaneous self-organisation of bacterial suspension in

confinement (Dombrowski et al. 2004; Wioland et al. 2013) are usually found in dense suspension

where near-field hydrodynamic and/or steric interactions between particles are the driving

mechanisms (Subramanian & Koch 2009; Saintillan & Shelley 2008, 2015; Lushi et al. 2014)

. In contrast, collective phenomena in dilute suspensions are usually the result of the non-trivial

transport caused by some internal mechanisms of particles (e.g. ‘taxes’ for microorganisms) or

sedimentation of orientable particles stemming from the flow-field-dependent orientation of indi-

vidual particles. For example, bioconvection (see review by Bees 2020), unmixing (Durham et al.

2013) and gyrotactic shear trapping (Durham et al. 2009) are the result of the balancing influence

of external fields (e.g. gravity, light or chemical gradient) and the flow field of the fluid on

the particles’ orientation. Other phenomena such as shear-trapping (Ezhilan & Saintillan 2015;

Bearon & Hazel 2015; Vennamneni et al. 2020) and enhanced sedimentation (Clifton et al. 2018)

are the results of the alignment of elongated particle with the flow field.

Microscopically, a Langevin equation is often used for the description of a particle’s po-

sitional and rotational dynamics in the presence of thermal and/or biochemical noise. The

typical approach to model the rotational dynamics of particles is to combine the Jeffery’s

Orbit (Jeffery 1922; Hinch & Leal 1972a,b), which governs how local vorticity and strain rate

orient a particle, with other orientational biases responsible for the "taxes" such as gyrotaxis

(Pedley & Kessler 1990), phototaxis (Drescher et al. 2010) and chemotaxis (Alt 1980). With the

inclusion of a stochastic forcing arising from a variety of noise sources and additional suitable

modelling of the interaction between particles (e.g. Batchelor 1970; Hinch & Leal 1972a,b;

Pedley & Kessler 1990), one can perform simulations of many particles in the Stokes regime

to capture some collective dynamics. However, there are several downsides to such individual-

particle-based simulations. While these methods can capture some collective behaviours that

involve hundreds or thousands of individual particles (e.g. Nott & Brady 1994; Brady & Morris

1997; Tornberg & Shelley 2004; Saintillan & Shelley 2007; Ishikawa et al. 2008; Delmotte et al.

2015; Schoeller & Keaveny 2018, etc.), it is expensive to scale up for phenomena involvingseveral

orders of magnitude more particles, given the computational cost for individual-based simulation.

Furthermore, when the interactions between particles become important, the computational cost

to resolve them increases even more quickly. Such a situation can be dealt with the Stokesan

dynamics simulations (see Brady & Bossis 1988; Sierou & Brady 2001). However, this type of

numerical tool is not applicable for large-scale fluid systems where inertial force is important in

the dynamics (e.g. turbulence).

For such reasons, the present work instead employs the equation which describes the density

distribution of the particles governed by the Langevin equation (Doi & Edwards 1988). Some

(e.g. Saintillan (2018)) refer to the equation as the Fokker-Planck equation, but in this work,

we shall refer to this equation as the Smoluchowski equation, so as not to be confused with

the Fokker-Planck model introduced only for the particle orientation dynamics in early studies

(Pedley & Kessler 1990, see also below). If the suspension is dilute, this "bottom-up" approach

based on the Smoluchowski equation has some benefits over macroscopic phenomenological

models proposed recently (e.g. Wensink et al. 2012; Dunkel et al. 2013; Słomka & Dunkel 2017).

In particular, this approach directly incorporates the individual dynamics at microscale into the

macroscopic continuum description, offering an explicit link between the micro- and macro-

scale phenomena, although the description of near-field interactions between particles within

this framework still remains an important challenge. Therefore, to simplify our work, we will

limit the scope of the present study to the transport of particles in the dilute regime, where the

long-range hydrodynamic contribution of particles can be modelled with the bulk stress tensors if
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required (Pedley & Kessler 1990). While the dilute assumption may not be applicable to some of

the aforementioned phenomena in dense suspension, it is justifiable in many phenomena in dilute

suspensions, such as bioconvection and oceanographical phenomena, where the system size is

large and the background flow is strong.

Despite the descriptive merit of the Smoluchowski-equation-based continuum model, there are

only a handful of work that utilise a full numerical simulation of this equation (e.g. Chen & Jiang

1999; Saintillan & Shelley 2008; Saintillan 2010; Jiang & Chen 2020). This is due to the high

number of dimensions in the equation, which makes it computationally too expensive. Past work

overcame the challenge by taking a semi-heuristic approach to the transport of motile particles.

In this type of approaches, the quasi-steady orientational distribution of particles under a certain

flow field is solved separately, and the effective transport coefficients (i.e. advection velocity

and diffusivity) are estimated using a phenomenological model, such as the Fokker-Planck (FP)

model (Pedley & Kessler 1990; Pedley 2010) or the generalised Taylor dispersion (GTD) theory

(Hill & Bees 2002; Bearon 2003; Manela & Frankel 2003). These models describe the particle’s

orientation dynamics only using the ‘local’ flow information, reducing the number of dimensions

needed while keeping the effect of the flow field on the transport properties intact. Recent

works such as Croze et al. (2013, 2017) and Fung et al. (2020) showed that the FP model of

Pedley & Kessler (1990) is not as accurate as the GTD model at high shear rates. This is because

the effective diffusion in the FP model is a phenomenological approximation with an ad hoc

constant for unknown diffusion time scale, and is not based on the Smoluchowski equation like

the GTD model. Despite this merit, the GTD model also has an important limitation – it is only

applicable to vorticity-dominant flows due to the singularity in its effective diffusivity emerging

in strain-rate-dominant flows (Bearon et al. 2011). Indeed, in a recent review (Bees 2020), this

limitation of the GTD model has been pointed out as a significant challenge for the modelling

of bioconvection. Moreover, the GTD model was derived for a homogenous shear flow. When

applied to inhomogeneous shear flow, it would then implicitly assume a quasi-homogeneous shear

of the flow field. Therefore, it is not able to describe the extra advection (or drift) caused by the

inhomogeneity in flow shear, and fails to capture the related phenomena such as the shear trapping

of non-biased motile particles (Bearon & Hazel 2015; Vennamneni et al. 2020).

This work aims to propose a new transport model for the orientable particles to overcome

the inherent limitations of the GTD model and the inaccuracy of the Fokker-Planck model.

We will show that the Smoluchowski equation admits an exact transformation into a transport

equation which share many similarities to the platform used in the FP model and the GTD

model. Combining this transformation with the method of multiple scales, this work proposes

a novel transport equation, in which the orientation dynamics is determined only with the local

flow information in the physical space like the FP and the GTD model. We will show that this

new model not only removes the limitations of the GTD model, but it also offers more accurate

predictions for the active particle distribution in inhomogeneous shear flow.

This work is organised as follow. In §2, the Smoluchowski is presented with the equations

governing the motion of active (or swimming) Brownian particles. We will also briefly introduce

the GTD model and its inherent restriction. In §3, the exact transformation of the Smoluchowksi

equation into a transport equation is introduced. While the transformed equation cannot be

directly used as a model, it sets up the mathematical platform for the further local approximation

presented in §4. In §4, the local approximation is presented for the development of novel transport

equation model, and the mathematical structure of this model is compared with that of the GTD

model. In §5, we present examples of gyrotactic particle suspensions in one-dimensional vertical

and horizontal shear flows, and demonstrate the superiority of the newly-introduced model over

the GTD model. We will also compare these results with those obtained through the exact

transformation of the Smoluchowski equations. In §6, we further dissect the physical implication

of the transformation in comparison to the GTD model, and discuss the physical origin of the
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dispersion of particles. Lastly, in §7, we will briefly outline the potential application of the local

approximation and the challenges remains with the proposed model.

2. Background

2.1. The Smoluchowski equation

We consider a dilute suspension of active Brownian particles (ABPs), and the randomness

in their motion is present in the physical space x∗ and orientational space p. In this study, the

term ABP will be used to refer to a self-propelling particle (or microswimmer) subject to a

translational and/or rotational random walk. Given the stochastic nature of the trajectory, we

consider the number density distribution function Ψ(x∗, p, C∗) for particles located at x∗ with

orientation p at time C∗. The equation for Ψ(x∗, p, C∗) is governed by the Smoluchowski equation

(Doi & Edwards 1988)

mΨ

mC∗
+ ∇

∗
x ·

[

¤x∗Ψ − �∗
)∇

∗
xΨ

]

+ ∇p ·
[

¤p∗
Ψ − 3∗A∇pΨ

]

= 0, (2.1)

where the deterministic motion for ¤x∗ is governed by

¤x∗ = u∗ + +∗
2p. (2.2)

Here, the superscript (·∗) represents dimensional variables or parameters, u∗ is the prescribed flow

velocity and+∗
2p the velocity of particles by the active motion (swimming / motility). Meanwhile,

the deterministic form of orientational dynamics for ¤p∗ is governed by

¤p∗
=

(



∗ (x)

2
∧ p + U0p · E

∗
· (I − pp)

)

+
1

2�∗
[k − (k · p)p] . (2.3)

Here, we assume that the particle is oriented by the local flow through the Jeffery’s equation

(Jeffery 1922; Bretherton 1962), where 

∗
= ∇

∗
x ∧ u∗ is the vorticity, E∗

= (∇∗
xu∗ + ∇

∗
xu∗) )/2

the rate-of-strain tensor and U0 the Bretherton constant. In this work, we also consider gyrotaxis

of the given particles (Pedley & Kessler 1990), as will be used for the flow examples in §5. This

is the second term in the right-hand side of (2.3) where k is the unit vector pointing upwards

(against gravity) and �∗ the gyrotactic time scale.

In (2.1), we have also assumed that the random motions in x- and p-space can be modelled

as translational diffusion with the corresponding diffusivity �∗
)

and rotational diffusion with

the diffusivity 3∗A , respectively. The translational diffusion �∗
)

often originates from thermal

fluctuation especially for small particles. However, it is often negligible for many micro-organisms

(e.g. microalgae), given their relatively large size. In this study, we will keep this term without

loss of generality, so that proposed framework can be extended to other types of particles.

