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Preface

This thesis is primarily my own work. The sources of other materials are identified. It
is the result of four years of PhD, shared both in terms of years and funding, between the
University of Liverpool/Cockcroft Institute, U.K., and the synchrotron SOLEIL, France.

The present thesis is composed of seven chapters, which are largely independent. The
first chapter offers a general introduction on synchrotrons, the second on lattice design
for fourth generation storage rings. Expert readers may begin at the third chapter,
which applies the hybrid scheme developed for the ESRF-Extremely Brilliant Source
(ESRF-EBS)and the so-called High-Order Achromat (HOA) scheme to the SOLEIL
storage ring upgrade and compares their transverse performances. Both schemes are
nonlinearly optimised using the code Multi-Objective Genetic Algorithm (MOGA) in
Bmad in the fourth chapter, which also discusses their injection schemes. As ultra-
low emittance lattices drastically reduce the dispersion thus the momentum compaction
factor, the fifth chapter introduces the longitudinal motion and an extension of the code
MOGA-Bmad which allows both the transverse optimisation and the minimisation of
the destructive parts of the momentum compaction factor. The last chapter describes
the reduction of the on-momentum transverse dynamics of the hybrid lattice in the
presence of synchro-betatron oscillations.

Conventions

The complex number is noted i. Vectors are written U, their norm U or ‖U‖.

Derivatives The derivative with regard to the longitudinal position s is noted:

u′ = du

ds
(1)

The derivative with time t is noted:

u̇ = du

dt
(2)

Sextupole strength Two conventions exist in the accelerator community regarding
the strength of the sextupoles. Unless stated otherwise, the convention used in this
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document is:
k2 = 1

2

(
1
Bρ

∂2B

∂x2

)
(3)

A second convention can nonetheless be found in the description of MOGA-Bmad results.
Indeed, the Bmad convention removes the factor 1

2 in the second-order derivative, and
is therefore twice the equation above. The use of this convention will be stated in the
relevant tables.

Language abbreviations

To ease the reading, the following abbreviations are used in the text of the present thesis.

Table 1: Language abbreviations used in the present document

Name Abbreviation
Confer cf

Constant cst
Equation Eq.

Figure Fig.
Id est i.e.

No dimension n.d.
Section Sec.



Abstract

Since the discovery of synchrotron radiation in 1947 and the first dedicated facilities,
storage-ring-based light sources led to numerous discoveries and participated in the
further advancement of sciences. To match the needs of researchers, they evolved dras-
tically, increasing both their energies and their brilliance. The first chapter introduces
synchrotron radiation and the main characteristics of synchrotrons. Today, the new chal-
lenge is the extremely brilliant sources, which aims at increasing the photon brilliance
by at least a factor 100; various challenges arise in different disciplines, such as magnet
designs and vacuum. To achieve such a high brilliance, fourth-generation storage-ring
based light sources are designed to approach the diffraction limit of the photon source,
by reducing their transverse emittances. As part of a global transition from third- to
fourth- generation storage-ring-based light sources, the present thesis introduces, com-
pares and analyses the effect of ultra-low emittance on the transverse and longitudinal
dynamics of ultra-low emittance lattices, applied to the SOLEIL upgrade.

Such a reduction of the natural horizontal emittance is achieved with the use of Multi-
Bend Achromats (MBA) and strong focusing. Both are introduced in the second chapter,
along with basic notions of accelerator physics. As strong focusing increases the natural
chromaticities, ultra-low emittance lattices require strong sextupoles to correct them.
Yet, they affect the stability and beam lifetime. The presence of strong sextupoles was
integrated in the linear design, to minimise their effect on the lattice performances. Two
specific MBA lattices are studied and compared in the present thesis. The first lat-
tice is the ESRF-EBS-type MBA lattice, introducing a minus identity transformation
to compensate the nonlinear impact of sextupoles thanks to the lattice symmetry and
to a tight control of the betatron phase advance between sextupoles. The presence of
two dispersion bumps maximises the efficiency of the sextupoles, further reducing their
required strengths. The second scheme is the so-called High-Order Achromat (HOA)
lattice.

Ultra-low emittance lattices are being studied for the future upgrade of the SOLEIL
2.75 GeV storage ring. The targeted horizontal emittance of the new lattice is below 100
pm.rad, corresponding to a reduction of a factor 40 compared to the current lattice. Two
7BA lattices were designed, using either the hybrid or the HOA scheme, and a natural
horizontal emittance of ' 75 pm.rad was achieved with the inclusion of reverse bending
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magnets. Both schemes are compared in terms of magnets, strengths and number, and
their bare transverse dynamics before any nonlinear optimisation. The effect of ultra-
low emittance on the Touschek lifetime and Intra-Beam Scattering is finally studied on
the hybrid lattice.

Nonlinear optimisation of both schemes is achieved using the code MOGA-Bmad, which
optimises the transverse dynamic apertures at three set energy deviations while main-
taining constant chromaticities. Results are discussed in the fourth chapter, which also
follows the evolution of lattice studies for the SOLEIL upgrade project: the lattices
under study evolved from a 24- and 20-fold symmetry towards the maintenance of the
beamlines’ positions, which dropped the symmetry down to 4. The use of the HOA lat-
tice proved more efficient and flexible to answer to the new implementation constraints.
In terms of injection, since the strong focusing and the low β-functions cause the trans-
verse dynamic apertures to be merely a few millimetres wide instead of 10-30 mm in
the case of the current SOLEIL lattice, the current transverse off-axis injection scheme
requires the inclusion of a high-βx section in the ultra-low emittance lattices under study
to locally increase the transverse acceptance. Another scheme injects the beam directly
on-axis, but onto an off-momentum closed orbit thanks to a Multipole-Injector Kicker
(MIK). To distinguish the closed orbits at the MIK, this scheme requires the insertion
of a dispersion bump.

In ultra-low emittance lattices, the increased number of dipoles and the use of reverse
bending magnets ensure a low dispersion along the ring, which yields to a low zeroth-
order momentum compaction factor. Some ultra-low emittance lattices, such as a 5BA
lattice of 80 pm.rad natural horizontal emittance, have their first-order momentum com-
paction factor overtake the zeroth, which results in a perturbed longitudinal stability and
an atrophied RF bucket. This yields to a reduced beam stability and lifetime. Analytical
calculations of the three lowest orders in momentum compaction factor are conducted to
describe the requirements of a minimisation of the first-order. Three methods developed
to minimise this effect and restore the RF bucket are discussed in the fifth chapter.
Among them, extension of MOGA-Bmad includes the minimisation of the first-order
momentum compaction factor, while optimising the transverse on- and off-momentum
dynamics.

Although the hybrid scheme provides a large on-momentum transverse dynamic aper-
ture in 4D thanks to the application of the non-interleaved principle on its sextupoles,
its off-momentum performance is limited. Further studies in 6D reveal intrinsic off-
momentum transverse oscillations, which are considered to result from of a nonlinear
increase of the path length. The effect of the inhomogeneous sextupole distribution in
the hybrid scheme is presented and compared with the HOA lattice under study, in the
last chapter. The path length is described in terms of higher-order elements depending
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on the nonlinear magnets, using the first-order canonical perturbation theory.
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Joséphine Morizet, Claire Li, pour le soutien post-ingénierie. Merci à Inès Ghorbel et la
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Chapter 1

Introduction to fourth-generation
storage ring light sources

This chapter gives a brief introduction to some basic notions of accelerators, and outlines
some of the advancements that led to nowadays synchrotron light sources. Since the
discovery of synchrotron radiation in 1947 and the first dedicated facilities, storage-
ring-based light sources led to numerous discoveries and participated in the further
advancement of sciences. To match the needs of their researches, they evolved drastically,
increasing both their energies and their brilliance. Today, the new challenge is the
extremely brilliant sources, increasing the photon brilliance by at least a factor 100. To
achieve such a high photon quality, improvements are to be made at each level of the
synchrotron accelerator technology.

The scope of this thesis is the study, characterisation and optimisation of ultra-low
emittance lattices. Such designs will be discussed in Chapter 2. Practical examples are
conducted on the SOLEIL storage ring within the parameters of its upgrade project. A
presentation of the synchrotron SOLEIL and its current characteristics is conducted at
the end of the present chapter.

1.1 Towards ring-based light sources

To design electron light sources, one should understand the different means to control
the trajectory of a charged particle. This section introduces the main elements required
to understand the scope of this thesis. First, the motion of a charged particle in an
electromagnetic field is described. This allows the introduction of the different types of
electromagnetic elements which constitute the building blocks of a storage ring.

1.1.1 Motion of charged particles

The trajectory of electrically charged particles can be modified and controlled with
electromagnetic (EM) fields. Their motion is entirely defined by the effect of the Lorentz
force:
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FL = q (E + v×B) = dp
dt

(1.1)

where p[eV/c]= γLmv is the particle momentum, q[C] the charge of the particle, B[T]
and E[V.m−1] the magnetic and electric fields respectively, and v [m.s−1] the velocity
of the particle. In high-energy machines, v = βLc . c, where γL[n.d.]= E

E0
= 1√

1−β2
L

is
the relativistic Lorentz factor, E = E0 + Ek the total energy of the particles with E0

the rest mass energy and Ek the kinetic energy. The factor βL is the ratio between the
relative velocity v of a particle and c[m.s−1] the speed of light.

In synchrotron light sources, the kinetic energy of particles is much higher than their
rest energy: the particles can therefore be considered highly relativistic. For instance,
the SOLEIL storage ring has a working energy of 2.75 GeV, corresponding to a Lorentz
factor γL = 5382, thus βL = 0.9999999825. The total energy of the highly-relativistic
particle is expressed as:

E = γLm0c
2 (1.2)

with E[eV] the energy of the particle, γL[n.d.] the Lorentz factor, m0[kg] the particle
rest mass, and c[m.s−1] the speed of light.

Beam deflection The magnetic force FB = qv × B is perpendicular to both the
velocity and the magnetic field: a charged particle under a constant magnetic field
moves along a circular arc. The resulting bending radius depends on the magnetic field,
the momentum of the particle and its charge, according to:

B0ρ = p

q
(1.3)

where ρ[m] is the bending radius, p[eV/c] the particle momentum and q[C] its charge.
The product B0ρ[T.m] is referred to as the beam rigidity. For electrons, this equation
practically becomes Bρ [T.m] = 3.3356 p [GeV.c−1]. The beam rigidity is a constant
of the motion, provided no energy loss is taken into considerations. In high-energy
storage rings, synchrotron radiation (cf 1.2.3) is the cause of energy losses, which are
compensated each turn: the beam rigidity can therefore be considered constant.

Acceleration of a charged particle In the event of an electric field, the charged
particle experiences an electric force F = qE. Depending on the direction of the electric
field, the force will either accelerate (if E × v = ‖vE‖ z) or decelerate the particle (if
E × v = −‖vE‖ z). Third generation storage ring lattices use Radio-Frequency (RF)
cavities which provide a time-varying accelerating field to restore the energy of the
electrons. Further details on this type of acceleration, among others, can be found in
Appendix A.



Chapter 1. Introduction to the fourth-generation synchrotrons 17

1.1.2 Towards synchrotron accelerators

This section describes two main principle which led to the development of first syn-
chrotrons: phase stability and weak focusing.

1.1.2.1 Phase stability

The principle of phase stability, first described independently by E. Mc Millan [1] and
V. Veksler [2] in 1944, synchronises the RF frequency with the cyclotron frequency in
circular accelerator. In one period of RF oscillation, the accelerating field passes twice
through the value of appropriate acceleration: at the synchronous phase φs and at its
symmetric phase π − φs. They are the fixed points of the acceleration.

Around the synchronous phase φs If a particle arrives at a phase φ < φs displayed
in red in Fig. 1.1, the corresponding accelerating field will be lower than that of the
reference particle: the corresponding particle will be less accelerated and will eventually
arrive later at a following acceleration period, with a higher phase φ > φs, in green in
Fig. 1.1. There, it will experience a higher acceleration than the synchronous particle,
and will eventually arrive in advance in the following acceleration span, with a phase
φ < φs. The phase of non-synchronous particles oscillates around the synchronous phase
during the acceleration process. Furthermore, the particles regroup in bunches around
the synchronous particle. This principle is the phase stability, illustrated in Fig. 1.1.

Figure 1.1: Illustration of the phase stability principle.

This principle was described independently by E. Mc Millan [1] and V. Veksler [2]
in 1944: it can be applied to maintain stable orbits by phase-focusing the particles in a
periodic accelerator. Proof of principle was conducted on synchrocyclotrons, described
in Appendix A.

Around the unstable point (π − φs) The negative slope, on the contrary, pushes
away the particles from the fixed point π−φs. Indeed, a particle of phase π

2 < φ1 < π−φs
receives a higher energy gain than the particle at π − φs. It will arrive even earlier at
the next acceleration period, with a lower phase φ2 < φ1. Symmetrically, a particle of
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phase π−φs < φ3 < π receives a lower energy gain than the synchronous particle. It will
arrive later at the next acceleration period, with a higher phase φ4 > φ3. The motion is
unstable around the phase π − φs. Further explanations and illustrations are available
in Chapter 5.

1.1.2.2 Weak-focusing synchrotrons

In cyclotrons and synchrocyclotrons described in the Appendix A, particles are enclosed
in a bulk accelerator, and reach a maximum accelerated energy. To reach higher energies,
particles are enclosed in larger defined paths: the bending forces are distributed in a
circular trajectory, creating a synchrotron. The defined path is a closed trajectory for
the particle around the ring: it is called the design closed orbit, or design orbit. The
position of a particle along its orbit is denoted by the longitudinal coordinate s[m], as
depicted in Fig. 1.3. The length of the design closed orbit is noted C0.

Figure 1.2: Illustration of betatron oscillations around the design orbit. From [3].

The transverse motion of the particles is described by dv
dt = qv × B. The motion

remains stable if small variations around the design orbit are compensated by focusing
forces, resulting in oscillations: those are called the betatron oscillations. The orbit
followed by the oscillating particles is called the closed orbit. Figure 1.2 illustrates such
an oscillatory motion. The constant magnetic field which defines the particles design
orbit is provided by dipoles, or bending magnets. Their force and gradient are derived
in the Appendix B.

Transverse coordinates To describe the motion of the particles around their orbit,
a curvilinear coordinate system is used and represented in Fig. 1.3. The closed orbit
is located by the bending radius ρ(s), at the longitudinal position s. At each position
s[m], the particle’s position is defined by a 4D cartesian frame (x, x′ = dx

ds , y, y
′), with
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(x, x′) the horizontal amplitude and divergence, (y, y′) the vertical coordinates. The
divergences also corresponds to the variation of the particles momentum with regard to
the reference particle : u′ = ∆pu

p0
, with u ∈ {x, y}. This 4D vector defines the transverse

plane.

Figure 1.3: Representation of the 6D coordinate system.

Weak focusing The betatron oscillations are described by the following transverse
equations of motion [4]: ẍ+ (1− n)ω2

0x = 0

ÿ + nω2
0y = 0

(1.4)

with ω0= eB0
m , and f0 = ω0

2π the revolution frequency or cyclotron frequency, and n=
−ρ
B0

(∂Bz∂r )r=ρ is the field index. The motion therefore is stable in the horizontal and
vertical planes if and only if the field index verifies: 0 < n < 1. This is the principle
of weak focusing. The transverse motion of the particles is weakly focused by the
bending forces, of strength 1

ρ2 (cf 2.1.1). The first weak focusing synchrotron was
the 3 GeV Cosmotron in 1952 at Brookhaven National Laboratory (BNL). A 6 GeV
proton synchrotron built at Lawrence Berkeley National Laboratory (LBNL) in 1954,
the Bevatron, led to the discovery of antiprotons in 1955 [5].

1.1.2.3 Strong-focusing or alternating gradient principle

Analogically to focused photon beams, a beam of charged particles experiences inherent
divergence. In addition, slight differences in momenta induce variations in the perceived
bending angles, increasing the diverging effect. Under this effect, the particles move
away from the ideal trajectory: if left unattended, particles would be lost turn after
turn, as the beam size keeps growing. To keep the particles in the vicinity of the ideal
orbit, focusing forces in the transverse plane are required. While weak focusing can be
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sufficient for small rings, a larger circumference imposes the use of stronger focusing
forces.

The alternating-gradient (or strong-focusing) principle was discovered and described
by E.D. Courant, H.S. Snyder and M.S. Livingston in 1956. The particles are kept in the
vicinity of the design orbit by alternating a focusing force decreasing with radius ( n� 1)
and increasing with radius (n� −1). This leads to an overall focusing in both planes [6].
Focusing forces require an affine magnetic field, which is achieved by quadrupoles. Their
forces and specificities are introduced in the Appendix B. The first strong-focusing 1.2
GeV electron accelerator was built in 1954 at Cornell, USA [7]. In 1959, Centre Européen
pour la Recherche Nucléaire (CERN) builds the Proton Synchrotron (PS) at 2.8 GeV
nominal energy, and had 6.2 betatron oscillations per revolution. Completed in 1960 in
Brookhaven, the Alternating Gradient Synchrotron (AGS) became the highest-energy
proton accelerator with a 3.3 GeV nominal energy [8], until 1968.

1.2 Properties of synchrotron radiation

A bending force applied on charged relativistic particles yields to the spontaneous emis-
sion of photons: this is referred to as ”synchrotron radiation”. It was first observed in
1947 in the General Electric 80 MeV electron synchrotron built in 1946, in Schenectady,
New York [9] and was announced in May 1947 [10] as a parasitic effect that damped
the beam and induced losses. Following this discovery, electron synchrotrons kept work-
ing under this parasitic condition. The first electron synchrotron built for the study
of the emitted radiation was built in 1956: it was the Cornell 320 MeV synchrotron.
D. Tomboulian and P. Hartman studied the emission, which occurred in the soft X-ray
range [11]. Further developments of storage ring were made, to provide the highest
quality of photon source in synchrotron light sources and higher energies for colliders.
The typical lattice used a FODO cell and achieved emittances of a few hundred nm.rad.
The first second-generation radiation source, the 2.5 GeV Synchrotron Radiation Source
(SRS); was built in Daresbury and operated from 1981 to 2008 [12].

1.2.1 Main properties of synchrotron radiation

When electrons are bent, they radially lose energy in the form of radiation. This phe-
nomenon was first observed on dipoles in 1947, in a 70 MeV synchrotron [10]. In current
synchrotron light sources, the particles are highly relativistic. This section gathers the
main properties of synchrotron radiation for highly relativistic particles, considering
βL ∼ 1, to highlight its applications. The main parameters of synchrotron radiation,
achieved with the use of insertion devices in third generation synchrotrons, are:

- broad spectrum: from the infrared to the hard X-rays, with a tunability of the
frequency by the manipulation of the insertion device’s gap.

- high flux: a high intensity photon beam for rapid experiments.
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- high brilliance: highly collimated photon beam generated by a small divergence
and small size source (spatial coherence);

- high stability: a stable photon source in terms of flux and spectrum, for a high
quality experiments.

- polarised photon beam: plane on the electron’s orbit and elliptical otherwise;

- pulsed-time structure: the duration of the radiation emission is short, creating a
pulse, of length down to tens of picoseconds, ensuring a high time resolution of the
experiments.

A detailed explanation of the frequency and energy distribution of the synchrotron
radiation is available in Appendix C.

1.2.2 Brilliance

The brilliance of the photon beam represents the number of photons per second emitted
in a given spatial section dΩdS and in a given bandwidth (dλ/λ). It is an indicator of
the beam optical quality. The brilliance is expressed as:

B = d4N [photons]
dt[s]dΩ[mrad2]dS[mm2](dλ/λ)[0.1 % bandwidth]

(1.5)

with N the photon flux, Ω the solid angle, S the cross section, (dλ/λ) the wavelength
bandwidth. A high brilliance is therefore achieved with a photon beam of high density,
with both a high number of photons N and small sizes to minimise dΩdS. Neglecting
diffraction, the product of the solid angle and the spot size dΩdS is proportional to the
product of the electron beam emittances εxεy. Achieving a highly brilliant source by
reducing the electron emittances is the goal of the fourth generation storage ring light
sources.

1.2.3 Radiated power

For highly relativistic particles, the power is emitted radially [13]. Therefore, the total
power emitted by a highly relativistic electron beam is, according to the generalisation
of Larmor’s theorem obtained by Liénard in 1898 [14]:

P = e2γ4
L

6πε0c
‖(β̇)2‖ = e4

6πε0m4
0c

5E
2B2 (1.6)

with β̇ = ṗ
γLm0c

, e the electron charge, ε0 the vacuum permittivity, m0 the electron rest
mass, c the speed of light, γL the Lorentz factor, E the beam energy and B the magnetic
field of the bending magnet.
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1.2.3.1 Energy loss

The emission of radiation reduces the total energy of the electrons, resulting in an overall
loss of energy that has to be compensated for beam storage. Compensation is achieved
with the use of RF cavities, re-accelerating the particles. The amount of lost energy
depends on the time the electrons spend under the influence of a dipolar magnetic field,
i.e. the length of the dipole and the velocity of the electrons: U0 =

∫
dipoles P dt = P 2πρ

c .
The total energy loss U0 is referred to per turn and per electron, and is expressed as:

U0[keV] = e2γ4
L

3ε0ρ
=e− 8.846× 104E

4[GeV]
ρ[m] (1.7)

The total energy loss is the sum of Eq. (1.7) over the beam. The number of electrons
per beam is defined by the beam current. Therefore, the power radiated by a beam is
P = eγ4

3ε0ρI. The total power radiated by a beam of average current I, in a dipole of
length Ldip is:

P [kW] = eγ4

6πε0ρ2LdipI =e− 14.08Ldip[m]I[A]E4[GeV]
ρ2[m] (1.8)

1.2.3.2 Radiation damping of the synchrotron motion

Radiation loss has a damping effect on the synchrotron motion, and affects the transverse
motion of the electrons. This section introduces the damping process. In a storage ring,
where the energy of the particles is kept constant, the energy loss through radiation is
exactly compensated by RF cavities. The radiation loss around the synchronous particle
is described as: U = U0 + dU

dE |E=E0∆E, where E0 is the synchronous energy. A particle
of energy variation ∆E will complete its revolution before the synchronous particle if
∆E < 0 or after if ∆E > 0, according to the phase stability principle. The relative
change in the path length C with energy is:

∆C
C0

= αC
∆E
E0

(1.9)

where C0 is the circumference, and αC the momentum compaction factor (cf 2.1.2.4).
The difference in arrival time becomes: ∆τ = αCT0

∆E
E0

. Including the RF compensation,
the arrival time τ verifies the damped harmonic oscillations below:

d2τ

dt2
+ 2αE

dτ

dt
+ ω2

sτ = 0 (1.10)

with αE =
dU
dE
|E=E0
2T0

is the damping coefficient, T0[s] the revolution period and ωs the
synchrotron frequency. The damping coefficient depends on the variation of the radiated
energy with the energy of the particle, dU

dE |E=E0 = U0(2 + D), where D is the damping
partition, and depends entirely on the dipoles (cf Eq. (2.24)).
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1.3 Third-generation synchrotron light sources

Third-generation synchrotron light sources were optimised for higher brilliance (cf 1.2.2).
The use of Chasman-Green lattices and Triple Bend Achromats (cf 2.2.2) reduced the
emittance down to a few nm.rad, and the inclusion of insertion devices (cf 1.3.1) op-
timised the brilliance of the photon source. Among them, the European Synchrotron
Radiation Facility (ESRF) in France, operating at 6 GeV was built in 1992, the 7 GeV
Advanced Photon Source (APS) at Argonne National Laboratory in 1996, the Swiss
Light Source (SLS) at 2.4 GeV in 2000. Third-generation synchrotrons are still in op-
eration, and are developing methods to improve the brilliance of their future machines,
creating a fourth generation of storage-ring-based light sources (cf 1.4).

Third-generation synchrotron light sources, currently in operation worldwide, pro-
vide a high-brilliant photon beam to ' 4800 users per year in Europe alone [15]. The
high brilliance is ensured by a reduction of the electron emittances with the use of
Chasman-Green or Triple Bend Achromat lattices (cf 2.2.2), with horizontal emittances
reduced to a few nm.rad. The use of insertion devices, described in the following sec-
tion, optimises the brilliance of the photon source, by reducing the photon bandwidth
and forcing the generation of a greater number of photons. This section describes the
characteristics of the radiation emitted by insertion devices. The typical layout of a
third-generation will be described, and the current storage ring light sources worldwide
will be shortly introduced.

1.3.1 Insertion devices for high brilliance

Current synchrotron light sources are highly-brilliant photon sources thanks to the use
of undulators and wigglers: they are generally defined as insertion devices, and are
used to provoke and enhance the synchrotron radiation phenomenon. The principle of
the undulator was applied in 1952, and produced coherent infrared radiation [16, 17].
Undulators and wigglers are inserted in the middle of dedicated straight sections in a
storage ring, where the waist of the electron beam is the smallest.

Figure 1.4: Undulator principle and scheme. The polarities of the magnets are noted
N and S, for the North and South poles respectively.
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Undulators and wigglers are electromagnetic elements, composed of a periodic ar-
rangement of small constant-field dipoles. Figure 1.4 illustrates the magnetic arrange-
ment of such a device. The polarity of the dipoles are alternating, to ensure the creation
of a sinusoidal magnetic field in the vertical plane:

By,undulator = B0 sin(kuz) (1.11)

with B0 [T] the magnetic amplitude, ku [m−1] = 2π
λu

and λu [m] the period of the undu-
lator. Such an oscillating magnetic field acts upon the electrons through the Lorentz
force (cf Eq. (1.1)).

An insertion device is characterised by four main parameters: its period λu, which
defines the wavelength spectrum of the emitted photons, its gap 2g, its factor Ku and
its length Lu. These parameters govern the shape of the emitted radiation, which is
detailed in the Appendix D. Different types of insertion devices are implemented in
third generation storage rings, to comply with the different requirements of synchrotron
radiation users. A brief overview of some insertion devices is given in Appendix E.

Brilliance of an undulator The brilliance reached by the radiation from an undula-
tor and a wiggler is of order 1018−20 photons.s−1.mrad−1.mA−1.(10% bandwidth)−1. To
compare, the radiation from a dipole is of the order up to ' 1015. Figure 1.5 illustrates
the brilliance of the photon sources of the SOLEIL storage ring, at maximum beam
current I = 500 mA. For one undulator, the radiation is composed of harmonics of the
main wavelength λn, and are therefore displayed in the brilliance graph: the number of
harmonics depends on the type of undulator and its K factor. In the higher energies,
K & 1 and more harmonics are emitted.

Figure 1.5: Brilliance achieved by the undulators of the SOLEIL storage ring, at the
maximum beam current I = 500 mA, from [18].
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1.3.2 Layout of a third-generation synchrotron light source

From the rest energy of charged particles to the working energy of the machine, the
particles have to undergo different stages of acceleration. To benefit from the synchrotron
radiation and its properties, electrons are stored in a circular accelerator, called a storage
ring, at energies of the GeV order. To reach such a high energy range, electrons are
accelerated from creation to storage.

A first acceleration occurs in a LINear ACcelerator (linac) where the electrons are
accelerated to energies of up to 100 MeV. Acceleration in a linear trajectory is rapidly
limited by the length of the accelerator and its electric field. To further accelerate the
electrons after the linac, the particles are injected a circular accelerator, a booster. Using
RF quadrupoles first developed in 1970 by Kapchinskii and Teplyakov [19], boosters
accelerate turn by turn the electrons, up to the nominal storage energy when the particles
are then transferred in the storage ring.

Figure 1.6: Overview of a synchrotron light source. From [20].

When the electrons reach the required energy, after a couple of turns in the booster,
the electrons are injected in the storage ring where they will radiate synchrotron ra-
diation in undulators and wigglers: the radiated photon beam is sent into dedicated
beamlines, where scientists -or users, set their experiments. In a storage ring, the energy
loss due to synchrotron radiation (cf Eq. (1.7)) is compensated by RF cavities, which
accelerate the particles using a time-varying electric field (A.2). Further discussion will
be conducted in the chapter 5. Figure 1.6 illustrates the overall layout of a synchrotron
light source, along with some elementary magnetic elements: dipoles are represented in
red, quadrupoles in green and an undulator is displayed with its corresponding beam-
line. An optic station collects and shapes the photon beam by collimating, focusing even
selecting a required wavelength, using monochromators for instance. The photons then
attain the experiment booth, where the samples are. After the experiment booth, the
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control cabin, where the beamline scientists and their users control the good process of
their experiment.

1.3.3 Third-generation synchrotron light sources worldwide

Third-generation storage ring light sources are built worldwide. Table 1.1 gathers some
parameters of several synchrotrons: their energy, circumference, localisation and date of
construction. Their optical lattices configurations are described in Chapter 2.

Table 1.1: Third generation synchrotron light sources based on a storage ring, classi-
fied by date of construction.

Name Energy Circumference Date Localisation
ESRF 6 GeV 844 m 1992 France
ALS 1.5-1.9 GeV 196.8 m 1992 USA
TLS 1.5 GeV 120 m 1993 Taiwan

ELETTRA 2.4 GeV 259 m 1994 Italy
PLS 2 GeV 281 m 1994 South Korea

MAX II 1.5 GeV 90 m 1994 Sweden
APS 7 GeV 1104 m 1996 USA

LNLS 1.35 GeV 93 m 1996 Brazil
SPring-8 8 GeV 1434 m 1997 Japan
BESSY II 1.9 GeV 240 m 1998 Germany

ANKA 2.5 GeV 110 m 2000 Germany
SLS 2.4 GeV 288 m 2000 Switzerland

SPEAR3 3 GeV 234 m 2004 USA
CLS 2.9 GeV 171 m 2004 Canada

SOLEIL 2.75 GeV 354 m 2006 France
DIAMOND 3 GeV 560 m 2006 UK

AS 3 GeV 216 m 2006 Australia
MAX III 700 MeV 36 m 2006 Sweden
Indus-II 2.5 GeV 173 m 2006 India
SSRF 3 GeV 432 m 2008 China

PETRA-III 6 GeV 2300 m 2009 Germany
ALBA 3 GeV 268.8 m 2011 Spain

SOLARIS 1.5 GeV 96 m 2016 Poland
SESAME 2.5 GeV 133 m 2018 Jordan

1.4 Future challenges and fourth-generation X-ray sources

To follow the general progress made in sciences, the equipment for dedicated experi-
ment has to improve as well. Therefore, photon sources should improve and provide
innovative characteristics to their users: Free Electron Laser (FEL), new undulators,
etc. Storage ring light sources still offer a dedicated source of X-ray photons. To match
the requirements of future sciences, the brilliance of photon sources should be drastically
increased in the X-ray range. Such an ultra-brilliant source requires a complete redesign
of its storage ring lattice, to provide an ultra-low emittance electron beam.
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This section introduces two X-ray light sources, the X-FEL and the ultimate storage
ring light source: the Diffraction Limited Storage Ring (DLSR) and its specifications.
While worldwide light sources aim at reaching that ultimate limit, different strategies to
approach this goal are briefly discussed here, and will be explained in the next chapter.

1.4.1 Diffraction Limited Storage Rings

The minimisation of any photon beam size is limited by its natural diffraction: the
minimum size detectable is the Airy disk. For optical detectors, the Airy disk is the
best image of a source point a detector can get: therefore, any photon beam below the
Airy disk in size can be considered a source point for the detector. The radius of the
Airy disk depends on the focal length f of the detector’s objective, the diameter d of
the entrance pupil, and is proportional to the wavelength according to:

RAiry = 1.22λf
d

(1.12)

In a storage ring, the equivalent can be defined when the photon beam size is limited
by its natural diffraction. Such a storage ring is called a Diffraction Limited Storage
Ring (DLSR) [21]. The photon beam size is expressed as:

σph =
√
σ2
x + σ2

ph,e

σ′ph =
√
σ2
x′ + σ′2ph,e

(1.13)

where σx =
√
εxβx + (Dxσe)2) and σ′x =

√
εx
βx

+ (D′xσe)2) are the electron beam size and
divergence respectively, σph,e and σ′ph,e the natural photon beam size and divergence.
The impact of the energy spread σe of the electron beam can be set to zero at the
interesting point by creating a dispersion-free zone: Dx = 0 m and D′x = 0 rad. The
electron beam size is then only defined by the β-function at the insertion device and its
emittances. A detailed introduction to the Twiss functions is conducted in Chapter 2.

The radiation extracted from an undulator can be fitted with a Gaussian mode. The
photon beam size and divergence limited by the diffraction are then extracted and given
by the product:

σphσ
′
ph '

λ

4π (1.14)

1.4.1.1 Emittance of a DLSR

The diffraction-limited photon emittance εph therefore is εph = λ
4π , i.e. no further

reduction of the photon beam size can be achieved. This condition translates in the
electron emittances:

εx,y � εph(λ) = 1
2σphσ

′
ph = λ

4π (1.15)

where εx,y are the emittances of the transverse plane, εph the emittance of the pho-
ton beam and λ[m] the main wavelength of the emitted radiation. The condition is
wavelength-dependent, and is achieved for high wavelength in current third generation
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storage rings. For a valid condition in the whole emission spectrum, especially in the
X-ray range, it should be valid in high energies: hard X-rays, around 1 nm. For such a
wavelength, the required photon emittance is 0.16 pm.rad. The related brilliance now
reads B = flux

λ2
4

.

1.4.1.2 Beam matching

To benefit from the ideal brightness, the electron transverse emittances have to be
reduced. Nonetheless, the resulting photon beam could, in the case of poor matching,
have greater dimensions than the diffraction limit. This condition is illustrated in Fig.
1.7. If an electron beam has a large horizontal amplitude, but a small divergence (left
on the figure), the combination of the electron sizes with the diffraction limit will create
a large photon beam. On the contrary, if the amplitude and divergence of the electron
beam match the diffraction limit dimensions (right on the figure), the photon beam will
be closer to the diffraction limit [22].

Figure 1.7: Matching of the electron and photon beams for optimised brilliance.

Further focusing of the beam may be necessary to reduce the amplitudes. Nonethe-
less, too strong a focusing will yield to the opposite situation: a large divergence and
a small amplitude, with the same consequences on the photon beam dimensions. The
optimum focusing is reached when the area σphσ′ph is minimum, i.e. for:

σph(λ)
σ′ph(λ) = σx,y(e−)

σ′x,y(e−) ⇒ βx,y = L

π
(1.16)

where L is the length of the insertion device. For an undulator of 4 m, the required
β-functions are as low as 1.27 m. This equation can be found as equal to L

2π , like in [23]
where is plotted the variation of the relative brilliance with the horizontal β-function,
in the case of a local ultra-low emittance. Their result is displayed in Fig. 1.8.
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Figure 1.8: Variation of the relative brilliance with the horizontal β-function, in the
case of ultra-low emittance, from [23].

In the ultra-low emittance case, the dependence of the brilliance with the β-function
is more pronounced, as it is the limiting factor of the photon beam size: in the case of
fourth generation storage rings, where emittances are of the order of 100 pm.rad, the
dependence of the brilliance with the β-function is smoother around the extrema L

2π :
to achieve at least 90% of the maximum brilliance, the required values are in the range
β ∈' [0.1; 3] m for a 3 m long undulator. This range is reduced to ' [0.2; 2] m for 95%
of the maximum brilliance, which is still large enough to provide some freedom in the
lattice design. Fourth generation storage ring ought to include the optimum β-functions
in the middle of their straight sections to benefit from the highest brilliance achievable.

1.4.1.3 Spatial and temporal coherences

The photons emitted by a laser, using the stimulated emission principle, are 100% cor-
related: their phase difference is constant, and they hold the same information. This
property is called coherence: it describes the correlation between the different charac-
teristics of a photon beam. In the case of synchrotron radiation, two types of coherence
are distinguished: temporal coherence and spatial coherence.

Temporal coherence occurs when the radiation of an electron bunch is emitted at
about the same phase: it requires small bunches, of typical length of the order of the
radiation wavelength. Spatial coherence naturally occurs in spontaneous and stimulated
emission modes. For larger bunches, the spatial coherence depends on the electron beam
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sizes and the wavelength:

fcoh(λ) =
λ
4π

(εx(e−)⊕ εr(λ)) ×
λ
4π

(εy(e−)⊕ εr(λ)) (1.17)

Ultra-low emittance lattices will highly increase the spatial and temporal coherences
of the emitted synchrotron radiation. For instance, with a reduced level of dispersion
and momentum compaction factor, the natural electron bunch length of the studied
ultra-emittance lattices for the upgrade of SOLEIL is around 0.5 mm, instead of 2 mm
for the current lattice. Similarly, the reduction of the natural horizontal emittance
from 4 nm.rad down to 100 pm.rad increases the spatial coherence by at least a factor
40 × 40 in both transverse emittances, assuming an identical coupling factor between
the horizontal and the vertical plane. Discussions occur among the French beamline
community on whether they need a larger spatial or temporal coherence, or both for
their upgraded studies [24].

1.4.2 X-ray Free Electron Lasers

Another type of light sources emerges: the Free Electron Lasers, dedicated to the gen-
eration of hard X-rays. They are three worldwide: the SACLA XFEL (250 MeV) [25]
which was a proof of principle and is not currently in operation, the Linear Coherent
Light Source (LCLS) in the USA, which prepares an upgrade including a 4 GeV linac
[26], and the European XFEL of 17.5 GeV electron beam [27].

In the case of the European XFEL, the electrons are accelerated linearly using supra-
conductive cavities over a couple of kilometres, to reach 17.5 GeV. The photon beam
is then generated by undulators, which gaps and periodicity allow a tunability of the
photon beam wavelength within, with the example fo the European XFEL, [0.05:0.4]
and [0.4 to 4.7] nm, of the order of an Ångström, complementing the photon range of
synchrotron-based light sources which reach a X-ray wavelength of 0.1 nm for a 8 GeV
storage ring.

The FELs create a highly collimated electron beam, with 100% coherence and very
short pulses, of femtosecond duration, compared to about 10 ps in the case of SOLEIL.
FELs provide a high number of pulses to their users: 120 pulses per second in the case
of the LCLS, which upgrade will provide a repetition rate of a million pulses per second.
Furthermore, with the high energy of the electrons, the photon flux generated by the
undulator exceeds the flux obtained with a synchrotron source, resulting in an averaged
brilliance as high as 1025 photons.s−1.mrad−1.mA−1.(10% bandwidth)−1, thus 105 times
higher than third-generation storage ring light sources.

1.4.3 Ultra-low emittance lattices

From FODO lattices to Chasman-Green lattices and even Triple Bend Achromats, third-
generation storage ring light sources improved their emittance by a factor 100. Pursuing
the increase in dipole magnets for reduction of creation of emittance, upgrade designs
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use Multi-Bend Achromat lattices. Discussion and details are provided in 2.2.3. Figure
1.9 compares the natural horizontal emittance normalised with energy for the third-
generation storage rings and their first upgrade considerations. First developments de-
creased the electron beam emittance by at least a factor 50.

Figure 1.9: Evolution of the normalised emittance with the circumference for third-
generation storage rings (blue fit) and fourth-generation storage rings (red and green

fits), adapted from R. Bartolini [28].

1.4.4 Challenges

Achieving ultra-low emittance in a storage ring presents certain challenges for their op-
eration [29] and the maintenance of their performances. Indeed, the ultra-low emittance
requires a strong control of the electron beam sizes, i.e. the low dispersion and strong
focusing, resulting in high-gradient magnets. This will be discussed in the next chapter,
in 2.2. Since the majority of upgrade projects conserves the circumference of their cur-
rent machine, the magnet occupation of the lattice increases, and the tight optics limit
the lengths of corrective magnets; the lattice becomes very sensitive to magnetic and
alignment errors [30].

1.4.4.1 Magnets

The strong-focusing and tight MBA lattices require the design of strong-gradient and
small magnets [31], with a high field quality to reduce their errors [32]. The magnetic
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gradients are on the verge of the magnetic saturation of quadrupole and sextupole elec-
tromagnets, reaching 100 T.m−1 and around 10.000 T.m−2 respectively, in some cases
[33]. To achieve such high gradients, the reduction of the inner gap of such magnets is
inevitable. Yet, this reduction enters in disagreement with vacuum requirements, where
the chamber cross section should be large enough to provide a high vacuum conduc-
tance. Indeed, smaller gap increases impedance effects and particle loss increases in
smaller gaps.

The use of permanent magnets is considered for higher gradients, especially for sex-
tupoles [34]: yet, the problem of achieving the first turn of the rings with the presence
of high-gradient permanent sextupoles remains under discussion. Furthermore, the in-
creased number of magnets per period in ultra-low emittance lattices reduces the allo-
cated space for additional corrective magnets. Ultra-low emittance designs generally in-
clude combined-function magnets, as well as novel magnets, to release those constraints.
Further discussion is conducted in the next chapter 2.2.4.

1.4.4.2 Vacuum

A minimum inner gap for high gradient magnets is only achievable with small-radius
vacuum chamber. A compromise has to be found between the vacuum properties, for
which larger chambers ensure a higher quality, and the gap reduction for strong gradients.

Coating the chambers allows the reduction of the photon-stimulated desorption effect
and increase the pumping efficiency. Non-evaporable getter (NEG) coating is already
extensively used in low-gap insertion devices in third-generation storage rings, and more
than fifty percent of SOLEIL chambers are NEG-coated [35]. As a result, a large majority
of MAX-IV vacuum chambers are NEG-coated, but not on the RF cavities and other
magnets [36, 37]. Also, since the electron beam will be reduced in size and is much
more sensitive to any interaction, the coating of the vacuum is in discussion to limit the
interaction of the beam with its environment [38].

1.4.4.3 Injection

Low emittance and strong focusing lead to low β-functions in the straight sections, and
a considerably reduced transverse dynamic aperture: nevertheless, current transverse
off-axis injection needs a larger dynamic aperture, which can be provided by local high
β-functions. Yet, the reduction of symmetry shall affect the overall performances of the
lattice 2.1.3. Transverse on-axis injection as well as longitudinal on-axis injection are
being studied[39]. A swap-out method using an intermediate accumulator ring is also
developed [40]. They will be detailed in Chapter 4.

1.4.4.4 Insertion devices and beamlines

With a reduction of an averaged factor 50 of the electron beam emittances, the optics of
the beamlines, as well as their insertion devices, will have to be improved to maximise
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the benefits of such a brilliant photon beam. Indeed, the smaller photon beam will
be, the more sensitive shall be the beamlines to optical errors, and more subject to
defocalisation and diffraction. Beamlines organise their own workshops to prepare for
the upgrade light sources.

1.4.4.5 Alignment and magnet errors

The fourth-generation storage ring lattices are more sensitive to magnets errors and
alignment errors. The new storage rings will require faster and more precise systems,
to align the lattice. For instance, the ESRF had alignment tolerances of the order of 50
µm for their magnets. The use of girders, where several magnetic elements are placed
onto, drastically reduces the risk of alignment errors [41]. Novel techniques are being
developed to compute with the tight tolerances of the 4th generation storage ring lattices
[30]. Correction of errors and feedback, such as beam-based alignment and fast-orbit
correction, need to be more precise and more effective.

1.4.4.6 Numerical tools for lattice optimisation

The foreseen ultra-low emittance lattices have a considerably reduced transverse and
energy acceptance because of the strong nonlinearities excited by quadrupoles and sex-
tupoles. Optimising such lattices for improved performances will demand managing
dozens of variables and objectives at the same time. To do so, genetic algorithm and
machine learning techniques are used [42–44].

1.5 Case of the upgrade of the synchrotron SOLEIL’s stor-
age ring

1.5.1 The SOLEIL synchrotron

SOLEIL, an acronym for ”Source Optimisée de Lumiére à Énergie Intermédiaire de
Lure” (Optimised Light Source of Intermediate Energy to LURE), is the French national
third-generation storage-ring-based synchrotron light source. Located on the Plateau de
Saclay (Essonne), SOLEIL is a private company created on October 16th 2001 by both
Commissariat à l’Énergie atomique et aux Énergies Alternatives (CEA) and the Centre
National de la Recherche Scientifique (CNRS), and is based on public fundings. It
delivers synchrotron radiation from the infrared to the hard X-rays to a various span
of users since January 2008. SOLEIL is composed of three distinct accelerators: a 16
m-linac, which accelerates the electrons from the electron gun to 100 MeV. The electron
beam is then transferred in the booster, to be accelerated to the nominal energy 2.75
GeV, when they are injected in the 354 m storage ring.
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1.5.2 The current storage ring

The SOLEIL 2.75 GeV storage ring is composed of 16 cells, arranged into 4 superperiods.
Figure 1.10 displays the β-functions and the dispersion of a superperiod. On the figure
is also displayed the magnetic lattice: in blue are the dipoles, red the quadrupoles.
Sextupoles are simulated as thin lenses, and are displayed as black bars.

Figure 1.10: Twiss parameters and magnet layout of one superperiod of the SOLEIL
2.75 GeV storage ring.

Each cell is based on a Modified Double Bend Achromat (m-DBA) or a modified
Chasman-Green lattice (cf 2.2.2): the dispersion is non zero in the straight sections.
Accommodating for the different needs of the beamlines, SOLEIL has three types of
straight sections: four of 12 m, twelve of 7 m and eight of 3.6 m. A total of 24 straight
sections corresponds to 46% of the ring circumference: 21 of them are dedicated to
insertion devices, 2 for RF cavities and one for the injection. Table 1.2 gathers general
parameters of the current storage ring [45].

The natural horizontal emittance of the storage ring is 4 nm.rad, decreased to 3.9
nm.rad including the damping effect of wigglers. The vertical emittance is set to 1% of
the horizontal emittance, to increase the beam stability.

The energy loss due to the dipoles in the linear lattice amounts to 944 keV. This
value increases up to 1149 keV when the gap of the insertion devices are closed, which
includes the stimulated synchrotron radiation. Those losses are compensated with four
RF cavities, of fixed frequency 352.2 MHz, defined by the revolution frequency according
to the synchronism condition defined in Eq. (A.3).
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Table 1.2: SOLEIL current 2.75 GeV 4-superperiod storage ring general parameters.

