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Abstract 

Molecular Characterisation of Interaction between Nurse-like Cells and Chronic 

Lymphocytic Leukaemia Cells 

Ishaque S. Mohammad 

Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK 

 

Chronic Lymphocytic Leukaemia (CLL) is a proliferative B cell malignancy characterised by an 

accumulation of mature B cells in the peripheral blood, lymph nodes and bone marrow. The disease 

is heterogenous in both clinical presentation and response to treatment. Despite the well-established 

immunochemotherapy and recently introduced molecularly targeted therapies such as ibrutinib and 

venetoclax, CLL is still incurable. One possible cause of relapse in patients is the involvement of the 

tissue microenvironment which supports CLL-cell survival and confers drug resistance. Nurse like cells 

(NLCs) are a major component of the CLL microenvironment. However, the exact molecular 

mechanisms mediating interactions between CLL cells and NLCs are still not fully understood. The aim 

of this study was to investigate how NLCs and CLL cells influence each other at the level of gene 

expression and to uncover molecules and pathways that are responsible for prolonging survival and 

conferring drug resistance of CLL cells. I therefore independently characterised the development of 

NLCs using fresh peripheral blood samples from CLL patients and applied a co-culture system where 

primary CLL cells were cultured with NLCs. I showed that the development of NLCs varies considerably 

between the individual CLL samples. Consequently, I developed an NLC scoring system to reflect the 

variable nature of the NLC development. I also confirmed the pro-survival effect of NLCs on CLL cells. 

To address the issue of variation in developing NLCs, I developed a cell-line model using human THP-

1 monocytic leukemic cells to mimic NLCs. The cell line model closely resembled the morphology and 

phenotype of NLCs. Like NLCs, it also provided pro-survival signals to CLL cells when in co-culture, as 

THP-1 cell-derived macrophages protected CLL cells from spontaneous and fludarabine-induced 

apoptosis. Finally, I prepared mRNA samples from the co-cultured CLL cells and primary NLCs, together 

with their respective cells cultured alone as controls, and generated the comprehensive, global gene 

expression datasets using next generation sequencing technology (RNA-seq). Through the application 

of contemporary bioinformatics analysis techniques, I identified 326 out of 19,595 expressed genes 

that are significantly differentially expressed in co-cultured CLL cells. Gene set enrichment analysis 

revealed that gene expression profile of CLL cells co-cultured with NLCs resembled that of the tissue 

resident CLL cells from the lymph nodes, thus validating the use of the co-culture system in mimicking 
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the CLL microenvironment. Further analysis of differentially expressed genes led to identification of 

several signalling pathways that are critically involved in mediating the interaction between CLL cells 

and NLCs. These include some known pathways such as toll-like receptor and tumour necrosis factor, 

activation of which all lead to eventual activation of NF-ĸB, the master transcription factor of B cells. 

Furthermore, my analysis revealed other less well-known signalling pathways such as hypoxia-

inducible factor that are also involved in cross-talk between CLL cells and NLCs. The novel observations 

from my study has thus provided a rational basis for future studies to investigate the molecular 

mechanisms responsible for the functions of these signalling pathways and associated molecules, 

which may lead to identification of potential targets for therapeutic intervention to overcome 

microenvironment-mediated drug resistance in CLL. 
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1 General Introduction 

1.1 Chronic Lymphocytic Leukaemia 
Chronic Lymphocytic Leukaemia (CLL) is characterised by the clonal expansion and accumulation of 

mature, CD5+ B-cells in the blood, bone marrow and spleen (Fabbri & Dalla-Favera 2016). As of 2017, 

it is the most common type of adult leukemia in UK, which predrominantly affects males (Chronic 

lymphocytic leukaemia (CLL) statistics). 

The treatment of CLL patients with fludarabine, cyclophosphamide, rituximab (FCR) and targeted 

therapy such as ibrutinib, idelalisib and venetoclax alone or in combination have improved the 

outcomes of CLL (Furstenau et al. 2019; Kipps et al. 2017). However,  patients with 11q deletion and/or 

ATM mutations respond poorly to purine analogues (e.g. fludarabine) (Bosch & Dalla-Favera 2019). 

The deletion of 17p or TP53 mutation renders the chemotherapeutic drugs ineffective and thus 

patients with 17p deletion or TP53 mutations are treated with ibrutinib, a novel inhibitor of Bruton’s 

tyrosine kinase (BTK), a kinase that is critically involved in B cell receptor (BCR) signalling (Hallek 2017; 

Kipps et al. 2017; Mir et al. 2019; Provan et al. 2015). Alternatively, venetoclax (ABT-199) can be 

offered to CLL patients who are not suitable for FCR (Hallek 2015, 2017).  

Despite the development of the novel therapies, relapse of the disease still occurs (Kipps et al. 2017). 

One cause of relapsed disease is the existence of minimal residual disease (MRD) in CLL (Furstenau et 

al. 2019). Accumulating evidence suggests that CLL cells residing in the lymphoid tissues such as bone 

barrow, lymph nodes and spleen are the major source of MRD (Furstenau et al. 2019). MRD is defined 

as presence of CLL cells detected in the peripheral blood (PB) or bone marrow (BM) by flow cytometry 

following treatment (Furstenau et al. 2019). Undetectable MRD (defined as <1 CLL cells in 10,000 

leukocytes) is a strong indicator for longer progression-free survival (Furstenau et al. 2019). Early 

studies in CLL have also shown that CLL cells survived prolonged period in vivo, but underwent 

apoptosis rapidly when cultured in vitro (Collins et al. 1989), which indicated that the survival of CLL 

cells depends on factors present in the tissue microenvironment including the bone marrow and 

lymph nodes. Therefore, better understantanding of how CLL cells interact with the microenvironment 

is vitally important. Below, I will provide an overview on the CLL biology and microenvironment based 

on the literature review.   
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1.2 Pathogenesis of CLL 

