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Abstract

Time synchronization is an essential component of wireless sensor networks (WSNs)

that play a key role in the thriving Internet of Things (IoT), supporting IoT applica-

tions from large-scale monitoring & event detection to collaborative interactions. The

large-scale applications based on resource-constrained sensor nodes promote the devel-

opment of WSN time synchronization towards the three major aspects of lower energy

consumption, lower computational complexity, and higher multi-hop time synchroniza-

tion accuracy. It is these three aspects that we focus on in our contributions to the

development of WSN time synchronization, which are presented in this thesis together

with their applications to optimal bundling and node identification.

First, we concentrate on the computational complexity of WSN time synchronization.

Through the practical implementation of the state-of-the-art WSN time synchronization

scheme based on the asynchronous source clock frequency recovery and the reverse

two-way message exchange compensating for propagation delay, we demonstrate that

the actual performance of the implemented scheme on a real WSN testbed consisting

of low-cost, battery-powered sensor nodes could not reach its simulated performance;

the major cause is the limited precision of floating-point arithmetic of those sensor

nodes, which suggests that the design of WSN time synchronization schemes should

take into account the computational complexity, including the issue of precision loss.

To address this issue, we propose an asymmetric high-precision time synchronization

scheme (AHTS), where synchronization-related computations are all asymmetrically
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done at the head node with abundant computing and power resources and, thereby,

the computational complexity on the resource-constrained sensor nodes is significantly

reduced while achieving microsecond-level time synchronization accuracy.

Second, we focus on the energy-efficiency of WSN time synchronization. Noting

that the message exchanges via radio transmissions occupy a large portion of the total

energy consumption of the resource-constrained sensor nodes, we propose a beaconless

asymmetric time synchronization scheme (BATS) based on the reverse one-way mes-

sage dissemination, which could significantly reduce the synchronization-related energy

consumption. With a real WSN testbed, we experimentally demonstrate that BATS

could significantly reduce energy consumption compared to the benchmark flooding

time synchronization protocol and still provide microsecond-level time synchronization

accuracy. We also present the generalized reverse asymmetric time synchronization

framework providing time synchronization with lower energy consumption and compu-

tational complexity.

Third, we shift our focus to the improvement of the multi-hop performance of WSN

time synchronization. Because the cumulative synchronization error caused by the

processing delays at intermediate gateway nodes heavily affects the multi-hop time

synchronization accuracy, we propose a per-hop delay compensation scheme (PHDC)

based on packet-relaying gateways to compensate for the processing delays. We not

only compare the performance of the proposed PHDC with that of the conventional

multi-hop extension method based on time-translating gateways through systematic

mathematical analyses but also experimentally evaluate its performance in comparison

to that of three representative time synchronization schemes based on both one-way

and two-way message exchange.

Fourth, we also apply our high-precision asymmetric WSN time synchronization

scheme to optimal data bundling and propose a data bundling scheme optimizing the

energy efficiency under the constraints of application-specified end-to-end delay and
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time synchronization accuracy, where the optimization problem is formulated as integer

linear programming (ILP). A set of optimal bundling numbers are calculated for sensor

nodes in a WSN to maximize energy efficiency while fulfilling the required end-to-end

delay and time synchronization accuracy. Extensive experimental results on a real WSN

testbed demonstrate that, while satisfying the requirements of delay and synchroniza-

tion accuracy, the proposed optimal message bundling scheme could significantly reduce

the number of total message transmissions.

Finally, we study node identification based on our high-precision asymmetric WSN

time synchronization scheme, which is considered an important security protection

means. We propose a new robust clock-skew-based node identification scheme called

node identification against Spoofing attack (NISA). NISA can achieve simultaneous

node identification and attack detection based on the high-precision estimation of clock

skew for each sensor node enabled by BATS and the spatially correlated radio link in-

formation unilaterally collected at the head or gateway nodes. We also provide both

centralized and distributed implementations of NISA for covering both single- and multi-

hop scenarios. Evaluations using a group of WSN nodes demonstrate the effectiveness

of both centralized and distributed NISA. We discuss the research challenges and future

directions of WSN time synchronization at the end.

Keywords—Wireless sensor network, multi-hop, time synchronization, energy effi-

ciency, computational complexity, synchronization accuracy, data bundling, node iden-

tification, spoofing attack.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) have been a key for generations of smart applications

from conventional monitoring [8, 9] to thriving smart cities [10, 11] to novel device-free

wireless sensing [12]. Time synchronization as the essential service enabling data or-

dering and collaborative actions for WSN applications has been under the spotlight for

decades in the research community. WSN time synchronization schemes could be clas-

sified into three major categories according to the way of exchanging timing messages,

i.e., two-way message exchange, one-way message dissemination, and receiver–receiver

synchronization [13, 14]. The schemes belonging to the last category could reduce the

time-critical-path [15], while those belonging to the first and the second categories have

the advantage of simplicity especially considering the multi-hop extension. Specifically,

the two-way schemes can compensate for the propagation delay and, therefore, cover

larger areas [16, 17]. The one-way schemes, on the other hand, require fewer message

transmissions and are simpler to implement, which make them more popular than the

two-way schemes [18, 19]. Note that there are variations of the two-way and one-way

schemes based on the reverse asymmetric time synchronization framework [1], which

could significantly reduce the energy consumption and the computational complexity of

sensor nodes.

Traditionally, the focus of research in WSN time synchronization is on time syn-

chronization accuracy [18], but recent works take into account not only synchronization
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Figure 1.1: A multi-hop WSN with one head node and multiple sensor nodes monitoring
an ecological park.

accuracy but also energy-efficiency [2, 20], computational complexity [3, 21], and multi-

hop synchronization accuracy [4, 22]; specifically, the latest developments try to improve

multi-hop time synchronization accuracy while maintaining the energy consumption and

computational complexity as low as possible [1]. Motivated by the aforementioned de-

velopment focuses, this thesis aims to investigate those three aspects.

In this chapter, we explain the basic concepts of WSN and its time synchronization,

including clock models, timing message exchanges, and multi-hop extensions. We also

summarize our contributions to the development of WSN time synchronization. We

conclude this chapter with the organization of the rest of the thesis.

1.1 WSN and Its Time Synchronization

A typical WSN consists of a large number of resource-constrained, battery-powered

sensor nodes and a rather resource-abundant head1 connected to Internet as shown in

Fig. 1.1. Together with Internet of Things (IoT), WSN penetrates into smart cities,

smart factories, and smart healthcare as one of the enabling technologies. Through

exchanging messages with one another or directly with the head, the sensor nodes not
1We consider the head node and a monitoring station—e.g., a PC—connected to it collectively as

the head in this thesis.
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only pass their measurement data to the head but also achieve network-level collabo-

rative actions. These operations are based on many services provided by WSN, and

time synchronization is one of the critical services. The research on WSN time syn-

chronization has been attracting a great deal of attention for recent decades due to its

significance to a myriad of smart applications. One up-to-date representative example

is the smart healthcare [23], where the collaborative monitoring of vital health signs is

of importance, especially during pandemics such as COVID-19 [24].

Note that time synchronization is a process of establishing a common time frame

with which the nodes in a network can operate one another, whether their clocks are

synchronized or not, while clock synchronization is a process of synchronizing each node

clock to that of a common reference node [2]; clock synchronization, therefore, is a spe-

cial case of time synchronization. Establishing time synchronization in a WSN relies

on three foundations, namely mathematical modeling of hardware and software clocks,

ways of exchanging messages for the spread of time information, and multi-hop exten-

sion. In the following, we discuss those three foundations of WSN time synchronization

as the preliminaries for the work presented in this thesis.

1.1.1 Clock Models

As temperature, battery voltage level, and other environmental factors have a significant

impact on the behavior of sensor nodes’ hardware clocks, different mathematical models

of hardware clocks could be employed under different conditions. Due to the repetitive

nature of time synchronization operations, however, static & linear models could be

used for sensor nodes’ hardware clocks for a relatively short period of time even in

the presence of aforementioned environmental factors [1]. For this reason, the first-

order affine clock model is widely used in modeling hardware clocks in WSN time

synchronization [2].

We consider a typical WSN where its reference clock is the hardware clock of the

head and the operations of all sensor nodes are to be based on the reference clock.

Because the crystal oscillator of each sensor node runs independently of one another,
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the time according to its hardware clock could differ from that of the reference clock.

WSN time synchronization, therefore, is to estimate the difference between the reference

clock and the sensor nodes’ hardware clocks in terms of the parameters of a clock model.

With respect to the head’s reference clock t, the sensor node i’s hardware clock Ti(t)

can be described as follows [2]: For i∈ [0, 1, . . . , n−1]:

Ti(t) = (1 + εi) t + θi, (1.1)

where n is the number of sensor nodes, and (1+εi) ∈R+ and θi∈R denote the frequency

ratio and the clock offset, respectively. Note that the clock skew εiR is the difference

between two clocks at a given point in time, whose typical value for clocks based on

crystal oscillators is in order of tens of ppm, i.e., εi�1 [2].

Based on the hardware clock model of (1.1), the logical clock Ti of sensor node i,

which is updated during each synchronization round and represents the current estima-

tion of the reference clock as a function of the hardware clock Ti(t), can be described as

follows [2]: For tk<t≤tk+1 (k=0, 1, . . .),

Ti

(
Ti(t)

)
= Ti

(
Ti(tk)

)
+

Ti(t) − Ti(tk)
1 + ε̂i,k

− θ̂i,k, (1.2)

where tk represents the reference time for the kth synchronization, and ε̂i,k and θ̂i,k

are the estimated clock skew and offset from the kth synchronization. Note that the

way and the location of clock parameter estimation depend on the underlying time

synchronization scheme: In [2], for instance, a sensor node synchronizes only its clock

frequency (i.e., 1+ε̂i,k) to that of the reference clock, but its clock skew (i.e., θ̂i,k) is

estimated & compensated for at the head; in contrast, those estimations are all done at

the head in [3].

1.1.2 Timing Message Exchange

Fig. 1.2 (a) illustrates the one-way message dissemination where the head sends a beacon

message containing the reference time T1 to the sensor node, which records the time T2
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Figure 1.2: Time synchronization based on (a) one-way message dissemination and (b)
two-way message exchange [1].

at the moment of receiving the beacon message. Based on the pairs of those timestamps,

the sensor node estimates the clock parameters for achieving time synchronization. Note

that the propagation delay—i.e., the time the beacon message spends in the air between

the nodes—cannot be calculated and, therefore, compensated for, which is the major

drawback of the one-way schemes. Thanks to its round-trip nature, by the way, the

two-way message exchange could properly compensate for the propagation delay and,

as a result, provide more accurate time synchronization. Fig. 1.2 (b) shows the details

of two-way message exchange: The sensor node initiates a request for synchronization

and records the sending time T1. The head receives the request message at time T2

and replies a response message containing the reception time T2 and the transmission

time T3 to the sensor node. Finally, the sensor node records the reception time T4

and establishes the time synchronization using those four timestamps, where the said

propagation delay is also estimated and compensated for.

Although the compensation of the propagation delay is critical for a long distance,

the two-way message exchange requires two times the number of message transmissions

of the one-way message dissemination. This is its major disadvantage for WSNs consist-

ing of resource-constrained sensor nodes, because the energy for message transmissions

occupies a major portion of the total energy consumption at sensor nodes. The one-

way message dissemination, in contrast, provides a simpler implementation despite the
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Figure 1.3: Time synchronization based on reverse (a) one-way message dissemination
and (b) two-way message exchange with optional bundling of measurement data [1].

uncompensated propagation delay, which could be ignored when the distance between

two nodes is short [1].

Fig. 1.3 (b) shows the reverse two-way message exchange employed in [2, 3]. The

reversing of the message exchange turns the request and response messages into the pair

of beacon and report messages; the head thus initiates the synchronization procedure

and establishes the time synchronization. Specifically, the timestamps T2 and T3 are

recorded at the sensor node and transmitted to the head, which establishes the time

synchronization using the received timestamps from the sensor node and the times-

tamps T1 and T4 it recorded. During the time synchronization, synchronization data

could be bundled together with measurement data and carried in a report message to

further reduce the number of message transmissions. Note that, unlike the reverse two-

way message exchange still relying on beacon messages, the reverse one-way message

dissemination is completely free from beacon messages as illustrated in Fig. 1.3 (a).

The only synchronization-related message transmission is the report message contain-

ing synchronization data—i.e., timestamp T1—that could be further bundled together

with the measurement data.

Overall, the reverse schemes reduce the number of message exchanges required for

time synchronization and relocate the clock parameter estimation procedure from sensor

nodes to the head, which could lower both the energy consumption and the computa-
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Figure 1.4: Multi-hop extension methods for WSN time synchronization: (a) Time
translation and (b) packet relaying.

tional complexity of sensor nodes.

1.1.3 Multi-Hop Extension

A WSN is often deployed in large-scale, where the single-hop communication from the

head could not cover the whole deployment area; the multi-hop extension, therefore,

becomes indispensable, and so does the multi-hop time synchronization. Note that the

multi-hop extension is also employed to either save the energy of single-hop transmission

by reducing the hop distance or safeguard line-of-sight wireless communication [4].

In the literature, two major multi-hop extension methods are advocated, namely

the time translation and packet relaying [2]. Fig. 1.4 (a) and (b) demonstrate these

methods on the conventional one-way message dissemination where the head initiates

the synchronization process. In the case of time translation, the head broadcasts a

synchronization message containing reference time T1 to the gateway node who, in

turn, synchronizes its time to that of the head; afterwards, the gateway node translates

the reference time to T̃1 based on the gateway node’s forwarding time and then forwards

the synchronization message to the sensor node. From the sensor node’s perspective,

its time is still synchronized to the head’s time due to the time translation.
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In the packet relaying method, on the contrary, the gateway node does not translate

the reference time from the head; it rather directly relays a synchronization message

with the original T1 to the sensor node. The computational complexity of doing so

is much lower than the aforementioned time translation. However, the gateway node

confronts a delay—i.e., ∆ in Fig. 1.4 (b)—during the relaying process, which deteriorates

the synchronization accuracy, especially through multiple hops. It is this processing

delay that prevents the use of simple packet relaying in practice. Most WSN time

synchronization schemes, therefore, employ the time translation method for multi-hop

extension despite its rather complex procedure [1, 18].

1.2 Contributions

The contribution of this thesis centers around the development of WSN time syn-

chronization schemes targeting the three major aspects of energy efficiency, compu-

tational complexity, and multi-hop synchronization accuracy. We not only propose

high-precision asymmetric WSN time synchronization schemes but also apply them to

the problems of optimal bundling with delay & synchronization constraints and node

identification against Spoofing attack. We also highlight the challenges and future direc-

tions of research in WSN time synchronization. Below is a summary of our contribution:

• Through the implementation of the state-of-the-art WSN time synchronization

schemes based on asynchronous source clock recovery and reverse two-way mes-

sage exchange [2]—called EE-ASCFR throughout the thesis—on a real testbed

consisting of TelosB sensor nodes [25], we investigate the issue of precision loss

resulting from the limited precision in floating-point arithmetic at sensor nodes;

the results of the investigation reveals that the design of WSN time synchroniza-

tion schemes targeting resource-constrained sensor nodes should take into account

computational complexity. Building on EE-ASCFR, therefore, we propose the

asymmetric high-precision time synchronization (AHTS) [3] where most of the

computations related with time synchronization are done at the head, and, as a
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result, the computational complexity at sensor nodes is significantly reduced.

• Focusing on energy-efficiency, we propose a beaconless asymmetric time synchro-

nization (BATS) [1] scheme based on the reverse one-way message dissemination.

BATS no longer relies on the beacon message flooding through the network for

synchronization purpose; instead, its synchronization data could be embedded

into measurement messages through data bundling. The ensemble of the above

two measures enables BATS to be energy-efficient. The performance evaluation

on a real WSN testbed demonstrates that BATS could conserve significant energy

compared to flooding time synchronization protocol (FTSP) [18], the benchmark

one-way scheme. The multi-hop extension of BATS is also presented, which em-

ploys the per-hop synchronization strategy, i.e., a variation of the time translation

method.

• To improve the multi-hop synchronization accuracy of WSN time synchronization,

we investigate the major cause of the cumulative synchronization errors with a

focus on multi-hop extension schemes. To alleviate the cumulative synchronization

errors, we propose a per-hop delay compensation (PHDC) scheme [4] based on

the multi-hop extension method of packet-relaying [2]. We then comprehensively

analyze the errors in the conventional time translation (TT) and PHDC schemes

and carry out a comparative analysis of their performance through the experiments

on a real WSN testbed, showing the improvement of PHDC over TT on schemes

based on both one-way and two-way message exchange.

• Data bundling, which is one of the effective measures for energy conservation

[2, 1], not only affects energy consumption but also end-to-end (E2E) delay and,

when synchronization data is carried by measurement messages, synchronization

accuracy. Tuning the bundling number for energy-efficiency, therefore, should si-

multaneously consider E2E delay and synchronization accuracy, which turns to

be an optimization problem maximizing the number of bundled data in a single

message under the constraints of application-specified E2E delay and synchro-
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nization accuracy requirements. We apply our proposed high-precision WSN time

synchronization scheme and propose an optimal data bundling method that uses

integer linear programming to optimize the number of bundled data at each sen-

sor node in a WSN while satisfying the required E2E delay and synchronization

accuracy. Extensive practical experiments demonstrate the effectiveness of the

proposed approach.

• We also apply the proposed high-precision asymmetric WSN time synchronization

scheme to node identification, which is considered an important security measure.

The high-precision estimation of clock skews enabled by BATS could greatly en-

hance the node identifiability. We also investigate the identifiability of the clock

skews under environmental variations, i.e., the temperature and the voltage levels

of batteries powering sensor nodes. Combining the spatially correlated radio link

information, we propose a node identification scheme called node identification

against Spoofing attack (NISA) where the node identification and attack detec-

tion could be achieved simultaneously in an integrated way. We further implement

NISA in both centralized and distributed manner for covering both single- and

multi-hop scenarios. The effectiveness of both centralized and distributed NISA

is demonstrated through the practical experiments on a real WSN testbed. We

finally discuss the research challenges and future directions of WSN time synchro-

nization.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

• Chapter 2 reviews the representative and up-to-date WSN time synchronization

schemes based on the taxonomy and the development focus.

• Chapter 3 investigates the computational complexity of WSN time synchroniza-

tion with a major focus on the precision loss in floating-point arithmetic at sensor
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nodes and discusses how to address it through the asymmetric high-precision time

synchronization scheme.

• Chapter 4 presents the results of our investigation of the energy efficiency in

WSN time synchronization and discusses the resulting energy-efficient beaconless

asymmetric time synchronization scheme.

• Chapter 5 considers the multi-hop synchronization accuracy of WSN time syn-

chronization with a focus on the processing errors at intermediate gateway nodes

and provides a solution based on per-hop delay compensation.

• Chapter 6 applies our proposed WSN time synchronization scheme to optimal

data bundling with end-to-end delay and synchronization accuracy constraints.

• Chapter 7 demonstrates the application of our proposed WSN time synchroniza-

tion scheme to WSN node identification against Spoofing attack.

• Chapter 8 concludes our work in this thesis and envisions future research direc-

tions of WSN time synchronization and its applications.



Chapter 2

Review of WSN Time

Synchronization

In this chapter, we review the representative WSN time synchronization schemes based

on the taxonomy discussed in Chapter 1. We also review the up-to-date schemes based

on the development focus of energy-efficiency, computational complexity, and multi-hop

synchronization accuracy.

2.1 Taxonomy of WSN Time Synchronization

Based on the way of transferring timing messages to sensor nodes, WSN time synchro-

nization schemes could be classified into three major categories: two-way message ex-

change, one-way message dissemination, and receiver–receiver synchronization [13]. The

former two categories could cover most WSN time synchronization schemes, which pro-

vide absolute timescales among sensor nodes with respect to the clock of a reference node

(often called a head or a root node). Schemes based on two-way message exchange—

e.g., timing-sync protocol for sensor networks (TPSN) [16] and recursive time synchro-

nization protocol (RTSP) [17]—can compensate for propagation delay and, therefore,

provide more accurate time synchronization. Though not being able to compensate

for propagation delay, by the way, schemes based on one-way message dissemination
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can save the number of message exchanges and simplify the implementation at the ex-

pense of synchronization accuracy, which makes them popular for resource-constrained

WSNs with moderate coverage (e.g., 1 µs propagation delay for 300 meters); the flood-

ing time synchronization protocol (FTSP) [18]—a representative of the one-way WSN

time synchronization schemes—was the first to synchronize multi-hop WSNs through

flooding synchronization messages, and many schemes leveraging the flooding time syn-

chronization framework like flooding with clock speed agreement (FCSA) protocol [26],

PulseSync [19] and external gradient time synchronization protocol (EGSync) [27] have

been proposed to enhance the accuracy and coverage time of synchronization. Note

that the introduction of media access control (MAC)-layer timestamping [18, 17] re-

duces the effect of random delays in timestamping and therefore greatly improves the

synchronization accuracy of the schemes based on either two-way message exchange or

one-way message dissemination.

The receiver-receiver synchronization, on the other hand, has been studied due to

its distributed nature and reduction of the time-critical-path [15]: The reference broad-

cast synchronization (RBS) algorithm [28] exploits the broadcast channel through which

messages from a sender are delivered to multiple receivers approximately at the same

time. The receiver-to-receiver referenceless synchronization (termed in R4Syn) protocol

proposed in [29] further distributes the role of the reference to all sensor nodes, which

makes it completely decentralized. The reference broadcast infrastructure synchro-

nization (RBIS) [30] investigates the applicability to industrial and home automation

networks, while coefficient exchange synchronization protocol (CESP) [31] enhances the

energy-efficiency.

2.2 Development Focus of WSN Time Synchronization

From initially concentrating on the multi-hop synchronization accuracy alone [18] to

recently taking energy efficiency, computational complexity, and multi-hop synchro-

nization accuracy into simultaneous consideration [1], WSN time synchronization has
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Figure 2.1: An exploded view of the typical WSN sensor node.

shifted its development focus from a single to a diverse direction riding the wave of WSN

deployments proliferation. In this section, we review the up-to-date WSN time synchro-

nization schemes based on the three major development focuses of energy-efficiency,

computational complexity, and multi-hop synchronization accuracy. In particular, we

put emphasis on the last focus since it is crucial to the prosperous large-scale deploy-

ments.

2.2.1 Energy Efficiency

A WSN sensor node usually equips limited power resources—e.g., AA batteries illus-

trated in Fig. 2.1—due to its applications in rather complex, unattended field domains.

Not only should it prioritize energy efficiency for its essential components such as Mi-

croController Unit (MCU) and transmission module in both their design and operation,

but also for its fundamental services such as time synchronization.

A novel energy-efficient scheme is proposed in [2], it reverses the direction of the

time synchronization based on two-way message exchange whereby the regular beacon

messages could be employed as the synchronization beacon messages as exhibited in

Fig. 1.3 (a); moreover, it proposes a data bundling method to embed the synchro-

nization data into the application message for conserving more message transmissions.

However, since the two-way message exchange it relies on conceptually requires more
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message transmissions compared with the one-way message dissemination, there has

room for further improvement. In succession, a beaconless asymmetric time synchro-

nization scheme [1] based on the reverse one-way message dissemination as illustrated

in Fig. 1.3 (b) has been proposed. The beacon messages broadcasting the reference

time in the conventional schemes are no longer necessary, which reduces the majority of

synchronization-related message transmissions. Moreover, the synchronization-related

data are bundled in the application messages to further reduce the synchronization

messages. Likewise, [20] proposes another energy-efficient scheme by employing the

existing acknowledgment (ACK) messages for synchronization, therefore, reduces the

synchronization message transmissions.

2.2.2 Computational Complexity

The computing power of the MCU has been significantly improved over the decades,

which, however, still at the expense of high energy consumption. Mainly being limited

by the size, sensor nodes could not equip abundant energy storage. Employing tailored

energy-efficient MCUs as exhibited in Fig. 2.1 having limited computing power is rather

the norm for those resource-constrained sensor nodes. Nevertheless, the limited com-

puting power is overloaded with various functionalities from sensing, routing to data

processing and transmission. WSN time synchronization building on complex mathe-

matical computations such as linear regression [18] for its clock parameter estimation,

on the other hand, has to develop towards lowering its computational complexity.

For reducing the computational complexity, there emerge schemes proposing sim-

pler synchronization algorithms; one up-to-date representative is [21], which reduces

the calculation operations—i.e., fewer calculation operations could lead to less compu-

tational complexity. However, those schemes still put computational pressure—though

relatively less—brought by the time synchronization on the resource-constrained sen-

sor nodes. A more thorough method is computation offloading, [3] reassigns all the

synchronization-related computations from the sensor nodes to the head, the latter of

which has abundant computing resources. The sensor nodes are thus completely free
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from synchronization-related computations; thereby, the computational complexity is

reduced significantly. Note that, the method of reassigning the synchronization-related

computations has been maturely employed in other schemes such as [1].

2.2.3 Multi-Hop Time Synchronization Accuracy

The multi-hop nature of WSN puts a strict requirement on the WSN time synchroniza-

tion for not merely its coverage over multiple hops but also its multi-hop synchronization

accuracy. Multi-hop WSN time synchronization is demanded to provide common time

for the sensor nodes locating tens of meters to kilometers away to accurately perform

tasks from data ordering to collaborative actions. However, as WSN deployments scale

in size and coverage, achieving comparable synchronization accuracy from nearest hop

to farthest hop becomes more and more challenging, especially considering the previ-

ously discussed issues of energy consumption and computational complexity. Therefore,

a major development focus of WSN time synchronization is to improve the multi-hop

synchronization accuracy—especially for far hops—while keeping energy consumption

and computational complexity as low as possible.

Unlike the aforementioned rather unified path in reducing the energy consumption

and computational complexity, there bloom diverse methods for improving the multi-

hop time synchronization accuracy. We review the up-to-date schemes in the following:

2.2.3.1 Rapid-Flooding

For decades, the flooding time synchronization schemes have been realizing multi-hop

time synchronization through layer-by-layer rebroadcasting of synchronization mes-

sages, where the sensor node at each layer receives the synchronization message and

synchronizes its time with the reference node. Through time translation at the gateway

node—i.e., intermediate sensor nodes located in between sensor nodes and reference

node, sensor nodes locating at far hops could synchronize themselves with the refer-

ence node. However, a well-known issue in the layer-by-layer synchronization is the

per-hop cumulated synchronization error. As of writing this review, one successor [22]
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of the flooding time synchronization proposes a rapid-flooding method to reduce the

per-hop cumulated synchronization error, therefore, increases the multi-hop time syn-

chronization accuracy. In the rapid-flooding method, more synchronization messages

are flooded in one synchronization interval in each hop for reducing the synchronization

error, however, at the expense of more message transmissions, which inevitably leads

to more energy consumption.