Energy 2.75 GeV
Circumference 354 m
Number of cells 16
Number of superperiods 4
Number of straight sections 4× 12 m, 12× 7 m, 8× 3.8 m
Straight sections available for insertion 46% of the total length
Horizontal emittance εx 3.9 nm.rad
Emittance coupling εy

εx
1%

Betatron tunes (νx, νy) (18.17, 10.23)
Natural chromaticities (ξnatx , ξnaty) (-52.55, -21.24)
Chromaticities (ξx, ξy) (1.4, 2.3)
Momentum compaction factor α0 4.16× 10−4

Momentum compaction factor α1 4.50× 10−3

Energy spread σE 1.016× 10−3

Energy loss per turn 944 keV from the dipoles
205 keV from the insertions

Average pressure 5× 10−10 mbar
Beam lifetime 12 h
Revolution time T0 1.18 µs
Revolution frequency ωsyn 847.2 kHz
Harmonic number h 416
RF voltage 2.9 MV
RF frequency 352.2 MHz
Number of RF cavities 4

1.5.3 Beamlines and undulators

The stored electron beam provides synchrotron radiation from the infrared to hard X-
rays range, to 29 beamlines, both dipole-based and ID-based. Figure 1.11 locates the
beamlines around the storage ring. The beamlines are based on 9 dipoles, 2 wigglers
and 18 undulators.

Since January 2012, the straight section SDL13 was modified to insert two insertion
devices, for the use of the two 180 m beamlines, ANATOMIX and NANOSCOPIUM.
The optics are locally modified to ensure a low beam waist in the middle of each in-
vacuum undulator by the inclusion of quadrupoles in the middle of the dedicated straight
section. To distinguish the two photon beams, and to allow space for both beamlines,
an angle is created between the two undulators. The β-function of the canted section
SDL13 are displayed in Fig. 1.12.

1.5.4 Upgrade of the storage ring

The upgrade of the storage ring aims at decreasing the horizontal emittance of the
electron beam below < 100 pm.rad, corresponding to a factor 40 to 50, while conserving
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Figure 1.11: Map of the 29 beamlines around the SOLEIL 2.75 GeV storage ring.
From [46].

Figure 1.12: Canted optics for the two long beamlines, Anatomix and Nanoscopium.
Edited from [47].

its main characteristics: its nominal energy should be conserved, to maintain the current
energy range of the synchrotron radiation for the beamlines. Furthermore, the new
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lattice should fit in the current tunnel of the storage ring, fixing its circumference. The
upgraded lattice shall provide photon beams of a broad energy range: from the infrared
to 30 keV on undulators and 80 keV on wigglers.

Table 1.3: General constraints applied to the ultra-low emittance lattice design for
the upgrade of the SOLEIL storage ring.

Storage ring energy 2.75 GeV
Circumference 354 m

Emittance < 100 pm.rad
Straight section length > 4.4 m

(βx, βy) @ID (1-3, 1-3) m

Further constraints are imposed by the necessary RF cavities and insertion devices
in the straight sections. To better fit the electron beam in the insertion devices, the β-
functions should remain low in the middle of the straight sections. Table 1.3 gathers the
first constraints of the SOLEIL upgrade project. The storage ring is currently composed
of four arcs, of 22.5 degrees deflection angle each. To keep the beamlines parallel and
keep their position, the same angle should be implemented in each arc of the upgraded
lattice.

1.6 Conclusion

This chapter introduced the main historical line of accelerator developments and break-
throughs which permitted the discovery of synchrotron radiation and its exploitation.
Synchrotron light sources provide synchrotron radiation worldwide, and are primary
photon sources in the hard X-ray range.

To provide a photon beam of higher quality to their users, synchrotrons worldwide
are developing their fourth generation storage rings: aiming at a factor of 100 increase
in the brilliance, the upgrade projects investigate both lattices and magnet designs to
achieve an ultra-low emittance, and approach the diffraction limit. Such designs are
introduced in the next chapter, applied to the SOLEIL storage ring and compared.



Chapter 2

Lattice design for
diffraction-limited storage rings

An extremely brilliant source is achieved with an electron beam of small emittance
(1.2.2), which is an intrinsic parameter of the linear lattice. This chapter presents the
necessary accelerator physics fundamentals and concepts for the understanding of the
subsequent chapters. To go from emittances of the order of 1 nm.rad to less than
100 pm.rad, the linear optics designs have increased the number of dipole magnets.
Minimisation of the emittance creation in each magnet can be achieved following the
Theoretical Minimum Emittance principle.

Concretely, the following ultra-low emittance lattice schemes are presented: the so-
called hybrid lattice, first developed for the ESRF-EBS by P. Raimondi [41] and widely
used worldwide, and a High-Order Achromat (HOA) lattice based on the first- and
second-order achromat lattices already put in place in several machines, and explored
by S. Leeman, A. Streun and J. Bengtsson for ALS-U and SLS-II [48, 49]. Their princi-
ples and general characteristics are reviewed, before application on the SOLEIL storage
ring. This chapter analyses the advantages and drawbacks of both lattices, in terms of
feasibility, robustness and transverse dynamics.

2.1 Accelerator physics for electron-based light sources

This section introduces the main elements required to understand the scope of this
thesis. The motion of a charged particle in an electromagnetic field has been described
in the previous chapter 1.1.1, introducing the different types of electromagnetic elements
which constitute the building blocks of a storage ring: the dipoles and the quadrupoles.
In this section, the transverse motion of the particles will be described. From the
equations of motion, we shall derive and define different specific accelerator notions and
characteristics of electron storage rings, that are to be looked for, for the upgraded
machines. Unless stated otherwise, the following sections will consider the energy of
the particles constant. Expert readers can skip this section and begin at the ultra-low
emittance lattices properties in Sec. 2.2, go to the ultra-low emittance schemes studied

38
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in this chapter, in Sec. 2.3, or start directly with the designs of such schemes for the
SOLEIL storage ring upgrade in Sec. 3.

2.1.1 Transverse motion of a charged particle

In an accelerator built solely with dipoles and quadrupoles, the trajectory of the trans-
verse particles is defined by the bending and the focusing forces. This motion of the
particles is linear in terms of transverse displacement. It is described by the closed orbit
fixed by the dipoles, and the betatron oscillations around that closed orbit (1.1.2.3). The
Hill’s equations below describe the betatron motion in the transverse plane. Derivation
of these equations are largely available in the literature [50]. x′′ +Kx(s)x = 0

y′′ +Ky(s)y = 0
(2.1)

where Kx =
(

1
ρ(s)2 ± k1(s)

)
, Ky = ∓k1(s), with an upper sign in the case of a focusing

quadrupole, and a lower sign for a defocusing quadrupole, ρ[m] the bending radius,
k1[m−2] the normalised focusing strength, and s[m] the longitudinal coordinate. The
functions Ku∈{x,y} are periodic of period C0, the total length of the ideal trajectory.
Considering perfect magnetic fields along the ring, the periodic functions Ku∈{x,y} are
piece-wise constant. The solutions of those oscillatory second-order differential equations
depend only on the sign of the periodic functions Ku∈{x,y}. The solutions of the Hill’s
equations for a constant Ku∈{x,y} are :

u(s) =


a cos(

√
Kus+ b) Ku > 0

as+ b K = 0
a cosh(

√
−Kus+ b) Ku < 0

(2.2)

with u ∈ {x, y} and (a, b) constants determined by the initial conditions (u0, u
′
0). This

linear system can be simplified using a matrix description. Since Ku∈{x,y} remains
constant for each element of the lattice, the position u(s) within an element can be
entirely determined by its value at the entrance of the element:

(
u(s)
u′(s)

)
= Ms0→s

(
u(s0)
u′(s0)

)
(2.3)
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Ms0→s is called the transfer matrix between the longitudinal positions s and s0. Follow-
ing are the transfer matrices of linear magnetic elements:

Ms0→s =



(
cos(
√
Kl) 1√

K
sin(
√
Kl)

−
√
Ksin(

√
Kl) cos(

√
Kl)

)
K > 0, foc. quadrupole(

1 l

0 1

)
K = 0, drift space(

cosh(
√
|K|l) 1√

|K|
sinh(

√
|K|l)

−
√
|K| sinh(

√
|K|l) cosh(

√
|K|l)

)
K < 0, defoc. quadrupole(

cos( lρ ) ρ sin( lρ )
− 1
ρsin( lρ ) cos( lρ )

)
K = 1

ρ2 , sector dipole

(2.4)

with l = s− s0.
Now, let us introduce an intermediate position s1 \ s0 < s1 < s. The position at s1

can be determined from s0, the position at s from s1: Ms0→s = Ms1→s ×Ms0→s1 . The
transfer matrices can be subdivided into smaller intervals. An entire ring can therefore
be defined by the product of the transfer matrices of its elements: the particle can be
tracked down along the ring, with just its initial coordinates at a single position of the
ring.

Stability condition Let us define Mperiod the transfer matrix of the smallest period
of the ring. After one complete turn, the transfer matrix is (Mperiod)periodicity; after
N turns, (Mperiod)N×periodicity. A necessary and sufficient condition on the stability of
the motion is that the transfer matrices remain bounded: otherwise, an amplification
will occur turn after turn, and particles will be lost. The sequence (Mn)n∈N of 2 × 2
matrices is bounded if and only if their eigenvalues are. The eigenvalues verify λ2 −
trace(Mperiod)λ+det(M) = 0. As no amplification is expected from the linear elements,
det(M) = 1. Let us write the eigenvalue λ = ae±iφ, a ∈ R and φ the phase advance.
The eigenvalues remain bounded if and only if φ ∈ R⇐⇒ |trace(M)| 6 2.

2.1.1.1 Twiss parameters

Using the betatron phase advance over one turn ν≡ φ(C0), the one-turn transfer matrix
is generally expressed as the following, combining rotational and focusing matrices:

M =
(

cos(ν) + α sin(ν) β sin(ν)
−γ sin(ν) cos(ν)− α sin(ν)

)
(2.5)

where (α, β, γ) are the Twiss parameters. The sign of the matrix elements should be
entirely dependent on the phase advance, to avoid any conflict. To do so, β and γ

are fixed as positive. The elements of M can be defined as cosinus-like and sinus-like

functions, noted C and S respectively. The matrix M can be written M =
(
C S

C ′ S′

)
.

The value of the (α, β, γ) parameters can be known at any point of the ring using the
following transformation:
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β

α

γ

 =


C2 −2CS S2

−CC ′ CS′ + SC ′ −SS′

C ′2 −2C ′S′ S′2

 (2.6)

which derivation can be found in [51]. The determinant of the transfer matrix is 1, as
there is no amplification. This criterion imposes the following link between the Twiss
parameters:

βγ = 1 + α2 (2.7)

The transfer matrix of any linear portion from an arbitrary position s0 of the lattice
can be expressed with the Twiss parameters. The knowledge of the Twiss functions
(β, α) and the phase advance φ is enough to fully describe the particles trajectory along
the ring:

Ms−→s0 =


√

βs
βs0

(cos(φ) + αs0 sin(φ))
√
βsβs0 sin(φ)

αs0−αs√
βsβs0

cos(φ)− 1+αsαs0√
βsβs0

sin(φ)
√

βs0
βs

(cos(φ)− α sin(φ))

 (2.8)

2.1.1.2 General solution of the equations of motion

Using the Twiss formalism from the transfer matrices, the general solution of the equa-
tion of motion becomes:

u(s) =
√
εβu(s) cos(φu(s) + φ0) (2.9)

where ε and φ0 are constants defined by initial conditions. The Twiss function
√
β

refers to the beam envelope. The oscillatory form of the motion describes the ”betatron
motion” or ”betatron oscillations”. From Eq. (2.9) and its derivative, one finds α = −β′

2 .
Primary analysis of any lattice includes the variation of the Twiss functions β and α

along the lattice, as they reflect the variations of the transverse beam sizes.

2.1.1.3 Betatron tune

By inserting the general solution of Eq. (2.9) in the equation of motion (2.1), one restores
Floquet’s theorem which defines the phase advance φ between two longitudinal points
along the lattice:

φ(s) =
∫ s

0

dl

β(l) , (2.10)

arbitrarily starting the ring at a point s0 = 0. The phase advance relies entirely on
the amplitude component β, which is controlled by the quadrupole magnets. After one
complete turn of the ring, the phase advance ν numbers the total betatron oscillations
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the particle had around its closed orbit. This total is called the betatron tune Q:

Q ≡ ν

2π = 1
2π

∮
ds

β(s) (2.11)

Working point The tunes (Qx, Qy) of the ideal particle define the working point of
the ring. It can be modified using the quadrupoles: they act directly on the β-functions.
A pair of quadrupoles is required to uniquely change the betatron tunes:

(
∆Qx
∆Qy

)
=
(
a b

c d

)(
∆kx
∆ky

)
(2.12)

The elements of the above matrix are practically computed by alternatively shutting
off one quadrupole at once. Changing the working points is generally used to avoid
resonances (see 2.1.3).

2.1.1.4 Hamiltonian formalism

The Hill’s equations can be derived from the following Hamiltonian:

H = x′2 + y′2

2 + 1
2Kxx

2 + 1
2Kyy

2 (2.13)

where Ku∈{x,y} is the frequency component of the Hill’s equation in the plane u ∈ {x, y},
and (u, u′) the phase-space coordinates. The Hamiltonian here above can be simplified
by finding a plane where at least one coordinate is a constant of the motion. To do
so, the transverse coordinates (u, pu) are switched with a canonical transformation to
(φu, Ju)u∈{x,y}, using the following generating function:

G1(u, φu, s) = − u2

2βu(s)

(
tan(φu)− β′u(s)

2

)
(2.14)

The derivation of the generating function can be found in the literature [52]. The
coordinates (φu, Ju) = ∂G1

∂φ (u, φu, s) are called the angle-action variables. In that plane,
the Hamiltonian is:

H(φu, Ju)u∈{x,y} = H(u, u′) + ∂G1
∂s

= Ju
βu(s) ≡ H0 (2.15)

The Hamiltonian gives dφu
ds = ∂H0

∂φu
= 1

βu(s) , recovering equation (2.10).Furthermore,
dJu
ds = −∂H0

∂φu
= 0 : the action variable J is an invariant of the motion. The phase space

motion in this plane is purely circular.
The transverse coordinates are expressed in (φu, Ju)u∈{x,y} with the following:


u =

√
2Juβu(s) cos(φu)

pu = −
√

2Ju
βu(s)

(
sin(φu)− β′u(s)

2 cos(φu)
) (2.16)
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a b c
Figure 2.1: Horizontal and vertical phase space motion of a particle of transverse co-
ordinates (x, x′, y, y′) = (1 mm, 0, 1 mm, 0) along a DBA section of the current SOLEIL
lattice: (a) in the middle of a straight section, (b) after a focusing quadrupole and (c)

after the last dipole of the DBA.

From Eq. (2.16), the motion in the (u, u′) phase-space is elliptical, as illustrated in Fig.
2.2. The area of this ellipse is directly linked to the action J :

A =
∮
u′du = 2πJu (2.17)

In a loss-free storage ring, the area is an invariant of motion: as the shape of the ellipse
varies along the ring, its area remains constant. Figure 2.1 shows examples of the phase
space trajectory of a particle at three locations of the SOLEIL current storage ring: in
the middle of a straight-section, after a focusing quadrupole and after the last dipole of
a Double Bend cell.

2.1.1.5 Geometric Emittance

The trajectory of a particle in the (u, u′ = du
ds )u∈{x,y} plane describes an elliptic trajec-

tory, as illustrated in Fig. 2.2, in the so-called linear regime. This trajectory can be
normalised into a circular motion of radius

√
2βJ using the following coordinates:

 u =
√

2Juβu(s) cos(φu)

p̃u = βuu
′ + αuu = −

√
2Juβu(s) sin(φu)

(2.18)

To find a s-independent description of the phase-space motion, the area of the circular
trajectory is normalised by βu:

F(u, u′)u∈{x,y} = 1
βu

(
u2 + (βuu′ + αuu)2

)
= γu2 + 2αuβuuu′ + βuu

′2 (2.19)

This equation equals twice the action Ju, and therefore is an invariant of the motion.
It is called a Courant-Snyder invariant. The trajectory of a particle is described by



Chapter 2. Lattice design for diffraction-limited storage rings 44

Figure 2.2: Representation of the Twiss functions and geometric emittance on the
elliptical trajectory in the transverse phase space. From [53].

F (u, u′)u∈{x,y} = ε, where ε is the geometric emittance. The area of the phase space
ellipse is πε.

2.1.2 Off-momentum transverse motion

The previous sections mentioned the trajectory of a particle of momentum p0[eV/c],
travelling through the ring on the ideal orbit. It is the synchronous or reference particle.
In the realistic case of a non-monochromatic beam, the particles have different energies
and momenta. They are defined by their relative momentum or energy deviation δ= ∆p

p0
.

If δ 6= 0, the particles are said to be off-momentum, else, on-momentum. The momentum
spread defines the range of momenta inside a beam. The motion of such particles in the
(φ, δ) plane, or longitudinal motion, is discussed in the chapter 5.

2.1.2.1 Dispersion and off-momentum closed orbit

The bending forces perceived by off-momentum particles depend on their momentum.
For simplicity, the bending forces considered are only applicable to the horizontal plane.
In this direction, the motion of off-momentum particles is described by the inhomoge-
neous Hill’s equation below:

x′′ + (K + ∆K)x = δ

ρ(s) (2.20)
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with K + ∆K =
(

1
ρ(s)2 + k1(s)

)
+
(
− 2
ρ(s)2 − k1(s)

)
δ, ρ[m] and k1[m−2] the bending

radius and focusing strength experienced by the reference particle of momentum p0, and
δ = ∆p

p0
. The derivation of this inhomogeneous equation can be found here [54].

The general solution of the inhomogeneous Hill’s equation is a superposition of a
solution of the homogeneous equation and a particular solution satisfying Eq. (2.20).
The solutions are expressed as:

x = xβ +Dxδ (2.21)

where xβ is a solution of the homogeneous equation of motion (2.9), describing the
betatron oscillations around the new closed orbit, defined by Dxδ. Dx is the dispersion
function. At the lowest order in δ, it is the solution of:

D′′x + (K + ∆K)Dx = 1
ρ

(2.22)

Further orders will be discussed in Chapter 5. As K and ρ[m] are periodic functions, so
is the dispersion.

Matrix formalism Again, the equation of the dispersion can be expressed using ma-

trices:
(
Dx(s)
D′x(s)

)
= Ms0→s

(
Dx(s0)
D′x(s0)

)
+
(
d

d′

)
, with (d, d′) a particular solution. The

transfer matrices of different elements can be updated into 3× 3 matrices, including the
dispersive components:

Ms0→s =



 cos(
√
Kl) 1√

K
sin(
√
Kl) 1

ρK (1− cos(
√
Kl))

−
√
Ksin(

√
Kl) cos(

√
Kl) 1

ρ
√
K

sin(
√
Kl)

0 0 1

 K > 0


cosh(

√
|K|l) 1√

|K|
sinh(

√
|K|l) 1

ρ|K| (−1 + cosh(
√
|K|l))

−
√
|K| sinh(

√
|K|l) cosh(

√
|K|l) 1

ρ
√
|K|

sinh(
√
|K|l)

0 0 1

 K < 0

 cos( lρ ) ρ sin( lρ ) ρ(1− cos( lρ ))
− 1
ρ sin( lρ ) cos( lρ ) sin( lρ )

0 0 1

 K = 1
ρ2

1 l 0
0 1 0
0 0 1

 K = 0

(2.23)

with l = s− s0. The new coordinate vector is


u(s)
u′(s)
δ


u∈{x,y}

.

2.1.2.2 Radiation damping of the betatron motion

The emission of radiation by a relativistic electron occurs in the form of a cone of half-
angle 1

γL
, with γL[n.d.] the Lorentz factor. The electrons’ recoil in the opposite direction
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of emission induces a change in their momenta: ∂p = ∂E
c , with ∂E the emitted energy.

The variation results in a different effective focusing force on the particles, resulting
in a change in their amplitude A such as uβ = A cos(φu). The amplitude change per
revolution is characterised by the damping coefficients: ∆A

A = αu, u ∈ {x, y}, with
αx = (1 − D) U0

2T0E
and αy = U0

2T0E
, where U0 is the energy loss (cf Eq. (1.7)), T0 the

revolution period and D the damping partition:

D = 1
2π

∮
Dx(s)

( 1
ρ2 + 2K(s)

)
dipoles

(2.24)

in the case of an isomagnetic ring. Complete derivation of the damping equations can
be found in [55, 56]. The radiation damping coefficients are all ratio of the factor U0

2T0E
,

and after normalisation define the damping partition number, Ju∈{x,y,E}:
Jx = 1−D

Jy = 1

JE = 2 +D

(2.25)

2.1.2.3 Quantum excitation and emittance

The radiation emission in bending magnets yields to a quantic excitation of the betatron
motion, characterised by the dispersion. Indeed, the off-momentum closed orbit Dxδ is
shifted by the emission of a quanta, and varying the betatron amplitude by: ∂xβ =
−Dx

∂E
E0

, with ∂E the energy of the emitted quanta. Such a variation modifies the
Courant-Snyder invariant of Eq. (2.19), and tends to grow the beam sizes.

Emittance of an electron beam in a storage ring The averaged amplitude growth
is H

(
∂E
E0

)2
with:

H = αxD
2
x + γxDxD

′
x + βxD

′2
x (2.26)

The H-function is a Courant-Snyder invariant, but not in the dipoles magnets, where
dispersion is created. Adding the damping effect mentioned in 1.2.3.2 as described in the
previous section for the betatron motion, the Root-Mean Square (RMS) width σx and
emittance εx reach an equilibrium between the quantum excitation and the radiation
damping (cf 2.1.2.2):

εx = σ2
x

βx
= Cq

γ2
L

Jxρ
〈H〉bending magnets (2.27)

where Cq constant, γL = E
E0

the Lorentz factor, Jx the action variable, ρ the bending
radius. The emittance created by a dipole can be minimised to the Theoretical Minimum
Emittance (TME). Discussion is detailed in section 2.2.1.

2.1.2.4 Momentum compaction factor αC

The dispersive aspect of the off-momentum motion modifies the closed orbit of the off-
momentum particles: since they perceive different bending radius, their perception of
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the dispersion differs as well. The lengths of their closed orbits therefore differs from
the length of the ideal orbit: the off-momentum particles will complete their revolution
before or after the synchronous particle, depending on their energy, as in Eq. (1.9). To
synchronise the beam, the variation of the path length has to be monitored. The path
length ∆C is the integration of a small displacement along the ring:

∆C =
∮
ring

√(
1 + x

ρ

)2
+ x′2 + y′2ds ' C0 +

∮
ring

x

ρ
ds , to the first order (2.28)

The variation of path length with energy is defined as the momentum compaction
factor αC :

∆C
C0

= αC

(∆p
p0

)
(2.29)

Considering the lowest order in energy deviation, the momentum compaction αC is
expressed with the dispersion and bending radius along the lattice:

αC = 1
C0

∮
Dx

ρ
(2.30)

2.1.2.5 Chromaticity and tune shift

From Eq. (2.20), the focusing strength perceived by off-momentum particles also varies
with the energy deviation. This variation equals the effect of a quadrupole gradient
error of −k1δ, resulting in the following variation in the betatron tunes, also called tune
shift ∆ν:

∆νu =
(
− 1

4π

∫
ring

ku(s)βu(s)ds
)
δ (2.31)

with u ∈ {x, y}, ku the quadrupole strength, and βu the Twiss function.
The chromaticity ξ is the variation of the tune shift ∆ν with the energy deviation δ.

The first-order chromaticity is defined as:

ξ ≡ d(∆ν)
d(∆p

p0
)

(2.32)

The chromaticity created in the focusing magnets is called the natural chromaticity ξnat.
It is expressed as: ξnatu = − 1

4π
∫
ring ku(s)βu(s)ds. If the chromaticity is left uncorrected,

the momentum spread of the beam could lead to a tune shift, enough to possibly cross
a resonance, which could lead to the loss of particles. Since the chromaticity is created
by a quadrupole strength variation of −k1δ, its correction requires a magnet which the
focusing (defocusing) strength increases (decreases) linearly with the momentum. Such
compensation can be achieved using sextupoles, which are introduced in the Appendix
B.
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2.1.3 Resonances

Analogically to oscillators, the number of oscillations per turn can critically enhance the
amplitude of a particle, to a point where the particle exceeds the limits of the stability
area, and is lost within a short number of turns. Indeed, if the betatrons oscillations
are in phase with the synchrotron revolution, the particles will experience the same
kicks at the same phases, which will therefore add constructively. This is a resonance
phenomenon. Resonances occur when the linear combination of betatron tunes in both
planes reaches an integer. This defines the resonance condition:

pQx + qQy = n (2.33)

with p,q and n integers, and gcd(p, q) = 1. Resonances are referred to with the triplet
(p, q, n), with |p|+ |q| their resonance order. Note that the resonance condition is stable
with integer translation; the condition is verified for the fractional parts : p{Qx} +
q{Qy} = n.

An interesting particularity appears for periodic rings. Indeed, if a ring is composed
of N identical cells, the total betatron tune over the ring is N times the betatron tune
of one cell. Therefore, a linear combination of the betatron tunes, where p ∧ q = 1 can
only be a multiple of the periodicity N, reducing the possible systematic resonances to:

pQx + qQy = N× n (2.34)

Figure 2.3: Example of a resonance diagram. Red lines draw the first-order resonances
Qx/y ∈ 1

2N, and the coupling resonances, where {Qx} = {Qy}. Second-order resonances
are in blue, green for the third orders, and black for the fourth orders.
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The visualisation of both the working point (Qx, Qy) and the neighbour resonances
is to draw a resonance diagram. Figure 2.3 illustrates a resonance diagram up to the
fourth order in terms of fractional parts of the betatron tunes. The more resonances
excited, the less stability area available in terms of tunes: during the tune shift, particles
will be excited and lost, reducing the transverse stability area, and the beam lifetime
(see 3.3.4).

Effect of the sextupoles on the transverse motion and Resonance Driving
Terms The addition of sextupoles in the linear lattice and the inclusion of the disper-
sion updates the Hamiltonian of the transverse motion into:

H =
p2
x + p2

y

2 − 1
ρ
δ + 1

2Kxx
2 + 1

2Kyy
2 + k2

3 (x3 − 3xy2) (2.35)

To identify any resonance limiting the dynamic, the non-linear and energy-dependent
Hamiltonian of Eq. (2.35) is averaged over a large number of turns. Any remain-
ing component leading to a non-bounded motion therefore is resonant. The averaged
Hamiltonian in the case of thin quadrupole and sextupole magnets is divided into Fourier
sums, to distinguish the betatron phases:

〈H(φx, Jx, φy, Jy, s, δ)〉φx,y ∝ νxJx + νyJy +
∑

hjklmp (2.36)

where hjklmp is a resonant driving term (RDT). Linear RDTs are composed of linear
quadrupolar and sextupolar contributions, as follows:

hjklmp ∝
∑

sextupoles
(k2L)β

j+k
2

x β
l+m

2
y Dp

xei(j−k)φx+i(l−m)φy

−
∑

quadrupoles
(k1L)β

j+k
2

x β
l+m

2
y Dp

xei(j−k)φx+i(l−m)φy
(2.37)

The two first phase-independent RDTs refer to the linear chromaticity, h11001 and h00111

(cf 2.1.2.5). In a higher-order of perturbation, proportional to (k2lsext)2, five phase-
independent terms arise: two second-order chromaticities ξ(2)

u ≡ d2νu
dδ2 , and three terms

describing the tune shift with amplitude, i.e. the variation of the horizontal and vertical
tunes with the actions Jx and Jy. The other terms are complex, of average:

〈hjklmp〉φx,y = |hjklmp|
2 sin(π[(j − k)νx + (l −m)νy])

(2.38)

Those first-order Resonant Driving Terms (RDT) have to be compensated to avoid any
resonance excitation. A thin sextupole kicks the particle, changing its momentum by
pu := pu− k2lsext

2 u2. The resonances excited by the sextupoles are classified according to
their polynomial dependency on the sextupole strength k2: this is the perturbation order
of the resonances. Table 2.1 lists the first- and second-order sextupolar resonances, along
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with the corresponding RDT, for a mirror symmetry lattice, which means the complex
part of the RDTs are null.

Table 2.1: Sextupolar resonances, classified by orders, and linked to their correspond-
ing Resonant Driving Term.

First-order sextupolar resonances
Resonance R.D.T.

νx h21000
3νx h30000
νx h10110

νx + 2νy h10200
νx − 2νy h10020

2νx h20001
2νy h00201

Second-order sextupolar resonances
Resonance R.D.T.

4νx h40000
4νy h00400
2νx h31000,h20110, h00310
2νy h01110

2νx + 2νy h20210
2νx − 2νy h20020

Second-order sextupolar resonances corresponds to a ”crosstalk” between two sex-
tupole fields. It is computed with the Hamiltonian of two turns. Corresponding RDTs
are the product of the linear RDTs of Eq. (2.37). Therefore, the first-order resonances
are the source of all resonances: N-order RDTs correspond to the product of N first-
order resonant driving terms. All resonances can then be minimised or even cancelled
by using only a fixed number of sextupole families for instance.

2.2 Properties of ultra-low emittance lattices

This section introduces the Theoretical Minimum Emittance, which states the condi-
tions for a minimum creation of emittance within a dipole. Among those, a non-zero
dispersion, which increases the electron beam size at the insertion devices, thus reducing
their brilliance and quality (cf sec. 1.2.2). The minimum emittance achieved with a
zero-dispersion input condition is three times as high as the TME, and is achieved by a
Chassman-Green lattice.

Towards the 4th generation storage rings, ultra-low emittance can be achieved by
using novel lattice designs such as Multi-Bend Achromats (MBA) where the number of
dipoles per ring is increased, thus reducing their angle and the creation of dispersion.
Further reduction of the emittance is achieved with novel types of magnets, such as
combined-function dipoles, reverse bends and longitudinally variable bending magnets.

2.2.1 Theoretical minimum emittance

The creation of emittance is driven by the s-averaged value of the H function in the
dipoles. Considering a single dipole, the emittance creation can be minimised by iden-
tifying the optimum Twiss parameters, the dispersion and its derivative at the entrance
of the dipoles which minimise the H-function. The minimum emittance achievable is
called the Theoretical Minimum Emittance (TME) εTME :
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εTME = 1
12
√

15
Cqγ

2
Lθ

3

Jx
∝ E2

N3
bend

(2.39)

where γL[n.d.] the Lorentz factor, θ the bending angle, Jx the damping partition number,
F , Cq physical constants, E[eV] the nominal energy and Nbend the number of dipoles.
The TME depends on the cubic power of the bending angle: the more dipoles in a
storage ring, the lower the TME. Figure 2.4 gives the optics of an example TME cell
available in OPA, a single-particle dynamics code developed by Andreas Streun [57].

Figure 2.4: Example of a Theoretical Minimum Emittance (TME) cell available in
OPA [57].

2.2.2 Double Bend Achromat and Triple Bend Achromat

The achieved TME in a single dipole requires a non-zero dispersion at both the entrance
and, by mirror symmetry, the exit of the magnet: this could be problematic in the
straight sections, where the dispersion should be naught or small enough to achieve a
small electron beam size at the insertion devices. The null dispersion condition imposes
the use of an achromat lattice.

Achromatic principle Achromat lattices are types of lattices composed of n repeti-
tive cells. Their transfer matrices are free of any non-linearities in the transverse motion
and up to a certain order. Modified first- and second-order achromats are widely used
in today’s facilities. The first-order achromat theorem states that a lattice composed
of n repetitive cells is achromatic to the first-order if and only if its transfer matrix M
verifies: Mn = I, with I the identity matrix. The achievement of this condition is inde-
pendent from the dispersion: its value is therefore uniquely determined by the periodic
conditions of the lattice. The achromatic condition is extended to the second-order,
when n > 3 [58]. Higher-order theory is available in the literature [59].
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Chasman-Green lattice and Triple Bend Achromat The addition of the achro-
matic condition to the minimum emittance created in a single dipole results in the
following achromat minimum emittance εDBA:

εDBA = 1
4
√

15
Cqγ

2
Lθ

3

Jx
(2.40)

which is three times higher than the TME of Eq. (2.39), due to the reduction of the free-
dom degrees by two, when imposing the achromatic condition. Using a mirror dipole and
including a focusing quadrupole form a Double Bend Achromat (DBA) or a Chasman-
Green lattice [60, 61]. A layout of such lattice is displayed on the left side of Fig. 2.5,
from [62]. In that case, the dispersion is zero both at the entrance and at the end of the
cell.

a b
Figure 2.5: Example of (a) the Advanced Photon Source (APS) Chasman-Green

lattice and (b) the Advanced Light Source (ALS) TBA lattice, from [62].

Further reduction of the emittance can be achieved by including an additional dipole.
The length of the external dipoles has to be reduced by about a third, to restore the
achromatic condition. This lattice is called a Triple Bend Achromat (TBA). Compari-
son of the performances of a non-modified Chasman-Green lattice and a TBA lattice is
available in [63, 64]: the averaged achieved emittance is 2.5 times lower in TBA lattices.
Furthermore, the achromatic condition of the Double Bend structure generates a high
natural horizontal chromaticity. Indeed, the minimum emittance of a Chasman-Green
lattice, in Eq. (2.40), is achieved with a very low horizontal β-function in both bend-
ing magnets, requiring strong sextupoles for correction and even stronger for machines
operating with a slightly positive chromaticity, thus reducing the dynamic aperture and
the lattice performances [65].

Modified Chasman-Green lattice Modification of the achromat principle can fur-
ther reduce the emittance: allowing an increase in dispersion in the straight sections
releases the tight achromatic conditions and gets the lattice closer to the TME con-
dition. Table 2.2 compares the achieved emittances of some third-generation storage
rings using the Chasman-Green achromat lattice and its modified version. Figure 2.6
compares the Chasman-Green lattice with its modified version for the Advanced Pho-
ton Source (APS) storage ring (from [62]): an increase up to 10 cm dispersion in the
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Figure 2.6: Comparison of the optic functions of a Chasman-Green lattice and its
modified equivalent for the APS storage ring, (from [62]).

straight section allowed a reduction of the emittance from an original 7 nm.rad with a
Chassman-Green lattice, to 2.5 nm.rad with the modified optics.

Table 2.2: Emittance reduction with the application of modified Chasman-Green
lattices in third-generation storage rings.

Storage ring Chasman-Green optics Modified DBA
ESRF 7 nm.rad 3.8 nm.rad
APS 7.5 nm.rad 2.5 nm.rad

SPring8 4.8 nm.rad 3.0 nm.rad
SOLEIL 4.8 nm.rad 3.9 nm.rad
SPEAR3 18 nm.rad 9.8 nm.rad

Both the control of the β-functions in the middle of the straight sections and the
reduced electron emittances increase the brilliance of the X-ray emission of the insertion
devices, despite the non-zero dispersion [66, 67]. Many synchrotrons decided to oper-
ate in a modified Chasman-Green lattice for those reasons [68–71]. Table 2.3 gathers
different 3rd generation storage rings, their lattice type, energy and emittance.

Table 2.3: Examples of synchrotron storage rings using either a DBA, a modified
DBA or a TBA lattice, their energy and achieved natural horizontal emittance.

Name Location E(GeV) Circumference (m) Achromat εx (nm.rad)
ALBA Spain 3 268.8 m-DBA 4.3
ALS USA 1.5- 1.9 196.8 TBA 2.0

BESSY II Germany 1.72 240 m-DBA 6
CLS Canada 2.9 171 m-DBA 18.0

DIAMOND UK 3 560 m-DBA 3.17
ELETTRA Italy 2.4 259 m-DBA 7.0

ESRF France 6 844 m-DBA 4.0
SLS Switzerland 2.4 288 TBA 5.50

SOLEIL France 2.75 354 m-DBA 3.9
SPring-8 Japan 8 1434 m-DBA 2.4
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2.2.3 Multi-Bend Achromats

Following the logic of Theoretical Minimum Emittance lattices, the future 4th generation
light sources should be based on several bending magnets per achromatic cell. First
steps evaluated the theoretical minimum emittance of a Quadrupole-Bend Achromat
(QBA) [72]: the implementation of combined-function dipole magnets allows a further
the reduction of the modified-QBA’s minimum emittance. A further increase in the
number of dipoles reduces the achievable theoretical minimum emittance. Imposing
the achromatic condition, the design is named a Multi-Bend Achromat (MBA) lattice
[73, 74]. According to Eq. (2.40), the emittance gain using a MBA lattice as compared
to a DBA/TBA lattice is roughly cubic in the number of dipoles, as illustrated in Fig.
2.7. To highlight the number of dipoles in a MBA lattice, such a lattice is called N -BA,
with N the number of dipoles. A 5BA lattice then is a MBA composed of 5 dipoles in
each cell.

Example of the SOLEIL storage ring The current lattice of the SOLEIL syn-
chrotron is a modified DBA lattice, of which the main machine parameters were pre-
sented in the section 1.5.2. Its natural emittance is 3.9 nm.rad and 4 nm.rad including
the insertion devices. Increasing the number of dipoles will roughly change the emittance
by the factor

(
NMBA
NDBA

)3
- where N denotes the number of dipoles in each configuration.

The achievable natural emittance of a 7BA lattice applied to SOLEIL 2.75 GeV stor-
age ring could be as low as 100 pm.rad. Figure 2.7 estimates the emittance gain from
DBA/TBA lattices with the number of dipoles in the future MBA lattices.

Figure 2.7: Rough emittance gain from the current DBA (dotted line) or TBA (solid
line) lattices, to a MBA lattice with the same nominal energy.

First fourth-generation storage ring The first 4th generation storage rings, imple-
menting a MBA scheme was built in MAX IV (Lund, Sweden) [75], SIRIUS (Brazil -
under completion) for their 3 GeV storage ring and ESRF-EBS (France) for a 6 GeV
storage ring [76]. The case of ESRF-Extremely Brilliant Source (ESRF-EBS) is detailed
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in 2.3.1. With a 7BA lattice of 20-fold symmetry, MAX IV achieved a natural low emit-
tance of 330 pm.rad over a 528 m circumference [77]. Figure 2.8 illustrates the β-function
and dispersion of the 7BA lattice of MAX-IV [78]. The level of dispersion dropped from
' 10 cm to ' 8 cm maximum dispersion. Moreover, the horizontal β-functions, of the
order of 10 m in third-generation storage rings, are now below 4-5 m in the core lattice,
downsizing the horizontal size of the beam.

Figure 2.8: Layout of the MAX IV 3 GeV storage ring 7BA lattice, from [78].

Allying DBA cells with TME cells, the synchrotron PEP-X decreased its emittance
from 49 nm.rad at 3.1 GeV in PEP-II to 0.37 nm.rad natural emittance, at 4.5 GeV,
further reduced down to 0.09 nm.rad with the insertion of damping wigglers [79].

2.2.4 Novel magnets and techniques for further reduction of the emit-
tance

Several light source facilities worldwide are considering an upgrade of their storage ring.
The majority of them study the possibility of an upgrade while conserving the same
tunnel i.e. the same circumference as their current storage ring as well as their nominal
energy. The use of MBA lattices reduces the achievable Theoretical Minimum Emittance
(TME), but depending on the storage ring parameters and the number of requested
straight sections, the emittance may still remain higher by an order or two than the
diffraction limit in Eq. (1.15). This subsection explores different techniques foreseen or
already implemented to further reduce the emittance of fourth generation storage ring
lattices.
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2.2.4.1 Reduction of the nominal energy

As the theoretical minimum emittance depends quadratically on the nominal energy, low
energy machines achieve lower emittance. Nevertheless, change in the nominal energy
shifts the synchrotron radiation energy range, which may not be suitable for synchrotron
radiation users. While many upgrade investigations conserve the same nominal energy,
some reduced it, such as the APS-U (from 7 to 6 GeV) and SPring8-II (from 8 to 6
GeV), and compensate the energy shift of their radiation range by reducing the period
of their insertion devices [80].

2.2.4.2 Round beam

A round beam is an electron beam of equal dimensions in the horizontal and the vertical
plane, in at least one location of a storage ring lattice. It is especially useful in storage-
ring-based colliders, to increase the collision cross-section [81].

For fourth-generation storage ring light sources where the natural vertical emittance
is negligible compared to the horizontal emittance, a round beam could further decrease
the effective size of the produced photon beam, using the principle of matching both
phase spaces described in 1.4.1.2. It could locally imitate a diffraction limited source.
Furthermore, the use of a round beam could reduce the density of particles in the
horizontal plane, and decrease the probability of collective particle scattering events (cf
3.3.4). Its interest was demonstrated in a workshop held at SOLEIL in June 14-15, 2017
[82].

Möbius ring A round beam can be designed at a specific location of the ring, using the
Möbius principle. First described by R. Talman [83, 84] and simulated on the Cornell
Electron Storage Ring (CESR) ring [81], skew quadrupoles rotated at 45 degrees are
inserted in a straight section of the lattice: the horizontal and vertical component are
inverted each turn, and their emittance is equally parted between the two planes [85, 86].
An interesting effect is the chromaticity sharing resulting of the exchange: the damping
rates depend on both chromaticities. This effect was measured for weak coupling on the
CESR [87].

Local creation of a round beam Different techniques can be used to produce a
round beam [88]. Local creation of a round photon beam can be achieved at specific
beamlines, by creating emittance adapters with solenoids [89] or with the use of focusing
mirrors to shape an undulator source [90, 91]. The emittance adapter described in [89]
was simulated on SOLEIL and MAX IV [92]. It required the insertion of skew quadrupole
triplets to match the βx- and βy-functions at the centre of the straight section, where
the undulator with solenoid is placed. Their achieved reduction in the beam size and
increase in the photon density is displayed in Fig. 2.9.
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Figure 2.9: Locally achieved round beam with the use of an emittance adapter (sim-
ulation), from [93].

Coupling resonance {νx} = {νy} The coupling resonance {νx} = {νy} can also be
exploited, by setting the tunes on it and exciting it[94]: in that case, energy exchange
occurs between the transverse planes, resulting in equal emittances εx = εy. The ex-
change of oscillation amplitudes between the horizontal and the vertical plane can be
achieved with the use of skew quadrupoles. The coupled emittances are [95]:

εx = εtot
1 + τ

εy = εtot

1 + 1
τ

(2.41)

with τ the coupling parameter. For a full coupling τ = 100%, both emittances are equal,
creating a round beam at the insertion device, provided the β-functions are identical.

2.2.4.3 Damping wigglers

Already used in some third-generation storage rings such as PETRA-III and NSLS-II,
further reduction of emittance can be achieved using damping wigglers. Such wigglers
enhance the damping effect described in Sec. 1.2.3.2, by creating more radiation losses
in the storage ring: the emittance reduction thus depends on the period length of the
wiggler, its peak magnetic field and its total length. While this effect is easy to imple-
ment, the compensation for the increased losses might prove difficult in tight ultra-low
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emittance lattices, where the number of RF cavities is limited as is the available space
for the wigglers themselves.

2.2.4.4 Novel bending magnets

The first part of this chapter introduced and studied the effects of single magnetic
elements: constant-field dipoles, quadrupoles and sextupoles. This section introduces
different types of bending magnets which limit the creation of emittance directly at its
source: from combined-function magnets to dipoles of longitudinally varying field.

Combined-function dipoles To optimise their effect and their occupation, single
elements can be superposed into one magnet, combining the single-element effects. The
modified QBA lattice mentioned earlier already included a quadrupole superimposed on
a bending magnet to maintain low radiation integrals [72]. The main combined-function
magnet considered in today’s upgrades is the addition of a small defocusing quadrupolar
field to a dipole. Unless stated otherwise, the dipoles encountered in this thesis are
combined-function dipoles, integrating a defocusing quadrupole strength, which brings
the magnet closer to the TME cell configuration (cf 2.2.1).

Figure 2.10: Comparison of the transverse view of (left) a standard C-shaped dipole
of constant magnetic field and (right) a gradient dipole of defocusing strength with a

gap dependent on the horizontal position.

Although first combined-function dipoles had a superimposed quadrupole, like in
Fig. 2.10, the fourth-generation version requires stronger quadrupolar gradient. Design
of such magnets are explored with permanent dipoles, with for instance a permanent
triangular-shaped pole in the transverse plane, which provides both a bending and a
defocusing force, as designed for the ALS upgrade [96]. Some lattices shift the magnetic
axis of a defocusing quadrupole from the design closed orbit to create a dipolar field,
like in APS upgrade [97]. Another method is to design a dipole with a gap varying with
the horizontal axis, as used in the MAX IV storage ring [78]. Figure 2.10 compares
schematics of the transverse cut of a standard C-shaped dipole with a MAX IV-type
gradient dipole.
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Reverse bending magnets Reducing the emittance implies minimising the integral
sum of the H-function within all the dipoles. The minimum emittance achievable is the
TME (2.2.1). In a fixed MBA lattice, further reduction of the emittance can be achieved
by controlling the dispersion function at the entrance of the dipole magnets, to approach
the TME conditions. Reverse bending magnets, or antibends, are quadrupole magnets
of which centre is shifted horizontally from the optical axis, creating a dipolar field of
resulting negative angle. The link between the horizontal shift ∆x and the created angle
θreverse is expressed as:

θreverse = −k1lquad∆x (2.42)

where k1[m−2] is the quadrupolar strength, lquad the length of the quadrupole magnet.
As an example, let us take a quadrupole magnet of length 0.25 m, and a strength of
10 m−2. For a required reverse bending angle of −0.5 degree, the quadrupole magnet
should be shifted by 3.5 mm towards the centre of the storage ring. Inserting such a
magnet before a regular dipole inverts the dispersion curve and variation, thus allowing
the control of the dispersion at the entrance of a dipole: such a node can help minimise
the H-function in the dipoles. Furthermore, the reverse bend increases the damping
partition number Jx, which participates in decreasing the horizontal natural emittance.
The comparison of the minimum emittance using the TME principle in a constant-field
dipole cell and in an anti-bend cell was done in [98], resulting in a lower emittance
achieved with a reverse bend. Further study of the reverse bends is conducted in the
sections dedicated to the lattice design for the SOLEIL storage ring, in the sections 3.1
and 3.2.

Longitudinal-gradient dipoles The term Longitudinal-Gradient Bend (LGB) refers
to a dipole of varying field with the longitudinal position s: the corresponding variation
of the bending radius ρ(s) allows the manipulation of the dispersion creation inside the
magnets, controlling the variation of the H-function inside the dipole. Depending on
the variation function of the dipole field, the achieved emittance can be lower than the
TME case [99]. Analytical studies of such dipoles are available in [100], where, in an
example case, the minimum emittance achieved in the achromatic condition was three
times lower than the DBA case.

Although no study regarding LGB is conducted in this thesis, further reduction of
emittance, if necessary, could be achieved by replacing the homogeneous dipoles with
longitudinal gradient dipoles, as demonstrated in [99, 101]. Discussion on such a mag-
netic field is conducted in [102].