1.2.1 Cell origins of CLL 

In most patients of CLL, clonal expansion of B cells is arrested in the B-cell differentiation pathway, 

between pre-B cells and mature B Cells (Figure 1.1). Morphologically, they resemble mature 

lymphocytes (Hallek 2017; Mir et al. 2019; Zhang & Kipps 2014). It has been stated that mutations can 

occur anytime and contribute to the development of CLL cells. Mutations can even occur in 

hematopoietic stem cells (HSCs). During normal B cell development, the immature B cells leave the 

bone marrow and complete maturation where they differentiate, depending on micro environmental 

stimuli, into various B cell subtypes (Rickert 2013). CLL cells originating from B cells that have 

undergone Ig mutations lead to M-CLL (with mutated immunoglobulin heavy chain variable region 

gene (IGHV)), and those that have not are UM-CLL (with unmutated IGHV). Furthermore, it was shown 

that all CLL patients share a specific gene expression signature in their leukemic cells where it 

supported a model of CLL having a common cell of origin (Rosenwald  et al. 2001). It was suggested 

that CLL cells are related to memory B cells more than to naïve B cells, based on their gene expression 

profile analysis. The involvement of genetic lesions, BCR stimulation and microenvironment 

interactions at later stages of B cell development contribute to CLL cell development (Zhang & Kipps 

2014).  
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Figure 1.1 Cellular origin of CLL. Subsets of CLL based on IGHV mutation. 

 

 

1.2.2 B-Cell Receptor Signalling 

The B-cell receptor (BCR) complex is comprised of the membrane bound heavy and light chains of 

immunoglobulins (mIg) and CD79A and CD79B proteins (Geisberger, Lamers & Achatz 2006).  

This complex is expressed on the surface of B lymphocytes from very early developmental stage till it 

becomes a plasma cell (Geisberger, Lamers & Achatz 2006). Before a B cell leaves the bone marrow, 

the mIg exists as the IgM isotype and subsequently starts to express a second isotype IgD when it 

enters into the peripheral lymphoid organs (Geisberger, Lamers & Achatz 2006). Contrast to normal 

naïve B cells, CLL-B cells express low levels of sIgM where in U-CLL the expression is down-modulated 

to a lesser extent than M-CLL (Packham & Stevenson 2010; Stevenson et al. 2011). 

It has been suggested that in the hematopoietic stem cells (HSCs), that genetic events (lightning symbols) occur which lead 

to CLL. This could lead to the expansion of polyclonal B cells. Further stimulation may lead to clones and expansion of 

mature B cells. CLL cells with mutations in immunoglobulin heavy chain variable (IGHV-M) come from post-germinal centre 

(GC) B cells with CD5+CD27+. CLL cells with unmutated IGHV (IGHV-UM) are from pre-GC B cells with CD5+CD27-. The 

formation of germinal centre cells is T cell dependant and the formation of Pre-GC B cells is T cell independent. Monoclonal 

B lymphocytosis (MBL) and overt CLL is mandated by additional genetic and epigenetic lesions (indicated by lightning 

symbols), B cell receptor (BCR) stimulation, microenvironmental factors and T cells. Figure is modified from Bosch and Dalla-

Favera (2019). 
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Upon binding to the antigen, the BCR is internalized (Geisberger, Lamers & Achatz 2006; Packham & 

Stevenson 2010). Activation results in the oligomerization of the BCR and the phosphorylation of 

immunoreceptor tyrosine-based activation motifs (ITAMs) CD79A and CD79B by LYN which also 

phosphorylates spleen tyrosine kinase (SYK) (Packham & Stevenson 2010; Stevenson et al. 2011). 

Through a ‘trigger’ event, the newly formed complex of kinases and scaffold proteins mentioned is 

called a ‘signalosome’ (Stevenson et al. 2011). Other motifs are involved and recruitment of PI3K is 

initiated after the formation of the signalosome (Stevenson et al. 2011). Subsequently, PI3K recruits 

AKT and Bruton’s tyrosine kinase (BTK) to the membrane and eventually a further complex forms 

consisting of LYN, SYK, PI3K, BTK and PLC-γ2. This complex leads to downstream pathways such as NF-

kB and RAS-ERK (Packham & Stevenson 2010; Zhang & Kipps 2014). The final phase of events involves 

downstream regulators, where modulation will mediate cell proliferation, survival and migration 

(Packham & Stevenson 2010; Stevenson et al. 2011). 

Compared to normal naïve B cells, CLL cells express low level of CD79b and IgM proteins (Guo et al. 

2016). There is a variable response to BCR stimulation in CLL cells (Packham & Stevenson 2010; 

Stevenson et al. 2011). There is an increased expression of LYN, SYK and ZAP70 in CLL where the levels 

of ZAP70 is used as a prognostic indicator for poor prognosis (Nabhan, Raca & Wang 2015; Packham 

& Stevenson 2010; Rassenti et al. 2008; Stevenson et al. 2011). 

In summary, BCR signalling in CLL facilitates the prolonged survival and expansion of CLL cells. Thus, a 

wide range of proposed targets in BCR signalling of CLL cells were aimed to combat the CLL presence 

in the body. 