Equation (2.1) is subsequently non-dimensionalised with suitable length and time scales. In

this work, the characteristic length ℎ∗ was chosen from the given flow field, and the inverse of

rotational diffusivity 1/3∗A was chosen for the time scale. For convenience, we shall also use the

characteristic speed *∗ of the flow for the non-dimensionalisation. Hence,

x =
x∗

ℎ∗
, C = C∗3∗A , and u =

u∗

*∗
,

and the dimensionless parameters for the speed of motility (swimming) +∗
B , the flow speed

*∗, the translational diffusivity �∗
)

and the gyrotactic timescale �∗, and their equivalent non-

dimensionalised parameters are

PeB =
+∗
B

ℎ∗3∗A
, Pe 5 =

*∗

ℎ∗3∗A
, �) =

�∗
)

(ℎ∗)23∗A
, and V =

1

23∗A�
∗
,
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respectively, where Pe 5 and PeB are the ambient flow and motility Péclet numbers. The

dimensionless form of (2.1) is then given by

mΨ

mC
+ ∇x ·

[

(Pe 5 u + PeBp)Ψ
]

+ L? (x, C)Ψ = �)∇
2
GΨ, (2.4)

where we also introduce the p-space linear operator

L? (x, C)Ψ = ∇p ·

[ (

Pe 5

2

 ∧ p + Pe 5 U0p · E · (I − pp) + V [k − (k · p)p]

)

Ψ

]

− ∇2
pΨ (2.5)

Therefore, by the divergence theorem, the integration over p-space of the operator L? (x, C) acting

on any arbitrary function 0(p) satisfies

∫

(?

L? (x, C) 0(p) 3
2p = 0, (2.6)

where (? is the unit sphere, i.e. the p-space subject to ‖p‖ = 1. Physically, it is related to the

conservation of probability distribution in p-space. We also note that (2.5) may be modified

to account for other taxes by including the relevant modelling terms: e.g. the run-and-tumble

and chemotaxis process (Subramanian & Koch 2009) or phototaxis (Williams & Bees 2011).

Therefore, we expect that many deterministic models for the orientation dynamics in p-space

would be given as a linear operator L? (x) that satisfies (2.6). Without loss of generality, in the

following sections, we will use the linear operator L? (x, C) to represent the orientation dynamics

in p-space.

2.2. The generalised Taylor dispersion model

The GTD model was originally derived by Brenner (1980), and later extended by

Frankel & Brenner (1989, 1991, 1993). It is a theoretical framework which approximates

the particle transport governed by (2.1) into an advection-diffusion equation. Recent studies

(Croze et al. 2013, 2017) have shown that it offers a more accurate and physically relevant

description for active particle transport both in stationary and sheared suspensions (see Saintillan

2018; Fung et al. 2020; Bees 2020). However, its application has so far been limited to

unidirectional shear flow (Bearon et al. 2011) due to the difficulties discussed in §1. In this

subsection, we will also give a brief overview of the theory and how the limitation arises.

To start with, the GTD model is based on two assumptions: 1) the timescale in p-space is

much faster than that of x-space (quasi-steady assumption); 2) the size of the particle is much

smaller than the length scale of the flow, allowing to set velocity gradient tensor ∇u to be locally

constant (quasi-uniform shear assumption). Under these assumptions, the GTD model obtains the

effective drift and diffusivity using the impulse response of (2.4), which describes the probability

density function of a single particle in terms of p and x. Then the solution to (2.4) is utilised

to approximate the effective drift and diffusivity using their definitions given in terms of the

Oldroyd time derivative of first and second statistical moments in the limit of C → ∞ (for further

details, see Frankel & Brenner 1991, 1993). The resulting advection-diffusion (or drift-diffusion)

equation for the particle distribution =(x, C) is given by (Manela & Frankel 2003; Hill & Bees

2002)

mC= + ∇x · [(PeB 〈p〉6 + Pe 5 u)=] = �)∇
2
G= + Pe2

B∇x · D�)�∇x=, (2.7a)

where

〈p〉6 (x, C) ≡

∫

(?

p6(x, C; p)32p, (2.7b)
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with

L? (x, C)6(x, C; p) = 0 subject to (2.7ca)
∫

(?

6(x, C; p)32p = 1, (2.7cb)

Meanwhile, the effective diffusivity D�)� is computed by

L?b�)� − Pe 5 b�) � · G =
(

p − 〈p〉6
)

6, (2.7d)

leading to

D�)� =

∫

(?

[

b�) �p + Pe 5
b�) �b�)� · G

6

]BH<

32p. (2.7e)

where G = ∇u is the velocity gradient tensor. Here, note that the advective drift caused by the

particles’ motility is obtained from the ensemble-averaged velocity of individual particles, given

that its orientational distribution is 6(x, C; p). The term PeB 〈p〉6 can therefore be interpreted as the

average motility of individual particles. Furthermore, symmetry is enforced to the tensor D�)� in

(2.7e), given its definition based on the second-order statistical moment of the ensemble-averaged

particle spatial displacement.

As mentioned earlier, the GTD model has an important limitation in applications to general

shear flows in which various forms of G would appear. The formulae (2.7d) and (2.7e) proposed in

Frankel & Brenner (1991, 1993) were derived by extending the original GTD theory in a quiescent

flow (Frankel & Brenner 1989) to a homogeneous shear flow. For this purpose, Frankel & Brenner

(1991) introduced a transformation which maps the position in a sheared suspension into that in

a stationary one, such that the original theoretical framework in Frankel & Brenner (1989) can

be applied. The transformation resulted in the extra terms −b�)� · G and b�)�b�)� · G/6 in

(2.7d) and (2.7e). In principle, the mapping is only valid if Re(eig(G)) 6 0, thereby restricting the

framework’s applicability to the subset of shear flows which are not strain-dominated.Moreover, if

Re(eig(G)) > 0, the left-hand-side operator on b�)� in (2.7d) might become singular, resulting

in singular b�)� and D�)�. For example, Bearon et al. (2011) demonstrated the singularity

in D�)� as a function of local velocity gradient G in straining-dominated region of a two

dimensional convective cell.

3. Exact transformation into a transport equation

The purpose of this work is to obtain a transport equation which resembles the GTD model

(2.7) proposedby Frankel & Brenner (1991, 1993). The key approach taken by Frankel & Brenner

(1991, 1993) lies in the approximation of the Oldroyd time derivative of the first- and second-

order statistical moments using Ψ in (2.4) for the "phenomenological" effective drift %4B 〈p〉

and diffusivity D�)� . Instead, in this work, we shall start by seeking an exact mathematical

transformation of (2.4) into such a transport equation which resembles (2.7) of the GTD model.

In particular, this transformation will be utilised in §4 as the foundation for a novel transport-

equation-based model, which overcomes the limitations of the GTD model.

We define =(x, C) and 5 (x, p, C) as Ψ(x, p, C) = =(x, C) 5 (x, p, C), so that 5 (x, p, C) at each x

becomes the probability density function in p space satisfying
∫

(?
5 (p)32p = 1. Now, from (2.6),

integration of (2.4) over p-space gives the following equation in the (x, C) space,

mC=(x, C) + ∇x · [(PeB 〈p〉 5 (x, C) + Pe 5 u(x, C))=(x, C)] = �)∇
2
G=(x, C), (3.1)

where

〈p〉 5 (x, C) ≡

∫

(?

p 5 (x, p, C)32p. (3.2)
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Terms Physical meaning

= mC 5 Unsteadiness of 5 in p-space

Pe 5 =u · ∇x 5 Passive advection of 5 in x by the ambient flow u

−�) (∇
2
G 5 )= Translational diffusion of 5 in x

−2�) (∇x 5 ) · (∇x=) Cross-translation diffusion in x between = and 5

PeB (p 5 − 〈p〉 5 5 ) · ∇x=
Change in 5 induced by motility and

gradient of particle distribution in x

PeB=(p · ∇x 5 − 5∇x · 〈p〉 5 )
Change in 5 induced by

motility and inhomogeneity of 5 in x

Table 1: Physical meaning of each term in equation (3.3)

Here, we note that (3.1) appears as a standard advection-diffusion equation. However, in the

absence of the full information of Ψ(x, p, C), it is not solvable because 〈p〉 5 (x, C) is still unknown.

Furthermore, the precise physical implication of the drift term PeB 〈p〉 5 (x, C) remains not clear,

especially compared to the particle drift PeB 〈p〉6 in (2.7a) (Frankel & Brenner 1991, 1993;

Hill & Bees 2002; Manela & Frankel 2003). Therefore, it would be useful if there is an alternative

form of (3.1), in which 〈p〉 5 (x, C) can be replaced with 〈p〉6 (x, C) and the other related terms.

More discussion on the comparison between 〈p〉 5 and 〈p〉6 will follow in §6.1.

Multiplying (3.1) by 5 (x, p, C) and subtracting it from (2.4) give

= mC 5 + (Pe 5 u · ∇x 5 − �)∇
2
G 5 )= − 2�) (∇x 5 ) · (∇x=)

+ PeB (p 5 − 〈p〉 5 5 ) · ∇x= + PeB=(p · ∇x 5 − 5∇x · 〈p〉 5 )

+ =L? (x, C) 5 = 0, (3.3)

each term of which may be interpreted physically as described in Table 1. Next, we introduce the

following set of linear equations which use each term in (3.5) as the driving term:

L? (x, C) 5D (x, p, C) = Pe 5 u · ∇x 5 , (3.4a)

L? (x, C) 5�)
(x, p, C) = −�)∇

2
G 5 , (3.4b)

L? (x, C)b�)
(x, p, C) = −2�)∇x 5 , (3.4c)

L? (x, C)b2 (x, p, C) = PeB (p − 〈p〉 5 ) 5 , (3.4d)

L? (x, C) 52 (x, p, C) = PeB (p · ∇x 5 − 5∇x · 〈p〉 5 ), (3.4e)

L? (x, C) 5mC (x, p, C) = mC 5 . (3.4f )

Here, the solutions 5★ and b★, with (·)★ indicating any subscript above, are subjected to the integral

condition
∫

(?
5★3

2p = 0 or
∫

(?
b★3

2p = 0, so as not to contain the homogeneous solution. This

enables us to uniquely define the solutions to (3.4). Also, given (2.6), (3.4) is valid if integration

of the right-hand-side of each of (3.4) over p-space is zero, and this is ensured by the form of

(3.3). Lastly, we note that the introduced variables are still functions of both x and C, because L?

can have coefficients varying in x and 5 depends on both x and C. With the introduced variables,

(3.3) can be rewritten as

[

L? (b�)
+ b2)

]

· ∇x= +
[

L? ( 5D + 5�)
+ 52 + 5mC + 5 )

]

= = 0. (3.5)

This leads to
[

b�)
+ b2

]

· ∇x= +
[

5D + 5�)
+ 52 + 5mC + 5

]

= = = 6, (3.6)
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Terms Physical meaning

〈p〉6 Averaged motility of individual particle from the homogeneous solution of L?