2.2.5 Implication of the reduction of emittance

Ultra-low emittance is achieved by a continuous control of the beam envelope (β, α) and
of the dispersion along the storage ring, to reduce the average value of the H-function in
the dipoles. Using a MBA lattice limits the creation of emittance (cf 2.2.3), by reducing
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Figure 2.11: General effects of the reduction of emittance, and expected difficulties
in ultra-low emittance lattices.

the bending angle per dipole, following the relation between the TME with the number
of bending magnets, in Eq. (2.39).

The Twiss parameters at the entrance of the dipoles have to be controlled as well,
to minimise the creation of emittance: focusing quadrupoles are implemented to ensure
low β-functions and an even lower dispersion. The strong gradients require new magnet
designs, with lower inner gaps, of the order of a few millimetres: a compromise has to
be found between the vacuum pumping requirements and the magnet design.

Nonetheless, the strong focusing leads to large natural chromaticities. To correct
them under such low dispersion levels, strong sextupoles are to be expected. Their large
strengths will perturb the beam dynamics, by further exciting higher-order resonances,
which have to be minimised for the dynamics and beam lifetime. Figure 2.11 summarises
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the implication of such a reduction of the emittance.
Maintaining stability and a large dynamic aperture requires that the sextupole-

induced non-linearities are controlled: this can be achieved by modelling the linear
lattice such as to compensate the negative sextupolar effects.

2.3 Including the chromaticity correction into the linear
design of ultra-low emittance lattices

Sextupolar elements are necessary to correct chromaticity. However, such elements intro-
duce additional higher-order aberrations which may dramatically decrease the dynamic
aperture of the synchrotron. To control and counteract disruptive nonlinear effects of
sextupoles, lattice designs are sought to minimise or even mask the nonlinear effects of
sextupoles. Two distinct ultra-low emittance schemes have been developed to this end
in the light source community and shall be presented in details in the following sections.
Nowadays, the following chromaticity correction schemes are being considered for the
ultra-low emittance lattices:

• A first scheme was developed by Pantaleo Raimondi for the ESRF-Extremely Bril-
liant Source (ESRF-EBS) lattice (2.3.1). It combines a Chasman-Green lattice
with the non-interleaved principle, which compensates a sextupolar kick by its
symmetric counterpart. All sextupoles are therefore located under two symmetric
dispersion bumps, globally correcting the chromaticity.

• A second scheme works on both symmetry and betatron tunes: using one unit
cell to build a whole period, the betatron tunes of each unit cell is fixed in order
to cancel most geometric resonances up to the third order. This is a High-Order
Achromat (HOA) (2.3.2). Each unit cell has its pair of sextupoles, making a local
chromaticity correction.

2.3.1 Non-interleaved sextupole lattice

The first scheme considered was developed by Pantaleo Raimondi for the upgrade of the
ESRF synchrotron, the ESRF-Extremely Brilliant Source (ESRF-EBS). The upgrade
aims at providing a completely new 6 GeV storage ring of 844 m to fit in their current
tunnel. Both the original periodicity of 32 and the position of their beamlines must be
conserved. Their first stored beam [103] occurred in December 2019.

The layout of an arc of the ESRF-EBS lattice is displayed in Fig. 2.12. This
novel lattice inhomogeneously distributed the bending magnets in the arc, allowing the
creation of two dispersion bumps at its extrema. Under the bumps are located the sex-
tupoles, for an optimum corrective efficiency. Furthermore, additional space is available
for other non-linear magnets, such as additional sextupole families for resonances control
or octupoles to correct the tune shift. The phase advance between the two dispersion
bumps allows the application of the non-interleaved principle, which is explained below.
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Figure 2.12: Example of the non-interleaved lattice designed for the ESRF-EBS
upgrade, one arc of the ring. Edited from [41].

This minus identity (−I) core lattice, delimited by the centre of both dispersion bumps,
makes the overall lattice resembles a Double Bend Achromat (DBA). The combination
of all those factors names this lattice a Hybrid Multi-Bend Achromat (HMBA) lattice.
The lattice parameters can be found in the ESRF Orange book [41]. Some are gathered
in Table 2.4.

Table 2.4: ERSF-EBS 7BA hybrid lattice with a 32-fold symmetry, for their 6 GeV
storage ring.

Energy 6 GeV
Circumference 844 m
Natural Emittance εx 132 pm.rad
Betatron tunes (Qx, Qy) (76.21, 27.34)
Momentum compaction factor α0 8.50× 10−5

Energy loss per turn 2.52 MeV

Non-interleaved principle Described in [58] and [104], the method implements two
identical sextupoles in a linear lattice, where the phase advance between them is an odd
multiple of π in the horizontal plane:

(∆φx,∆φy) = ((2p+ 1)π, qπ) (2.43)

with p, q ∈ N. This condition makes the transfer matrix between the sextupoles equiv-
alent to a negative identity transport matrix, or −I transformation. Therefore, as
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illustrated in Eq. (2.44), if the sextupole are placed at symmetric positions, where their
Twiss functions and dispersion are equal, the second sextupolar kick KS2 seen by the
particles will strictly be opposite to the first kick KS1 , making both of them transparent
to the particles at the end of the lattice,

(
x

px

)
−→S1

(
x

px −KS1

)
−→−I

(
−x

−(px −KS1)

)
−→S2

(
−x

−px + (KS1 −KS2)

)
(2.44)

This allows correction of chromaticity while cancelling the integral of sextupoles on-
momentum. In that case, the stability of the particles is ensured, and the dynamic
aperture is therefore larger for the on-momentum case.

Figure 2.13: Effect of the non-interleaved sextupole scheme on the on-momentum
dynamic aperture in the horizontal plane (left) and the vertical plane (right) with energy
deviation, exposed by the variation of the maximum amplitude per energy deviation of

the ESRF-EBS lattice (2.12).

Figure 2.13 displays the dynamic aperture with energy in both transverse planes, of
the ESRF-EBS lattice. The cancellation of the sextupolar kicks highly increases the on-
momentum dynamic aperture: it is three times as large as the averaged off-momentum
horizontal limits. The non-interleaved principle is adapted in the vertical, where the
condition can be extended to a multiple of π only, which is enough to minimise the
vertically dependent first-order RDTs [105].

Nonetheless, the inhomogeneous repartition of the sextupoles in such a lattice in-
creases the higher-order chromaticities [106]. Those orders can be managed by increas-
ing the sextupoles pairs under the dispersion bumps, for compactness and lack of space.
This means that the non-interleaved condition can not be respected for each sextupole
family. This problem can be alleviated by applying the non-interleaved condition to the
strongest sextupole families.

2.3.2 High-order achromat lattice

Another chromaticity correction method is the so-called High-Order Achromat (HOA)
lattice. It is based on a sextupole arrangement which makes the effect of the sextupoles
transparent to the beam along the MBA lattice. From a DBA/TBA lattice, the number
of dipoles per achromat has been increased, but not the achromatic order. From [58],
a lattice of transfer matrix M is achromatic to the second order if the minimum n ∈ N
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for which Mn = I is strictly greater than 3. Increasing the order of the achromat using
more dipole magnets can be done by building the period from unit cells of identical and
fixed phase advance, thus cancelling all resonances after completion of a fixed number
of unit cells. The HOA concept is illustrated in Fig. 2.14 which depicts the magnetic
arrangement of an unit cell.

Figure 2.14: Scheme of a unit cell for a High-Order Achromat lattice.

The proposed High-Order Achromat MBA lattices are composed of M identical cell
blocks, named unit cells. Each unit cell includes two half dipoles, two reverse bends, a
focusing sextupole and two defocusing sextupoles, as depicted in Fig.2.14. Sextupoles
are distributed in the lattice to correct chromaticity locally over each unit cell, thus
reducing the discrepancy between the different energy deviations in the particle beam.

The cancellation of geometric and chromatic resonances is ensured by a specific choice
and tight control of the phase advances over a unit cell. For example, the 7BA lattice for
both ALS-U [49] and SLS-II [48] have a fixed unit cell phase advance of (νx, νy) = (3

7 ,
1
7),

cancelling resonances up to the third order. A discussion on the possible phase advances
is made in Sec. 3.2.3.

Figure 2.15: Twiss parameters and layout of a 7BA HOA period for the ALS storage
ring, from [49].
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HOA-based lattices have been extensively used for the upgrade of many synchrotron
storage rings. For instance, HOA-based MBA lattices were designed for MAX IV by
J. Bengtsson [78], A. Streun also applied such correction concept to the upgrade of the
Swiss Light Source II (SLS-II) [48] and S. Leeman applied it for the Advanced Light
Source - Upgrade (ALS-U) [49] , although the chosen lattice for ALS-U is a 9BA lattice
[107]. Figure 2.15 illustrates the 7BA HOA lattice developed for the ALS storage ring,
and Table 2.5 gathers its main parameters.

Table 2.5: ALS-U 7BA HOA lattice proposal with a 12-fold symmetry, for their 2
GeV storage ring.

Circumference 196 m
Emittance εx 89 pm.rad
Tunes per period (νx, νy) (3.28, 1.20)
Momentum compaction factor α0 −1.25× 10−4

Reverse bending angle -1.27 degrees
Energy loss per turn 38 keV
(βx, βy) @ID (2.5, 2.5) m

2.4 Conclusion

In this chapter we reviewed the necessary theoretical elements to understand the chal-
lenging development of fourth-generation synchrotron light sources. To decrease their
emittance below 100 pm.rad, Multi-Bend Achromat (MBA) lattices are widely used.
Further reduction of the emittance can be achieved with the use of novel magnets, such
as reverse bends or longitudinal-gradient dipoles. Local adaptation of the beam sizes
can modulate the apparent emittances, and transfer the horizontal energy to the vertical
plane, making a round beam, for which several methods were introduced.

The spatially tight ultra-low emittance lattices present several challenges, starting
from the lattice design to its optimisation, and related to other accelerator fields, such as
vacuum and alignment for instance. Some limitations were discussed in 1.4.4. This chap-
ter limited its scope to the design and perceived nonlinear optimisation limitations. The
conservation of small beam sizes to keep an ultra-low emittance naturally requires strong
focusing, producing large natural chromaticities. The necessarily strong sextupoles to
correct the former are foreseen to limit the dynamics and stability of such lattices.
To compensate for the inclusion of strong sextupoles, two main lattice schemes were
developed. One is the hybrid lattice applying the non-interleaved principle, with two
dispersion bumps for both a compensation of the sextupole kicks and a higher sextupole
efficiency. The other is the HOA lattice, of which the inherent phase advances cancel or
rather minimise the resonant driving terms over a period. Both schemes are applied to
the SOLEIL 2.75 GeV upgrade storage ring, and compared in the next chapter.



Chapter 3

Ultra-low emittance schemes for
SOLEIL upgrade

The MBA lattices integrating chromaticity correction schemes such as the two intro-
duced in the previous section were applied to the SOLEIL storage ring. Specific con-
straints for the case of the SOLEIL upgrade were taken into account. This section
reviews and compares the linear lattices, and their first nonlinear limitations. While
the hybrid lattice was designed by one of my SOLEIL colleagues, A. Loulergue [108], I
was one of the initiators in the development of a suitable HOA lattice for the SOLEIL
storage ring. All studies and lattices presented in this section are the outcomes of my
own analysis, unless stated otherwise.

Constraints of the SOLEIL upgrade The upgrade of the storage ring aims at
decreasing the natural horizontal emittance of the electron beam below 100 pm.rad,
while conserving its main characteristics. Its nominal energy should be conserved, to
maintain the current energy range of the synchrotron radiation on the beamlines. Fur-
thermore, the new lattice should fit in the current tunnel of the storage ring, fixing its
circumference.

Table 3.1: General constraints applied to the ultra-low emittance lattice design for
the upgrade of the SOLEIL storage ring.

Storage ring energy 2.75 GeV
Circumference 354 m
Emittance < 100 pm.rad
Straight section length > 4.4 m
(βx, βy) @ID (1-3, 1-3) m

Further constraints are imposed by the necessary RF cavities and insertion devices in
the straight sections. To better match the electron beam in the insertion devices, the β-
functions should remain low in the middle of the straight sections. This chapter studies
and discusses the application of the two ultra-low emittance lattice schemes introduced
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in 2.3. As a study case, both schemes will be used in the design of 7BA lattices, with a
20-fold symmetry.

3.1 Non-interleaved scheme applied to the SOLEIL case

Figure 3.1 presents the layout of a 7BA hybrid lattice designed for the SOLEIL upgrade
by A. Loulergue [108]. The two external dipoles were moved away from the core, to
allow the growth of two dispersion bumps of 8 cm; under each of them are located five
sextupoles. The matching of the bump is ensured by one antibend, which is split in two
to locate a focusing sextupole in between, for increased efficiency and phase advance
matching following the non-interleaved principle. The tight core is composed of four
repetitive cells, which alternate dipoles and reverse bends.

Figure 3.1: Twiss functions and magnet layout of the 7BA hybrid lattice for the
SOLEIL 2.75 GeV storage ring, available in [108].

The dispersion-free section, necessary for the insertion devices, is created with a
reduced length of the external dipoles, and by modulating its distance with the external
antibend. The β-functions are matched at the middle of the straight section with only
a focusing quadrupole and the external combined-function dipole.

3.1.1 Inclusion of reversed bends

To further reduce the emittance creation in the dipoles, reverse bending magnets are
inserted in the lattice, in place of the core focusing quadrupoles. Their angle is to be
adjusted, to minimise the emittance over the whole lattice. The exercise was made for the
hybrid lattice, as illustrated in Fig. 3.2. A program was written in Accelerator Toolbox
(A.T.) [109] which expands the emittance and the momentum compaction variations
with regard to the reverse bending angles, over a hybrid period. This program assumes
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the reverse bending angles to be identical. The total angle was continuously corrected
to restore the right period angle.

a

b
Figure 3.2: Effect of reversed bending magnets in a hybrid lattice on its emittance

(a) and momentum compaction factor(b).

The emittance reaches a minimum of ' 70 pm.rad for an antibend angle of −0.18
degrees, in Fig. 3.2 (a). The existence of the minimum is due to the parabolic dependence
of the H-function with the dispersion. In Fig. 3.2 (b), the momentum compaction factor
depends linearly on the dispersion versus the bending radius: therefore, the increase in
the reverse bending angle increases the negative ratio dispersion versus bending radius in
the antibends, thus reducing the momentum compaction factor. For an angle of −0.18
degrees in the antibends, where the minimum emittance is achieved, the momentum
compaction factor values 1.376× 10−4, which is large enough to be considered stable.

3.1.2 General characteristics of the 7BA hybrid lattice proposal for
the SOLEIL upgrade

Table 3.2 gathers the general characteristics of the 7BA hybrid lattice designed for the
upgraded SOLEIL storage ring. The high tunes and large chromaticities are the result
of the strong focusing. The lattice includes reverse bending magnets, of angle −0.160
degrees in place of the inner focusing quadrupoles: the natural horizontal emittance
achieved is 72 pm.rad, a reduction of a factor 54 with respect to that of the current
SOLEIL lattice. The −I transformation occurs between the two dispersion bumps with
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a fixed phase advance of (3π, π), which ensures the compensation of the sextupole kicks
located under the bump. The core dipoles are 1.2 m long, both to ensure a low natural
emittance and low losses. The total energy loss per turn is 20 × 15.5 keV = 310 keV,
which is three times lower than the current SOLEIL lattices - dipoles only.

Table 3.2: SOLEIL 2.75 GeV 7BA (-I) lattice, 20-fold symmetry.

Emittance εx 72 pm.rad
Tunes per period (νx, νy) (2.76, 0.91)
Momentum compaction factor α0 1.47× 10−4

Reverse bending angle -0.160 degrees
Energy loss per period 15.5 keV
(βx, βy) @ID (1.0, 1.0) m

The β-functions in the middle of the straight sections are matched at (βx, βy) =
(1.0, 1.0) m using only the last 0.72 m-long dipole and an additional focusing quadrupole,
leaving space for the a possible harmonic sextupole or octupole. The choice of the
(βx, βy) functions relies on the beam matching considerations described in 1.4.1.2. For
an undulator of 4 m, the matching is ensured for β = L

π 'L=4 m 1.27 m.

3.1.2.1 Transverse dynamic apertures

The −I transformation largely increases the on-momentum dynamic aperture, as illus-
trated in Fig. 3.3. The trajectory of the particles was simulated during 1000 turns in the
transverse plane, in the momentum deviation range δ = ±10%. The physical apertures
were set to 5 mm on each plane, with no alteration of the dynamic area.

As expected, the non-interleaved principle creates a distinct peak around δ = 0 in
the horizontal and vertical dynamic apertures. Yet, the presence of several sextupoles
under the dispersion bump perturbs the compensative effects of the set phase advance.
The peak is non-discreet and is in the real lattice, defined by a zone in the vicinity of the
on-momentum particle. As several sextupoles are located under the same bump, they
each other perturb the non-interleaved principle of the others, therefore annulling the
complete cancellation theoretically expected. Nevertheless, compensation occurs, and
still enlarges the on-momentum dynamic aperture, both in the horizontal and vertical
planes.
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Figure 3.3: Horizontal dynamic apertures with energy deviation of the 7BA hybrid
SOLEIL lattice.
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3.2 Design of a 7BA HOA lattice for SOLEIL storage ring

Further analysis of the reduction of dynamic aperture with the 6D tracking in the hybrid
lattice motivated me to study and develop a High-Order Achromat (HOA) lattice. I
was in charge of implementing this scheme, taking into account the SOLEIL tunnel
constraints, and designed several proposals. This section describes the process followed
and required considerations.

3.2.1 Study of an unit cell

As discussed in section 2.3.2, the design of a HOA lattice starts with an unit cell, in
which the phase advance is fixed. The choice of the phase advance is discussed in 3.2.3.

Figure 3.4: Twiss parameters and layout of a HOA unit cell, of which phase advance
is (νx, νy) = ( 3

7 ,
1
7 ) and a 0.30 m long half-dipole.

A unit cell is a symmetric FODO-like cell: it is composed of two focusing quadrupoles
per dipole. The defocusing is ensured by combined-function dipoles. The distance
between linear magnets and their strengths fix the phase advance. Chromaticities are
corrected locally: the unit cell introduces a focusing sextupole in its centre, where the
relation between βx and βy is maximum, and two defocusing sextupoles between the
quadrupoles and the dipoles. Altogether, one unit cell is composed of six magnets.
Figure 3.4 displays the Twiss parameters and the layout of an HOA unit cell, of fixed
phase advance (νx, νy) = (3

7 ,
1
7), with a half-dipole of 0.30 m long. The resulting total

length of the unit cell is 1.55 m.
The emittance created in an unit cell depends on both its phase advance and the

length of the bending elements. Together they determine the periodic conditions of the
Twiss functions and dispersion. Figure 3.5 shows the variation of emittance in relation
to the length of the half-dipole. Calculations were conducted using A.T., developed at
the ESRF. The unit cell considered was composed of two focusing quadrupoles, each
0.125 m long.

The bending angle was kept constant during the whole process. Step by step, the
dipole length was decreased, from 0.4 m to 0.2 m. The phase advance of the unit cell was
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Figure 3.5: Variation of the emittance and the momentum compaction factor (MCF
in the figure) with the unit cell half-dipole length.

matched at each step, to the fixed value (νx, νy) = (3
7 ,

1
7), using the quadrupoles and the

defocusing strengths of the dipoles. The value of the emittance rapidly decreases from
0.2 m to 0.3 m, to reach a plateau. The shorter the dipoles, the higher the quadrupole
strengths to match the phase advance. The new periodic condition imposed a lower
dispersion at the start of the unit cell. Yet, the large variation of the dispersion to reach
its central value increased the emittance created in the dipoles.

When the plateau is reached at about ldip = 0.30 m, the interesting value to look at
is the variation of the momentum compaction factor, which increases with the length
of the half-dipole. Yet, the limitations imposed by the total circumference of the ring
prevent long dipoles for the design of a 7BA lattice. Indeed, a 7BA period is limited
to 354/20 = 17.7 m, among which a 4.5-5 m straight section, leaving 13.2 m for the
magnets. Assuming the total matching sections of the same length as an unit cell, the
maximum length of a HOA unit cell is 13.2/(7 − 8) = 1.6 − 1.8 m for a 4.5 m straight
section. To ensure a large enough straight section and space for the matching section,
the half-dipoles were set at a length of 0.30 m, for a unit cell of length 1.55 m.

3.2.2 Inclusion of reverse bends

Since a compromise must be reached between the emittance εx and the momentum
compaction factor αC , previously described in 3.1.1, Figure 3.6 compares the variation
of the emittance and the momentum compaction factor whilst increasing the reverse
bending angle. The total angle was continuously corrected to restore the right period
angle. The emittance reaches its minimum of 35 pm.rad for an antibend angle of −0.6
degrees. For an angle of −0.6 degrees in the antibends, the value of the momentum
compaction factor surrounds 5 × 10−5, which is lower than the ideal value of 1 × 10−4

(cf Table 3.1).
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a

b
Figure 3.6: Effect of reverse bends in a HOA lattice on its emittance (a) and momen-

tum compaction factor (b).

This comparison does not include the contribution of the matching and dispersion-
free straight sections to the momentum compaction factor, which forms about a third
of the 7BA period, further reducing it. To compensate the absence of dispersion in the
above two sections, a higher momentum compaction factor is needed in the unit cells.
Furthermore, such a low emittance is not required: constraints suggest an emittance of
' 70 pm.rad. Therefore, the reverse bending angle was set at −0.10 degrees, where the
emittance is 53 pm.rad, and the momentum compaction factor 1.55 × 10−4. The value
of the emittance will slightly increase when implementing the achromatic condition, in
sec. 3.2.4, and approach the natural horizontal emittance of the hybrid lattice.

Figure 3.7 compares the Twiss functions and the dispersion of the unit cell in Fig. 3.4
without (top) and with the inclusion of reverse bending angle (bottom). The dispersion
knows an offset with the addition of the reverse bends: it is as low as 4 mm at the
entrance of the dipoles, with a decreased slope, compared to a value of 5 mm and a
higher slope in the basic unit cell.
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a

b
Figure 3.7: Twiss parameters and layout of a HOA unit cell, which phase advance is
(νx, νy) = (3/7, 1/7), a half-dipole of length 0.30 m (a) without and with (b) a reverse

bending angle of −0.10 degrees in the inner bends.

3.2.3 Choice of the unit cell phase advance

The phase advance plays an essential role in the performances of a HOA lattice, as it
ensures the cancellation of perturbative resonances. Ref. [48] discusses the depth of
such cancellation over a 5BA and a 7BA HOA lattices. The phase advance chosen in
the literature, (νx, νy) = (3

7 ,
1
7) cancels geometric resonances up to the second-order in

perturbation, over a set of seven unit cells.
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3.2.3.1 Discussion for a 7BA lattice

To understand the phase advance over an unit cell, I listed their possible values for a
7BA HOA lattice, which cancel at least the first-order resonances in terms of sextupolar
strength, and computed the geometric resonances. For the repetition of seven cells, the
phase advances considered are (a7 ,

b
7), with b < a < 7. Notice that the vertical phase

advance is kept smaller than the horizontal one, to prevent unnecessary increase of the
chromaticity by forcing a large vertical tune. It applies to the horizontal tune as well:
if possible, it is to be kept as low as possible, thus I chose to limit the investigation to
νx < 0.5.

Table 3.3: Investigation of the geometric and chromatic resonances excited by different
phase advances of a HOA unit cell.

νy —νx 1/7 2/7 3/7
1/7 2νx − 2νy νx − 2νy νx − 4νy, 3νx + 2νy
2/7 νx − 4νy, 3νx + 2νy 2νx − 2νy νx + 2νy
3/7 νx + 2νy νx + 4νy, 3νx − 2νy 2νx − 2νy

Mathematically, for no geometric resonance to be triggered, linear combinations of
a and b should not be a multiple of 7. Table 3.3 summarises the excited resonances per
couple of phase advances. In blue are highlighted third-order resonances in perturbation,
limiting the possible phase advances to a single possibility: (νx, νy) = (3

7 ,
1
7). The full

resonance table of this case is in Table 3.4.
To further justify this choice, the dependence of emittance on each phase advance

is analysed. Figure 3.8 displays the variation of the emittance of the HOA unit cell
illustrated in Fig. 3.4, with regards to its horizontal (a) and vertical (b) phase advance
around the working point (νx, νy) = (3

7 ,
1
7). The betatron phase advances are matched

with the quadrupole strengths of the unit cell. The horizontal phase advance is scanned
in the range [1

7 : 3.4
7 ], with a fixed vertical phase advance νy = 1

7 . The emittance decreases
with the horizontal phase advance, to a minimum plateau at around νx ∈ [0.4 : 0.43],
before further increase, due to the proximity of the half-integer resonance. The emittance
is here function of the focusing forces in the unit cell which both influence on the β-
functions and the dispersion function.
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a b
Figure 3.8: Variation of the emittance of a HOA unit cell of half-dipole 0.30 m,
with regards to (a) its horizontal phase advance at a fixed vertical phase advance
νy = 1

7 ' 0.1428, and (b) its vertical phase advance with a fixed horizontal phase
advance νx = 3

7 ' 0.4286.

Similarly, the vertical phase advance is varied in the same range, with a fixed hor-
izontal phase advance νx = 3

7 . The emittance here seems proportional to the vertical
phase advance, up until the vicinity of the integer and half-integer tune. While the vari-
ation of emittance with νx clearly states a minimum, its dependence with νy only comes
from the dispersion creation in the dipole, and its defocusing quadrupolar strength. The
smaller νy the lower the defocusing strength and the lower the emittance creation in the
dipole. The minimum emittance is achieved for the working point (νx, νy) = (3

7 ,
1
7).

3.2.3.2 Alternative phase advances and MBA lattices

Nevertheless, two third-order geometric resonances remain. Cancellation of low-order
resonances ensures their non-excitation by the sextupoles. Yet, the addition of necessary
straight and matching sections perturbs the HOA strict phase advance rule. Moreover,
the required straight sections are dispersion-free: a dispersion suppressor could perturb
the phase advance (see 3.2.4).

To increase the number of combinations for the possible phase advances and possibly
compensate the perturbation induced by the straight sections, this section discusses
phase advances (νx, νy) = (ap ,

b
p), with a, b < p and p prime. Further analysis is conducted

for p > 7. The next smallest prime number after seven is 11, which can seem quite large
- it would require an 11BA lattice, if the same rule is to be applied. To better compare
the sets of phase advances, let us look for 11 close to (3

7 ,
1
7), cancelling all geometric

resonances, the third order included. Such a combination is ( 4
11 ,

3
11): the full description

of the resonances is in Table 3.5.
An example of an unit cell of phase advance (νx, νy) = ( 4

11 ,
3
11) is displayed in Fig. 3.9,

for a 0.30 m half-dipole and with a bending angle of −0.10 degrees. The resulting level
of dispersion, fixed by the periodic condition, is higher than in the case (νx, νy) = (3

7 ,
1
7),

with an emittance of 73 pm.rad, instead of 53 pm.rad. The length of the dipole should
be adjusted in this case, to monitor the emittance creation.
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Figure 3.9: Unit cell with a half dipole of length 0.30 m, with a fixed phase advance
(νx, νy) = ( 4

11 ,
3

11 ).

To minimise losses and considering the minimum length of an unit cell, I designed
a 9BA HOA lattice, with an unit cell phase advance of (νx, νy) = ( 3

11 ,
1
11). The vertical

tune is then minimised, and so is the natural vertical chromaticity. The horizontal tune
is kept as a compromise between the length of the dipole and the lowest tune possible.
Further analysis of this 9BA lattice is available in Appendix F.

3.2.4 Dispersion suppressor

To minimise the effect of this disruption on the HOA principle, two dispersion suppres-
sors are discussed in this section. The first one is traditionally applied in MBA lattices
and was introduced in the section (2.2.2), in the discussion of the passage from a DBA
to a TBA lattice. The outermost dipoles are shortened by a factor close to 30%, allow-
ing the dispersion to be lowered down to zero. Further matching is required using the
quadrupoles available in the outer sections. Figure 3.10 illustrates the Twiss parameters
after use of this method (top).

A second method aims at keeping the same phase advance in all dispersive cells,
including the dispersion suppressor part of the period. To do so, the dispersion is
cancelled by adjusting the angles of the extrema bending magnets, one dipole and one
reverse bend. Since only the dispersion and the angles are varied by this method,
the modification is transparent to the Twiss parameters thus the phase advance. The
resulting extrema unit cell is displayed on the bottom of Fig. 3.10. After correction of
the total angle, the new angles of the dipoles and antibends are: 1.5594 degrees (0.42 T)
for core dipoles, 2.35 degrees (1.25 T) for extrema dipoles; -0.0975 degrees (∆x = −0.89
mm) for core antibends, -0.65 degrees (∆x = −5.9 mm) for extrema antibends.



Chapter 3. Ultra-low emittance schemes for SOLEIL upgrade 79

a

b
Figure 3.10: Matching of the dispersion-free zone by (a) reducing the extrema dipoles’
length, and matching the Twiss parameters using the two last quadrupoles (b) modify-
ing the bending angles, thus conserving the β-functions and the phase advance of the

last unit cell.

Table 3.6 compares the main characteristics of the period designed out of both meth-
ods: their length, effect on the dynamic, and effect in the efficiency of the matching sec-
tion required afterwards, to match the β-functions at the centre of the straight section.
The characteristics of both lattices are similar. The traditional ”missing dipole” method
has a higher horizontal tune, induced by the stronger focusing required to create the
dispersion-free zone. The higher reverse bending angle of the angular method explains
the difference in the momentum compaction factor and emittance.



Chapter 3. Ultra-low emittance schemes for SOLEIL upgrade 80

Table 3.6: Comparison of main parameters for two methods for matching of the
dispersion in a HOA lattice.

Traditional Angular
Betatron tunes (νx, νy) (3.24, 1.15) (2.57, 1.86)
Emittance 76 pm.rad 66 pm.rad
Momentum compaction factor αC 1.08× 10−4 5.50× 10−4

Reverse bending angle -0.048 degrees -0.125 degrees
Energy loss 20 keV 27 keV
(βx, βy) @ID (2.7 m, 2.7 m) (1.7 m, 1.7 m)

The angular method was put in place to conserve the HOA principle over the dis-
persive area. Table 3.7 compares the values of the first-order Resonant Driving Terms
(RDT) for both methods. The lattices were put at chromaticities (ξx, ξy) = (−1,−1)
using the core sextupole pairs. As expected, the RDTs of the angular method are sat-
isfyingly low: the minimisation occurred thanks to the fixed phase advance of the unit
cells.

Table 3.7: Values of the first-order resonant driving terms over one 7BA HOA period,
for both dispersion suppressor methods. The chromaticity is fixed in both lattices to

(ξx, ξy) = (−1,−1).

First-order sextupolar resonances Missing dipole Angular
νx h21000 52.82 0.15
3νx h30000 5.61 0.01
νx h10110 11.20 0.41

νx + 2νy h10200 3.97 3.69
νx − 2νy h10020 7.26 0.64

2νx h20001 1.04 5.93
2νy h00201 0.93 1.17

In the case of the traditional missing dipole method, two RDTs predominate: h21000,
h10110. Further minimisation is conducted on OPA. Table 3.8 compares the values of
the RDTs and sextupoles (a) before and (b) after the minimisation. Small variations
of the sextupoles are required to achieve the minimised RDTs below. Compared to
the sextupoles of the angular method in the last columns, the values required for the
traditional methods are either similar or lower, especially for the defocusing sextupoles.

Table 3.8: Values of the first-order resonant driving terms over one 7BA HOA period
before and after optimisation, for the traditional ”missing dipole” dispersion suppressing

method. The chromaticity is fixed in both lattices to (ξx, ξy) = (−1,−1).

First-order sextupolar resonances Before After minimisation Sextupoles Before After Angular method
νx h21000 52.82 0.01 SXF0 152.35 m−2 111.60 m−2 109.524 m−2

3νx h30000 5.61 0.16 SXD0 −93.2 m−2 −75.347 m−2 −121.50 m−2

νx h10110 11.20 1.30 SXF1 88.531 m−2 109.855 m−2 109.524 m−2

νx + 2νy h10200 3.97 5.69 SXD1 −60.393 m−2 −69.344 m−2 −131.13 m−2

νx − 2νy h10020 7.26 1.45 SX1 75 m−2 58.411 m−2 22.715 m−2

2νx h20001 1.04 2.77 SX2 −83.350 m−2 −64.624 m−2 −85.771 m−2

2νy h00201 0.93 0.93
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Figure 3.11 displays the transverse dynamic apertures of the 7BA HOA period,
where the dispersion is suppressed by modifying the angles of the extrema dipoles and
antibends. The good minimisation of the RDTs over the period, with no optimisation
of the sextupoles, creates a highly homogeneous transverse stability area with regards
to the energy deviation, with slight variations due to amplitude-dependent tune-shift
terms, which can be corrected with the implementation of octupoles. The dynamic
apertures for the standard method are displayed in Fig. 3.13. Although its dynamic
aperture is not as symmetric as the angular method, the large on-momentum aperture
is 1.5 times higher - considering the difference in the β-functions.

Figure 3.11: Transverse dynamic apertures achieved for a 7BA HOA lattice, of unit
cell phase advance (νx, νy) = ( 3

7 ,
1
7 ) and 0.6 m long dipoles, with the angular dispersion
suppressor method.
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Although the second method completely cancels the RDTs over a period, its match-
ing of the β-function in the middle of the straight section proves more difficult and
significantly increases the betatron tune. Moreover, the required angles for dispersion
matching increase the energy loss. The standard dispersion suppressor leaves more space
in the dispersive zone for nonlinear magnets, increasing the efficiency of the sextupoles.
Its dipole could be lengthened to 0.4 m, as the matching section could be kept 1 m long,
thus reducing the total losses over the period. For those practical reasons, this method
is selected for the 7BA HOA SOLEIL storage ring proposal, to be compared with the
hybrid lattice.

3.2.5 Layout of the 7BA HOA lattice proposal for the SOLEIL upgrade
and general characteristics

The chosen HOA lattice for the upgrade studies of the SOLEIL storage ring is a 7BA
lattice, composed of unit cells of betatron phase advances (3

7 ,
1
7). Figure 3.12 displays

the layout of the lattice, and its β-functions and dispersion, with thin sextupoles. Its
general characteristics are available in Table 3.9.

Figure 3.12: Twiss parameters and magnet layout of the 7BA HOA lattice for the
SOLEIL 2.75 GeV storage ring.

Composed of five unit cells of phase advance (νx, νy) = (3
7 ,

1
7), the variations of the

β-functions are periodic in the core lattice. The HOA principle is perturbed by the
dispersion suppressor cell, which integrates a longer half-dipole, placed further away
from the antibend. Both their focusing strengths are varied for the matching of the
dispersion, thus perturbing the phase advance of the half-cell. The dispersion reaches
a maximum of 2.1 cm, at the centre of the core unit cells. The low β-functions do
not exceed 7-8m in both planes: this induces larger betatron tunes and natural chro-
maticities, (ξx,nat, ξy,nat) = (−7.18,−3.08). The β-functions are arbitrarily matched at
(βx, βy) = (2.7, 2.7) m at the centre of the straight section, placing the lattice near the
beam matching requirements (cf sec. 1.4.1.2).
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Table 3.9: SOLEIL 2.75 GeV 7BA HOA lattice proposal, 20-fold symmetry.

Emittance εx 76 pm.rad
Tunes per period (νx, νy) (3.24, 1.15)
Momentum compaction factor α0 1.09× 10−4

Reverse bending angle -0.048 degrees
Energy loss per period 19.7 keV
(βx, βy) @ID (2.7, 2.7) m

3.2.5.1 Transverse dynamic aperture

The on-momentum dynamic aperture over 1000 turns of the present 7BA HOA lattice
is displayed in Fig. 3.13 and 3.14. The dynamic aperture is calculated at the middle
of the straight section. As expected with the minimisation of all first-order resonances
following the HOA principle described in 3.2, the dynamic aperture of the 7BA HOA
lattice is homogeneous with energy deviation, compared to that of the hybrid lattice.
The cancellation of the first-order RDTs allows a transverse dynamic aperture frontiers
driven by the tune shift, which can be further corrected with octupoles.

Figure 3.13: Horizontal dynamic aperture with energy deviation, for the chosen 7BA
HOA lattice, of unit cell phase advance (νx, νy) = ( 3

7 ,
1
7 ), and 0.8 m long dipoles. The

dispersion-free is created with the ”missing dipole” method.

The HOA lattice presents a high stability in almost its entire dynamic aperture,
ensuring the good cancellation of the sextupolar resonances. The transverse limits of
the dynamic aperture are quasi-symmetric with the energy deviation, in both planes.
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Figure 3.14: Vertical dynamic aperture with energy deviation, of the chosen 7BA
HOA lattice, of unit cell phase advance (νx, νy) = ( 3

7 ,
1
7 ), and 0.8 m long dipoles. The

dispersion-free is created with the ”missing dipole” method.

The on-momentum dynamic aperture reaches ±2 mm in the horizontal plane, +3 mm
in the vertical plane, which remains lower than the hybrid lattice. Nonetheless, the
performances off-momentum and the expected robustness of such lattice overcome the
expectations of the hybrid lattice.

3.3 Comparison of the ultra-low emittance lattices with
two different chromaticity correction schemes

This section summarises the important points of the detailed linear analysis of both
ultra-low emittance 7BA lattices: a −I hybrid lattice with a global correction of the
chromaticity, and a HOA lattice with a local correction.

Their main characteristics are put side by side in the first part, linear mostly. The
evolution process of both lattices are to be detailed, their efficiency in correcting the
tune shift using octupoles, space, feasibility, manoeuvrability and robustness. All results
presented in this section are the product of my own investigation. Their longitudinal
dynamics are compared: further studies are conducted in this plane in Chapter (5).

3.3.1 Table of characteristics

Table 3.10 gathers the main linear parameters of both selected lattices adapted to the
SOLEIL storage ring upgrade constraints. The targetted emittance are around 70
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pm.rad, including small reverse bending angles. The betatron tunes are comparable,
and fixed by the lattice scheme. The low vertical tune of the hybrid lattice is the result
of strong focusing, which produces a high vertical natural chromaticity, comparable to
its horizontal counterpart.

The β-functions at the centre of the straight section are of the same order, complying
with the targeted electron beam size for the optimum electron-photon exchange (Eq.
1.16). Two differences remain: the momentum compaction factor and the energy loss.
Despite having higher reverse bending angles than the HOA lattice, the hybrid lattice
preserves a high momentum compaction factor thanks to its two dispersion bumps.

Table 3.10: Comparison of the main parameters of the designed 7BA Hybrid lattice
and the 7BA HOA lattice for the study case of the SOLEIL upgrade.

Scheme Hybrid HOA
Emittance εx 72 pm.rad 76 pm.rad
Tunes per period (νx, νy) (2.76, 0.91) (3.24, 1.15)
Natural chromaticities (ξx, ξy) (-6.70, -6.25) (-7.18, -3.08)
Momentum compaction factor α0 1.47× 10−4 1.0853× 10−4

Reverse bending angle -0.160/-0.165 degrees -0.0477 degrees
Energy loss per period 15.5 keV 19.7 keV
(βx, βy) @ID (1.0, 1.0) m (2.78, 2.74) m

3.3.2 Magnetic characteristics

A major discrepancy between the two lattices is the number of sextupoles, and their
strengths. Such information is available in Table 3.11. The hybrid scheme corrects the
chromaticity globally, with sextupoles located under a dispersion bump. A minimum of
two families are required per period, or six sextupoles magnets per period, considering
the symmetry: two focusing and four defocusing sextupoles. The dispersion bump
improves the efficiency of the sextupoles, thus reducing their required strengths. The
HOA lattice inherently provides each of its unit cells with three sextupole magnets to
correct the chromaticity directly at its source. For the 7BA HOA lattices considered,
the minimum number of chromatic sextupoles rises to 18 per period, significantly higher
than in the hybrid lattice.

Whilst the hybrid scheme optimises the chromatic correction and reduces the contri-
bution of sextupoles in the lattice, the HOA scheme combines high natural chromaticity
and low dispersion: the efficiency of its sextupoles is dramatically reduced. In addi-
tion, the large magnet occupation of the HOA lattice limits the length of the sextupole
magnets, further limiting their efficiency. Managing the sextupoles will prove to be a
non-trivial point in such a lattice. The lattice may make them transparent in terms of
resonances, but does not optimise their chromaticity correction.
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Table 3.11: Comparison of the composition in magnetic elements in the hybrid and
the HOA lattice.

7BA hybrid 7BA HOA
Total number of magnets 27 44

of bends 7 7
of reverse bends 8 12
of focusing quadrupoles 1 1
of defocusing quadrupoles 0 2
of chromatic sextupoles (SF/SD) 4/3 6/12
of harmonic sextupoles 0 2

Magnet occupation 50.41% 58.88%
excluding drifts < 0.15m 66.01% 77.67%

Core dipole lengths 1.12 m/0.6 m 0.8 m
Sextupole lengths 0.10 m SF: 0.20 m/ SD:0.10 m
Quadrupole strengths k1

in core bending magnets −4.14 m−2 −3.45 m−2

in core reverse bends 10.6 m−2 8.54 m−2

in exterior bending magnets −1.15/− 2.0 m−2 −1.49 m−2

in exterior reverse bends 3.3/3.7 m−2 6.70 m−2

of the matching section −2.0/9.19 m−2 −9.48/10.76/− 11.3 m−2

Sextupole integrated strengths k2l
of focusing sextupoles 15± 5 m−2 125± 25 m−2

of defocusing sextupoles −20± 5 m−2 −95± 5 m−2

Magnet occupation The magnet occupation refers to the percentage of length occu-
pied by the magnetic elements in a lattice. It gives an idea of the magnet density and
the space available for the addition of corrective magnets - such as harmonic sextupoles
and octupoles. With a higher number of sextupoles, the HOA lattice scores a magnet
occupation of 58.88%, where the hybrid lattice stays at a 50.4% rate. The specificities of
the SOLEIL upgrade require a distance of at least 5 cm between two magnets. Consid-
ering a minimum length of 5 cm for a sextupole or an octupole, I further excluded any
drift space smaller than 15 cm, where no magnets could be included. The discrepancy
between the magnetic occupation of both lattices is further increased: 66.0% in the hy-
brid case, 77.7% in the HOA case. The situation is even worse in the dispersive zone,
where the magnet occupation of the HOA lattice reaches 100 %. The high occupation
in the HOA lattice reduces the possible non-linear improvements of the lattice, such
as the addition of sextupoles or octupoles in the dispersive zone. Therefore, nonlinear
optimisation could require to increase the number of sextupole families, which could
damage the HOA principle.

Magnetic strengths The quadrupole strengths k1[m−2] and sextupole integrated
strengths k2l[m−2] of both lattices are displayed in Tab. 3.11.

Although the core quadrupole of the hybrid lattice are stronger than in the HOA
case, the release of the optics for the creation of the dispersion bump alleviates the
strong focusing of the β-functions, resulting in lower betatron tunes. The β-functions
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of the HOA lattice remain low in the core, as well as in the matching section, further
increasing the betatron tunes.

In the case of the sextupoles, the strengths are higher by a factor 10 in the HOA lat-
tice: the dispersion bump of the hybrid lattice reduces the necessary sextupole strength
for the correction of chromaticity. The HOA lattice is tight: with a large magnetic
occupation, the length of the sextupoles is limited by the total length of the unit cell.
The low dispersion makes it harder for the sextupoles to correct the chromaticities, thus
their strong strengths.

3.3.3 Transverse dynamics

The transverse dynamic apertures with energy deviation were already presented for both
lattices, in Sec. 3.1.2.1 and 3.2.5.1 for the hybrid lattice and the HOA lattice respectively.
This section compares some analysis of the off-momentum transverse beam dynamics for
both lattices. The HOA lattice, in Fig. 3.13, presents a rather homogeneous acceptance
with energy, without any optimisation of the sextupoles or the addition of any octupole:
the cancellation of first- and second-order sextupolar resonances and the low tune-shift
with momentum allow a large momentum acceptance of the HOA lattice. Yet, the
on-momentum dynamic aperture remains low compared to that of the hybrid lattice.
Further optimisation should enlarge both on- and off-momentum dynamic apertures and
ensure symmetric apertures for ±δ. In the case of the hybrid lattice in Fig. 3.3, the
dynamic aperture decreases rapidly with momentum deviation, as the tune shift with
momentum rapidly reaches half an integer. Further optimisation of the hybrid lattice
should aim at enlarging the momentum acceptance, for both transverse stability and
beam lifetime.

3.3.3.1 Tune shift with energy

The off-momentum stability has to be controlled for a stable beam and a high beam
lifetime. The main source of off-momentum losses in single-particle dynamics is the
transverse resonances. The control of the tune shift ∆ν with energy deviation δ is
necessary to increase the energy acceptance of a lattice. As a reminder, the variation of
the tunes with energy deviation is described by the chromaticity:

∆ν = ξδ = ξ0δ + ξ1δ2 + ξ2δ3 +O(δ4) (3.1)

Higher-order chromaticities Once the first-order chromaticity is corrected by the
sextupoles (cf 2.1.2.5), the tune shift with energy is dominated by either the second-
order or the third-order chromaticities. Minimisation of higher-order chromaticities can
be done by increasing the number of sextupole families. The second-order chromaticities
can be estimated by tracking the trajectory of off-momentum particles and extracting
their tune variation with energy. Their exact expressions can be derived applying the
canonical perturbation theory [110].
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Table 3.12: Comparison of the second- and third-order natural chromaticities with a
homogeneous correction of the first-order chromaticities.

Natural Chromaticities Homogeneous correction
HOA lattice Hybrid lattice HOA lattice Hybrid lattice

ξ0
x -7.181 -6.705 -0.002 0.04
ξ0
y -3.082 -6.411 0.006 0.04
ξ1
x 46 49 9.2 -3.4
ξ1
y 3.2 365 2.2 2.2
ξ2
x -1072 -1514 26.5 5.2
ξ2
y -12.3 -22180 -15.7 22

Table 3.12 gathers the second- and third-order chromaticities for both lattices. Chro-
maticities are compared in the case of no sextupoles - natural chromaticities, and in the
case of a homogeneous correction (ξ0

x, ξ
0
y) = (0, 0), where sextupoles of same polarity are

identical. The second- and third-orders are extracted using a polynomial fit on the tune
shift with momentum. For the purely linear lattices, they were computed for a range
δ = ±2.2% in the HOA lattice, and δ = ±0.7% in the hybrid lattice. The corresponding
tune shifts are displayed in Fig. 3.15 and 3.16. Indeed, the fractional part of the tune
{Qx} reaches a half-integer value for δ ≈ 2.3% in the HOA case, {Qy} an integer for
δ ≈ 0.08% in the hybrid case, limiting their energy acceptance.

a b
Figure 3.15: Tune shift with energy for the (a) natural chromaticities and (b) a

homogeneous chromaticity correction for the HOA lattice.