2.2.3.2 Consensus-Based

The consensus-based time synchronization has gained much attention due to its dis-

tributed nature and robustness [32] in the past decade. Many contributions have been

made to the development of consensus time synchronization with major concentrations

on the mathematical model, convergence time, and delay handling. Of particular note

is that, the fundamental idea of employing the consensus concept to achieve a common

virtual logical clock among all sensor nodes naturally paves the way for covering multi-

hop scenarios. Recently in [33], consensus-based time synchronization is employed for

the multi-hop WSNs by combining the master node synchronization and medium ac-

cess control (MAC)-layer timestamping. The potential of the consensus-based scheme

in improving the multi-hop synchronization accuracy is well demonstrated through sim-

ulation: The average synchronization accuracy of the consensus-based scheme is com-

parable to that of the flooding scheme.

2.2.3.3 Pulse-Coupled

Initially inspired by the fireflies’ behavior, the model of pulse-coupled oscillators is pro-

posed to achieve time synchronization in wireless networks including WSN. During the

development of pulse-coupled synchronization, its major drawbacks obstructing the re-

alization of network-level time synchronization, such as the assumption of concurrent

transmission, have been overcome through employing mechanisms like desynchroniza-

tion [34]. One of the recent developments of pulse-coupled synchronization is the cov-

erage of the multi-hop scenarios, e.g., [35] bases on the desynchronization and proposes
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a state-space model for the pulse-coupled drifting oscillators to realize the multi-hop

synchronization. Additionally in [35], pulse packets with timestamps are employed to es-

timate the offsets; and an attenuated clock correction scheme is proposed for correcting

the drifts of the clocks. Its time synchronization performance in the multi-hop scenario

is demonstrated through the evaluations on a simulated seven-hop linear network.

2.2.3.4 Per-Hop Delay Compensation

While many schemes improve the multi-hop synchronization accuracy by enhancing the

estimation method and so on, few of them turn their attention to the foundation of

multi-hop time synchronization—i.e., the multi-hop extension method, which, however,

has a significant impact on the synchronization error accumulation at gateway nodes.

As illustrated in [2], two methods, namely time translation and packet relaying, could

be leveraged for extending the time synchronization to multi-hop. The packet relaying

has the advantage of simple operation; however, it confronts the problem of delay dete-

riorating the multi-hop synchronization performance significantly. It is for this reason,

most conventional multi-hop time synchronization schemes such as flooding schemes

employ the time translation method for their multi-hop extension. Because of the sim-

ple nature of packet relaying that suits the resource-constrained sensor nodes, PHDC is

proposed in [4] to effectively cure the delay that existed in relaying the packets, which

paves the way for bringing the packet relaying method back into use.

Specifically, when the synchronization message being relayed in the gateway node,

PHDC calculates the delay and compensates for it based on the head node’s time,

in which a simple ratio-based method is employed to calculate the frequency ratio

between itself and the head node. Note that, the delay is calculated based on the

MAC-layer timestamps in order to capture most delay components. Thus, a virtual

direct connection could be established between the sensor node and head node whereby

the reference time received in the sensor node is much closer to the actual time in the

reference node, which leads to more accurate multi-hop time synchronization.



Chapter 3

An Asymmetric High-Precision

Time Synchronization Scheme for

Low Computational Complexity

In this chapter, we focus on the computational complexity of the WSN time synchro-

nization; the work presented here is based on our publication of [3]. On a real testbed,

we investigate the practical implementation of the state-of-the-art WSN time synchro-

nization scheme EE-ASCFR that builds on the asynchronous source clock frequency

recovery and the reverse two-way message exchange, which can compensate for both

propagation delay and clock skew for higher precision and energy efficiency. Our inves-

tigation reveals that its performance on battery-powered, low-complexity sensor nodes

is not up to that predicted from simulation experiments due to the limited precision

floating-point arithmetic of sensor nodes, which draws attention to the lower computa-

tional capability of typical sensor nodes and its impact on time synchronization.

To reduce the computational complexity of WSN time synchronization on resource-

constrained sensor nodes, we propose AHTS whose synchronization-related computa-

tions are all done at the head node equipped with abundant computing and power re-

sources. The sensor nodes are responsible for timestamping only, and the computational
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burdens of the sensor nodes are, therefore, significantly alleviated. Practical experimen-

tal results demonstrate that the proposed AHTS can avoid time synchronization errors

resulting from the single-precision floating-point arithmetic of the resource-constrained

sensor nodes and achieve microsecond-level time synchronization accuracy in multi-hop

WSNs.

3.1 Introduction

High-precision time synchronization is essential to the runtime collaborative applica-

tions for wireless sensor networks (WSNs), including time-based channel sharing and

media access control (MAC) protocols [36], coordinated duty cycling mechanisms [37],

and device-free wireless sensing for human activity and gesture recognition [38, 39].

Considering the increasing number of WSN deployments for a variety of applications,

most of which are based on multi-hop topologies with resource-constrained sensor nodes,

achieving high-precision time synchronization in multi-hop networks while lowering the

computational requirements and energy consumption at sensor nodes is crucial in de-

signing WSN time synchronization schemes.

A novel energy-efficient time synchronization scheme EE-ASCFR has been proposed

in [2], where the synchronization-related procedures are assigned to both head and sen-

sor nodes to reduce the computational complexity of the latter. It reverses the direction

of the conventional two-way message exchange as illustrated in Fig. 3.1 and employs data

bundling to jointly conserve the synchronization message transmissions, which is con-

ducive to energy-efficiency. Compared to the conventional WSN time synchronization

schemes whose sensor nodes are responsible for most of the clock estimation procedures

(e.g., [16, 17, 18, 40, 41, 42, 31, 43]), EE-ASCFR suits the resource-constrained WSNs

more: (a) sensor nodes are relieved from the tasks of clock offset estimation which is

done at the head node—also called a sink node in the literature; (b) the logical clocks

of sensor nodes are synchronized to the reference clock of the head node in frequency

through the asynchronous source clock frequency recovery (SCFR), but they could run
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Figure 3.1: Reverse two-way message exchange with optional bundling of measurements
introduced in [2].

possibly with different and independent offsets. Although [2] demonstrates through

simulation that EE-ASCFR can provide sub-microsecond-level accuracy while signifi-

cantly reducing the number of message exchanges required for time synchronization, its

actual performance was not evaluated on the testbed. We start our investigation by

implementing EE-ASCFR on a real WSN testbed in this chapter.

During implementing EE-ASCFR on TelosB [25] motes running TinyOS [44], we

find that the limited computing capability of the sensor nodes could result in cumulative

synchronization errors. The reason is that the estimation of the frequency ratio and the

maintenance of the logical clock require floating-point divisions. However, the limited

floating-point precision of the resource-constrained sensor nodes—i.e., 32-bit single-

precision on TinyOS—hinders the calculation accuracy, which results in synchronization

errors. Moreover, the 32-bit single-precision floating-point representation is the floating-

point standard not only of most resource-constrained WSN platforms such as MicaZ [45],

Iris [46], and TelosB [25] but also of most Arduino platforms [47], the latter platforms

are extremely prevalent in IoT prototyping, and their computing and power resources

are also quite limited. Therefore, reducing the computational complexity of the high-

precision time synchronization schemes is essential for flourishing WSN deployments

based on resource-constrained sensor nodes.

Building on EE-ASCFR, we propose an asymmetric high-precision time synchro-
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nization scheme in which all synchronization-related computations are reassigned to

the head with abundant computing and power resources; therefore, the investigated

precision loss could be avoided. The contributions of our work presented in this chapter

can be summarized as follows:

• We first investigate the precision loss issue resulting from the single-precision

floating-point format at resource-constrained sensor nodes for WSN time synchro-

nization EE-ASCFR. We further analyze the correlation between this precision

loss issue and synchronization errors.

• We then base on the EE-ASCFR and propose an improved WSN time synchro-

nization scheme called AHTS, which can achieve microsecond-level accuracy with

resource-constrained sensor nodes through reassigning all synchronization-related

computations to the head. We provide as well its multi-hop extension for covering

large-scale scenarios.

• We finally present the evaluation results on a real WSN testbed composing of

TelosB motes—one of the representative WSN platforms—running TinyOS. Ex-

perimental results demonstrate the effectiveness of the proposed scheme in both

single-hop and multi-hop scenarios.

The rest of this chapter is organized as follows: The investigations of the impact

of the limited precision floating-point arithmetic on time synchronization at resource-

constrained sensor nodes are exhibited in Section 3.2. Our proposed AHTS and its

multi-hop extension are presented in Section 3.3. Evaluation results performed on a

real testbed for the comparative analysis of the performance of the proposed AHTS and

EE-ASCFR in both single-hop and multi-hop topologies are illustrated in Section 3.4.

The summary of this chapter is narrated in Section 3.5.
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Figure 3.2: Measurement time estimation errors of EE-ASCFR with SI of 1 s evaluated
on a real WSN [3].

3.2 Impact of Precision Loss on Time Synchronization

EE-ASCFR employs the first-order affine clock model (1.1) to represent the sensor

node’s hardware clock with respect to the head’s reference clock, where the sensor node

maintains a logical clock (1.2) for timestamping [2]. Based on the reverse two-way mes-

sage exchange shown in Fig. 3.1, the clock frequency ratio in the kth synchronization—

i.e., 1+εk according to (1.1)—could be estimated as (T2k−T20)/(T1k−T10) where the

timestamps of Tij (i=1, 2 and j≥0) are recorded during the jth synchronization. As

mentioned in Section 3.1, we begin our investigation by implementing EE-ASCFR on a

real testbed.

We show in Fig. 3.2 the measurement time estimation errors from the experiment

with the testbed for a period of 1800 s. The synchronization interval (SI) is set to 1 s, and

5 measurements are generated and bundled together in a “Report/Response” message

to the head in each SI. The absolute value of measurement time estimation error of EE-

ASCFR demonstrated in Fig. 3.2 gradually increases from around 2 µs to 100 µs over

the period of 1200 s. It indicates that, as we will discuss shortly, the limited precision

in floating-point arithmetic of the resource-constrained sensor nodes (i.e., 32-bit single-

precision in this case) has negative impacts on the time synchronization performance.

This finding is not isolated, however. In the ratio-based time synchronization protocol

(RSP) [48] which is, in fact, a flooding time synchronization scheme employing a rather
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simpler ratio-based clock estimation method; the impact of computational errors caused

by the limited precision floating-point arithmetic on time synchronization has also been

discussed. They reveal that a smaller synchronization time interval could lead to larger

computational errors, while a larger synchronization time interval could also worsen the

synchronization performance due to the clock drift.

To investigate the cause of the error increase in EE-ASCFR, we revisit the arith-

metic computations involved with the logical clock updates in (1.2) at the sensor node.

Specifically, the division of floating-point numbers (e.g., the division of Ti(t) − Ti(tk) by

1 + ε̂i,k in (1.2)) in the simulation experiments in [2] does not incur much precision loss

on the rather resource-abundant personal computers (PCs) and workstations provid-

ing 64-bit double-precision floating-point type1. In contrast, the floating-point type of

most typical WSN platforms based on the low-cost MCU and limited memory space

is limited to 32-bit single-precision, which may result in significant precision loss. [29]

further confirms our investigation, they mention that implementing high-precision syn-

chronization schemes requiring floating-point division in WSNs has to be discreet due

to the hardware limitations of the underlying platforms. In the case of EE-ASCFR, an

accurate floating-point division is required in the logical clock update (1.2) at the sensor

node. Moreover, the logical clock update has a recursive nature which accumulates the

computational errors.

We then make our attempt to avoid the recursive nature of (1.2) in EE-ASCFR

and simplify the quantification of the impact of the precision loss induced errors by

proposing the following improved logical clock update equation:

Ti

(
Ti(t)

)
= Ti

(
Ti(t0)

)
+

Ti(t) − Ti(t0)
1 + ε̂i,k

, (3.1)

where the update of the logical clock is based on the value of the logical clock—i.e.,

Ti(Ti(t0))—from the initial time synchronization round instead of the previous time

synchronization round, i.e., Ti(Ti(tk)) . The time duration since the first time synchro-

1The 64-bit double-precision floating-point type is also named as double type in common program-
ming languages.
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nization is divided by the estimated clock frequency ratio in the updated logical clock.

In doing so, the recursive term is eliminated in (3.1). Unfortunately, the practical ex-

periments with the remolded logical clock show still the cumulative errors which are

caused by the precision loss involved with the division by 1 + ε̂i,k (i.e., the second term

in RHS of (3.1)).

In this case, the impact of the precision loss can be analyzed as follows: Because

ε̂i,k�1 in general, the second term in RHS of (3.1) can be approximated by its first-order

Taylor polynomial, i.e.,

Ti(t) − Ti(t0)
1 + ε̂i,k

≈

(
Ti(t) − Ti(t0)

)
× (1 − ε̂i,k). (3.2)

Let ε be the precision loss for the clock skew ε̂i,k , i.e.,

ε , ε̂i,k − ε̂
LP
i,k , (3.3)

where ε̂LP
i,k

denotes the actual, imprecise value of the clock skew in implementation due

to the limited precision. Therefore, the computational error Ψ caused by the precision

loss can be described as follows:

Ψ ,
(
Ti(t) − Ti(t0)

)
× (1 − ε̂i,k) −

(
Ti(t) − Ti(t0)

)
× (1 − ε̂LPi,k )

=
(
Ti(t) − Ti(t0)

)
× (ε̂LPi,k − ε̂i,k)

= −
(
Ti(t) − Ti(t0)

)
ε .

(3.4)

(3.4) demonstrates that, given the precision loss ε , the computational error Ψ is propor-

tional to the time duration since the first time synchronization. This reveals that when

the time duration since the first time synchronization, i.e., Ti(t)−Ti(t0), increases, the

computational error becomes larger with the updating of logical clock. A further note

is that, reducing the SI—e.g., Ti(tk)−Ti(tk−1) as in (1.2)—does not mitigate the impact

of the precision loss since the computational error Ψ in (3.4) is independent of SI.

To quantify the impact of the precision loss, we turn back to the definition of the
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floating-point formats in IEEE standard 754 [49]. In this standard, 7-digit precision

is provided for decimal numbers based on the definitions of the 32-bit floating-point

and decimal interchange format parameters. The nesC language [50]—the foundation

of TinyOS, is basically the extension of the standard C language that follows the IEEE

standard 754 as described in [51]. The decimal numbers in the 32-bit floating-point

type of nesC, therefore, inherits limited precision of 7 digits. Noting the highest clock

resolution of 1 µs in TinyOS with resource-constrained WSN platforms, we take SI of

10 s as an example, the actual value involved in the computation of logical clock in

(1.2)—i.e., the difference between the two timestamps—is 107 µs. Therefore, in the

worst case, the precision loss in the estimated frequency ratio, whose true value is very

close to one, would be 10−7 (i.e., ε).

3.3 Asymmetric High-Precision Time Synchronization

To avoid the precision loss issue revealed in Section 3.2, we propose an asymmetric high-

precision time synchronization AHTS whose synchronization-related computations are

all reassigned to the head from the sensor nodes. In this section, we describe first the

system architecture and basic operations of AHTS and then its multi-hop extension.

3.3.1 System Architecture and Basic Operations

Since typical WSNs are asymmetric where a number of resource-constrained sensor

nodes report data to a resource-abundant head [2], we consider reassigning all time

synchronization tasks except timestamping from the sensor nodes to head in AHTS to

remedy the computation errors investigated in Section 3.2. Specifically, as shown in

Fig. 3.3, the logical clock translator described in (3.1) and the frequency ratio estimator

(i.e., the cumulative ratio (CR) estimator in [52]) which run at sensor nodes in EE-

ASCFR are now part of the time synchronization tasks of the head.

As illustrated in Fig. 3.3, the redistribution of the synchronization-related tasks from

the sensor nodes to the head in AHTS leaves just the timestamping procedure to the
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Figure 3.3: System architecture of AHTS for resource-constrained wireless sensor net-
works [3].

sensor node—i.e., the “MAC-layer Time Recorder”. Therefore, the synchronization tasks

requiring accurate floating-point arithmetic operations are then done at the head. In

doing so, the head’s abundant computing resources including the 64-bit double-precision

floating-point alleviate the said computation errors caused by the precision loss.

AHTS operates as follows: The time synchronization maintainer initiates the time

synchronization process at the head—a hardware clock timestamp T1 is recorded by the

MAC-layer time recorder and sent to sensor nodes via a Beacon/Request message. Then

the sensor node receives the Beacon/Request message and records its own hardware clock

T2 at reception. Unlike in the reverse two-way message exchange of EE-ASCFR where

the T20 shown in Fig. 3.1 is not required by the head since the estimation of the clock

frequency ratio is completed at the sensor node, in AHTS, T20 is essential for the head,

however. As a result, T20 has to be delivered from the sensor node to the head at

the expense of message transmission. It could be carried either through one additional

message after the initial Beacon/Request message (i.e., the dotted line in Fig. 3.1) or

embedded in the first Report/Response message later.

On the other hand, the sensor node records a timestamp Tm based on its hardware

clock when a measurement event triggers. Afterwards, a Response/Report message

carrying the measurement timestamp Tm and the most recently generated T2 together
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with the hardware clock timestamp T3 of its own transmission time is transmitted

to the head. The head records a timestamp T4 using its MAC-layer time recorder

when receiving the Response/Report message from the sensor node. Next, based on

the differences of current T2 and T1 to the initial ones (i.e., T20 and T10), the head’s

frequency ratio estimator calculates the clock frequency ratio having a precision of

16 digits [49] by employing the 64-bit double-precision floating-point type. Finally,

the clock offset is estimated as in EE-ASCFR based on the reverse two-way message

exchange. As of completing the estimations of clock frequency and offset, the timestamp

translator converts the measurement timestamp Tm that in sensor node’s time into that

in the reference time of the head.

Since AHTS inherits the reverse two-way message exchange from EE-ASCFR, the

propagation delay could also be properly compensated for. This compensation more-

over covers the interrupt delay between the transmission and reception interrupts of a

message at the sender and receiver. Note that compensating for those delays is con-

sidered the major advantage of the two-way message exchange over one-way message

dissemination.

3.3.2 Multi-Hop Extension

Here we provide the multi-hop extension of AHTS and its detailed implementation. As

AHTS relies on the two-way message exchange, we first discuss the difference between

multi-hop extensions for time synchronization schemes employing one-way message dis-

semination and two-way message exchange. Fig. 3.4 (a) and (b) exhibit respectively

the multi-hop time synchronization schemes based on one-way message dissemination

and two-way message exchange. Congenitally, time synchronization schemes based on

two-way message exchanges (e.g., [16]) occupy more message transmissions. There-

fore, in extending two-way schemes to multi-hop, one additional message at each hop

is required to acquire four timestamps for time synchronization compared to one-way

schemes. Considering the synchronization of a flat N-hop network as an example, N

synchronization messages and 2N timestamps are required in one-way schemes as illus-
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Figure 3.4: Multi-hop extension for time synchronization schemes based on (a) the
one-way message dissemination and (b) the two-way message exchange [3].

trated in Fig. 3.4 (a), but 2N synchronization messages and 4N timestamps in two-way

schemes as in Fig. 3.4 (b).

Although time synchronization schemes based on one-way message dissemination

require fewer message transmissions, their synchronization accuracy would be deterio-

rated in a relatively long transmission distance due to their ignoring of the propagation

delay. In the case of multi-hop, the impact of ignoring the propagation delay could

be accumulated therefore no longer negligible. EE-ASCFR and AHTS thanks to their

foundation of reverse two-way message exchange, could not only properly compensate

for the propagation delay therefore provide more accurate time synchronization but also

address the issue of the increasing number of message transmissions through bundling

the measurement and synchronization messages. As shown in Fig. 3.5, the number of

message transmissions is significantly reduced in the multi-hop extension based on re-

verse two-way message exchange compared to that based on the conventional two-way

message exchange exhibited in Fig. 3.4 (b).

We adopt time-translating sketched in [2] however relocate it from sensor nodes to
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Figure 3.5: Multi-hop extension and data bundling for time synchronization schemes
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the head. As such, sensor nodes serving as intermediate gateway nodes in the multi-hop

are completely relieved from the synchronization-related computations that for not only

themselves but also their offspring sensor nodes. As for timestamps in multi-hop time

synchronization, each hop maintains the same timestamping procedure as the single-hop

case discussed in Section 3.3.1 and shown in Fig. 3.5.

With the time translation and the reassignment of its location, the intermediate

sensor nodes in AHTS—previously undertake the estimation procedures for the offspring

sensor nodes in EE-ASCFR—are responsible for only transferring the timestamps from

each hop to the head. The head handles all time translation procedures over hops for

each sensor node, and eventually establishes time synchronization for all sensor nodes.

In this way, we could also eliminate the impact of any extra delays on multi-hop time

synchronization such as packet delays resulting from queueing and MAC operations,

which are accumulated through per-hop forwarding in multi-hop networks.
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Table 3.1: MAE and MSE of Measurement Time Estimation of EE-
ASCFR and AHTS for the Single-Hop Scenario [3]

Synchronization Scheme MAE 1 MSE 1

EE-ASCFR
SI = 100 s 2.7276E-05 1.0391E-09
SI = 10 s 2.5182E-05 1.1559E-09
SI = 1 s 2.4069E-05 1.0095E-09

AHTS
SI = 100 s 8.4225E-06 1.2524E-10
SI = 10 s 2.3385E-06 9.1694E-12
SI = 1 s 1.8166E-06 5.2094E-12

1 The samples measured between 360 s (i.e., a tenth of the total observa-
tion period) and 3600 s are employed to avoid the effect of a transient
period.

3.4 Experimental Results

To evaluate the actual performance of AHTS, we carry out a series of comparative

experiments with a real WSN testbed consisting of TelosB motes running TinyOS. The

focus of the evaluations in this section is to show how the proposed AHTS addresses the

issue of precision loss which affects the actual performance of EE-ASCFR as revealed

in Section 3.2, in both single- and multi-hop scenarios.

3.4.1 Single-Hop Scenario

We employ a simple single-hop scenario consisting of a head and a sensor node for our

evaluation in this subsection. Three different SI values, i.e., 1 s, 10 s, and 100 s, are used

in evaluating the said schemes. Each experiment runs over 3600 s. 5 measurements are

bundled for all experiments. We show the measurement time estimation errors of AHTS

and EE-ASCFR in Fig. 3.6. Table 3.1 summarizes the mean absolute error (MAE) and

the mean squared error (MSE) of the measurement time estimation.

Fig. 3.6 demonstrates that the measurement time estimation errors of AHTS are

stable and smaller than those of EE-ASCFR; AHTS performs consistently in all exper-

iments employing three different SIs over their observation periods. Table 3.1 exhibits

the performance of AHTS in terms of MAE and MSE, where the MAEs and MSEs



32 Xintao Huan

0 400 800 1200 1600 2000 2400 2800 3200 3600
Time [s]

-1E-04

-5E-05

0E+00

5E-05

1E-04

M
ea

su
re

m
en

t T
im

e 
E

st
im

at
io

n 
E

rr
or

 [
s]

EE-ASCFR
AHTS

(a)

0 400 800 1200 1600 2000 2400 2800 3200 3600
Time [s]

-1E-04

-5E-05

0E+00

5E-05

1E-04

M
ea

su
re

m
en

t T
im

e 
E

st
im

at
io

n 
E

rr
or

 [
s]

EE-ASCFR
AHTS

(b)

0 400 800 1200 1600 2000 2400 2800 3200 3600
Time [s]

-1E-04

-5E-05

0E+00

5E-05

1E-04

M
ea

su
re

m
en

t T
im

e 
E

st
im

at
io

n 
E

rr
or

 [
s]

EE-ASCFR
AHTS

(c)

Figure 3.6: Measurement time estimation errors of EE-ASCFR and AHTS with SI of
(a) 1 s, (b) 10 s and (c) 100 s for the single-hop scenario [3].

of AHTS are again much smaller than that of EE-ASCFR. The ensemble of Fig. 3.6

and Table 3.1 illustrates that the proposed AHTS could address the issue of precision
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Figure 3.7: Measurement time estimation errors of AHTS with SI of 1 s for the multi-hop
scenario [3].

loss and achieve microsecond-level time synchronization at resource-constrained sensor

nodes in the single-hop scenario.

Note that, the value of SI affects more the AHTS, especially when SI increases to

100 s. This may because that the cheap crystal oscillator employed in the sensor nodes

drifts more in a longer period of time. In contrast, the performance of EE-ASCFR is not

much affected by the variation of SI. The reason is that the aforementioned precision

loss issue eclipses the impact of SI change.

3.4.2 Multi-Hop Scenario

We evaluate the performance of AHTS in the multi-hop scenario by establishing a flat

WSN composing of one head and three sensor nodes. Similar to the evaluation in

the single-hop scenario, here our experiments run over the same period of 3600 s and

the value of SI is fixed to 1 s. Each sensor node bundles only its own measurement and

synchronization data, and the maximum bundling number is set to 5. The measurement

time estimation errors of AHTS for three hops are exhibited in Fig. 3.7; their MAEs

and MSEs are summarized in Table 3.2.

In Table 3.2, the MAE of measurement time estimation for hop 1 is 2.1774 µs, similar

to the evaluated 1.8166 µs in the single-hop scenario. However, the MAEs of hops 2

and 3 become slightly larger as the hop count increases—about 0.2 µs per hop, which is
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Table 3.2: MAE and MSE of Measurement Time Estimation of
AHTS for the Multi-Hop Scenario [3]

Hop Number MAE 1 MSE 1

Hop
3 2.5700E-06 1.2432E-11
2 2.3648E-06 1.1056E-11
1 2.1774E-06 9.4104E-12

1 The samples measured between 360 s (i.e., a tenth of the obser-
vation period) and 3600 s are employed to avoid the effect of a
transient period.
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Figure 3.8: Probability distribution of the measurement time estimation errors of AHTS
with SI of 1 s for the multi-hop scenario [3].

mainly due to the layer-by-layer time translation of the multi-hop extension. Likewise,

in Fig. 3.7, more fluctuations could be found for hop 2 and hop 3 than hop 1. Similar

behaviors could also be found in Fig. 3.8 that illustrates the probability distribution of

the measurement time estimation errors of AHTS for three hops.