VmC
Drift due to interaction between particles’ orientational dynamics

and the unsteadiness of 5 in p-space

VD
Drift due to interaction between particles’ orientational dynamics

and passive advection of 5 in x by the flow field u

V2
Drift due to interaction between particles’ motility

and the inhomogeneity of particles’ orientational dynamics in x

V�)

Drift due to interaction between particles’ orientational dynamics

and translational diffusion of 5 in x

D�)

Dispersion from interaction between particles’ orientational dynamics

and the dispersion of = and 5 due to translational diffusion of 5 and =

D2 Dispersion due to interaction between particles’ motility and orientational dynamics

Table 2: Physical meaning of each derived term in equation (3.11)

where the homogeneous solution 6(x, C; p), defined by

L? (x, C)6(x, C; p) = 0 subject to (3.7a)
∫

(?

6(x, C; p)32p = 1, (3.7b)

is added with = which can be obtained by integrating (3.6) over p space.

Note that (3.6) is merely a different form of (3.3). Multiplying p by (3.6) and integrating in

p-space then yield

(D�)
+ D2) · ∇x= +

[

VD + V�)
+ V2 + VmC + 〈p〉 5

]

= = =〈p〉6 , (3.8)

where

V★(x, C) =

∫

(?

p 5★(x, p, C)3
2p, (3.9)

D★(x, C) =

∫

(?

pb★(x, p, C)3
2p (3.10)

with (·)★ indicating any of the subscripts used in (3.4).

Now, replacing =〈p〉 5 in (3.1) with that of (3.8) leads to the following transport equation:

mC= + ∇x ·
[

(Pe 5 u + PeB (〈p〉6 − VD − V�)
− V2 − VmC ))=

]

= �)∇
2
G= + PeB∇x · (D�)

+ D2) · ∇x=. (3.11)

The important benefit of (3.11) is that it has the mathematical structure comparable to (2.7a) of

the GTD model, as they share PeB 〈p〉6 representing the average motility of individual particles.

Furthermore, this is an exact transport equation directly obtained from (2.4) without making any

assumptions. However, it should be mentioned that (3.11) is not the only transport equation one

can obtain from (2.4) – indeed, we already have retrieved a different form of a transport equation

(3.1) from (2.4). This is essentially the consequence of reducing the dimensions of the given

system (2.4) from the (x, p)-space to just x-space. In fact, the step from (3.6) to (3.8) implies that

there can be as many versions of (3.8) as one can make a different choice for the vector in place

of p (i.e. infinitely many). These arbitrary equations can then be summed with (3.1) to get some

transport equations. However, the particular choice p as the multiplication factor for this step is
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probably the most physically relevant because the resulting expression in (3.8) decomposes 〈p〉 5
in (3.1) into the averaged motility of individual particle PeB 〈p〉6 and the other terms from (2.4).

Hence, each term in (3.11) would also admit physical implications, as listed in table 2. More

importantly, later in §4.2, we will further show how 〈p〉6 and D2 in (3.11) can be related to the

effective drift and diffusivity in (2.7a) of the GTD model. Lastly, it is also important to note that

D�)
and D2 in (3.11) do not necessarily describe a diffusion process, as they are not guaranteed

to be either symmetric or positive definite. Therefore, one should be careful in understanding their

actual roles, and, in this sense, (3.11) cannot precisely be referred to as an advection-diffusion

equation. More discussions on this issue will follow in §4.2 and §6.2.

4. A new transport equation model using local flow information

While the transport equation in (3.11) is obtained without making any assumption to (2.4), the

formulae for V★ and D★ given in (3.4) are based on 5 = Ψ/=, requiring the full knowledge of

Ψ (i.e. the solution to (2.4)). Therefore, the transformation discussed in §3 does not alleviate the

difficulty related to the computational cost of the full Smouchowski equation (2.4). To resolve

this issue, in this section, we will combine the transformation technique leading to (3.8) with a

multiple time-scale asymptotic analysis. This results in an approximated form of (3.11) utlising

only the local flow information (i.e. local approximation).

4.1. Local approximation of the transformed transport equation

First, we assume PeB (≡ n) ≪ 1, Pe 5 . $ (n) and �) . $ (n), and define P̃e 5 = Pe 5 /n

and �̃) = �) /n . Physically, these assumptions imply that the timescale in the orientational p-

space is much faster than that in x-space (i.e. quasi-steady assumption). Hence, the orientational

component of Ψ (i.e. 5 (x, p, C)) will first relax to quasi-equilibrium in p-space while the x-

dependency of Ψ is still evolving slowly. This then enables us to introduce a slowly-varying time

scale ) = nC for the dynamics of Ψ in x-space. The standard multiple-scale asymptotic analysis

is subsequently applied by expanding Ψ = Ψ(0) + nΨ(1) + n2Ψ(2) + $ (n3). Following a similar

transformation to that in §3 and retaining the terms up to $ (n2) (see appendix A for further

details), we derive an approximated transport equation given by

mC= + ∇x ·
[

PeB
(

〈p〉6 + P̃e 5 u
)

= − Pe2
B

(

V6,D + V6,�)
+ V6,2 + V6,m)

)

=
]

≈ PeB �̃)∇
2
G= + Pe2

B∇x ·
[

(D6,2 + D6,�)
)∇x=

]

(4.1)

for the transport of =(x, C), where the drifts and dispersion coefficients are defined by (3.9-3.10)

and

L? (x, )) 56,D (x, ) ; p) = P̃e 5 u · ∇x6, (4.2a)

L? (x, )) 56,�)
(x, ) ; p) = −�̃)∇

2
G6, (4.2b)

L? (x, ))b6,�)
(x, ) ; p) = −2�̃)∇x6, (4.2c)

L? (x, ))b6,2 (x, ) ; p) = (p − 〈p〉6)6, (4.2d)

L? (x, )) 56,2 (x, ) ; p) = (p · ∇x6 − 6∇x · 〈p〉6). (4.2e)

L? (x, )) 56,m) (x, ) ; p) = m) 6, (4.2f )

where all 56,★ and b6,★ are subjected to the integral condition
∫

(?
32p = 0. The approximated

transport equation (4.1) is identical to (3.11), except that their coefficients in (4.2) are now

obtained by replacing 5 in (3.4) with 6 in (3.7a). This is a crucial advantage of (4.1) over (3.11)

because 6 in (3.7a) can be solved pointwisely at each x if the local flow information (i.e. 
 and

E) is known. Therefore, (4.1) no longer requires the full solution to (2.4).

Here, the derivation above is similar to that of the shear trapping in Bearon & Hazel (2015) and



10

Vennamneni et al. (2020). However, in deriving (4.1), we have assumed ) = nC. This time-scale

separation is different from ) = n2C of Bearon & Hazel (2015) and Vennamneni et al. (2020).

We note that V6,★ and D6,★ terms in (4.1) scale with Pe2
B , while the rest of the equation scales

with PeB. Therefore, the effect of these terms appear only at $ (n2), while the rest of the terms

are still non-zero at $ (n). This is contrast to the flows considered in Bearon & Hazel (2015) and

Vennamneni et al. (2020). In their cases, the translational diffusion was negligible (�) = 0), the

averaged orientation of individual particles was not biased (〈p〉6 = 0), and the flow was parallel

such that u · ∇x = 0. Hence, if ) = nC was assumed, the equation at $ (n) would simply lead to the

trivial solution. However, in general, there is no reason that the leading-order equation has to have

such a trivial solution especially in the presence of taxes, translational diffusion, or a non-parallel

flow field. Therefore, these leading order effects require us to retain the scaling ) = nC in this

work.

4.2. Comparison with the GTD model

The GTD model was derived semi-heuristically by evaluating an effective drift and diffusion

coefficient using their definitions given in terms of the Oldroyd time derivative of first and second

statistical moments of particle displacement (Frankel & Brenner 1991, 1993). In contrast, the

local-approximation model in (4.1) was directly derived from the Smoluchowski equation (2.4).

Despite the fundamentally different derivation procedures, (2.7a) of the GTD model and (4.1) of

the local approximation model in this study share a lot in common. Apart from the same flow

advection (Pe 5 u) and diffusion (�) ) terms, they share the same individual particles’ motility

PeB 〈p〉6 and have similar form of effective diffusivity D�)� and dipsersion D6,2 . In particular,

the two models become identical for stationary non-diffusive (Pe 5 = �) = 0) suspensions,

as will be shown below. These similarities suggest that the transformed equation (3.11) and its

local approximation (4.1) are not only mathematically useful but also physically meaningful.

In this subsection, we will make a detailed comparison between the GTD model and the local

approximation model from a theoretical perspective. Further comparisons will follow in §5 with

some flow examples.

(i) Assumptions: Both the GTD model and the local approximation model assume that the

time scale in p-space is much faster than that of x-space (i.e. quasi-steady assumption). As a

result, the intrinsic orientational dynamics of the particles in p-space is not captured by either

of the models, and the unsteadiness in these models are driven by the unsteady flow dynamics

typically at a much larger time scale. However, unlike the GTD, the local-approximation model

does not assume the local homogeneity in the background velocity gradient. As such, we shall

see that this model has an important advantage over the GTD model (see point (ii) and discussion

in §5.2.1).

(ii) Drift: Compared to the drift term PeB 〈p〉6 in the GTD model, the local approximation

model contains extra drift terms, −V6,2 , −V6,D , −V6,�)
and −V6,m) , and they originate from

the transformation in §3. As described in table 2, these terms originate from the complicated

interactions between particles’ orientational dynamics and the particles’ motility, the advection

by the surroundingshear flow and diffusion of particles and the unsteadiness of the prescribed flow

field. Since %4B = n in the local approximation, (4.1) suggests that these terms would relatively

be less important than the drift term PeB 〈p〉6. In this case, the drift term used in the GTD model

remains a good approximation. However, if 〈p〉6 . $ (%4B), the drift caused by these extra terms

becomes important, and, in §5.2.1, we shall demonstrate that such a case does happen in parallel

shear flows, especially through V6,2 .