 

1.2.3 Surface IgM and IgD 

IgM and IgD receptor isotypes are co-expressed on mature B cells, and their function in B cell 

development and maturation is widely interchangeable (Ten Hacken et al. 2016). They bear the same 

antigenic specificity and differ only in terms of their H chains, with IgMs carrying mu (µ) chain and IgDs 

carrying delta (δ) chains, respectively (Ten Hacken et al. 2016). Most CLL cells express both IgMs and 

IgDs, and numerous studies have characterized the importance of IgM BCRs for CLL-cell survival, cell 

cycle entry and proliferation (Burger & Chiorazzi 2013; Ten Hacken et al. 2016). The function of IgD in 

CLL has been studied, although there have been some controversial results mostly related to effect of 

its stimulation on inducing cell survival (Zupo et al. 2000) or apoptosis (Tavolaro et al. 2013). In one 

study, it was shown that cross linking with IgD prolonged cell survival instead of apoptosis (Zupo et al. 

2000). Yet, another study showed significant apoptosis was observed when cross-linked with IgD 
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(Tavolaro et al. 2013). This suggests that it is still not clear the exact role of IgD in CLL cell survival. The 

function of sIgD remains mysterious even in normal B cells (Packham & Stevenson 2010). 

 

1.2.4 Evasion of apoptosis in vivo 

CLL cells when cultured in vitro die rapidly from apoptosis (Collins et al. 1989), whereas they are long-

lived in vivo. This strongly indicates that CLL cells rely on microenvironmental factors, from sites such 

as bone marrow and lymph nodes, to prolong their survival in vivo. The BCL-2 family of proteins are 

important in the regulation of apoptosis (Cang et al. 2015).  

Within the family the anti-apoptotic proteins include BCL-2, BCL-XL, MCL1, BFL1/A1 and BCL-W. The 

pro-apoptotic proteins of BCL-2 family were further sub-divided into two groups: multi-BH domain 

proteins such as BCL-2-associated X protein (BAX) and BCL-2 antagonist/killer 1 (BAK) and BH3-only 

proteins. BH3 proteins such as BID, BCL-2-like 11 (BIM) and BCL-2 binding component 3 (PUMA) are 

also known as activators and BCL-2-associated agonist of cell death (BAD), BMF and NOXA are 

regarded as sensitizers (Buggins & Pepper 2010). 

BCL-2 family of proteins regulates apoptosis, particularly the intrinsic pathway, by controlling the 

permeability of the outer mitochondrial membrane (Buggins & Pepper 2010; Cang et al. 2015). Since 

some of the proteins are anti-apoptotic and pro-apoptotic, when the balance of scales is more in 

favour of apoptosis (i.e. there are more pro-apoptotic proteins), this results in increased permeability 

of the outer mitochondrial membrane (Buggins & Pepper 2010; Cang et al. 2015). This causes the 

release of pro-apoptotic factors such as cytochrome-C from the inner mitochondrial membrane 

through the outer mitochondrial membrane into the cytoplasm (Buggins & Pepper 2010; Cang et al. 

2015). The cytoplasmic cytochrome-c then forms a complex with apoptotic protease activating factors 

(APAF1), the complex is known as ‘apoptosome’, and this initiates caspase cascade by activating 

caspase-9 (Buggins & Pepper 2010; Cang et al. 2015). The resulting biological changes are apoptosis 

and cell death (Buggins & Pepper 2010; Cang et al. 2015). 

In CLL, the anti-apoptotic protein, BCL-2 is over expressed (Buggins & Pepper 2010; Pekarsky, Balatti 

& Croce 2018). This high expression of BCL-2 is also observed in follicular lymphomas where there is 

chromosomal translocation t(14;18) (Kelly & Strasser 2011). High levels of BCL-2 were also detected 

in DLBCL and mantle cell lymphoma (Kelly & Strasser 2011). 

The overexpression of BCL-2 is the result of loss or downregulation of miR-15/16 in 13q of CLL cells 

(Kelly & Strasser 2011; Pekarsky, Balatti & Croce 2018). The expression of both miR-15 and miR-16 is 

linked with the level of BCL-2 expression in almost all CLL cases (Pekarsky, Balatti & Croce 2018). When 
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there is a high expression of miR-15/16 it was seen that there is low expression of BCL2 (Pekarsky, 

Balatti & Croce 2018). In CLL, there is deletion of 13q resulting in loss of miR-15/16 and/or a mutation 

resulting in loss of function (Pekarsky, Balatti & Croce 2018). This in turn results in an overexpression 

of BCL2 and the final outcome is a high level of BCL-2 anti-apoptotic protein which causes the CLL cells 

to evade apoptosis (Kelly & Strasser 2011; Pekarsky, Balatti & Croce 2018). 

 

1.2.5 Tumour Microenvironment 

The concept of the microenvironment and link with cancer was first described in the late 1960s by 

Stephen Paget who proposed the ‘seed (tumor cells) and soil (microenvironment)’ hypothesis (Bakker 

et al. 2016; Witz 2009). Cancer cells are surrounded by a complex milieu. This cancer cell niche is called 

the tumor microenvironment, and it contributes to the development and metastasis of tumors. 

In CLL, the tumour microenvironment (summarised in Figure 1.2) comprises of the CLL cells, a mixture 

of cancer associated stromal cells (CAS)/ bone marrow stromal cells (BMSC), T cells via CD40 ligands, 

endothelial cells, follicular dendritic cells (FDC) and nurse-like cells (NLCs). It is presently recognised 

that CLL is a microenvironment-dependent disease (Burger 2011a; Caligaris-Cappio, Bertilaccio & 

Scielzo 2014; Ten Hacken & Burger 2016). The field of study in tumour microenvironment is currently 

intensive and expanding very fast and I will give a brief summary below into the areas relevant to CLL. 
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Figure 1.2 Schematic diagram of the CLL Microenvironment. 