Specifically, it shows that 18% of the measurement time estimation errors of hop 1

are close to zero; and the percentages of hop 2 and hop 3 are decreased to around

14% and 13%, nevertheless. Moreover, most measurement time estimation errors of all

three hops are within the range of −10 µs and 10 µs, where the performance of AHTS

under the multi-hop scenario is clearly demonstrated. Overall, AHTS could provide

microsecond-level time synchronization accuracy for multi-hop scenarios evaluated.
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3.5 Summary

In this chapter, through investigating the actual performance of EE-ASCFR that builds

on the reverse two-way message exchange and could simultaneously compensate for the

propagation delay and clock skew, we reveal the impact of precision loss issue on the

WSN time synchronization. We emphasize that time synchronization schemes should at-

tach importance to their computational complexity for resource-constrained WSNs. To

avoid the precision loss issue, we propose asymmetric high-precision time synchroniza-

tion AHTS remolded from EE-ASCFR, where all synchronization-related computations

are done at the head. Therefore, the only procedure related to time synchronization at

the sensor node is timestamping, whereby the computational complexity is significantly

reduced. Experimental results on a real WSN testbed demonstrate the performance of

AHTS, i.e., microsecond-level synchronization accuracy in both single- and multi-hop

scenarios.

As the foundation of AHTS, i.e., EE-ASCFR, is designed as well for energy-efficiency

in the asymmetric WSNs, we will investigate the energy-efficiency issue of WSN time

synchronization in the follow-up chapter. Note that, the design assumption that an

asymmetric WSN comprises a resourceful head represents not only most WSN applica-

tions but also future IoT deployments [53].



Chapter 4

A Beaconless Asymmetric Time

Synchronization Scheme for Low

Energy Consumption

In this chapter, we focus on the energy-efficiency of the WSN time synchronization; the

work presented here is based on our publication of [1]. Noting the massive number of

battery-powered low-cost sensor nodes are being deployed for various applications from

monitoring, detection to device-free wireless sensing; time synchronization that is essen-

tial to those applications but heavily relies on energy-consuming message transmissions,

therefore, has to develop towards more energy-efficient. We introduce in this chap-

ter the reverse asymmetric time synchronization framework for resource-constrained

multi-hop WSNs. Based on this framework, we propose an energy-efficient beaconless

asymmetric time synchronization scheme employing the reverse one-way message dis-

semination. On a real WSN testbed consisting of TelosB motes running TinyOS, we

experimentally demonstrate that the proposed scheme could conserve significant en-

ergy consumption compared to the flooding time synchronization protocol while still

achieving microsecond-level synchronization accuracy.
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4.1 Introduction

Time synchronization for wireless sensor networks (WSNs) has been extensively studied

in the last decades as the number of WSN deployments has been gradually increasing

over the period [14, 13]. Because most of the WSN deployments are based on a large

number of battery-powered, low-cost sensor nodes, which are limited in their comput-

ing and power resources, the focus of WSN time synchronization research has been

shifted toward three major aspects of accuracy, energy consumption, and computational

complexity.

In the literature, many conventional [18, 28, 16] and recent [30, 54, 22] time synchro-

nization schemes have been proposed to address the aspect of synchronization accuracy

due to its significance. Over the past few years, a few schemes [55, 31, 40, 56] tried to

address the issues of energy consumption and computational complexity in time syn-

chronization together with its accuracy. As the IoT thrives, many research efforts have

been concentrated on conserving the energy of IoT systems, e.g., the conventional pa-

rameter adaptation [57, 58, 59] and the novel energy harvesting schemes [60]; in such

an environment, the time synchronization schemes—e.g., [40, 31, 41, 61]—have been fo-

cusing on energy efficiency along with other requirements such as high synchronization

accuracy and low computational complexity. In general, however, the attention received

for the aspects of energy consumption and computational complexity is relatively less

compared to that for the time synchronization accuracy. Especially in multi-hop WSNs,

intermediate gateway nodes are overloaded with tasks for not only relaying messages

but also a variety of computations for their offspring nodes as well as themselves. There-

fore, not only minimizing the energy consumption but also lowering the computational

complexity while maintaining the synchronization accuracy is crucial to the design of

time synchronization schemes for resource-constrained sensor nodes.

In [2], unlike many existing WSN time synchronization schemes like FTSP [18] and

TPSN [16], we put our focus on asymmetric WSNs—where a head is equipped with a

powerful processor and supplied power from outlet and sensor nodes measuring data
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and/or detecting events with sensors are limited in processing and battery-powered—

and proposed a novel energy-efficient time synchronization scheme based on the reverse

two-way message exchange and demonstrated through simulation experiments that sub-

microsecond-level synchronization accuracy could be achieved.

Note that the computational precision required by the scheme proposed in [2]

(i.e., the precise division of the floating-point numbers) is beyond the capability of

most resource-constrained sensor nodes equipped with a low-cost MicroController Unit

(MCU) providing only 32-bit floating-point as discovered in [3]. Also, its multi-hop ex-

tension through intermediate gateway nodes was discussed, but its performance under

multi-hop scenarios was not analyzed at all. The idea of the reverse two-way message

exchange together with message bundling for synchronization and measurement data,

however, could be applied to the design of more advanced energy-efficient time syn-

chronization schemes targeting resource-constrained sensor nodes, which could greatly

reduce the number of message transmissions by sensor nodes.

Based on our prior work, therefore, in this chapter we present the reverse asymmetric

time synchronization framework and propose the beaconless asymmetric energy-efficient

time synchronization scheme BATS specifically based on the reverse one-way message

dissemination, which can address in a more balanced way the three major challenges in

WSN time synchronization on resource-constrained sensor nodes—i.e., achieving high

synchronization accuracy, reducing energy consumption [31], and lowering computa-

tional complexity at sensor nodes [62]—as follows:

First, in the proposed BATS, all synchronization procedures but timestamping are

moved from sensor nodes, including gateway nodes, to the head as in [3] in order to

improve the accuracy of time synchronization by addressing the issue of precision loss

resulting from the use of 32-bit single-precision floating-point numbers at sensor nodes:

Because all procedures but timestamping are carried out at the head with plenty of

computing and power resources including 64-bit floating-point precision, numerical com-

putational errors due to precision loss could be avoided.

Second, the movement of synchronization procedures to the head greatly reduces the
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computational complexity of sensor nodes as well. In the proposed scheme, sensor nodes

are responsible for only the timestamping procedure whose computational complexity

is O(1); the computational complexity for sensor nodes under the conventional schemes

using linear regression (e.g., FTSP [18]), for example, could be as high as O(CG2) in

case the least squares method is used for G training samples and C variables [63].

Third, noting that the propagation delay compensation through the two-way mes-

sage exchange is not required for microsecond-level synchronization [18], we also design

BATS based on the reverse one-way message dissemination to lower the energy con-

sumption of battery-powered sensor nodes; due to the one-way message dissemination

under the reverse asymmetric time synchronization framework, BATS does not rely on

the “Beacon/Request” messages and therefore saves the energy for their receptions and

transmissions at sensor nodes, the former of which often consume more energy than the

latter [25]. As in [2], application messages (e.g., for reporting measurement data to the

head) can also embed and carry synchronization-related data, which further reduces the

number of message transmissions.

This beaconless time synchronization of BATS is a major advantage compared to

many existing time synchronization schemes relying on sensor nodes’ broadcasting syn-

chronization messages received from a root node (i.e., flooding) to achieve network-level

time synchronization (e.g., [18, 64]), because it eliminates beacon-related computation

and energy consumption imposed on the resource-constrained sensor nodes which are

already loaded with tasks including medium access control (MAC) protocol, message

scheduling and routing, and data measurement. Note that the actual energy consump-

tion and synchronization accuracy of the proposed scheme are evaluated and analyzed

through experiments on a real WSN testbed.

The rest of this chapter is organized as follows: In Section 4.2, the proposed BATS

based on the reverse one-way message dissemination under the reverse asymmetric time

synchronization framework are presented. Section 4.3 illustrates our multi-hop extension

of BATS with discussing the issue of communication overhead. Section 4.4 exhibits the

practical evaluation results on a real WSN testbed with a focus on energy consumption
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and synchronization accuracy. Section 4.5 concludes the work of this chapter.

4.2 Energy-Efficient Time Synchronization Tailored for

Resource-Constrained Sensor Nodes

When the propagation delay is not significant (e.g., sub-microsecond delays for WSNs

with a communication range of 300 m or less), time synchronization schemes based on

the one-way message dissemination have a clear advantage over those based on the

two-way message exchange in terms of the number of message transmissions at sensor

nodes. Still, the schemes based on the one-way message dissemination have issues in

their implementation on resource-constrained sensor nodes, we will discuss in the fol-

lowing. Afterwards, we introduce BATS—i.e., the energy-efficient time synchronization

scheme based on the reverse one-way message dissemination—which addresses the im-

plementation issues of the one-way-message-dissemination-based time synchronization

schemes on resource-constrained sensor nodes.

4.2.1 Impact of Precision Loss on the Performance of One-Way-

Message-Dissemination-Based Time Synchronization Schemes

We take RSP [48] as an example—which represents the flooding time synchronization,

however, has simplified estimations of its clock skew and offset—to analyze the impact

of the precision loss on the performance of the time synchronization schemes based on

one-way message dissemination.

As the conventional one-way message dissemination illustrated in Fig. 1.2 (a) is

employed in RSP, the relationship between its head’s hardware clock t and its sensor

node i’s hardware clock Ti(t) can be modeled as follows:

t = RiTi(t) + θi, (4.1)

where Ri denotes the clock frequency ratio and θi the clock offset of the reference clock
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with respect to the hardware clock of the sensor node. During the broadcastings of the

Beacon/Request messages, the sensor node could collect a set of timestamp pairs, i.e.,

T1k and T2k (k=1, . . .). Based on those timestamps, the sensor node i, therefore, could

maintain its logical clock T RSP
i which is the estimated reference time with reference to

the sensor node i’s hardware clock Ti(t) as follows [48]:

T RSP
i

(
Ti(t)

)
= R̂i,kTi(t) + θ̂i,k, (4.2)

where R̂i,k and θ̂i,k represent the estimated clock frequency ratio and clock offset based

on the linear interpolation employing a set of timestamps, i.e.,

R̂i,k =
T1k−T1k−1
T2k−T2k−1

, (4.3)

θ̂i,k =
T1k−1·T2k − T2k−1·T1k

T2k − T2k−1
. (4.4)

In this case, the impact of the precision loss on the estimated reference clock of RSP

in (4.2) can be analyzed similarly to the investigation presented in [3]: We define εR

and εθ as the precision loss in the estimation of the clock frequency ratio and clock

offset respectively:

εR , R̂i,k − R̂LP
i,k , (4.5)

εθ , θ̂i,k − θ̂
LP
i,k , (4.6)

where R̂LP
i,k

and θ̂LP
i,k

are the value of the clock frequency ratio and the clock offset from

the practical implementation that are affected by the limited-precision floating-point

arithmetic in (4.3) and (4.4). Thus, we can derive the computational error Ψ(t) in the

estimated reference clock at the sensor node at time t as follows:

Ψ(t) =
(
R̂i,kTi(t) + θ̂i,k

)
−

(
R̂LP
i,k Ti(t) + θ̂LP

i,k

)
,

= εRTi(t) + εθ .
(4.7)
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(4.7) shows that two components exist in the computational error, the first of which

is proportional to the current time of the sensor node’s hardware clock (i.e., Ti(t)),

however.

We further trace the error based on the IEEE standard for floating-point arithmetic

[49]. In that standard, a non-zero floating-point number x can be represented in the

binary format as follows:

x = σ · b̄ · 2e, (4.8)

where σ is the sign taking the value of +1 or −1, b̄ is the binary fraction whose value

is within the range of [1, 2), and e is the integer exponent.

Because the IEEE 32-bit single-precision floating-point format assigns 1 bit to σ,

8 bits to e and 23 bits to b̄, the machine epsilon [65] becomes 2−23. If the rounding

arithmetic is chopping (i.e., rounding towards 0), the precision loss εR is within the range

of [−2−23, 0], and the maximum absolute precision loss in this case is 2−23≈1.19 × 10−7.

This implies that the first component of (4.7) alone could result in about 0.1 µs and

1 µs computational errors for Ti(t) of 1 s and 10 s, respectively, in the worst case.

Note that the analysis of the computational error above is based on the worst-case

scenario for simplicity. As discussed in [48], however, in reality, the precision loss εR

itself is inversely proportional to SI (i.e., the time difference between two consecutive

beacon messages), which could more or less relax the dependency of the computational

error Ψ(t) on Ti(t). In fact, setting an optimal value of SI is quite complicated because

the value of SI not only affects the computational error but also determines the impact

of the sensor node’s hardware clock drift due to the changes in the ambient temperature

and the battery voltage.

4.2.2 Beaconless Asymmetric Energy-Efficient Time Synchronization

As illustrated in Fig. 4.1, the proposed BATS scheme based on the reverse one-way

message dissemination does not rely on beacon messages but utilizes only measurement

data messages to carry the reversed synchronization timestamp T1, which results in the
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Figure 4.1: Asymmetric energy-efficient time synchronization based on reverse one-way
message dissemination with optional bundling of measurement data [1].

movement of all time synchronization procedures from sensor nodes to the head except

timestamping of T1. As shown in Fig. 4.2, the timestamping of T1 and T2 is triggered

by an interrupt generated by the radio chip immediately after the Start Frame Delimiter

(SFD) byte has been sent and received by the MAC layer of the sender and the receiver,

respectively, which is similar to that of RTSP [17]. This timestamping approach, which

is based on a pair of timestamps generated during the transmission and reception of

one message, is simpler and faster than that of FTSP [18] which reduces the jitter of

interrupt handling through recording, normalizing and averaging multiple timestamps

at both the sender and the receiver.

In the single-hop scenario shown in Fig. 4.1, the head’s direct offspring nodes em-

ploy their measurement data messages to transmit their timestamps T1j during the j-th

synchronization to the head for maintaining the time synchronization. Using the abun-

dant computing and power resources including the 64-bit floating-point precision at the

head, the numerical computational errors analyzed in Section 4.2.1 could be avoided in

the proposed scheme. For modeling the linear relationship between the hardware clocks

of the head and the sensor node, the first-order affine clock model (1.1) is employed; the

affine clock model is widely used in many existing WSN time synchronization schemes

as a clock model for a relatively short time period, during which the effect of envi-

ronmental conditions (e.g., temperature) and voltage variation on the clock oscillator

hardly changes.

In this regard, the use of the linear regression for clock parameter estimation does
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Figure 4.2: MAC-layer timestamping adopted in BATS [1].

make sense in the context of WSNs due to its simplicity, and, in fact, most representative

WSN time synchronization schemes, including FTSP and RBS, rely on this method. For

a fair comparison with those schemes, we also employ the linear regression method in

the proposed scheme to estimate the parameters of sensor nodes’ hardware clocks. Note

that the performance of the linear regression in the proposed scheme, which is running

at the head, is not constrained by the limited sample size unlike FTSP using the past

8 samples only due to the resource constraints of sensor nodes.

The following linear least squares method is employed in BATS to model the linear

relationship between the hardware clocks of the sensor node i and the head based on m

samples during the j-th synchronization: For i∈ [0, 1, . . . , N−1] and j=m,m+1, . . .,

Φi( j) =
{
T2i( j)>T2i( j)

}−1
T2i( j)>T1i( j), (4.9)

where

Φi( j) = [1 + ε̂i( j), θ̂i( j)],

T1i( j) = [T1i( j − m + 1), ...,T1i( j)],

T2i( j) = [T2i( j − m + 1), ...,T2i( j)],

where Φi( j) is a vector of the estimated clock frequency ratio and offset and (·)> and

(·)−1 denote vector transpose and matrix inverse, respectively.

As we will see in Section 4.4, employing the complex linear regression solution with

no limitation on the sample size for solving the linear equation of the time synchroniza-
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tion could improve the performance of time synchronization compared with the conven-

tional simpler solutions such as [48]. Furthermore, thanks to the reverse asymmetric

framework that BATS is based on, we can use a more complex estimation technique

with higher computational complexity (e.g., machine learning [66]) as all the estimation

procedures now run at the head with abundant computing capability instead of the

resource-constrained sensor nodes.

As exhibited in Fig. 4.1, the direction of the conventional one-way message dissemi-

nation is reversed, where the estimation of the hardware clocks between the sensor node

and the head is also reversed compared to the conventional one. On the one hand, when

timestamps along with measurement data from sensor nodes are gathered in the head,

the corresponding hardware clock timestamps of the sensor nodes should be translated

based on the head’s reference clock to estimate the exact time for the measurement

events. On the other hand, when the head issues commands to notify sensor nodes

to perform collaborative operations (e.g., sleep and wake-up for energy-efficient MAC

protocols and application of coherent sampling), the timestamps carried in the com-

mands have to be translated to the target sensor nodes’ hardware clock time. Using the

estimated frequency ratio 1 + εi and offset θi between a sensor node i and the head, in

the single-hop scenario, the translation between their hardware clock times is done as

follows:

t =
Ti(t) − θi

1 + εi
⇐⇒ Ti(t) = (1 + εi)t + θi, (4.10)

where the translation from sensor node’s clock time Ti(t) to head’s clock time t in-

volved the floating-point division, which is similar to the clock time translation in EE-

ASCFR. As mentioned in [29], such calculation involved with floating-point division and

microsecond-level timestamp should be carefully handled in the resource-constrained

sensor nodes, but those are not major issues at all in BATS.
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4.3 Extension of BATS to Multi-Hop WSNs

Independent of the network topologies which are typically established through routing

protocols (e.g., Collection Tree Protocol (CTP) [67]), the proposed BATS scheme in

principle could be extended to any existing multi-hop routing protocols with the addition

of the required timestamps in the application messages. There are several issues to

consider, however, in its extension to the multi-hop scenario.

In the multi-hop scenario, gateway sensor nodes located in intermediate layers pro-

cess not only their own data as regular sensor nodes but also the data from their

offspring sensor nodes. The presence of gateway nodes makes it complicated for the

head to directly handle all timestamps required for time synchronization in multi-hop

WSNs. Note that in practice, the role of a sensor node is not fixed but can be changed

to either a gateway node or a leaf node—i.e., a node without relaying packets from

other nodes—depending on the topology and the arrangement by the routing protocol.

4.3.1 Multi-Hop Extension of The Time Synchronization Based On

Reverse One-Way Message Dissemination

As described in [2], two possible approaches for the multi-hop extension of WSN time

synchronization schemes based on the reverse two-way message exchange (including EE-

ASCFR) are those of time-relaying and time-translation at the gateway nodes. Of the

two approaches, the time-relaying one could introduce more random delays, including

queueing delays, as the messages from the sensor nodes are being forwarded to the

head through multiple gateway nodes, which are not properly compensated for unlike

the time-translation one. To maximize the advantage of MAC-layer timestamping and

avoid random queueing delays cumulated through multiple gateway nodes, therefore,

we use per-hop time synchronization for the multi-hop extension of BATS, which is

similar to the aforementioned time-translation approach in which the hardware clock

time of a sensor node goes through layer-by-layer translation in order to estimate its

time with respect to the reference clock of the head. The fundamental difference of
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Figure 4.3: A system architecture of the proposed time synchronization scheme [1].

the per-hop time synchronization employed in BATS compared to the time-translation

approach, however, is that all layer-by-layer translations are again moved from the

gateway nodes to the head to relieve the burden of the gateway nodes under the original

time-translation approach. The system architecture is illustrated in Fig. 4.3, where the

“command” is optional and the “sensor nodes” refer to both gateway and leaf sensor

nodes.

In the following, we focus on one end-to-end path shown in Fig. 4.4 for ease of

description and notation simplicity; in this case, the index of a node becomes its layer

index as well, with 0 indicating both the head and layer 0 it belongs to.

As in (1.1), we still use the affine clock model to describe the relationship between

the hardware clocks of two neighbor nodes: For i=1, 2, . . . , N,

Ti(t) =
(
1 + εi,i−1

)
Ti−1(t) + θi,i−1, (4.11)

where
(
1+εi,i−1

)
∈R+ and θi,i−1∈R are the clock frequency ratio and the clock offset of

Ti(t) with respect to Ti−1(t), respectively, and T0(t)=t. The clock frequency ratio and

offset could be estimated by applying the linear least squares method of (4.9) to (4.11).

We further use a recursive equation to translate the hardware clock time to the reference
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N

Figure 4.4: N-hop end-to-end path in a multi-hop WSN [1].

clock time: For i=N, N−1 . . . , 1,

Ti−1(t) =
Ti(t) − θi,i−1

1 + εi,i−1
. (4.12)

Note that, in the proposed per-hop time synchronization, timestamps required for

the synchronization of a sensor node based on the reverse one-way message dissemination

are recorded at the sensor node and its gateway node (working as a reference) as shown

in Fig. 4.1. Unlike the time translation approach described in [2], however, the time

translation operation is moved from the gateway to the head, and the gateway node just

sends the pair of timestamps obtained from the reverse one-way message dissemination

(i.e., T1i and T2i−1) all the way to the head. Based on these pairs of timestamps from

gateway nodes, the head can establish the relationships between sensor nodes and their

gateway nodes and eventually translate sensor nodes hardware clock times to those

based on the reference clock at the head recursively based on (4.11) and (4.12).

Using the aforementioned per-hop time synchronization, BATS could be extended

to cover the multi-hop scenario as demonstrated in Fig. 4.5 (b), which is different from

the conventional multi-hop scheme based on one-way message dissemination shown in

Fig. 4.5 (a) where the synchronization timestamps are carried by standalone beacon

messages and the measurement data are transported by the standalone measurement
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Figure 4.5: Multi-hop extension of (a) a conventional (e.g., FTSP) and (b) a reverse
asymmetric time synchronization scheme based on the one-way message dissemination
with all-data bundling procedure [1].

messages. The proposed BATS does not rely on broadcasting beacon messages and

embeds the synchronization timestamps into the measurement messages as in [2]. In

case of the conventional schemes, there are two separate flows of messages with different

directions (i.e., one for synchronization and the other for measurement); we cannot

embed synchronization timestamps into the measurement messages as in the extended

BATS. Pseudocodes for the details of the event handling at a sensor node under BATS

with and without bundling are provided in Algorithm 1 and 2.

4.3.2 Comparison to Other Multi-Hop WSN Time Synchronization

Schemes

Having discussed the multi-hop extension of BATS, which does not rely on beacon mes-

sages but exploits the bundling of synchronization timestamps with the measurements,

we compare the extended BATS to other multi-hop WSN time synchronization schemes.

Since the synchronization timestamps are bundled with measurement data in the

same message, the major cost of the proposed scheme is the increase of the payload of

the measurement message by the synchronization timestamps T1 and T2. As shown in
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Data: The node maintains the following data and variables:
• e: Event object including a timestamp;
• node_status: Variable indicating the status of node (i.e., GATEWAY or LEAF);
• p: Packet object (optionally) including timestamps from MAC-layer timestamping;
• QM : FIFO queue for measurement data;
• QP : FIFO queue for packets;
• QT2: FIFO queue for timestamp T2.

1 On detecting an event e:
2 switch e.type do
3 case MEASUREMENT do // its own measurement
4 d ← QM .dequeue() // measurement data from the queue
5 ts← e.getTimestamp() // for measurement, not for synchronization
6 p← Packet(d, ts) // create a packet object
7 send(p, M AC-L AY E R_T IMEST AMPING = ON) // for T1

8 case PACKET do
9 if p.getDest Address() , HE AD then // packet received from other sensor nodes

10 if node_status == GATEW AY then
11 p← QP .dequeue() // packet from the queue
12 if p.getT2() == NULL then // direct offspring
13 T2← QT2.dequeue() // from mac-layer timestamping
14 p.setT2(T2)

15 send(p, M AC-L AY E R_T IMEST AMPING = OFF) // no need for another T1

16 else
// Process the packet from the head . . .

17 otherwise do
// Process other event . . .

Algorithm 1: Event handling at a sensor node under BATS without bundling
[1].

Fig. 4.5 (b), for a node j hops away from the head, 2 timestamps—i.e., T1j and T2j−1—

are required for the head to achieve network-wide time synchronization. Therefore, for a

flat N-hop network, 2N−1 timestamps1 are to be transmitted through the measurement

messages to the head. Note that, though the same pair of timestamps (i.e., T1 and

T2) are used in the conventional schemes based on one-way message dissemination such

as FTSP, the cost of the transmissions of the standalone synchronization messages

would be much higher; even considering that the timestamp T2 could be kept locally

in the sensor node to perform the synchronization procedure, for a flat N-hop network,

N synchronization messages carrying the timestamp T1 have to be broadcasted for

achieving network-wide time synchronization.

1Because T20 is recorded at the head, there is no need of transmission.
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Data: The node maintains the following data and variables:
• e: Event object including a timestamp;
• node_status: Variable indicating the status of node (i.e., GATEWAY or LEAF);
• p: Packet object (optionally) including timestamps from MAC-layer timestamping;
• b: Bundling counter for counting the buffered bundles.
• b f : Bundling buffer for carrying packets;
• QM : FIFO queue for measurement data;
• QP : FIFO queue for packets;
• QT2: FIFO queue for timestamp T2.

1 On detecting an event e:
2 switch e.type do
3 case MEASUREMENT do // its own measurement
4 d ← QM .dequeue() // measurement data from the queue
5 ts← e.getTimestamp() // for measurement, not for synchronization
6 b f ← b f + Packet(d, ts) // kick packet into bundling buffer
7 b← b + 1 // update the bundling number

8 case PACKET do
9 if p.getDest Address() , HE AD then // packet received from other sensor nodes

10 if node_status == GATEW AY then
11 p← QP .dequeue() // packet from the queue
12 if p.getT2() == NULL then // direct offspring
13 T2← QT2.dequeue() // from mac-layer timestamping
14 p.setT2(T2)

15 if SE LF_DAT A_BUNDLING == T RUE then // in case of self-data
bundling

16 send(p, M AC-L AY E R_T IMEST AMPING = OFF) // no need for another
T1

17 else // in case of all-data bundling
18 b f ← b f + p // kick packet into bundling buffer
19 b← b + p.bundles // update the bundling number

20 else
// Process the packet from the head . . .

21 otherwise do
// Process other event . . .

22 if b >= M AX_BUNDLING then // number of bundled data equals or exceeds maximum
bundling number

23 send(b f , M AC-L AY E R_T IMEST AMPING = ON) // for T1
24 b f ← NULL // clear bundling buffer

Algorithm 2: Event handling at a sensor node under BATS with bundling [1].

Using the self-data and all-data bundling procedures detailed in Algorithm 1 and 2

with the payload and data structure of a message shown in Fig. 4.6, for a flat N-hop

network with each node generating M measurements, the number of message trans-

missions and receptions for conventional (Nconv
msg ) and proposed (Nprop

msg ) scheme can be
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Figure 4.6: Payload and data structure of a message generated at sensor node i: (a)
Payload with optional “all-data bundling” and (b) data structure with optional “self-data
bundling” [1].

obtained as follows:

Nconv
msg = 2(N − 1) + 1 + M

N∑
i=1

(
2(i − 1) + 1

)
, (4.13)

N
prop
msg =


N∑
i=1
(2(i − 1) + 1), self-data bundling,

2(N − 1) + 1, all-data bundling.
(4.14)

Note that Nconv
msg includes not only synchronization messages but also measurement

messages, while N
prop
msg just includes measurement messages with synchronization times-

tamps embedded. For a flat 4-hop network generating 2 measurements per node, the

number of message transmissions and receptions for the conventional scheme and the

proposed scheme with self-data and all-data bundling procedures are 39, 16 and 7,

respectively. These results suggest that the proposed scheme with all-data bundling

could reduce more than 80% message transmissions and receptions compared to the

conventional one. Consequently, the proposed scheme could achieve much higher en-

ergy efficiency.