Tune shift with energy The tune shift with energy deviation is tracked for both
lattices, with all sextupoles off (a) for the HOA lattice, (c) for the hybrid lattice, and
with homogeneously corrected chromaticities (ξ0

x, ξ
0
y) = (0, 0) (b) of the HOA lattice,

(d) of the hybrid lattice, with only two chromatic sextupole families. The results are
displayed in Fig. 3.15 for the HOA lattice and Fig. 3.16 for the hybrid case.
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c d
Figure 3.16: Tune shift with energy for the (c) natural chromaticities and (d) a

homogeneous chromaticity correction for the hybrid lattice.

While the first-order chromaticities are corrected to zero, the HOA lattice tune shift
with energy deviation is driven by the second-order chromaticity in the horizontal plane
with a parabolic dependence: a variation of +0.1 over a δ = ±10%, which is a +50%
variation on the tune. In the vertical plane, the effect of the second- and third-order
combined induces a variation of +0.04/+ 0.01. The third order compensates the second
in the range δ > 0, flattening the dependence. The overall variation remains acceptable
in terms of stability, as the the tunes remain in the half-integer window with a sim-
ple chromaticity correction. Further optimisation of the off-momentum dynamics will
continue to flatten the tune shift, by increasing the number of sextupole families and
by including octupoles. The conclusions are similar for the hybrid lattice, although the
signs are opposite. The vertical tune shift of the hybrid lattice depends on the cubic
order of the energy deviation, driven by the third order.

Figure 3.17: Resonance diagram for the (left) 7BA HOA lattice and (right) the 7BA
hybrid lattice.
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Resonance diagram Figure 3.17 displays the tune shift with energy for the 7BA
HOA and hybrid lattices. Each lattice is only composed of two chromatic sextupole
families, which corrected their chromaticities to (0, 0). The tune shift is plotted on a
resonance diagram, where the systematic resonances are displayed. Since both lattices
present a periodicity of 20, the only excitable resonances have an order of multiple of 20
(cf sec. 2.1.3).

3.3.3.2 Frequency map analysis

Figure 3.18 compares the Frequency Map Analysis (FMA) of the 7BA HOA and hybrid
lattices. The frequency map analysis includes the transverse dynamic aperture and
measures, for different coordinates (x, y), the variation of the betatron tune after a
defined number of turns, here 1000. The colour bar refers to the value of the diffusion
index, defined as:

Dν = 1
Nturns

× log10

(√
(νx(N)− νx(N/2))2 + (νy(N)− νy(N/2))2

)
(3.2)

Figure 3.18: Frequency map analysis for three energy deviations of the (left) 7BA
HOA lattice and (right) the 7BA hybrid lattice.

The FMA of both lattices is a study of their long term stability: green and red lines
represent instabilities in the transverse plane: they are related to resonances excited by
the off-axis particle oscillations. Figure 3.18 (a) gathers the FMA of the HOA lattice,
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at three energies, 0%, and ±3%. Such FMA was calculated thanks to a code devel-
oped by M. Ehrlichman for Bmad-MOGA [43]. The low variation of the tunes proves
the high stability of such lattice and scheme, despite the green lines defining crossed
resonances. Further optimisation should aim at increasing the negative off-momentum
dynamic aperture, and limit the impact of the few resonances displayed. In Fig. 3.18
(b), the on-momentum and ±3% frequency map analysis of the hybrid lattice are pre-
sented: while the on-momentum is composed of a large blue thus stable area, thanks to
the application of the non-interleaved principle, it is no longer the case for slight devi-
ation in momentum, where the dynamic aperture drops because of crossed resonances
(red dots).

3.3.3.3 Reduction of the on-momentum dynamic aperture in 6D tracking

Including the Radio-Frequency (RF) system in the tracking simulation, the dynamic
aperture of both ultra-low emittance lattices could be impacted. Indeed, the addition
of RF cavities in the lattices triggers a longitudinal motion, independently described
in Chapter 5. The oscillatory motion in the longitudinal plane, combined with the
transverse motion induces the synchro-betatron oscillations. The included RF cavity in
the lattices had a 1.1 MV voltage and 352.2 MHz frequency.

Figure 3.19: Comparison of the on-momentum dynamic apertures without and with
RF cavities, for (a) the HOA lattice and (b) the hybrid lattice.

Figure 3.19 compares the on-momentum dynamic apertures without and with the
addition of the RF cavities in the tracking, for both the HOA 7BA lattice (left in the
figure) and the hybrid 7BA lattice (right in the figure). The on-momentum dynamic
aperture is overall conserved with RF, in the HOA lattice. On the contrary, the hybrid
lattice presents a drastic reduction of its on-momentum dynamic aperture with the
consideration of the longitudinal motion. Indeed, since the on-momentum dynamic
aperture is a peak in the overall dynamic aperture with momentum displayed in Fig. 3.3
for instance, small oscillations in energy deviation in the vicinity of δ = 0% rapidly falls
outside the transverse stability area. This effect is studied in the Chapter 6, where the
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first-order canonical perturbation theory is applied to describe the perturbed averaged
trajectory of the particles, thus leading to the perturbed path length ∆C.

3.3.3.4 Impact of quadrupoles errors on the transverse dynamics

The robustness of the lattices regarding quadrupole errors is tested in this section. This
analysis implements random quadrupole errors in the whole lattice, within the error
range. The relative error is expressed as a percentage of the nominal value. The new
strengths are therefore expressed as the following:

kerr = (1 + error × rand(±1))knom (3.3)

with kerr the quadrupole strength including errors, error the relative error, and knom

the nominal strength. Figure 3.20 gathers the variation of the on-momentum dynamic
apertures after Nt = 100 turns, for a random draw of N = 100 rings and for three
relative errors of ±0.1%, ±0.5% and ±1%. The left column is dedicated to a period of
the HOA lattice, the right column to a period of the hybrid lattice. In red lines are the
nominal dynamic apertures.

From an error of ±0.1% the HOA lattice presents a high resistance to the quadrupole
errors. With an averaged ±0.1 mm, ±0.2 mm and ±0.3 mm lost in the horizontal and
vertical amplitude, for an error of ±0.1%, ±0.5%, and ±1%, respectively, the lattice
conserves a large enough stability area. The hybrid lattice dynamic aperture rapidly
deteriorates with the quadrupoles errors, with an initial loss of about ±0.1 mm for
errors of ±0.1%, to a third of its stability area of a relative error ±1%.

3.3.4 Touschek lifetime and Intra-Beam Scattering

Up to this section, the different studies conducted in this chapter considered the trajec-
tory of a single particle. Here, we will introduce two necessary notions, which describe
the stability of an electron beam: its lifetime and its equilibrium emittance, which take
into account multi-particles. Those are part of a larger area in accelerator physics: the
collective effects.

A beam is composed of several particles of the same charge, located around a refer-
ence particle. Electromagnetic collisions occur between the particles, during their syn-
chrotron and betatron oscillations, in which particles exchange momenta. In the same
logic as the quantum excitation, they could result in an increase in both transverse and
longitudinal emittances.

Beam scattering These collisions are classified into two categories according to the
largeness of the involved energy transfer. A large change in momentum, or large-angle
scattering can lead to energy deviations larger than the energy acceptance of the ring,
thus losing particles. It is called the Touschek scattering, for Touschek was the first to
describe this phenomenon on AdA, in [111]. Small angle scattering leads to an overall
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Figure 3.20: Impact of relative quadrupole field errors of ±0.1%, ±0.5% and ±1% on
the 7BA HOA (left column) and the 7BA hybrid (right column) periods’ on-momentum
dynamic aperture, in the middle of the straight section, for a relative error of: (a) and
(b) ±0.1%, (c) and (d) ±0.5% and (e) and (f) ±1%. In red is drawn the dynamic

aperture of the nominal lattice, without errors.

increase in the beam emittance. It is the Intra-Beam Scattering (IBS), of which first
theory was described in [112, 113].

Beam lifetime The beam lifetime is limited by two factors: the interaction of the
electrons with the remaining gas in the vacuum chamber, and the interaction between
the electrons of the same bunch. The first depends on the averaged pressure of the
vacuum chamber, the total beam current and the transverse stability area. The beam
lifetime of an ultra-low emittance electron beam is dominated by the probability of large
angle Coulomb scattering between two electrons: indeed, in the larger scattering angle
of two electrons in an beam, the more likely particles will experience an energy exchange
that will take them out of the 6D acceptance, and therefore be lost. The probability
of such scattering is expected to increase with the energy acceptance and decrease with
particle density, determined by both the current per bunch and the bunch volume.
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In third generation storage rings, the beam lifetime normally reaches tens of hours in
a multibunch operation. The current status of the SOLEIL storage ring displays a beam
lifetime higher than 20 h, for a beam total current of 500 mA and 416 bunches. In the
case of ultra-low emittance lattices, with the reduced beam sizes and the predominance
of non-linearities in the particle trajectory, the Touschek lifetime is reduced to the order
of an hour, or even less [114]. Several methods are being studied to increase the Touschek
lifetime. Some machine experimented calculation of the ultra-low emittance Touschek
lifetime in the round beam case [115]. Some proposed to create vertical dispersion
bumps, to distribute the particle density in the vertical plane [116].

Several formulae were developed to evaluate the beam lifetime[117]. In this section,
calculations were conducted using the code ZAP[118]. The Touschek lifetime there is
estimated using Bruck’s formula:

(τ1/2)−1
T =

√
πr2

0cNb

γ2(∆px)3εAVb
F (εA) (3.4)

where r0 is the Bohr radius, c the speed of light, Nb the number of bunches,γ the Lorentz
factor, εA =

(
1

∆px

(
∆p
p

))2
and Vb the bunch volume.

This section estimates the dependence of both the Touschek lifetime and the Intra
Beam Scattering on the emittance. To do so, I used the code ZAP, which allows the user
to manually enter the value of the lattice emittance, and implement any coupling rate
between the transverse planes. The calculations are instantaneous, as the momentum
aperture is empirically input by the user. Despite the several imprecisions in ZAP
calculations, this discussion’s only interest lies in the variations of the beam lifetime and
growth rate.

Parameters Calculations are made with the input parameters detailed in Table 3.13
and 3.14. The lattice used is the 7BA hybrid lattice developed for the SOLEIL tunnel
(3.1). The simulations are conducted for a full ring at a full beam intensity Ic =
500 mA, with 416 bunches of 1.42 nC each. The natural bunch length is 3.9 mm.
The calculations are done with a simulated round beam, which reduces the large-angle
scattering probability [115].

Table 3.13: General parameters of the 7BA hybrid lattice.

Energy [GeV] 2.75
Circumference C0 [m] 354.1
Revolution frequency f0 [kHz] 846.63
Momentum compaction α0 1.47× 10−4

Energy loss per turn U0 [keV] 310
Natural RMS momentum spread 8.63× 10−4

Natural horizontal emittance [pm.rad] 72
Full coupling transverse emittance [pm.rad] 49.0
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Table 3.14: Calculation parameters for Touschek lifetime and IBS equilibrium emit-
tance of the hybrid lattice using the ZAP code.

Horizontal damping time τx [ms] 9.847
Vertical damping time τy [ms] 20.943
Horizontal emittance damping rate 2

τx
[s−1] 203.11

Longitudinal damping time τe [ms] 23.982
Longitudinal emittance damping rate 2

τe
[s−1] 83.40

RF voltage VRF [MV] 1.00
RF frequency fRF [MHz] 352.20
Vrfp [MV/s] 2.104× 109

Harmonic number h 416
Natural RMS bunch length [cm] 0.390
Total beam current Itot [mA] 500
Number of bunches Nb 416
Bunch current Ib [mA] 1.20
Number of electrons per bunch Ne 8.861× 109

3.3.4.1 Touschek lifetime versus emittance

Figure 3.21 gathers the estimation of the Touschek lifetime in hours, when fully-coupled
natural emittance varies. The momentum acceptance was kept constant along the ring,
at 5%, thus giving a highly optimistic evaluation of the Touschek lifetime.

Figure 3.21: Variation of the Touschek lifetime with natural emittance for the 7BA
hybrid lattice of 72 pm.rad natural emittance, 50 pm.rad emittance with full coupling.
Calculations are made for two cases: of a natural bunch length (in plane line) and of a

bunch lengthened 5 times, assuming the use of a harmonic cavity(in dashed line).

An interesting effect occurs when the fully-coupled emittance reaches values < 40
pm.rad: in this regime, the Touschek lifetime increases exponentially, even doubling the
value of the plateau of high-emittances (> 85 pm.rad). When the beam size is smaller
for highly-relativistic electrons, their momenta align, making large-angle scattering less
likely. This effect is favourable for a large beam lifetime.
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In the case of the 7BA hybrid lattice, the natural horizontal emittance is 70 pm.rad.
The application of a round beam results in an effective horizontal emittance of 50 pm.rad,
placing the fully-coupled lattice in the favourable regime at full current. As shown in Fig.
3.21, ultra-low emittance lattices could enter a favourable regime, where the Touschek
lifetime is high enough for an easier machine operation. Current lattices, even in the
case of round beam, are not in this regime.

3.3.4.2 Intra Beam Scattering versus emittance

While Touschek scattering’s probability decreases with smaller emittance, the proba-
bility of small angle Coulomb scattering which induces small-energy exchange rather
increases, thus yielding to an expected increase of the beam emittance.

Figure 3.22: Emittance blow-up due to IBS with natural emittance in the case of a
natural bunch length (in plane line) and of a bunch lengthened 5 times, assuming the

use of a harmonic cavity(in dotted line), for the SOLEIL 7BA hybrid lattice.

Figure 3.22 compares the variation of the emittance blow-up due to IBS with the
natural emittance of an ultra-low emittance lattice, with and without bunch lengthening.
As expected, the rate of the emittance blow up increases rapidly when the emittance is
decreased: the equilibrium emittance could be the double of the natural emittance.

Bunch lengthening with a harmonic cavity To mitigate this phenomenon, the
particle density is decreased both longitudinally and transversally by lengthening the
beam, using harmonic cavities[119, 120]. Third-harmonic cavities work at the third-
harmonic of the RF frequency, and can lengthen the beam by about a factor of three
and five in the ultimate limit. They proved to increase the Touschek lifetime of third-
order storage ring lattices [121]. The resulting emittance blow-up is reduced by almost
2 in Fig 3.22 at the lowest emittances, for a lengthened bunch of 19.5mm.
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3.3.4.3 Energy acceptance and Touschek lifetime

The previous calculations were conducted under a constant and arbitrary momentum
acceptance. In a real lattice, the momentum acceptance varies along the longitudinal
position s. Ultra-low emittance lattices suffer from a general increase of the sextupole
strengths, necessary to compensate the large natural chromaticities. Strong sextupole
strengths excite more nonlinear resonances, even when compensated by the schemes
under scrutiny (3.1 and 3.2). Precise calculation of the Touschek lifetime must scan
the momentum acceptance along the lattice. Figure 3.23 verifies, using ZAP, the link
between the beam lifetime and the momentum acceptance, and estimates the energy
range to be optimised dynamically, to increase the Touschek lifetime.

Figure 3.23: Evolution of the Touschek lifetime versus momentum acceptance. Sim-
ulation are made with ZAP, on the SOLEIL 7BA hybrid lattice at a fully-coupled

horizontal emittance of 50 pm.rad.

A plateau is reached for an acceptance of ' 4.8%, which depends on the RF voltage.
Nevertheless, the Touschek lifetime remains higher with a higher momentum acceptance.
Off-momentum optimisation should be conducted in the next chapter.

3.4 Conclusion

The ultra-low emittance schemes described in the section 2.3 were applied to the SOLEIL
upgrade of its 2.75 GeV storage ring. The hybrid scheme was implemented by one of
my colleagues, Alexandre Loulergue, while I contributed to the development of a HOA
lattice. I then compared the main characteristics of both lattices, and their on- and
off-momentum dynamics.

While the on-momentum dynamics is optimum in the hybrid lattice, its off-momentum
dynamics require additional optimisation. Furthermore, the path length effect limits
even its on-momentum dynamic aperture, when synchro-betatron oscillations are con-
sidered. On the contrary, the HOA lattice presents a strong robustness with regards
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to the energy deviation and implemented errors. Furthermore, since the HOA lattice
is composed of small building blocks, it is easier to adapt itself to a given geometric
constraint of the ring, by adjusting the number of the above basic blocks along the ring.
Those characteristics make the HOA principle a highly interesting scheme to be applied
on the SOLEIL storage ring, that already possesses a lack of symmetry. Nevertheless,
the cost of the HOA lattice is higher in terms of magnet strengths and occupation: the
force of the sextupole magnets were ten times higher than in the hybrid lattice, because
of a reduced overall horizontal dispersion. Further analysis of both lattices are con-
ducted in the next chapter: both lattices are implemented in a Multi-Objective Genetic
Algorithm, to optimise their on- and off-momentum dynamic apertures.



Chapter 4

Nonlinear optimisation of
ultra-low emittance lattices

The strong sextupoles, required for the correction of the natural chromaticities, perturb
the dynamic and stability of the ultra-low emittance lattices. Further optimisation is
therefore required to compensate the effect of the sextupoles and enhance the particles
stability within the storage ring. Different methods and measures exist. For instance,
the tune shift with energy can be corrected by minimising the second- and third-order
chromaticities, by choosing the adequate strengths for the sextupoles [122]. Other codes
look into the momentum acceptance along the ring, required for the calculation of the
Touschek lifetime: it can be enhanced with the inclusion of harmonic sextupoles and oc-
tupoles in the lattice. Moreover, the analysis of the sextupole resonances can determine
which resonance limits the transverse dynamic aperture [123].

Nonetheless, the increase in the sextupole strengths and the tight lattices make the
new designs extremely nonlinear, which proves difficult to handle by hand, or with the
codes used for the development of third-generation storage rings, which have either a
limited number of variables, range, or consider the sextupoles in the thin lens approx-
imation - which is no longer valid in the ultra-low emittance lattices presented, or do
not take into account the octupoles as bulk magnets, or have a limited access to nodes
which dramatically increases the required time for any optimisation with a high vol-
ume of variables. The use of novel numerical tools such as multi-objective algorithms
allows nonlinear optimisations of the 6D dynamics and stability with a large number of
variables, with a possible parallelisation.

4.1 Multi-objective genetic algorithm

Genetic algorithms are optimisations based on biological evolutionary processes of a
population: natural selection, cross-over and mutation of an individual’s genes. The
algorithm studies a set number of individuals called a generation. The characteristics
of each individual are called genes and can be subjected to different constraints. The
performances or fitness of each individual are evaluated once the generation is complete

99
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and the individuals are ranked accordingly. Selection occurs and to restore the following
generation, cross-over of two parental genes are used to birth a new individual. A
mutation probability is implemented to scan the solution map.

The genetic algorithm used in the present thesis is a Multi-Objective Genetic Algo-
rithm (MOGA) which optimises three objectives in a solution space defined by several
constraints. The following section introduces the genetic algorithm steps and describes
the specificities of the code MOGA used.

4.1.1 Introduction to MOGA-Bmad

The MOGA available with Bmad, an accelerator code developed at Cornell University
([124]), optimises the on- and off- momentum Dynamic Apertures (DA) using a set
of sextupoles, while conserving the chromaticity. The principles of the optimisation,
common to any MOGA algorithm, are detailed below, with a description of the input
and output files, as well as the different analysis scripts provided in the package. The
program is developed by M. Ehrlichman, in Cornell University [43]. A large part of the
analysis scripts used were developed by him. The Bmad distribution was installed in
the CEA cluster, Centre de Calcul Recherche et Technologie (CCRT) [125], available for
SOLEIL staff.

4.1.1.1 Theoretical environment

To control and lead the optimisation, targets should be defined: they are the objectives.
The dynamic aperture of a storage ring is limited by either the magnetic fields and
resonances, or the physical aperture of the vacuum chambers. The physical aperture
is the vacuum chamber dimensions projected in the transverse plane (x, y) through the
Twiss functions. A dynamic aperture limited by the physical aperture is the best case
scenario and it is currently the case with the current SOLEIL lattice. Nevertheless,
as seen in Figure 3.13 and 3.3, ultra-low emittance lattices present strongly reduced
dynamic apertures of the order ±1 mm for βx,y = 1 m, which are below the expected
physical aperture of 5− 10 mm.

The dynamic apertures are usually calculated by tracking the particles turn by turn,
scanning the transverse plane, and state the stability of the transverse coordinates if the
particle survived the requested number of turns. To speed up the optimisation process,
the estimation of the dynamic aperture is done by calculating its border. Instead of
mapping the transverse plane, the border is evaluated by radially scanning the (x, y)
plane, for a certain number of angles, reducing the number of scans by a dimension. As
the aim is to match or be larger than the physical aperture, if the dynamic aperture
border is larger at one point, it will be treated as equal to the physical aperture within
the code.

Objectives The objective value is defined as the distance between the real dynamic
aperture and the linear dynamic aperture in the transverse plane (x, y). Three objectives
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are available in MOGA-Bmad, one for three different energies, which can be fixed in the
main file.

fE(x) = 1
Nangle

∑ |Lda − Lla|
Lla

(4.1)

where Lda is the border point of the dynamic aperture at a certain angle, Lla the
corresponding physical aperture, and Nangle the number of radial angles used to scan
the (x, y) plane. By definition, the objective values are comprised between 1 and 0: 1
refers to an unstable area, 0 to a dynamic aperture as large as or larger than the physical
aperture. Thus, the optimisation aims for objective values of 0, or the lowest possible
for each energy.

Constraints Several constraints guide the optimisation. MOGA-Bmad distinguishes
two types of constraints: the dominant constraints and the side constraints. Dominant
constraints must not be violated: if so, the individual will not be considered as a suitable
option within the algorithm. The dominant constraints are:

- the bounds on the sextupole strengths,

- the global bounds on the chromatic closed orbit - i.e. nonlinear dispersion for both
non-zero energies,

- and the bounds on the chromatic footprint within set energy deviation and tune
range.

The number of dominant constraints is fixed as an input: therefore, if the number of set
dominant constraints is lower than the list here above, the rest of the constraints are
considered as side constraints.

Feasibility First, the individual must comply with the dominant constraints, which
states their feasibility: if all dominant constraints are verified, the individual is declared
feasible, and further evaluation will follow. Otherwise, the individual is unfeasible, and
receive a low rank. This parameter saves time, as only the feasible individuals will be
evaluated.

Solution space Now, the values of those objectives are manipulated with the sex-
tupoles magnets. Let us use Nsext as the number of sextupole magnets defined as vari-
ables in the optimisation. The initial vectorial space Esext, of dimension Nsext, gathers
the strengths of each sextupoles. Indeed, a vector x in Esext is composed as :

∀i ∈ {1 : Nsext}, xi =
(
ki1, · · · , kij , · · · , kiNsext

)
(4.2)

with (kj)1≤j≤Nsext : ξx,y = ξcorr, the sextupole strengths.
Yet, the main constraints of MOGA-Bmad are the chromaticities, kept constant in

both planes during the optimisation process. The effective variables and the optimisation
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vectorial space will then be the projection of the sextupoles space with regards to the
plane where both chromaticities are constants. Any vector from this solution space
is called an individual and its coordinates, genes. The genes, linked to the sextupole
strengths, are to be varied in order to optimise the objective functions.

As the variable space has a higher dimension than the objective space, the expected
results of the optimisation are not a Cauchy-Schwartz solution space, but a Pareto front:
it is the frontier defined by the minimum distance of the vectorial space Eobjs = {objs(1 :
3)/objs = f(xi)i∈{1:Nsext}, x ∈ Esext} and the optimum objectives space Eopt = 01×3.

4.1.1.2 Optimisation process

Multi-Objective Genetic Algorithm (MOGA) is based on the natural evolutionary pro-
cess – as described by Charles Darwin. Solutions are gathered in generations: each
solution is an individual whose genes are the sextupole strengths. When the generation
is completed, the individuals are evaluated on their objective values and their feasibility.
Then, they are ranked using the dominance relationship below. Half of the generation
is then deleted, the remaining half used to breed new individuals. Cross-over of the
parents genes is widely used to create new individuals, yet a probability of mutation
is implemented, to scan the map and avoid stagnation around a local minimum. After
the first generation has been either implemented manually or generated randomly, the
sorting algorithm has to rank the solutions, in order to best fit the requirements of the
optimisation. Ranking is based on the value of two parameters: the fitness and the
strength, which are defined further down.

Dominance relationship After some generations, feasible individuals will arise. To
rank them, an order rule is defined in the solution space : the dominance relationship.
Let us take x1, x2 ∈ S, S the solution space. x1 dominates x2 if and only if:

• x1 is no worse than x2 in all objectives

• x1 is better than x2 in at least one objective

which translates to the equation below:

∀(x1, x2) ∈ S2, x1 >S x2 ←→

 ∀E, fE(x1) ≥ fE(x2)

∃E : fE(x1) > fE(x2)
(4.3)

If x1 > x2 according to this relationship, x1 is said to dominate x2. x1 is therefore
called the x2’s dominant, x2 a dominated of x1. Two individuals are said equivalent if
none dominates the other. The orbit of an individual is then defined as the group of
equivalent individuals.

Fitness and strength Now, to rank the feasible individuals, the natural parameter
to take into account is the number of dominated per individual: it is defined as the
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strength. Then, the higher the strength, the better the performance of an individual in
terms of objective functions, yielding to a higher rank.

Nonetheless, individuals with the same strength have to be compared, to distinguish
the best individuals. Since their dominated have already been taken into account, we
have to turn our scope to their dominants. At constant dominated, two individuals x1

and x2 have N1 and N2 dominants respectively. This means that they are dominated
by N1 and N2 individuals respectively. If N1 > N2, then x1 has a higher rank in its
relationship orbit than x2. Yet, this reasoning considers all dominants to be equal: their
quality, i.e. their strength, is not taken into account. A new parameter is therefore
defined: the fitness. It is the sum of the dominants’ strengths for a given individual. A
high fitness therefore leads to an individual dominated by strong dominants, regardless
of their number.

In conclusion, two parameters are defined out of the dominance relationship: the
fitness and the strength. The strength of an individual is the number of other individuals
it dominates. The fitness of an individual is the sum of the dominants’ strengths.

Cross-over and mutation Once the individuals are ranked according to both their
strength and fitness parameters, the population is cut in half: following the principles of
the Darwinian evolution theory, only the fittest and strongest individuals are kept into
the optimisation. To restore the population, and potentially grow better individuals, the
remaining half is mixed to brew new individuals. Here, we define a parental relationship
in each generation. New individuals are created, like in breeding, by mixing the genes
of two parents:

xn(k) = c1x1(k) + c2x2(k) (4.4)

with c1 + c2 = 1. Furthermore, to be sure to explore the solution map, and not stick to
a local minimum, a probability of mutation in each gene is implemented: in that case,
the mutated gene is generated randomly within the respect of the dominant constraints.

4.1.2 Summary of the algorithm

Figure 4.1 summarises the different steps of the multi-objective genetic algorithm. The
convergence is entirely determined by the requested number of generations. The ad-
vancement of the optimisation can be followed by different analysis scripts written by
M. Ehrlichman.

The convergence of the genetic optimisation is practically determined by the max-
imum number of generations set as an input. The evolution of the objective functions
during the optimisation can be followed using either the output files and manually check-
ing the good progress generation after generation, or analysis scripts dedicated to the
optimisation. The success of the optimisation is determined by the Pareto front: the
border of the solution space, where the objective values reached a compromise. Analysis
of the solutions usually takes place after thousands of generation: it was noticed that
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Figure 4.1: Scheme of the MOGA-Bmad algorithm process.

the optimisation quickly complies with the three first constraints, yet takes some time
to constrain the chromatic footprint.

Pareto front After a fixed number of generations, the optimisation terminates. Ide-
ally, the last generation forms a frontier in the objective space, drawing the minimised
solutions for the problem at stake. Figure 4.2 displays an analysis available in the
MOGA package developed by M. Ehrlichman [43], which compares the objective values
two by two. The colours were changed to better appreciate the last generation, in red.
The objective values equal 1 at the beginning of the optimisation. Generation after
generation, their values are decreased, ideally reaching the zero-value, i.e. the level of
the purely linear lattice.

In this example, the Pareto front is projected onto each objective plane: the red
dots, corresponding to the last generation, allow us to comprehend the pursuit of the
optimisation. The optimisation appears complete for the dynamic aperture at ±3%,
but the on-momentum dynamic aperture is not stabilised. One would either relaunch an
optimisation with an increased number of generations, or pursue the current optimisation
by inserting the last generation as an input.
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Figure 4.2: Comparison of the objective values for different generations, in an opti-
misation of a period of a 7BA 134 pm.rad SOLEIL lattice. The Pareto front is exposed

by colouring the last generation in red.

4.2 Non-linear optimisation of the 20-fold symmetry ultra-
low emittance lattices

Further comparison of the ultra-low emittance schemes under study requires optimising
both lattices nonlinearly. MOGA-Bmad proved to be a good means to optimise on- and
off-momentum dynamic apertures at certain energies, while conserving chromaticities.
This section is dedicated to the nonlinear optimisation of the ultra-low emittance lattices
introduced in the previous chapter: a 7BA hybrid lattice, based on the ESRF-EBS
design, and a 7BA High-Order Achromat (HOA) lattice, as developed for ALS-U and
SLS-II, both adapted for the SOLEIL storage ring upgrade. Studies of both linear
lattices in the previous chapter distinguished different optimisation objectives for both
lattices, additionally to the enlargement of the momentum acceptance for a longer beam
lifetime.

The hybrid lattice presents a high on-momentum dynamic aperture, but its off-
momentum performance drops quickly with the energy deviation. First optimisations
tried to improve the on-momentum dynamic aperture to test out the −I principle.
Synchro-betatron oscillations are believed to limit the effective dynamic aperture of the
lattice versus energy deviation (cf sec. 3.3.3.3). Further optimisation sets shall look at
improving the dynamic aperture off-momentum to limit the effect of such oscillations.

The High-Order Achromat presents a rather homogeneous transverse dynamic aper-
ture with energy deviation, which remains small compared to the hybrid lattice. Indeed,
the strengths of its sextupoles remain too large and approach the electrostatic limit. Op-
timisation shall try to enlarge the dynamic apertures, while conserving its large energy
acceptance, and reducing the sextupole strengths by increasing the number of families.

4.2.1 Optimisation of a hybrid lattice

The performances of the hybrid lattice are further optimised using MOGA-Bmad. Two
types of optimisations were conducted. As the non-interleaved principle is not applied
to all sextupoles, first runs focused on the on-momentum dynamic aperture and scanned
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the sextupole map to maximise the on-momentum dynamic aperture. A second opti-
misation will try to improve the off-momentum dynamic aperture, while conserving the
on-momentum dynamic aperture.

Figure 4.3: On-momentum dynamic aperture of the hybrid lattice, for (ξx, ξy) =
(0, 0).

Figure 4.3 recalls the large on-momentum dynamic aperture of the hybrid lattice, at
the chromaticities (ξx, ξy) = (0, 0) and at the middle of the straight section. To ease the
comparison and the understanding of the optimisation results, Figure 4.4 displays the
name and position of the variables of the following MOGA optimisations. They consist
in five chromatic sextupole families and three octupole families of two individual magnets
each, located at symmetric positions under the dispersion bumps of the hybrid lattice.
The position of the octupoles were arbitrarily chosen next to the relevant sextupoles.
Further analysis could slightly change their resulting strengths by placing them closer
to the maximum dispersion. The sextupoles were kept as bold magnets in the MOGA
optimisations, while the octupoles were defined as multipole magnets, of zero length.

Table 4.1 gathers the nominal values of the sextupole strengths before any MOGA
optimisation. The chromaticity of the lattice is set to (ξx, ξy) = (0, 0). The following
MOGA optimisations will set the chromatic constraints to those values.

Table 4.1: Strengths of the sextupoles for the nominal lattice, before any optimisa-
tions. The strengths correspond to a chromaticity of (ξx, ξy) = (0, 0), and follow the

Bmad convention.

Family Strength Family Strength
sxd1e −430 m−2 sxd2e −430 m−2

sxf1e 336.64 m−2 sxf2e −210 m−2

sxf3e 208 m−2
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Figure 4.4: Position of the sextupoles and octupoles set as variables in the following
MOGA optimisations. The hybrid lattice was zoomed in, around the dispersion bump.
The octupoles are thin elements, which position is displayed using diamond-shaped

figures.

4.2.1.1 Optimisation of the on-momentum dynamic aperture

First optimisations tested the genetic algorithm process and tried to reproduce or even
enlarge the on-momentum dynamic aperture of the hybrid lattice, for fixed chromaticities
of (ξx, ξy) = (0, 0). To do this optimisation, I used all sextupole families as chromatic
sextupoles, and three octupole families located on the side of the chromatic sextupoles.
The sextupole strengths were varied in the range ±500 m−2, the octupoles ±1000 m−3.

In MOGA, the optimisation of the dynamic aperture (DA) is conducted at three
distinct energies. To concentrate the optimisation around the dynamic aperture, this
optimisation worked at the energies 0% and ±0.1%. Figure 4.5 represents the evolution
of the objective values along the 2000 generations of 200 individuals each. The red dots
corresponds to the last generation. The objectives start at the top left hand corner,
around the value (1,1) on each chart. A perfect optimisation would see its objective
values vary from 1 to 0. After thousands of generation, the objective value stagnates
onto a frontier, the Pareto front.

Figure 4.5: Evolution of the objective values along the optimisation. The last gener-
ation is plotted in red.
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The values of the objectives are similar, regardless of the energy deviation. Figure 4.6
displays the typical dynamic apertures after 300 turns, obtained in the last generation of
this optimisation. It corresponds to the seed 39860. The dynamic aperture is enriched
with knowledge of the stability of the particle of coordinates (x, y): the colours represent
the decimal logarithmic power of the variation of the tune of such particles after a defined
number of turns. The difference in colours is the expression of the tune variation caused
by the vicinity of a resonance. They appear as green to red lines in Fig. 4.6.

It is interesting to note the aim of the optimisation failed: compared to the manually-
optimised on-momentum dynamic aperture of Fig. 4.3, the results of the MOGA optimi-
sation harmonised the slightly off-momentum dynamic apertures and the on-momentum
DA. Furthermore, since it is part of the dominant constraints of MOGA, the chromatic
footprint is changed. The conclusion of this test is that the non-interleaved princi-
ple remains in the optimisation, but this optimisation alone could not reproduce the
manually-maximised on-momentum dynamic aperture: the variations of the dynamic
aperture with the energy deviation in the vicinity of δ = 0% are drastic, therefore
±0.1% was probably too large to enhance the on-momentum stability area.

To prepare the off-momentum optimisation, Figure 4.7 draws the tune shift with
energy of the typical result of the on-momentum optimisation, for the range δ = ±7%.
The chromatic footprint is part of the optimisation constraints and aims at containing the
range ±5% into the half-integer quarter of the tunes. To do so, octupoles were included
in the optimisation at the location indicated in Fig. 4.4: they were varied in the range
±1000 m−3. Including the 20-fold symmetry within the display of the resonances, the off-
momentum stability is only threatened by the integer and half-integer resonances, as well
as the resonances a{Qx} + b{Qy} ∈ Z, with (a, b) ∈ {(1, 1), (1,−1), (−1, 3)}. Although
the tune shift with energy is well confined around the working point for particles with
energy deviation δ = ±3%, the tune shift varies a lot for higher energy deviation. For
the sake of both beam lifetime and injection, the off-momentum dynamic apertures are
optimised in a second round of MOGA optimisations, and aims at confining the tune
shift around the working point for δ = ±7%.

Table 4.2 lists the strengths of the sextupoles and octupoles of the selected seed 39860
of the optimisation in the vicinity of the on-momentum particle. The strengths of the
defocusing sextupoles are similar to their nominal value, required for the correction of the
chromaticity, −430 m−2, as well as the strength of the main focusing sextupole, SXF1E,
336.64 m−2, with a slight increase from its nominal value. The two other sextupoles,
SXF2E and SXF3E present respectively a slightly higher and reduced strength. The
first octupole of the lattice, OCTD1, appear to be highly efficient for the control of the
tune shift. Further comparison with other optimisation will confirm this observation.

4.2.1.2 Optimisation of the off-momentum dynamic aperture

The second optimisation type for the hybrid lattice takes a look at the off-momentum
stability. The first steps of this optimisation extended the energy range to±3% and±5%.



Chapter 4. Nonlinear optimisation of ultra-low emittance lattices 109

Figure 4.6: Typical dynamic apertures obtained at the last generation of the on-
momentum optimisation conducted on the 7BA hybrid SOLEIL lattice. The frequency
map analysis offers a clear view of the stability within the stable region. Seed 39960.

Table 4.2: Strengths of the sextupoles and octupoles of the Seed 39860, in the on-
momentum optimisation of the hybrid lattice, at ±0.1%. The strengths are given

following Bmad convention.

Family Strength Family Strength
sxd1e −424.17 m−2 sxf3e 129.47 m−2

sxd2e −399.87 m−2 octd1 −888.32 m−3

sxf1e 383.61 m−2 octd2 168.49 m−3

sxf2e −218.42 m−2 octf1 204.01 m−3

As the tune shift with energy rapidly limits the off-momentum stability in the hybrid
lattice (cf sec. 3.3.3.1), the following optimisations were conducted with octupoles
placed at the beginning, middle and end of the dispersion bump. The variation range
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Figure 4.7: Tune shift with energy of the typical solution, Seed 39960, of dynamic
apertures displayed in Fig. 4.6 and obtained at the last generation of the on-momentum

optimisation conducted on the 7BA hybrid SOLEIL lattice.

of the chromatic sextupoles were increased to ±600 m−2. The octupole strength range
was set to ±1000 m−3 for slight variations.

Figure 4.8 presents the evolution of the objective function for the optimisations at
±3% and ±5%. The optimisation varied the on-momentum dynamic aperture and the
positive off-momentum deviation dynamic aperture.

The−3% and−5% dynamic apertures present slight variations as well: they are steps
in the objective functions, which are the results of the octupoles in the optimisation. The
objective functions of the negative energies are expected to increase only when brought
closer to the working point, where there are less systematic resonances (cf Fig. 4.7).

Figure 4.9 displays a typical frequency map analysis obtained at the end of the op-
timisation in the energy range ±3% and ±5%. For the sake of homogeneity, all results
presented for this optimisation correspond to the same individual, the seed 39751 for the
±3% optimisation and the seed 11419 for the ±5% optimisation. The on-momentum dy-
namic aperture is comparable to the results of the on-momentum optimisation conducted
in the previous section, although the stability of the transverse region is enhanced. In
both cases, the on-momentum dynamic aperture presents an equivalent stability area
with a higher stability than the solution selected in the on-momentum optimisation (cf
Fig. 4.6). Nonetheless, the off-momentum dynamic apertures remain less than a quarter
of the on-momentum DA in terms of stable area. The +3% stability is threatened by
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a

b
Figure 4.8: Comparison of the objective values for different generations, in an opti-
misation of the off-momentum dynamic apertures of a period of a 7BA hybrid SOLEIL
lattice: (a) for the energies 0%, −3% and +3% and (b) 0%, −5% and +5%. The Pareto

front is exposed by colouring the last generation in red.

a resonance, appearing in the FMA in the form of unstable particles and a triangular
shape, which is spotted in the +5% DA as well.

Table 4.3 lists the strengths of the sextupoles and octupoles of the seed 39751, of
the ±3% optimisation. Compared to the nominal strengths in Table 4.1, the sextupoles
have similar strengths. The octupoles are to be compared with the on-momentum op-
timisation results. The repartition of the octupolar strengths seems to have increased,
with a lower strength of OCTD1 and a higher strength of the two other octupoles.

Table 4.3: Strengths of the sextupoles and octupoles of the Seed 39751, in the off-
momentum optimisation of the hybrid lattice, at ±3%. The strengths are given follow-

ing Bmad convention.

Family Strength Family Strength
sxd1e −412.93 m−2 sxf3e 295.99 m−2

sxd2e −457.23 m−2 octd1 −679.22 m−3

sxf1e 298.82 m−2 octd2 358.72 m−3

sxf2e −241.75 m−2 octf1 408.23 m−3

The resulting tune shift with energy is displayed in Fig. 4.10 (a). For the energies
±3%, the dynamic aperture remains small, compared to the on-momentum case. Al-
though, as displayed in Fig. 4.10, the tune shift with energy was efficiently contained
around the working point for a ±5% range. Further resonance analysis should be done to
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Figure 4.9: Frequency map analysis of (a) the seed 39751, which presents the largest
dynamic aperture areas, out of the analysed individuals of the optimisation at ±3%
and (b) during the optimisation of the on-momentum and ±5% momentum deviation

dynamic apertures, the seed 11419.

understand the limitations in dynamic aperture, but were not conducted in the present
thesis.

Figure 4.10: Chromatic footprint of (a) the solution 39751, of DA in Fig. 4.9, and
(b) the solution 11419, of DA in Fig. 4.9.
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Figure 4.10 (b) presents the tune shift with energy of the seed 39751 of the ±5%
optimisation. Although the tune shift with energy should be contained thanks to the
inclusion of octupoles, the particles at ±5% are close to the −Qx + 3Qy = M and
Qx = M resonances (M ∈ Z), further limiting their stability. It is interesting to note
that, despite a stronger constraint on the tune shift, which was set to include the ±7%
particles in the off-momentum optimisation, where the value was set to ±5% in the
on-momentum optimisation, the tune shift with energy is higher in the off-momentum
optimisations. The low values of the off-momentum dynamic aperture is thought to have
been prioritised by the algorithm, thus limiting its influence on the chromatic footprint
constraints.

Table 4.4 gathers the strengths of the nonlinear elements in the seed 11419. All
strengths are similar to the selected seed of the on-momentum optimisation, explaining
the similar obtained tune shift with energy of Fig. 4.10 (b). The optimisation is believed
to have stuck on the difficult increase in the −5% dynamic aperture, thus neglecting the
control of the tune shift with energy.

Table 4.4: Strengths of the sextupoles and octupoles of the Seed 11419, in the off-
momentum optimisation of the hybrid lattice, at ±5%. The strengths are given follow-

ing Bmad convention.

Family Strength Family Strength
sxd1e −455.15 m−2 sxf3e 122.52 m−2

sxd2e −395.93 m−2 octd1 −852.53 m−3

sxf1e 372.56 m−2 octd2 153.00 m−3

sxf2e −177.41 m−2 octf1 211.15 m−3

4.2.2 Optimisation of a HOA lattice

The High-Order Achromat (HOA) lattice is, if infinitely repeated, cancelling all resonant
driving terms, up to the second- or third-order - depending on its inner phase advance
(cf sec. 3.2.3), and provided the sextupoles are identical from one unit cell to another.
Nevertheless, the introduction of straight sections and the attached matching sections
perturbs the lattice dynamic and the nonlinearities previously annihilated start to arise.

Optimisation of the achromat should increase both on- and off-momentum apertures,
by increasing the number of sextupole families to compensate for their resonances and
the introduced linear perturbation, and eventually by adding octupoles in the lattice.
Considering the nonlinear limitations previously described, the MOGA optimisation of
the HOA lattice under study will focus on increasing the transverse energy acceptance
and both the stability and the area of the transverse dynamic apertures.

Figure 4.11 presents the sextupole families and their position in the HOA lattice,
which will be used as variables in the following optimisations. The defocusing sextupoles
were kept as pairs in the core unit cell. The sextupole families were differentiated in the
dispersion-suppressor half-cell: the difference in β-functions could change their efficiency,
as well as extracting the half unit cell from the HOA principle considerations. Plus, it
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Figure 4.11: Position of the sextupoles set as variables in the following MOGA op-
timisations of the HOA lattice. The zoom corresponds to the outer matching section

and dispersive area of the HOA lattice.

adds two nodes to the optimisation. Table 4.5 gathers their strengths for a corrected
chromaticity of (ξx, ξy) = (−1,−1), and a manual on-momentum optimisation using the
harmonic sextupoles only, SX1 and SX2.

Table 4.5: Nominal strengths of the sextupoles and octupoles of the HOA lattice,
with corrected chromaticities (ξx, ξy) = (−1,−1). The strengths are given following

Bmad convention.

Family Strength Family Strength
sxd0 −186.40 m−2 sxf1 304.70 m−2

sxf0 304.70 m−2 sx1 150.00 m−2

sxd1 −186.40 m−2 sx2 −166.70 m−2

4.2.2.1 Optimisation of the dynamic aperture at ±3% using four sextupole
families

First steps optimised the off-momentum dynamic aperture at ±3%, while trying to
conserve the good stability area on-momentum. To do so, the optimisation first only
considered four sextupole families: two chromatic and two harmonic, in order to keep
the chromatic sextupoles equal, so that their contribution to the resonances can be
cancelled by the HOA principle (cf sect. 2.3.2). In that case, the sextupoles SXD1
and SXF1 are kept identical to their correspondent in the core unit cells, SXD0 and
SXF0 respectively. Since MOGA-Bmad fixes the chromaticity - which was fixed to
(−1,−1) for all optimisations conducted on the HOA lattice, the chromatic sextupole
strengths are therefore fixed by this condition. The aim of such an optimisation is to
find a suitable set of harmonic sextupoles to further enhance the on-momentum and
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off-momentum dynamic aperture, at ±3% arbitrarily. To do so, their strength were
bounded to ±200 m−2.

Figure 4.12: Typical solution obtained during the optimisation of the on-momentum
and ±5% momentum deviation dynamic aperture of the 7BA SOLEIL HOA lattice:

(left) FMA of the seed 782066 and (right) its chromatic footprint.

Figure 4.12 (a) displays a typical FMA for the individuals obtained through this
optimisation. It corresponds to the seed 782066. Considering that the non-optimised
dynamic apertures were larger in the positive energy deviation than the on-momentum,
the FMA of the particles at +3% is reduced but remains equal to the on-momentum
aperture. The dynamic aperture at −3% suffers from the large tune shift with energy,
which is not controlled in the optimisation, as Fig. 4.12 (b) illustrates. Indeed, the
absence of octupoles and the few number of nodes in the optimisation limit the effect of
the sextupole variations on the tune shift with energy.