Schematic showing cross-talk between CLL cells and the microenvironment in secondary lymph nodes. CLL cells have B-cell 

receptor (BCRs) which respond to soluble antigen or cell surface antigens. This in turn activates BCR signalling which activates 

kinases such as spleen tyrosine kinase (SYK), Bruton tyrosine kinase (BTK) and PI3K. This signalling activates chemokine 

receptors such as CXC-chemokine receptor 4 (CXCR4) and CXCR5 and adhesion molecules (integrins). Activated T cells 

promote growth of CLL cells by CD40 ligand (CD40L)- CD40 receptor linkage. Nurse-like cells (NLCs) express B cell-activating 

factor (BAFF) and a proliferating-inducing ligand (APRIL) which activate receptors on the CLL cell. BAFFR, B cell-activating 

factor receptor; BCMA, B cell maturation antigen; CCR, CC-chemokine receptor; TACI, transmembrane activator. Schematic 

diagram adapted from a review by Burger and Wiestner (2018). 

  

1.2.5.1 Hypoxia 

In solid tumours, the vasculature becomes insufficient when its diameter grows more than 2mm, 

resulting in a local hypoxic (oxygen concentration <3%) and anoxic condition (oxygen concentration 

<0.1%) (Yang et al. 2015). Evidence has shown that 50-60% of tumours grow under hypoxic conditions 

(Yang et al. 2015). Metabolism is very high in areas of tumour growth and so the demand of oxygen 

would outweigh the supply of oxygen, thus causing hypoxia (Henze & Mazzone 2016; Petrova et al. 

2018; Yang et al. 2015).  

Hypoxia induces a wide range of biological changes, such as decreased cell proliferation, increased 

expression of drug-resistance genes, selection of apoptosis-resistant clones, facilitation of tumor 

invasion and metastasis, reduced expression of DNA repair genes and increased genomic instability 

(Kim et al. 2009). Preclinical evidence shows that hypoxia correlates with poor prognosis in solid 

tumors (Henze & Mazzone 2016; Kim et al. 2009).  
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The hypoxic response is to restore the oxygen availability and on the cellular level this is seen as 

induction of angiogenesis, metabolic reprogramming, proliferation, self-renewal and autophagy. 

However, all these processes are exploited to aid in tumor progression and metastatic dissemination. 

Oxygen deprivation contributes to a hostile microenvironment that selects for a more aggressive 

cancer phenotype (Henze & Mazzone 2016; Petrova et al. 2018). The hypoxic response is mediated 

by, among others, hypoxia-inducible transcription factors HIF1α and HIF2α (Henze & Mazzone 2016; 

Kim et al. 2009; Petrova et al. 2018; Serra et al. 2016). HIF activity switches the cell metabolism into 

glycolytic mode, increasing glucose consumption and pyruvate, lactate and H+ production (Petrova et 

al. 2018), thus creating a more acidic pH environment. 

The excessive release of angiogenic factors within the tumor microenvironment under hypoxic 

conditions results in a tortious vascular network that does not effectively restore the blood supply. In 

fact, an irregular vascular structure is formed and this further contributes to spatiotemporal changes 

in oxygen delivery. This leads to altering the phenotype of the tumors that may contribute to worse 

prognosis (Henze & Mazzone 2016). 

Hypoxic conditions cause only the most aggressive cells to survive these hostile growth conditions and 

driving tumor growth. Oxygen shortage results in electron leakage and formation of reactive oxygen 

species (ROS), which can oxidize proteins and cause DNA damage. The net outcome of this is the 

hypoxic cells experience genomic instability, which might further influence parameters to then 

accelerate malignant progression (Henze & Mazzone 2016). 

In CLL, high concentrations of ATP are present in the intracellular compartment, whereas low 

concentrations are typically available extracellularly (Serra et al. 2016). However, under conditions of 

increased cellular turnover and/or inflammation, such as those present in the tumor 

microenvironment, extracellular nucleotide levels can surge. ATP may then bind to specific receptors, 

which activate a signaling cascade, or it may be enzymatically converted to adenosine which is a 

potent immunosuppressant (Serra et al. 2016). 

In vivo evidence confirms that hypoxia acts partly though the activation of A2A adenosine receptor 

(ADORA2A) signaling (Serra et al. 2016). Although circulating CLL cells express active HIF-1α, its role in 

regulating CLL survival and its mechanism of action remain incompletely understood (Serra et al. 

2016). 

HIF-1α was found to be intensely positive in CLL lymph nodes (LNs) in areas corresponding to 

proliferation centers (Serra et al. 2016). HIF-1α expression was highest in CLL cells recovered from LNs 

compared to Peripheral Blood (PB) and Bone Marrow (BM) (Serra et al. 2016). 
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At 1% O2, purified cultured CLL cells didn’t change their HIF-1α expression at the mRNA level, but an 

upregulation of the protein was apparent (Serra et al. 2016).  

Expression of A2A adenosine receptor (ADORA2A) was markedly increased in hypoxic CLL cells. CLL 

cells adapt to hypoxia (Koczula et al. 2016; Serra et al. 2016) by upregulating HIF-1α signaling, in turn 

increasing nucleotide scavenging and activating adenosine signaling through the A2A receptor (Serra 

et al. 2016). 

When deprived of oxygen, tumor cells quickly promote energy production through glycolysis. This 

metabolic adaptation is transcriptionally mediated by HIF-1α. Under normoxia, CLL cells 

predominantly obtain energy through oxidative phosphorylation. However, at 1% O2, CLL cells 

markedly increased expression of genes involved in glycolysis (Koczula et al. 2016; Serra et al. 2016; 

Vander Heiden, Cantley & Thompson 2009). 

In summary, hypoxic conditions brought on by tumor cells in the microenvironments creates an acidic, 

vasculature deprived environment where the metabolic demand of oxygen outweighs the supply. This 

initiates the expression of HIF proteins which aides in adapting the CLL cells to sustain energy 

productions through means of aerobic glycolysis “Warburg effect”. 