(iii) Diffusion and dispersion: Further to the given translation diffusion term with the diffusivity

%4B �̃) (= �) ), the local approximation model in (4.1) exhibits the extra terms with the

coefficients D6,2 and D�)
. As discussed in table 2, the former originates from the particles’

motility and the latter from the translational diffusion. In particular, D6,2 obtained from (4.2d)
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and (3.10) exhibits an interesting similarity to D�)� from (2.7d) and (2.7e) in the GTD model.

In fact, (4.2d) for the local approximation model differs from (2.7d) for the GTD model only by

the extra b�)� · G. Also, the GTD model contains b�) �b�)� · G/6 and the enforcement of

symmetry for D�)� in (2.7e) compared to D6,2 in (3.10) for the local approximation model.

However, it is important to mention that these differences are a consequence of extending the

original GTD theory (Frankel & Brenner 1989) to shear flow (Frankel & Brenner 1991, 1993),

and they do not appear compared to the original GTD model (Frankel & Brenner 1989). Having

said this, it should be stressed that, in the case of the local approximation model, there is no

reason to enforce D6,2 and D�)
to be symmetric, as they are directly derived by approximating

the Smolouchowski equation (2.4). As such, the related processes are not necessarily diffusion.

More detailed discussion on the matter will follow in §6.2.

(iv) Stationary and uniformly sheared suspensions: Having compared the two models, there

are special cases where they show stronger similarities. Firstly, if the suspension is quiescent with

negligibly small translational diffusivity �) , the GTD model and the local approximation model

are identical (compare the model in §2.2and that in §4.1). Indeed, in this case, V6,★ = 0, D6,�)
= 0

and D6,2 = D�)� in (4.1), confirming the physical relevance of the local approximation model

proposed in this work. Secondly, if the suspension is immersed into a uniform parallel shear flow

with negligible �) , the only difference at the steady state is between D6,2 and D�)�. More

specifically, the difference arises from the extra b�)� · G in (2.7d) and b�)�b�)� · G/6 in

(2.7e). Therefore, by the zero components in G, the cross-stream direction component in the

tensors D6,2 and D�)� would be equal in a uniform parallel shear flow. However, as discussed in

§2.2, the b�)� ·G term in (2.7d) can cause singularity in D�)� if Re(eig(G)) > 0. (In a parallel

shear flow, the singularity does not arise because Re(eig(G)) = 0.) If the flow is strain-dominant,

like the flow near a stagnation point (Bearon et al. 2011), then D�)� might become singular. By

contrast, the local approximation does not have this term for D6,2 in (4.2d). Therefore, as long as

the orientational dynamics operator L? is mathematically well-posed, the local approximation

model does not suffer from this issue, offering a significant practical advantage over the GTD

model. In the following section, we shall make a more detailed comparison by considering a

couple of parallel flow examples.

5. Flow examples

Now, we will test the accuracy of the local approximation model proposed in §4. To this end, we

will numerically solve the particle distribution equation of the local approximation model and the

GTD model, and their predictions will then be compared with the full analytical and numerical

solution to the Smoluchowski equation (2.4). For simplification, we will consider suspension of

bottom-heavy motile (i.e. gyrotactic) micro-organisms in one-dimensional parallel shear flows.

5.1. Numerical method

Our numerical method is loosely based on the Spherefun package (Townsend et al. 2016),

which utilises the double Fourier sphere (DFS) method to represent the spherical space p. The

method transforms the longitude and latitude coordinates (q, \) ∈ [−c, c] × [0, c] into two

independent Fourier space variables. Here, we follow the definition of Townsend et al. (2016, p.

C405) and define q and \ such that each component of p = [?G , ?H , ?I]
) can be written as

?G = cos q sin \, ?H = sin q sin \, ?I = cos \. (5.1)

Periodicity in the spherical space was maintained by enforcing the reflectional symmetry in its

transformed coefficients (see Townsend et al. 2016, p. C406). The ∇p · [ ¤pΨ] operation and the

p-dependent part of the ∇x · [ ¤xΨ] operation in (2.4) were completely implemented in the spectral

space, such that no Fourier transform is necessary during time-marching. Meanwhile, based
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on the parallel assumption in the physical space x, we have only discretised the cross-stream

direction (G or I, depending on the prescribed flow field) by a 6th order central difference scheme

with an equispaced grid. Time integration was conducted semi-implicitly, in which the ∇2
p term

was advanced with a second-order Crank-Nicolson method while the rest are marched with a

third-order Runge-Kutta method. The matrix inversion arising in the Crank-Nicolson method

was solved using the Helmholtz algorithm in the Spherefun package. For simplicity, we have

implemented periodic boundary condition. The method was validated by comparing the p-space

results with a previous solver (Hwang & Pedley 2014b) and with the analytical solution of the

following example.

Since the numerical solution of the Smoluchowski equation will be compared with the steady

results from the GTD model, we have also computed the drifts and effective diffusivity/dispersion

of the two models ((2.7) and (4.2)) by directly inverting the linear Lp operator in spectral space.

The resulting drifts and effective diffusivity/dispersion are then used to solve the steady solutions

(see (5.2-5.4)) by direct inversion in the discretised x-space. The method was also validated with

the previous solver used to compute the GTD model (Fung et al. 2020).

5.2. A suspension of gyrotactic active particles in a prescribed vertical flow
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Figure 1: Comparison of the steady-state particle distributions given by the direct
integration of (2.4) (black solid line, = 5 ,B), the local approximation model of §4 (blue

dot-dashed line, =6,B) and the GTD model (red dashed line, =�) �) of suspensions of (0)
spherical and strongly gyrotactic (V = 2.2, U0 = 0), (1) non-spherical and strongly
gyrotactic (V = 2.2, U0 = 0.31), (2) non-spherical and weakly gyrotactic (V = 0.21,

U0 = 0.31) and (3) non-spherical and non-gyrotactic (V = 0, U0 = 0.31) particles. The
suspensions are subjected to a vertical flow , (G) = − cos(cG) − 1 with PeB = 0.25 and

Pe 5 = 1.

In this example, we will revisit the classical problem of the formation of the gyrotactic plume

(Kessler 1986; Hwang & Pedley 2014a; Jiang & Chen 2020; Fung et al. 2020) by bottom-heavy



13

motile micro-organisms (referred to as particles hereafter). For simplicity, we do not take into

account how the particles may influence the flow via buoyancy or hydrodynamic interactions.

Instead, we apply a prescribed parallel shear flow to the suspension u(x) = [0, 0,, (G)]) , in

which G is the horizontal direction and I is the vertical direction pointing upwards (i.e. the same

direction as k).

Four types of idealised motile micro-organisms are considered: a strongly gyrotactic and

spherical particle (V = 2.2, U0 = 0), a strongly gyrotactic but non-spherical particle (V = 2.2,

U0 = 0.31), a weakly gyrotactic non-spherical particle (V = 0.21, U0 = 0.31) and non-gyrotactic

and non-spherical particle (V = 0, U0 = 0.31). The parameters V = 2.2 and U0 = 0.31 for

the strongly gyrotactic particle is based on Chlamydomonas augustae (Pedley & Kessler 1990;

Croze et al. 2010), while the gyrotactic parameter V = 0.21 for the weakly gyrotactic particle

is based on Dunaliella salina (Croze et al. 2017). Since we cannot to find any experimental

value of U0 for D. salina, we will assume the weakly gyrotactic particle share the same value of

U0 = 0.31 for comparisons. Lastly, we have also considered a suspension of non-spherical and

non-gyrotactic particles for completeness.

In §5.2.1-5.2.2, we first assume that the gyrotactic particle undergoes no translational diffusion

and that the dilute suspension is well described by (2.4) with �) = 0. Later in §5.2.3, we will add

translational diffusion (i.e. finite �) ) to the particles to show the extra drift and dispersion that

may arise from it. Also, to avoid the additional complication that may arise due to the boundary

conditions in the physical space (e.g. wall accumulation of Ezhilan & Saintillan 2015), we will

assume a periodicity of 2ℎ∗ in the G-direction. Therefore, the shear flow profile , (G) is periodic

in G ∈ [−1, 1]. For convenience, we shall also define the shear profile ((G) = −(Pe 5 /2)mG, (G)

with , (G) = − cos(cG) − 1. The initial condition of the suspension is given to be uniform in both

(x, p)-space.

5.2.1. Steady solution and shear trapping

In this subsection, we shall first compare the converged steady state with the prediction from §4

and the GTD model. Figure 1shows the particle distribution at converged steady state = 5 ,B after the

numerical integration of the Smoluchowski equation for the suspensions of the idealised particles.

Here, a non-negligibly large value of %4B (≡ 0.25) is deliberately chosen to highlight the deviation

of the prediction by the local approximation model from the solution to the full Smoluchoski

equation. In the case of spherical gyrotactic particle suspension (figure 10), an analytical solution

(B 1) has been found for the steady state of spherical gyrotactic particle suspension in a vertical

flow (appendix B) and agrees very well with the numerical solution. In figure 1, we have also

plotted the steady-state particle distribution given by the local approximation model in §4 (=6,B)

and by the GTD theory (=�)�). For strongly gyrotactic particles (figures 10,1), the two models

give predictions very close to the exact results from the direct integration of the Smoluchowski

equation, although the GTD model is found to predict slightly better than the local approximation

model. However, for weakly gyrotactic particles (figure 12), the small PeB local approximation

outperforms the GTD model. Lastly, if the particles are non-spherical and non-gyrotactic, the

local approximation makes predictions almost identical to the exact result from the Smoluchowski

equation. However, the GTD model fails to predict the aggregation of particles at regions of rapid

change of shear rate, giving a uniform distribution instead.