Compared to the multi-hop extension of the time synchronization scheme based on

reverse two-way message exchange proposed in [2], the multi-hop extension of BATS
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based on one-way message dissemination can greatly lower communication overheads

by reducing the number of synchronization messages required for network-wide syn-

chronization, which is a significant advantage when used for large-scale WSNs. If the

end-to-end communication range of a multi-hop WSN is over a kilometer, however, the

propagation delay cannot be ignored any longer, and the time synchronization schemes

based on reverse two-way messages exchange would be a better option in such a case.

4.3.3 Discussions

Though the proposed scheme could save the energy consumption by reducing the num-

ber of message transmissions and receptions and significantly lower the computational

complexity of sensor nodes, those advantages come at the expense of the increase in the

computational complexity of the head. The increase in the computational complexity

of the head, however, is intentional because, as discussed in Section 4.1, the head in an

asymmetric WSN is assumed to have plenty of computing and power resources. Note

that the computation offloading for sensor nodes in the proposed framework could be

extended to the head as well by exploiting mobile edge and fog computing as discussed

in [68].

One major issue encountered in large-scale deployments is the additional message

transmissions in bundling: Because of the reassignment of the time synchronization

procedure from sensor nodes to the head, timestamps for time synchronization have

to be delivered to the head. As the number of hops and sensor nodes increases, the

number of timestamps to be delivered to the head also increases; the increasing number

of timestamps, by the way, does not directly result in more message transmissions thanks

to the proposed bundling procedure. Because the maximum number of bundled data

is limited by the maximum payload size of a message, however, a gateway node has

to generate additional messages when the measurement and/or synchronization data

either generated by themselves or received from its offspring nodes cannot be bundled

in one message, which reduces the energy efficiency of the proposed time synchronization

scheme in large-scale deployments.
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Figure 4.7: Multi-hop and single-hop topologies with one head and six sensor nodes: (a)
Multi-hop chain topology, (b) multi-hop tree topology and (c) single-hop star topology
[1].

Due to the use of computation offloading, BATS also faces the well-known trade-off

between energy consumption and execution delay [68]: Bundling a large number of data

would increase the end-to-end delay while saving the energy by reducing the number of

message transmissions. In this regard, we have proposed an optimal bundling scheme

to address this trade-off [6].

4.4 Experimental Results

The proposed BATS scheme is implemented on a real WSN testbed consisting of one

head and six sensor nodes as exhibited in Fig. 4.7, all of which are based on TelosB

motes running TinyOS [44]. Note that the timer resolution of TelosB motes running

TinyOS is 1 µs since the resolutions of its hardware clock running on a 32-kHz crystal

oscillator and software timer are 30.5 µs and 1 µs, respectively. The accuracy of time

synchronization schemes tested on the testbed, therefore, is limited to a microsecond

level.

4.4.1 Energy Efficiency

To evaluate the energy efficiency of the proposed scheme, we adopt both indirect and

direct methods, namely, counting the number of message transmissions and receptions

and measuring the energy consumption using the equipment.
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Table 4.1: The Numbers of Message Transmissions and Receptions at
Sensor Node for Different SIs During The Period of 3600 s [1]

Type of Synchronization Scheme NTX
1 NRX

Conventional Two-way
SI = 100 s 136 36
SI = 10 s 460 360
SI = 1 s 3700 3600

Conventional One-way
SI = 100 s 100 36
SI = 10 s 100 360
SI = 1 s 100 3600

Reverse Two-way
SI = 100 s 100 36
SI = 10 s 100 360
SI = 1 s 100 3600

Reverse One-way
SI = 100 s 100 0
SI = 10 s 100 0
SI = 1 s 100 0

1 Both synchronization and measurement messages are counted.

4.4.1.1 The Number of Message Transmissions/Receptions

We first count the numbers of message transmissions and receptions of conventional

and reverse asymmetric time synchronization schemes based on one-way message dis-

semination and two-way message exchange. A single-hop scenario where one sensor

node connects to the head is considered. We assume that there are 100 measurements

in total at the sensor node over the period of 3600 s, which are reported to the head

through measurement messages without measurement bundling, and the SI is set to

1 s. With counting both synchronization and measurement messages, the numbers of

messages transmitted (NTX) and received (NRX) by the sensor node are counted in

Table 4.1. Of particular note is that, the type listed in Table 4.1 categorize the ways of

message exchange in time synchronization, and are not specific to certain time synchro-

nization schemes; examples of the “Conventional Two-way”, “Conventional One-way”,

and “Reverse Two-way” types are TPSN, FTSP, and EE-ASCFR, respectively, while

BATS belongs to the “Reverse One-way” type.

From the comparison, we observe that the reverse one-way scheme could save the

energy consumed by both transmissions and receptions of the synchronization messages;
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Figure 4.8: Experiment setup for the measurement of the energy consumption on a
WSN sensor node [1].

this is because the reverse one-way scheme is free from transmissions and receptions

of beacon messages and synchronization timestamps are embedded into measurement

messages.

In the reverse two-way scheme, the “Request” synchronization message including

timestamp T1 can be embedded into beacon messages, but still, sensor nodes consume

energy to receive the beacon messages. On the other hand, the conventional two-

way scheme requires the most message transmissions due to the sending the “Request”

messages from the sensor node to the head. In addition, the conventional one-way

scheme requires the same number of synchronization message receptions as in the reverse

two-way scheme.

4.4.1.2 Direct Measurement of Energy Consumption

To measure the actual power consumption of a time synchronization scheme on the

resource-constrained sensor nodes, we employ a stabilized voltage supply and a digital

storage oscilloscope (DSO) to power the sensor node that synchronizes with the head

and log the actual power consumption as shown in Fig. 4.8. In the experiment setup,

one 1Ω resistor is connected in series between the power supply and the sensor node.

The voltage of the power supply is set to 3.3 V, a slightly higher voltage than that

received from the battery holder of the TelosB sensor board [25], to provide the sensor
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Figure 4.9: Measuring and logging the energy consumption using DSO [1].

node sufficient power. The two pins of the resistor are connected to the inputs of the

amplifying circuit2 which is used to enlarge the mA-level current input value with 150

times. The outputs of the amplifying circuit are connected to the DSO for logging

the power consumption. The power consumption logged in the DSO is illustrated in

Fig. 4.9. Because the voltage is stabilized in the measurement experiment which is 3.3V

constantly, so the actual power consumption could be compared through comparing the

logged current value sets.

During the experiments, the measurement is generated every 2 s and the bundling

procedure with bundling 5 measurements is employed in both FTSP and BATS for a fair

comparison. FTSP broadcasts and receives the synchronization beacon messages per

second (i.e., the default setting) and reports the bundling messages every 10 s; BATS

reports the bundling messages with the measurements and synchronization data every

10 s without broadcasting or receiving—i.e., radio listening deactivated—the synchro-

nization beacons. The power and energy consumptions are computed as follows:

P(t) = V(t) × I(t), (4.15)

E =
∫ te

ts

P(t)dt, (4.16)

where P(t), V(t) and I(t) are the instant power, voltage and current for the sensor node

2The amplifying circuit is based on the analog devices designer guidebook [69, chapter 4].
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Figure 4.11: Average power consumptions of time synchronization schemes over the
measurement interval of 60 s and 600 s [1].

at time t, respectively, and E is the energy consumed by the sensor node over the time

period of [ts, te]. Because the voltage V(t) is fixed to 3.3 V during the experiments, we

only measure the current I(t) over the two different time intervals of 60 s and 600 s (i.e.,

te−ts in (4.16)) to obtain power and energy consumptions; Fig. 4.10 shows the power

consumption for different time synchronization schemes over the period of 60 s. Since

the broadcasting of beacon messages and the reporting of the (bundled) measurement

message are periodic, so the two aforementioned example measurement intervals could

represent the long-term experiments. As illustrated in Fig. 4.11, the average power

consumption for BATS is the lowest, while the original FTSP—i.e., without using low-

power mode—consumes the most power. Specifically, the FTSP employing low-power
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mode, i.e., FTSP-LPL, consumes less than one-third power of the original FTSP but

more than BATS, which consumes less than 5% and 16% power of the original and the

low-power FTSP, respectively.

4.4.2 Time Synchronization Accuracy

4.4.2.1 Single-Hop Scenario

We first evaluate the time synchronization accuracy of the proposed BATS scheme in

comparison to that of FTSP with a single-hop scenario such as the star topology illus-

trated in Fig. 4.7 (c). For the experiments, we assume that the sensor node periodically

sends measurement data to the head via measurement messages, where 5 measurements

are bundled in each measurement message for both FTSP and BATS together with syn-

chronization data in case of the latter. We run experiments for 3600 s.

Note that BATS uses the measurement messages to carry both measurement and

synchronization data, while conventional one-way time synchronization schemes like

FTSP rely on beacon messages for synchronization data and use measurement mes-

sages only for measurement data. For a fair comparison between BATS and FTSP,

therefore, we define SI as the interval between two consecutive measurement messages

carrying synchronization data for BATS and the interval between two consecutive bea-

con messages for FTSP, respectively, and use the same SI value for both schemes for

each experiment.

Before carrying out a comparative analysis with FTSP, we need to decide the values

of BATS system parameters affecting time synchronization performance. During the

preliminary experiments, we found that the time synchronization accuracy of BATS is

affected by the sample size for the linear regression for clock frequency ratio estimation.

Note that, for a reasonable comparison, to find the best value of the sample sizes for

different SIs, we implemented the offline re-running program in which the same raw

data trace produced in the online experiment could be reused to run different offline

experiments with different sample sizes. With this program, the possible sample sizes

(e.g., 2, . . . , 10, . . . , 100, . . . , all) for different values of SI are evaluated. In particular,
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the performance of the experiment based on all samples does not outperform the one

using the most recent timestamps with a certain sample size value. This may result

from, as time goes on, due to the aggravating clock drift, the very past sample data—

i.e., very past timestamps—do not have positive contributions for the estimations of

the timestamps in the most current synchronization interval. Instead, the most recent

samples could provide relatively better contributions to the estimation of the most

recent timestamps.

Fig. 4.12 shows the effect of sample size on the MSE and the MAE of measurement

time estimation of BATS with different values of SI. From the results, we find that the

MSE and MAE of measurement time estimation are minimal when the sample size is

19 and 5 for SI of 1 s and 10 s, respectively. As for the experiments with SI of 100 s,

the size of total samples is quite limited (i.e., only 36 samples from the experiment over

3600 s), which means, it is quite difficult to apply large value for the aforementioned

sample size. Anyhow, we still tuned the value of sample size in the range of 2–30, and

the results showed that, 2 is the best sample size for the experiment with SI of 100 s.

With the best empirical values of the sample sizes for various values of SI, the perfor-

mance of our proposed scheme embedding the linear regression method is demonstrated.

The performance of the method 2 of linear regression with the best parameter value

outperformed the conventional methods such as the method 1 based on the calculation

of the cumulative frequency ratio proposed in [48] as shown in Fig. 4.13. In this figure,

the measurement time estimation errors of our proposed time synchronization scheme

based on both traditional ratio-based method and linear regression method are demon-

strated, in which the linear regression method outperforms the ratio-based method in all

three report intervals at different levels. In addition, Fig. 4.13 demonstrated that our

proposed reverse asymmetric framework could be employed on different conventional

time synchronization schemes with diverse estimation methods.

Table 4.2 summarizes the MAE and MSE of measurement time estimation from the

experiments during the period of 3600 s, where “method 1” and “method 2” denote the

ratio-based and the linear regression estimation methods, respectively, as in Fig. 4.13.
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Figure 4.12: The effect of sample size on the measurement time estimation of BATS:
(a) SI=1 s; (b) SI=10 s and (c) SI=100 s [1].

In the single-hop scenario, one sensor node is synchronized to one head in the experi-

ments. Note that, as the standard FTSP implementation provided in TinyOS library

is employed in our experiments, so the synchronization accuracy of FTSP is limited to
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Figure 4.13: Measurement time estimation errors of BATS with ratio-based and linear
regression methods with SI of (a) 1 s, (b) 10 s, and (c) 100 s [1].

millisecond-level [70]. The MAE of measurement time estimation of all three different

SIs show that the proposed scheme with two proposed methods provides satisfactory

precision with a minimum of 1.8299 µs which is competitive with consideration to the
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Table 4.2: MAE and MSE of Measurement Time Estimation of FTSP and BATS
for the Single-Hop Scenario [1]

Synchronization Scheme MAE1[s] MSE1 NTX NRX

FTSP2
SI = 100 s 0.2892E-03 0.3614E-06 36 36
SI = 10 s 0.3164E-03 0.3983E-06 360 360
SI = 1 s 0.3173E-03 0.4038E-06 3600 3600

BATS with the method 1
SI = 100 s 2.4837E-05 2.1194E-09 36 0
SI = 10 s 3.2770E-06 1.7492E-11 360 0
SI = 1 s 2.4903E-06 1.0120E-11 3600 0

BATS with the method 2
SI = 100 s 8.1524E-06 1.5805E-10 36 0
SI = 10 s 2.1016E-06 7.3933E-12 360 0
SI = 1 s 1.8299E-06 5.4018E-12 3600 0

1 Based on the measurement time estimation obtained from 3600 s such that the
actual performance in real deployment is represented.

2 The standard FTSP implementation provided in TinyOS library offers limited
millisecond-level time synchronization [70].

results presented in other papers—e.g., conventional two-way scheme TPSN and one-

way schemes FTSP and RSP—which are also evaluated through real testbeds, however,

with drastically fewer message transmissions as shown in Table 4.2.

In addition, Fig. 4.13 and Table 4.2 illustrate that a relatively smaller SI results in

better performance with smaller MSE, which means the performance of the proposed

scheme with both methods is related to the value of report intervals; this may result

from the drifting of the low-cost crystal oscillator with up to tens of ppm of clock skew

in the resource-constrained sensor node, in which the drifting range is typically larger

in a longer interval.

4.4.2.2 Multi-Hop Scenario

Here we investigate the effect of the number of hops on time synchronization with a

6-hop chain topology as exhibited in Fig. 4.7 (a). We set the SI to 1 s and employ the

optimal sample size of 19 for the experiment. Note that we apply the self-data bundling

only in order to mainly focus on the effect of the number of hops, rather than that

of bundling, and therefore make the results more consistent with those of conventional
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Figure 4.14: Measurement time estimation errors of BATS for the multi-hop scenario
[1].
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Figure 4.15: Cumulative distribution functions of the absolute measurement time esti-
mation errors of BATS for the multi-hop scenario [1].

schemes reported in the literature.

As shown in Fig. 4.14, the level of fluctuations of the measurement time estimation

errors are roughly proportional to the hop counts; for instance, the measurement time

estimation errors of the node 6 hops away from the head show the highest fluctuations,

while those of the node 1 hop away from the head show the least fluctuations. This is

due to the per-hop synchronization strategy employed in BATS, where the estimation

of the hardware clock time of a sensor node with respect to the reference clock relies on

those of its upper-layer sensor nodes.

Fig. 4.15 shows the effect of the number of hops on time synchronization in a clearer

way through the cumulative distribution functions (CDFs) of absolute measurement
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Table 4.3: MAE and MSE of Measurement Time Estimation of BATS for the Multi-
Hop Scenario [1]

Sensor Node MAE(Chain)1 MSE(Chain)1 MAE(Tree)1 MSE(Tree)1

ID

6 4.2580E-06 2.4586E-11 2.6301E-06 1.0573E-11
5 3.6149E-06 1.8405E-11 2.5140E-06 1.0240E-11
4 3.1341E-06 1.4519E-11 2.7873E-06 1.1414E-11
3 2.4847E-06 9.4813E-12 2.0985E-06 7.0036E-12
2 1.9455E-06 6.0164E-12 2.1368E-06 7.1055E-12
1 1.6764E-06 4.4735E-12 1.6932E-06 4.5415E-12

1 Based on the measurement time estimation obtained from 3600 s such that the
actual performance in real deployment is represented.

time estimation errors. 90th-percentile absolute measurement time estimation errors

for sensor nodes 1 to 6 hops away from the head are 2.8 µs, 3.8 µs, 4.9 µs, 5.5 µs, 5.9 µs

and 7.4 µs, respectively. The MAEs and MSEs of measurement time estimation are also

summarized as MAE(Chain) and MSE(Chain) in Table 4.3. The results of Fig. 4.15

and Table 4.3 demonstrate that the proposed scheme can provide microsecond-level

time synchronization accuracy for all the sensor nodes in the 6-hop WSN, even though

the time synchronization error is cumulative over the hop count. In addition, we estab-

lished one comparison experiment with the tree topology illustrated in Fig. 4.7 (b) to

demonstrate the stable performance of BATS under various topologies. The results are

summarized as MAE(Tree) and MSE(Tree) in Table 4.3.

The practical evaluation results in Section 4.4.1 and Section 4.4.2 have jointly proved

that the proposed scheme could drastically conserve more energy consumptions while

maintaining the same level of synchronization accuracy compared to the conventional

schemes.

4.5 Summary

In this chapter, we focus on the energy-efficiency of the WSN time synchronization.

The major contribution of this chapter is three-fold: First, the reverse asymmetric time

synchronization framework is presented, whose synchronization-related computations—
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except timestamping—are completely reassigned from the resource-constrained sensor

nodes to the head. In doing so, we can not only avoid the computational errors caused by

the limited precision floating-point arithmetic at the sensor nodes but also bring further

potential to use more complex estimation methods at the head, e.g., machine learning

techniques such as neural networks [71]. Second, building on the reverse asymmetric

time synchronization framework, we proposed BATS basing on the reverse one-way

message dissemination where the transmissions and receptions of the beacon messages

are avoided. BATS can, therefore, significantly lower the energy consumption while

achieving high time synchronization accuracy. Third, we provide the actual energy

consumption measurement and the time synchronization accuracy of BATS through

extensive experiments on the real WSN testbed. Experimental results demonstrate

that BATS conserves up to 95% of the energy consumption compared to FTSP and

provides 1.8299 µs synchronization accuracy in the single-hop scenario. In the case of the

multi-hop scenario, the synchronization accuracy for 1-hop and 6-hop sensor nodes are

respectively 1.6764 µs and 4.2580 µs, which results in 0.5163 µs per-hop synchronization

error on average.

In addition, we have briefly outlined the message bundling procedure; it affects both

the end-to-end delay and time synchronization performance, however. In the following

chapter, therefore, we will provide our further investigation on the effect of the message

bundling.



Chapter 5

A Per-Hop Delay Compensation

Scheme For Improving Multi-Hop

Time Synchronization Performance

In this chapter, we focus on improving the multi-hop synchronization accuracy of the

WSN time synchronization; the work presented here is based on our publication of [4, 5].

We propose a per-hop delay compensation scheme based on the packet-relaying gateway

nodes. We analyze the effect of timestamping and clock skew compensation on multi-hop

extensions based on our proposed PHDC and conventional time translation (TT). We

further implement PHDC and TT on three representative time synchronization schemes

for conducting a comparison study. Experimental results on a real testbed demonstrate

that the multi-hop extension based on the proposed PHDC greatly improves the multi-

hop time synchronization performance of all the schemes considered compared to the

multi-hop extension based on the conventional TT.
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5.1 Introduction

The advent of the Internet of Things (IoT) ushers in large-scale monitoring and sens-

ing [9, 72], which, combined with the artificial intelligence/machine learning (AI/ML),

would bring a variety of intelligent applications enabling future smart homes to smart

factories to smart cities [11, 73]. It is the multi-hop extension that enables a wire-

less sensor network (WSN)—i.e., one of the foundational components of IoT—to cover

vast areas (e.g., farms [74], forests [75], or even metropolitan areas like Shanghai and

New York City [11]) for such large-scale monitoring and sensing through long-range

transmissions and flexible energy balancing among the sensor nodes. Providing time

synchronization to WSN applications, which is indispensable to not only ordering the

sensor data but also guaranteeing the collaboration of the sensor nodes, becomes more

and more challenging as WSNs scale in size and coverage through multi-hop extension,

especially considering the issues of the energy consumption and computational complex-

ity of a large number of battery-powered, low-cost WSN sensor nodes as investigated in

[2, 1].

With a major focus on the energy efficiency and computational complexity of a

large number of battery-powered, low-cost WSN sensor nodes, we have also proposed

a series of WSN time synchronization schemes based on the reverse asymmetric time

synchronization framework [2, 3, 1]: First, we have proposed schemes based on the

reverse two-way message exchange—i.e., energy-efficient time synchronization based on

asynchronous source clock frequency recovery (EE-ASCFR) [2] and asymmetric high-

precision time synchronization (AHTS) [3]—to reduce the energy consumption of the

conventional two-way schemes while maintaining the synchronization accuracy through

propagation delay compensation; initiating the two-way message exchange process from

the head instead of sensor nodes, we could move most of the tasks related with time

synchronization from sensor nodes to the head and thus relieve the sensor nodes from

the computational burden of time synchronization. In addition, bundling the upstream

synchronization messages together with measurement data could reduce the energy
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consumption for message transmissions at the sensor nodes. As for one-way schemes,

we have proposed beaconless asymmetric energy-efficient time synchronization scheme

(BATS) [1] to reduce the energy consumption and computational burden at both gate-

way and leaf sensor nodes in multi-hop WSNs, where we can avoid broadcasting of

beacons including time synchronization messages and their forwarding at each gateway

and sensor nodes to achieve higher energy efficiency while maintaining microsecond-level

time synchronization accuracy.

While extending the proposed time synchronization schemes to multi-hop WSNs

based on the time translation (TT) method outlined in [2], we observed that multi-hop

time synchronization faces a cumulative synchronization error caused by its per-hop

synchronization strategy, which results from the recursive TT at either gateways or the

head [3, 1]. Note that the multi-hop extension based on TT is quite popular, especially

among one-way schemes including FTSP. Since the sensor nodes in one-way flooding

schemes are synchronized with the reference node through layer-by-layer TT, the closer

the sensor node is to the reference node (i.e., the head), the better is its synchronization

accuracy. In other words, the multi-hop synchronization accuracy in flooding schemes,

as well as BATS, is curbed by the TT method during the multi-hop extension through

gateway nodes. The two-way schemes—i.e., the novel reverse two-way schemes like

EE-ASCFR/AHTS and the conventional ones like TPSN—could also suffer from the

cumulative errors in TT. Moreover, the multi-hop extension based on packet-relaying

gateways described in [2] is no exception in this regard due to the cumulative errors

caused again by the aforementioned processing delay during the packet-relaying process

at the gateway nodes.

To address the cumulated multi-hop synchronization error induced by the processing

delays at gateway nodes, therefore, we have recently proposed a novel per-hop delay

compensation (PHDC) method [4] that laying its foundation on the packet-relaying

gateways [2, 76], where we demonstrate that PHDC is capable of alleviating the cu-

mulative synchronization errors through a preliminary investigation with experimental

results. To further extend the investigation based on coarse-level mathematical anal-
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ysis and experiments only with one-way schemes in [4], in this chapter, we carry out

an extensive comparative analysis of the performance of multi-hop extension based on

TT and PHDC for both one-way and two-way WSN time synchronization schemes in

the context of energy-efficient multi-hop WSN time synchronization with low computa-

tional complexity. The major contributions of our work in this chapter are summarized

as follows:

• First, we systematically and mathematically analyze the feasibility of compensat-

ing for the processing delay at gateway nodes with consideration on the effect of

timestamping and clock skew compensation over multiple hops for both TT and

PHDC methods.

• Second, we describe two implementation options for the multi-hop extension of

WSN time synchronization schemes based on PHDC and discuss the details of

PHDC implementation specific to the representative one-way schemes, i.e., BATS

and FTSP, and the two-way scheme, i.e., EE-ASCFR.

• Third, we extend BATS, FTSP, and EE-ASCFR for the multi-hop time synchro-

nization based on both TT and PHDC, and implement them for linear and tree

topologies on a real WSN testbed consisting of TelosB sensor nodes [25] running

TinyOS [44].

• Finally, we comprehensively demonstrate the experimental evaluation results,

where the improvement brought by PHDC in multi-hop time synchronization per-

formance is elucidated over the combination of three time synchronization schemes

and two network topologies.

The rest of this chapter is organized as follows: The proposed PHDC is discussed

in Section 5.2. The systematic analysis of the effect of timestamping and clock skew

compensation on PHDC in comparison to TT is carried out in Section 5.3. The imple-

mentation of PHDC on both one-way and two-way schemes is exhibited in Section 5.4.

The experimental results evaluated on a real testbed are demonstrated in Section 5.5.

Section 5.6 concludes our work and outlines our future work.
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5.2 Per-Hop Delay Compensation in Multi-Hop WSNs

Based on Packet-Relaying Gateways

5.2.1 Packet-Relaying Gateways For Multi-Hop Extension

Packet relaying and TT gateways are two options advocated in [2] for EE-ASCFR

extending to multi-hop time synchronization. Unlike TT that is adopted for multi-hop

extension by most time synchronization schemes (e.g., [18, 22, 1]), packet relaying is

relatively simpler and provides a transparent end-to-end connection between the head

and a leaf sensor node as far as time synchronization is concerned. Therefore, packet

relaying could conceptually reduce the problem of multi-hop time synchronization to

that of single-hop time synchronization.

However, as pointed out in [2, 4], the performance of time synchronization based on

packet relaying could be affected by rather large and random per-hop processing delay

resulting from queueing/scheduling and MAC operations at each gateway. Anyhow, due

to its simplicity, packet relaying provides a more attractive option of multi-hop extension

to time synchronization schemes highlighting energy efficiency and low computational

complexity as their major advantages. Especially for large-scale deployments, the sim-

plicity of packet relaying could relieve a large number of gateway nodes from the burden

of multi-hop time synchronization tasks in terms of both energy and computation.

5.2.2 Delay Compensation at a Packet-Relaying Gateway

We explain the basic idea of PHDC using a 2-hop WSN shown in Fig. 5.1, where for

ease of notation we ignore subindexes of timestamps denoting hop numbers unlike the

analysis in following Section 5.3. The processing-delay-compensated timestamp T̂1(i)

for ith synchronization (i=2, 3. . .) can be expressed as follows:

T̂1(i) = T1(i) +
⌊
∆(i) ×

T1(i) − T1(i−1)

T A(i) − T A(i−1)

⌋
, (5.1)
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Figure 5.1: A WSN with one gateway node and one sensor node [4].

where T1(i), T A(i), and T D(i) are the MAC-layer timestamps recorded at transmission,

reception and forwarding of the ith synchronization message on the sensor node and

the gateway node, and ∆(i) is the processing delay defined as T D(i)−T A(i). The floor

function (i.e., b·c) is used to convert the processing delay scaled by the estimated clock

frequency ratio between the gateway and the sensor nodes to an integer for a timestamp.