 

1.2.5.1.1 Warburg Effect 

Briefly, aerobic glycolysis, also termed as Warburg effect, refers to the cells predominantly produce 

their energy through a high rate of glycolysis followed by lactic acid fermentation even in the presence 

of abundant oxygen (Vander Heiden, Cantley & Thompson 2009). 

In 1924, Otto Warburg’s observed cancer cells metabolize glucose in a manner that is distinct from 

that of cells in normal tissues (Vander Heiden, Cantley & Thompson 2009). He found that unlike most 

normal tissues, cancer cells tend to “ferment” glucose into lactate even in the presence of sufficient 

oxygen to support mitochondrial oxidative phosphorylation (Vander Heiden, Cantley & Thompson 

2009). It was originally hypothesized by Warburg that cancer cells develop a defect in mitochondria 

that leads to impaired aerobic respiration and a subsequent reliance on glycolytic metabolism. 

However, subsequent work showed there was no impairment of mitochondrial function in most 

cancer cells (Vander Heiden, Cantley & Thompson 2009). 

Cells that are deficient in ATP often undergo apoptosis. Normal proliferating cells can also undergo 

cell cycle arrest and reactivate catabolic metabolism when their ability to produce ATP from glucose 

is compromised, and signaling pathways exist to sense energy status (Vander Heiden, Cantley & 

Thompson 2009). During growth, glucose is used to generate biomass as well as produce ATP. One 
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glucose molecule can generate up to 36 ATPs, or 30 ATPs and 2 NADPHs (if diverted into the pentose 

phosphate shunt). The conversion of both glucose and glutamine to lactate involves the enzyme 

lactate dehydrogenase (LDH), where inhibiting this enzyme activity impairs cell proliferation. The 

excess generation of lactate that accompanies the Warburg effect would appear to be an inefficient 

use of cellular resources (Vander Heiden, Cantley & Thompson 2009). 

Although tumor hypoxia is clearly important for other aspects of cancer biology, the available evidence 

suggests that it is a late-occurring event that may not be a major contributor in the switch to aerobic 

glycolysis by cancer cells (Vander Heiden, Cantley & Thompson 2009). 

Although, when oxygen was available, the tricarboxylic acid (TCA) cycle appeared to be supported by 

glutaminolysis as evidenced by consumption of glutamine and O2, associated with the production of 

glutamate, pyruvate, lactate and alanine. Hypoxia induced HIF-1α activity acts to sustain glycolysis, as 

CLL cells transit from oxygenated to hypoxic environments and that lactate production is largely 

mediated by the consumption of glucose (Koczula et al. 2016). 

HIF-1α independently differentiates utilization of pyruvate in oxygenated and hypoxic conditions. 

When oxygenated, CLL cells exported pyruvate but as oxygen concentration dropped below 1%, CLL 

cells imported pyruvate. This pyruvate import is in response to hypoxia-associated oxidative stress 

rather than hypoxia per se, as CLL cells imported pyruvate when treated with H2O2 (which induced 

oxidative stress) under normoxic conditions (Koczula et al. 2016). 

In summary, Warburg effect is observed in CLL cells by HIF-1α activity that permits glycolysis through 

multiple sources of energy when in hypoxic or anoxic conditions within the tumor microenvironment. 

This is also seen in other cancer conditions particularly solid tumors. 

 

 

1.2.5.2 T cells 

The interactions between CD40 from B cells and CD40 ligand (CD40L) on activated T cells, are 

important in the antigen presentation and initiating normal B-cell responses (Ten Hacken & Burger 

2015; van Kooten & Banchereau 2000). In CLL, the T cells display impaired immunological synapses 

(Ramsay et al. 2012; Ramsay et al. 2008). This is viewed as an impaired T cell cytoskeletal 

rearrangement compared to that expected from non-CLL T cells and antigen presenting cells (APC) in 

order to proliferate and produce interleukin 2 (IL-2) (Ramsay et al. 2008). It is understood as chronic 

activation and ‘exhaustion’ of the T-cells is due to the CLL cells (Choi, Kashyap & Kumar 2016). It has 

been shown that activation of malignant B cells by CD40 ligation promotes survival of CLL cells (Kitada 

et al. 1999). CLL cells express high level of programmed cell death protein 1 ligand (PD-L1) 
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(McClanahan et al. 2015). Thus, interrupting the programmed cell death protein 1 (PD-1) and the PD-

L1 axis can restore immune functions and inhibits CLL development in a mouse model of CLL 

(McClanahan et al. 2015). Taken altogether, these reports suggest that T cells have reduced activity, 

which may explain the evasion of CLL cells from immune-mediated cell death (Ten Hacken & Burger 

2015).  

Similar to T-cells, Natural killer cells (NK cells) have an immune dysfunction with defective actin 

polymerization and impaired immune synapse formation (Choi, Kashyap & Kumar 2016; Maki et al. 

2008).  

 

1.2.5.3 Stromal Cells 

There are multiple cell types involved in forming the tumour stroma within the tumour 

microenvironment (Yang et al. 2015). Mesenchymal stromal cells (MSCs) such as bone marrow stromal 

cells (BMCs) are ‘feeder’ layers for hematopoietic progenitor cells and take part in normal bone 

marrow architecture (Yang et al. 2015). The BMCs have been shown to protect CLL cells from 

spontaneous and drug-induced apoptosis via direct contact (Kurtova et al. 2009; Lagneaux et al. 1998; 

Ten Hacken & Burger 2015). BMCs also secrete chemokines which regulate CLL cell trafficking and 

tissue homing and also provide additional signs that support their survival and encourage drug 

resistance (Burger et al. 2009a). BMCs were found to reduce the expression of CD20 on CLL cells which 

may implicate resistance to anti-CD20 antibody treatment (rituximab) (Marquez et al. 2015). Other 

studies have suggested promotion of cell survival and drug resistances by BMCs through the 

involvement of NOTCH signaling, protein kinase C beta II (PKCβII) expression and NF-ĸB pathway 

activation (Jitschin et al. 2015; Lutzny et al. 2013).  