Table 4.6 lists the sextupole strengths of the selected seed 782066. The slight varia-
tions in SXD0 and SXF0 are due to the difference in calculations from Bmad and A.T.
for thin sextupoles. This difference compels the use of the same code for analysis of the
MOGA results, to avoid any alteration in the expected performances.
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Table 4.6: Strengths of the sextupoles and octupoles of the seed 782066, extracted
from a first optimisation of the HOA lattice at the set energies 0% and ±3%. Only two

chromatic families were used. The strengths are given following Bmad convention.

Family Strength Family Strength
sxd0 −202.92 m−2 sx1 49.22 m−2

sxf0 300.41 m−2 sx2 −57.90 m−2

4.2.2.2 Optimisation of the tune shift using octupoles

An additional optimisation was conducted with the inclusion of octupoles near the chro-
matic sextupoles. The sextupoles in the dispersion suppressor cells were differentiated
to include two nodes in the optimisation: as the β-functions of such cells, and therefore
their phase advance, were not preserved when creating the dispersion-free zone, they can
be considered outside of the compensative HOA principle. The octupoles were varied in
the range ±5000 m−3, to locate the most efficient position.

Figure 4.13: Comparison of the off-momentum objective functions during and at the
end of the optimisation (red dots).

The chromatic sextupoles’ strengths remained in the range ±600 m−2, which sign was
fixed positive for focusing sextupoles, negative for defocusing sextupoles. The harmonic
sextupoles were limited to ±500 m−2. Figure 4.13 shows the progress of the optimisation,
by comparing the off-momentum objective functions. The red dots correspond to the
last generation.

The progress of this optimisation lies both at +3% and−3%. Compared to the results
of the previous optimisation, which was conducted without octupoles, the evolution of
the −3% objective function proves the tune shift with energy is being contained by the
added octupoles. Figure 4.14 (a) illustrates the frequency map analysis of a typical
solution selected in the last generation. Compared to Fig. 4.12, the dynamic aperture
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at 3% is limited by the integer resonance: even though the constraint on the chromatic
footprint was set to ±7%, the optimisation only contained the ±3% range.

Figure 4.14: Typical solution obtained during the optimisation of the on-momentum
and ±3% momentum deviation dynamic apertures, of the 7BA SOLEIL HOA lattice.
The seed 16832 is characterised with its FMA (left) and chromatic footprint (right).

Despite the limitation at +3%, the use of octupoles helped control the tune shift
with energy, which put the tunes at −3% further away from the integer resonance,
which was limiting its stability in the last optimisation. Figure 4.14 (b) displays the
chromatic footprint on a tune diagram, exhibiting the systematic resonances for a 20-
fold symmetry lattice.

Table 4.7 gathers the nonlinear strengths of the seed 16832. Since the optimisation
could optimise the dynamic aperture at −3% with no resonance limitation, the strengths
of the sextupoles appear slightly higher than their nominal values, which only aimed at
correcting the chromaticities. The strengths of SXD1 and SXF1 are higher than the core
sextupoles, which optimised strengths are closer to their nominal values. The octupoles
implemented reach strengths as high as 4700 m−3, which confirms the need for control
of the tune shift to increase the energy acceptance and beam lifetime.
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Table 4.7: Strengths of the sextupoles and octupoles of the seed 16832, extracted from
an optimisation of the HOA lattice at the set energies 0% and ±3%. Four chromatic
sextupole families were used, along with two octupole families, located on the core

sextupoles. The strengths are given following Bmad convention.

Family Strength Family Strength
sxd0 −244.91 m−2 sxd0 [k3l] −920.4 m−3

sxf0 335.04 m−2 sxf0 [k3l] 4741 m−3

sxd1 −306.38 m−2 sxf1 398.89 m−2

sx1 86.0 m−2 sx2 −104 m−2

4.2.3 Conclusion on the MOGA optimisation of the ultra-low emit-
tance schemes

The conservation of both principles, the non-interleaved principle and the HOA principle
proves to be difficult in the designed lattices.

On the use of MOGA for the optimisation of the 7BA hybrid lattice In
the case of the hybrid lattice, the presence of secondary sextupoles under the dispersion
bumps increases the nodes in the nonlinear optimisation but perturbs the non-interleaved
principle. The dynamic aperture remains maximised in the vicinity of the on-momentum
particles, yet the resulting transverse acceptance is smaller both in the vertical and
horizontal plane, compared to the one obtained with a pure non-interleaved lattice. The
inclusion of secondary sextupoles remains for the off-momentum dynamics need to be
maximised, for stability and beam lifetime considerations.

First optimisations aimed at enhancing the on-momentum dynamic aperture, to po-
tentially find a larger acceptance than with the non-interleaved sextupoles. No individual
found had a higher on-momentum dynamic aperture than the nominal lattice, despite
the use of all sextupole families and octupoles.

Further studies aimed at increasing the off-momentum dynamic apertures, at ±3%
and ±5% in different runs. Unfortunately, no found solutions could match the off-
momentum dynamic aperture to the level of the on-momentum DA. Further resonance
analysis is required to understand the limitations off-momentum. Furthermore, opti-
misation of the off-momentum dynamic apertures led to a small reduction of the on-
momentum dynamic aperture as well.

On the use of MOGA for the optimisation of the 7BA HOA lattice In the
case of the HOA lattice, different optimisations were conducted to test the robustness
of the lattice. First optimisations aimed at keeping the chromatic sextupoles identi-
cal, to preserve the HOA principle. Only two harmonic sextupoles were implemented
to optimise the on- and off-momentum aperture. The absence of octupoles led to an
uncontrolled tune shift with energy, which limited the optimisation.

To increase the number of nodes, a second optimisation differentiated the sextupoles
in the dispersion suppressor cell. Nonetheless, the tune shift remains unconstrained.
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Therefore, octupoles were added at the location of the core sextupoles; they were coded
as an octupolar component of the sextupoles. The tune shift could then be constrained
within a half-integer window around the working point, which allowed an enhanced
off-momentum stability, away from systematic resonances.

4.3 4-superperiod HOA-based lattice for the SOLEIL up-
graded storage ring

The current SOLEIL storage ring is surrounded by 29 beamlines. Amongst them, two
180 m-long beamlines Anatomix and Nanascopium, were built in 2012. They work in
the hard X-ray range. Their implementation required the adaptation of the straight
section SDL13 into canted optics, described in the section 1.5.3 and displayed in Fig.
4.15.

Figure 4.15: β-functions around the SOLEIL SDL13 straight section, where
canted optics were implemented for the two long SOLEIL beamlines, Anatomix and

Nanoscopium.

The SOLEIL upgrade project aims at maintaining the beamlines positions. The
beamline MARS, where radioactive samples are tested and which required an authorisa-
tion from the Agence de Sûreté Nucléaire (ASN), along with the long beamlines should
keep their current positions. To include two undulators in one straight section in the
canted optics for ANATOMIX and NANOSCOPIUM, larger straight sections are re-
quired: the symmetry of the ultra-low emittance lattices under study is decreased from
20 to 4. New designs include two types of straight sections: four long straight sections
of 6 m for the long beamlines, RF cavities, injection and extraction and regular straight
sections of 4 m for the other insertion devices.
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4.3.1 Layout of a 4-superperiod HOA lattice

Following the new recommendations two 4-superperiod 7BA lattices were designed :
one hybrid and one HOA-based. Both include two types of straight sections: long
6 m straight sections for the injection/extraction, the RF cavities and the two long
beamlines on canted optics, and smaller 4 m straight sections for the other insertion
devices. I designed several 4-superperiod HOA lattices, 7BA and 9BA. The 9BA version
is available in the Appendix F. Figure 4.16 compares the Twiss functions and dispersion
of the 7BA hybrid and 7BA HOA 4-superperiod lattices.

a

b
Figure 4.16: Twiss parameters and magnet layout of the (a) 7BA HOA and (b) 7BA

hybrid 4-superperiod lattices for the SOLEIL 2.75 GeV storage ring.

Table 4.8 compares the main characteristics of both lattices. Despite the reduced
length per period, the main characteristics were maintained in the hybrid case, such as
the natural horizontal emittance and the momentum compaction factor. The design of
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Table 4.8: General characteristics of the hybrid and HOA 4-superperiod lattices for
the SOLEIL 2.75 GeV storage ring.

4-superperiod hybrid 4-superperiod HOA
Emittance εx 77 pm.rad 72 pm.rad
Tunes per superperiod (νx, νy) ( .20, .45) (16.85, 6.46)
Momentum compaction factor α0 1.54× 10−4 6.68× 10−5

Reverse bending angle -0.165 degrees -0.146 degrees
Energy loss per turn 312 keV 536 keV
Magnet occupation 50.8% 64.1%

excluding drifts < 0.15m 64% 90.7%
(βx, βy) @ID in LS (2.5,2.1) m (1.9, 1.9) m
(βx, βy) @ID in SS (1.5, 1.1) m (1.7, 1.7) m

a HOA 4-superperiod lattice increases the tightness of the lattice. The easy matching
in the short straight sections allows an increased length of the unit cells, with dipoles
of 0.8 m. The angular dispersion suppressor method is adopted (cf sec. 3.2.4), which
explains the increase in the reverse bending angle, to recover a low emittance and a
reduced momentum compaction factor, compared to the 20-fold case. Compared to the
20-fold symmetry where the magnet occupation was 66% in the hybrid case and 78% in
the HOA case when the drifts smaller than 0.15 m were excluded from the calculations,
the magnetic occupation of the 4-superperiod lattices is of 64% in the hybrid case, and
as high as 90% in the HOA case.

The β-functions are matched at ' (1, 1) m in all short straight sections for both
lattices for beam matching considerations (cf sec. 1.4.1.2), and ' (2, 2) m in the long
straight sections, where the conditions are no longer critical. An additional quadrupole
was required in both lattices to match the low β-functions at the middle of the long
straight sections. Figure 4.17 is a zoom of the Twiss parameters of the 7BA period be-
tween the middle and long straight sections, for both the hybrid and HOA 4-superperiod
lattices.

4.3.2 Study of the feasibility of the longitudinal injection scheme

Alongside the additional constraints reducing the symmetry, the injection scheme of the
ultra-low emittance lattices is under discussion. The current SOLEIL injection scheme is
transverse off-axis. In that case, the injected beam would be bent by a septum and kicked
off-axis at a certain horizontal position xinj using a Multipole Injector Kicker (MIK).
The injected beam is damped, turn by turn, towards the machine axis. Nonetheless, not
to perturb the stored beam, the injected beam needs to be injected at a high horizontal
shift, which falls out of the current transverse stability of the ultra-low emittance lattices
under study. To keep the current injection scheme of the SOLEIL storage ring, the β-
functions can be raised in a long straight section, to locally increase the transverse
acceptance and inject the beam off-axis. Nonetheless, the damping partition number
Jx of such lattices is close to 2, which induces an increased damping time and a higher
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a

b
Figure 4.17: Twiss parameters and magnet layout of the (a) 7BA HOA and (b) 7BA

hybrid 4-superperiod lattices around the long straight section.

number of turns to damp the injected beam, further increasing the probability of losses.
Additionally, it also decreases the natural horizontal emittance. Although this scheme
is studied amongst the Beam Dynamics group of SOLEIL, I did not participate in the
optimisation of such a lattice.

Another scheme consists in swapping the beams. To prevent intensity losses in the
stored beam, it is extracted, after a defined number of turns, from the storage ring
and replaced with a new beam. This principle is called the swap-out injection. Its
implementation is required where no top-up injection can be used, which depends on
the machine parameters. The extracted beam can be placed in an accumulator ring,
where it shall be damped and re-accelerated before being injected again in the machine
[97]. Such a method requires the design and implementation of an accumulator ring,
in the same tunnel as the storage ring. The SOLEIL upgrade aims at conserving its
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current injection modes, including the top-up system, and has therefore not considered
this type of injection for its upgraded lattices.

A last scheme consists in injecting the beam directly on-axis, but shifted in energy.
Using the off-momentum closed orbit D0δ, the injected beam could be kicked onto a
chromatic closed orbit using a Multipole Injector Kicker (MIK), and is detailed in the
following section. I participated in the adaptation of the linear lattice to this injection
scheme and the nonlinear optimisation to increase both the off-momentum dynamic
aperture and the injection efficiency.

4.3.2.1 Longitudinal on-axis injection

This section describes the basic elements required to understand the longitudinal on-
axis injection, and the particularities of the scheme studied for SOLEIL upgrade. The
first part presents the nonlinear kicker which should be used to kick the injected beam
onto the designated chromatic closed orbit. The required energy deviation is fixed by
the dimensions and characteristics of the kicker: to benefit from a maximum magnetic
field, the injected beam should be horizontal shifted at a set ∆x. The use of this
method requires a dispersion bump in the injection section: the bump differentiates
the chromatic orbits around the magnetic peak of the nonlinear kicker. The higher the
dispersion bump, the lowest the energy deviation required to match the closed orbit at
the required horizontal shift. Two types of dispersion bumps are compared, and one
of them is ran in MOGA, to try and optimise the transverse dynamic aperture at the
required energy deviation, and at its opposite value.

4.3.2.2 Multipole-Injector Kicker and injection parameters

To do so, the system first bends the beam using a thick septum and a thin septum,
then a Multipole-Injector Kicker (MIK), which finally kicks the beam onto the relevant
chromatic orbit. An ongoing collaboration between SOLEIL and MAX IV developed a
MIK for the injection of MAX IV [126, 127]. Figure 4.18 illustrates the ideal magnetic
field of such a nonlinear kicker: the injected beam benefits from a large magnetic field
which kicks it transversally towards the corresponding off-momentum chromatic closed
orbit. The MIK should be transparent to the stored beam, therefore have a naught
magnetic field around the machine axis.

In reality, the nonlinear magnetic field of a MIK approaches that of a sextupole
magnet, as displayed in Figure 4.19. This MIK corresponds to the result of the col-
laboration between SOLEIL and MAX IV, and was designed for MAX IV injection.
The plateaux are located at ±10 mm [127]. To prevent a perturbation on the stored
beam, the plateaux should be located as far away as possible from the axis x = 0 mm.
Nonetheless, the transverse dynamic aperture prevents a large horizontal shift, which
limits the horizontal position of the injected beam. In the case of the MAX IV injection,
the injected beam was shifted at 4.66 mm, and benefits from a 39 mT magnetic field for
its top-up injection [128]: the injected beam is therefore not placed on the plateau, but
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Figure 4.18: Schematic of the ideal magnetic field of a Multiple-Injector Kicker (MIK).
The injected beam is shifted horizontally and benefits from a positive magnetic field,
which kicks the beam onto its chromatic closed orbit. The magnetic field of a MIK

should be naught on-momentum, as not to perturb the stored beam.

benefits from the maximum slope. In that case, the level of the plateau is high enough
to provide a large slope around the required horizontal shift. Nevertheless, the injected
beam has an horizontal size ∆x 6= 0, which spreads the injected beam onto the slope:
the extremities of the injected beam do not receive the same kick.

The main limitation induced by the nonlinear MIK is the distance between the
plateaux and the axis x = 0 mm. Such a distance monitors the length of the naught
plateau around the stored beam: a close plateau renders difficult the maintenance of a
naught magnetic field for the stored beam, and can induce perturbation for the furthest
particles of the stored beam, which makes the injection no longer transparent. The
SOLEIL Pulsed Magnet group managed to produce a MIK of maximum field at x =
−3.5 mm. The field is sextupolar around the maximum, with a field variation of ±10%
for a ±0.5 mm variation around the extrema.

The injected beam trajectory has to be prepared before entering the MIK. For exam-
ple, the current MIK envisioned for the injection of SOLEIL upgrade has its magnetic
field peak at ±3.5 mm horizontal shift. The injected beam is therefore bent by a septum
at the entrance of the straight section, before entering the MIK where it will be kicked
onto an off-momentum chromatic closed orbit.

4.3.2.3 On the dispersion bumps

The use of the longitudinal scheme requires specific changes in the linear lattice. To cope
with the horizontal shift limit imposed by the MIK, and the limited energy acceptance
of the ultra-low emittance lattice, several schemes are approached. The first follows the
steps described by M. Aiba et al. [39], and aims at kicking the injected beam on a set
chromatic closed orbit. The choice of the energy deviation depends on the injected beam
size, the stored beam and the distance between both closed orbits, as the injected beam
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Figure 4.19: Example of the nonlinear magnetic field of the SOLEIL-MAX IV col-
laborative MIK. The plateaux are located at ±10 mm, from [127].

should not interact with the stored beam. To increase the distance between the closed
orbits, a dispersion bump is created on a straight section. The lowest energy complying
with those parameters was set at δ = −6% for the ultra-low emittance lattices presented.
Three methods I developed to create a dispersion bump are explored in this section. To
comply with the requirements in terms of distance of the chromatic closed orbits imposed
by both the magnetic field of the MIK and its gap, the dispersion bump should be as
high as possible.

A first method to create a dispersion bump is to manipulate the angle of the last
dipole and the last reverse bend, allowing a natural increase in the dispersion. Figure
4.20 illustrates a 5 cm dispersion bump included in one long straight section of the
previous 4-superperiod 7BA HOA lattice. The inclusion of the dispersion bump drops
the symmetry down to 1. This method conserves β-functions of the external half-cell,
and thus does not affect the HOA principle. The total angle is restored by multiplying
the whole superperiod by a proportional factor. The periodic conditions were recovered
thanks to the quadrupolar triplets in the matching sections.

A 5 cm dispersion bump distances the chromatic closed orbit of an off-momentum
particle by D0δ, which equals 3 mm for an energy deviation of 6% for instance. The
energy deviation corresponding to a closed orbit at −3.5 mm at the centre of the MIK is
−7% with this dispersion bump, which is too high to optimise. Although the longitudi-
nal energy acceptance is higher than ±10%, the off-momentum transverse dynamics at
such large energy deviation is limited by the large tune shift with energy which crosses
systematic resonances. Since the test optimisations conducted on the HOA and hybrid
20-fold symmetry lattices proved the need of a large dedicated time to increase, step by
step, the off-momentum stability, the maximum feasible energy deviation at the MIK is



Chapter 4. Nonlinear optimisation of ultra-low emittance lattices 126

Figure 4.20: Twiss parameters and magnet layout of the 7BA HOA lattice for the
SOLEIL 2.75 GeV storage ring.

set at −4/5%. Therefore, the level of the dispersion bump is increased up to 8 cm and
10 cm.

Table 4.9: Evolution of the emittance for different dispersion bump levels, created
using the external dipoles and reverse bends only.

Dispersion level Bending Angle Reverse Bending Angle Ring emittance
ηbump = 5 cm 0.073 rad −0.0026 rad 74 pm.rad
ηbump = 8 cm 0.1007 rad −0.0036 rad 100 pm.rad
ηbump = 10 cm 0.1191 rad −0.0043 rad 150 pm.rad

Nonetheless, such a manipulation increases the dispersion at the last dipole, and
therefore increases emittance. Table 4.9 compares the resulting natural horizontal emit-
tance of the ring, after inclusion of different levels of dispersion bumps. The set limit in
emittance for the upgrade of the SOLEIL storage ring, which is 100 pm.rad, is reached
for a dispersion bump of 8 cm, which corresponds to a required energy deviation of
δ = −4% at the centre of the MIK. The methods for creation of the dispersion bump
will now be compared for a dispersion peak of 8 cm.

A second method modifies the angle of the last dipole and adjusts the β-functions in
the middle of the straight section to recover the periodic conditions. Figure 4.21 displays
the resulting Twiss functions and dispersion. The emittance here rose to 110 pm.rad,
which is slightly higher than with the previous method.

Table 4.10 states the bending angle of the last dipole and the quadrupolar strength of
the matching triplets, required for the creation of the bump displayed in Fig. 4.21. Since
the number of variables is limited to four, the β-functions at the middle of the straight
section could not be kept at their nominal values: they rose to (βx, βy) = (7.3, 6.8) m.



Chapter 4. Nonlinear optimisation of ultra-low emittance lattices 127

Figure 4.21: Twiss parameters and dispersion bump of 8 cm for a 7BA HOA 4-
superperiod lattice, using the external dipoles’ angles and the quadrupolar triplets.

Table 4.10: Variation of the matching parameters for the creation of the dispersion
bump in Fig. 4.21.

Name Parameter Value
bd1out Bending Angle 0.10510 rad
qd01f Defoc. strength 15.3244 m−2

qd02f Defoc. strength 13.875 m−2

qf02f Foc. strength −9.81889 m−2

Another method lengthens the external dipole to recover the symmetric condition
at the dispersion bump, at the image of the dispersion suppressor ”missing dipole”
method. This frees the quadrupole triplet and allow their use for the matching of the
β-functions at the middle of the straight section. Figure 4.22 displays the results of such
optimisation.

The resulting β-functions are (βx, βy) = (1.8, 1.5) m. Table 4.11 gathers the varia-
tions of the matching parameters. The length of the external dipoles was increased by
20%, to satisfy the periodic condition on the dispersion. Nonetheless, the longer dipole
has a larger contribution to the emittance, which rises to 412 pm.rad.

Table 4.11: Variations of the matching parameters for the creation of the dispersion
bump in Fig. 4.22.

Name Parameter Value
bd1out Bending Angle 0.1168 rad −→ 0.1309 rad
bd1out Length 0.4 m −→ 0.486 m
qd01f Defoc. strength 15.26 m−2 −→ 16.59 m−2

qd02f Defoc. strength 12.69 m−2 −→ 17.17 m−2

qf02f Foc. strength −9.54 m−2 −→ −10.97 m−2
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Figure 4.22: Twiss parameters and dispersion bump of 8 cm for a 7BA HOA 4-
superperiod lattice, using the external dipole and reverse bend angles, lengthening the

external dipoles, and matching the β-functions thanks to the quadrupole triplets.

4.4 Non-linear optimisation of a 7BA-4BA lattice for the
upgrade of the SOLEIL storage ring

On the current storage ring, the positions of the long beamlines and the MARS beamline
are not symmetric. Therefore, the 4-superperiod cannot exactly conserve both positions.
The exploration of the storage ring upgrade led my colleague Alexandre Loulergue to
design several MBA-NBA lattices based on HOA cells [129]. His investigations, con-
jugated with the conservation of the beamline positions - or integration of the lattice
in the tunnel, led to a 7BA-4BA lattice, whose Twiss β functions and dispersion are
displayed in Fig. 4.23. This lattice is the baseline of the SOLEIL upgrade, and will be
described in the Conceptual Design Report (CDR) (due end 2020).

4.4.1 Layout and main characteristics

Table 4.12 lists the main characteristics of the 7BA 4BA HOA 4-superperiod lattice.
The baseline lattice is composed of an alternance of 7BA HOA periods and 4BA HOA
cells, which follows the deflection repartition of the current storage ring, alternating
22.5 degrees and 11.25 degrees cells. The HOA principle was conserved, as the phase
advance of the unit cells composing the 7BA and the 4BA are identical. Nonetheless,
numerical exploration of the unit cells phase advance found an optimum set, (νx, νy) =
(0.408, 0.143), which does not correspond to the theoretical principle described in sec.
3.2.3, (νx, νy) = (3

7 ,
1
7).
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Figure 4.23: Twiss parameters of the 7BA 4BA HOA 4-superperiod lattice for the
SOLEIL upgrade.

Table 4.12: SOLEIL 2.75 GeV 7BA 4BA HOA lattice proposal, 4-fold symmetry.

Circumference 354.0 m
Energy 2.75 GeV
Emittance εx 79 pm.rad
Tunes per period (νx, νy) (54.42, 18.42)
Momentum compaction factor α0 9.40× 10−5

Reverse bending angle -0.048 degrees
Energy loss per turn 480 keV
(βx, βy) @ID (1.1-1.3, 1.1-1.7) m
(βx, βy) Long straight section (3.2, 3.2) m

4.4.2 Insertion of a high-βx for transverse off-axis injection

Further study of all ultra-low emittance lattices evaluates the feasibility of two injection
schemes, described in sec. 4.3.2. The 7BA 4BA 4-superperiod lattice was adapted to
both of them. In this subsection is presented the layout of the injection section for
transverse off-axis injection, available in Fig. 4.24. This lattice adaptation was designed
by Alexandre Loulergue [130].

Since the betatron amplitude is proportional to
√
β in both planes, the horizontal

acceptance can be enlarged by increasing the βx-function locally. In the case of the
7BA-4BA HOA lattice, the βx-function was increased in a long straight section, from
3.2 m to 11.5 m, which corresponds to a factor 1.9 in horizontal transverse acceptance.

Further increase of the horizontal acceptance in that section was obtained by opti-
mising the dynamic aperture contour using the nearby sextupoles and octupoles. Figure
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Figure 4.24: Layout of the injection section for transverse off-axis injection. The
high-βx allows a local increase of the horizontal acceptance.

Figure 4.25: On-momentum transverse dynamic aperture (a) in the middle of the
injection section, βx = 11.5 m and (b) in the middle of a regular long straight section,

βx = 3.2 m, after a thousand turns.

4.25 displays the on-momentum transverse dynamic aperture in the middle of the in-
jection section, and compares it to the DA in the middle of a non-specific long straight
section at βx = 3.2 m, for a thousand turns. The resulting transverse acceptance remains
at around 2 mm vertically, and was increased from −2/+ 3 mm to ±6 mm horizontally.
The enlarged horizontal acceptance allows the off-axis injection of a beam at −4/5 mm
for instance.

4.4.3 Insertion of a dispersive area for longitudinal on-axis injection

The inclusion of a dispersion bump in this lattice was done by Ryutaro Nagaoka. The
external reverse bend and dipole quadrupolar strengths were decreased, to allow an
averaged 5 cm dispersion in the external dipole. After a drift of 2.5 m long, a quadrupole
doublet is inserted, to further kick the dispersion up and match the symmetric condition
at the middle of the straight section. This method limits the increase in emittance, which
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rises to 90 pm.rad only, for a dispersion bump of 16 cm. Figure 4.26 zooms in the optics
around the dispersion bump.

Figure 4.26: Twiss parameters and dispersion bump of 16 cm created for the 7BA-
4BA HOA SOLEIL lattice. The inclusion of two pairs of quadrupoles allows an extra
increase of the dispersion, up to 16 cm, in the centre of the straight section, where the

Multipole Injector Kicker should be inserted.

The MIK should be inserted in between the quadrupole doublets, in a 1 m-long
section. With a bump of 16 cm, the momentum deviation required to place its chromatic
orbit on the maximum magnetic field produced by the MIK at x = −3.5 mm in the centre
of the kicker, is δ = −3.5 mm

160 mm = −2%.

4.5 Evaluation of the nonlinear dispersion at the position
of the septum in the 7BA-4BA lattice with a 16 cm
dispersion bump

As described in section 4.3, the creation of a dispersion bump in a straight section has two
main effects. First, it increases the emittance of the lattice, with variations depending
on the method employed. The use of bending magnets to create the dispersion bump
drastically increases the emittance, as the level of dispersion in those magnets arises.
The method employed for the creation of a 16 cm dispersion bump for the 7BA-4BA
HOA lattice limits the increase in emittance as the large part of the bump is created
by two quadrupole doublets. Second, the addition of a dispersion bump increases the
off-momentum deviation from the design orbit, which could therefore fall out of the
physical limits of the vacuum chamber: for instance, for a chamber radius of 5 mm and
10 mm, the corresponding energy deviation in the case of a 16 cm bump is ±3.1% and
±6.2%.
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Higher-order dispersion components participate in the dispersion bump required for
the on-axis longitudinal injection, either by increasing the effective bump at a given mo-
mentum deviation, or decreasing it. In the first case, the consideration of the nonlinear
dispersion would alleviate the required linear dispersion bump and limit its effect on the
emittance, which should be looked at for the methods described in 4.3.2.3.

Figure 4.27: Position of the septum and the MIK in the injection section of the 7BA
4BA SOLEIL lattice. The current dispersion bump is at 16 cm.

In the case of the 7BA-4BA lattice including a 16 cm dispersion, future explorations
aim at decreasing the linear dispersion bump, to increase the beam-stay-clear zone at the
septa, which should be located at the very beginning of the injection section. Currently,
the prior bending is provided by a thick and a thin septa, which bend the injected beam
before the MIK. The total length of both septa is ' 1 m. The exit of the septa is located
at ' 3.5 m of the injection point.

In the current configuration, the septa are located at ∆x = −8 mm from the machine
axis, with a level of dispersion of about 5 to 7 cm. The horizontal shift corresponds
to a chromatic closed orbit at an energy deviation of δ ' −(11 to 16)%. In the case
of constructive nonlinear dispersion, the shift of the chromatic closed orbit is further
increased per energy deviation. If the energy deviation is of the order of the energy
acceptance, the septa should be moved backwards, not to perturb the stored beam and
limit the momentum acceptance, which would reduced the beam lifetime. In that case,
the injected beam will arrive at a higher horizontal position to the MIK, which would
then require a stronger magnetic field i.e. a higher bending angle for it to be kicked
onto the same chromatic closed orbit. Currently, the possible bending angles achieved
with the SOLEIL MIK are limited to 1-3 mrad.

Since the nominal energy acceptance is limited to ±2% at the bump, the trajectory of
off-momentum particles is described thanks to the higher-order dispersions. To control
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the dimensions of the injected beam at the location of the septum, the linear and higher-
order dispersion are thus numerically calculated.

4.5.1 Minimisation script

The analytical calculation from [131] of the nonlinear dispersions up to the second order
are derived and tested in the section 5.3.2 of the present thesis. The necessary scripts
were written in Accelerator Toolbox, and compared with the variation of the closed orbit.
The variation of the dispersion with the momentum deviation is exhibited as follows:

Dx = D0 +D1δ +D2δ
2 + ... (4.5)

Since the 7BA-4BA lattice comprises a high number of magnets, which drastically
increases the calculation time, the minimisation script tracks the closed orbit of off-
momentum particles at δ = ±0.1% and extracts the first-order dispersion D1 with a
second-order polynomial fit. The chromatic orbit of a particle of momentum deviation δ
varies in the injection straight section with the nonlinear dispersion. Figure 4.28 displays
the evolution of the first-order dispersion with the longitudinal position s for half the
injection section of the 7BA-4BA HOA lattice and the beginning of the 7BA cell. The
dipoles and the straight sections were sliced into ten identical pieces during the tracking,
to provided a clearer view of the first-order dispersion variations.

Figure 4.28: First-order dispersion extracted from the closed orbit along half the
injection section.

At the septum, located at ' 3.5 m away from the injection point, the current value of
the first-order dispersion equals D1 = 368−392 mm. The energy deviation corresponding
to the chromatic closed orbit at the transverse location of the septa therefore verifies:

D0δ +D1δ
2 = −∆x = −8 mm (4.6)
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which corresponds to δ = −11.6/ + 11.7, i.e. δ = −1160/ + 1170% at D1 = 392 mm.
Since D1 > 0, all values in between the zeroes of Eq. (4.6) are negative, meaning that
the realistic closed orbits do not reach the limit value of ∆x = −8 mm. Furthermore, the
equation (4.6) has solutions if and only if D1 >

D2
0

4|∆x| which corresponds to D1,limit '
150 mm.

Figure 4.29 displays the closed orbit variation with the energy deviation at the lo-
cation of the septa, for D0 = 70 mm and D1 = 400 mm, in the energy deviation range
δ = ±20%. No off-momentum particles approach the −8 mm limit.

Figure 4.29: First-order closed orbit variation with energy deviation at the location
of the septa.

Nonetheless, the nonlinear optimisations conducted with MOGA do not take this
point into account. In case of limited energy acceptance because of the septum, I wrote
a script in A.T. which evaluates the first-order dispersion and tries to minimise it.
Despite the limit defined by Eq. (4.6) and the problem characteristics, the script aims
at getting as close to the linear lattice as possible. In that case, the values of energy
deviation verifying Eq. (4.6) gets larger when the first-order dispersion is close to zero,
meaning the septa should not be a limiting factor in the energy acceptance.

4.5.2 Proof of principle and results

Using the sextupoles of the whole lattice, the first-order dispersion can be manipulated
around the injection point. A scanning script was written in A.T., and evaluates the
value of the first-order dispersion at the location of the septa. A hundred sets of sex-
tupoles were generated, with strengths varying in a 100% range around their nominal
value. Figure 4.30 displays the values of the first-order dispersion at the septa, for all
the generated rings, with D0 = 70 mm and ∆x = −8 mm.

The first-order dispersion closer to 0 at the septa is D1 = −96 mm, of the order
of the zeroth-order dispersion. The relative variation of the sextupole strengths of the
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Figure 4.30: Evolution of the first-order dispersion during the sextupole strengths
scan, at the location of the septa.

optimised ring with regards to the nominal ring are displayed in Fig. 4.31. Their vari-
ations are high, compared to their nominal values. Further analysis would be required
to optimise the created ring, in terms of transverse dynamics.

Figure 4.31: Relative variation of the sextupole strengths along the ring, with regard
to their nominal values.

4.6 Conclusions

The use of MOGA-Bmad differs from MOGA-Elegant, which was extensively used in the
optimisation of the current SOLEIL storage ring[132]. In terms of objectives, MOGA-
Bmad optimises the on- and off-momentum dynamic apertures, while MOGA-Elegant
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optimises the on-momentum dynamic aperture and the Touschek lifetime directly. For
time considerations, MOGA-Bmad is faster per individual than MOGA-Elegant: con-
sidering the larger lattices in terms of number of magnets and number of variables, this
favours the use of MOGA-Bmad. Another point is that no stable point is necessary to
start the optimisation in MOGA-Bmad, while a input set of sextupole strengths is re-
quired for MOGA-Elegant: this can be difficult to implement in tight lattices, where the
stability is not always guaranteed off-momentum. Although no stable point is required,
in hundreds of generations, MOGA-Bmad can find a feasible candidate and further start
the optimisation.

Such genetic algorithm to optimise both the on- and off-momentum dynamic aperture
of the ultra-low emittance lattices studied in the SOLEIL upgrade boosts the nonlinear
optimisation process and provides acceptable solutions. Using MOGA-Bmad, developed
by M. Ehrlichman [43], further complementary remarks could be found in the comparison
of the two chromatic correction schemes which are being compared since the Chapter 3.
While the HOA lattice appears easy and flexible to optimise, the hybrid lattice is limited
to its non-interleaved principle, which maximises the on-momentum dynamic aperture
but does not apply to the off-momentum dynamics.

Feasibility of the injection schemes As the SOLEIL upgrade constraints evolved
into including the position of the long beamlines, ANATOMIX and NANOSCOPIUM,
4-superperiod lattices were designed: a hybrid-based lattice, and a HOA-based lattice.
Breaking the symmetry did not perturb the basic principle of each scheme, but the
increase in the number of systematic resonances further limited the transverse dynamics.
While the hybrid 4-superperiod lattice proved to be difficult to implement in the tunnel,
a 7BA-4BA HOA lattice was designed to preserve the position of all current beamlines.

Two types of injection are discussed in the SOLEIL upgrade project. The current
transverse off-axis injection can be used in the 7BA-4BA with the inclusion of a high-
β straight section. Another scheme aims at injecting the beam directly on-axis, onto
an off-momentum closed orbit: it is the longitudinal on-axis scheme. The use of a
Multipole-Injector Kicker (MIK) requires the insertion of a 16 cm dispersion bump in
the 7BA-4BA lattice. The current specifications of the MIK place the septa close to the
machine axis. Therefore, a further analysis of the nonlinear dispersion is required, and
a minimisation script was written in Accelerator Toolbox (A.T.) to decrease the value
of the first-order dispersion at the location of the septa. By scanning the strengths of
the nearby sextupoles, and conserving the linear chromaticity, the first-order dispersion
could be decreased, with no control on the transverse dynamics.



Chapter 5

6D nonlinear optimisation using
multi-objective genetic algorithm

As stated in the section 2.2.5, the reduction of the transverse emittances influences
greatly other linear parameters, such as the dispersion and the momentum compaction
factor. In particular, the latter is of the utmost importance in the control of collective ef-
fects and longitudinal stability. Furthermore, a low linear momentum compaction factor
might be overtaken by a larger second-order part, thus reducing the energy acceptance
in the synchrotron motion and limiting the beam stability. The bucket of such ultra-
low emittance lattices could be entirely driven by the higher-orders of the momentum
compaction factor αC : this is the topic of this chapter.

The convention used in this chapter is the following. The momentum compaction
factor is defined as the slope of the pathlength with regards to the energy deviation and
as such, it is expressed as:

αC = α0 + 2α1δ + 3α2δ
2
2 (5.1)

with α0 the zeroth-order, α1 the first-order and α2 the second-order momentum com-
paction factors.

5.1 Initial motivation and problematic

First steps into the upgrade projects for the SOLEIL storage ring produced a 5BA
lattice, of emittance 80 pm.rad. Figure 5.1 illustrates the magnet arrangement and the
Twiss functions of the 5BA lattice with 24-fold symmetry. Its main characteristics can
be found in Table 5.1. The ultra-low emittance is achieved with a low dispersion of
maximum value 5.6 cm, reaching a low zeroth-order momentum compaction factor of
2.1044 × 10−5. The low dispersion nature was pronounced by the inclusion of reverse
bending magnets of angle −0.28 degrees between the external dipoles and −0.38 degrees
in the core of the lattice which decreased the natural horizontal emittance down to 80
pm.rad.

137
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Figure 5.1: Twiss functions of the SOLEIL 5BA lattice under study, of emittance 80
pm.rad.

Table 5.1: General characteristics of the SOLEIL 2.75 GeV 5BA lattice, 24-fold sym-
metry.

Emittance εx 80 pm.rad
Tunes per period (νx, νy (2.21, 1.54)
Natural chromaticities (ξx, ξy) (-6.1, -4.8)
Momentum compaction factor α0 2.1044× 10−5

α1 5.3435× 10−4

Reverse bending angle -0.28/-0.38 degrees
Energy loss per turn 22.8 keV
(βx, βy) @ID (0.9, 2.9) m

Analysis of the feasibility of the on-axis longitudinal injection described in the section
4.4.3 on the 5BA lattice pointed out its small bucket and its narrow energy acceptance
of ' ±2%. Fig. 5.2 displays the longitudinal phase space of the 5BA lattice which corre-
sponds to lines of equal-energy Hamiltonian, i.e. L = {(φ, δ) ∈ R2\H(φ, δ) = E,E ∈ R}.
The black line corresponds to the linear separatrix function which is supposedly a closed
bucket, the other colours serve no other purpose than readability. The predominance
of the first-order momentum compaction factor α1 = 5.3435 × 10−4 in the 5BA lattice
reduces the linear bucket stability down to (±10 degrees,±2%).

Ultra-low emittance lattices have an overall smaller dispersion and weaker bending
magnets than third-generation storage rings, inducing a strong reduction of the zeroth-
order momentum compaction factor α0 = 1

C0

∫ C0
0

ηdisp
ρ . A too small α0 can be the

cause of several instabilities: the threshold of many collective effects depends linearly
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Figure 5.2: Longitudinal phase space of the 5BA lattice, of α0 = 2.1044× 10−5 and
α1 = 5.3435× 10−4.

with α0, such as micro-bunching instabilities. In terms of dynamic, the off-momentum
particles of δ 6= 0 oscillate longitudinally: it is the synchrotron motion. The stability of
such motion depends directly on the variation of the momentum compaction factor with
the energy deviation δ. Furthermore, a small α0 can be overtaken by the first-order
momentum compaction α1 = 1

2
dαC
dδ which strongly reduces the longitudinal stability

area and creates small buckets, alike the case of the 5BA lattice.
This chapter describes the longitudinal phase space in terms of the momentum com-

paction factor with its three lower-order terms to understand the linear synchrotron
motion and the possible destructive effect of a large first-order momentum compaction
factor. Later, different methods are studied to overcome this problem. The first method
is based on the second-order momentum compaction factor and was suggested by Maher
Attal [133] in his thesis. The second and third methods were developed on my initiative:
the approach aims at minimising the first-order momentum compaction directly by us-
ing the sextupole strengths. The second method scans the sextupole strengths within a
defined range in hopes of finding a ring of reduced α1. The inefficiency of the method,
which scans a large high-dimensional window to find a minimum with no other intelli-
gence - amongst other limitations that will be defined in the relevant section, encouraged
to include the minimisation of α1 into the pre-existing MOGA-Bmad which will include
the transverse dynamic optimisation, lacking in the other methods.
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5.2 Towards the second-order longitudinal Hamiltonian

The significantly diminished bucket of the 5BA lattice pointed out the effect of the
strong reduction of the zeroth-order momentum compaction factor in ultra-low emit-
tance lattices on the energy acceptance. This section recalls the basics of the longitudi-
nal Hamiltonian dynamics and demonstrates the destructive effect of a high first-order
momentum compaction factor. The following section shall provide solutions to correct
it.

5.2.1 Synchrotron equation of motion

The effect of the acceleration by RF cavities is described as the synchrotron motion. The
energy variation of off-momentum particles make them oscillate around the synchronous
particle of phase φs. The principle of a RF system is introduced in the Appendix
(A). Non-synchronous particles are defined by their phase φ and their energy deviation
δ= ∆p

p0
, with p[eV/c] their momentum and p0[eV/c] the momentum of the synchronous

particle. 
δ̇ = ω0

2πβ2
LE

eVRF (sin(φ)− sin(φs))

φ̇ = −h∆ω = hη0δ

(5.2)

with η0 the zeroth-order slip factor, ω0 is the revolution angle frequency, E the nominal
energy, βL the relative speed, e[C] the charge of an electron and VRF [V] the RF voltage.
Linked by the above equations, (φ, δ) are a pair of conjugate phase-space coordinates of
the longitudinal motion. The difference in angular frequency can be expressed in terms
of trajectory radius R: ∆ω

ω0
= βR

β0R0
−1. The mean radius varies with the energy deviation

and the momentum compaction factor αC , as described in 2.1.2.4:

αC = 1
R0

dR

dδ
= α0 + 2α1δ + 3α2δ

2 + ... ≡ 1
γ2
T

(5.3)

where γTmc2 is the transition energy: it corresponds to the particle energy for which
the revolution frequency is independent of the particle momentum variations. Similarly,
the angular frequency variation with energy deviation is described by the slip factor ηp:

ηp = 1
T0

dT

dδ
= − 1

ω0

dω

dδ
= η0 + η1δ + η2δ

2 + ... (5.4)

with T0[s] the nominal revolution time. The slip factor orders are linked with the mo-
mentum compaction factor with:
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η0 = α0 −
1
γ2

0

η1 = 3β2
0

2γ2
0

+ α1 − α0η0

η2 = −β
2
0(5β2

0 − 1)
2γ2

0
+ α2 − 2α0α1 + α1

γ2
0

+ α2
0η0 −

3β2
0α0

2γ2
0

(5.5)

In the case of highly relativistic particles where γ0 � 1 and βL ' 1, the slip factor
is equivalent to the momentum compaction factor. The slip factor will be used in
all longitudinal Hamiltonians to respect their temporal independent variable. They
are merged otherwise. In the linear approximation, the angular frequency difference is
expressed as ∆ω = −hη0ω0δ =

(
1
γ2 − 1

γ2
T

)
. In the light of this equation, the transition

energy corresponds to a revolution frequency independent of the particle momentum:
it is the isochronous condition. Below the transition energy, a higher energy particle
(δ > 0) has a higher revolution frequency. Above, it has a smaller revolution frequency
and appears to have a negative mass.

5.2.2 Synchrotron motion

In this section, the lattice is assumed perfectly linear thus the momentum compaction
factor is then constant regarding the momentum deviation. This section neglects the
damping effect of the radiation losses on the synchrotron motion. This will set the basis
of our study. The equations (5.2) can be derived from the Hamiltonian below:

H0 ≡
hω0η0

2 δ2 + eω0V

2πβ2
LE

[cos(φ)− cos(φs) + (φ− φs) sin(φs)] (5.6)

where time is the independent variable. In the case of small-amplitude oscillations, the
equation of motion can be linearised into:

d2(φ− φs)
dt2

= hω2
0eVRF η0 cos(φs)

2πβ2
LE

(φ− φs) (5.7)

The oscillations remain stable as long as the frequency is real; the stability condition for
the synchrotron oscillations is η0 cos(φs) < 0 and was first described in [1, 2]. The angular
synchrotron frequency ωs is ω0

√
heVRF |η0 cos(φs)|

2πβ2
LE

. The number of synchrotron oscillations
per turn or synchrotron tune Qs is the ratio between the synchrotron frequency and the
synchronous frequency:

Qs = ωs
ω0

=
√
heVRF |η0 cos(φs)|

2πβ2
LE

(5.8)

Description of the phase space The Hamiltonian H0 has two fixed points: a Stable
Fixed Point (SFP) at (φs, 0) and an Unstable Fixed Point (UFP) (π − φs, 0) around
which a small perturbation leads to the loss of the particle. The stability area of the
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Figure 5.3: Schematic of a longitudinal phase space (φ, δ). In green is the stable
fixed point, in red the unstable fixed points: the contour of its Hamiltonian draws the

frontier (in black) of the stability area.

longitudinal phase space is then delimited by the unstable fixed points and the particles
of equal energy. The term ”energy” here refers to the value of the Hamiltonian H0. The
fixed points and the stability area are represented in Fig. 5.3. That frontier is called
the separatrix of equation H(φ, δ) = H0(π − φs, 0), expanded in:

hη0
2 δ2 + eV

2πβ2E
[cos(φ) + cos(φs) + [φ− (π − φs)] sin(φs)] = 0 (5.9)

To further ease our reading and lighten the equations to come, let us define the
following function:

f : (φ, φs) 7−→ cos(φ) + cos(φs) + [φ− (π − φs)] sin(φs) (5.10)

Figure 5.4 illustrates the variations of the defined function, for different φs ∈ [π2 , π]. The
complete variations of the function f : (φ, φs) are available in the Appendix G.

Energy acceptance and bucket area The separatrix has two turning points both
on the δ = 0 line:

{(φc, 0); (π − φs, 0)}

where φc is the phase satisfying the following conditions :cos(φc) + (φc) ∗ sin(φs) = cos(φs) + (π − φs) sin(φs)

φc ∈ [−(π−φs), π − φs[
(5.11)

Since the polynomial dependence in δ is even and monomial in the separatrix equa-
tion (5.9), the link between δ and φ is straightforward. From Eq. (5.10), the area of the
stable area expands into the following equation:
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Figure 5.4: Variation of the function f : (φ, φs) over a period [−π, π] for different
φs ∈ [π2 , π].