The integer conversion in (5.1) could eliminate the effect of the precision loss in the

floating-point division: Let r be the true value of the floating-point division T1(i)−T1(i−1)
T A(i)−T A(i−1)

and ε be the error resulting from the precision loss. In this case, the second term in

(5.1) can be expressed as follows:

b∆(i) × (r + ε)c = b∆(i)r + ∆(i)εc

= n + bδ + ∆(i)εc ,

where n and δ are the integer and the fractional part of ∆(i)r, respectively (i.e., n= b∆(i)rc

and δ=∆(i)r−n). Therefore, if δ+∆(i)ε is less than one (i.e., bδ+∆(i)εc =0), the effect of

the precision loss is eliminated during the integer conversion.

Note that, because ∆(i) is an integer (i.e., a difference of timestamps), if the clock

frequency ratio between the gateway and the sensor nodes is close to one, the fractional

part of ∆(i)r becomes negligible (i.e., δ≈0). In such a case, we can obtain the following
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upper bound for the precision loss:

∆(i)ε < 1⇒ ε <
1

∆(i)
. (5.2)

If the precision loss is less than the upper bound given in (5.2), it does not affect the

processing delay compensation.

5.3 Effect of Timestamping and Clock Skew Compensation

on Multi-Hop Extension Based on PHDC and TT

The preliminary analysis based on a single gateway in Section 5.2 shows that the clock

skew could be selectively compensated for depending on the processing delay and relative

skews of the sensor nodes. In this section, we present a more comprehensive analysis of

the effect of timestamping and clock skew compensation on PHDC in comparison with

widely-employed TT.

5.3.1 Per-Hop Delay Compensation

We begin our analysis with the simplest case of the 2-hop WSN over a single gateway

node shown in Fig. 5.2. During the kth (k=1, 2, . . .) synchronization, the timestamp

T̂12
k
of Fig. 5.2 (a), whose processing delay is compensated for at gateway node 1, can

be described based on Section 5.2.2 as follows:

T̂12
k
= T1k2 +

⌊
Rk
2,1 × ∆

k
1

⌋
, (5.3)

where ∆k1 is the processing delay at gateway node 1 estimated by T1k1−T2k1, and Rk
2,1 is

the clock frequency ratio between gateway node 1 and sensor node 2 which could be

estimated by either simple ratio-based method [48] or more advanced ones like linear

regression [1]. Note that T1k2 is the timestamp recorded at sensor node 2 during the

transmission of kth synchronization message and that T2k1 and T1k1 are the timestamps

recorded at gateway node 1 during the reception and forwarding of that message, re-
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Figure 5.2: A 2-hop WSN over a single gateway with multi-hop extension based on (a)
per-hop delay compensation and (b) time translation [5].

spectively. The floor function is again used to convert the compensated delay to an

integer number.1

Now we extend (5.3) by including the errors in timestamping of T2k1 and T1k1 and

in clock skew compensation by Rk
2,1 at gateway node 1 to investigate their effect on

PHDC2: First, we define a timestamping error of a timestamp as the differences between

the continuous hardware clock time and the discrete timestamp as shown in Fig. 5.3,

where we assume the first-order affine clock model [78] for nodes’ hardware clocks;

for instance, δT2k1—i.e., the timestamping error of T2k1—is defined as T21(k)−T2k1 or

frac(T21(k)) where frac(x),x−bxc for x≥0; the timestamping errors could result from

not only the integer conversion but also the remainder of interrupt delay compensation

in MAC-layer timestamping [17, 1]. Second, we denote by δε k1,2 the error in clock skew

compensation including precision loss, where εk1,2 is a clock skew (i.e., 1+εk1,2=Rk
1,2).

Let us consider the processing delay based on the discrete timestamps and compen-

1Alternatively, the ceiling function could be used as in [77]
2We do not include the timestamping error for T1k2, which occurs at sensor node 2, in the following

analyses as we focus on PHDC at gateway nodes.
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kth synchronization of the 2-hop WSN shown in Fig. 5.2 [5].

sated by the estimated value of clock skew in (5.3), i.e.,

⌊
Rk
2,1×∆

k
1

⌋
=

⌊(
1 + εk1,2 + δε k1,2

)
×

(
T1k1 − T2k1

)⌋
= T1k1 − T2k1 +

⌊(
εk1,2 + δε k1,2

)
×

(
T1k1 − T2k1

)⌋
,

(5.4)

and that based on the continuous hardware clock times and compensated by the true

value of clock skew, i.e.,

Rk
2,1× (T11(k) − T21(k))

=
(
1 + εk1,2

)
×

((
T1k1 + δT1k1

)
−

(
T2k1 + δT2k1

))
.

(5.5)

Subtracting (5.4) from (5.5) and rearranging it, we can obtain the error in PHDC over
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a single gateway node as follows:(
εk1,2∆

k
1−

⌊(
εk1,2+δε k1,2

)
∆
k
1

⌋ )
+

(
δT1k1
−δT2k1

)
×

(
1+εk1,2

)
≈

(
εk1,2∆

k
1−

⌊
εk1,2∆

k
1

⌋ )
+

(
δT1k1
−δT2k1

)
= frac(εk1,2∆

k
1)+

(
δT1k1
−δT2k1

)
,

(5.6)

where the approximation is done on the basis of δε k1,2�ε
k
1,2 and εk1,2�1 because the

clock skew compensation error (mainly precision loss) is less than 10−7 in 32-bit single-

precision floating point arithmetic [3] and a typical frequency tolerance of a crystal over

the manufacturing process (hence the clock skew) is ±100 ppm [79].

Now we can consider the effect of timestamping and clock skew compensation on

PHDC over multiple gateway nodes based on (5.6). Let Xi and Yi be random variables

modeling the first and the second component of the error in PHDC in (5.6) at gateway

node i. Then, we can model the total error in PHDC for N-hop WSN (i.e., over N−1

gateway nodes) as follows:
N−1∑
i=1

(Xi + Yi) , (5.7)

which gives the average of the total error in PHDC as follows:

E

[
N−1∑
i=1

(Xi + Yi)

]
=

N−1∑
i=1

(E [Xi] + E [Yi]) . (5.8)

Because timestamping errors (i.e., fractional part of continuous hardware clocks) are

likely to be uniformly distributed in the range of [0, 1), Yi modeling δT1ki −δT2ki can be

considered uniformly distributed as well in the range of (−1, 1) (i.e., Yi∼U(−1, 1)), and

E [Yi]=0. This means that the effects of timestamping on PHDC at multiple gateway

nodes could be canceled one another. In such a case, the average of the total error in

PHDC reduces to
N−1∑
i=1

E [Xi] , (5.9)

which is solely determined by Xi modeling frac(εki,i+1∆
k
i ).
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The variance of the total error can be obtained, too, on the condition that Xi’s and

Yi’s are independent of one another, i.e.,

Var

(
N−1∑
i=1

(Xi + Yi)

)
=

N−1∑
i=1

Var (Xi) +

N−1∑
i=1

Var (Yi)

=

N−1∑
i=1

Var (Xi) +
N − 1

3
,

(5.10)

because

Var (Yi) =
(1 − (−1))2

12
=

1

3

for Yi∼U(−1, 1).

5.3.2 Time Translation

We also begin our analysis with the 2-hop WSN over a single gateway node shown

in Fig. 5.2. During the kth time synchronization (k=1, 2, . . .), the timestamp T̃12
k
of

Fig. 5.2 (b), which is translated at gateway node 1, can be expressed as follows:

T̃12
k
=

⌊
Rk
2,1 × T1k2 + θ

k
1,2

⌋
, (5.11)

where θk1,2 is the clock offset between gateway node 1 and sensor node 2. Note that

the translation of the received timestamp in (5.11) is not involved with timestamping

unlike PHDC.

Let δθk1,2 be the fractional part of the clock offset (i.e., frac(θk1,2)), which also takes

into account the error in clock offset estimation including precision loss. Let us consider

the translated timestamp based on the estimated value of clock skew, i.e.,⌊(
1 + εk1,2 + δε k1,2

)
T1k2 +

( ⌊
θk1,2

⌋
+ δθk1,2

)⌋
= T1k2 +

⌊(
εk1,2 + δε k1,2

)
T1k2 + δθk1,2

⌋
+

⌊
θk1,2

⌋
,

(5.12)

and the translated time based on the true value of clock skew without integer conversion,
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i.e.,

(1 + εk1,2)T1k2 +
( ⌊
θk1,2

⌋
+ δθk1,2

)
. (5.13)

As in Section 5.3.1, we can obtain the error in TT over a single gateway node by

subtracting (5.12) from (5.13) as follows:

εk1,2T1k2 + δθk1,2
−

⌊(
εk1,2+δε k1,2

)
T1k2+δθk1,2

⌋
≈ εk1,2T1k2 + δθk1,2

−

⌊
εk1,2T1k2+δθk1,2

⌋
= frac(εk1,2T1k2+δθk1,2

),

(5.14)

where the approximation is done on the basis of δε k1,2�ε
k
1,2 as discussed in Section 5.3.1.

As in Section 5.3.1, we can consider the effect of timestamping and clock skew com-

pensation on TT over multiple gateway nodes based on (5.14). Let Zi be a random vari-

able modeling the error in TT in (5.14) at gateway node i—i.e., frac(εki,i+1T1ki+1+δθki, i+1
)—

that is in the range of [0, 1). Then, we can model the total error in TT for N-hop WSN

as follows:
N−1∑
i=1

Zi, (5.15)

which gives the average of the total error in TT as follows:

E

[
N−1∑
i=1

Zi

]
=

N−1∑
i=1

E [Zi] . (5.16)

As in Section 5.3.1, the variance of the total error in TT can be obtained on the condition

that Zi’s are independent of one another, i.e.,

Var

(
N−1∑
i=1

Zi

)
=

N−1∑
i=1

Var (Zi) . (5.17)

5.3.3 Comparison: PHDC vs. TT

Comparing the total error in PHDC and TT over multiple gateway nodes analyzed in

the previous sections, we can find a couple of major differences between the two: First,
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in the case of PHDC, though the error over a single gateway node depends on both

timestamping and clock skew compensation, the effect of timestamping can be canceled

out, which leaves only the effect of clock skew compensation in the average of the total

error over multiple gateway nodes in (5.9). In the case of TT, on the other hand, the

effect of both clock skew and offset compensation controls the average of the total error

over multiple gateway nodes.

Second, the actual value of Xi in the total error in PHDC, which can be in the range

of [0, 1) by definition of frac(·), could be much smaller than one unless the traffic load

of a gateway node and thereby its processing delay (i.e., ∆ki ) is comparable to or larger

than the inverse of the clock skew (i.e., 1/εki,i+1) because a typical value of clock skew

is very small as discussed in Section 5.3.1. This is not the case, however, for the two

components of the error in TT, i.e., εki,i+1T1ki+1 and δθki, i+1
in (5.14). As for the first

component, unlike the processing delay in PHDC (i.e., ∆ki =T1ki −T2ki ), T1ki+1 in TT can

take any integer value in the range of [0, 2S), where S is the size of a timestamp in bits,

so its value can be large even after multiplied by the clock skew. Given that δθki, i+1 is

the fractional part of the clock offset in the range of [0, 1), it is likely that Zi can take

any value in the range of [0, 1) unlike Xi.

In summary, we can conclude that the cumulative error in multi-hop time syn-

chronization is well under control for PHDC in comparison to TT, because the major

component in the error3 in PHDC (i.e., timestamping error which is the fractional part

of continuous hardware clock) can be canceled out over multiple gateway nodes, while

that in the error in TT (i.e., the fractional part of the clock offset) cannot.

5.4 On The Implementation of PHDC

In this section, we provide a general overview of PHDC implementation. We also discuss

the details of the implementation specific to the two energy-efficient time synchroniza-

tion schemes based on the reverse asymmetric framework (i.e., BATS and EE-ASCFR)

3On the condition that the error in clock skew compensation is negligible compared to the clock
skew itself (i.e., δε ki, i+1

�εk
i,i+1

) as discussed in Section 5.3.1.
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Figure 5.4: PHDC implementation for one-way N-hop WSN time synchronization based
on the reverse asymmetric framework [5].

as well as one of the most popular conventional schemes (i.e., FTSP).

5.4.1 Delay Estimation in PHDC

Consider two neighbor nodes—i.e., gateway nodes i−1 and i—in Fig. 5.4. During the kth

synchronization, a pair of timestamps for the departure time T1ki at gateway node i and

the arrival T2ki−1 at gateway node i−1 are recorded through MAC-layer timestamping.

The clock frequency ratio can be estimated based on a set of those timestamps using a

simple ratio-based method or more advanced methods such as linear regression. Here,

we consider the ratio-based estimation, where we can estimate the clock frequency ratio

Rk
i,i−1 as follows4: For k>l≥1,

Rk
i,i−1 =

T1ki − T1li

T2ki−1 − T2li−1
. (5.18)

4The clock skew compensation could be ignored when the clock frequencies of all gateway and sensor
nodes are synchronized to the head [2] or the processing delay is controlled within a certain bound [4].
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Note that, if we fix l to 1, (5.18) becomes the cumulative ratio method adopted in EE-

ASCFR [2]; for simplicity, we set l to k−1 in the following. Then, the skew-compensated

processing delay ∆̂ki−1 based on (5.18) with l=k−1 is given by

∆̂
k
i−1 = Rk

i,i−1 × ∆
k
i−1

=
T1ki − T1k−1i

T2ki−1 − T2k−1i−1

× (T1ki−1 − T2ki−1),
(5.19)

where ∆ki−1=T1ki−1−T2ki−1 as discussed in Section 5.3.1.

One implementation option discussed in [4] is the centralization of PHDC in the

head at the expense of the increased communication overhead, which can address the

impact of limited precision floating-point arithmetic of gateway and sensor nodes on time

synchronization. In this option, we could more accurately compensate for the processing

delays by doing the following calculation at the head based on all the timestamps

transferred from gateway and sensor nodes:

T̂1
k

N = T1kN +
N−1∑
i=1

((
N∏

j=i+1

Rk
j, j−1

)
×∆ki

)
. (5.20)

An alternative, distributed implementation option for gateway and sensor nodes is

to compensate for the processing delay and replace the original timestamp T1kN from

sensor node N with a new compensated timestamp on the fly through gateway nodes5:

At gateway node i (i=1, . . ., N−1), we replace a received timestamp for the message

departure time with a compensated timestamp T̂1
k

N,i as follows:

T̂1
k

N,i =


T̂1

k

N,i−1 + ∆̃
k
i if i < N − 1,

T1kN + ∆̂
k
N−1 if i = N − 1,

(5.21)

where

∆̃
k
i =

T̂1
k

N,i+1 − T̂1
k−1

N,i+1

T2ki − T2k−1i

× (T1ki − T2ki ). (5.22)

5Algorithm 3 in Section 5.4.2.1 explains this option in more detail.
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Note that the estimation of the clock frequency ratio in (5.22) is now based on the

updated timestamps. In this way, the compensation of processing delay based on clock

skew can be done independently at each gateway node. This option could be readily

implemented at the resource-constrained gateway and sensor nodes due to its simplicity

and is our choice for PHDC implementation on the three representative schemes, which

will be discussed in the next subsection.

With either of the PHDC implementation options, the head can finally estimate

clock parameters based on the final pair of timestamps (T̂1
k

N, T2k0) during the kth

synchronization as if the head and sensor node N are directly connected to each other.

5.4.2 Case Studies

Here we discuss the details of our own implementation of PHDC on three representative

WSN time synchronization schemes for their performance analysis through real testbed

experiments, whose results are reported in Section 5.5.

5.4.2.1 BATS

Algorithm 3 describes the details of the lightweight PHDC implementation at gateway

nodes for BATS, where a gateway node keeps track of timestamps T1 and T2 from the

initial phase to the current and then estimates the most recent clock frequency ratio

based on the current timestamps.

PHDC running on gateway node is formed with two parts locating respectively in

the application and the MAC layer. The relatively complex processes, i.e., collecting

timestamp pairs and calculating the frequency ratio, are done at the application layer.

The frequency ratio is calculated following the illustration in Section 5.4.1, which is

based on the simple ratio-based method leveraging the timestamp pairs of T1 and T2.

Afterwards, the packet that contains the T1 together with the calculated frequency

ratio and current T2 will be sent out to the MAC layer. The only operation which

is done at the MAC layer besides the MAC-layer timestamping is the updating of the

timestamp T1. Using the MAC-layer timestamp stored in T1′, we could update the T1
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Data: The node maintains the following data and variables:
• e: Event object including a timestamp;
• packet_status: Variable indicating the status of packet (i.e.,

FIRST_PACKET or NON_FIRST_PACKET);
• d: Measurement data;
• ts: Measurement timestamp;
• p: Packet object (optionally) including timestamps from

MAC-layer timestamping;
• T1,T2,T1_last,T2_last,T1′: Timestamps;
• R: Frequency ratio;
• QM : FIFO queue for measurement data;
• QP : FIFO queue for packets;
• QT2: FIFO queue for timestamp T2.

1 On detecting an event e:
2 switch e.type do
3 case MEASUREMENT do // its own measurement
4 d ← QM .dequeue() // measurement data from the queue
5 ts← e.getTimestamp() // for measurement, not for synchronization
6 p← Packet(d, ts,T1) // create a packet object
7 sendToMAC(p) // send to MAC layer
8 p.T1← getMACTimestamp() // get MAC-layer timestamp
9 send(p) // send packet out

10 case PACKET do
11 if p.getDestAddress(),HE AD then // packet received from other sensor nodes
12 p← QP .dequeue() // packet from the queue
13 T2← QT2.dequeue() // from MAC-layer timestamping
14 T1← p.T1 // get T1 from the packet
15 if packet_status==FIRST_PACKET then
16 R← 1.0 f // initialize frequency ratio variable
17 else
18 R← (T1 − T1_last)/(T2 − T2_last) // calculate current frequency ratio

19 T1_last ← T1 // update last T1
20 T2_last ← T2 // update last T2
21 sendToMAC(p, R,T2) // send to MAC layer
22 T1′ ← getMACTimestamp() // get MAC-layer timestamp
23 p.T1← p.T1 + R ∗ (T1′ − T2) // update T1
24 send(p) // forward the packet
25 else

// Process the packet from the head . . .

26 otherwise do
// Process other event . . .

Algorithm 3: PHDC at a gateway node in BATS.

in the packet as exhibited in line 23 of Algorithm 3. Note that, though this calculation

is simple, it may delay the actual transmission of the packet due to its being done at the

MAC layer. This delay is system-specific, which could be counted in the interrupt delay

and later handled by the receiver through interrupt delay compensation as illustrated
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in [17]. When the delay is relatively large, however, we could alternatively skip the T1

update at the MAC layer and send the corresponding frequency ratio and delay to the

upper gateway node for post-updating the T1 at the application layer, which of course,

at the expense of payload overhead.

Compared to the original BATS based on TT, the multi-hop extension of BATS

based on PHDC not only enhances the synchronization performance through processing

delay compensation but also reduces the communication overhead, i.e., timestamps

occupying the payload: For instance, 2N timestamps are required for synchronizing all

the sensor nodes of a flat N-hop WSN in the case of the original BATS (e.g., refer to

Fig. 8 (b) of [1]); for the same network, on the other hand, N is enough for BATS

with PHDC as discussed in Section 5.4.1. Also, we could directly establish the time

synchronization between the head node and sensor node in BATS with PHDC due

to the update procedure of T1 on the gateway nodes as illustrated in Fig. 5.2 unlike

that between the sensor nodes in BATS’s per-hop synchronization strategy. Thanks to

the end-to-end time synchronization between the sensor node and the head, the time

translation in the multi-hop scenario of BATS with PHDC becomes as straightforward

as in the single-hop scenario [1], which could be established between sensor node i and

the head as follows:

t =
Ti(t) − θi

1 + εi
, (5.23)

where Ti(t) and t denote the time of sensor node i and that of the head, and 1+εi and

θi are the estimated clock frequency ratio and offset between the two.

5.4.2.2 FTSP

Because the publicly-available implementation of FTSP is incomplete6[70, 81], we need

to remold FTSP to achieve microsecond-level time synchronization accuracy: Consider-

ing that the performance of multi-hop extension of FTSP is limited by the accuracy of

the calculation in linear regression, which could be affected by many factors such as the

6For instance, the time synchronization accuracy of TinyOS public FTSP implementation [80] is
limited to milliseconds.
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sample size and the precision of floating-point arithmetic. We first employ the MAC-

layer timestamping suggested in [1] which is simpler and more prevalent now. We then

adopt the specific linear regression method provided in public FTSP implementation

[80], this method unlike other methods which do the linear regression directly using the

pairs of reference and local timestamps [1], it carries out the linear regression from local

timestamps to time offsets, i.e., time differences of reference time and local time.

Afterwards, we extend FTSP for multi-hop time synchronization based on PHDC

following Algorithm 3 but with the direction from the head to the gateway and sensor

nodes, which could provide microsecond-level time synchronization accuracy.

5.4.2.3 EE-ASCFR

We have investigated the multi-hop extension of EE-ASCFR based on TT in [3], where

we identify the issue of precision loss in time synchronization due to the recursive nature

of TT and propose AHTS to address it by moving all the time synchronization tasks

except timestamping from gateway and sensor nodes to the head with higher computing

and power resources. Note that, although AHTS could provide microsecond-level time

synchronization accuracy, it is centralized implementation of EE-ASCFR with increased

communication overhead.

Thanks to PHDC, now we can extend EE-ASCFR for multi-hop time synchroniza-

tion while keeping its distributed nature, i.e., carrying out in parallel the synchronization

of clock frequency at gateway and sensor nodes and clock offset at the head, respectively.

Given the time t of a reference clock (i.e., the hardware clock of the head), we convert

the logical clock time Ti

(
Ti(t)

)
of sensor node i based on its hardware clock time Ti(t)

presented in [2] as follows: For tk<t≤tk+1 (k=0, 1, . . .),

Ti

(
Ti(t)

)
= Ti

(
Ti(tk)

)
+ Rk

i,0 ×

(
Ti(t) − Ti(tk)

)
(5.24)

where tk represents the time of a reference clock when a kth synchronization occurs,

and Rk
i,0 is the clock frequency ratio between the head node 0 and sensor node i esti-
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Figure 5.5: 10-hop flat WSN testbed employed in the experiments [5].

mated as (tk−tk−1)/(Ti(tk)−Ti(tk−1)) based on the timestamp pairs from kth and (k−1)th

synchronization, which is slightly different from and simpler than CR used in [3].

Note that in the case of two-way time synchronization schemes like EE-ASCFR,

PHDC is used for timestamps in both directions, i.e., from the head to sensor nodes or

vice versa to establish the virtual two-way end-to-end connection between the head and

sensor nodes.

5.5 Performance Evaluation

We have extended the three representative WSN time synchronization schemes discussed

in Section 5.4.2—i.e., BATS, FTSP, and EE-ASCFR—for multi-hop time synchroniza-

tion based on PHDC as well as TT; and implemented them on a flat WSN testbed

consisting of 11 TelosB motes running TinyOS as shown in Fig. 5.5 for a comparative

analysis of their multi-hop time synchronization performance. The TelosB motes in

our testbed embed with a 32-kHz crystal oscillator (CO) with a resolution of 30.5 µs

and could provide a minimum resolution of 1 µs through running a digitally-controlled

oscillator (DCO). Hence the time synchronization accuracy of the evaluated schemes is

limited to microseconds, even though it has been shown that the schemes under reverse

asymmetric framework could theoretically provide the possibility of sub-microsecond-

level time synchronization accuracy [2].

In the following, we set the synchronization interval to 1 s for all the schemes and

assume the self-data bundling option for BATS and EE-ASCFR for a fair comparison

with FTSP.
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Figure 5.6: MAE of measurement time estimation of BATS with TT and PHDC [5].

5.5.1 BATS with TT and PHDC

Fig. 5.6 shows the MAE of measurement time estimation at each hop of BATS with

TT and PHDC with its standard deviation (i.e., the errorbar). BATS with TT has a

per-hop cumulative synchronization error of about 0.58 µs, which verifies the results of

the analysis in Section 5.3 that the time translation process at gateway nodes of multi-

hop extension based on TT could induce cumulative error. In contrast, BATS with

PHDC demonstrates that the cumulative synchronization error over ten hops is 0.62 µs,

which results in a much smaller per-hop cumulative synchronization error of 0.069 µs;

as a result, the MAE of measurement time estimation of the farthest hop is maintained

around 2 µs, i.e., much smaller than 7 µs for BATS with TT.

The cumulative distribution functions of absolute measurement time estimation er-

ror shown in Fig. 5.7 provide a further evidence. For instance, the 90th-percentile

absolute measurement time estimation error of BATS with TT is cumulatively increas-

ing over ten hops from 2.9 µs to 11.4 µs, while that of BATS with PHDC hardly depends

on the hop number.

An additional view of the measurement time estimation errors of BATS with PHDC
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Figure 5.7: Cumulative distribution function of absolute measurement time estimation
error for BATS based on (a) TT and (b) PHDC [5].

over time is shown in Fig. 5.8 for a period of 3600 s; all sensor nodes across 10 hops could

achieve approximately the same performance—i.e., the fluctuations of the measurement

time estimation errors are similar from the first to the last hop.

5.5.2 FTSP with TT and PHDC

To demonstrate the wider applicability of PHDC to and its performance on conventional

one-way schemes in addition to the reverse one-way schemes, we take FTSP—i.e., the

representative conventional one-way flooding time synchronization scheme—as an ex-

ample and extend it for multi-hop time synchronization based on both TT and PHDC.



Chapter 5. A Per-Hop Delay Compensation Scheme For Improving Multi-Hop Time
Synchronization Performance 89

0 600 1200 1800 2400 3000 3600
Time [s]

-12

-8

-4

0

4

8

12
Hop1 Hop2 Hop3 Hop4 Hop5 Hop6 Hop7 Hop8 Hop9 Hop10

Figure 5.8: Measurement time estimation errors of BATS with PHDC over 3600 s [5].
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Figure 5.9: MAE of the measurement time estimation of FTSP with TT and PHDC
[5].

Fig. 5.9 shows the MAE of measurement time estimation and its standard deviation of

FTSP with both TT and PHDC, where we can observe that the MAE of measurement

time estimation at hop 10 with TT is more than double that with PHDC; FTSP with

PHDC achieves 0.18 µs error per hop over 10 hops, which is more than 70% improvement

over 0.7 µs error per hop for FTSP with TT.