Ding et al. (2010) showed that CLL induces proliferation and induction of PI3K signaling by activating 

BMSC through platelet-derived growth factor (PDGF) receptor activation (Choi, Kashyap & Kumar 

2016; Mangolini & Ringshausen 2020). 

A cross-talk between CLL and stromal cells have also been suggested by the secretion of microvesicles 

by CLL that activate AKT pathway in BMCs (Choi, Kashyap & Kumar 2016; Ghosh et al. 2010). 

It was seen that in CLL, the BMSCs take up the amino acid cystine which is then converted to cysteine 

and released into the microenvironment, which becomes available for the CLL cells (Zhang et al. 2012). 

This metabolic remodeling promotes CLL cells viability and drug resistance (Mangolini & Ringshausen 

2020; Zhang et al. 2012). 
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1.2.5.4 Endothelial cells and follicular dendritic cells 

Endothelial and follicular dendritic cells (FDCs) are essential for tissue homing and retention of CLL 

cells to tissues (Ten Hacken & Burger 2015). The adhesion to the endothelial cells promotes survival, 

activation and drug resistance of CLL cells (Badoux et al. 2011; Hamilton et al. 2012). CLL cells can bind 

to integrins and BAFF and APRIL that are expressed on the surface of endothelial cells (Cols et al. 2012). 

The endothelial cells help promote CLL-cell survival and resistance to drug-induced apoptosis (Ten 

Hacken & Burger 2015). It was also shown that in vitro FDCs delays spontaneous apoptosis of CLL cells 

by direct contact via CD44 ligation and upregulation of the myeloid cell leukemia 1 (MCL-1) protein 

which is a member of anti-apoptotic proteins of the BCL2 family (Pedersen et al. 2002). 

It was seen that CD27 influences CLL binding to stroma, where its expression is correlated with ZAP-

70 expression, elevated on BCR cross-linking and correlates with functional ability to adhere to stromal 

cells. Antibody blockade of CD27 was shown to impair binding of CLL cells to the stroma (Choi, Kashyap 

& Kumar 2016; Lafarge et al. 2015). 

 

1.3 Nurse Like Cells: A history 

As nurse like cells (NLCs) are essentially the macrophages derived from the circulating monocytes, I 

would like to introduce general biological aspects of macrophages first. 

 

1.3.1 Macrophages: A spectrum 

Macrophages can be of circulating monocyte origin, or originating from tissue resident monocytes. 

The blood monocyte is a motile cell that can migrate alone vessel walls and has the ability to adhere 

to surfaces. The monocytes respond to inflammation and chemotactic stimuli by diapedesis 

(movement through intact walls of capillaries) into inflammatory sites, where they mature into 

macrophages, with greater phagocytic ability and increased composition of hydrolytic enzymes 

(Lichtman et al. 2011a). Classic studies in the 1930s and 1940s showed that monocytes transform into 

macrophages in vitro. Macrophages can be produced from monocyte culture with cytokines such as 

granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage-CSF (M-CSF) (Lichtman 

et al. 2011a). Macrophages are characterized by increased cell size and increase in the number of 

cytoplasmic granules, in heterogeneity of cell morphology and in the number of cytoplasmic clear 

vacuoles (Lichtman et al. 2011a). 

Macrophages exist in either M0 (immediately differentiated from monocytes), M1 (tumoricidal) or M2 

(tumorogenic) phenotype along the M1/M2 spectrum (Figure 1.3) (Italiani & Boraschi 2014; Murray 
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et al. 2014). Their position on the spectrum depends on the type of stimuli monocytes received and 

how they respond to the stimuli (Figure 1.3). On one end of the spectrum are the M1 macrophages 

and on the opposite end are the M2 macrophages.  Therefore, a newly differentiated monocyte first 

appears to be in the middle of the macrophage spectrum (M0), displaying neither M1, nor M2 

phenotypes. Upon further stimulation, the same macrophage moves towards either end on the 

spectrum. Process of the differentiation of a macrophage to the extreme ends is also known as 

polarisation. 

 

Figure 1.3 M1 and M2 macrophages 

 

 

1.3.1.1 M1: The Classically Activated Macrophage 

The major function of naive macrophages is clearance of apoptotic debris produced as part of the 

normal cellular process of homeostasis. In response to various endogenous signals, macrophages 

produce pro-inflammatory mediators and alter surface markers (Figure 1.3) (Tan et al. 2016).  Classical 

M1 and M2 macrophages: the extremes of a continuum. Macrophage activation is associated with changes in gene 

expression profiles where exposure to different stimuli induces distinct polarization profiles, associated with expression 

of selected molecules. Classical macrophage activation (M1 macrophage) is induced by exposure to IFN-γ and LPS (red). 

Alternative activation (M2 macrophage) can be induced by different stimuli such as IL-4 and IL-13 (induce M2a yellow), 

immune complexes (IC) + LPS (induce M2b magenta), and IL-10 (induce M2c green). IL-4 + IL-13 or IL-10 induce both M2a 

and M2c (blue). Abbreviations: IFN-γ, interferon gamma; IL-1 ra, IL-1 receptor antagonist; LPS, lipopolysaccharide; MR, 

mannose receptor; RNI, reactive nitrogen intermediates; ROI, reactive oxygen intermediates; TLR, Toll-like receptor. 