A0 = 2
∫ π−φs

φc
δdφ = 2

√
eV

h|η0|πβ2E

∫ π−φs

φc

√
−f(φ, φs)dφ (5.12)

and the maximum momentum deviation, obtained for φ = φs is:

δ0,max =
√

eV

h|η0|πβ2E

√
|f(φs, φs))| (5.13)

Figure 5.5 illustrates the longitudinal phase space for different momentum com-
paction factors along with different energy levels. In black is represented the separatrix
for each case.

The resulting stability area keeps increasing with 1
|α0| , as expected from Eq. (5.12)

and (5.13). Ultra-low emittance lattices of which momentum compaction factor α0 is
smaller due to a decreased dispersion, should present both a larger bucket area and a
higher energy acceptance, both being inversely proportional to the slip factor and the
momentum compaction factor. Figure 5.5 illustrates this dependence by drawing three
purely linear buckets for two different α0. Nonetheless, the smaller α0 the stronger the
destructing effect induced by α1.
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a b
Figure 5.5: Longitudinal phase spaces of fixed range (φ, δ) ∈ [−π, π] × [±10%] axis
for different first order momentum compaction factors (a) α0 = 1 × 10−3 and (b)

α0 = 1× 10−4. The lower α0, the larger δ0,max.

5.2.2.1 Mapping equations and synchrotron damping

In circular accelerators, RF acceleration occurs at a specific location in the storage ring.
The synchrotron motion is more realistically described by the sequences (φn, δn)n∈N,
with n the number of turns. The corresponding equations are the mapping equations:


δn+1 = δn + eV

2πβ2E
(sin(φn)− sin(φs))

φn+1 = φn + hη0δn+1

(5.14)

Indeed, once a particle of coordinates (φn, δn) crosses the RF system, it is either decel-
erated or accelerated depending on the sign of (φs − φn) (cf 1.1.2). The new phase is
derived from the new momentum deviation δn+1. All stable motion is bounded in the
(φ, δ) plane: it is the stability area, represented in Fig. 5.3.

5.2.3 First-order longitudinal plane

This section reviews the effect of the first-order in momentum compaction factor α1, on
the longitudinal stability area. Its destructive effect, when larger than α0, highly reduces
the energy acceptance and disturbs the stability. The total momentum compaction in
this subsection is:

αC = α0 + 2α1δ (5.15)

A corresponding Hamiltonian includes the effect of the first-order element in the
mapping equations (5.14):

H1 = hη0
2 δ2 + hη1

3 δ3 + eV

2πβ2E
f(φ, π − φs) (5.16)

This Hamiltonian, in addition to the linear fixed points, has a second line of buckets
at the energy deviation δ = −α0

α1
, with reversed stability of the fixed points: (φs, δ) here

is unstable, (π − φs, δ) stable. Figure 5.6 is the longitudinal phase space of the current
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SOLEIL lattice without the losses due to the insertion devices, with α0 = 4.16 × 10−4

and α1 = 4.50× 10−3 at a RF voltage of 3 MV.

a b
Figure 5.6: Second order longitudinal phase space of the current SOLEIL storage
ring, (a) α0 = 4.16× 10−4 without any other order and (b) including the second-order
α1 = 4.50×10−3. The stable (in green) and unstable (in red) fixed points are displayed
in the second-order case (b). The separatrices are in black in each phase space. SFP

are marked with green dots, UFP with red dots.

In the case where an overlap exists between the two bucket lines, the energy level
adds destructively in the vicinity of the unstable fixed points, reducing the width of the
bucket, as observed in Fig. 5.6 (b). This effect is illustrated in Fig. 5.7. The bucket
lines are nevertheless independent, provided the ratio α0

α1
is larger than the maximum

energy deviation δmax, which is expressed in the next paragraph. The fixed points are
displayed with the following colour code: green dots correspond to stable fixed points,
red dots to unstable fixed points.

Figure 5.7 illustrates the destructive effect of the first-order momentum compaction
factor α1 by progressively increasing its value for a fixed zeroth-order α0 = 1.0× 10−4.
The decrease in the ratio α0

α1
closes the gap between the two bucket lines δ = 0 and

δ = −α0
α1

. Once the buckets are mixed, the unstable fixed point at δ = −α0
α1

reduces the
stable area of the linear buckets at δ = 0.

Maximum momentum deviation and bucket area Even in the optimum case
of a large α0

α1
ratio, α1 will reduce the energy acceptance of the lattice. Indeed, the

dependence of the separatrix on δ is now asymmetric: depending on the sign of α1,
either δ1,max or δ1,min will be dramatically reduced. Since changing the sign of α1 is
equivalent to flipping the longitudinal phase space with δ := −δ, let us assume α1 > 0.
The extremum momentum deviation of the second-order separatrix satisfies:

hη0
2 δ2

1,max + hη1
3 δ3

1,max + eV

2πβ2E
f(φs, φs) = 0 (5.17)

From Eq. (5.13), the previous equation becomes:

δ2
1,max + 2

3
η1
η0
δ3

1,max = δ2
0,max (5.18)
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a b

c d
Figure 5.7: Illustration of the destructive effect of α1 on the longitudinal phase space
for a fixed arbitrary α0 = 1× 10−4 and for different ratios (a) α0

α1
= 1 (b) α0

α1
= 1

10 , (c)
α0
α1

= 1
20 and (d) α0

α1
= 1

50 . SFP are marked with green dots, UFP with red dots.

Therefore, the larger the ratio η0
η1

the higher the maximum energy. It is the contrary for
the minimum energy deviation. Indeed δ1,min is negative and also verifies Eq. (5.18):
then the lowest η0

η1
provides a higher |δ1,min|. In ultra-low emittance lattices, no further

control is exerted on α1. Among the lattices under study, it is always larger than α0 and
their ratio ' 0.1. The second bucket line interferes with the linear bucket line, leading
to either a reduction and alteration of the bucket shape or to its destruction.

5.2.4 Case of a second-order symmetric bucket, α1 = 0

Before increasing the general longitudinal Hamiltonian to the second-order in momentum
compaction factor, let us study the contribution of the second-order momentum com-
paction factor α2 on the linear bucket. The considered momentum compaction factor is
therefore purely symmetric in δ and is:

αC = α0 + 3α2δ
2 (5.19)
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Symmetric second-order Hamiltonian The Hamiltonian describing the second-
order symmetric bucket is from Eq. (5.24):

Hsym = hη0
2 δ2 + hη2

4 δ4 + eV

2πβ2E
f(φ, π − φs) (5.20)

Its fixed points are the linear SFP0 (φs, 0) and UFP0 (π − φs, 0), and two additional
fixed points SFP2 (φs,−α0

α2
)) and UFP2 (π − φs,−α0

α2
)). Unlike the second-order case

in section 5.2.3, the second bucket line adds constructively to the linear one, allowing
a symmetric enlargement of the original bucket in the energy direction. Figure 5.8
illustrates this effect.

a b
Figure 5.8: Effect of the second-order momentum compaction factor α2 on the bucket
size, with a arbitrarily set α0 = 1×10−4 and (a) α2 = −1×10−2 and (b) α2 = −5×10−3.

SFP are marked with green dots, UFP with red dots.

Energy acceptance If the second bucket line is far away enough, the maximum energy
deviation on the separatrix verifies:

δ2
2,max + η2

2η0
δ4

2,max = δ2
0,max (5.21)

The energy acceptance can therefore be symmetrically increased when η0η2 < 1.

5.2.5 Second-order mapping equations and Hamiltonian

In this section, the momentum compaction factor reads:

αC = α0 + 2α1δ + 3α2δ
2 (5.22)

The mapping equations including all studied orders of the momentum compaction
factor are: 

δn+1 = δn + eV

2πβ2E
(sin(φn)− sin(φs))

φn+1 = φn + h(η0δn+1 + η1δ
2
n+1 + η2δ

3
n+1)

(5.23)
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The Hamiltonian expressed with a second-order slip factor is, from Eq. (5.23):

H = hη0
2 δ2 + hη1

3 δ3 + hη2
4 δ4 + eV

2πβ2E
f(φ, π − φs) (5.24)

5.2.5.1 Fixed points of the second-order Hamiltonian

The fixed points of this Hamiltonian verify:
δ̇ = eV

2πβ2E
(sin(φ)− sin(φs)) = 0

φ̇ = h(η0δ + η1δ
2 + η2δ

3) = 0
(5.25)

The first condition is valid when sin(φ) = sin(φs), for the phases φ = φs and φ = π−φs,
modulo 2π. The second condition is verified by (φ, δ), such as: δ = 0 or δ solution of(
η2X

2 + η1X + η0 = 0
)
. Let us define the polynom P (X) =

(
η2X

2 + η1X + η0
)
. The

latest condition exposes three cases:

• P has no zeros in R: this case is equivalent to η2
1 < 4η2η0. If this condition is

verified, the polynom P (X) = η2X
2 + η1X + η0 has no zeros in R. Therefore,

the Hamiltonian in Eq. (5.24) has only two fixed points which are also the linear
Hamiltonian fixed points:

Order φ δ Type
Linear fixed points φs 0 SFP

π − φs 0 UFP

The equation of the separatrix is similar to the linear case in Eq. (5.9):

Q(δ) + eV

2πβ2E
[cos(φ) + cos(φs)− (π − φ− φs) sin(φs)] = 0 (5.26)

with Q(X) = η2
4 X

2
(
X2 + 4

3
η1
η2
X + 2η0

η2

)
, of discriminant ∆Q = 16

9 (η2
1 − 4.5η2η0) is

negative.

• P has a unique zero z, η2
1 = 4η0η2 =⇒ z = − η1

2η2
. The Hamiltonian H of Eq.

(5.24) has four fixed points:

Order φ δ Type
Linear fixed points φs 0 SFP

π − φs 0 UFP
Non-linear fixed points φs − η1

2η2
UFP

π − φs − η1
2η2

SFP

This specific situation resembles the first-order case; the stable area is therefore
determined by the ratio η1

2η2
.
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• P has two zeros in R, i.e. η2
1 > 4η2η0: δ± = − η1

2η2

(
1±

√
1− 4η2η0

η2
1

)
. The Hamil-

tonian of Eq. (5.24) has six fixed points:

Order φ δ Type
Linear fixed points φs 0 SFP

π − φs 0 SFP
Nonlinear fixed points φs δ+ SFP

π − φs δ+ UFP
φs δ− SFP

π − φs δ− UFP

In this case, the linear bucket can be modified by the SFP (φs, δ+) and (φs, δ−) depending
on their distance with δ = 0. The distance between the two secondary buckets lines
defined by δ+ and δ− can be monitored using δ+ + δ− = −η1

η2
.

5.2.5.2 Mapping equations

From the mapping equations including the zeroth- and first-order slip factors, Riabko et
al. [134] described the first-order longitudinal phase space by switching to a canonical
plane. This section summarises my attempts to extend their method to the second-order
Hamiltonian in Eq. (5.24). From the mapping equations (5.23), the following differential
equation is verified by δ, similarly to [134]:

δ̈ + ν2
s δ + ν2

s

η1
η0
δ2 + ν2

s

η2
η0
δ3 = 0 (5.27)

Changing the time variable as well as the longitudinal variable as in [134] and defining
x = −η1

η0
δ and t = νsθ, the equation (5.27) can be expressed in terms of x as:

ẍ+ x− x2 + η2η0
η2

1
x3 = 0 (5.28)

Compared to Riabko’s paper, a higher order in x was added, which has a coefficient
η2η0
η2

1
and which corresponds to the second-order term in the Hamiltonian. The derivative

variable for the description of the phase space area is expressed as:

p = dx

dt
= η1
η2

0
νsφ (5.29)

Considering the longitudinal variables (x, p), the second-order Hamiltonian H(φ, δ)
becomes:

H = p2

2 + x2

2 −
x3

3 + η2η0
4η2

1
x4 (5.30)

Following the process described in [134], one can derive the differential equation
verified by the longitudinal variable x at a fixed energy Hamiltonian E:
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(
dx

dt

)2
= −η2η0

2η2
1
x4 + 2

3x
3 − x2 + 2E (5.31)

Facing this analytic curve of order 4, one can derive this equation and find:

d2x

dt2
= x(1− x+ η2η0

η2
1
x3) (5.32)

Unlike the case of the paper, where the phase space (x, p) was described by an ellip-
tic curve of known solutions, the equation (5.32) is not solvable to my knowledge but
numerical derivation of the specific cases is possible. Figure 5.9 gives examples of the
phase space described by Eq. (5.32) for different ration η2η0

η2
1

.

Figure 5.9: Phase-space (x, p) of the second-order Hamiltonian, following [134], with
(a) a ratio η2η0

η2
1

= 1 and (b) η2η0
η2

1
= −1. In both cases, the energy of the Hamiltonian

E in Eq. (5.32) was arbitrarily set at 10.

As the resulting phase space is not easily described from the second-order Hamilto-
nian there derived, the attention is turned onto the high-order momentum compaction
factor.

5.3 Higher-order momentum compaction factor

To control the longitudinal phase space and its stability while optimising the lattice,
the higher-order momentum compaction factor was derived and investigated. Once the
higher-orders in αC were known and controlled, one could shape the bucket to match
their expectations. This section follows the previous notations and deals with the three
first-orders of the studied quantities.

5.3.1 Integral expressions

The momentum compaction factor can be expressed in terms of magnetic strengths and
dispersion. To do so, one shall expand the pathlength ∆C in higher-order of momentum
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deviation δ:

∆C =
∮ √

x′2 + y′2 + (1− hx)2ds '
∮ (

x′2 + y′2

2 − hx+ hx
x′2 + y′2

2

)
ds (5.33)

with h = −1
ρ [m−1] . Distinguishing the betatron amplitude xβ and the off-momentum

component, the different orders in momentum compaction factor can find their integral
expression as functions of the higher-order dispersions: Dx = D0 + D1δ + D2δ

2. The
full derivation is available in [133] for instance.



α0 = 1
C0

∫ C0

0
−hD0 ds

α1 = 1
C0

∫ C0

0

[
D′20
2 − hD1

]
ds

α2 = 1
C0

∫ C0

0

[
D′0D

′
1 + h

D0D
′2
0

2 − hD2

]
ds

(5.34)

5.3.2 Analytic expressions of the higher-order dispersion

To compute the higher-order momentum compaction factor, the dispersion and its
derivatives are needed up to the second- and the first-order respectively. The defini-
tion of the higher-order dispersion is recalled in Eq. 5.36. First, the differential equation
of each order is derived. Afterwards, considering the inherent periodicity of the disper-
sion function, the solutions of the differential equations are derived using Fourier series.
From [131], the differential equation verified by the horizontal amplitude is, including
the dependence in momentum deviation:

x′′ + (h2 + k1)x =− h(δ − δ2 + δ3 − ...) + (k1 + 2h2)x(δ − δ2 + δ3 − ...)

− 1
2k2x

2(1− δ + δ2 − ...)− 1
2hx

′2(1 + δ + δ2 + ...) + ...
(5.35)

with h[m−1] = −1
ρ , k1 the quadrupolar strength, k2 the sextupolar strength. The

differential equations verified by the different orders in dispersion are extracted from Eq.
(5.35) by exhibiting the betatron motion and dispersion contribution in the amplitude
x and isolating each order in energy deviation δ. Indeed,

x = xβ +D0δ +D1δ
2 +D2δ

3 + ... (5.36)

5.3.2.1 Linear dispersion D0

The linear dispersion D0 defines the off-momentum closed orbit, from the deflection
in dipoles and combined-function magnets (cf sec. 2.1.2.1). It verifies the differential
equation:

D′′0 + (h2 + k1)D0 = −h (5.37)
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From [131, 135], the dispersion is Fourier-expanded with respect to the betatron
phase advance φ. Since all the lattices considered include a mirror symmetry, the phase
is set at 0 in the middle of the straight section and the Fourier series include only the
cosine component. The Fourier series of the linear dispersion and its derivative D′0 are:


D0 =

√
(βx)

inf∑
n=0

F0n
cos(nφ)
ν2

0 − n2

D′0 = − 1
ν0
√

(βx)

inf∑
n=0

nF0n
sin(nφ)
ν2

0 − n2 −
α

β
D0

(5.38)

where ν0 is the unperturbed betatron tune and F0n is the Fourier harmonics of −hν2
0β

3
2
x ,

of expression:

F0,n>0 = an

∫ C0

0
−h
√
β(s) cos(nφ(s))ds (5.39)

with an = ν0
2π if n = 0, ν0

π otherwise.
The analytical calculation of the linear dispersion shall be compared to the expected

dispersion for two different lattices. The expected dispersion and the orders to follow
are extracted from the off-momentum orbit: the orbit of two off-momentum particles at
±δ is calculated, the lowest-order dispersion and higher orders are then extracted from
the variation of the orbit with δ.

Figure 5.10 compares the linear dispersion and its derivative along the SOLEIL 7BA
HOA lattice and the SOLEIL 7BA hybrid lattice, analytically calculated in Eq. 5.37
and the expected dispersion function and derivative. The calculations were conducted
with Fourier series of maximum harmonic N = 1000. For a better appreciation of the
variations along the lattice, along with an increased precision in the integral calculations,
all elements were sliced into 30 pieces. The analytical evaluation (in red dots) of the
linear dispersion is in excellent concordance with the expected dispersion (in black), as is
the derivative, for both lattices. Slight variations occur near the dispersion bumps of the
hybrid lattices, which can be controlled by increasing the number of Fourier harmonics
N.

Integrating the zeroth-order dispersion along the longitudinal position s, one finds
the momentum compaction factor of the hybrid lattice: α0 = 1.4677 × 10−4. The
expected value is 1.467× 10−4, with three digits precision. The agreement with a three
digits precision remains in the case of the HOA lattice, where the calculated momentum
compaction factor is 1.0856×10−4, and the expected value 1.0853×10−4. The matching
results of both the dispersion and the momentum compaction factor in the zeroth-
order, for two different lattices confirm both the method and the script. They are thus
extended to the first- and second-order, for the calculation of the first- and second-order
momentum compaction factors.
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5.3.2.2 First-order dispersion D1

The first-order dispersion D1 verifies the following differential equation:

D′′1 + (h2 + k1)D1 = h+ k1D0 −
(1

2k2 + 2hk1

)
D2

0 −
1
2hD

′2
0 − h′D0D

′
0 (5.40)

Similarly to the zeroth-order, the first-order part is expressed using the Fourier analysis
described and applied in [131, 135]:

D1 =
√

(βx)
inf∑
n=0

(−F0n + F1n) cos(nφ)
ν2

0 − n2

D′1 = − 1
ν0
√

(βx)

inf∑
n=0

n(−F0n + F1n) sin(nφ)
ν2

0 − n2 −
α

β
(D1 +D0)

(5.41)

where F1n is the Fourier harmonics of −ν2β
3
2
x η0

[(
k1 + h2)− (1

2k2 − 2hk1
)
η0
]
, including

the influence of combined-function magnets. The expression of F1n is:

F1,n>0 = an

∫ C0

0

√
β(s)D0(s)

[
k1 −

(1
2k2 − 2hk1

)
D0(s)

]
cos(nφ(s))ds (5.42)

with an = ν0
2π if n = 0, ν0

π otherwise.
Figure 5.11, similarly to Fig. 5.10, compares the analytical calculation of the first-

order dispersion and its derivative D′1, with the extracted values from the closed orbit.
The calculations were conducted with Fourier series of maximum harmonic N = 1000,
and all elements were sliced into 30 pieces. Both those values were chosen to match the
zeroth-order momentum compaction factor with a 10−3 precision, as confirmed in the
previous section.

First-order derivative In both cases, the first-order derivatives extracted from the
orbits (c) and (d) appear wrong, as they do not represent the variation of the first-order
dispersion: the additional treatment to extract the derivative here failed. To ensure the
calculated derivative is correct, it is compared with the rate of change of the calculated
first-order dispersion. The results for both lattices are displayed in Fig. 5.12, where the
perfect agreement is shown - apart for a discontinuity at s ' 3.8 m in the hybrid case-
confirming the analytical calculation of the derivative.

5.3.2.3 Second-order dispersion D2

Finally, the second-order dispersion D2 verifies the differential equation:

D′′2 + (h2 + k1)D2 =− h+ k1[D1 −D0]−
(1

2k2 + 2hk1

)
[2D0D1 −D2

0]

− 1
2
[
D′20 + 2D′0D′1

]
+
(3

2k1 − 2h2
)
D0D

′2
0

(5.43)

Its Fourier series is:
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a

b
Figure 5.12: Comparison of the analytically-calculated first-order dispersion deriva-
tive D′1 (in red) with the rate of change of the first-order dispersion D1 (in black) for

(left) the HOA lattice and (right) the hybrid lattice.

D2 =
√

(βx)
inf∑
n=0

(F0n − F1n + F2n) cos(nφ)
ν2

0 − n2 (5.44)

where F2n the cosinusoidal Fourier harmonics of−ν2β
3
2
x η1 [k1 − (k2 − 4hk1) η0], including

the influence of combined-function magnets. The expression of F1n is:

F2,n>0 = an

∫ C0

0

√
β(s)D1(s) [k1 − (k2 − 4hk1)D0(s)] cos(nφ(s))ds (5.45)

with an = ν0
2π if n = 0, ν0

π otherwise.
Figure 5.13 compares the analytical calculation of the second-order dispersion with

the extracted values from the closed orbit. The derivative of the second-order was not
analytically calculated, for it is not necessary in the calculations of the considered orders
of the momentum compaction factor. The calculations were conducted with Fourier
series of maximum harmonic N = 1000, and all elements were sliced into 30 pieces. The
match is nearly perfect both the HOA and the hybrid case, with slight variations in the
straight sections; such differences can be imputed to the loss of precision when using a
second-order polynomial fit.
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Figure 5.13: Comparison of the analytically calculated second-order dispersion D2
(in red) with the extracted values from tracking the orbits variation (in black) for (a)

the HOA lattice and (b) the hybrid lattice.

5.3.2.4 Calculated momentum compaction factor

The calculated higher-order dispersions are integrated along the ring, complying with
the integral expressions of the higher-order momentum compaction factor. Table 5.2
compares the orders in αC extracted from the orbit by a polynomial fit of order 3 (left
columns) available in A.T., and the calculated values (right columns) for the hybrid and
HOA lattices.

Good agreement is found for the zeroth- and first-order, α0 and α1, to the 10−3 and
10−2 respectively, between the two calculation methods. The evaluation of the second-
order differs between the two methods. The polynomial fit loses its precision for orders
higher than two. Following the good agreement found in the nonlinear dispersion and
the lowest-order calculation, the analytical value is believed to be the reference value.
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Table 5.2: Comparison of the calculated and tracked first three-orders in momentum
compaction factor for the 7BA hybrid and 7BA HOA lattices for SOLEIL.

HYBRID HOA
MCF Tracked Calculated Tracked Calculated
α0 1.4673× 10−4 1.4677× 10−4 1.0853× 10−4 1.0856× 10−4

α1 6.2004× 10−4 6.216× 10−4 1.7920× 10−4 1.7915× 10−4

α2 −7.8838× 10−4 −7.914× 10−4 −3.5621× 10−4 −3.4654× 10−4

Increased precision of this value is achieved by increasing the number of harmonics in
the Fourier expansion, as well as the number of slices per element of the ring, to better
appreciate the Twiss function variations in the elements.

With the confirmed three lowest orders of the momentum compaction factor, a simple
program was developed in A.T. to display the lines of equal Hamiltonian. The longi-
tudinal phase space of both the HOA and the hybrid lattice could then be calculated.
They are displayed in Fig. 5.14. As expected from the values of α0 and α1, which ratio
equals 0.61 for the HOA 7BA and 0.24 for the hybrid lattice, the linear bucket is large
enough and not perturbed in any way by the higher-order bucket lines. Nonetheless,
an asymmetry exists in the hybrid bucket in the negative energy, and is due to the
proximity of the first-order bucket line δ = −α0

α1
= 0.24.

5.4 Effect of the nonlinear magnets on α1 and α2

The optimisation of the higher-order momentum compaction factor is explored in this
section with the use of nonlinear magnets: sextupoles and octupoles. Sextupoles influ-
ence both the first- and the second-order momentum compaction factor, while octupoles
only have an effect on α2. From Eq. (5.34), the influence of such magnets is indirect.
Indeed, α1 is influenced by the sextupoles from its second term, −hD1: the sextupoles
play a role in determining D1, following Eq. (5.41). Similarly, the octupoles influence
α2 through D2, the sextupoles through D′1.

The optimisation of the longitudinal stability area is explored through two means:
either the increase of α2 to compensate the destructive effect of α1, or minimising the
first-order α1 directly.

5.4.1 On the use of octupoles to optimise the bucket characteristics

As discussed in the section 5.2.3, the first-order momentum compaction factor, if large
enough, perturbs the symmetry of the longitudinal plane, thus creating an atrophied
bucket. Two methods are foreseen to minimise this effect.

A first method addressed by Maher Attal in his thesis [133] focuses on restoring the
symmetry of the longitudinal plane by balancing the ratio α0α2

α2
1

. By inserting octupoles in
the a dispersive zone of the lattice, the second-order in momentum compaction factor can
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a

b
Figure 5.14: Comparison of longitudinal phase space of (a) the HOA 7BA lattice and

(b) the hybrid 7BA lattice, with the calculated three lowest-order of the MCF.

be optimised to restore the symmetry of the bucket, thus compensating the effect of α1.
As α2 is produced by all second-order magnets and above, the addition of octupoles in
a lattice can increase the second-order momentum compaction factor with no alteration
of the lowest orders.

Where this solution could work on some lattices - specifically in the case where the RF
bucket is small, when the ratio α0

α1
is small, the restoration effect of α2 is neither efficient,

nor always possible. It was applied on the 5BA lattice, described in the introduction of
this chapter (5.1). Two octupoles were inserted at symmetric positions, on the side of
the second dipole, to benefit from a large dispersion. Their location is displayed in Fig.
5.15.

The pathlength is tracked in A.T., and the orders of the momentum compaction
factor are extracted with a polynomial fit:

∂(∆C)
∂δ

= C0αC = C0(α0 + 2α1δ + 3α2δ
2 + ...) (5.46)

This allowed the evaluation of the second-order momentum compaction of the nom-
inal lattice, which is α2 = −1.5× 10−4, too low to have an influence on the RF bucket.
Figure 5.16 displays the variation of the second-order momentum compaction factor with
the strength of the octupole family.
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Figure 5.15: Location of the octupole for increase of the second-order momentum
compaction factor.

Figure 5.16: Variation of the second-order momentum compaction factor with the
octupole strength.

The method is proved to vary α2. To specify which α2 is required to restore the
RF bucket, Figure 5.17 compares the RF buckets for different second-order momentum
compaction factors.

Therefore, the application of −7000 m−3 strength to the octupoles increased the
second-order momentum compaction factor and restored the linear bucket on Fig, 5.17
(c). Yet, to completely restore the symmetry of the linear bucket, the required octupole
strength exceeds −10000 m−3. Although this method can restore the RF bucket by
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increasing the second-order momentum compaction factor which compensates the effect
of the first-order, the requirements for strong octupoles, in a lattice with little space,
and a large tune shift which has to be further corrected, limits its application and its
effectiveness.

5.4.2 Optimisation of the effect of α1 using sextupoles

Rather than introducing additional magnets in the tight lattices to increase α2, a second
method aims at minimising α1 directly and restore the bucket acceptance. Since α1 =
1
C0

∫ C0
0 [D

′2
0
2 −hD1]ds, the effect of the sextupoles on α1 is indirect: they affect the second-

order dispersion only, in the presence of linear dispersion. Therefore, the minimisation
of α1, if possible, with the sextupoles, requires the manipulation of D1.

In this section, I explore the feasibility and efficiency of the minimisation of α1 with
the sextupoles. The different tests were conducted on the HOA 7BA lattice: this lattice
is inherently composed of a large number of sextupoles, which increases the freedom
degrees of the minimisation process. The good knowledge of the lattice helps better
understand the outputs of the scan. Once the minimisation was proved feasible and
tested on the HOA lattice, the process was applied on the 5BA lattice.

5.4.2.1 Variation of the second-order dispersion with sextupoles

To test the feasibility of this method, the sextupoles of the HOA 7BA lattice are ran-
domly varied among a fixed range and under the constraint of constant chromaticities.
The first-order dispersion is evaluated for each generated ring. All sextupoles are treated
individually, to maximise the effect on the higher-order dispersion. For comparison with
the nominal lattice, the program works under constant chromaticities. To do so, the ef-
fect of each sextupole on the chromaticities is computed and gathered in the chromatic
matrix. The pseudo-inverse of such matrix allows the creation of the variable space of
dimension Nsext−2, where the chromaticities are kept constant. The sextupolar bounds
are translated in that space. At the ring creation stage of the program, a random set is
taken from that variable space, then translated back into sextupolar strengths to create
a new ring, of identical linear chromaticities to the nominal lattice. This method was
copied from MOGA-Bmad, and transcribed into Matlab. Figure 5.18 gathers the results
for a sextupole variation of ±1%, ±5% and ±10% from their nominal values, with 500
iterations. Logically, the higher the variation in the sextupole strength, the higher the
variation in the first-order dispersion, which is promising for the foreseen minimisation.

The superimposed magnetic lattice of the HOA allows us to spot that the strongest
variations in the first-order dispersion occur on the dipoles and straight sections: there-
fore we can expect a variation of the first-order momentum compaction factor while
playing on the sextupoles, under the same conditions.
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a

b

c
Figure 5.18: Variation of the first-order dispersion with N=500 new rings with sex-
tupole strengths varying within (a) a ±1% range (b) a ±5% range and (c) a ±10% range
from their nominal values, while keeping the chromaticities in both planes constant.

5.4.2.2 Optimisation of the HOA 7BA lattice using A.T.

To evaluate the efficiency of the described method, the sextupole strengths are varied
within a defined range to scan the first-order momentum compaction factor. The pro-
gram scans the input lattice and numbers its sextupoles: the sextupoles are treated
independently i.e. no families are taken into account, to maximise the interaction with
α1. For comparison with the nominal lattice, the program works under constant chro-
maticities, using the process previously described. Once a ring is created, its first-order
dispersion is calculated and printed with regards to the longitudinal position s. After-
wards, the first-order momentum compaction factor is calculated analytically using its
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integral form. The end of the program finds the minimum scanned α1, and saves the
corresponding ring. The program has several outputs:

• Output variables: the optimised ring, the values of the sextupoles of each generated
ring, and the vector ’alpha1all’ gathering the values of α1 of all generated rings.

• Figures: a first figure is updated along the optimisation and superimposes the
first-order dispersion of all generated rings. At the end of the optimisation, three
additional figures are created: the variation of α1 during the optimisation, the
relative sextupole variation of the ring of minimum α1 and the comparison of the
first-order dispersion of the ring of minimum α1 with that of the nominal ring.

The whole script is available in my GitHub [136].

Optimisation with different relative variation ranges for the sextupoles Fol-
lowing the results of the first-order dispersion scan, a first optimisation was conducted
using a ±10% margin. The optimisation was tested on one period of the HOA 7BA
lattice, which is composed of 22 individual sextupoles. The variable space dimension
is therefore 20, due to the dominant constraints of the constant vertical and horizontal
chromaticities. As a reminder, the zeroth- and first-order momentum compaction factors
of the HOA lattice are α0 = 1.08 × 10−4 and α1 = 1.791 × 10−4, which results in a α0

α1

ratio of ' 0.6.

Table 5.3: Achieved minimum and maximum first-order momentum compaction fac-
tors for different relative variations of the sextupole strengths in the minimisation scan

conducted on the HOA 7BA lattice.

Variation range 10% 25% 50% 100%
α1,min 1.785× 10−4 1.780× 10−4 1.774× 10−4 1.757× 10−4

α1,max 1.795× 10−4 1.795× 10−4 1.804× 10−4 1.818× 10−4

Relative variation −0.35/+ 0.2% −0.65/+ 0.2% −1/+ 0.7% −2/+ 1.5%
Maximum ratio α0

α1
0.605 0.607 0.609 0.615

The optimisation was conducted with a random generation of 1000 rings: for each
ring, both the first-order dispersion and the first-order momentum compaction factor
were evaluated. Figure 5.19 displays the variations of the first-order momentum com-
paction factor during the different optimisations conducted for different relative sex-
tupole variations: (a)±10%, (b)±25%, (c)±50% and (d)±100%, and for each randomly
generated ring. As expected, the release of the sextupole strength bounds increases the
relative variations on α1, as displayed in Table 5.3. The strongest reduction achieved is
a −2% reduction with a ±100% variation of the sextupole strengths, which remains too
low to effectively influence on the longitudinal phase space, as it increases the ratio α0

α1

by only 2%.
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Figure 5.20: Comparison of the relative variation of the sextupole strengths of the
optimised ring in the (a) ±10%, (b) ±25%, (c) ±50% and (d) ±100% optimisations.

To compare with the nominal lattice, the first-order dispersions of all optimised
lattices are confronted with the nominal D1 in Fig. 5.21. The nominal first-order
dispersion is displayed in red in each figures. For the smallest variations of the sextupole
strengths, ±10% and ±25%, the optimised first-order dispersion remains of the same
order as the nominal D1: the optimisation of α1 is there achieved with the minimisation
of the integral contribution of D1 in α1, by either an increase in D1 at the antibends
(Fig. 5.21 (a)), or a general reduction of the dispersion (Fig. 5.21 (b)). This process
is not obvious in the larger variations of the sextupoles, where the optimised first-order
dispersion is largely increased by a factor 10 to 20 in the ±50% and ±100% sextupole
variation cases. The minimisation of α1 appears to be completed by compensating
the incompressible contribution of (D′0)2 in α1, by further increasing the first-order
dispersion in the antibends, which creates a negative area.

To complete the overview of the optimisation, Fig. 5.20 compares the relative varia-
tions of the sextupoles for each ring of minimum α1. Despite the margin applied, some
values step out of the boundary: since the translation to and from the variable space of
constant chromaticity is not an invertible process, it is assumed that some sextupoles can
be generated out of the defined bounds. In the case of the ±50% and ±100% variation,
the sextupoles of the optimised ring strongly vary from their nominal, with Sextupole 3
and its symmetric 20 doubling and tripling their value. Such large sextupoles must per-
turbed the transverse dynamic of the lattice. Especially, the variations of the sextupoles
not only affect the first-order dispersion but also higher orders, which play a role in the
definition of the higher-order chromaticities.

Transverse dynamic apertures of the optimised rings The increase of the sex-
tupole strengths has many drawbacks. The higher the sextupoles, the stronger the
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resonances, with a potential reduction of the dynamic aperture. Furthermore, the tune-
shift with energy is perturbed, thus changing the off-momentum stability. Figure 5.22
compares the on-momentum dynamic aperture of the optimised rings and the nominal
lattice.

Figure 5.22: Comparison of the on-momentum transverse dynamic aperture of the
rings optimised in α1 using the sextupoles.

Tune shift with energy and nonlinear chromaticities of the optimised lattices
Although the optimisation is conducted at constant linear chromaticities, the effect of
the variations of the sextupoles on the second- and third-order chromaticities is not
controlled in any way, which could lead to high tune shift with energy if left unattended.
Figure 5.23 compares the tune shift with energy of the four optimised lattices, with
the nominal lattice performances. Small variations around the nominal strengths of the
sextupoles do not perturb the tune shift with energy. While increasing the sextupole
strengths, the tune shift is stronger and stronger, thus reaching the half-integer and
integer values rapidly. Indeed, in the case of ±25% variations, the horizontal tune shift
is dominated by the third-order chromaticities, and reaches the half-integer for an energy
deviation of δ ' −10%. The third order also dominates the tune shift for a variation
of ±50%, where the integer is reached for δ ' +6%. In the case of ±100% variations
for which the sextupoles are the strongest, the integer resonance is reached rapidly, for
δ ' −3.5%.

Table 5.4 gathers the values of the nonlinear chromaticities of the optimised rings for
the different optimisations described in this section, and compares them to the values
of the nominal lattice. As expected, the optimisation of α1 with the sole condition
of keeping the linear lattice and the first-order chromaticities in both planes tends to
increase the value of the second- and third-order chromaticities.
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(a)

(b)

Figure 5.23: Comparison of tune shifts with energy of the rings optimised in α1 using
the sextupoles: (a) in the horizontal plane and (b) in the vertical plane.

Table 5.4: Comparison of the nonlinear chromaticities along the four optimised peri-
ods of the HOA 7BA lattice with different relative variations of the sextupole strengths.

Chromaticities Nominal lattice 10% 25% 50% 100%
ξ1
x -0.002 -0.0018 -0.0018 -0.0018 -0.0019
ξ1
y 0.006 0.0058 0.0058 0.0058 0.0057
ξ2
x 9.2 8.0826 5.9599 -10.749 -41.9117
ξ2
y 2.2 1.8990 7.9607 3.509 -1.9668
ξ3
x 26.5 6.5630 -94.2351 -210.973 277.6763
ξ3
y -15.7 -9.6762 40.2829 -5.941 80.1506

5.4.2.3 Optimisation of the 5BA lattice using A.T.

As this general study started with a 5BA lattice explored for the upgrade of the SOLEIL
storage ring, this section is dedicated to the optimisation of its bucket area using the
A.T. scan successfully tested on the HOA 7BA lattice. To do so, the 5BA lattice was
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translated from OPA to A.T., and the same optimisation as with the HOA lattice was
conducted on one period of the ring.

Optimisation with different relative variation ranges for the sextupoles A
5BA period is composed of 14 sextupoles, which are considered independent. Here,
the variable space is of dimension 12. Unlike the HOA 7BA lattice where the ratio α0

α1

was large enough for the destructive bucket line not to perturb the linear bucket, the
linear buckets of the 5BA lattice are drastically reduced by the effect of α1. Indeed, its
zeroth-order momentum compaction factor equals α0 = 2.1044 × 10−5, the first-order
α1 = 5.3435 × 10−4, resulting in as low a ratio as α0

α1
' 0.04. Nevertheless, unlike

the ultra-low emittance HOA 7BA lattice, the dispersion and higher-order dispersions
of the 5BA lattice are higher by at least an order of magnitude: the efficiency of the
minimisation on the 5BA lattice is expected to be higher.

The minimisation of α1 in the 5BA lattice is conducted with 1000 generated rings,
for four relative variations of the sextupole strengths, ±10%, ±25%, ±50% ±100%.
Table 5.5 gathers the extrema values of α1 for each scan. An overview of the first-order
momentum compaction factor of all generated rings is available in Fig. 5.24.

Table 5.5: Achieved minimum and maximum first-order momentum compaction fac-
tors for different relative variations of the sextupole strengths in the minimisation scan

conducted on the 5BA lattice.

Variation range 10% 25% 50% 100%
α1,min 5.3942 ×10−4 5.1813× 10−4 4.8915× 10−4 4.1545× 10−4

α1,max 5.6488×10−4 5.8614× 10−4 6.1754× 10−4 6.7367× 10−4

Relative variation +0.9/+ 5% −3/+ 9.7% −8/16% −22/+ 25%
Maximum ratio α0

α1
0.039 0.040 0.043 0.05

As expected, the variations of α1 with the sextupoles are here stronger than in the
HOA case: this is due to the higher first-order dispersion level: the different scans
reached a maximum reduction of 22%, achieved for a relative variation of ±100%. The
rings of minimum α1 in each case were subsequently analysed. The corresponding first-
order dispersions are compared to the nominal ring parameters in Fig. 5.25. The nominal
first-order dispersion of the 5BA lattice is composed of two large negative bumps, and a
small positive offsets. The minimisation therefore tends to compensate the contribution
of the zeroth-order dispersion derivative on α1 with the first-order dispersion. Indeed,
the larger the bound on the sextupoles, the larger the negative bumps.

Figure 5.26 gathers the sextupole strengths variations in the rings of minimum α1

in each conducted scan. Similarly to the HOA case, some values are out of bounds.
Nevertheless, the sextupole contribution to the minimisation appears to be better dis-
tributed than in the HOA case, as no specific sextupole stands out. Nonetheless, the
minimisation of α1 is at the cost of the transverse dynamics, as demonstrated in the
HOA case and in the following paragraphs for the 5BA lattice.
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Figure 5.26: Comparison of the relative variation of the sextupole strengths of the
optimised ring in the 5BA lattice case.

Comparison of the longitudinal phase space Figure 5.27 compares the longi-
tudinal phase spaces of the obtained optimised rings with ±25%, ±50% and ±100%
variations to the nominal lattice. The optimisation of ±10% variation is here ignored,
as its effect on α1 was negligible, and no difference could be spotted in the longitudinal
area.

The decrease of the first-order momentum compaction factor from (a) to (d) in Fig.
5.27 increases the ratio α0

α1
which defines the location of the first-order unstable fixed

point (UFP) (cf section 5.2.3). Indeed, following the red point displayed on the graphs,
which corresponds to the position of the first-order UFP, RF bucket size increases, up to
a restored energy acceptance of δ ' −0.2 for φ = 0 in the case of the minimum achieved
α1, in (d). This proves the feasibility of the method as a correction of the longitudinal
stability.

Tune shift with energy and nonlinear chromaticities of the optimised lattices
Nonetheless, the increase in the sextupole strengths perturb the transverse dynamics and
tune shift with energy, since the optimisation do not take those parameters into account.
The tune shift with energy of the different optimised lattices is displayed in Fig. 5.28.
Contrary to the HOA lattice where the tune shift was clearly higher due to the increase
in the sextupole strengths, the case of the 5BA lattice differs: the non-optimised lattice
already had a low energy acceptance. Therefore, slight variations around the nominal
sextupole strengths, of ±10%, increased the energy acceptance of the 5BA lattice, before
dropping, just like the HOA lattice.
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(a)

(b)

Figure 5.28: Comparison of tune shifts with energy of the 5BA rings optimised in α1
using the sextupoles: (a) in the horizontal plane and (b) in the vertical plane.

Table 5.6: Comparison of the nonlinear chromaticities along the fourth optimised
periods of the 5BA lattice with different relative variations of the sextupole strengths.

Chromaticities Nominal lattice 10% 25% 50% 100%
ξ1
x -0.00008 -0.00008 -0.00008 -0.00008 -0.0001
ξ1
y -0.00008 -0.00008 -0.00006 -0.00008 0.008
ξ2
x -17.58 -12.3771 -14.4027 -30.0621 12.0672
ξ2
y -7.580 -4.9142 -12.3745 -27.9491 -86.7052
ξ3
x 158.805 73.4288 37.9064 355.3708 -1419.6
ξ3
y 105.926 55.0237 131.9646 375.1391 2412.8

5.4.3 Conclusion and prospects on this optimisation

This section proved the feasibility of the minimisation of α1 by optimising the strengths
of the chromatic sextupoles. The proof of principle on the 5BA lattice showed a restora-
tion of the longitudinal bucket and of the closed separatrix, as illustrated in Fig. 5.27
(d).
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Overall, the efficiency of variation of α1 in such a scan remains inherently low, and
depends on the lattice under scrutiny: indeed, lattices with a high number of strong
magnets, such as the HOA 7BA lattice, would require a larger number of randomly
generated rings to find adequate solutions. Moreover, the lack of constraints on the
transverse dynamics and tune shift is problematic in high variations of the sextupoles,
as the minimisation of α1 tends to highly increase the second- and third-order chro-
maticities, as well as increasing the sextupole strengths which shrinks the transverse
stability areas. No other solution was envisioned at that time: as the influence of the
sextupoles on the momentum compaction factor is indirect, the method of least squares
could not be implemented, for instance. Moreover, the bounded generation of the sex-
tupole strengths scans the map randomly, with no direction towards any good solution:
the first-order momentum compaction factor is scanned around its nominal value, with
no filter for higher values during the scan. Furthermore, the one-core calculation process
of Matlab limits the number of rings to be scanned, and further optimisation processes:
each scan of 1000 rings, with an analytical calculation of D1 with N = 1000 Fourier
harmonics for convergence took approximately 11 to 12h for the HOA 7BA lattice, 3
to 4h in the case of the 5BA, which dramatically reduces the accessibility of such an
approach. The high calculation time is caused by the necessary slicing of the elements
in each lattice, to increase the precision of the integrals for computation of the higher-
order momentum compaction factor: the number of slices per element and the number
of harmonics was chosen to offer a 10−3 precision on the calculation of the zeroth-order
momentum compaction factor on the HOA lattice.

In order to limit the effect on the higher-order chromaticities and perhaps control
both the longitudinal phase space and the transverse dynamic aperture, the already
existing version of MOGA-Bmad was extended to include the minimisation of α1, which
parallelisation and use in a cluster shall drastically decrease the calculation time as well.

5.5 Inclusion of the minimisation of α1 in MOGA-Bmad

As described in the section 4.1, MOGA-Bmad, developed by M. Ehrlichman is a multi-
objective genetic algorithm which optimises the transverse on- and off-momentum dy-
namic aperture at a set point of electron storage ring lattices, while keeping the lin-
ear chromaticities constant. In the extended version adapted from MOGA-Bmad, the
first-order momentum compaction factor should be minimised, whilst optimising the
transverse dynamic apertures at three set energies.

5.5.1 Definition of the optimisation

To include the optimisation of α1 in the algorithm, it is necessary to increase the number
of objective functions from 3 to 4, which needs to be carefully treated in the main file,
’moga.f90’. The longitudinal phase space can be optimised by two methods: either
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minimising α1 directly, with no other bottom limit than 0, or setting a maximum value
for α1, which could force the optimisation into reducing α1 value.

Minimisation of α1 In the case of a simple minimisation, the fourth objective variable
is defined as:

f4(x) =
∣∣∣∣α1(x)
α0

1

∣∣∣∣ (5.47)

where x corresponds to an individual in MOGA, i.e. a set of sextupole strengths,
and α0

1 designates the first-order momentum compaction factor of the nominal ring.
Contrary to the already defined objective functions in MOGA-Bmad, which are the
relative variation of the dynamic aperture compared to the linear aperture, the fourth
objective function introduced here can vary outside the [0; 1] range. Nonetheless, as
the A.T. scan empirically confirms, the process of the minimisation of α1 will keep the
objective function below 1. First steps in the MOGA extension used this minimisation
objective. Nonetheless, first runs did not optimise the fourth objective, for the best
solutions optimised the dynamic apertures only.