The CDFs of absolute measurement time estimation error in Fig. 5.10 illustrate the

nature of multi-hop time synchronization performance of FTSP with TT and PHDC in
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Figure 5.10: Cumulative distribution function of absolute measurement time estimation
error for FTSP based on (a) TT and (b) PHDC [5].

a clearer way. FTSP with TT has larger fluctuations in its absolute estimation errors

where the maximum value exceeds 20 µs. In comparison, FTSP with PHDC has smaller

fluctuations, and the 90%-percentile absolute estimation error at the last hop is smaller

than 7.1 µs.

Although the multi-hop time synchronization performance of FTSP could be greatly

enhanced by PHDC, it is still not as good as that of BATS with PHDC. This is be-

cause, unlike FTSP, the head in BATS receives timestamps from sensor nodes for syn-

chronization due to its reverse asymmetric framework and can increase the sample size

and the complexity of the estimation algorithms due to its ample computational and
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Figure 5.11: MAE of the measurement time estimation of EE-ASCFR with TT and
PHDC [5].

power resources [1]. The experimental results in Sections 5.5.1 and 5.5.2 demonstrate

that PHDC could effectively alleviate the cumulated synchronization error over multiple

gateway nodes for both conventional and reverse one-way time synchronization schemes.

5.5.3 EE-ASCFR with TT and PHDC

In addition to the one-way time synchronization schemes, we also take EE-ASCFR as

an example and demonstrate the effectiveness of PHDC on two-way schemes as well.

Fig. 5.11 shows the MAE of measurement time estimation and its standard deviation

of EE-ASCFR with TT and PHDC where the per-hop cumulative error is more clearly

visible for TT, which is also confirmed by its more rapidly increasing standard deviation.

Note that the MAE of measurement time estimation at the tenth hop of EE-ASCFR

with TT is 5.87 µs, which is noticeably lower than those of the one-way schemes with TT,

i.e., 6.96 µs in BATS with TT and 8.3 µs in FTSP with TT. This is because the reverse

two-way message exchange procedure in EE-ASCFR can provide a better estimation of

the clock offset due to its two-way nature and the clock skew estimation at each gateway
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Figure 5.12: Cumulative distribution function of absolute measurement time estimation
error for EE-ASCFR based on (a) TT and (b) PHDC [5].

or sensor node is not affected by TT. As for EE-ASCFR with PHDC, it also shows a

slight increase in its MAE of measurement time estimation over the hops, which results

from the clock skew estimation at each gateway and sensor node affected by PHDC.

EE-ASCFR with PHDC, however, still performs 60% better than EE-ASCFR with TT

in terms of per-hop error—i.e., 0.18 µs vs 0.45 µs, which interestingly is quite similar to

that of FTSP with PHDC discussed in Section 5.5.2.

Like BATS and FTSP with TT, the CDFs of absolute measurement time estimation

error of EE-ASCFR with TT in Fig. 5.12 (a) show huge fluctuations, and the maximum

absolute measurement time estimation error is close to 14 µs; only 65% of the errors at
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Figure 5.13: 4-hop tree topology employed in the experiments [5].

the tenth hop are distributed within ±7 µs. On the contrary, the CDFs of EE-ASCFR

with PHDC in Fig. 5.12 (b) show that even the 90%-percentile at the last hop is less

than 7 µs, which again is similar to that of FTSP with PHDC. Compared to BATS with

PHDC, EE-ASCFR with PHDC has a slight per-hop error like FTSP with PHDC. This

indicates that, as discussed in Section 5.5.1, the centralized clock parameter estimation

in BATS has advantages over the distributed estimation of clock skew at gateway and

sensor nodes in EE-ASCFR.

5.5.4 Impact of Network Topology on PHDC Performance

We have demonstrated so far the effectiveness of PHDC in multi-hop extension of var-

ious time synchronization schemes with a 10-hop flat WSN shown in Fig. 5.5. To

investigate the impact of network topology on the performance of PHDC, we set up our

testbed with the 4-hop tree topology consisting of 10 sensor nodes and 1 head shown in

Fig. 5.13 for further evaluations. Of the three time synchronization schemes considered,

we select BATS for the experiments with the 4-hop tree WSN, which provides the best

performance for the flat WSN and therefore could better demonstrate the performance

of PHDC.
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Table 5.1: MAE of Measurement Time Estimation and Its Standard Deviation
of BATS-PHDC for the Multi-Hop Tree Scenario [5]

Hop Number MAE 1 STD 1

Hop

1 1.7018E-06 1.3445E-06

2 1.9617E-06 1.4774E-06

3 1.9266E-06 1.4781E-06

4 1.7668E-06 1.3734E-06

5 1.7664E-06 1.4023E-06

6 2.0559E-06 1.5960E-06

7 2.0270E-06 1.5804E-06

8 1.8606E-06 1.4593E-06

9 2.0569E-06 1.5954E-06

10 2.0083E-06 1.5696E-06

1 Based on the measurement time estimation obtained from 3600 s such that

the actual performance in real deployment is represented.

Table 5.1 summarizes the MAE of measurement time estimation and its standard

deviation for BATS with PHDC with the 4-hop WSN. From the results, we can observe

that the maximum (i.e., that of node 9) and the minimum (i.e., that of node 1) MAE

values are kept quite close to each other, i.e., with the difference of 0.3551 µs; a similar

observation can be made in regard to the standard deviation of MAE, which shows the

difference between the maximum and the minimum values of 0.2515 µs. Interestingly,

the MAE of measurement time estimation with the tree topology does not show strict

dependency on the hop count unlike that with the linear topology of Fig. 5.5: For

instance, sensor node 8, which is 3 hops away from the head, achieves slightly better

time synchronization performance than sensor nodes 2 and 3, which are one hop and

two hops away from the head. These experimental results demonstrate the effectiveness

of PHDC in multi-hop extension with tree topology as well as linear topology.
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5.6 Summary

In this chapter, we have proposed a per-hop delay compensation scheme based on

the packet-relaying gateways for improving the multi-hop time synchronization per-

formance. We have also systematically analyzed the feasibility of PHDC over single

and multiple gateway nodes, especially the effect of timestamping and clock skew com-

pensation including the precision loss in the skew estimation. Based on the analysis, we

have extended both reverse and conventional one-way schemes—i.e., BATS and FTSP—

and one reverse two-way scheme—i.e., EE-ASCFR—for multi-hop time synchronization

based on TT as well as PHDC. Note that unlike the centralized multi-hop extension

reported in [3], we have provided in this chapter the distributed multi-hop extension of

EE-ASCFR for the first time.

We have demonstrated the effectiveness of PHDC on both one-way and two-way

schemes in alleviating the cumulative multi-hop time synchronization error through

practical experiments on a real 10-hop WSN testbed. Specifically, BATS with PHDC

can achieve nearly flat multi-hop synchronization accuracy; PHDC, compared to TT,

also reduces more than 70% and 60% per-hop synchronization errors for FTSP and

EE-ASCFR, respectively. From our observation of the results, we have also identified

that, besides the multi-hop extension methods like PHDC and TT, there are other

factors affecting the per-hop synchronization error in multi-hop time synchronization,

including clock parameter estimation methods & sample sizes and the computational

capability of the underlying platform (i.e., gateway and sensor nodes or the head).

Note that our investigation of the centralized and distributed implementation options

suggests that there is a research potential in centralized two-way schemes; while lever-

aging PHDC, more advanced clock parameter estimation methods could be employed

in the centralized two-way time synchronization schemes to achieve better multi-hop

time synchronization accuracy.



Chapter 6

An Optimal Message Bundling

Scheme with Delay and

Synchronization Constraints

In this chapter, we focus on the application of our reverse asymmetric time synchroniza-

tion schemes for the message bundling of WSN; the work presented here is based on our

publication of [6]. Message bundling is considered an efficient method for conserving

energy consumption. Bundling more messages leads to more energy conservation at the

expense of a larger end-to-end delay, the latter of which, however, is a major requirement

for monitoring and detection applications based on WSNs. With the thriving of novel

reverse asymmetric time synchronization schemes for energy-efficiency, synchronization

data are often embedded into the application messages together for bundling. The

bundling number, therefore, affects not only the end-to-end delay but also the synchro-

nization accuracy. In this chapter, we propose an optimal message bundling approach

for reducing the number of message transmissions while maintaining the required end-

to-end delay and time synchronization accuracy. We formulate the optimal bundling

problem as an integer linear programming, where an optimal bundling number is com-

puted for each sensor node in the WSN. Extensive experimental results based on a real
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WSN testbed consisting of TelosB sensor nodes running TinyOS demonstrate that the

proposed optimal bundling approach could significantly reduce the number of message

transmissions while achieving the required end-to-end delay and time synchronization

accuracy.

6.1 Introduction

Minimizing energy consumption is crucial to practical WSN deployments. As the radio

activities consume the majority of the total energy of the typical battery-powered sensor

nodes. Therefore, reducing the number of message transmissions is a key to saving

energy [2, 82]. In the literature, message bundling1 is considered a major approach for

achieving that [83]; and many research efforts have been centering around the message

bundling, e.g., [84, 85, 86].

A major tradeoff of message bundling is the increase of E2E delay as illustrated in

Fig. 6.1, which has been put under the spotlight for decades [87, 88, 89]. By E2E delay,

we mean the difference between the measurement time of a message at an originating

sensor node and the reception time of the resulting measurement data by the head node.

Many research have taken into account the ensemble of energy consumption and E2E

delay for message bundling [86, 90]; however, the synchronization accuracy has hardly

been considered together prior to the advent of reverse asymmetric time synchroniza-

tion schemes [2, 3, 1]. Thanks to the reverse asymmetric time synchronization, the

energy-efficiency, E2E delay, and synchronization accuracy could be jointly tuned as a

whole. This is often required by a group of long-term monitoring and detection WSN

applications such as human activity and gesture recognition based on novel device-free

wireless sensing [38, 39].

In this chapter, based on the pioneer of reverse asymmetric time synchronization

schemes—i.e., EE-ASCFR [2] & AHTS [3]—whose time synchronization is done at the

head node and the corresponding synchronization data are bundled together with mea-

1The terms of “message bundling” and “data bundling” are used interchangeably in this chapter.
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Figure 6.1: Comparison of the message transmissions of the time synchronization
schemes with and without data bundling procedure [6].

surements into a bundled message at a sensor node, we propose a novel optimal message

bundling scheme which formulates the aforementioned bundling optimization problem

as integer linear programming (ILP) with jointly satisfying the user-defined performance

requirements on E2E delay and time synchronization accuracy.

The rest of this chapter is organized as follows: Section 6.2 provides the preliminar-

ies, where we introduce the time synchronization scheme based on the data bundling

procedure and discuss the related conflicts of performance metrics. Section 6.3 presents

the details of our proposed optimal bundling with delay and synchronization constraints

and its formulation as ILP. Section 6.4 exhibits our system design at both head and

sensor nodes. Section 6.5 demonstrates the performance of the proposed approach

through experimental results on a real WSN testbed. Section 6.6 concludes our work

and discusses future works.

6.2 Preliminaries

In this section, we present relevant preliminaries of the proposed optimal bundling ap-

proach from the foundation of the proposed approach—asymmetric time synchronization—

to the conflicts of performance metrics.
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Table 6.1: MAE and MSE of Measurement Time Estimation of EE-ASCFR and
AHTS with Different SIs Provided in [2] and [3] Described in [6]

Synchronization Scheme MAE 1 MSE 2

EE-ASCFR
SI = 100 s 5.8990E-19 8.8811E-25
SI = 1 s 5.4210E-19 9.1748E-25
SI = 10 ms 4.7684E-19 1.0887E-24

AHTS
SI = 100 s 8.4225E-06 1.2524E-10
SI = 10 s 2.3385E-06 9.1694E-12
SI = 1 s 1.8166E-06 5.2094E-12

1 MAE is the mean absolute error of measurement time estimation.
2 MSE is the mean square error of measurement time estimation.

6.2.1 Energy-Efficient Time Synchronization Schemes Using Data

Bundling

Many time synchronization schemes are proposed for achieving the ensemble of energy

efficiency and synchronization accuracy such as [2, 31, 40, 41]. Among those, EE-

ASCFR and AHTS proposed in [2, 3] thanks to both their reverse synchronization

nature and application of data bundling, particularly suit the proposed optimal bundling

scheme where E2E delay and synchronization accuracy are maintained at the head.

We omit the synchronization details here and focus on the impact of message

bundling on its synchronization which is the foundation of the proposed scheme. As

illustrated in Table 6.1 showing the simulation results of EE-ASCFR and practical

evaluation results of AHTS, the synchronization accuracy (SA) is heavily affected by

synchronization interval. For achieving the desired synchronization accuracy, a proper

SI should be maintained. Therefore, the relationship (R) between SI and SA could be

represented as follows:

SI = R(SA), (6.1)

where the requirement of SA could be translated to the requirement of SI. Of particular

note is that, the bundling number is not discussed either in EE-ASCFR or AHTS since

it directly affects the E2E delay and synchronization accuracy, which makes its value

selection very complicated.
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6.2.2 Conflicts of Performance Metrics: Energy Efficiency, E2E Delay

and Synchronization Accuracy

Achieving simultaneous high energy-efficiency, low E2E delay, and high synchronization

accuracy is barely possible. Bundling more messages could lead to less energy con-

sumption caused by message transmission, the E2E delay of the messages is however

increased, which results in the conflict between energy efficiency and E2E delay calcu-

lation. Specific to the delay calculation illustrated in Fig. 6.1, the E2E delay—i.e., Tr
m

- T s
m—of measurement m, would be relatively small (e.g., multiples of forwarding delay

which typically in milliseconds) in the regular direct forwarding method. However, due

to the bundling procedure in the intermediate sensor nodes, the E2E delay could be as

large as multiples of measurement interval. As for synchronization accuracy, SI should

be shorter for achieving higher accuracy [2], but shorter SI results in more message

transmissions, which again leads to higher energy consumption. This draws forth the

conflict between energy efficiency and synchronization accuracy.

6.3 ILP Model for Optimal Bundling Problem

For node i in a WSN consisting of N sensor nodes, its energy consumption eti for the

message transmissions could be modeled as follows: For i∈ [0, 1, . . . , N−1],

eti = aiemi + biesi + cie
f
i , (6.2)

where emi denotes the energy consumption for transmission of the measurement message

and esi that of the synchronization message at sensor node i, and e f
i stands for the energy

consumption for forwarding either the synchronization or measurement message from

offspring sensor nodes at sensor node i. ai, bi, and ci are coefficients of the number of

transmissions for corresponding messages. When the data bundling is considered, (6.2)
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can be updated as follows:

eti =


δiebi , all data bundling

δiebi + cie
f
i , self data bundling

(6.3)

where δiebi is the total energy consumption for transmitting bundling messages. Note

that, the self data bundling option bundles only the data generated from the sensor

node itself while the all data bundling option bundles all data from both the sensor

node itself and its offspring sensor nodes into one bundling message. Therefore, the

term cie
f
i still remains in the case of the former of which.

From a network-level perspective, the total energy consumption for message trans-

missions in the network could be described as follows:

Et =

N−1∑
i=0

eti . (6.4)

6.3.1 Maximization of Bundling Number for Energy Efficiency

From (6.3), a larger number of bundled message transmissions (i.e., δi) leads to more

energy consumption; in contrast, bundling more messages reduces the said number

therefore lessens energy consumption. Let Γi be the number of bundled messages at

sensor node i, a larger Γi results in a smaller δi, which reduces the total energy con-

sumption for message transmissions. We can minimize Et by maximizing Γi in a certain

range due to the increasing E2E delay and payload size, however. The maximization of

bundling number for energy efficiency can be formulated as follows:

maximize Γ

subject to χmin ≤ Γi ≤ χmax, ∀i ∈ [0, . . . , N−1],
(6.5)

where

Γ =
N−1∑
i=0

Γ
i .
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Γ is the total bundling number in the network, χmin and χmax denote the lower and

upper bounds of the measurement bundling number which are user-defined application-

specific parameters.

6.3.2 Constraining E2E Delay

Based on the illustration in Fig. 6.1, the E2E delay of sensor node i could be defined as

the time difference between the transmission time of the measurement m at the sensor

node i and the reception time of that at the head:

Di
e2e ,

L−1∑
l=0

Di
l = T i,r

m − T i,s
m , (6.6)

where Di
l
is the link delay at link l of L links from sensor node i to the head, T i,r

m

and T i,s
m are the receiving time at the head and the measuring time at the sensor node

respectively, the latter of which is a time with respect to the reference clock at the

head translated by a time synchronization scheme. Moreover, the Di
e2e is a path-level

delay that consists of several link-level delays in the network. Considering the bundling

procedure, the link delay at link l for sensor node i could be described as follows:

Di
l = Di,l

prop + Di,l
serv + Di,l

bund
, (6.7)

where Di,l
prop denotes the propagation delay that is typically in nanosecond level in

WSN; Di,l
bund

is the delay caused by the bundling procedure, which is in multiples of the

measurement interval (e.g., 5×1 s for the measurement interval of 1 s and the bundling

number of 5). According to the service time model [91] for TinyOS which running on

the TelosB sensor node, we can model Di,l
serv as follow:

Di,l
serv =


Di,l

SPI
+ Di,l

succ + (N
i,l
try − 1) · Di,l

retry, N i,l
try ≤ N i,l

max

Di,l
SPI
+ Di,l

f ail
+ (N i,l

max − 1) · Di,l
retry, N i,l

try > N i,l
max

(6.8)
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where

Di,l
succ = Di,l

MAC
+ Di,l

f rame
+ Di,l

ACK
,

Di,l
f ail
= Di,l

MAC
+ Di,l

f rame
+ Di,l

wait ACK
,

Di,l
retry = T i,l

retry + Di,l
f rame

+ Di,l
wait ACK

.

The delay parameters—i.e., one-time serial-peripheral interface (SPI) bus loading de-

lay Di,l
spi, MAC layer delay Di,l

MAC
, frame transmission delay Di,l

f rame
, acknowledgment

(ACK) transmission delay Di,l
ACK

and ACK waiting delay Di,l
wait ACK

—in the above equa-

tions are platform-dependent values, and their values are typically in the order of mil-

liseconds. Besides, N i,l
try and N i,l

max are the current and the maximum allowed number

of transmissions for a successful delivery, and T i,l
retry is the user-defined backup time of

retransmission. For simplicity and energy efficiency, the packet retransmission is not

taken into account in our proposed scheme since there are usually not many packet

retransmissions in the network with lower traffic. Therefore, we can simplify (6.8) as

follows:

Di,l
serv = Di,l

SPI
+ Di,l

MAC
+ Di,l

f rame
+ Di,l

ACK
(6.9)

where the value of Di,l
serv is around 10 ms based on the reference values in [91].

The link delay in (6.7), on the other hand, could be further simplified when the

measurement interval for an application (Ii,lmeas) is much larger than the service delay

(Di,l
serv): Because Di,l

bund
>Ii,lmeas, Ii,lmeas�Di,l

serv also implies Di,l
bund
�Di,l

serv, hence

Di,l
link
≈ Di,l

bund
, if Ii,lmeas � Di,l

serv . (6.10)

Here the service delay Di,l
serv should not be ignored in case the application requires

frequent measurements, i.e., Ii,lmeas is comparable to Di,l
serv. As sensor nodes located

in different layers have to serve different numbers of offspring sensor nodes thus face

different amounts of traffics. Specifically, the gateway node in the upper layer has to

handle the message traffic from its offspring sensor nodes as well as itself; the higher
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layer it is located in, the more message traffic it has to handle. Therefore, even two

sensor nodes with the same bundling number (i.e., Γi) could have different bundling

delays due to the variance in their message traffics. With introducing a message traffic

coefficient ( 1
1+λi

) for each sensor node that periodically measures data with the same

measurement interval (i.e., Iimeas), the bundling delay at sensor node i (Di
bund

) could

be represented as follows:

Di
bund =

Γi

1 + λi
· Iimeas, (6.11)

where λi denotes the number of offspring sensor nodes. Then the Di
e2e for the applica-

tions with normal measurement interval could be modeled as follows:

Di
e2e =

L−1∑
l=0

Di
bund . (6.12)

With above (6.12), we can constrain the E2E delay in the optimal bundling problem in

(6.5) with the user-defined E2E delay requirement (Dmax
e2e ): For i∈[0, 1, . . . , N−1],

Di
e2e ≤ Dmax

e2e . (6.13)

6.3.3 Constraining Synchronization Accuracy

As the proposed optimal bundling approach lays its foundation on the reverse asym-

metric time synchronization, the synchronization accuracy thus depends on the report

interval of the synchronization message, the latter of which is carried by the bundling

message, however. In such a case, the user-required synchronization accuracy (SAmin)

could be maintained through constraining the E2E delay of the bundling message when

sensor nodes generate measurement data periodically. Based on the empirical sets—i.e.,

R—of the relationships between synchronization accuracy and SI previously provided

in Section 6.2, the user-required synchronization accuracy could be translated to the

delay requirement as follows:

DSA
e2e = R(SAmin). (6.14)
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By combining (6.12) and (6.14), the synchronization accuracy could be achieved through

constraining the E2E delay as follows: For i∈[0, 1, . . . , N−1],

Di
e2e ≤ DSA

e2e . (6.15)

6.3.4 ILP model

Considering the objective function (6.5) and the two constraint sets (6.13) and (6.15),

we can formulate the optimal bundling problem as the following ILP:

maximize Γ =
N−1∑
i=0

Γ
i

subject to

χmin ≤ Γi ≤ χmax, ∀i ∈ [0, . . . , N−1],

Di
e2e ≤ min

(
Dmax

e2e ,R(SAmin)

)
, ∀i ∈ [0, . . . , N−1],

(6.16)

where the E2E delays of all sensor nodes are jointly constrained by the user-defined E2E

delay Dmax
e2e and the synchronization accuracy SAmin requirements, and the bundling

number of each sensor node is constrained by the user-defined lower χmin and upper

χmax bounds, respectively. Applying the set of optimal bundling numbers computed

from this ILP model to sensor nodes, the required E2E delay and synchronization ac-

curacy could be maintained while the bundled message transmissions are minimized.

6.4 System Design

We show the system architecture of the proposed optimal bundling based on the ILP

model formulated in Section 6.3.4 in Fig. 6.2. Two subsystems—i.e., the performance

maintainer at the head and the parameter adapter at each sensor node—are built to

achieve the optimization target. In the following, we narrate our system separately.
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Figure 6.2: System architecture of the proposed optimal bundling [6].

6.4.1 Performance Maintainer at Head

As the proposed optimal bundling system adopts the reverse asymmetric time syn-

chronization schemes of EE-ASCFR and AHTS, the centralized nature is inherited,

i.e., the head undertakes both time synchronization and optimization. Note that time

synchronization is achieved through the MAC-layer Time Recorder and the Time Syn-

chronization Maintainer, the latter of which translates timestamps between the head

and a sensor node. A measurement timestamp recorded at the sensor node—i.e., T s
m in

Fig. 6.1—could be translated to a timestamp based on the hardware clock of the head.

The E2E delay is obtained as a difference between the translated measurement

timestamp and the receiving timestamp of Tr
m through the Delay Calculator, and the

runtime E2E delay is monitored through the Performance Monitor. According to the

topology data carried in each bundled message, the routing paths for all sensor nodes are

further recovered in the Runtime Path Maintainer, and one set of paths is generated and
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delivered to the Constraint Generator. The user-defined requirements of E2E delay and

synchronization accuracy, on the other hand, are captured through the user interface

of Requirement Input Interface. With combining the performance requirements and the

current path information, the Constraint Generator generates a set of constraints and

passes it to the Optimal Parameter Generator, where the optimal bundling number for

each sensor node is calculated as a solution of the ILP model. Eventually, the optimal

bundling numbers from the Optimal Parameter Generator are delivered to sensor nodes

by the Parameter Disseminator.

Note that, when the topology is updated or the user-defined requirements are

changed, the system will repeat the above procedures to provide up-to-date optimal

bundling numbers. By the way, as the proposed system is in a centralized manner, the

major trade-off is the communication overhead for disseminating the optimal results to

the sensor nodes. This overhead would not be a major issue in practice unless topology

updates and user requirements changes are too frequent.

6.4.2 Parameter Adapter at Sensor Nodes

Three lightweight components (including the MAC-layer Time Recorder from the time

synchronization) are implemented at sensor nodes. Specifically, the Parameter Adapter

receives the optimal bundling number and delivers it to the Data Bundler that bun-

dles the measurement data temporarily stored in the Queue plus timestamps into one

message. The bundled message will be timestamped for T3 by the MAC-layer Time

Recorder as shown in Fig. 3.1 and Fig. 6.2.

6.5 Experimental Results

We implement the proposed optimal bundling approach on a real three-hop WSN

testbed consisting of five TelosB sensor nodes as illustrated in Fig. 6.3. By employing a

reference node—similar to the approach of reference-broadcast synchronization (RBS)

[28]—as illustrated in Fig. 6.4, we could verify the time synchronization accuracy of
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Figure 6.3: Experiment setup of a real three-hop WSN testbed consisting of five TelosB
sensor nodes [6].

Sensor Node Head Node

Reference Node

Data Flow

Figure 6.4: Evaluation of time synchronization accuracy using one additional reference
node [6].

the time synchronization approach embedded in the proposed optimal bundling. Note

that, when neglecting the propagation delay, those receiving timestamps should be at

the same time, thanks to the leveraging of the MAC-layer timestamping [1]. Therefore,

the synchronization errors of each sensor node under evaluation could be computed in

the head through comparing the differences of the head’s recorded timestamp and the

translated one using time synchronization.

In our experiments, each sensor node generates one measurement per second. The

E2E delays of the latest measurements in bundled messages from all sensor nodes are

collected and stored in a time sequence in order of their arrivals at the head. We

show the E2E delay performance in Fig. 6.5, Fig. 6.6 and Fig. 6.7. The red horizontal

dotted lines indicate the E2E delay requirements for corresponding time periods, and

the requirement of synchronization accuracy is set to 5 µs for all experiments.
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Figure 6.5: E2E delay performance of the optimal bundling under static E2E delay
requirement setting of (a) 8 s and (b) 5 s with the maximum bundling number of 15 [6].

6.5.1 Delay Performance Under Static Requirement Setting

We first evaluate the E2E delay performance of the optimal bundling under static re-

quirement setting—e.g., E2E delay requirement of 8 s and 5 s—with different maximum

bundling numbers—i.e., χmax in (6.16)—of 15 and 10. We run the experiment for 3600 s

to demonstrate the long-term maintenance capability.