Now, we investigate the performance of the local approximation model and the GTD model

in terms of the coefficients of the transport equation given by each model. For a suspension of

gyrotactic particles with �) = 0 in a prescribed parallel shear flow, the exact steady solution for

the particle distribution = 5 ,B = =(G,∞) is given from (3.11) by

mG [(PeB 〈?G〉6 − PeB+G,2)= 5 ,B] = PeBmG [�GG,2mG= 5 ,B] . (5.2)

Similarly, the steady solution to the local approximation model in (4.1), denoted by =6,B (G), is
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Figure 2: The values of 〈?G 〉 5 (blue, solid), 〈?G 〉6 (blue, dashed), �GG,2 (red, solid),
PeB�GG,6,2 (red, dashed), +G,2 , (green, dashed) and PeB+G,6,2 (green, dashed) at the

steady state of a suspension of (0) spherical and strongly gyrotactic (V = 2.2, U0 = 0), (1)
non-spherical and strongly gyrotactic (V = 2.2, U0 = 0.31), (2) non-spherical and weakly

gyrotactic (V = 0.21, U0 = 0.31) and (3) non-spherical and non-gyrotactic (V = 0,
U0 = 0.31) particles. The suspensions are subjected to a vertical flow , (G) = − cos(cG)

with PeB = 0.25 and Pe 5 = 1.

given by

mG [(PeB 〈?G〉6 − Pe2
B+G,6,2)=6,B] = Pe2

BmG [�GG,6,2mG=6,B] . (5.3)

Finally, the steady solution to the GTD model (2.7), =�)� (G), is given by

mG [PeB 〈?G〉6=�)�] = Pe2
BmG [�GG,�) �mG=�)�] . (5.4)

Figure 2 shows the G components of the drift terms and the phenomenological

diffusion/dispersion coefficients. First, we compare the phenomenological diffusion/dispersion

from the local approximation method and the GTD model with those from the exact transformation

(see the right-hand side of (5.2-5.4)). We note from the discussion in §4.2that �GG,6,2 = �GG,�)�

for G considered in this case, as most of its components are zeros: compare �GG,6,2 from (4.2d)

and (3.10) with �GG,�)� from (2.7d) and (2.7e). Furthermore, when particles are spherical,

�GG,2 can be directly extracted as a function of the local vertical shear rate ( using the analytic

solution to (2.4) given in appendix B. In figure 3, �GG,2, �GG,6,2 and �GG,�) � are plotted as a

function of the vertical shear rate (. It is found that PeB�GG,6,2 (and PeB�GG,�)�) approximates

�GG,2 quite well for all the range of ( considered. In general, �GG,2 remains a good approximation

for �GG,6,2 for all the four cases considered at all the horizontal location G (figure 2). The good

approximation of �GG,2 by PeB�GG,�)� also explains why the GTD model has consistently

been found to outperform the FP model of Pedley & Kessler (1990) (Croze et al. 2013, 2017;

Fung et al. 2020).

As for the left-hand side of (5.2-5.4), all methods share the same 〈?G〉6 term. However, the
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Figure 3: The GG component of D2/PeB (black line), D6,2 (blue dot-dash line) and D�)�
(red dashed line) as a function of the local vertical shear ((G) for spherical gyrotactic

particles (V = 2.2,U0 = 0), in which D2/PeB is computed from 5B (p) of Appendix B. Note
that D6,2 overlaps with D�)� in the figure because they share the same formulae.

local approximation method gives +G,6,2 as an approximation of +G,2, while GTD does not have

an equivalent term. Given that the local approximation model shares the same right-hand side as

the GTD model for the G component, the inclusion of+G,6,2 becomes the differentiating factor for

the performance of the two models in these examples. As shown in figure 2, +G,6,2 follows +G,2

closely in the weakly gyrotactic cases (figures 22,3), but poorly in the strongly gyrotactic cases

(figures 20,1). Hence, the local approximation model performs better than the GTD model in

figure 1(2), but slightly worse in figures 1(0) and 1(1). However, in the strongly gyrotactic cases,

the left-hand side of (5.2) and (5.3) are dominated by 〈?G〉6, so the poor estimation of +G,2 does

not strongly affect the overall performance of the local approximation model (figures 12,3).

Given the observation in the weakly gyrotactic cases (figures 22,3), it would be essential to

model the drift term with V6,2 in (4.1) appropriately. Here, we further discuss the importance of

this term from a physical perspective. The term V6,2 arises from the inhomogeneity of the local

flow field (i.e. shear ((G) in this example). Given the GTD theory assumes a locally homogeneous

shear flow (i.e. a quasi-homogeneous assumption), it cannot capture the effect of inhomogeneity

in the shear ((G) (see §4.2, point (i)), as is evident from the lack of an equivalent term for V6,2 in

(2.7a). The form of (4.2e) for V6,2 suggests that there are two physical mechanisms at play that

contribute to V6,2 . One is the net flux caused by different levels of gyrotactic drift at different

levels of shear at the adjacent location. The flux mainly manifests in the −6∇x · 〈p〉6 term in

(4.2e), which diminishes in the absence of gyrotaxis. The other is the shear trapping mechanism

of Bearon & Hazel (2015) and Vennamneni et al. (2020), which arises from the ‘eccentric shape’

of the particles. In the presence of inhomogeneous shear, the non-spherical shape leads to some

inhomogeneity of 6 in the x-space (for the detailed mechanism, see Vennamneni et al. 2020).

Therefore, having a non-uniform shear in x-space can lead to non-zero ∇x6, even if the particle

does not exhibit a biased-motility (i.e. 〈p〉6 = 0). This behaviour would primarily manifest in the

p · ∇x6 term in (4.2e).

The importance of the drift term with V6,2 can further be understood by examining the scaling

of the four cases in figures 1 and 2. In the first case where the particles are spherical and

strongly gyrotactic (U0 = 0, V ∼ $ (1)), the form of (4.1) implies %42
B+G,6,2 ∼ $ (%42

B), an

order-of-magnitude smaller than PeB 〈?G〉6: i.e. 〈p〉6 ≫ PeB+G,6,2. This behaviour remains the

same in the second case where the particles are non-spherical and strongly gyrotactic (U0 ≠ 0,

V ∼ $ (1)). However, in the third case where the particles are spheroidal and weakly gyrotactic

(U0 ∼ V ∼ $ (%4B)), 〈?G〉6 ∼ %4B+G,6,2 due to 〈?G〉6 ∼ $ (%4B) from V ∼ $ (%4B). Hence, if

the particles are weakly gyrotactic, +G,6,2 is of significance, and the local approximation model
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performs better than the GTD model. Lastly, for the spheroidal and non-gyrotactic particles

(U0 ≠ 0, V = 0),+G,6,2 becomes dominant while 〈?G〉6 = 0. In this case, +G,6,2 is purely from the

shear trapping mechanism proposed by Bearon & Hazel (2015) and Vennamneni et al. (2020).

The GTD model then performs very poorly due to the lack of an equivalent term of +G,6,2 in

(5.4): indeed, =�)� from the GTD model in figure 1(3) gives a uniform distribution even though

the exact solution = 5 ,B shows a non-trivial wavy distribution. By the inclusion of the drift term

+G,6,2, =6,B from the local approximation model recovers the effect of inhomogeneity and gives

an excellent prediction for = 5 ,B obtained from the full Smoluchowski equation (figure 13).

5.2.2. Transient dynamics

In this subsection, we investigate the transient dynamics from the perspective of the exact

transformed equation. Rewriting (3.1) for this example, we have

mC= + PeBmG
[

〈?G〉 5 =
]

= 0, (5.5)

in which 〈?G〉 5 can be expanded through (3.8) into

〈?G〉 5 = 〈?G〉6 −+G,2 −+G,mC − �GG,2
mG=

=
. (5.6)

Substituting (5.6) into (5.5) yields the transport equation

mC= + PeBmG
[

(〈?G〉6 −+G,2 −+G,mC )=
]

= mG�GG,2mG=. (5.7)

Movies 1-4 show how the balance in (5.6) evolves in time from a uniform suspension. In the

beginning, all terms were zeros, except for 〈?G〉6 and the unsteadiness in 5 which balance out

each other. Note that the unsteadiness in 5 was transformed into a drift+G,mC in transport equation

(see (4.2f)). As the suspension starts to evolve, the p-space evolves first in the time scale of order

of unity (i.e. the fast time scale in §4) – note that the time scale in the p-space is 1/3∗A (see §2).

The fast-changing 5 drives the drift+G,mC away from 〈?G〉6 in the beginning, resulting in non-zero

〈?G〉 5 in (5.6), which in turn generates the unsteadiness in = in (5.5). Therefore, =(G, C) does not

start evolving until +G,mC has become significantly different from 〈?G〉6. For C & O(1), +G,mC is

close to zero, indicating that 5 has reached the quasi-steady regime, justifying the assumption of

§4. It is also in this time interval where +G,2 ≈ +G,6,2 and �GG,2 ≈ �GG,6,2, implying that the

local approximation in §4 would be valid after this short initial transient.

For C & O(1), =(G, C) evolves slowly, while 〈?G〉 5 diminishes towards zero, mainly due to the

increasing magnitude of (mG=/=) to balance 〈?G〉6 in (5.6). As 〈?G〉 5 vanishes, =(G, C) reaches

steady equilibrium. During this slow transient period, 5 also evolves slowly, but slow enough such

that +G,mC remains insignificant. Note that, in this example, the prescribed flow field was steady,

such that+G,6,m) vanishes. If the prescribed flow were unsteady in the long timescale) , we would

also expect +G,mC to be significant and to be well approximated by +G,6,m) . In all the examples

considered, �GG,2 remains close to the approximation �GG,6,2. In weakly and non-gyrotactic

suspensions,+G,2 does not not evolve far from+G,6,2 either, but in strongly gyrotactic suspension,

+G,2 is found to change direction as C → ∞. As mentioned in §5.2.1, +G,2 is considerably small

compared to 〈?G〉6 in this case. Therefore, regardless of the fact that +G,6,2 differs from +G,2, the

local approximation model still performs well.

5.2.3. Translational diffusion

Lastly, we will consider non-zero translational diffusion for the previous examples. Micro-

algae such as Chlamydomos and Dunaliela are often considered to have negligible thermal

diffusion given their relatively large sizes (see reviews by Pedley & Kessler 1992; Saintillan

2018; Bees 2020). While their random walk is often modelled only through the rotational

diffusion by assuming that the intra-cellular biochemical noise only affects the rotational motion,
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in theory, there is no reason that the randomness can be modelled solely through the rotational

diffusion without translational diffusion because the swimming mechanisms very often involve

sophisticated noisy beating dynamics of cilia and flagella (e.g. Wan & Goldstein 2014). Given

the ambiguity in choosing a biologically relevant value of �) , here we will simply consider some

values for �) to demonstrate the role of �) in the transport equation, i.e. V�)
and D�)

.

We consider the steady-state particle distribution at an arbitrary value of �) = 0.01, which

is chosen to be of similar magnitude as PeBD2 . This arbitrary choice was made to highlight the

potential role of the translational diffusion. Also, for biological micro-particles, any �) value

larger than PeBD2 would be physically unrealistic (c.f. experimental measurements of Croze et al.

(2017)). We have also computed the steady-state at �) = 0.002, but since the results are

qualitatively the same, we shall only present the �) = 0.01 case here.