Image is modified from a review by Mantovani et al. (2004). 
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M1 activation is induced by intracellular pathogens, bacterial cell wall components such as 

lipopolysaccharide (LPS), Th1 (type 1 helper T cells) cytokines such as interferon gamma (IFN-γ) and 

tumour necrosis factor alpha (TNF-α) (Jablonski et al. 2015; Roszer 2015; Zhang et al. 2013). These 

polarized M1 macrophages harbour immune-stimulatory properties and cytotoxic function against 

tumour cells (Zhang et al. 2013). 

M1 macrophages are characterized with inflammatory cytokine secretion and production of nitric 

oxide (NO), resulting in an effective pathogen elimination mechanism (Jablonski et al. 2015; Roszer 

2015). Besides, M1 macrophage is associated with higher aerobic glycolysis and extracellular 

acidification rate; increase of HIF-1𝛼 further enhances IL-1𝛽 promoter activity, thus maintaining IL-1𝛽 

production in M1 macrophages (Tan et al. 2016).M0-type macrophages are induced to polarize into 

M1 macrophages by LPS and IFN-γ, causing the cells to flatten to a round, pancake-like shape within 

24h of stimulation (McWhorter et al. 2013).  

As macrophage display a spectrum of phenotypes in vivo, it is not easy to distinguish macrophage 

phenotypes (Jablonski et al. 2015). Using expression profiling data, a study has found that as a result 

of different activation stimuli, M1 and M2 macrophages co-expressed many genes, referred to as 

shared signatures (Jablonski et al. 2015). Moreover, the same study also identified several distinct 

genes exclusively expressed in M1 macrophages, namely CD38, Gpr18 (G-protein coupled receptor 

18) and Fpr2 (formyl peptide receptor 2) and established them as novel M1 markers (Jablonski et al. 

2015). 

 

1.3.1.2 M2: The Alternatively Activated Macrophage 

Alternative M2 activation is induced by fungal cells, parasites, immune complexes, complement, 

apoptotic cells, macrophage colony stimulating factor (M-CSF), interleukin-4 (IL-4), IL-13, IL-10, 

tumour growth factor beta (TGF-β) and various other signals (Figure 1.3) (Jablonski et al. 2015; Roszer 

2015). 

Innate immune cells such as basophils and mast cells and other adaptive cells produce IL-4 and IL-13, 

priming M2 alternative phenotype (Tan et al. 2016). IL-4-induced M2 macrophages expressed high 

concentration of IL-10, decoy receptor IL-1R, IL-1R antagonist, chemokines CCL22 and CCL17, and 

intracellular enzyme arginase-1 (Figure 1.3) (Tan et al. 2016). All of these result in the recruitment and 

activation of Th2 immune response and immune-suppressive function of M2 macrophages. In addition 

to Th2 immune response, IL-4-induced macrophages stimulate arginase activity by converting arginine 

to polyamines and collagen precursors for tissue modelling and wound healing (Tan et al. 2016) . M2 
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macrophages also produce VEGFα, EGF, and IL-8 that are responsible for angiogenesis and lymph-

angiogenesis (Tan et al. 2016) . 

Apart from IL-4-induced phenotype, different schemes of M2 macrophages classification have been 

proposed due to the overlapping properties of alternatively activated macrophages. The activation of 

M2 macrophages stimulated by addition of either IL-4 and IL-13, TGF𝛽, immune complexes, 

glucocorticoids, or IL-10 may yield distinct activation profiles (Tan et al. 2016) . This gives a series of 

subtypes of M2 macrophages depending on how they were activated (Figure 1.3). The changes in 

shape of M0-type macrophages when induced to polarize into M2 macrophages with IL-4 and IL-13 

was seen to be elongation of the cell (McWhorter et al. 2013). 

M2 macrophages have high phagocytosis capacity, producing extracellular matrix (ECM) components, 

angiogenic and chemotactic factors and IL-10 (Jablonski et al. 2015; Roszer 2015). In addition to 

pathogen defence, they also clear apoptotic cells, mitigate inflammatory response, and promote 

wound healing (Jablonski et al. 2015; Roszer 2015). These anti-inflammatory features aid in growth of 

tumour tissues.  

Cellular metabolism especially lipid metabolism also plays an important role in providing energy fuel 

for activation of alternative M2 macrophages. As opposed to M1 classical activation, M2-regulated 

gene transcription occurs in conditions favouring mitochondrial metabolism and oxidative glucose 

metabolism, in which the M2 phenotype tends to be switched towards anti-inflammatory state under 

low oxygen condition (Tan et al. 2016). This suggests that hypoxic conditions are favourable for M2 

macrophages to thrive. 

In a study analysing the expression profiling data, described earlier, authors also found several distinct 

genes highly expressed in M2 macrophages, including Egr2 (early growth response 2) and c-Myc and 

suggested that they can be used as novel M2 markers (Jablonski et al. 2015). 

 

1.3.2 Tumour Associated Macrophages (TAM) 

Macrophages represent up to 50% of the tumour mass (Solinas et al. 2009) and they have an important 

role to play. Tumour associated macrophages (TAMs) are macrophages expressing M2 phenotype and 

display mainly anti-inflammatory, pro-tumoral properties that promote tumour cell survival, 

proliferation and spread (Mantovani et al. 2002; Solinas et al. 2009).  

The presence of TAMs is not always correlated with bad prognosis, but studies have shown a link 

between their abundance and the process of metastasis (Mantovani et al. 2017; Solinas et al. 2009). 

TAMs have been considered to originate from the cells in circulation, recruited by tumour and non-
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tumour cells in the tumour microenvironment by the release of chemotactic signals (Mantovani et al. 