We demonstrate in Fig. 6.5 the performance of the proposed approach under static

E2E delay requirement setting through a group of experiments employing different pa-

rameters and requirements. Fig. 6.5 (a) and (b) show that the E2E delays can exceed

14 s before the optimal bundling is applied. However, once the optimal bundling is
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Figure 6.6: E2E delay performance of the optimal bundling under static E2E delay
requirement setting of (a) 8 s and (b) 5 s with the maximum bundling number of 10 [6].

applied with the requirement of 8 s and 5 s, we can see that the E2E delay is controlled

and kept under the requirements for most of the time. Note that there are few data

points that crossed the requirement line; because the gateway node serves its own mea-

surement data first, the data from its offspring nodes, sometimes, could be buffered

in the queue and sent by the next available message, which would increase the E2E

delay of the corresponding message. We further change the maximum bundling number

from 15 to 10 to evaluate the proposed optimal bundling approach since the maximum

bundling number is often limited by the measurement data length and the maximum

payload size of the underlying protocol. Fig. 6.6 (a) and (b) illustrate that the E2E

delay requirement can be well fulfilled with applying the proposed optimal bundling
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Figure 6.7: E2E delay performance of the optimal bundling under dynamic E2E delay
requirement setting and the maximum bundling number of (a) 10 and (b) 15 [6].

approach.

6.5.2 Delay Performance Under Dynamic Requirement Setting

We next evaluate the E2E delay performance of the optimal bundling under dynamic

requirement setting with the maximum bundling number of 10 and 15 to demonstrate

its run-time maintenance capability.

During the evaluation with the maximum bundling number of 10, the E2E de-

lay requirement is dynamically changed from 8 s to 2 s step-by-step as illustrated in

Fig. 6.7 (a). For the evaluation with the maximum bundling number of 15 shown in

Fig. 6.7 (b), we extend the range of E2E delay requirement to 14 s to 1 s. Experimental
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Figure 6.8: Absolute time synchronization error of node 2 during the experiment of static
requirement setting with maximum bundling number of 10 and E2E delay requirement
of 8 s illustrated in Fig. 6.6 (a) [6].

results exhibit that the proposed optimal bundling could well handle multiple dynamic

requirements of E2E delay throughout the experiments. As discussed in Section 6.5.1,

however, some data points slightly cross the requirement line, which is due to the neglect

of the service time (i.e., Di,l
serv) in equation (6.7). When the optimal bundling numbers

are too strict that just fulfill the requirement, the influence of the neglect of the small

service time would be notable. Note that, in the extreme case, when the E2E delay

is strict to 1 s as shown in Fig. 6.7 (b), which reaches the measurement interval of our

experiment as previously described in Section 6.5, the proposed optimal bundling could

still fulfill the requirement but with assigning no larger optimal bundling number than

1 to all sensor nodes as shown in Table. 6.2. Nevertheless, when the E2E delay require-

ment is much stricter, i.e., smaller than the measurement interval, which may lead to

an unsatisfactory situation since there is no room for the proposed optimal bundling to

play.

6.5.3 Synchronization Accuracy

In the reverse asymmetric time synchronization schemes of EE-ASCFR and AHTS, the

synchronization accuracy could be fulfilled as far as the E2E delay of the bundled mes-

sage could satisfy the synchronization interval: The synchronization interval—i.e., E2E
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Figure 6.9: Number of message receptions and transmissions of sensor nodes with and
without optimal message bundling for 3600 s with sampling interval of 10 s [6].

delay—demonstrated in the evaluation results shown in Fig. 6.5, Fig. 6.6 and Fig. 6.7,

could overfulfill the SI requirement (e.g., 10 s SI could lead to 2.3385 µs synchronization

accuracy as illustrated in Table. 6.1), the synchronization accuracy, therefore, could be

strictly followed.

We take node 2 in the static requirement setting experiment—i.e., experiment shown

in Fig. 6.6 (a) with maximum bundling number of 10 and E2E delay requirement of

8 s—as an example, to evaluate the time synchronization accuracy. As illustrated in

Fig. 6.8, most of the absolute synchronization errors (i.e., the dotted line) are under

5 µs, and the mean of absolute synchronization errors is 2.0849 µs, which overfulfills the

5 µs synchronization accuracy requirement.

6.5.4 Energy Efficiency

We indirectly estimate the energy efficiency by comparing the number of message re-

ceptions and transmissions with and without optimal bundling. In the experiment

exhibited in Fig. 6.5 (a), we take the path of 0↔1↔2↔4 as an example, and show the

number of message receptions and transmissions of the sensor nodes 1, 2, 4 in Fig. 6.9.

As illustrated in Fig. 6.9, we count the number of message receptions and trans-

missions of each sensor node every 10 s over the period of 3600 s. In the case of using
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Table 6.2: Optimal bundling number under different E2E delay requirements during
the dynamic experiment as shown in Fig. 6.7 (b) [6]

Max Bundling Number E2E Delay Requirement (s) Optimal Bundling Number
Node 1 Node 2 Node 3 Node 4

15 14 15 14 8 1
15 10 15 10 6 1
15 8 15 6 4 1
15 6 15 2 2 1
15 4 14 1 1 1
15 1 1 1 1 1

the proposed optimal bundling, all sensor nodes could maintain their message recep-

tions and transmissions around the number of 10. In contrast, when without the optimal

bundling, the numbers of their message receptions and transmissions are relatively large,

whose average of 35 is over triple of that with the optimal bundling. In other words,

around 70% message transmissions can be reduced using the proposed optimal bundling

in this specific case. Note that, with the increase of the network size and the maximum

bundling number, the performance of the proposed optimal bundling would be even

better.

6.5.5 Discussions

In Table. 6.2, the optimal bundling numbers that our proposed approach assign to the

leaf nodes (i.e., node 3 and 4 in our experiment as shown in Fig. 6.3) are relatively

small regardless of the variation of the E2E delay requirements. This is because the

proposed optimal bundling treats both the gateway nodes and leaf nodes equally since

they are most likely the same resource-constrained sensor nodes in the real deployment

and the gateway nodes undertake more traffics than the leaf ones. However, when the

gateway node is rather resource-abundant, the proposed approach should incline the

optimization to the leaf nodes.

In addition, as briefly mentioned in Section 6.5.4, the maximum energy efficiency

performance of the proposed optimal bundling is not fully exhibited due to the joint
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constraints of the network size and various parameters such as maximum bundling

number. In the follow-up work, a further study will employ a relatively larger testbed

and proper parameters to evaluate the extreme performance of the proposed optimal

bundling.

6.6 Summary

In this chapter, we have proposed an approach to optimize the number of bundled mes-

sages at sensor nodes in WSNs under the constraints of time synchronization accuracy

and E2E delay. We formulate the optimal bundling problem as an ILP model and em-

ploy the novel asymmetric time synchronization scheme. To the best of the authors’

knowledge, this is the first work to optimize message bundling for energy efficiency

under the joint constraints of synchronization accuracy and E2E delay in the context

of WSN. The practical evaluation results on a real testbed composed of TelosB sensor

nodes demonstrate the long-term and runtime maintenance capability of the proposed

approach in terms of E2E delay. We also exhibit the energy efficiency of the proposed

approach through a case study, which shows about 70% reduction on the overall message

transmissions.

Note that bundling a larger number of messages could result in a longer payload,

which may lead to possible link degradation such as the packet reception ratio degrada-

tion. In this regard, link quality requirements could be introduced to the optimization

model as additional constraints to take into account more impacts on the overall perfor-

mance by the bundling procedure. In addition, the proposed approach should be tested

with a larger testbed to investigate its scalability and network-wide energy efficiency.



Chapter 7

NISA: Node Identification and

Spoofing Attack Detection Based

on Clock Features and Radio

Information for Wireless Sensor

Networks

In this chapter, we focus on the application of our reverse asymmetric time synchro-

nization schemes for the node identification of WSN; the work presented here is based

on our publication of [7]. We propose a new node identification scheme called node

identification against Spoofing attack with novelly taking clock features and radio infor-

mation together into account for simultaneous node identification and spoofing attack

detection. Node identification based on unique hardware features has been considered

an efficient technique in wireless networks; spoofing attacks imitating unique hardware

features, however, could significantly impair or break down the node identification sys-

tem. The same applies to the conventional clock-skew-based node identification that

is also vulnerable to these attacks due to clock information exposed through broad-
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casting. To defend against Spoofing attacks, our proposed NISA utilizes the reverse

time synchronization framework for estimating the sensor nodes’ clock skews and the

spatially-correlated radio link information to achieve simultaneous node identification

and attack detection. We further provide centralized and distributed NISA for covering

both single- and multi-hop scenarios. On a real WSN testbed consisting of TelosB sensor

nodes, we investigate the identifiability of clock skews under temperature and voltage

variations; implement and evaluate both centralized and distributed NISA. In particular,

the centralized NISA employs a single-input and multiple-output convolutional neural

network. Experimental results demonstrate that both centralized and distributed NISA

could provide accurate node identification and Spoofing attack detection.

7.1 Introduction

The thriving technologies of wireless communications and networking expedite the re-

liance of our daily lives on smart devices such as laptops, smartphones, and nowadays

Internet of Things (IoT) devices [92]. The security of those devices, therefore, becomes

a serious concern. An efficient security measure for wireless networks is node identifi-

cation, i.e., the identification of legitimate devices often in the presence of attackers.

Conventional techniques based on pre-defined identifiers (IDs) or media access control

(MAC) addresses have been widely used for node identification. Malicious devices,

however, could impersonate legitimate ones so that attackers join a network, intercept

data exchanged, and even launch attacks—like denial of service (DoS)—on the network

[93, 94].

Device fingerprinting (DF) techniques utilizing hardware features as device-specific

fingerprints are considered a promising technique that could alleviate the vulnerability

of the conventional node identification techniques [95]. Of many hardware features,

radio frequency (RF) and clock features—i.e., related with wireless modules and crys-

tal oscillators (COs) of devices, respectively—attract much attention for a variety of

application scenarios from wireless local area networks (WLANs) [96] to cloud [97] and
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controller area networks (CANs) [98] to IoT [99]. The RF features, however, often re-

quire additional equipment [99]—e.g., universal software radio peripheral (USRP)—for

their measurement, so they couldn’t be employed in normal gateway nodes (also called

cluster heads) in multi-hop wireless networks. The clock features such as clock skews,

on the other hand, are readily available as part of the time synchronization service for

wireless communication and networking. Therefore, clock-skew-based node identifica-

tion (CSNI) becomes an attractive option, especially for large-scale, multi-hop wireless

sensor networks (WSNs).

In the literature, clock skews as device-specific fingerprints could be estimated by

various methods from simple ratio-based one [48] to complex linear regression [1], and

node identification could be achieved through simple thresholding [100] to advanced

machine learning (ML) techniques [99, 101]. Depending on the location of clock skew

estimation and node identification, CSNI schemes can be categorized as centralized (i.e.,

at the head1) or distributed (i.e., at the gateway and/or sensor nodes) ones. In [100], a

preliminary investigation of differentiating sensor nodes based on clock skews was stud-

ied using the flooding time synchronization protocol (FTSP) [18] as a skew estimator;

sensor nodes locally estimate their clock skews and transmit them back to the head for

centralized node identification by employing a simple thresholding method. In [102],

the authors experimentally verified that different sensor nodes—i.e., MICAz [45] and

TelosB [25]—have different and unique clock skews, which can be easily distinguished

at a centralized monitoring station even in a multi-hop WSN. They also identified and

discussed the issue of exposing the estimated clock skews through a non-covert channel

from the security perspective; the transmission of clock skews over the network as in

[100] is vulnerable to security attack [102]. The utilization of CSNI for defending some

common attacks such as Sybil [103], Replication [104], and Wormhole [105] has also

been studied: The combination of the continuity of clock skews and node IDs can be

used to detect Sybil and Replication attacks [100], while the immutable characteristics

1A head is typically an ensemble of a head/sink node and a monitoring station such as a PC or a
server connected to it.
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of clock skews can be employed to defend Wormhole and Sybil attacks [106].

However, CSNI fails when malicious nodes can imitate the clock skews of legiti-

mate ones to the point that fake and true clock skews cannot be differentiated from

one another, which we call Spoofing attack2 throughout this chapter. The Spoofing

attacker described in [108] could pretend itself as a legitimate sensor node by estimat-

ing the clock skew and offset based on the timestamps intercepted from the legitimate

sensor node. To defend CSNI against Spoofing attack, therefore, we propose an ap-

proach called Node Identification against Spoofing Attack (NISA) based on the reverse

asymmetric time synchronization framework [1, 3, 2]. Through unilaterally collecting

the spatially-correlated radio information of received signal strength (RSS) and link

quality indicator (LQI)3 together with clock features extracted from the reverse time

synchronization, NISA could simultaneously detect Spoofing attacks and achieve node

identification. Note that radio information such as RSS is available as part of the trans-

mission services for wireless communication and networking, which does not require

additional equipment for its measurement; the spatial correlation of radio information

has been widely employed for various applications such as indoor localization [109, 110],

key generation [111], and attack detection and localization [112, 113]. To the best of the

authors’ knowledge, this is the first CSNI scheme simultaneously addressing the node

identification and spoofing attack detection for both single-hop and multi-hop WSNs.

Our major contributions in this chapter are summarized as follows:

• We propose centralized NISA that lays its foundation on BATS—i.e., the state-of-

the-art reverse asymmetric time synchronization scheme—which can significantly

improve the secrecy and identifiability of sensor nodes’ clock skews. A single-input

and multiple-output (SIMO) convolutional neural network (CNN) is employed in

centralized NISA for simultaneous node identification and attack detection by

taking the time series of clock features and radio information as its input.

• We also propose distributed NISA which can run at normal gateway nodes cover
2This attack is also called clock skew replication attack in [107].
3LQI is a vendor-specific value which is currently available in IEEE 802.15.4 standard.
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multi-hop scenarios, which most conventional RF fingerprint-based identification

schemes [99, 114, 115] couldn’t be applied to. As node identification and attack

detection are done locally at gateway nodes in distributed NISA without the

involvement of the head, it could immediately filter out attacks nearby and remove

unnecessary packet transmissions upstream from the gateways to the head.

• We carry out a systematic investigation of the identifiability of sensor nodes’

clock skews based on the high-precision centralized NISA. Unlike the existing

investigations [55, 56], ours demonstrates the concurrent behaviors of the clock

skews of a group of sensor nodes under temperature and voltage variations, which

result from the drifts of digitally-controlled oscillators (DCOs) calibrated by COs.

• We present the design, implementation, and practical evaluation of the perfor-

mance of both centralized and distributed NISA on a real WSN testbed con-

sisting of TelosB [25] sensor nodes running TinyOS [44]. Experimental results

demonstrate the effectiveness of both centralized and distributed NISA in node

identification while defending against Spoofing attacks.

The rest of the chapter is organized as follows: The overview of NISA is provided in

Section 7.2. The centralized NISA is presented in Section 7.3. Section 7.4 narrates the

distributed NISA. Our investigations on clock skews and experimental evaluation results

of both centralized and distributed NISA are demonstrated in Section 7.5. Section 7.6

reviews the related work in comparison to our work. The summary of this chapter is

given in Section 7.7.

7.2 NISA: Node Identification and Spoofing Attack Detec-

tion Based on Clock Features and Radio Information

In this section, we first discuss the acquisition of the clock features for node identification

and the characteristics of radio information for spoofing attack detection. Based on these

foundations, then we provide an overview of the proposed NISA system.
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7.2.1 Clock Features For Node Identification

Clock skew and offset represent the fundamental relationship between two hardware

clocks in time synchronization. The accurate estimation and update of them are essen-

tial not only for high synchronization accuracy but also for reliable node identification

based on the uniqueness of hardware clocks. Due to the imperfect manufacturing of the

low-cost COs in common WSN devices, the clock frequencies of any two sensor nodes

are hardly identical to each other [102]. Hence a different and unique clock frequency

specific to each sensor node.

As a clock skew is one of the two parameters in modeling the relationship between

the hardware clocks in the first-order affine hardware clock model that most time syn-

chronization schemes rely on (e.g., [116, 2]), the clock skew between the hardware clock

Ti of a sensor node i and the reference clock t of the head node can be defined as follows:

For i∈ [0, 1, . . . , N−1],

Ti(t) = (1 + εi)t + θi → εi =
Ti(t) − θi

t
− 1, (7.1)

where N denotes the number of sensor nodes, εi∈R and θi∈R respectively represent the

clock skew and offset between the sensor node i’s hardware clock and the reference clock.

For convenience, we often use clock frequency ratio Ri—also called slope—instead

of the clock skew εi, which is given by:

Ri = 1 + εi =
Ti(t) − θi

t
. (7.2)

The clock frequency ratio is calculated based on the clock time acquired from the internal

DCO calibrated by the external CO, which represents the behaviors of both internal

DCO and external CO. Note that, since DCO has up to ten times larger ppm than CO

[4], our investigation is conceptually different from those based only on external CO as

in [55, 56].

The clock offset θi, also called intercept, represents the hardware clock at t=0 (i.e.,
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Ti(0)). Unlike clock skew, it cannot be used as a device-specific fingerprint because its

value does not depend on hardware features and changes whenever power cycling any of

the two nodes. During the normal operation, however, its value is fixed & likely unique

and rather stable for a short period of time, so it can be used as an auxiliary variable

for CSNI, especially when fine-grained node identification is needed in large-scale WSNs

as we will discuss in Section 7.3.

The clock parameters are estimated based on the linear regression in BATS [1]:

During the kth synchronization (k≥m), the clock parameters of the sensor node i are

estimated based on the latest m timestamp pairs in a sliding window as follows:

Φi(k) =
{
t(k)>t(k)

}−1
t(k)>Ti(k), (7.3)

where

Φi(k) =
[
R̂i(k), θ̂i(k)

]
,

t(k) = [tk−m+1, . . . , tk] ,

Ti(k) = [Ti(tk−m+1), . . . ,Ti(tk)] ,

and R̂i(k) and θ̂i(k) are the clock parameters of frequency ratio and offset, (·)> and (·)−1

denote vector transpose and matrix inverse, respectively. Note that the estimation of

clock skew can be obtained from R̂i(k), i.e., ε̂i(k)=R̂i(k)−1.

It is worthwhile to mention the advantages of the clock parameter estimation of

BATS when applied to CSNI. First, the reverse one-way time synchronization framework

of BATS estimates the clock parameters of sensor nodes at the head and, therefore,

does not expose estimated clock skews to other nodes in the network unlike conventional

schemes where the clock skews estimated at sensor nodes have to be transmitted back to

the head for node identification. Second, the sliding window size of the linear regression

(i.e., m) can be adjusted for the operation environment of a WSN; a larger window size

can improve the accuracy of the estimation for a static environment, while a smaller
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one can adapt to a dynamic environment more quickly at the expense of the estimation

accuracy. Third, the high-precision estimation of clock parameters based on 64-bit

double-precision floating-point at the head—providing up to 16 significant digits after

a decimal point [49]—enables finer-grained CSNI, which is critical for large-scale WSNs

[102].

7.2.2 Radio Information For Spoofing Attack Detection

There are existing measures for CSNI against the Spoofing attack such as actively

altering the synchronization interval [107]. In contrast to those measures, we novelly

adopt the radio information in defending against Spoofing attacks, which could be

passively measured to be consistent with the passive nature of the CSNI method.

Radio information such as RSS and LQI from a received packet indicates the signal

strength and the quality of packet transmission. Specifically, RSS is correlated in space

and, therefore, varies with location, which has been well exploited in many techniques

such as indoor localization and key generation. For instance, the spatial variation

of the RSS has been extensively studied in the key generation [111, 117], where they

revealed that an attacker located more than one half-wavelength away from any existing

legitimate device faces uncorrelated multipath fading in most scenarios. Note that RSS

is not the instantaneous power of the received signal, which is not available at typical

receivers, but its time average. In common WSN platforms, the average power of the

received signal is referred to as the received signal strength indicator (RSSI).

LQI is another parameter on the radio information. In [118], it is suggested that

LQI should be employed as an indicator for intermediate quality links after averaging

over multiple readings due to its high variance over time; time-averaged LQI could be

a better indicator for packet receive ratio (PRR) than RSSI. In contrast, when the link

quality is good whereby the LQI is insensitive, RSSI could be a better indicator for

distinguishing attackers. Note that LQI is platform-specific; LQI is highly correlated

in space and can be used for key generation like RSS on some platforms [119] but

not on other platforms. As such, LQI at least could be used for node identification
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for distinguishing attackers from legitimate devices when intermediate quality links are

available [118]. Because the ensemble of RSSI and LQI is less sensitive to instantaneous

link fluctuations, it can better represent the link status [120].

Note that, due to its spatial correlation, radio information is hard to be impersonated

by attackers and, hence, could complement clock features that are vulnerable to the

Spoofing attack. In the following, we provide an overview of NISA which leverages both

radio information and clock features to reinforce CSNI against Spoofing attacks.

7.2.3 Overview of NISA System

Two distinctive aspects of our design of NISA systems are a covert channel [102] and

passive nature. For the former, the transmission of estimated clock features and radio

information over a network, which is vulnerable to eavesdropping, cannot be allowed;

for the latter, the system should be able to perform node identification and attack detec-

tion without the modification of standard procedures requiring the active involvement of

sensor nodes like the frequent changes of synchronization time period suggested in [107].

For these reasons, we found that BATS, i.e., the reverse one-way time synchronization

scheme whose estimations of clock features are all done at the head, is a perfect candi-

date for CSNI part of NISA; unlike conventional CSNI schemes relying on transmissions

of clock features from sensor nodes to the head (or gateway nodes in the case of multi-

hop WSNs) for node identification (e.g., [100]), BATS enables the clock features to be

estimated and used for node identification at the same place (i.e., the head or gateway

nodes) without exposing it over a network. Likewise, the head or gateway nodes can

directly measure the spatially-correlated radio information for attack detection without

exposing it over a network. Therefore, NISA could passively achieve node identification

and attack detection through a covert channel.

In Fig. 7.1, we provide an overview of the proposed NISA system. When the packets

from sensor nodes arrive, the head extracts the clock features—i.e., skew and offset—

using the reverse time synchronization and measures the radio information of RSSI and

LQI. Then a database is constructed based on them for node identification and attack
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detection later. However, as WSNs often require multi-hop configurations to cover vast

areas, we provide two variations in NISA system design, namely centralized NISA and

distributed NISA, for respectively addressing single-hop and multi-hop scenarios. As

illustrated in Fig. 7.2 (a), the node identification and attack detection are done at

the head consisting of a head node and a powerful monitoring station in centralized

NISA, which makes it possible to employ advanced techniques for better performance.

Because it would be impractical to implement a rather heavy centralized NISA system

at gateway nodes, however, we propose distributed NISA in order to cover multi-hop

scenarios as shown in Fig. 7.2 (b). Note that the system design is intentionally simplified

in this case so that it can be easily implemented at gateway nodes that are often normal

battery-powered sensor nodes.

The two system designs provide different options in performance and computational

complexity tradeoff: Simple classification or thresholding schemes could suffice for dis-

tributed NISA but at the expense of relatively lower performance, which we discuss in

Section 7.5. Centralized NISA, on the other hand, could provide better performance

through advanced classification/detection methods like those based on neural networks

[99], which can take all parameters into account and run node identification and attack
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Figure 7.2: NISA system designs: (a) Centralized NISA for single-hop WSNs; (b)
distributed NISA for multi-hop WSNs [7].

detection in an integrated manner, at the expense of computational complexity.

7.3 Centralized NISA

As we discussed in Section 7.2.3, centralized NISA is designed to provide better per-

formance based on the integrated processing of clock features and radio information

for single-hop WSNs. Here we provide more details of centralized NISA, including its

workflow and implementation example.

7.3.1 Workflow of Centralized NISA

As shown in Fig. 7.3, there are two phases in the workflow of centralized NISA, i.e.,

the initial phase and detection/identification phase. From the packets received from

sensor nodes, centralized NISA extracts clock features through time synchronization

and collects radio information during the initial phase. The clock features and the

radio information are then combined and fed into a database. After gathering enough

data for all the sensor nodes in the network, a training process is performed based on the
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database for classification. The system switches to the detection/identification phase

when the training process is completed.

During the detection/identification phase, a common functional block—i.e., the

“Multi-Output Classifier” shown in Fig. 7.3—carries out both node identification and

attack detection simultaneously. When an attack is detected, the corresponding packet

is dropped; otherwise, the identified node ID is reported as a final result of CSNI.

This group of data—i.e., a node ID and its corresponding clock features and radio

information—is used to continuously update the database.

The major challenge in the workflow of centralized NISA is the implementation of

the common functional block that should be able to process the clock features and the

radio information as a whole for simultaneous node identification and attack detection

through time-series classification (TSC); solutions based on advanced neural networks

like CNN, recurrent neural network (RNN), and their many variations (e.g., long short-

term memory (LSTM) and gated recurrent unit (GRU)) could be employed for TSC.

Among them, CNN is rather popular for node identification (i.e., device fingerprinting)

due to its capability of not only classifying nodes’ fingerprints as image data [99, 121]

but also solving the TSC problem as demonstrated in [122] and [123], which is why we

choose it for our sample implementation described in the next subsection.
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Data: The head node maintains the following data and variables:
• e: Event object;
• p: Packet object;
• T2: MAC-layer Timestamp;
• RSSI: RSSI value;
• LQI: LQI value;
• QP : FIFO queue for packets;
• QT2: FIFO queue for timestamp T2.

1 On detecting an event e:
2 switch e.type do
3 case PACKET do
4 if p.getDestAddress()==HE AD then
5 p← QP .dequeue()
6 T2← QT2.dequeue()
7 RSSI ← getRSSI(p)
8 LQI ← getLQI(p)
9 p← Packet(p,T2, RSSI, LQI)

10 send(p) // forward the packet to monitoring station
11 else

// Packets not for the head . . .

12 otherwise do
// Process other events . . .

Algorithm 4: Procedures of centralized NISA at the head node.

7.3.2 Implementation of Centralized NISA Based on SIMO CNN

Here we provide the details of our sample implementation of centralized NISA based

on SIMO CNN. As discussed in Section 7.2.1, BATS—the reverse one-way time syn-

chronization scheme—is used for time synchronization and CSNI due to its capability

of providing fine-grained identifiability of clock skews and offsets. At sensor nodes,

no processes are running for NISA except MAC-layer timestamping required by BATS

for achieving time synchronization. At the head node, it measures RSSI and LQI of

each received packet and forwards them—together with the associated timestamps from

MAC-layer timestamping—to a monitoring station which not only estimates clock skew

and offset based on BATS but also performs NISA based on SIMO CNN. The details

of the procedures at the head node for centralized NISA are given in the pseudocode in

Algorithm 4.