Upper limit for α1 To force the minimisation of α1, I introduced an upper limit,
and a corresponding dominant constraint. The dominance constraint will make sure
only individuals complying with the upper limit requirement will be considered feasible,
forcing all results of the optimisation to have a minimised α1. The PISA cfg file should
be modified accordingly. The new objective function is defined according to the limit
as:

f4(x) =


∣∣∣α1(x)
αmax1

∣∣∣ ifα1(x) < αmax1

1 otherwise
(5.48)

with αmax1 the upper bound defined in the input file. By definition, the objective value
here is comprised between 0 and 1, with 0 meaning a perfect value, where α1 = 0 and 1
meaning the constraint on the limit has not been satisfied.

5.5.1.1 Analysis output

The analysis files that we were provided with thanks to M. Ehrlichman had to be adapted
to take into account the fourth component: indeed, when the last generation is completed
and evaluated, the user can manually select the individuals to be further analysed, by
comparing the values of the objective functions in a python interactive figure, illustrated
in Fig. 5.29.

The details of all changes and included scripts are available in the Appendix H. All
scripts are available in my GitHub [136].
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Figure 5.29: Example of the objective function values during an optimisation con-
ducted on the 5BA lattice. The three first objective functions refer to the dynamic
aperture at 0%, +1% and −1%. The fourth corresponds to the minimisation of the

first-order momentum compaction factor.

5.5.2 Examples of the minimisation of α1 on an ultra-low emittance
lattice

Following the tests conducted with A.T., and to compare both methods and their results,
the optimisation process was tested with the 5BA lattice presented at the beginning of
this chapter.

5.5.2.1 Optimisation of α1 for the 5BA lattice

Since the 5BA lattice suffers from the effect of α1, the optimisation should aim at
reducing its value below a certain level, which is defined with regards to α0 and the
energy acceptance of the lattice. In the case of the 5BA lattice, the maximum stable
energy deviation achieved at the synchronous phase is δ ' 0.09. The unstable fixed
points of the line δ = −α0

α1
should therefore be located below δ < −0.15 by symmetry.

The corresponding value of α1 is ' 1.4 × 10−4, which represents a reduction of 73%
compared to the nominal value. Since the results of the scan in 5.4.2.3 proved an
α1 = 4.5 × 10−4 was enough to restore the RF bucket, this value was used in the
following optimisation as an upper limit.

Adding this limit into the input file, the optimisation of the 5BA lattice was run
along 20000 generations, each composed of 400 individuals. The chromaticities are kept
constant at (ξx, ξy) = (0, 0), to better compare with the A.T. scan. The sextupoles
are inserted in the lattice as thin lenses, and are treated amongst their families, which
corresponds to a total of seven variables: five chromatic families and two harmonic
families. The sextupoles are treated individually within a half a period, thus each
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family is composed of two sextupoles, at symmetric positions in the lattice. To increase
their efficiency, focusing sextupoles are inserted in between secondary dipoles, which are
reverse bends, as thin lenses. The strengths of the chromatic sextupoles is varied in the
range ±600 m−2, the harmonics as well. Octupoles were added near the location of the
sextupoles, and were set at ±10000 m−3. Figure 5.30 locates the optimisation variables
on the lattice.

Figure 5.30: Variables of the α1 optimisation of the 5BA lattice.

5.5.2.2 Selection of the individuals and results

Figure 5.31 displays the values of the objective functions of the last generation. Each
line corresponds to a single individual. The optimisation was conclusive, as the fourth
objective function, related to α1, is lower than 1 in several cases. Nonetheless, the lowest
DA-related objective functions correspond to a fourth objective around 1. To compare
the different cases, I selected six individuals, three with a fourth objective around 1, and
different dynamic aperture functions sets, and three with minimised α1. Their functions
and names are displayed in Fig. 5.31 (b).

Table 5.7 lists the values of both the first- and second-order momentum compaction
factors, for the selected individuals. The relative variation with regard to the nominal
value (R.V.N.) is calculated. Out of the selected individuals, all values are below the
upper limit 4.5× 10−4, which corresponds to a minimum reduction of α1 of 16%.

To ease the reading, only the frequency map analysis of two selected individuals are
presented. The analysis of the other selected individuals is available in the Appendix
I. The following analysis correspond to the individuals 3968943, which achieved the
minimum α1, and 3964698, which achieved the larger dynamic apertures. Figure 5.32
compares the frequency map analysis on-momentum and at ±1% energy deviation of
both individuals. They are compared to a typical result of an on-momentum and ±1%
optimisation using MOGA-Bmad and the same set of sextupoles as variables.
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Figure 5.31: Variations of the objective functions (a) of the last generation and (b)
if the selected individuals.

Table 5.7: Variation of the first- and second-order momentum compaction factors in
the selected seeds of the 5BA SOLEIL lattice optimisation.

Seed α1 R.V.N. α2
3559343 4.4226× 10−4 −17.2% 4.9418× 10−3

3861682 4.4065× 10−4 −17.5% 5.4429× 10−3

3956872 4.2588× 10−4 −20.3% 6.4076× 10−3

3964698 4.4234× 10−4 −17.2% 4.9539× 10−3

3968943 4.2472× 10−4 −20.5% 6.8370× 10−3

3969548 4.4294× 10−4 −17.1% 5.5226× 10−3

The dynamic apertures of the three rings are similar, despite a limited transverse
acceptance in the seed 3968943. The seed 3964698, which corresponds to the FMA at
the right side of Fig. 5.32, presents a slightly lower transverse acceptance than the result
of the on-momentum optimisation alone, but the results are still comparable. Table 5.8
compares the strengths of the sextupoles and octupoles of the selected seeds.

Table 5.8: Strengths of the 5BA optimisation variables, for the selected seeds.

Name Seed 3968943 Seed 3964698
sxd1 −64.41 m−2 −97.97 m−2

sxf1 79.17 m−2 77.34 m−2

sxd2 −35.62 m−2 −62.54 m−2

sxf2 −95.49 m−2 −77.80 m−2

sxd3 −455.77 m−2 −290.58 m−2

sx1 232.73 m−2 162.7 m−2

sx2 −193.69 m−2 −151.4 m−2

oct1 9966 m−3 9831 m−3

oct2 9968 m−3 9591 m−3
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5.5.2.3 Comparison of the longitudinal phase spaces before and after the
optimisation

To further analyse the results of the conducted optimisation, Fig. 5.33 compares the
contours of equal Hamiltonian energy, defining the separatrix, in the longitudinal plane
(φ, δ) before and after the optimisation of the 5BA lattice. The right figure corresponds
to the seed 3964698, of maximised dynamic apertures.

a

b
Figure 5.33: Comparison of the longitudinal phase spaces for the 5BA lattice (a)

before and (b) after the MOGA optimisation, seed 3964698.

The RF bucket of the 5BA lattice is restored in the seed 3964698, with an energy
acceptance of −0.18/ + 0.13. As expected, the use of MOGA for such an optimisation
proved to be more efficient than the A.T. scan used in the previous section, both in
terms of minimisation of α1 and the optimisation of the transverse dynamic apertures.

5.6 Conclusion

In this chapter, we explored different means to control the longitudinal phase space.
The analytical calculation of the higher-order dispersion following [131] allowed the
precise evaluation of the three lowest-orders of the momentum compaction factor and
a more precise display of the longitudinal phase space. Although the extraction of
the three-lowest orders from the chromatic closed orbit proved to be enough for third-
generation storage ring lattices, the ultra-low emittance lattices experience a reduced
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energy acceptance, which can alter the results of the polynomial fit applied on the
tracked pathlength.

Different methods were employed to minimise the destructive effect of α1 on the
longitudinal area. The first, proposed by Maher Attal, aimed at increasing α2 with the
use of the octupoles, to compensate for α1. Although this method worked theoretically,
the required octupole strength were too high: they required long octupoles, for which
ultra-low emittance lattices lack space.

To avoid the use of strong octupoles, different methods were investigated to target
α1 in the after-design process. a script in A.T. scanned the sextupoles strengths with a
defined range and with constant chromaticities, and calculates the first-order momentum
compaction factor of each sextupole set. The scan proved the possibility of reducing α1

by changing the sextupole strengths. It lowered it by 2% in the case of the HOA
7BA lattice, at the price of strong sextupoles - one reached three times its nominal
value. Furthermore, the calculations of the higher-order dispersion and the momentum
compaction factor in A.T. requires to manipulate large vectors, as the ring is sliced to
increase the precision of the integral summation. The time required for a 1000 scanned
rings varied between 11 to 12h. The need of parallelisation motivated the translation of
the scripts into Bmad, and the addition of the optimisation of α1 as an objective to the
existing MOGA-Bmad.

The addition of a fourth objective into MOGA-Bmad allowed both the optimisation
of the transverse dynamics and the restoration of the RF bucket. Two methods were
implemented: a simple minimisation on the image of the A.T. scan, which was tested on
the HOA lattice, and the implementation of an upper limit and corresponding dominant
constraint, which was used on the 5BA lattice. First results on the 5BA lattice con-
served the on-momentum dynamic aperture, while decreasing the first-order momentum
compaction factor by 20%. The decrease in α1 was combined with an increase in α2,
which completely restored the longitudinal stability area. Although this optimisation
included octupoles for control of the tune shift, it can be done without: the constructive
effect of α2 will less impact the shape of the longitudinal phase space.

Further methods could include the three lowest-orders of the momentum compaction
factor, using the ratio α0α2

α2
1

described in section 5.2.5.1. Yet, the extraction of a condition
was not trivial with the second-order Hamiltonian: no clear link between the three
lowest-orders momentum compaction factor and the RF bucket size and area were found
analytically. Moreover, the calculation of α2 could not be confirmed by the tracking or
any other method. Therefore the extension focussed on reducing α1.



Chapter 6

Study of the distorted trajectory
in ultra-low emittance lattices
with different chromatic schemes

6.1 Description of the phenomenon

The correction of the two transverse chromaticities in the ultra-low emittance lattices
generally requires the use of stronger sextupoles than in the third generation storage
rings. The dynamic aperture of such lattices is dramatically reduced by the tight fo-
cusing schemes and the prominence of stronger resonances. Different schemes were
developed in the literature to compensate the effect of the strong sextupoles in the
fourth-generation lattices: two were studied in the present thesis: the hybrid scheme,
first designed and implemented for the ESRF-EBS storage ring, and the HOA scheme,
used in the exploration of the ALS-U and SLS-II upgrades for instance.

The hybrid lattice has all its sextupoles located under two dispersion bumps, in
between which fixed betatron phase advances cancel the symmetric sextupolar kicks,
or, in the case of the SOLEIL lattice, compensate them. Such a scheme maximises
the on-momentum dynamic aperture, where the sextupolar kicks are cancelled. The
rapid variation of the optics with the energy deviation induces a variation in the fixed
phase advances: the non-interleaved principle is no longer valid. In that case, the off-
momentum stability area is reduced to around a quarter of the on-momentum transverse
stable area.

Fig 6.1 displays the evolution of the horizontal stability range with the energy de-
viation, with and without a RF cavity, for the SOLEIL 20-fold symmetry 7BA hybrid
lattice [137]. In the presence of a RF cavity, on-momentum particles with a large beta-
tron amplitude start synchro-betatron oscillations, possibly making those particles fall
outside the stability area. Such a phenomenon reduces the effective on-momentum trans-
verse dynamic aperture to the size of the off-momentum aperture. A comparison of the
on-momentum transverse dynamic aperture with and without a RF cavity is displayed

184
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Figure 6.1: Variation of the horizontal dynamic aperture with the momentum devi-
ation without (in red) and with the inclusion of RF cavities (in blue) of the SOLEIL

7BA hybrid lattice. From [137].

in Figure 6.2. The stability area is reduced by more than 50% when the RF cavity is
included.

Figure 6.2: Transverse dynamic apertures using 4D tracking in dark blue, and 6D
tracking in light blue. The strong reduction of the dynamic aperture is linked to
synchro-betatron oscillations, moving the particles both in the transverse and longi-

tudinal plane.

As a link between the transverse and the longitudinal motions, the path length of the
hybrid lattice was tracked. The path length ∆C is expressed in terms of the transverse
coordinates as:

∆C =
∫ C0

0
ds

(
−hx+ x′2 + y′2

2

)
(6.1)
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with ∆C the path length, C0 the length of the reference particle trajectory, −h = 1
ρ the

curvature of bending magnets and (x, x′, y, y′) the coordinates of the transverse planes.
Another formula links the path length ∆C to the chromaticities, and is easier to use for
comparison studies:

∆C = −2π (Jxξx + Jyξy) (6.2)

with Jx,y the action variables, and ξx,y the chromaticities. The path length is followed,
after one turn, for different amplitudes. There, it is averaged over the phase to be
compared to both Eq. (6.1) and Eq. (6.2). Fig. 6.3 compares the path length versus
the normalised amplitude for three lattices; the SOLEIL 7BA HOA lattice (in blue), the
SOLEIL hybrid lattice (in green), and the ESRF-EBS hybrid lattice (in blue stars). As
a reference, the chromatic path length of Eq. (6.2) is plotted in red. All lattices were
appointed to a (1, 1) chromaticity, for optimum comparison.

Figure 6.3: Comparison of the variation of path length with normalised amplitude
for three lattices at a (1,1) chromaticity. The usual variation of the path length with
chromaticity from Eq. (6.2) is drawn in red. The blue line is the SOLEIL 7BA HOA
lattice (3.12, the green line the SOLEIL 7BA hybrid lattice (3.1), the blue stars the

ESRF-EBS lattice.

While the HOA 7BA lattice remains close to the expected path length described by
the chromatic expression and displayed in red in the figure, the hybrid lattices present
a strong deviation of their path length from the expected curve given by Eq. (6.2), with
an inversion of the expected tendency which is, in the current chromaticities, a constant
decrease of the path length versus the amplitude, starting at medium amplitudes. The
variations are larger and positive in the case of the SOLEIL hybrid lattice: indeed,
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the tighter lattice, with 20 cells in 354 m, versus (30+2) cells in 844 m in the ESRF-
EBS case, and the lower nominal energy of the storage ring (2.75 versus 6 GeV) require
stronger magnets and induce stronger nonlinearities in the lattice, thus creating a higher
dependency of the path length on the transverse amplitude. Table 6.1 gathers the β-
functions at the middle of the straight section for the three lattices under scrutiny, which
allows conversion from normalised amplitude to the horizontal amplitude.

Table 6.1: β-functions at the middle of the straight sections for the three lattices
compared in Fig. 6.3.

SOLEIL HOA 7BA SOLEIL HYB 7BA ESRF EBS
βx 2.7 m 1.0 m 6.9 m
βy 2.7 m 1.0 m 2.6 m

This chapter explores the efforts made to describe and minimise this phenomenon in
the SOLEIL 7BA hybrid lattice. Focusing on the path length, which links the transverse
and the longitudinal motions, the dimension of the phase space under study is reduced
from 6 to 2, only considering the horizontal amplitude and its derivative. The effect of
the sextupoles on the path length is derived thanks to the first-order canonical pertur-
bation theory. To recover the on-momentum dynamic aperture of the hybrid lattice, an
optimisation program is written to reduce the contribution of the sextupole magnets to
the perturbed trajectory.

6.2 Evaluation of the path length for different hybrid lat-
tices

To understand the existence of such a phenomenon in the hybrid lattices, a perfect
non-interleaved hybrid lattice is designed. It consists in removing all sextupoles which
are not located under the dispersion bump, harmonic sextupoles included in the com-
pared lattices, and only introducing two thin sextupole families under the bump, for
chromaticity correction. In that case, the non-interleaved principle is strictly respected,
for the focusing sextupoles only. The resulting variation of the path length with the
horizontal amplitude is displayed in Fig. 6.4, and compared to the nominal lattice with
and without octupoles.

The difference between the perfect non-interleaved lattice and the nominal SOLEIL
7BA lattice is anecdotal. Furthermore, the addition of octupoles in the lattice slightly
changes the path length, but does not influence its general variation. In conclusion, the
number of nonlinear magnets do not appear to play an important role in the variation
of the path length.
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Figure 6.4: Comparison of the path length variation with the normalised horizontal
amplitude for a perfect hybrid lattice (in dotted blue lines), the nominal hybrid lattice
without (dashed green) and with the octupoles (black). All lattices were set to (ξx, ξy) =

(1, 1) chromaticities.

6.3 First-order canonical perturbation theory

The investigation of the phenomenon continued with a paper of M. Takao, [138], where
he derives the effect of the perturbation of the sextupoles on the transverse motion: the
averaged horizontal amplitude trajectory was derived and as such, the path length. Fol-
lowing this paper, the first-order canonical perturbation theory was applied to increase
the order of derivation in the path length; where Takao derived the perturbed transverse
amplitude, the perturbation of the horizontal deviation was expressed by the sextupoles
following the same method. The aim of this section is to derive the path length below
in terms of sextupole perturbation, following Takao’s derivation steps. The path length
∆C, averaged on the transverse phases, is expressed as:

〈∆C〉(φx,φy) =
∫ C0

0
ds

(
kx〈x〉φx +

〈x′2〉φx + 〈y′2〉φy
2

)
(6.3)

In [138], the derivation was completed for the horizontal amplitude only. This section
attempts to derive the first-order perturbed horizontal deviation x′ as well. To limit the
equations and long derivations, the study is conducted for a purely horizontal motion.
The derivations for the vertical plane are available in the Appendix J.

6.3.1 Hamiltonian and canonical perturbation theory

The purely transverse Hamiltonian considered for this study is, following [138]:
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H =
p2
x + p2

y

2 + 1
2(h2 + k1)x2 − 1

2k1y
2 + k2

3 (x3 − 3xy2)− 1
2hx(p2

x + p2
y) (6.4)

with k1 and k2 the strengths of the quadrupoles and sextupoles respectively, and h = −1
ρ

the bending curvature. The Hamiltonian can be split into H = H0 + V , where H0 is
the linear Hamiltonian, describing the unperturbed betatron motion as described in
the section 2.1.1, and V = k2

3 (x3 − 3xy2) + 1
2kxx(p2

x + p2
y) the effect of sextupoles

and bending distortion. The effect of the sextupoles on the transverse dynamics were
previously described through the excitation of resonances (cf sec. 2.1.3). In this section,
this Hamiltonian will serve to derive the effect of the sextupolar kicks on the transverse
motion.

Switching the coordinates to the canonical variables (φ, J), the perturbation can be
described through the sum V (φ, J, s) =

∑
n>0 Vn(φ, J, s)einφ. The term-to-term pertur-

bation V (φ, J, s) is, in the case of Eq. (6.4):

V (φ, J, s) = J
3/2
x β

1/2
x√

2
(k2βx) cos(φx) + J

3/2
x β

1/2
x

3
√

2
(k2βx) cos(3φx)

− J
1/2
x Jyβ

1/2
x√

2
(k2βy) cos(φx)− J

1/2
x Jyβ

1/2
x

2
√

2
(k2βy) cos(φx + 2φy)

− J
1/2
x Jyβ

1/2
x

2
√

2
(k2βy) cos(φx − 2φy) + J

3/2
x
√
βx√

2
kxγx cos(φx)

+ J
1/2
x Jy

√
βx√

2
kxγy cos(φx) + J

3/2
x√
2βx

kx(α2
x − 1) (cos(φx) + cos(3φx))

+ J
1/2
x Jy

√
βx√

2βy
kx(α2

y − 1) (cos(φx + 2φy) + cos(φx − 2φy))

+ J
3/2
x√
2βx

kxαx (sin(φx) + sin(3φx))

(6.5)

Gathering the terms of the same harmonic, the perturbation can be split into three
parts: a perturbation V1(φ, J, s) of simple harmonic of φx, a perturbation V3(φ, J, s)
corresponding to the third harmonic of φx, and a perturbation V1,2(φ, J, s) combining
both the vertical and the horizontal planes through φx and 2φy:
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V1(φ, J, s) = J
3/2
x
√
βx√

2
(k2βx + kxγx) cos(φx) + J

1/2
x Jy

√
βx√

2
(−k2βy + kxγy) cos(φx)

+ 1√
2βx

J3/2
x kxαx (sin(φx) + αx cos(φx))− 1√

2βx
J3/2
x kx cos(φx)

V3(φ, J, s) = J
3/2
x
√
βx

3
√

2
k2βx cos(3φx) + 1√

2βx
J3/2
x kxαx (sin(3φx) + αx cos(3φx))

V1,2(φ, J, s) = 1
2
√

2
J1/2
x Jy

√
βx

(
−k2βy + kx

βy
(α2

y − 1)
)

cos(φx ± 2φy)

(6.6)
Following Takao’s paper on nonlinear chromaticity [139], one builds the action-angle

variable (φ, J) which verify dJ
ds = cst in the perturbed space. For this purpose, we

introduce the canonical transformation S(φ, J, s) = φJ + S1(φ, J, s), resulting in the
Hamiltonian:

H(J, s) = H0(J, s) +K1(J, s) (6.7)

which is independent of φ thanks to the choice of S1. For space reasons and to ease the
reading, the complete expression of S1 is written in the Appendix J.

6.3.2 Perturbed averaged horizontal trajectory

The overall link between the transverse plane (x, px) to the canonical perturbed plane
is described by the following relationship:

(x, px) −→G1(x,φ,s) (φ, J) −→S(φ,J,s) (φ, J), (6.8)

where G1(x, φ, s) = − x2

2βx

(
tan(φ)− β′x

2

)
the generating function between (x, px) and

(φ, Jx), and S the perturbed generating function, restoring a canonical system, defined
in the previous section. Expressing the perturbed action angle Jx using both generating
functions G1 and S, the following equality, involving x, φx and J , is obtained:

− ∂G1
∂φx

= ∂S

∂φx
⇐⇒ x2

2βx(cos(φx))2 = J + ∂S1
∂φx

(6.9)

The sign of the betatron amplitude is determined by the cosine of the betatron phase
advance. Assuming a positive sign, one can extract the horizontal amplitude x from Eq.
6.9. Its expression with the perturbed angle J is linearised to the first-order in the
perturbation derivative:

x =
√

2Jβ cos(φ)
√

1 + 1
J

∂S1
∂φx

'
√

2Jβ cos(φ)
(

1 + 1
2J

∂S1
∂φx

+ ...

)
(6.10)

Since the perturbation is considered small for small amplitudes, the square-root can
be Taylor expanded. This section only focuses on the first-order of the perturbation.
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Then, only the two first terms of the development are considered in the following deriva-
tions. The above equation is expanded by including the expression of the derivative of
the perturbed generation S derived with respect to the betatron phase advance φX in
J. The perturbed horizontal trajectory x to the first-order in perturbation is expressed
as a sole function of (φx, J), according to:

x =
√

2Jβ cos(φ) + Jx
√
βx

4 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x cos(φx) cos(φx + ψ(s′, s))

− Jy
√
βx

4 sin(πνx)

∫ s+C

s
ds′
√
βx (−k2βy + kxγy) cos(φx) cos(φx + ψ(s′, s))

− Jx
√
βx

4 sin(πνx)

∫ s+C

s
ds′
√
βx (k2βx + kxγx) cos(φx) cos(φx + ψ(s′, s))

− Jx
√
βx

2 sin(πνx)×∫ s+C

s
ds′kxβ

−1/2
x αx cos(φx)

(
sin(φx + ψ(s′, s)) + αx cos(φx + ψ(s′, s))

)
− Jx

√
βx

4 sin(3πνx)

∫ s+C

s
ds′
√
βxk2βx cos(φx)(cos(3φx + 3ψ(s′, s))

− 3Jx
√
βx

2 sin(3πνx)×∫ s+C

s
ds′kxβ

−1/2
x αx cos(φx)

(
sin(3φx + 3ψ(s′, s)) + αx cos(3φx + 3ψ(s′, s))

)
+ 3Jx

√
βx

4 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x cos(φx) cos(3φx + 3ψ(s′, s))

+ JxJy
√
βx

8 sin(πνx)

∫ s+C

s
ds′
√
βx

(
−k2βy + kx

βy
(α2

y − 1)
)

cos(φ±(s) + ψ±(s′, s)))

(6.11)

where φ± = φx ± 2φy and ψ± = ψx ± 2ψy. Averaging on the angle variable φx and
ignoring the coupled terms, the perturbed averaged horizontal amplitude is expressed
with four integrals:

〈x(s)〉φx =− Jx
√
βx

4 sin(πνx)

∫ s+C

s
ds′
√
βx (k2βx + kxγx) cos(ψ(s′, s))

− Jy
√
βx

4 sin(πνx)

∫ s+C

s
ds′
√
βx (−k2βy + kxγy) cos(ψ(s′, s))

− Jx
√
βx

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
sin(ψ(s′, s)) + αx cos(ψ(s′, s))

)
+ Jx

√
βx

4 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x cos(ψ(s′, s))

(6.12)

The hereabove equation adds a fourth term to the expression found in [138]. Fig.
6.5 compares both analytical expressions on a SOLEIL HOA period and a hybrid period
in Fig. 6.6, with the tracked averaged amplitude, for Jx = 35 pm.rad in both cases. The
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tracked amplitude is obtained by tracking a single particle through a large number of
turns, thus on a large number of phases, and extracting the averaged position 〈x(s)〉φx =
1
N

∑N
k=1 x(s, k), where x(s, k) is the horizontal transverse position of the particle after k

turns, at the longitudinal position s. Such tracking is done in Accelerator Toolbox.

Figure 6.5: Averaged amplitude along a HOA 7BA cell, for Jx = 35 pm.rad. The
green dots are the analytical calculations of the averaged amplitude, using the equation

(6.12) above.

Figure 6.6: Averaged amplitude along a hybrid 7BA cell, for Jx = 35 pm.rad. The
green dots are the analytical calculations of the averaged amplitude, using the equation

(6.12) above.
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Comparison between the expression found in [138] and the expression in Eq. (6.12)
in Fig. 6.5 and 6.6 does not identify any disagreement between the two formulae. The
following section will nonetheless keep using Eq. (6.12) in their derivation and calcula-
tions. Figure 6.6 nonetheless highlights the discrepancy between the tracked averaged
trajectory of the hybrid lattice and the calculated trajectory. The calculations display
a discrepancy with the tracked amplitude, in both lattices. Furthermore, a slight asym-
metry between the two dispersion bumps appear in the hybrid lattice, which is not
expected since the lattice presents an inherent mirror symmetry. The formulae must
lack precision when reaching extrema in the dispersion.

6.3.3 Derivation of the deviation angle term, 〈x′2〉φx

The second horizontal term in the analytical expression of the path length is related
to the square of the deviation angle x′, averaged on the horizontal phase, φx. Some
derivation steps are detailed in the Appendix J, such as the derivative of the transverse
phases with the longitudinal position, and the general derivative of the functions f :
(φ, J, s) 7−→ A(J, s)

∫ s+C
s ds′B(J, s′) cos(nφ(s)+mψ(s′)−mψ(s)−mπν), with n,m ∈ Z.

6.3.4 Expression of 〈
(
dx
ds

)2
〉

From the Hamiltonian in Eq. (6.4), the derivative of the horizontal amplitude with the
longitudinal position s is a function of the transverse coordinates (x, px):

x′ = dx

ds
= ∂H

∂px
= px (1 + kxx) (6.13)

Since the transverse coordinates are linked to the canonical action-angle variable
(φx, Jx) through x =

√
2Jxβx cos(φx) and px = −

√
2Jx
βx

(sin(φx) + αx cos(φx)), the
derivative of the horizontal amplitude with the longitudinal position is expressed, in
the action-angle plane, as:

x′(φ, J) = −kxαxJx −
√

2Jx
βx

(sin(φx) + αx cos(φx))

− Jxkx (sin(2φx) + αx cos(2φx))
(6.14)

Expanding J in the previous equation using its expression with the perturbed action-
angle variables J = J + ∂S

∂φ derived in Eq. (6.9), the perturbed horizontal amplitude
derivative x′ becomes:
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x′(φ, J) = −kxαxJx −
√

2Jx
βx

(sin(φx) + αx cos(φx))− Jxkx (sin(2φx) + αx cos(2φx))

− kxαx
∂S

∂φ
− 1√

2βx
(sin(φx) + αx cos(φx)) ∂S

∂φ

− kx (sin(2φx) + αx cos(2φx)) ∂S
∂φ

(6.15)
The path length is proportional to the square of the transverse coordinates derivatives

with the longitudinal position. By construction of the generating function S (cf [139]),
the averaged derivative of S with the betatron phases is 〈∂S∂φ 〉φx = 0. It only contains
first and third harmonics in φx (cf Appendix J for the full derivation). Therefore:

〈cos(2φx)∂S
∂φ
〉φx = 〈sin(2φx)∂S

∂φ
〉φx = 0 (6.16)

At the first-order in the perturbed generation function derivative, the averaged hor-
izontal amplitude derivative to the square 〈x′2〉 is fully expressed with:

〈x′2〉φx = Jxγxk
2
x + α2

xJ
2
x + J2

xk
2
x

βxγx
2

+ 2kxαx
Jx√
2βx
〈(sin(φx) + αx cos(φx)) ∂S

∂φx
〉φx

+ 2kxαx

√
2Jx
βx
〈(sin(φx) + αx cos(φx)) ∂S

∂φx
〉φx

+ kx

√
2Jx
βx
〈
(
(α2

x − 1) cos(3φx) + βxγx cos(φx) + 2αx sin(3φx)
) ∂S

∂φx
〉φx

+ Jxkx√
2βx
〈
(
(α2

x − 1) cos(3φx) + βxγx cos(φx) + 2αx sin(3φx)
) ∂S

∂φx
〉φx

(6.17)

Comparison of the tracked 〈x′2〉φx and the calculations Figures 6.7 and 6.8
compare the averaged horizontal amplitude deviation x′ tracked for a random particle
at Jx = 35 pm.rad, over a large number of turns, its linear formula used in [138] and its
analytical calculation using Eq. (6.17), for both the HOA and the hybrid lattices. No
difference can be spotted between the tracked and the calculated values.
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Figure 6.7: Comparison between the tracked variation of 〈x′2〉 and its first-order
perturbed analytical expression for the HOA lattice.

Figure 6.8: Comparison between the tracked variation of 〈x′2〉 and its first-order
perturbed analytical expression for the hybrid lattice.

6.4 Numerical derivation

The analytical formulae of the averaged horizontal amplitude and its derivative were
written in an A.T. script, available in my GitHub [136]. The total horizontal path
length was calculated through the integral in Eq. (6.3). Figure 6.9 and 6.10 compares
the path length versus the amplitude extracted from the linear formula at Eq. (6.2) in
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red, from the tracking in green and the calculated path length with amplitude using the
first-order perturbation canonical theory, for both the HOA and the hybrid lattices.

Figure 6.9: Comparison of the linear path length (red) with the tracked path length
(green) and the calculated path length with the first-order perturbation theory (blue

dots) of the HOA lattice.

Figure 6.10: Comparison of the linear path length (red) with the tracked path length
(green) and the calculated path length with the first-order perturbation theory (blue

dots) of the hybrid lattice.

In the case of the HOA, the integral does not match the tracked path length.
Nonetheless, the imprecision of the integral could explain such a discrepancy. The
tendency of the calculated path length remain identical to the tracked path length of
the HOA lattice. Nonetheless, the calculation do not match the hybrid path length,
neither in value, nor in tendency.
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6.5 Sextupole distribution and its effect on the path length

The first-order canonical perturbation theory was not enough to describe the variations
of the path length at medium amplitudes in the case of the hybrid lattice. This section
lists other small studies around the path length, such as its variation with the input
phase advance, to check if there are any residual dependency, and the variations of the
action variable.

6.5.1 Dependence of the path length with the input phase advance

The path length depends on the linear chromaticities, following Eq. (6.2). After one
turn, the path length is evaluated with regard to the horizontal amplitude, for dif-
ferent phase advances, and compared to the linear formula. Figure 6.11 displays the
corresponding path length with amplitude for both the 7BA HOA and hybrid lattices,
20-fold symmetry. They were both set to chromaticities (ξx, ξy) = (−1,−1).

In the case of the HOA lattice, the path length after one turn for each input phase
is close to the linear path length. A variation of ±7% occurs at the highest amplitude.
In the case of the hybrid lattice, the dependence on the input phase advance starts even
at low amplitudes, reaching a ' ±80% variation at x = 1 mm.

6.5.2 Averaged path length of a random particle

Theoretically, the averaged path length should not depend on this input phase. To verify
that, a particle of fixed amplitude was tracked over a thousand turns. After each turn k,
the difference in path length with the reference particle is extracted. The averaged path
length is therefore 〈∆C〉turns = 1

Nturns

∑Nturns
k=1 ∆Ck, following the method of [140]. They

are compared to the linear path length of Eq. (6.2), depending on the chromaticities.
The exercise was conducted on both the 7BA HOA and hybrid 20-fold symmetry lattices,
and the results are displayed in Fig. 6.12.

While the path length of both lattices reach an equilibrium after 500 turns, the
hybrid path length limit reaches a different value than expected. The same tracking
was done for an opposite phase, which then reached again a different limit. This result
is consistent with the remaining dependence in phase that was found in the previous
section.

6.5.3 Variation of the horizontal action variable

The horizontal action variable is defined with the transverse coordinates (x, px) and is
linked to the betatron amplitude xβ =

√
2Jxβx. By definition, the action variable does

not depend on the phase advance φx. Indeed, the corresponding transverse Hamiltonian
in the absence of any perturbation is:

H0(φx, Jx) = Jx
βx

(6.18)
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a

b
Figure 6.11: Comparison of the tracked path length for different input phases, with
the linear path length (in red), for (a) the HOA lattice and (b) the hybrid lattice. The

chromaticities of both lattices were set at (ξx, ξy) = (−1,−1).

Because of the path length effect reported in 6.1 and the inadequacy of the first-
order canonical perturbation theory, additional tests were conducted to understand if
this regime is still applicable to both the HOA and the hybrid lattices. In both cases,
a particle of set amplitude was tracked over a thousand turns. The corresponding
action of each transverse position was extracted using the amplitude and the phase
advance. Figure 6.13 compares the variation of Jx for both lattices, and compares it to
the averaged action over the thousand turns. To best appreciate its variations, the last
subplot enhances the difference (〈Jx〉Nturns − Jx), by multiplying it by 107. The first
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a

b
Figure 6.12: Variation of the path length of a fixed particle over a thousand turns
for (a) the HOA lattice and (b) the hybrid lattice. The red line corresponds to the
calculated path length with the linear formula. The chromaticities of both lattices are

set at (ξx, ξy) = (−1,−1).

plot displays the tracked path length, turn after turn, to verify the linear dependency
with Jx.

The evolution of the path length appears normal in both cases, and slight oscillations
occur around the averaged path length in red. The action variable Jx in the case of the
HOA lattice presents chaotic variations, of the order 10−20, around its averaged value.
Since all tracking was conducted in A.T., based on Matlab, which limits its precision
to 10−16, the experienced variations can therefore be considered as noise. In the case
of the hybrid lattice, the action oscillates around its averaged value, with around 8/9
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periods over 200 turns. The variations have an amplitude of ±10−9 around the averaged
value, which corresponds to the same order as Jx. This could correspond to the phase
dependence found in the previous sections.

6.6 Reduction of the path length effect

To reduce the path length variation of the hybrid lattice, a scanning script in A.T. was
developed to vary the sextupole strengths of the nominal lattice in hopes of reducing
the path length at a set amplitude. The script is available in my GitHub [136]. The
chromaticities are kept identical to that of the nominal lattice, at (1, 1), to compare
with Fig. 6.3. The sextupoles are kept symmetric, to comply with the non-interleaved
principle requirements. A hundred rings were generated, with relative variations of the
sextupole strengths of 50% with regard to their nominal value. Figure 6.14 displays the
path length with amplitude of all generated rings during the scan. The chromaticities
of the rings are set at (ξx, ξy) = (1, 1). The path length is evaluated for a maximum
Jx = 1× 10−7 m.rad.

Figure 6.14: Path length with amplitude of the SOLEIL hybrid lattice with a hundred
different sets of sextupoles. They were randomly generated within a space of constant

chromaticities.

The ring of minimum path length deviation from the linear formula is selected, and
further compared to the nominal lattice. Their path lengths are displayed in Fig. 6.15,
and their strengths in Table 6.2.

The scan was not enough to reduce the path length variation, and the nominal
setting seems to be a minimum already. A last test was conducted with the addition of
the octupole magnets in the scan. The octupoles are treated individually. Their location
is identical to the MOGA-Bmad case in Fig. 4.4. Figure 6.16 displays the path length
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Figure 6.15: Path length with amplitude of the SOLEIL hybrid lattice after the scan
(in blue), compared with the nominal lattice (in green) and the linear formula (in red).

Table 6.2: Comparison of the sextupole integrated strengths of the nominal lattice
and of the result of the path length scan.

Name Nominal lattice Result of the scan
sxd1e −21.50 m−2 −10.49 m−2

sxf2e −10.5 m−2 −24.75 m−2

sxf1e 16.83 m−2 24.34 m−2

sxf3e 10.4 m−2 11.10 m−2

sxd2e −21.5 m−2 −54.76 m−2

of all generated rings. The overall variations do not appear to drastically change from
the sextupole-only scan.

The ring of minimum path length deviation from the linear formula is selected, and
further compared to the nominal lattice. Their path length variations are displayed in
Fig. 6.17, and their strengths in Table 6.3.

Table 6.3: Comparison of the sextupole strengths of the nominal lattice and of the
result of the path length scan.

Name Nominal lattice Result of the scan
sxd1e −21.50 m−2 −14.55 m−2

sxf2e −10.5 m−2 −15.07 m−2

sxf1e 16.83 m−2 24.94 m−2

sxf3e 10.4 m−2 73.57 m−2

sxd2e −21.5 m−2 −46.96 m−2

octd1 −124 m−3 363/31.35 m−3

octf1 55 m−3 77.0/76.3 m−3

octd2 45 m−3 254/334 m−3
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Figure 6.16: Path length variation with amplitude of the SOLEIL hybrid lattice with
a hundred different sets of sextupoles and octupoles. They were randomly generated

within a space of constant chromaticities.

Figure 6.17: Path length variation with amplitude of the SOLEIL hybrid lattice after
the scan which included octupoles (in blue), compared with the nominal lattice (in

green) and the linear formula (in red).

6.7 Conclusion

The hybrid lattice presents a limiting effect which drastically reduces its on-momentum
stability: once a RF cavity is inserted in the lattice, the particles with small energy
deviation starts oscillating transversally, falling out of the peaked transverse acceptance.
This phenomenon is coupled to a large path length deviation ∆C which starts at medium
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amplitudes: this quantity is further studied, as a link between the longitudinal and the
transverse plane. To further understand the phenomenon, the path length of three
different lattices was compared in Fig. 6.3: the SOLEIL 7A HOA and hybrid lattices,
and the ESRF-EBS hybrid lattice. To do so, their chromaticities were fixed to (ξx, ξy) =
(1, 1). While the HOA lattice did not present any unusual variations of its path length
with regard to the classical linear formula, both hybrid lattices shared the same tendency,
yet slower in the case of the ESRF-EBS lattice which could be due to its larger cell length
per period and higher energy.

In an attempt to theoretically describe its phenomenon and understand its origin,
the path length was derived with regard to the transverse coordinates, using the first-
order perturbation theory to extract the influence of the sextupoles, following [138].
The resulting calculation was not conclusive, as it did not improve the description of
the nonlinear behaviour of the path length. Another method scanned the sextupoles’
strengths in the SOLEIL hybrid lattice, with the hope of finding a path length closer
to the linear formula, however this was in vain. The addition of octupoles did not help
either. Further studies should evaluate the impact of the non-interleaved lattice on the
path length and the averaged transverse trajectory, as a −I transformation could make
the lattice act as an anti-symmetric system.
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Conclusion and outlook

The present thesis introduced different aspects of the global effort towards fourth-
generation storage ring. As part of the SOLEIL upgrade project, the presented studies
took part in the early design and exploration of a suitable lattice for SOLEIL 2.75 GeV
storage ring, stressing the linear and nonlinear challenges of ultra-low emittance rings.
To achieve a natural horizontal emittance below 100 pm.rad, ultra-low emittance lat-
tices are developed with an extensive use of Multi-Bend Achromats, which introduces
a large number of dipoles and therefore reduces their emittance creation, following the
principle of the theoretical minimum emittance. Further reduction of the natural hori-
zontal emittance is achieved with the implementation of reverse bending magnets. Other
adaptations can be implemented, such as longitudinal-gradient dipoles or a round beam.
The latter could increase the Touschek lifetime of the lattice, placing the lattice in the
favourable regime. To maximise the transverse dynamics of the upgrade lattices and
reduce the number of systematic resonances, the developed lattices comprise a 20/24-
fold symmetry, additionally to the mirror-symmetry of each period. The strong focusing
required to contain the beam sizes yields to strong quadrupole magnets which create
high natural chromaticities. They are corrected with sextupoles, located under a re-
duced dispersion and space, thus decreasing their efficiency which could affect the trans-
verse stability. Maintaining stability and a large dynamic aperture requires that the
sextupole-induced non-linearities are controlled: this can be achieved by modelling the
linear lattice such as to compensate the negative sextupolar effects. For this purpose,
two schemes were developed in the community.

A first scheme developed for the ESRF-EBS storage ring was adapted into a 7BA 20-
fold symmetry scheme for the SOLEIL lattice. The so-called hybrid scheme applies
the non-interleaved sextupole principle: the kicks of the sextupoles are compensated
by their symmetric, provided that the phase advance in between fulfils (∆φx,∆φy) =
((2p + 1)π, (2q + 1)π), with p, q ∈ Z. This corresponds to a −I transformation, where
I is the identity matrix. The condition in the vertical plane is enlarged to ∆φy ≡ 0[π],
for cancellation of some resonant driving terms [105]. The sextupoles are located un-
der two symmetric dispersion bumps, which increases their efficiency in correcting the

205
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chromaticities, thus reducing their strengths and required lengths. Such a scheme, as
detailed in sec. 2.3.1, maximises the transverse on-momentum dynamic aperture. A
second scheme was implemented on the SOLEIL storage ring; the so-called High-Order
Achromat lattice. Such lattice is based on a series of N unit cells, of which a fixed
phase advance allow the cancellation of all first-order resonant driving terms, over M
unit cells. Each HOA unit cell for SOLEIL includes two half dipoles, two reverse bends,
a focusing sextupole and two defocusing sextupoles. In the literature, the phase advance
suggested for 7BA lattices is (νcx, νcy) = (3

7 ,
1
7), which cancels all first-order and second-

order perturbative resonances over seven unit cells. Other phase advances are tested in
Sec. 3.2.3. The cancellation of third-order perturbative resonances can be achieved by
increasing the number of unit cells per period. Yet, the fixed length of each SOLEIL
period limits the inclusion of more than seven unit cells per period. Thus, to preserve
the unit cell phase advance, a dispersion-free section was created by manipulating the
extrema dipole and reverse bending angles: the resulting resonant driving terms over one
period were minimised compared to the traditional ”missing dipole” method. Nonethe-
less, the traditional method presented a higher transverse dynamic aperture and was
thus conserved in the 7BA HOA lattice proposal for SOLEIL.

Both ultra-low emittance schemes were compared in Sec. 3.3. By construction, the
HOA lattice is composed of a large number of magnets, increasing its cost: each HOA
period is composed of a minimum of 44 magnets, resulting in ' 60% magnet occupation,
compared to 27 magnets and 50% magnet occupation in the hybrid case. Moreover, the
HOA lattice offers little space for the sextupoles, and low dispersion levels, resulting in
high sextupolar strengths. The HOA dipoles are also shorter compared the hybrid case,
resulting in a higher natural emittance and an increased energy loss. Nonetheless, its
dynamic performances surpasses the hybrid lattice in terms of transverse stability and
robustness. Indeed, the inner symmetry of the HOA lattice offers a higher resistance
to quadrupole errors with a ±15% variation of its transverse amplitudes compared to
reduction of ' 30% in the hybrid case, for a quadrupolar error of ±1%. The stronger
stability of the HOA lattice is also demonstrated by its frequency map analysis, with a
large stable area both on- and off-momentum, where the hybrid lattice presents a dra-
matically reduced off-momentum transverse acceptance, with a reduced stability area.
Both schemes were optimised using MOGA-Bmad, which allows fast optimisations of
the on- and off-momentum dynamic apertures, while conserving the chromaticities. Al-
though no outstanding results were found, the optimisation demonstrated the difficulties
of optimising the off-momentum dynamics of the hybrid lattice, and the effectiveness of
the HOA optimisation.

The inclusion of a RF cavity in both lattices highlighted a strong reduction the on-
momentum dynamic aperture of the hybrid lattice, which remains a quarter of the
nominal transverse dynamic aperture, while this phenomenon slightly affects the HOA
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lattice. As the off-momentum particles experience a different phase advance in between
the sextupoles, the non-interleaved principle is not applied outside the vicinity of the
on-momentum particle. The dynamic aperture versus energy deviation of such a lat-
tice peaks when particles are on-momentum. Therefore, once a Radio-Frequency (RF)
cavity is inserted in the lattice, small-energy particles oscillates transversally, and fall
outside the stability area. This phenomenon is coupled to a large path length deviation
which starts at medium amplitudes. The effect of the inhomogeneous sextupole distri-
bution in the hybrid scheme was detailed in Chapter 6, and compared to the HOA and
ESRF-EBS lattices. While the HOA lattice did not present any unusual variations of
its path length with regard to the classical linear formula, both hybrid lattices shared
the same tendency, yet slower in the case of the ESRF-EBS lattice which could be due
to its larger cell length per period and higher energy. In hopes to theoretically describe
the perturbed path length of the hybrid lattice, the first-order canonical perturbation
theory was applied, following [138]. The transverse coordinates were derived in terms of
sextupolar perturbation. An additional element was derived in the averaged distorted
amplitude compared to [138], with no significant contribution. The path length was then
expressed in terms of perturbed amplitude and derivative and compared to the tracking.
Nonetheless, the calculations did not follow the tracked path length. Further numer-
ical analysis exhibited a remaining perturbation of the phase space, with a perturbed
action oscillating with the betatron phase. Numerical minimisation of the path length
variation with amplitude was conducted on the SOLEIL hybrid lattice using sextupoles
and octupoles with no success. Additional studies should evaluate the impact of the
non-interleaved principle on the path length and the averaged transverse trajectory, as
the −I transformation could make the lattice act as an anti-symmetric system.