The exact steady-state particle distribution = 5 ,B (G) from the Smoluchowski equation (2.4) is

given by

mG [(PeB 〈?G〉6 − PeB (+G,2 ++G,�)
))= 5 ,B] = mG [(�) + PeB (�GG,2 + �GG,�)

))mG= 5 ,B], (5.8)

and the one for the local approximation model =6,B derived in §4 is given by

mG [(PeB 〈?G〉6−Pe2
B (+G,6,2++G,6,�)

))=6,B] = mG [(�) +Pe2
B (�GG,6,2+�GG,6,�)

))mG=6,B] . (5.9)

Note that Pe2
B+G,6,�)

and Pe2
B�GG,6,�)

scale with PeB�) from (4.2b) and (4.2c). Meanwhile,

=�)� is given by

mG [PeB 〈p〉6=�)�] = mG [(�) + Pe2
B�GG,�) �)mG=�)�] . (5.10)

As shown before in §4.2, the GTD model gives �GG,�)� = �GG,6,2. However, it does not offer

any approximations for +G,2, +G,�)
and �GG,�)

. Therefore, any difference between =6,B and

=�)� has to come from +G,6,2, +G,6,�)
and �G,6,�)

.

Figure 4 shows the steady-state particle distributions with �) = 0.01 for the same parameters

considered in figure 1. One can see that the introduction of non-zero �) has further smoothed out

the particle distributions in all cases considered by comparing figures 1 and 4. However, �) does

not seem to have significantly altered most of the conclusions drawn in §5.2.1, except that the

local approximation model now performs better than the GTD model even in strongly gyrotactic

suspensions. This improved performancecan be attributed to several factors. Firstly,+G,2 becomes

closer to the approximation +G,6,2 in strongly gyrotactic suspensions in the presence of �) , as

shown by figures 5(0,1) in comparisonwith figures 2(0,1). Secondly,�) gives rise to+G,�)
(cyan

solid lines in figure 5), which can be as large in magnitude as +G,2 in strongly gyrotactic cases

(figures 50,1). Since the GTD model does not contain either V2 or V�)
, the inclusion of +G,6,2

and+G,6,�)
approximating+G,2 and+G,�)

gives a better performance of the local approximation

model. Thirdly, the introduction of �) also gives rise to �GG,�)
(magenta solid lines in figure

5). Despite being not as large as �GG,2 overall, �GG,�)
has variations over G comparable to that

of �GG,2 (magenta and red solid lines in figure 5). Therefore, the local approximation model,

which contains the terms with +G,6,2, +G,6,�)
and �G,6,�)

, predicts particle distributions better

than the GTD model.

Comparing the strongly gyrotactic (figure 51) with the weakly gyrotactic case (figure 52), one

can also conclude that the effect of +G,�)
and �GG,�)

are much stronger in strongly gyrotactic

suspensions. Since+G,�)
and �GG,�)

are driven by ∇x 5 and ∇2
x 5 according to (3.4b) and (3.4c),

the large+G,�)
and �GG,�)

are likely driven by larger variation of 5 in G induced by the stronger

gyrotaxis.

Lastly, it is worth noting that �GG,�)
and �GG,6,�)

can be negative for some domain in G.

As mentioned in §3, the terms with �GG,�)
and �GG,6,�)

do not necessarily represent diffusion

– they depict dispersive behaviour introduced by translational diffusion. Therefore, negative

diagonal values in D�)
are allowed, and they physically represent possible particle aggregation
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Figure 4: Comparison of the steady-state particle distributions given by the direct
integration of (2.4) (black solid line, = 5 ,B), the local approximation of §4 (blue

dot-dashed line, =6,B) and the GTD model (red dashed line, =�) �) of suspensions of (0)
spherical and strongly gyrotactic (V = 2.2, U0 = 0), (1) non-spherical and strongly
gyrotactic (V = 2.2, U0 = 0.31), (2) non-spherical and weakly gyrotactic (V = 0.21,

U0 = 0.31) and (3) non-spherical and non-gyrotactic (V = 0, U0 = 0.31) particles. The
particles are diffusive such that �) = 0.01. The suspensions are subjected to a vertical

flow , (G) = − cos(cG) − 1 with PeB = 0.25 and Pe 5 = 1.

due to interaction between the cross-dispersion between = and 5 due to x-space diffusion and the

particles’ orientational dynamics (see (3.4c) and table 2). The same interpretation can also be

applied to the approximation D6,�)
. More discussion on the implication of the these dispersion

tensors will follow in §6.2.

5.3. A suspension of gyrotactic active particles subjected to a prescribed horizontal flow

In this section, we consider a horizontal shear flow u = [* (I), 0, 0]) in the gyrotactic

suspension instead of a vertical shear flow. Similar to §5.2, we first assume an infinite x-domain

with a periodicity in I and no translational diffusion. The horizontal shear flow is prescribed as

* (I) = cos (cI). We also introduce the shear profile ((I) = (Pe 5 /2)mI* (I). As noted in §4.2,

the cross-stream dispersion �II,6,2 from the local approximation is the same as �II,�) � from

the GTD model. It is similar to how �GG,6,2 = �GG,�)� in the vertical shear case. Figure 6(0)

shows that the steady-state particle distribution profile =(I) for strongly gyrotactic suspension

(V = 2.2,U0 = 0.31) computed from the local approximation model and the GTD model is

similar. Similar to the case studied in §5.2.1, the small differences come from the presence of

+I,6,2 , which is relatively small when compared to 〈p〉6 (figure 70). However, in figure 6(1),

the steady-state particle distribution profile =(I) for weakly gyrotactic non-spherical particles

(V = 0.21,U0 = 0.31) computed from the local approximation model is more accurate than that

of the GTD model due to the presence of +I,6,2 , which is consistent with the prediction of §4.2.
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Figure 5: The values of 〈?G 〉 5 and 〈?G〉6 (blue), �GG,2 and PeB�GG,6,2 (red), +G,2 and
PeB+G,6,2 (green), �GG,�)

and PeB�GG,6,�)
(magneta), +G,�)

and PeB+G,6,�)
(cyan)

calculated using the steady-state 5 (x,p,∞) (solid lines) and 6(x,∞; p) (dashed lines) of a
suspension of (0) spherical and strongly gyrotactic (V = 2.2, U0 = 0), (1) non-spherical
and strongly gyrotactic (V = 2.2, U0 = 0.31), (2) non-spherical and weakly gyrotactic
(V = 0.21, U0 = 0.31) and (3) non-spherical and non-gyrotactic (V = 0, U0 = 0.31)

particles. The particles are diffusive such that �) = 0.01. The suspensions are subjected
to a vertical flow , (G) = − cos(cG) − 1 with PeB = 0.25 and Pe 5 = 1.

(0)

-1 -0.5 0 0.5 1
0.44

0.46

0.48

0.5

0.52

0.54

0.56 (1)

-1 -0.5 0 0.5 1
0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

Figure 6: Comparison of the steady-state particle distributions given by the direct
integration of (2.4) (black solid line, = 5 ,B), the local approximation of §4 (blue

dot-dashed line, =6,B) and the GTD model (red dashed line, =�) �) of suspensions of (0)
strongly gyrotactic particles (V = 2.2, U0 = 0.31) and (1) weakly gyrotactic particles

(V = 0.21, U0 = 0.31). The suspensions are subjected to horizontal shear flow
* (I) = cos(cI) with PeB = 0.25 and Pe 5 = 1.
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Figure 7: The values of 〈?I 〉 5 (blue, solid), 〈?I 〉6 (blue, dashed), �II,2 (red, solid),
PeB�II,6,2 (red, dashed), +I,2 , (green, dashed) and PeB+I,6,2 (green, dashed) at the

steady state of a suspension of (0) strongly gyrotactic particles (V = 2.2, U0 = 0.31) and
(1) weakly gyrotactic particles (V = 0.21, U0 = 0.31). The suspensions are subjected to a

horizontal shear flow * (I) = cos(cI) with PeB = 0.25 and Pe 5 = 1.

The explanation for the better performance of the local approximation method is the same as that

in §5.2.1, in which the inclusion of +I,6,2 is significantly improving the prediction from the local

approximation (figure 71).

The transient dynamics is also investigated for the horizontal flow. As shown in movies 5-

6, the simulation initially shows the dominant balance between +I,mC and 〈?I〉6. At the time

scale of order unity, +I,mC diminishes quickly, driven by the fast-changing 5 . At C & O(1),

+I,mC becomes insignificant, indicating that 5 has reached the quasi-steady regime. Meanwhile,

the local approximation accurately predicts +I,2 ≈ +I,6,2 and �II,2 ≈ �II,6,2 , similar to how

+G,2 ≈ +G,6,2 and �GG,2 ≈ �GG,6,2 in §5.2.2. However, unlike the vertical flow cases, movies

5-6 show that 〈?I〉 5 does not tend to zero as C → ∞ in these horizontal flow cases. Instead,

figure 7 shows that they stay in roughly the same order as 〈?I〉6 at steady equilibrium. Moreover,

both +I,6,2 and �II,6,2 remains good approximations to +I,2 and �II,2 respectively for a long

time, even when particles are strongly gyrotactic. Therefore, when the flow is horizontal, the local

approximation model outperforms the GTD even in strongly gyrotactic suspensions.

6. Discussion

6.1. Physical implication of the transformation

This work sets out to seek a model transport equation that can predict the particle distribution

given by the Smolouchowski equation without solving the equation directly. To achieve the goal,

in §3, we have shown how the Smolouchowski equation (2.4) can be transformed into a transport

equation by expanding 〈p〉 5 = in the integrated equation (3.1) into 〈p〉6= and other drifts V★=

and dispersions/diffusions D★∇x=. This expansion of 〈p〉 5 contrasts with the GTD model, which

takes the averaged orientation 〈p〉6 of individual particle directly as the drift.

To better show the implication of this transformation, here we rewrite the procedures in §3

under the assumption of parallel flow and �) = 0. We can rewrite (3.1) as

mC=(x, C) + ∇x · [(PeB 〈p〉 5 (x, C)=] = 0, (6.1)

in which 〈p〉 5 = can be expanded through (3.8) or

〈p〉 5 = 〈p〉6 − V2 − VmC − D2
∇x=

=
, (6.2)
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into the transport equation

mC= + PeB∇x

[

(〈p〉6 − V2 − VmC )=
]

= ∇x · D2∇x=. (6.3)

Note that equations (6.1-6.3) are the equivalent of (5.5-5.7) in a multi-dimensional coordinate.