Fig. 7.4 shows the architecture of SIMO CNN working as the multi-output classifier

in the implementation of centralized NISA. The input layer of SIMO CNN takes time
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Figure 7.4: SIMO CNN architecture employed as the multi-output classifier of central-
ized NISA [7].

series of combined clock features and radio information—i.e., clock skew, clock offset,

RSSI, and LQI—as its input. Convolutional layers 1 & 2 connecting the input layer are

followed by a max pooling layer preventing overfitting, convolutional layers 3 & 4, and a

global average pooling layer again preventing overfitting by using the average value. The

output from the global average pooling layer goes through a dropout layer with dropout

rate of 0.5, which is connected to output layers 1 and 2. All the convolutional layers

use the rectified linear unit (ReLu) as their activation function. The output layer 1 for

node identification uses softmax as its activation function for multiclass classification,

while the output layer 2 for attack detection uses sigmoid as its activation function for

binary classification. We use ADAM optimizer [124] for training and loss functions of

categorical cross-entropy and binary cross-entropy for multi-class classification (node

identification) and binary classification (attack detection). The batch size and the

number of epochs are set to 10 and 100, respectively.

The proposed SIMO CNN is implemented in Python with Keras [125] and Tensor-

Flow [126]. The subsystems at the head and the sensor nodes are implemented in nesC

on TinyOS, and those in the monitoring station in Java and Python on macOS.

7.4 Distributed NISA

Centralized NISA can provide better performance based on the integrated processing of

clock features and radio information, but it would be impractical to implement a rather

heavy centralized NISA system at gateway nodes in multi-hop WSNs. To support multi-
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hopWSNs, therefore, we separate the processing of node identification and that of attack

detection in the design of distributed NISA, which not only lowers the computational

complexity but also enables further simplification of each of the processing. In this

section, we discuss the details of the workflow and the implementation of distributed

NISA.

7.4.1 Workflow of Distributed NISA

Fig. 7.5 shows the workflow of distributed NISA. Using the packets received from sen-

sor nodes, distributed NISA extracts clock features through time synchronization and

collects radio information during the initial phase. Unlike centralized NISA, however,

the clock features and the radio information are used separately for building a clock

database for node identification and a radio database for attack detection, respectively.

During the detection/identification phase, the clock features are fed into a classifier

for node identification, which operates on the built clock database consisting of pairs

of node ID and clock features. The classifier could be implemented based on a simple

thresholding method with upper and lower bounds for a clock skew [100] or a relatively

complex classification algorithm like k-nearest neighbors (KNN) [127]. If the node

identification is successful, the resulting node ID is used in further processing of attack

detection; otherwise, the received packet is dropped.
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Then, the radio information, together with the node ID, is provided as an input

to the attack detection block, where potential Spoofing attacks are detected based on

the node ID by comparing the received radio information with that already in the radio

database; multiple data points are used for the processing in order to mitigate the effects

of instantaneous fluctuations in the radio information like RSSI. It turns out that the

anomaly detection based on RSSI with methods like thresholding is a well-studied prob-

lem [128]; there are various thresholding solutions with different complexities. Finally,

if a Spoofing attack is detected, the received packet is dropped; otherwise, distributed

NISA returns the node ID as a final result and updates the databases based on the new

legitimate data samples.

7.4.2 Implementation of Distributed NISA on Gateway Nodes

Based on the above workflow, we implement distributed NISA on gateway nodes which

are ordinary sensor nodes in this work as discussed in Section 7.1; our implementation

of distributed NISA on an ordinary sensor node as a gateway node could demonstrate

its practicality for multi-hop scenarios.

For time synchronization, we implement a simplified version of BATS based on sim-

ple linear regression for the estimation of clock parameters as in [18], which is also used

for extracting clock features. We apply the reverse one-way synchronization framework

of BATS to the time synchronization between a gateway node and its offspring sensor

nodes in a multi-hop WSN, which was originally proposed for the time synchronization

between the head and sensor nodes in a single-hop WSN [1]. For node identification, we

compare the clock skew of a received packet with the average clock skews of legitimate

nodes in the database and find the ID of a legitimate node that matches best; during

the comparison, we use a threshold-based prefiltering of the clock skew from a fake node

as suggested in [100]. We use a similar approach for attack detection using RSSI for

comparison.

Note that the gateway nodes in distributed NISA can decide whether to accept or

drop received packets based on the results of node identification and attack detection
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locally without transmitting the clock skews and the radio information for the processing

at the head, which prevents attackers from eavesdropping them.

7.5 Experimental Results

In this section, we present the experimental results for the investigation on the identifia-

bility of clock skews under various operating conditions and the performance evaluation

of centralized and distributed NISA with single-hop and multi-hop WSNs.

7.5.1 Experimental Setup

Unlike conventional node identification schemes (e.g., [99]), the proposed NISA can be

implemented and evaluated on a common WSN testbed without special hardware like

USRP or modification of the existing infrastructure. The WSN testbed for our inves-

tigation of clock skews and evaluation of the performance of NISA systems, therefore,

consists of ordinary head, gateway, and sensor nodes, all of which are based on TelosB

motes running TinyOS. We use a single-hop star topology with 1 head and 10 sen-

sor nodes for the investigation on clock skews & the evaluations of the performance of

centralized NISA and a multi-hop tree topology with 1 head, 2 gateway, and 6 sensor

nodes for the evaluation of the performance of distributed NISA, which are shown in

Fig. 7.6 (a) and (b), respectively.
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7.5.2 Investigation on Clock Skew Identifiability

We carry out a series of experiments with the single-hop WSN shown in Fig. 7.6 (a)

to investigate the fine-grained identifiability of clock skews provided by BATS under

various operating environments, where we set the time synchronization interval and the

sliding window size to 1 s and 19, respectively, as in [1].

7.5.2.1 Under Fixed Temperature and Voltage

We recorded the clock skews of each sensor node with respect to the head node for an

hour in a controlled environment where the effect of temperature and voltage variations

on the clock skews can be ignored. Fig. 7.7 (a) shows the clock frequency ratios of 10

sensor nodes, where we can observe that the frequency ratios of the sensor nodes are

quite stable for the whole period and that most frequency ratios are distinguishable

even in the low-precision view except those of sensor nodes 1 & 8 and 3 & 6. Thanks to

the high-precision estimation of the clock parameters of BATS, we can zoom in those

indistinguishable frequency ratios with higher precision as shown in Fig. 7.7 (b) and

(c), which reveals that they can be clearly identified, too.

7.5.2.2 Under Temperature and Voltage Variations

It has been demonstrated by many (e.g., [55, 56, 102]) that hardware clocks, unless

equipped with compensation circuits, are affected by temperature and voltage varia-

tions, resulting in time-varying clock skews; this is the case for the hardware clocks of

most WSN devices, which are based on low-cost COs [56]. However, the concurrent

behaviors of the clock skews of a group of sensor nodes resulting from the drifts of both

DCOs and COs under temperature and voltage variations are yet to be investigated,

which, in fact, is the main focus of the experiments described in this subsection.

According to the empirical study in [55], the effect of temperature and voltage

variations on the clock skew could be modeled as a linear function for a period of time

during which the amount of changes in temperature and voltage is rather small: Given
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Figure 7.7: Estimated clock frequency ratios of (a) all 10 sensor nodes and zoomed-in
(b) sensor nodes 1 & 8 and (c) sensor nodes 3 & 6 over 3600 s [7].

the initial time t0, the skew for t>t0 is given by

εi(t) = εi(t0) + ∆εi(t0, t), (7.4)

∆εi(t0, t) = α(t)(T (t) − T (t0)) + β(t)(V(t) − V(t0)), (7.5)
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where ∆εi(t0, t) is the difference of the skew value between time t0 and t, T(t) and V(t)

are the temperature and the voltage at time t, and α(t) and β(t) are the temperature-

skew sensitivity factor and the voltage-skew sensitivity factor at time t; the sensitivity

factors are to be estimated through experiments. Alternatively, we could feed as input

data the time series of timestamps, temperatures, and voltages into a neural network so

that it can learn the complex relationship between the clock skew and those environment

variables [71].

Instead of directly modeling the effect of temperature and voltage variations on the

clock skew, we could adjust the sliding window size mentioned in Section 7.5.2 so that

the periodic updates of the clock skew reflect the effect, which is practical for finding

the current clock skew under a dynamic environment and also sufficient for the purpose

of node identification. Based on this, we experimentally investigate the identifiability of

the clock skews under voltage and temperature variations in the following experiments.

We use the onboard temperature sensor to read the environment temperature that

reduces gradually from 32 ◦C to the turn-over temperature 25 ◦C. We equip each sensor

node with two AA batteries as in actual deployments and use the onboard voltage sensor

to measure the voltage level. Since not all the batteries are brand new, their starting

voltages are quite different from one another, which enables us to investigate the clock

skew behavior under the same temperature change but different voltage levels. During

the experiments, we observe that the voltage decrease is not significant, i.e., an average

of 0.05 V decrease per each node during the 1-hour period.

Fig. 7.8 shows as an example the changes in the clock skew of sensor node 10 under

temperature and voltage variations, where the range of the voltage level (0.05 V) is

much smaller compared to that of the temperature (7 ◦C) as mentioned. The ranges of

temperature and voltage variations in this experiment are typical for actual deployments

where the batteries live for months and the temperature changes day and night.

Fig. 7.9 summarizes the effect of temperature variation on the clock skews of all 10

sensor nodes over 3600 s, where the left and right y-axes denote the clock frequency

ratio and the environment temperature, respectively.
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Note that, though the starting voltage levels of all sensor nodes are different, their

consumptions during the experiment are little and similar to one another, whose effect

on the clock skews of all sensor nodes are relatively smaller compared to that of the

temperature. Specifically, all the variations of the clock frequency ratios shown in

Fig. 7.9 follow the similar trend of the varying temperature; Fig. 7.9 (a) and (c) in

particular show that, though the clock frequency ratios of the sensor nodes are different,

their changes are quite similar to each other in terms of both trend and the amount

of changes. These results demonstrate that the clock skews of sensor nodes are still

distinguishable as far as they are deployed under the same environment, which is of

critical importance to CSNI.

7.5.3 Performance of Centralized NISA under Single-Hop Scenarios

We evaluate the performance of centralized NISA in a single-hop WSN shown in

Fig. 7.6 (a), where each sensor node sends its packet to the head node every second

as in [1]. We collect 1,000 and 500 packets for each sensor node respectively for training

and validation on the first day, and another 1,000 packets for testing on the second day.

Since there is no existing CSNI scheme carrying out simultaneous node identification
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Figure 7.9: Clock frequency ratios of sensor nodes under temperature variations over
3600 s: (a) Sensor nodes 3 & 6, (b) sensor node 9, (c) sensor nodes 1 & 8, (d) sensor
node 7, (e) sensor node 2, (f) sensor node 4, (g) sensor node 5, and (h) sensor node 10
[7].

and spoofing attack detection for WSNs, we put the focus of our evaluation on the

effectiveness of the proposed centralized NISA as such using node identification accu-

racy and attack detection rate as performance measures. We carry out the performance

evaluation in two steps: First, we focus on the effectiveness of the node identification
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Figure 7.10: Experimental results of centralized NISA for identifying 10 sensor nodes
each for 100 times without Spoofing attacks [7].

without Spoofing attacks. Second, we evaluate the effectiveness of the attack detection

under Spoofing attacks.

7.5.3.1 Without Spoofing Attacks

As discussed in Section 7.3, the measurements from 10 consecutive packets are formed

into time series in order to handle the variations of clock skew and offset and the

fluctuations of RSS and LQI, resulting in 100 testing time series for each sensor node.

Another crucial step towards TSC is the scaling of the datasets—we transform the value

of our data into the range of [0, 1], which is of importance for the classifier to achieve

satisfactory results.

We trained the SIMO CNN of the system based on the training dataset, tuned its

hyperparameters based on the validation dataset, and finally evaluated the performance

of node identification based on the test dataset, whose confusion matrix is shown in

Fig. 7.10. Labels 0 to 9 stand for sensor node IDs from 1 to 10 as shown in Fig. 7.6 (a).
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Figure 7.11: Illustration of the distance between the attacker and the legitimate sensor
node in our experiments [7].

We identify each sensor node 100 times, resulting in 1,000 identifications in total, and

obtain the node identification accuracy of 98.9%, which is well in line with our prior

investigation on the identifiability of clock skews in Section 7.5.2. In spite of such a high

node identification accuracy, some testing segments are falsely classified to wrong labels,

which results from the limited coverage of the training datasets for the clock behaviors

represented by those segments. In contrast, other sensor nodes, e.g., the labels 1 and

3, are identified with 100% accuracy, which implies that their testing segments provide

enough information to the system so that they can be uniquely identified based on the

trained SIMO CNN model.

From the experimental results discussed above, we found that the integrated sys-

tem design of centralized NISA could clearly identify sensor nodes thanks to its use of

combined clock features and radio information for most cases.

7.5.3.2 Under Spoofing Attacks

For the evaluation of the performance of centralized NISA under Spoofing attacks, we

add one sensor node working as an attacker to the testbed described in Section 7.5.1.

We deploy the attacker next to a legitimate sensor with just 1-cm gap between the two

as shown in Fig. 7.11 as a worst-case scenario.

As in [102, 107], the attacker estimates the clock parameters of the legitimate sensor

node—node 10 with the label 9 in our case—by eavesdropping on the time synchroniza-
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Figure 7.12: Illustrations of (a) clock feature of skew, and radio information of (b)
RSSI and (c) LQI between the attacker and the legitimate sensor node in our attack
experiments [7].

tion packets. The attacker then generates timestamps in its own time synchronization

packets based on the legitimate sensor node’s clock parameters through time synchro-

nization so that the calculated clock skew at the head based on the received packets

from the attacker would be very close to that of the legitimate sensor node. Fig. 7.12 (a)

shows how close the attacker could imitate node 10 in its clock skew, where the attacker

could very closely imitate the clock skew as investigated in [108]. Fig. 7.12 (b) and (c),

on the other hand, show the radio information of RSSI and LQI of the attacker does

not very close to that of node 10 due to its spatial correlation.

The results shown in Fig. 7.12 demonstrate that conventional CSNI schemes may

not detect the attacker solely based on the clock skews as discussed in [108]. However,

the difference in RSSI between the attacker and node 10 enables centralized NISA,

which takes into account both clock features and radio information during the node

identification, to detect the attacks. Note that the LQI difference is not evident as that

of RSSI, where there are many intersections; this suggests that LQI alone is not enough



Chapter 7. NISA: Node Identification and Spoofing Attack Detection Based on Clock
Features and Radio Information for Wireless Sensor Networks 141

for attack detection, though it could supplement RSSI for further improvement of its

performance.

The confusion matrix shown in Fig. 7.13 (a) summarizes the results of 1,100 trials

of detecting attacks, 100 of which are true attacks originated by the attacker targeting

at sensor node 10 (label 9). The x- and y-axis list the predicted and true labels where

0 and 1 indicate “no attack” and “under attack”, respectively; when a predicted label

matches a true label, we consider it as correct detection. The lower right corner of

Fig. 7.13 (a) shows our detection for actual attacks, in which 99 out of 100 attacks are

correctly detected (i.e., attack detection rate of 99%). The reason for this high detection

rate is the high radio information difference between the attacker and the legitimate

sensor node, even though the attacker is located very close to the legitimate sensor

node (i.e., just 1-cm gap between them), which could demonstrate the effectiveness of

the proposed system for detecting the attackers.

The confusion matrix shown in Fig. 7.13 (b) is for node identification which is carried

out simultaneously with the attack detection. As discussed with Fig. 7.13 (a), there is

one case where the fake data segment received from the attacker has been considered as

a legitimate one due to a false attack detection. As a consequence, one additional node

identification is done for node 10 of label 9 (i.e., 101 times in total unlike 100 times

for other legitimate sensor nodes), while 99 out of 100 attacks are filtered out for node

identification based on the results from the attack detection. Compared to the results

shown in Fig. 7.10, we found that the effect of Spoofing attacks on node identification

has been negligible thanks to the highly-successful attack detection.

7.5.4 Performance of Distributed NISA under Multi-Hop Scenarios

For the evaluation of the performance of distributed NISA, we change the network

topology to that of the multi-hop WSN shown in Fig. 7.6 (b). As in Section 7.5.3, we

also carry out the performance evaluation without and under Spoofing attacks.
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Figure 7.13: Experimental results of centralized NISA for simultaneous (a) attack de-
tection and (b) node identification for 10 sensor nodes and 1 attacker each for 100 times
[7].

7.5.4.1 Without Spoofing Attacks

We evaluate the performance of distributed NISA in the multi-hop WSN shown in

Fig. 7.6 (b), where the NISA system is implemented at the head and gateway nodes,
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Figure 7.14: Experimental results of distributed NISA for identifying 8 gateway and
sensor nodes without Spoofing attacks [7].

i.e., nodes 0, 1, and 2. The head node 0 and gateway nodes 1 and 2 are responsible for

the node identification and attack detection for gateway nodes 1-2, sensor nodes 3-5,

and sensor nodes 6-8, respectively.

As discussed in Section 7.4.1, distributed NISA drops the packet at either case of

failed node identification or attack detection. A packet drop without the existence

of attackers, therefore, indicates failed node identification. Fig. 7.14 demonstrates the

evaluation results where distributed NISA could achieve then overall node identification

accuracy of 96.563%. The identification of node 8 is the worst with the accuracy of

91.75% and that of nodes 2 and 3 are the best with the accuracy of 100%. This

performance difference may result from the fluctuations in the radio information, which

the simple thresholding cannot handle well.

7.5.4.2 Under Spoofing Attacks

To evaluate the performance of distributed NISA under Spoofing attacks, we add one

sensor node working as an attacker as in Section 7.5.3.2. To comprehensively demon-

strate the performance of distributed NISA under Spoofing attacks, we focus on nodes 8

and 3 in the experiments, which provide the worst and best node identification accuracy



144 Xintao Huan

0%

20%

40%

60%

80%

100%

1cm 5cm 10cm 1cm 5cm 10cm

98.25%100% 98.75%99.25%

90%

100%
D

et
ec

tio
n 

/ I
de

nt
ifi

ca
tio

n 
A

cc
ur

ac
y

Node 3 Node 8

Figure 7.15: Experimental results of distributed NISA running at gateway nodes: De-
tection/identification accuracy of node 3 and node 8 with spoofing attacks at distances
of 1 cm, 5 cm, and 10 cm [7].

from the experiments without Spoofing attacks. In addition, we launch the attacks from

different distances—i.e., 1 cm, 5 cm, and 10 cm—to the legitimate sensor nodes. Fig. 7.15

illustrates the combined accuracy of attack detection and node identification—called

“detection/identification accuracy” in the following—of distributed NISA for nodes 8

and 3 under Spoofing attacks. For node 3, the detection/identification accuracy of

above 99% is achieved for all the distances. For node 8, on the other hand, the de-

tection/identification accuracy increases from 90% to above 98% as the attack distance

increases from 1 cm to 10 cm; this is because the channel condition of the attacker differs

more from that of the legitimate sensor node as the distance between the two increases.

7.6 Comparison to Related Work

Changing Time Synchronization Interval : In [107], based on their investigations on the

Spoofing attack countering CSNI, the authors observe that two main factors should be

considered in spoofing clock skew, namely the difference between two consecutive offsets

and the synchronization interval, which we call ∆θ and SI, respectively. Changing ∆θ

could puzzle the Spoofing attacker in predicting the correct difference in the next pe-
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riod; the clock skew in this circumstance, however, becomes unstable & fluctuating and

therefore being unpredictable, which further causes false identification. Consequently,

they shift their focus on the latter factor of SI whose value in most time synchronization

schemes (e.g., [18, 1]) is fixed. Based on their observations that changing SI could cause

an immediate impact on the precision of attacker’s imitating approach—i.e., wrong cal-

culation of fake timestamps induced by miscalculation of SI—while the effectiveness

of identification is maintained, they employ this method for defending against Spoof-

ing attack in CSNI. The performance is evaluated through the experiments on a real

testbed based on Taroko motes [129], which demonstrates that the proposed method

reduces the success rate of an attack to less than 2.4%. Note that, however, this method

requires frequent changing of SI; it is in fact changed every 7 rounds of synchroniza-

tions in their underlying time synchronization scheme. This changing period method

requires an empirical value that demanding experiments in advance for its acquisition.

In addition, it has certain assumptions on the clock skew calculation capability of the

attacker, e.g., the attacker could not resume its accuracy in estimating the clock skew in

certain synchronization rounds. Note that, unlike NISA, this method requires changes

in existing synchronization schemes on the resource-constrained sensor nodes.

RSS Distribution (RSSD)-Based Fingerprinting : In [108], the authors experimen-

tally demonstrate the vulnerability of CSNI to the Spoofing attack and, as a result,

change the base of node identification from clock skews to spatially-correlated RSSs

instead of reinforcing CSNI itself as in [107]. Specifically, a set of RSSs measured at a

sensor node for its neighboring nodes becomes a fingerprint for the sensor node. Note

that, employing RSS for detecting the Spoofing attack is not new in the literature;

for instance, the effectiveness of detecting and localizing the Spoofing attackers has

been systematically investigated in [112, 113]. Therefore, the RSSD-based fingerprint-

ing proposed in [108] could identify sensor nodes based on their RSS fingerprints while

defending the Spoofing attack.

Note that RSSD-based fingerprinting is different from NISA in that its node iden-

tification is solely based on radio information: In NISA, on the other hand, the radio
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information is used only for detecting the Spoofing attack. Due to the random fluctu-

ation of a signal, the noise from multi-path effects, and the device dependency in RSS

measurements [130], the RSSD-based fingerprinting has an innate limit in its identifi-

ability compared to CSNI. The use of radio information in NISA, on the other hand,

is dedicated for attack detection, which is binary classification and, therefore, does not

require fine-grained identifiability. As we discussed in Section 7.1, the use of RSS for

node identification would make the RSSD-based fingerprinting unsuitable for large-scale

scenarios due to its coarse-grained identifiability.

7.7 Summary

In this chapter, we have proposed a new CSNI framework called NISA, where node

identification is protected from Spoofing attacks based on spatially-correlated radio

information. We have also provided two variations of NISA system implementation—

called centralized NISA and distributed NISA, respectively—to cover both single- and

multi-hop scenarios.

In distributed NISA, node identification and attack detection are done independently

with a dedicated algorithm for each, which could significantly lower the implementation

complexity and, hence, enables distributed NISA to be implemented and run at gateway

nodes (i.e., cluster heads) as well as the head. Centralized NISA, on the other hand,

could provide higher performance through its integrated processing of node identification

and attack detection using a common algorithm for both based on the time-series of

combined clock features and radio information. This synergy of the two processes that

are separately handled in distributed NISA, however, comes at the expense of the higher

implementation complexity and would limit its application to single-hop scenarios, i.e.,

running only at the head.

To investigate the identifiability of clock skews under various working conditions

and the performance/complexity tradeoff between centralized and distributed NISA

in single-hop and multi-hop WSNs, we have carried out a series of experiments on a
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real WSN testbed consisting of 11 TelosB motes running TinyOS. The experimental

results demonstrate the identifiability of clock skews and their concurrent behaviors

under temperature and voltage variations, which are enabled by the high-precision clock

parameter estimation of BATS. We could also observe from the experimental results that

the feasibility and effectiveness of node identification and Spoofing attack detection of

centralized and distributed NISA are proper for single-hop and multi-hop scenarios,

respectively.

Although we have provided the initial design, implementation, and performance

evaluation of both centralized and distributed NISA in this chapter, there is still room

for further improvements: Centralized NISA has the potential to use not only other

neural network architectures like RNN (including its variations of LSTM and GRU)

and hybrid of CNN and RNN but also conventional machine learning algorithms such as

random forest, which could have different performance and computational complexity;

distributed NISA, on the other hand, could be improved by adopting more advanced

thresholding and parameter fusion techniques.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we have presented our work on the development of WSN time synchro-

nization schemes and their applications. Specifically, we have proposed three WSN time

synchronization schemes to address the important aspects of energy-efficiency, compu-

tational complexity, and multi-hop synchronization accuracy. We have also applied the

proposed schemes to optimal data bundling and node identification.

In Chapter 3, we investigated the computational complexity of WSN time synchro-

nization with a major focus on the precision loss in floating-point arithmetic and its

impact on time synchronization and proposed the asymmetric high-precision time syn-

chronization. Specifically, the proposed scheme reassigned all synchronization-related

computations from the resource-constrained sensor nodes to the head equipped with

abundant computing and power resources and, therefore, significantly relieved the com-

putational complexity of time synchronization at sensor nodes.

In Chapter 4, we concentrated on the energy-efficiency of WSN time synchronization

and proposed the reverse asymmetric time synchronization framework and a beacon-

less asymmetric energy-efficiency time synchronization based on it. In particular, the

proposed scheme completely eliminates the use of beacon messages for time synchro-

nization and bundles synchronization-related data with regular application data in the
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same message to reduce the number of message transmissions. The results of perfor-

mance evaluation on a real WSN testbed demonstrate that the proposed scheme could

achieve microsecond-level time synchronization accuracy compared to the benchmark

scheme while significantly reducing energy consumption.

In Chapter 5, focusing the investigation on the multi-hop synchronization accuracy

of WSN time synchronization, we proposed the per-hop delay compensation to en-

hance the performance and systematically analyzed the synchronization errors caused

by the multi-hop extension methods of time translation and per-hop delay compen-

sation. We evaluated the two methods with three representative WSN time synchro-

nization schemes. Extensive experimental results demonstrated the effectiveness of the

proposed scheme in improving the multi-hop time synchronization performance.

In Chapter 6, we applied our proposed time synchronization scheme to the optimal

data bundling with delay and synchronization constraints. Formulating the optimal

bundling as an integer linear programming problem, we could maximize the number

of bundled data to minimize the energy consumption under the constraints of user-

defined delay and synchronization requirements. By implementing and evaluating the

optimal bundling scheme on a real WSN testbed, we showed that the number of message

transmissions could be greatly reduced.

In Chapter 7, we applied our proposed time synchronization scheme to node iden-

tification, which is considered an efficient security measure for WSNs. Based on clock

features and radio information, we proposed the novel clock-skew-based node identifi-

cation scheme against Spoofing attacks. We provided both centralized and distributed

design and implementation of the proposed scheme for covering both single- and multi-

hop scenarios. Performance evaluation results for identifying legitimate sensor nodes

and defending against a Spoofing attacker clearly demonstrate the effectiveness of the

proposed scheme.



8.2 Future Work

The work presented in this thesis could be extended in the aspects of WSN time syn-

chronization and its application. For WSN time synchronization, the following topics

could be further investigated:

• The scalability of the proposed WSN time synchronization schemes could be stud-

ied through simulations or an actual testbed with a large number of sensor nodes.

• More advanced clock parameter estimation methods could be proposed to enhance

the performance of the centralized time synchronization at the head.

• The use of machine learning techniques (e.g., artificial neural networks) could be

employed for WSN time synchronization.

For the application of WSN time synchronization, the following extensions could be

considered:

• The proposed optimal bundling scheme could be extended with more advanced

optimization algorithms or covering more metrics such as link quality.

• The proposed node identification against Spoofing attack scheme could be ex-

tended with more advanced classification methods for both its centralized and

distributed variations.
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