As it is based on independent sets of unit cells, the HOA principle can be preserved
while differentiating the length of a period, and its number of dipoles. This flexibility
allowed the design of several 4-superperiod lattices, which fit the tunnel and minimise
the displacement of the current beamlines. Amongst them, the current SOLEIL baseline
described in the Conceptual Design Report, the 7BA-4BA HOA lattice, was designed
by Alexandre Loulergue. To inject beam into such ultra-low emittance lattices, where
the transverse acceptance is drastically reduced compared to the current storage ring,
the inclusion of special straight sections is necessary, along with the use of a Multipole-
Injector Kicker (MIK). The conservation of the transverse off-axis injection, currently
used in SOLEIL, requires the a high-βx straight section. Another scheme kicks the beam
directly on-axis. To differentiate the chromatic closed orbit at the centre of the MIK,
a dispersion bump is necessary. Several types of dispersion bumps were described and
compared. The selected method inserts two quadrupole doublets around the centre of
the straight section, to achieve a 16 cm dispersion bump at the MIK. The current spec-
ifications of the MIK place the septa close to the machine axis. Therefore, a further



Conclusion and outlook 208

analysis of the nonlinear dispersion was required, and a minimisation script was devel-
oped in A.T. to decrease the value of the first-order dispersion at the location of the
septa. By scanning the strengths of the nearby sextupoles, and conserving the linear
chromaticity, the first-order dispersion could be decreased.

Ultra-low emittance lattices present a general reduction of their dispersion level and
their zeroth-order momentum compaction factor which can be overtaken by the first-
order, impacting the longitudinal stability. A 5BA SOLEIL lattice of natural horizontal
emittance 80 pm.rad and presented in Chapter 5, had a reduced bucket of energy accep-
tance ±2% for a α0

α1
= 0.04 ratio. The effect of the higher-order momentum compaction

factor on the energy acceptance was therefore studied. Three methods were developed
to restore the RF bucket. A first method, following [133], prescribed the insertion of
octupoles to increase the second-order momentum compaction factor and restore the
bucket’s symmetry. Although inclusion of octupoles in the dispersive area did restore
the linear bucket, the required strong octupoles could not be inserted in the real ma-
chine. A second method aims at minimising the first-order momentum compaction factor
directly. The analytical calculations of the three lowest-orders in dispersion and in mo-
mentum compaction factor were implemented in A.T. and a script was developed to scan
the sextupole strengths whilst conserving the linear chromaticities. While this method
found a satisfying sextupole set with a large bucket for the 5BA lattice, the transverse
dynamics could not be controlled. The large higher-order chromaticities enlarged the
tune shift with energy thus limiting the transverse acceptance and the beam lifetime.
To manage both planes, an extended version of MOGA-Bmad was proposed, where the
first-order momentum compaction factor can be analytically calculated and minimised,
while optimising the transverse dynamic apertures. Two targets were included: a sim-
ple minimisation and a minimisation with an upper bound which, conjugated with a
corresponding dominant constraint, forces the optimisation to find individuals with a
lower first-order momentum compaction factor. A proof of principle was conducted on
the 5BA lattice, with good results. Several optimised rings were found, with a reduced
first-order and increased second-order momentum compaction factor, which resulted in
a large RF bucket, with maximised on-momentum dynamic apertures. Further options
will be included in the extended MOGA. For instance, a lower bound on the first-order
momentum compaction factor could be implemented, to limit the optimisation within
a set range and focus on the transverse dynamic apertures. The inclusion of octupoles
in ultra-low emittance lattices varies the second-order momentum compaction factor:
while its analytical calculation has already been implemented in the presented version,
an additional option could set an upper and/or lower bound on its value, to fully control
the RF bucket.

All scripts mentioned and detailed in the present thesis can be found on my GitHub.

https://github.com/linahv/Thesis
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Please drop me a message at lina.hoummi@gmail.com, for further information or ques-
tions.

mailto:lina.hoummi@gmail.com


Appendix A

Acceleration of a charged particle

This appendix introduces the different types of acceleration, and the resulting accelera-
tors, developed prior to the synchrotrons and still in use.

A.1 Electrostatic acceleration of a charged particle

In the event of an electric field, the charged particle experiences an electric force F = qE.
Using the fundamental principle of dynamics, the acceleration of such a particle is then
q
mE. Depending on the direction of the electric field, the force will either accelerate (if
E×v = ‖vE‖ z) or decelerate the particle (if E×v = −‖vE‖ z). First accelerators used
electrostatic fields to accelerate particles. Among them, the Van de Graaf generator,
invented in 1929 [141] uses a moving belt to transport electric charges: a top comb
electrode collects positive charges on the top metal globe, a second at the bottom collects
negative charges. Approaching both globes create an electric spark due to the charge
difference. Nonetheless, an electrostatic field is limited at amplitudes of the order 10
MV.m−1. Further acceleration is achieved with a time-varying (non-static) field.

A.2 Acceleration of a time-varying field

Indeed, a charged particle can be accelerated by being exposed to a time-varying field.
Provided the field frequency is matched with the particle’s trajectory and velocity, the
particle will see the same positive voltage and will be further accelerated. This process
is known as the resonant acceleration, and was first described by Ising in 1924 [142].
This principle is used in all modern high-energy accelerators, and is also called the
Radio-Frequency (RF) acceleration.

A.2.1 Linear accelerator

In 1928 [144], Wideröe applied this principle on the linear accelerator pictured in Fig.
A.1. To describe the principle, let us express the time-varying electric field as:

Ẽ(t) = Ẽ0 sin(ωRF (t− t0) + φs) (A.1)
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Figure A.1: Wideröe linear accelerator scheme, using the time-varying field accel-
eration. The length of each drift tube is fixed by the synchronism condition. From

[143].

with Ẽ0 [V.m−1] the amplitude, ωRF = hω0 [s−1] the RF angular frequency, ω0 = β0c
R0

the angular revolution frequency of the reference particle, β0c the average speed, R0 [m]
the averaged radius of the reference particle, t0 the time origin and φs the synchronous
phase. The corresponding particle encounters the RF field at the same phase φs: it is
the synchronous particle. The time t0 is set at the beginning of the positive field in
circular accelerators. In linacs, the origin is set at the positive crest of the RF voltage.

The time-varying field is applied to each drift tube. To ensure the accelerated parti-
cles encounters the field during its positive crest and benefits from the whole accelerating
span, the length of each drift tube has to be defined according to the distance a particle
of velocity v will travel under half a RF period. Such condition is called the synchro-
nism condition, which fixes the length of each drift tube Ldrift = 1

2TRF v, with TRF the
RF period and v the particle speed at the entrance of the drift tube. This accelerating
method is rapidly limited by the total length of the linear acceleration: achieving higher
energies require a circular motion.

A.2.2 Cyclotrons

The acceleration of particles can be achieved in a circular path, with the same accel-
eration principle. Combining a constant magnetic-field which bends the particles and
ensures the circular trajectory, and the RF acceleration principle, the cyclotron was
patented by L. Slizard in 1929 in Germany [145] and built in 1931 by E.O. Lawrence
and his student M. Stanley Livingston [146] at the University of California, Berkeley
(USA). Figure A.2 illustrates the cyclotron principle on the right side, and images the
first cyclotron on the left side, with MM. Lawrence and Livingston standing by it.

Cyclotrons are composed of two round poles of constant magnetic field, called dees:
the particles circulate in a plane between the poles. Acceleration occurs in a gap between
the poles, by a time-varying electric field: once the particles cross the gap between the
dees, they experience the RF field, and gain energy. The energy gain for the reference
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Figure A.2: Picture of E.O. Lawrence and M. Stanley Livingston next to the first
cyclotron from [147] (left) and illustration of the cyclotron principle from [148] (right).

particle per passage is:

∆E = qẼ0βLc

∫ g
2β0c

− g
2β0c

sin(hω0t+ φs)dt = qẼ0gT sin(φs) (A.2)

with q the particle charge, βLc the particle speed, T =
sin( hg

2R0
)

hg
2R0

the transit time factor

and φs the synchronous phase. The first 4.5 inch cyclotron accelerated protons to 80
keV, with a RF field of 1 kV [146].

Like the Wideröe linear accelerator, efficient acceleration only occurs if the RF cav-
ity is synchronised with the particles revolution frequency. In cyclotron, the angular
revolution frequency, also called cyclotron frequency reads ωcyc = eB0

γLm0
. This frequency

is a constant for non-relativistic particles, where γL ' 1: ωcyc ≈ eB0
m . Since the accelera-

tion occurs every half revolution, the RF frequency shall be a multiple of the revolution
frequency, to satisfy the synchronism condition:

ωRF = hωcyc (A.3)

with h the harmonic number, representing the maximum number of bunches in a circular
accelerator.

A.2.3 Relativistic mass effect

In the case of relativistic particles for which γL � 1, the cyclotron frequency decreases
with higher energy: the synchronism condition is no longer valid, and the particles
eventually cross the RF gap when the field decelerates them, limiting the maximum
energy achievable by the particles: protons could only be accelerated up to 12/25 MeV.
This is the relativistic mass effect.

To overcome this limitation and maintain the synchronism condition, two methods
were developed. The first idea from R.H. Thomas in 1938 [149] was to increase the
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magnetic field with the bending radius B = γLB0. The magnetic field corrects the
trajectory of higher energy particles for a constant cyclotron frequency. It is the principle
of the isochronous cyclotron, or azimuthal varying field (AVF) cyclotron. The second
idea, by E. Mc Millan in 1945, is to synchronise the frequency of the RF system with
the revolution frequency ωRF = γLω0: with this method, the created synchrocyclotron
could accelerate protons to about 1 GeV. The first synchrocyclotron was built in 1947
in Berkeley, and was the first accelerator at CERN, operating from 1958 to 1990 [150].



Appendix B

Electromagnetic magnets for
synchrotrons

This appendix introduces the forces and use of three electromagnetic magnets imple-
mented in third-generation storage ring-based light sources: dipoles, quadrupoles and
sextupoles.

B.1 Electromagnetic dipoles

In a storage ring, the particles are enclosed in a circular trajectory, with distributed
bending forces. The constant magnetic field which defines the particles’ designed orbit
is provided by dipoles, or bending magnets. They bend the charged particle’s trajectory
with an angle θ dependent on their length and bending radius ρ[m], according to sin(θ) =
l
ρ 'θ�1 θ. The bending radius is entirely defined by the magnetic field and the energy
of the machine, according to Eq. (1.3).

An electromagnetic dipole is composed of two magnetic poles, surrounded by a coil
and separated by a gap 2g[m]. The ensemble is encapsulated in a ferromagnetic material,
ensuring a better return path for the magnetic field. The coils are fed by an electric
current I. The created magnetic flux of such a dipoles depends on both the current I
and the gap left between the coils:

Bdipole = µo
I

g
(B.1)

with Bdipole [T] the generated constant magnetic field, µo [H.m−1] the permeability of
the ferromagnetic encapsulation, I[A] the current in the coils and g[m] half the gap.
Figure B.1 is a picture of a dipole in the Advanced Photon Source (APS) storage ring.

B.2 Quadrupoles

Focusing forces require an affine magnetic field, which is achieved by quadrupoles. Elec-
tric quadrupoles were invented to compensate for the defocusing forces in linacs [153].
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Figure B.1: Picture of a dipole magnet of the Advanced Photon Source (APS). From
[151].

Figure B.2: Picture of a quadrupole magnet in the tunnel of the TRIUMF linac.
From [152].

In synchrotrons, magnetic quadrupoles are implemented to focus the beam.

{
Bx = g1y

By = g1x
=⇒

{
Fx = −qvzg1x

Fy = +qvzg1y
(B.2)

with g1[T.m−1]= B
r the quadrupole gradient, B[T] the magnetic field of the poles, and

r[m] the aperture radius of the quadrupole, vz[m.s−1] the longitudinal speed of the
particle, (x, y) the transverse coordinates. Figure B.2 displays a quadrupole of the
TRIUMF storage ring. For an electromagnetic quadrupole, its gradient is linked to the
electric current by the expression:

g [T.m−1] = 2µ0I

r2 (B.3)

with I[A] the electric current, µ0[H.m−1] the permittivity and r[m] the inner radius of
the quadrupole. The linear force Fx exerted by a quadrupole on the horizontal axis is,
if g > 0, pushing the particles horizontally towards the ideal orbit: it is then called a
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focusing quadrupole. In this event, the force exerted in the vertical axis has the opposite
sign, thus the opposite effect: it pushes the particles further away from the ideal orbit,
or defocusing. To control the particles in both planes, at least one focusing and one
defocusing quadrupoles are required. A basic cell controlling the beam size in both
planes would include two quadrupoles per dipole, one focusing and one defocusing. Those
cells are called FOcusing DefOcusing (FODO) cells. Figure B.3 illustrates the magnetic
arrangement of a FODO arrangement. Quadrupoles are inserted in between dipoles,
which draw the design path. The alternance of focusing and defocusing quadrupoles
provoke the betatron oscillations.

Figure B.3: Schematic of a typical FODO cell.

Quadrupoles are defined by their length and gradient. To be compared with the
weak-focusing dipole strength 1

ρ2 , the quadrupole gradient is made independent of the
momentum, by dividing it with the beam rigidity. The normalised strength k1[m−2]is
defined:

k1[m−2] = g[T.m−1]
Bρ[T.m] (B.4)

With the convention here applied, a positive strength k1[m−2] corresponds to a focusing
quadrupole. Using the analogy with light optics, in thin lens approximation, the focal
length of a quadrupole is fquad = 1

k1L
, with k1 its normalised focusing strength defined

in Eq. (B.4) and L its length.

Figure B.4: Cross section of a synchrotron magnet: a quadrupole field is built by
superimposing two extra coils on the side of a dipole magnet. Figure taken from [154].
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Early strong-focusing accelerators used combined-function magnets: dipoles magnets
had superimposed quadrupoles, as illustrated in Fig.B.4, which allowed focusing of the
charged particles while bending their trajectory. They were called synchrotron magnets.
Yet, the focusing forces available by superimposition are limited both in size and in
magnetic saturation. To avoid this, nowadays most synchrotrons use separate-function
magnets. The Fermilab 6.3 km Main Ring was the first to operate with separated-
function magnets, increasing the strength of the focusing forces [155].

B.3 Sextupoles

Since the chromaticity is created by a quadrupole strength variation of −k1δ, its correc-
tion requires to compensate it, with a magnet which the focusing (defocusing) strength
increases (decreases) linearly with the momentum. Such compensation can be achieved
using sextupoles, of magnetic flux:{

By = g2(x2 − y2)
Bx = g2xy

(B.5)

with g2[T.m−2] = 1
2
∂2B
∂x2 . Figure B.5 displays the picture of a sextupole from SESAME.

Sextupoles are composed of six coils of alternating polarity, encapsulated in a ferromag-
netic material. The sextupole gradient is expressed in terms of electric current I[A]
as:

g2 = 6µ0I

r3 (B.6)

with µ0[H.m−1] the permeability of the ferromagnetic encapsulation, and r[m] the aper-
ture radius of the sextupole. As with quadrupole gradient, the sextupole gradient can be
normalised into a momentum-independent sextupole strength k2[m−3]= g2[T.m−2]

Bρ[T.m] . They
are often characterised by their integrated strength, k2l[m−2] with l their length.

Only sextupoles located in a non-zero dispersion zone participate in the correction of
the chromaticity. They are called the chromatic sextupoles. They create a chromaticity
ξsextu = 1

4π
∫
ring k2(s)Dx(s)βu(s)ds, which is corrective if its sign is positive. The total

chromaticity of the ring is the sum of both the natural chromaticity and the corrective
effect of the sextupoles:

ξtotu = − 1
4π

∫
ring

[k(s)− k2(s)Dx(s)]βu(s)ds (B.7)

Correcting the chromaticity in both planes requires at least two sextupole families.
A sextupole correcting the chromaticity in the horizontal plane is called a focusing
sextupole, defocusing otherwise. Once the first-order chromaticity is corrected, the tune
shift with momentum depends entirely on the second-order chromaticity, which can be
significant in large rings. Additional families are then inserted in the ring to increase
the degrees of freedom in minimising the tune shift.



Appendix B. Electromagnetic magnets for synchrotrons 218

Figure B.5: Picture of a sextupole magnet of SESAME [156].

Optimisation of the sextupole efficiency Sextupole magnets trigger many first-
and third-order resonances (cf section 2.1.3). To limit their negative effect on the dy-
namic, their strengths have to be lowered. Different placement strategies are possible as
a first approach to minimise the sextupole gradients. First, a sextupole should prefer-
ably be located near focusing (resp. defocusing) quadrupoles, where the product βxDx

(resp. βyDx) is large for focusing (resp. defocusing) sextupoles. Secondly, to benefit
from a large corrective effect provided by the product (βuDx)u∈{x,y}, the location of the
sextupole should minimise its effect on its defocusing plane. Indeed, in the case of a
focusing sextupole, its effect on the vertical plane is βyDx, which adds constructively to
the natural chromaticity, meaning it has to be compensated as well by the defocusing
sextupoles. To minimise this defocusing effect, focusing (resp. defocusing) sextupoles
should be located at a position s where the ratio βx

βy
(resp. βy

βx
) is the largest possible.

Further strategies will be discussed in the section 2.3.



Appendix C

Properties of synchrotron
radiation

C.1 Frequency distribution of the radiated energy

The radiation emitted by highly relativistic particles comes from the instantaneous emis-
sion of quanta occurring in a bent trajectory. The radiation is emitted continuously
during the bending process. For highly relativistic particles in a circular trajectory, the
emission is enclosed in a cone, which direction copies the electron velocity’s, as illustrated
in Fig. C.1 from [157]. The cone is characterised by its opening angle 1

γL
.

Figure C.1: Scheme of the cone of instantaneous mission for highly relativistic parti-
cles. From [157].

The emitted photon beam is polychromatic: the bandwidth defines the frequency
range of the radiation. The wavelength can be selected in the beamline using monochro-
mators [158]. The duration t = 2ρ

βcγ of the radiation is short: it provides a large contin-
uous spectrum. Its most brilliant frequency is reached at half the pulse duration: it is
the critical frequency ωc:

ωc = 3cγ3
L

2ρ (C.1)
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with c the speed of light, γL the Lorentz factor and ρ the bending radius.

Figure C.2: Comparison of the radiation intensity per frequency per solid angle with
the ratio of the deflecting angle θ with the cone opening angle 1

γL
around the critical

frequency. From [13].

Fig. C.2 illustrates the variation of the intensity per frequency and per solid angle
of the radiation with the ratio of the emission angle θ with the cone opening angle 1

γL
,

i.e. the relative position of the emitted photons in the radiation cone. Such variations
depend on the photon frequency, as the radiation pikes at the critical frequency ωC ,
which maximum intensity is emitted at the critical angle θC ' 1

γL
(2ωC
ω )

1
3 . For lower

frequencies emitted at the beginning of the radiation, the intensity varies slowly with
the factor γLθ, and can almost be considered independent of the emission angle. For
higher frequencies ω � ωC and higher angles θ � θC , the radiation is negligible.

C.2 Energy distribution of the radiated energy

The critical photon energy EC = ~ωc depends quadratically on the electron beam energy
and linearly on the magnetic field according to:

Ec = 3~c
2(mc2)3

E3

ρ
=e− 2.2183E

3[GeV]
ρ[m] = 0.665E2[GeV]B[T] (C.2)

Figure C.3 illustrates the energy distribution of the emitted radiation with the critical
energy. The radiation of low-energy photon, which frequency is much lower than the
critical frequency, does not depend on the critical energy. It appears that the larger the
critical energy, the more photons are emitted at higher energies.
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Figure C.3: Variation of the brilliance of the radiated photon beam with the photon
energy, for different critical energies. From [13].



Appendix D

Radiation regime of an insertion
device

Analogically to optical interferences on a network, the radiation emission occurs peri-
odically, of period the undulator period λu[m]. Constructive interferences of such an
optical network allow the emission of photons at the wavelengths:

λn = λu
2γ2

Ln

(
1 + K2

u

2 + γ2
Lθ

2
)

(D.1)

where θ = vx
vz
≈ Ku

γL
sin(kuz) the emission angle and Ku ≡ eB0λu

2πmc is the undulator
parameter. This equation is the undulator equation, characterising its radiation comb:
the thickness of the pike at any harmonic λn depends entirely on the number of periods
Nu. The higher Nu, the more selective is the interference, and the lower the bandwidth(

∆λ
λ

)
n
∼ 1

nNu
.

Figure D.1 illustrates the radiation spectrum emitted from insertion devices. Undu-
lators and wigglers are manipulated by the synchrotron radiation users, to match their
experimental requirements: indeed, the gap of the insertion device can be mechanically
modified to vary their Ku factor and therefore shifts the radiation spectrum accordingly.
This property is called the tunability.

The parameter Ku defines in which radiation regime the undulator is. For Ku � 1,
the deflecting angle θ = 1

γL
√
Nu

is lower than the cone opening angle 1
γL

where Nu defines
the number of periods. In that case, the intensity of the radiation is proportional to
N2
u . A longer undulator will then produce a more brilliant photon beam. Undulators

are then insertion devices of weaker field or short periods. In the case of (Ku & 1),
the magnetic field resembles a Dirac series of alternating sign: the radiation is emitted
at angles much larger than the cone opening angle. The emission occurs on a broader
wavelength range, of intensity proportional to Nu. Such devices are wigglers.

An insertion device is therefore characterised by four main parameters: its period
λu, which defines the wavelength spectrum of the emitted photons, its gap 2g, its factor
Ku and its length Lu. These parameters govern the shape of the emitted radiation.

222



Appendix D. Radiation regime of an insertion device 223

Figure D.1: Radiation emission of an undulator. The comb thinness depends entirely
on the K factor. From [157].

Different types of insertion devices are implemented in third generation storage rings, to
comply with the different requirements of synchrotron radiation users. A brief overview
of some insertion devices is given in Appendix E.



Appendix E

Types of insertion devices

Different types of wigglers and undulators are used in third-generation storage ring.

Types of magnets The basic insertion device is composed of permanent magnets
(PM), disposed along a planar axis. The resulting sinusoidal magnetic field, either
vertical or horizontal, creates a photon beam linearly polarised. The PM are organised
regarding their field integral and remaining field. Using a special software, the undulator
is built piece by piece to better match its theoretical magnetic field. Small displacements
of the PM are possible to correct potential magnet field imperfections.

Electromagnetic magnets Permanent magnets fix the magnetic field peak for
the undulator. The use of electromagnetic magnets allows fast variation of
the magnetic field, thus controlling the combs. Yet, the peak magnetic field
achievable remains lower than with permanent magnets.
Superconducting magnets The use of superconducting magnets allows a higher
magnetic field peak, for a shorter magnet. Their use requires cryogenic cooling
to achieve temperature below 10 K, for best performances.

Types of polarisation As the basic undulator creates a one-dimensional magnetic
field, the polarisation of its emitted radiation is linear: either vertical or horizontal
depending on the direction of the magnetic field. Circular polarisation can be achieved
using helical undulators. Varying the polarisation is achievable with APPLE-II-types
undulators.

Helical undulators or wigglers To create a circular polarisation, the electrons
should see similar oscillatory magnetic field in both the vertical and the hori-
zontal plane. Such a magnetic field B = B0(x cos(2πs

λu
) + z sin(2πs

λu
)) is created

by either superposing two planar undulators and shifting them by a period, or
by introducing a magnetised ferromagnetic helix, placed along the axis [160].
The polarisation of the radiation is then circular, as illustrated in Fig. E.1, from
[159].
APPLE-II undulator Choosing the polarisation of the emitted photon beam is
possible using an APPLE-II undulator[161, 162]. Such an undulator is composed
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Figure E.1: Motion of the electrons in an helical undulator, and resulting photon
beam polarisation, from [159].

of four arrays, four blocks per period. Longitudinally shifting two opposing
magnetic arrays varies the magnetic field of the undulator, thus the polarisation
of the radiation: the achievable polarisations are illustrated in Fig. E.2.

Figure E.2: Achievable polarisations of the emitted radiation from an APPLE-II
undulator, from [161].

Revolver undulator To provide users with more flexibility in the period of planar
undulators, two pairs of arrays can be placed on two rotating bras: the users
then have the choice between two undulators of different periods. Revolver
undulators were first developed as an out-vacuum undulator at Photon Factory,
Japan, in 1989 [163] and are widely used [164, 165]. Its use is demonstrated
in [166]. For instance, Fig. E.3 is a schematic of the commissioned revolver
undulator for the beamline BL15XU at SPring-8 [164]: it allows the user to
switch between a planar undulator and a helical undulator, therefore changing
the polarisation of the photon beam.
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Figure E.3: Description of the SPring-8 revolver undulator for the BL15XU beamline,
from [164].

In-vacuum and cryogenic insertion devices Further reduction of the undulator
gap can be achieved by placing the undulator in-vacuum: the vacuum chamber is there-
fore no longer a limitation. The first undulator operating in-vacuum was designed and
tested in KEK, Japan [167] They must be composed of permanent magnets which have
to be coated and baked. The achievable gap can be as low as 2 mm [168]. Undulators
and wigglers can be placed in a cryogenic chamber [23], to benefit from the remanent
field of PM at low temperature.



Appendix F

Design of a 9BA HOA lattice

The design of a HOA 20-fold symmetry lattice for the SOLEIL upgrade demanded
further exploration of its main characteristics. Since the HOA is based on a sequence
of unit cells, both its phase advance and the number of unit cells per period are to
be determined. In the main part of the present thesis, 7BA lattices were compared,
with a HOA phase advance of (3

7 ,
1
7). This appendix presents a 9BA lattice, with phase

advances of ( 3
11 ,

1
11). Please refer to the section 3.2.3 for a detailed explanation of this

couple. Figure F.1 displays the Twiss functions and dispersion of the new unit cell. The
reduction of the unit cell phase advance and the length of the half-dipole to 0.22 m
reduces the dispersion level, which reaches 0.013 m maximum, compared to 0.0195 m in
the case of the (3

7 ,
1
7) unit cell with 0.3 m half-dipole in Fig. 3.4.

Figure F.1: Twiss parameters and dispersion of a HOA unit cell, which unit cell phase
advances are (νx, νy) = ( 3

11 ,
1

11 ).

The momentum compaction factor of the unit cell is 1.39 × 10−4, and a natural
emittance of 48 pm.rad, with no addition of reverse bends. These values will be modified
by the addition of a dispersion-free straight section and the necessary matching section.
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Figure F.2 displays the Twiss parameters and dispersion of the designed 9BA HOA
period.

Figure F.2: Twiss parameters and dispersion of a 9BA HOA lattice, which unit cell
phase advances are (νx, νy) = ( 3

11 ,
1

11 ).

Table F.1 lists the main characteristics of the above lattice. The lattice achieves a
natural horizontal emittance of 71 pm.rad, with no reverse bends. The angular dispersion
suppressor method is applied, which requires the insertion of a reverse bending angle
of -0.66 degrees. The low dispersion level along the lattice yields to a low momentum
compaction factor, 6.80× 10−5. This value remains slightly higher than the 7BA HOA
lattice, due to the absence of reverse bending angles in the core and the longer dispersive
zone.

Table F.1: SOLEIL 2.75 GeV 9BA HOA lattice proposal, 20-fold symmetry.

Emittance εx 71 pm.rad
Tunes per period (νx, νy) (3.74, 1.10)
Momentum compaction factor α0 6.80× 10−5

Reverse bending angle 0(core)/-0.66(disp. suppressor) degrees
Energy loss per turn 29 keV
Energy spread 9.69× 10−4

Natural chromaticities (ξx, ξy) (-5.23, -8.30)
(βx, βy) @ID (1.9, 1.0) m

Figure F.3 displays the variation of the transverse dynamic aperture with the energy
deviation. The scheme is typical of the encountered HOA lattices: a small acceptance
but almost constant with energy deviation.
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a

b
Figure F.3: Dynamic aperture with energy deviation for (a) the horizontal plane and

(b) the vertical plane.



Appendix G

Variation of the function f : (φ, φs)
with the synchronous phase

This appendix gathers the complete variations of the defined function f : (φ, φs) 7−→
cos(φ) + cos(φs) + [φ − (π − φs)] sin(φs) where φ is the phase advance and φs is the
synchronous phase. The function is used and defined in the Chapter 5.

a
Figure G.1: Variation of the function f : (φ, φs) over a period [−π, π] for different (a)

φs ∈ [−π,−π2 ].
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b
Figure G.2: Variation of the function f : (φ, φs) over a period [−π, π] for different

(b) φs ∈ [−π2 , 0].

c
Figure G.3: Variation of the function f : (φ, φs) over a period [−π, π] for different (c)

φs ∈ [0, π2 ].
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d
Figure G.4: Variation of the function f : (φ, φs) over a period [−π, π] for different

(d)φs ∈ [π2 , π].



Appendix H

Extension of MOGA-Bmad: list
of changes and files

To analytically calculate the first-order momentum compaction factor, I wrote a For-
tran90 script to be read by Bmad, alike the script already written for A.T.. To compare
both codes and ease problem solving, I also included the calculation of the zeroth-order
dispersion and momentum compaction factor. The full script and all necessary files are
available in my GitHub [136]. It was successfully tested on both the HOA 7BA lattice
and the hybrid 7BA lattice.

H.1 Input file: common.in

The longitudinal optimisation process can be either a simple minimisation or requires
the definition of an upper limit, as described above. Therefore, it was necessary to
add one line in the generic input file of MOGA-Bmad, ’common.in’. In the section
&nl moga, the variable ’alpha1max’ has been created. Subsequently, the module held
in ’namelist moga alpha.f90’ has been adapted to read the new ’common.in’ file. If the
value of ’alpha1max’ is negative, the program uses the minimisation process and the
objective function is defined by Eq. (5.47). If positive, the given value is used as an
upper bound on α1, and the objective value is defined by Eq. (5.48).

H.2 List of the added files and their location

• alpha modules.f90: The necessary functions are gathered there to analytically cal-
culate the three first orders of the momentum compaction factor. Contrary to A.T.
where each Fourier harmonic and higher-order components of both the dispersion
and the momentum compaction factor had their own independent function, I de-
cided to define only two functions: one deriving all the Fourier harmonics, named
F0n, F1n and F2n, and a second function deriving the contribution of the differ-
ent dispersion components to the higher-order MCF integrals of Eq. (5.34). The
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outputs of the second function are directly the zeroth-, first- and second-order
momentum compaction factors.

• alpha program.f90: To test and debug the latter functions, I wrote a little program,
linked to the environmental variable alpha opt, which gathers the Twiss functions
of a lattice and calculate its three lowest-orders in momentum compaction factors.

• namelist moga alpha.f90: reads the new ’common.in’ &nl moga section.

• moga alpha.f90: Main file of the extended version of MOGA, including the fourth
objective function. Its use is identical to the basic moga file. It is linked to the
environmental variable moga alpha for later use.

• cmake.alpha opt: Creation of an environmental variable to calculate the higher
orders of the momentum compaction factor externally to MOGA.

• cmake.moga alpha: Creation of an environmental variable linked to the extended
MOGA main file.

• Location of the above files:

File name Location
alpha modules.f90 DIST BASE\DIR\util program\modules\
alpha program.f90 DIST BASE\DIR\util program\alpha opt\
namelist moga alpha.f90 DIST BASE\DIR\util program\modules\
moga alpha.f90 DIST BASE\DIR\util program\moga\
cmake.alpha opt DIST BASE\DIR\util program\
cmake.moga alpha DIST BASE\DIR\util program\

H.3 Running the extended version

Once the files are downloaded and included in their specified location, the program can be
run similarly to the transverse MOGA version, using the command: $BBIN\moga alpha
common.in PISA 1.0 &, with $BBIN the path to the util program bin folder. No change
in the environment should be needed.

H.4 Output files

Following the organisation of the current MOGA-Bmad version, I included a fourth
column in the objective section of the output file ’moga results.out’. This allows the
user to check the progress of this particular value during the optimisation process.

The analysis files that we were provided with thanks to M. Ehrlichman had to be
adapted to take into account the fourth component: indeed, when the last generation
is completed and evaluated, the user can manually select the individuals to be further
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Figure H.1: Example of the objective function values during an optimisation con-
ducted on the 5BA lattice. The three first objective functions refer to the dynamic
aperture at 0%, +1% and −1%. The fourth corresponds to the minimisation of the

first-order momentum compaction factor.

analysed, by comparing the values of the objective functions in a python interactive
figure, illustrated in Fig. H.1.

The fourth objective is located at the number 4 on the horizontal axis. Its value
among the last generation varies from ' 0.58 to ' 1 in this example, which proves the
optimisation managed to minimise α1 at a higher level than the A.T. scan.



Appendix I

6D optimisation of an ultra-low
emittance lattices - evaluation of
the selected solutions

This appendix presents some steps of the analysis of the selected solutions of the optimi-
sation of the 5BA 24-fold symmetry lattice. The optimisation parameters were presented
in 5.5.2.1.

I.1 Optimisation of the 5BA lattice - Frequency map anal-
ysis

Figure I.1 displays the frequency map analysis of the remaining individuals of Fig. 5.31.

I.2 Optimisation of the 5BA lattice - Sextupole strengths

Table I.1 lists the strengths of the sextupoles and octupoles of the seeds above.

Table I.1: Strengths of the 5BA optimisation variables.

Name Seed 3559343 Seed 3861682 Seed 3956872 Seed 3969548
sxd1 −81.45m−2 −129.7m−2 −99.09m−2 −76.47m−2

sxf1 77.35m−2 76.76m−2 79.84m−2 75.55m−2

sxd2 −71.49m−2 −9.50m−2 −53.33m−2 −2.897m−2

sxf2 −72.20m−2 −91.99m−2 −105.1m−2 −70.26m−2

sxd3 −332.6m−2 −281.0m−2 −294.8m−2 −489.2m−2

sx1 158.0m−2 47.80m−2 118.1m−2 193.6m−2

sx2 −175.m−2 −194.6m−2 −19.6m−2 −195.5m−2

oct1 9951m−3 9896m−3 9979m−3 9978m−3

oct2 9923m−3 9895m−3 9876m−3 9892m−3
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a b

c d
Figure I.1: Frequency map analysis of the remaining selected seeds of a 5BA optimi-
sation, using the extended version of MOGA: (a) seed 3559343, (b) seed 3861682, (c)

seed 3956872 and (d) seed 3969548.



Appendix J

First-order canonical
perturbation theory

J.1 Generating function

Following Takao’s paper on nonlinear chromaticity [139], one builds the action-angle
variable (φ, J) which verify dJ

ds = cst in the perturbed space. For this purpose, we
introduce the canonical transformation S(φ, J, s) = φJ + S1(φ, J, s), resulting in the
Hamiltonian:

H(J, s) = H0(J, s) +K1(J, s) (J.1)

which is independent of φ thanks to the choice of S1 [139]:

S1(φ, J, s) =
∑
m

i

2 sin(mπν)

∫ s+C

s
ds′eim(φ+ψ(s′)−ψ(s)−πν)F1(m,J, s) (J.2)

Alike the perturbation, S1 can be split into three parts depending on the phase
dependency:

S1,1(φ, J, s) = J
3/2
x

2
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (g1βx + kxγx) (− sin(φx + ψ(s′, s))

+ J
1/2
x Jy

2
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (−g1βy + kxγy) (− sin(φx + ψ(s′, s))

+ J
3/2
x√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
cos(φx + ψ(s′, s))− αx sin(φx + ψ(s′, s))

)
+ J

3/2
x

2
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x sin(φx + ψ(s′, s)),

(J.3)
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S1,3(φ, J, s) = J
3/2
x

6
√

2 sin(3πνx)

∫ s+C

s
ds′
√
βxg1βx(− sin(3φx + 3ψ(s′, s))

+ J
3/2
x√

2 sin(3πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
cos(3φx + 3ψ(s′, s))− αx sin(3φx + 3ψ(s′, s))

)
+ J

3/2
x

2
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x sin(3φx + 3ψ(s′, s)),

(J.4)
and

S1,2(φ, J, s) = − J
1/2
x Jy

4
√

2 sin(πνx)
×

∫ s+C

s
ds′
√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

sin(φ+ ψx(s′, s)± 2φy)
(J.5)

J.2 Derivative of the phase φx,y with regard to the longi-
tudinal position s

As defined, the derivative of the unperturbed phase advance is :

dψ

ds
= 1
β

(J.6)

The derivative of the angle from the action-angle coordinates is, by definition:

dφ

ds
= ∂H

∂J
= H0

J
+ ∂V

∂J
(J.7)

The derivative of the horizontal angle therefore is:

dφx
ds

= ∂H

∂Jx
= ∂H0
∂Jx

+ ∂V

∂Jx

= 1
βx

+ 3J1/2
x
√
βx

2
√

2
(g1βx + kxγx) cos(φx)

+ Jy
√
βx

2
√

2J1/2
x

(−g1βy + kxγy) cos(φx)

+ 3J1/2
x

2
√

2βx
kxαx (sin(φx) + αx cos(φx))

− 3J1/2
x

2
√

2βx
kx cos(φx) + J

1/2
x
√
βx

2
√

2
(g1βx) cos(3φx)

+ 3J1/2
x

2
√

2βx
kxαx (sin(3φx) + αx cos(3φx))

+ J
−1/2
x Jy

√
βx

4
√

2

(
−g1βy + kx

βy
(α2

y − 1)
)

cos(φx ± 2φy)

(J.8)
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and as for the vertical angle:

dφy
ds

= ∂H

∂Jy
= ∂H0
∂Jy

+ ∂V

∂Jy

= 1
βy

+ J
1/2
x
√
βx√

2
(−g1βy + kxγy) cos(φx)

+ 1
2
√

2
J1/2
x

√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

cos(φx ± 2φy)

(J.9)

J.2.0.1 Differentiation model

The amplitude is a sum of terms of form:

f : (φ, J, s) 7−→ A(J, s)
∫ s+C

s
ds′B(J, s′) cos(nφ(s) +mψ(s′)−mψ(s)−mπν) (J.10)

where A(J, :) and B(J, :) are C-periodic. Therefore, the derivative of the function f

regarding the longitudinal position s writes:

∂f

∂s
(φ, J, s) = ∂A

∂s
(J, s)I(φ, J, s) +A(J, s)∂I

∂s
(φ, J, s), (J.11)

where I(φ, J, s) =
∫ s+C
s ds′B(J, s′) cos(nφ(s) + mψ(s′) − mψ(s) − mπν). To ease the

differentiation, let us isolate the phase term which only depends on s from the integral:

I(φ, J, s) = cos(nφ(s)−mψ(s))
∫ s+C

s
ds′B(J, s′) cos(mψ(s′)−mπν)

− sin(nφ(s)−mψ(s))
∫ s+C

s
ds′B(J, s′) sin(mψ(s′)−mπν)

(J.12)

Since B(J, :) is C-periodic, the derivative of I can be expressed as:

∂I

∂s
(φ, J, s) =−

(
n
dφ

ds
−mdψ

ds

)
sin(nφ(s)−mψ(s))×∫ s+C

s
ds′B(J, s′) cos(mψ(s′)−mπν)

−
(
n
dφ

ds
−mdψ

ds

)
cos(nφ(s)−mψ(s))×∫ s+C

s
ds′B(J, s′) sin(mψ(s′)−mπν)

− 2B(s) cos(nφ(s)−mψ(s)) sin(mψ) sin(mπν)

− 2B(s) sin(nφ(s)−mψ(s)) cos(mψ) sin(mπν)

(J.13)

Gathering the cosinus and sinus terms:
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∂Isin
∂s

(φ, J, s) =− 2B(s) sin(nφ) sin(mπν)

−
(
n
dφ

ds
−mdψ

ds

)∫ s+C

s
ds′B(J, s′) sin(nφ(s) +mψ(s′, s))

(J.14)

and

∂Icos
∂s

(φ, J, s) = 2B(s) sin(nφ) cos(mπν)

+
(
n
dφ

ds
−mdψ

ds

)∫ s+C

s
ds′B(J, s′) cos(nφ(s) +mψ(s′, s))

(J.15)

J.2.1 Intermediate calculations

The perturbative terms of S2
1 are to be multiplied with cosinus and sinus functions. The

following equations derive the resulting harmonics for (cos(nφ), sin(nφ))× ∂S
∂φ :

J.2.1.1 Mono-terms

〈sin(φx)∂S
∂φ
〉φx = J

3/2
x

4
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (g1βx + kxγx) sin(ψ(s′, s))

+ J
1/2
x Jy

4
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (−g1βy + kxγy) sin(ψ(s′, s))

− J
3/2
x

2
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
cos(ψx(s′, s))− αx sin(ψx(s′, s))

)
− J

3/2
x

4
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x sin(ψ(s′, s))

+ J
1/2
x Jy

8
√

2 sin(πνx)
×

∫ s+C

s
ds′
√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

sin(ψx(s′, s) + 2(φy + ψy))

+ J
1/2
x Jy

8
√

2 sin(πνx)
×

∫ s+C

s
ds′
√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

sin(ψx(s′, s)− 2(φy + ψy))

(J.16)
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〈cos(φx)∂S
∂φ
〉φx = − J

3/2
x

4
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (g1βx + kxγx) cos(ψ(s′, s))

− J
1/2
x Jy

4
√

2 sin(πνx)

∫ s+C

s
ds′
√
βx (−g1βy + kxγy) cos(ψ(s′, s))

− J
3/2
x

2
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
sin(ψx(s′, s)) + αx cos(ψx(s′, s))

)
+ J

3/2
x

4
√

2 sin(πνx)

∫ s+C

s
ds′kxβ

−1/2
x cos(ψ(s′, s))

− J
1/2
x Jy

8
√

2 sin(πνx + 2πνy)
×

∫ s+C

s
ds′
√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

(cos(ψx(s′, s) + 2(φy + ψy))

− J
1/2
x Jy

8
√

2 sin(πνx − 2πνy)
×

∫ s+C

s
ds′
√
βx

(
−g1βy + kx

βy
(α2

y − 1)
)

cos(ψx(s′, s)− 2(φy + ψy))

(J.17)

〈cos(3φx)∂S
∂φ
〉φx = − J

3/2
x

4
√

2 sin(3πνx)

∫ s+C

s
ds′
√
βxg1βx(cos(3ψ(s′, s))

− 3J3/2
x

2
√

2 sin(3πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
sin(3ψ(s′, s)) + αx cos(3ψ(s′, s))

)
+ 3J3/2

x

4
√

2 sin(3πνx)

∫ s+C

s
ds′kxβ

−1/2
x cos(3ψ(s′, s))

(J.18)

〈sin(3φx)∂S
∂φ
〉φx = J

3/2
x

4
√

2 sin(3πνx)

∫ s+C

s
ds′
√
βxg1βx(sin(3ψ(s′, s))

− 3J3/2
x

2
√

2 sin(3πνx)

∫ s+C

s
ds′kxβ

−1/2
x αx

(
cos(3ψ(s′, s))− αx sin(3ψ(s′, s))

)
− 3J3/2

x

4
√

2 sin(3πνx)

∫ s+C

s
ds′kxβ

−1/2
x sin(3ψ(s′, s))

(J.19)

J.2.1.2 Square terms

The table below gathers the resulting harmonics of the perturbation generating function
S1 to the square:

Therefore,
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Table J.1: Residual harmonics in the derivative of S2
1 .(

∂S
∂φ

)2
=
(
∂S1,0
∂φx

)2
Harmonics 0, 2

+
(
∂S3,0
∂φx

)2
Harmonics 0, 6

+
(
∂S1,2
∂φx

)2
Harmonics 0, 2

+2∂S1,0
∂φx
× ∂S3,0

∂φx
Harmonics 2, 4

+2∂S1,0
∂φx
× ∂S1,2

∂φx
Harmonics 0, 2

+2∂S3,0
∂φx
× ∂S1,2

∂φx
Harmonics 2, 4

〈
(
∂S

∂φ

)2
〉φx = 〈

(
∂S1,0
∂φx

)2
〉φx

+ 〈
(
∂S3,0
∂φx

)2
〉φx

+ 〈
(
∂S1,2
∂φx

)2
〉φx

+ 2 ∗ 〈
(
∂S1,0
∂φx

)
∗
(
∂S1,2
∂φx

)
〉φx

(J.20)

〈(sin(2φx) + αx cos(2φx))
(
∂S

∂φx

)2
〉φx = 〈(sin(2φx) + αx cos(2φx))

(
∂S1,0
∂φx

)2
〉φx

+ 〈(sin(2φx) + αx cos(2φx))
(
∂S3,0
∂φx

)2
〉φx

+ 〈(sin(2φx) + αx cos(2φx))
(
∂S1,2
∂φx

)2
〉φx
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(
∂S1,0
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)
∗
(
∂S1,2
∂φx

)
〉φx
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(
∂S3,0
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)
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〈cos(4φx)
(
∂S

∂φx

)2
〉φx = 2 ∗ 〈cos(4φx)

(
∂S1,0
∂φx

)
∗
(
∂S3,0
∂φx

)
〉φx

+ 2 ∗ 〈cos(4φx)
(
∂S1,2
∂φx

)
∗
(
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)
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〈sin(4φx)
(

( ∂S
∂φx

)2
〉φx = 2 ∗ 〈sin(4φx)

(
(∂S1,0
∂φx

)
∗
(
∂S3,0
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(
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)
∗
(
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Using:

〈
∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) cos(φ(s) + ψ(s′, s))× cos(φ(s) + ψ(t, s))〉φ =

1
2

∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) cos(ψ(s′)− ψ(t))

(J.24)
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〈
∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) sin(φ(s) + ψ(s′, s))× sin(φ(s) + ψ(t, s))〉φ =

1
2

∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) cos(ψ(s′)− ψ(t))

(J.25)

〈
∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) sin(φ(s) + ψ(s′, s))× cos(φ(s) + ψ(t, s))〉φ =

1
2

∫ s+C

s
ds′
∫ s+C

s
dt f(s′)g(t) sin(ψ(s′)− ψ(t))

(J.26)
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Therefore, noting ∆φ(s′, t) = ψ(s′)− ψ(t) to ease the calculations, one can derive:

〈
(
∂S1,0
∂φx

)2
〉φx = J3

x

16 sin(πνx)2×∫ s+C

s
ds′
∫ s+C

s
dt
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s
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+
JxJ

2
y
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(J.27)

with gx : s′ 7−→ (g1βx + kxγx)(s′), gy : s′ 7−→ (−g1βy + kxγy)(s′), and:

Ca : (s′, t) 7−→
(
sin(∆φ(s′, t)) + αx(t′) cos(∆φ(s′, t))

)
C−a : (s′, t) 7−→

(
− sin(∆φ(s′, t)) + αx(t′) cos(∆φ(s′, t))

) (J.28)
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〈
(
∂S3,0
∂φx
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(J.29)

S1,3(φ, J, s) = J
3/2
x

6
√

2 sin(3πνx)

∫ s+C
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J.2.1.3 Useful terms
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