Now, equation (6.1) and the rewritten equation (6.3) yield two different interpretations of ABPs

transport. In (6.1), particles are purely advected by the Eulerian motility flux PeB 〈p〉 5 =, which

is the ensemble-averaged flux of particles coming in and out of a certain control volume at

position x due to the motility of the particle. The flux depends on the orientational and spatial

distribution of particles inside and at the vicinity of the control volume. However, in (6.3), the

average Eulerian motility flux PeB 〈p〉 5 = is decomposed into the flux from the average motility

of individual particles PeB 〈p〉6=, the advective flux due to unsteadiness in particles’ orientational

dynamics −PeBVmC=, the shear trapping flux −PeBV2= and the dispersion flux PeBD2∇x=.

It is evident from (6.2) that the average Eulerian motility flux PeB 〈p〉 5 = is different from

the flux of the average motility of individual particles PeB 〈p〉6=. However, it might also be

counterintuitive at first glance to decipher their differences. Here, the average motility of individual

particles PeB 〈p〉6 is defined as the ensemble average of the self-propelling velocity of individual

particles when subjected to the local velocity gradient or other local factors that may influence

their orientation (e.g. taxes). The average motility of individual particles PeB 〈p〉6 is based on

the average orientation of individual particles 〈p〉6 , which is calculated from the homogeneous

solution (6) to the operator Lp, representing the orientational dynamics of individual particles. It

is a function of the local velocity gradient and the particles’ property only and is independent of

any (x, C)-space configuration. In other words, 〈p〉6 is calculated when the orientational dynamics

(Lp) is decoupled from the rest of the Smoluchowki equation. The resulting average motility

PeB 〈p〉6 provides a Langrangian view of each individual’s motility after being averaged in the

local p-space. Therefore, the average motility flux PeB 〈p〉6= at each (x, C) depends only on the

local velocity gradient at the specified location.

By contrast, the average Eulerian flux PeB 〈p〉 5 = does consider the spatial and orientational

distribution of particles at the nearby location in the (x, C)-space. It is the result of averaging

the particles’ motility PeBpΨ in the Smoluchowski equation (2.4). It includes the flux from the

average motility of individuals PeB 〈p〉6= and other fluxes from drifts and dispersions arising

from the interaction between the orientational dynamics (Lp) and the rest of the Smoluchowski

equation. For example, it includes the effect of the different orientation distribution at the nearby

location, which gives rise to the extra shear trapping flux −PeBV2=, even when the average

motility PeB 〈p〉6 is zero (as demonstrated in §5.2.1, figure 23). It also includes the effect of the

changing orientation over time, which interacts with the orientational dynamics and manifests

as the extra flux −PeBVmC= through the particles’ motility. Lastly, it includes the dispersion flux

PeBD2∇x=, which arises from the distribution of how the particles’ instantaneous motilities are

different from the averaged motility of the particles in the control volume. All the above extra

drifts and dispersions are dependent on the configuration of the suspension in (x, C)-space (c.f.

§5.2.2), in contrast to PeB 〈p〉6 . Therefore, one may interpret %4B 〈p〉6 as the Langrangian view of

each individual’s motility and PeB 〈p〉 5 as the Eulerian view of the overall drift of all the particles

in the suspension at the given location due to the particles’ motility.

The fact that 〈p〉6 is part of 〈p〉 5 in (6.2) physically implies that the averaged motility of

individuals only contributes to part of the overall Eulerian drift caused by particles’ motility. It

also indicates that particles dispersion physically comes from the same Eulerian motility flux

PeB 〈p〉 5 = that includes the effect of other drifting terms. This physical perspective is in stark

contrast to that of the GTD model. The GTD model takes PeB 〈p〉6= directly as the overall motility

flux from its approximation of the temporal growth rate of the first statistical moment (mean),

which is effectively using PeB 〈p〉6= as a first-order approximation to PeB 〈p〉 5 =. Because of this,

it does not capture the drifts like V2 and VmC . Meanwhile, the effective diffusivity Pe2
BD�)�
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is found by asymptotically matching it with the temporal growth rate of the second statistical

moment (variance). Therefore, in the GTD derivation, it is hard to follow how Pe2
BD�)� arises

from the particles’ motility. On the contrary, the transformation introduced in this study has

directly shown how the dispersion arises from the motility of the particle.

Extending the decomposition to a more general ABP suspension, the passive advection and

translation diffusion of particles shall also interact with the orientational dynamics and give rise

to extra drifts and dispersion through the particles’ motility. Indeed, the interactions give rise

to VD , V�)
and D�)

, which has already been introduced in §3. Their physical meanings are

summarised in table 2.

6.2. Non-trivial phenomenological dispersion

In §3 and §4.2, we have briefly highlighted that D2 and D�)
, and their respective approximation

D6,2 and D6,�)
, are not necessarily positive definite and symmetric, as they are directly obtained

through the Smoluchowski equation (2.4). In fact, there is no reason that the dispersive behaviour

of suspensions originating from the orientational dynamics of each ABP would need to solely be

described by a ‘diffusion’ process. This is in contrast to the effective diffusivity D�)� of the GTD

model, which was artificially forced to be positive definite and symmetric (Frankel & Brenner

1991, 1993).

In §5.2.3, we have also shown that the translational diffusion �) in the Smoluchowski equation

(2.4) can give rise to negative GG components in D�)
and D6,�)

. In this subsection, we shall

further demonstrate that D6,2 is indeed asymmetric, in contrast to the positive definite D�)� .

Focussing on spherical particles, here we shall show that D6,2 caused by dispersion is not

necessarily symmetric.
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Figure 8: Comparisons of the components of D2/PeB (black line), D6,2 (blue dot-dash
line) and D�)� (red dashed line) as a function of the local vertical shear ((G) for a
suspension of spherical gyrotactic particles (V = 2.2,U0 = 0), in which D2/PeB is

computed from 5B (p) of appendix B.

Figure 8 shows a component-wise comparison between D2 , D6,2 and D�)� as a function of

the local shear rate ((G) for a suspension of idealised spherical (U0 = 0) gyrotactic particles (with
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V = 2.2) in a vertical shear flow. Here, in general, D2 obtained through the transformation is

not a function of the local shear ( alone as D2 is computed from 5 (x, p, C). However, as shown

in appendix B, for the particular case of a spherical gyrotactic particle suspension in vertical

shear and at steady equilibrium, D2/PeB can be written as a function of ((G). The calculation of

D6,2 and D�)� are performed per value of ( using the numerical scheme detailed in Fung et al.

(2020).

The comparison shows that D2 and the approximation D6,2 are highly asymmetric compared to

the symmetric diffusivity tensor from GTD, when the shear rate is not zero. These non-symmetric

dispersion tensors indicate that the diffusion process would not be the best physical description

of ABPs’ random walk. Instead, this work considers them as dispersions in the (x, p)-space,

analogous to the original Taylor-Aris dispersion (Taylor 1953; Aris & Taylor 1956). In the Taylor-

Aris dispersion, the cross-stream diffusion gives rise to additional streamwise dispersion through

the shear flow. Similarly, in ABP suspensions, the rotational diffusion (in p-space) gives rise to

translational dispersion (in x-space) through the particles’ motility. While the extra streamwise

dispersion in Taylor-Aris dispersion is sometimes referred to as ‘effective diffusivity’ (see Cussler

2009, §4.5), it is not a physical diffusion caused by a translational random walk, but the result of

the combination of cross-stream diffusion and a shear flow. Similarly, the ‘effective diffusivity’

D2 here is not a diffusion from translational random walk, but the result of the interplay between

particles’ orientational dynamics and motility. Therefore, D2 and the approximation D6,2 do not

necessarily have to conform to the symmetric and positive definite requirement of a physical

diffusivity. A similar argument can be applied to D�)
and D6,�)

, which explains why they can

have negative GG component in §5.2.3. This interpretation of D2 and D6,2 contrasts the approach

by the generalised Taylor dispersion model, in which the effective diffusivity D�)� was obtained

by the temporal asymptotic growth rate of the statistical variance of particle distribution using

the classical definition of diffusion. In this case, by definition, D�)� must be positive definite

and symmetric.

Given the non-trivial nature of the dispersion shown in figure 8, it would be interesting to extend

the present work to more complex multi-dimensional flows instead of the current one-dimensional

parallel flow. This issue is beyond the scope of the present study, and there is an on-going work

to address this issue in the near future.

7. Concluding remarks

In this study, we have proposed a new method to reduce the Smoluchowski equation into a

simpler transport equation. The Smoluchowski equation governs the statistics of the position and

orientation of ABPs, whose orientational trajectories are described by the Jeffrey orbit in the

presence of rotational random noise. The framework is directly applicable to dilute suspensions

of ABPs in a large-scale system with strong flow, such as microalgae in the ocean. It can also

be extended to the flow regime where the long-range hydrodynamic contribution of swimming

motion of individual particles can be represented by averaged stress tensors (e.g. Batchelor 1970;

Hinch & Leal 1972a,b; Pedley & Kessler 1990).

We have presented a method to transform the Smoluchowksi equation into a transport equation

exactly for a given flow field. The method involves decomposing the average Eulerian motility flux

PeB 〈p〉 5 = at a fixed location into the flux from the average Langrangian motility flux of individual

particles PeB 〈p〉6= and other contributions. The transformationhas shown that PeB 〈p〉6 is different

from PeB 〈p〉 5 and only constitutes part of PeB 〈p〉 5 . The transformation also unveils the explicit

form of the other drift and dispersion terms contributing to the overall average Eulerian motility.

These terms include the shear trapping drift V2 and the particle dispersion D2 due to rotational

diffusion. In addition, we have also discovered the drift VmC due to the interaction between the

unsteadiness in orientation and the orientational dynamics itself, the drift V�)
and dispersion
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D�)
arise from the interaction between translational diffusion and the orientational dynamics,

and the drift VD from the interaction between passive advection of orientational distribution and

the orientational dynamics.

Although the transformation has revealed these new physical drifts and dispersions are easily

interpretable in a transport equation, they cannot be directly used as a model due to the prerequisite

to first obtain Ψ(x, p, C) by solving the Smoluchowksi equation directly. In this regard, this work

has presented a new model based on the local approximation of the transformation, which only

relies on the local flow information instead of the global flow configuration. By assuming that

the time scale of the orientational dynamics is much faster than that of the spatial dynamics, we

have approximated the orientational space probability density function 5 (x,p, C) = Ψ/= by the

homogeneous solution 6(x, C; p) of the orientational space operator L?, thereby circumventing

the need to solve for Ψ. The approximation gives the same shear trapping drift V6,2 and the

particle dispersion D6,2 as that of Bearon & Hazel (2015) and Vennamneni et al. (2020) when the

particles have no taxes and diffusion, but it is also extendible to particles with taxes or translational

diffusion. We have also made connections between D6,2 and the effective diffusivity D�)� from

the GTD model. In a quiescent flow, the two tensors are equal. When the prescribed flow is

parallel, D6,2 and D�)� share the same cross-stream component (the GG component in verticle

shear flows u = [0, 0,, (G)]) and II component in horizontal shear flows u = [* (I), 0, 0]) ). The

comparison between the two models also highlighted the missing shear trapping drift V6,2 and the

drift V�)
and dispersion D�)

from translational diffusion in the GTD model. In particular, when

the first-order drift PeB 〈p〉6 is small, the second-order drift from Pe2
BV6,2 can become significant.

The numerical examples of suspensions in horizontal and vertical shear flows have further

illustrated the importance to include V6,2 . When 〈p〉6 from gyrotaxis is small, the local

approximation method better predicts the particle distribution than the GTD model. In the extreme

case where 〈p〉6 = 0,the GTD model would give an unphysical uniform distribution while the

local approximation can accurately capture the shear trapping phenomena. Meanwhile, when

�) ≠ 0, the local approximation method has also shown better prediction than the GTD model

because of the inclusion of V6,�)
and D6,�)

in addition to V2 . Overall, this work has shown

that the local approximation method is either on-par with or better than the GTD model for

approximation of particles transport.

Moreover, in the numerical examples, we have demonstrated the possibility of having negative

values in �GG,�)
(or �GG,6,�)

). Later, we have also demonstrated that D2 (or D6,2) can be highly

asymmetric. These results bring the notion of modelling the transport of active Brownian particles

as normal advection and diffusion into question. In §6.2, we have briefly discussed how these

dispersion tensors arise from the particles’ motility. Since their physical origin is dispersion rather

than diffusion, they do not necessarily conform to the symmetric and positive definite requirement

of a diffusivity. This conclusion may have far-reaching consequences on how we interpret the

dispersion of biological micro-swimmers such as algae in the wider context, such as the turbulent

ocean. However, we have yet to discuss the physical implication of the asymmetric dispersion

tensors D2 and D6,2 and how they compare with D�)� in higher dimensions. Understanding

the physical implications of D2 and D6,2 in relation to the individual level dynamics remains the

current subject of our work.

As pointed out by a recent review (Bees 2020), there is a gap between complex models of

individual particles and their equivalent modelling at the continuum level. In particular, the

restriction on the type of flow field imposed by the generalised Taylor dispersion model needs

to be overcome to improve our understanding of many transport phenomena of ABP suspension.

The presented method to model ABP transport without any restriction on the type of flow field

is perhaps the most important consequence of this work especially from a practical perspective.

In our numerical examples, we can also see that the presented method is at least as accurate

as the GTD model, if not significantly better in some cases. Therefore, this work presents a
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significantly improved model of ABPs transport in a dilute suspension. While the presented

examples focused mainly on gyrotactic ABPs, the framework presented can also be extended to

other types of taxes, such as phototaxis and chemotaxis, as well as other types of particle motions,

such as the orientation-dependent sedimentation of elongated particles (e.g. Ardekani et al. 2017;

Clifton et al. 2018; Lovecchio et al. 2019). Hence, the potential application of the framework

presented in this work is vast.

However, the current framework needs further developments and analysis. In particular,

a good model for the boundary condition for ABPs suspension is needed. For example,

Ezhilan & Saintillan (2015) have demonstrated the important role of translational diffusion �)

in the wall accumulation near a no-flux boundary, which this work has yet to demonstrate. On the

other hand, the microscopic interactions between the wall and individual ABPs remains a subject

of future work. Even with the knowledge of microscopic interactions between the particles and

the wall, translating the interactions into suitable boundary conditions at the continuum level

remains an important challenge. To this end, the recent work by Chen & Thiffeault (2020) offers

some insight into how one can account for the non-trivial and shape-dependent steric interaction

with the wall.
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Appendix A. Derivation of the local approximation

Following the expansion of Ψ = Ψ(0) + nΨ(1) + n2Ψ(2) + ... in §4.1, we substitute the expansion

into the Smoluchowski equation (2.4) and yield the following set of equations at successive orders

of n:

O(1) : mgΨ
(0) + L?Ψ

(0)
= 0; (A 1a)

O(n) : m)Ψ
(0) + p · ∇xΨ

(0) + P̃e 5 u · ∇xΨ
(0) + mgΨ

(1) + L?Ψ
(1)

= �̃)∇
2
GΨ

(0) ; (A 1b)

O(n2) : m)Ψ
(1) + p · ∇xΨ

(1) + P̃e 5 u · ∇xΨ
(1) + mgΨ

(2) + L?Ψ
(2)

= �̃)∇
2
GΨ

(1) ; etc..(A 1c)

Integrating over p-space, (A 1) becomes:

O(1) : mg=
(0)

= 0; (A 2a)

O(n) : m) =
(0) + mg=

(1) + ∇x ·

[

(P̃e 5 u + 〈p〉 (0) )= (0)
]

= �̃)∇
2
G=

(0) ; (A 2b)

O(n2) : m) =
(1) + mg=

(2) + ∇x ·

[

(P̃e 5 u + 〈p〉 (1) )= (1)
]

= �̃)∇
2
G=

(1) ; etc.. (A 2c)

At the transient time C & O(1) and each order of n , we assume the time dependency of Ψ(8)

in p-space has reached quasi-equilibrium, while the time dependency of Ψ(8) in x-space is slow.

In other words, we assume that, at each order, 5 (8) is independent of g as it has reached quasi-

equilibrium and = (8) independent of g because it only varies at the slow time scale ) . Therefore,

equation (A 1a) now becomes

L? 5
(0)

= 0, (A 3)
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which implies that the leading order orientational distribution 5 (0) takes the homogeneous solution

of L? (x, C) as the solution, i.e. 5 (0) = 6(x, ) ; p). Meanwhile, we multiply (A 2b) by 5 (0) and

subtract it from (A 1b). This operation equivalent to the steps towards (3.3) in §3. The operation

yields

= (0)m) 5 (0)

+ (P̃e 5 u · ∇x 5
(0) − �̃)∇

2
G 5

(0) )= (0) − 2�) (∇x 5
(0) ) · (∇x=

(0) )

+ (p − 〈p〉 (0) ) 5 (0) · ∇x=
(0) + = (0) (p · ∇x 5

(0) − 5 (0)∇x · 〈p〉
(0) )

+ = (1)L? 5
(1)

= 0. (A 4)

Now, (A 4) can be rewritten as
[

L? (b6,�)
+ b6,2)

]

· ∇x=
(0) + = (0)L?

[

56,D + 56,�)
+ 56,2 + 56,m)

]

+ = (1)L? 5
(1)

= 0, (A 5)

where 56,★ and b6,★ are defined by (4.2). Equations (4.2) and (A 5) and are the equivalent of (3.4)

and (3.5) respectively. We can then follow the same derivation as §3, which would lead to

m) =
(1) + ∇x ·

[

(〈p〉6 + P̃e 5 u)= (1)
]

= �̃)∇
2
G=

(1) + ∇x ·

[

(D6,2 + D6,�)
)∇x=

(0) + (V6,D + V6,�)
+ V6,2 + V6,m) )=

(0)
]

, (A 6)

where V6,★ and D6,★ are defined according to (3.9-3.10).

Now, equation (A 6) is at O(n2). If we are to recover how = evolve over the long time ) , we can

recompose m) = = m) =
(0) + nm) =

(1) + ..., by summing up (A 2a-A 2c) with the corresponding n

scaling while substituting (A 2c) with (A 6). Hence,

PeBm) = + ∇x ·
[

(PeB 〈p〉6 + Pe 5 u)=
]

≈ �)∇
2
G= + Pe2

B∇x ·

[

(D6,2 + D6,�)
)∇x=

(0) + (V6,D + V6,�)
+ V6,2 + V6,m) )=

(0)
]

. (A 7)

Note that we have only included = (0) and = (1) when recomposing = in this example as we are

closing the problem at O(n2). Therefore, (A 7) is accurate up to O(n2). However, if we close the

problem at a higher order, we can repeat a similar process from (A 4) to (A 6) at a higher order.

Here, we would argue that at the transient time g → ∞, mC ≈ PeBm) and = ≈ = (0) . Because

(A 7) is accurate up to O(n2) while replacing Pe2
B=

(0) with Pe2
B= would only introduce an error at

O(n3), the substitution of = (0) by = shall not impact the accuracy of (A 7) tremendously. Under

these approximations, we recover the approximated equation (4.1).

Appendix B. Analytical solution to a suspension of spherical gyrotactic active

particles in a vertical flow

If the gyrotactic active particles in a vertical flow is spherical, the steady solution of (2.4) can

be written analytically as Ψ(x, p,∞) = =B (G) 5B (p), where

5B (p) =
V

4c sinh V
exp (V cos \), (B 1a)

and

=B (G) = � exp (−
VPe 5 , (G)

2PeB
), (B 1b)

where � is the normalisation factor determined by the integral condition
∫ 1

−1
=(G)3G = 1.

Equation (B 1) may also explain the results of Jiang & Chen (2020), who showed that the particle

distribution is strongly dependent on V and the ratio between the two Péclet numbers (Pe 5 /PeB).
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If we substitute the corresponding parameters of this example into (3.8-3.11), we can recover

PeB�GG,2mG=B = =B 〈?G〉6, (B 2)

which represents the equilibrium between a dispersion flux and the net-drift that is responsible

for gyrotactic focusing. Note that +G,2 = 0 in this example because 5B is independent of x. Here,

to recover �GG,2, we can substitute 5B (p) into (3.4d) to get

1G,2 (x; p) = −
PeB

V((G)
( 5B (p) − 6(p)) , (B 3)

and therefore

�GG,2 = −
PeB

V((G)

(

∫

(?

5B (p)?G3
2p −

∫

(?

6(p)?G3
2p

)

=
PeB

V((G)
〈?G〉6 . (B 4)
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