2017). Monocyte differentiation is influenced by their position relative to the tumour mass by an IL-

10 gradient, where this prevents formation into dendritic cells and is encouraged to differentiate into 

macrophages (Allavena et al. 1998). One hallmark of TAM is their tendency to accumulate into necrotic 

regions of tumours, characterized by low oxygen tension (Solinas et al. 2009). This preferential 

localization is regulated by tumor hypoxia, which induces the expression of hypoxia inducible factor 1 

(HIF-1)-dependent molecules (vascular endothelial growth factor VEGF, C-X-C motif chemokine 12 

CXCL12, and its receptor C-X-C chemokine receptor type 4 CXCR4) that modulate TAM migration in 

avascular regions (Solinas et al. 2009). TAMs also display immune suppressive activity by producing IL-

10 and secretion of chemokines that attract naïve T cells in the microenvironment (Solinas et al. 2009). 

TAMs have been shown to be present in solid tumour types, such as in breast, prostate, Ovary, cervix, 

stomach, lung, bladder, and glioma (Bingle, Brown & Lewis 2002a). In solid tumours they also provide 

pro-survival conditions to the tumour cells and allow their proliferation (Mantovani et al. 2017).  

TAMs have also been isolated from the peripheral blood, spleen, and lymph nodes in CLL patients 

where they have shown to be essential for CLL cell survival in the tumor microenvironment (Edwards 

et al. 2018). Nurse-like cells (NLCs) or lymphoid-associated macrophages (LAMs) in CLL, share a similar 

gene expression profile to TAMs derived from other tumor types (Mantovani et al. 2017; Ysebaert & 

Fournie 2011). From this point onwards, TAMs and NLCs will be used interchangeably with NLC 

referring specifically to CLL. 

 

1.3.3 Nurse-Like Cells: Origin 

Nurse-like cells were first recognized in situ in the thymus, where they form characteristic complexes 

with immature T lymphocytes and play an important role in thymocyte maturation and differentiation, 

and the interaction is thus characterized by invasion into thymic nurse cells by thymocytes 

(emperipolesis) (Burger et al. 2000). 

In CLL, leukemic B-cells were observed to crawl under these supporting cells but not become 

internalized. Therefore, this process is pseudo-emperipolesis, and the supporting cells are termed 

nurse-like cells (NLCs) with the initial characteristics of interacting physically with CLL cells and 

supporting the survival and activation of CLL cells (Burger et al. 2000). 
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1.3.4 Initial characterisations of NLCs 

In the initial study, immunophenotyping of the NLCs was also performed, which showed that these 

cells express cell markers vimentin, STRO-1 (a mesenchymal stem cell marker) and CD68 (Burger et al. 

2000). They do not express B-cell nor T-cell differentiating markers or CD83 (a marker for mature 

dendritic cells) (Burger et al. 2000). Strikingly, the morphology and immunophenotype of adherent 

cells derived from the peripheral blood of healthy donors were different to the adherent NLC from 

CLL blood samples (Burger et al. 2000). 

Vimentin, encoded by VIM gene for intermediate filaments and mediating changes in cell shape, is 

involved in motility and adhesions, as well as cytoskeletal interactions (Mendez, Kojima & Goldman 

2010; Stelzer G et al. 2016).  

CD68 (a member of lysosome-associated membrane proteins) is highly expressed on monocytes and 

macrophages (Stelzer G et al. 2016), suggesting that the adherent NLC cells are from myelomonocytic 

lineage.  

Also, the study investigated if trisomy 12 can be detected in the NLCs as some blood samples used in 

the study were obtained from patients whose CLL cells contained Trisomy 12. The study showed no 

observation of trisomy 12 in ‘an overwhelming majority of NLCs from the same patient’ (Burger et al. 

2000). This suggests that NLC and CLL populations do not share the same chromosome defect, thus 

proving that NLC are not part of the CLL clone (Burger et al. 2000). 

NLCs were found to express mRNA for stromal derived factor-1 (SDF-1), also known as C-X-C motif 

chemokine 12 (CXCL 12), which is a potent chemo-attractant for CLL B cells and mediator in their 

interaction with bone marrow stromal cells (Burger et al. 2000). Synthetic SDF-1 alone was also shown 

to be capable of rescuing CLL B cells from apoptosis (Burger et al. 2000). 

A more in-depth study investigating distinctive features of these nurse-like cells in CLL was carried out 

later on. It was shown that one to two weeks after culturing blood mononuclear cells on plastic culture 

plates, NLCs formed a ‘sparse monolayer of large, round, and sometimes bi-nucleate cells’, where 

clusters of CLL B cells were attached around these NLCs (Nobuhiro Tsukada 2002). 

It was also shown on flow cytometry analysis that NLCs typically had a larger forward and side scatter 

properties than CLL cells (indicating larger cell size of NLCs) (Tsukada et al. 2002). They expressed 

CD14, CD45 and HLA-DR but not CD3. This suggests that NLCs express surface markers of 

hematopoietic cells and surface antigens consistent with blood monocytes (Nobuhiro Tsukada 2002). 

NLCs also expressed CD33 which has been known to be expressed on cells of myelomonocytic lineage 

that may facilitate cell-cell adhesion (Nobuhiro Tsukada 2002). 
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Collectively, the above findings show that NLCs are derived from blood monocytes, however, the 

expression levels of CD14 and CD33 in these cells are significantly lower than typical monotypes 

(Tsukada et al. 2002). Meanwhile, NLCs express higher levels of CD68 than blood monocytes, 

macrophages, or monocyte-derived dendritic cells (Nobuhiro Tsukada 2002). 

To confirm that NLCs were derived from blood monocytes, the authors further showed that CLL PBMCs 

depleted of CD14+ cells (monocytes/macrophages) did not develop NLCs when cultured under the 

identical conditions (Tsukada et al. 2002). Also, PBMCs cultures depleted of CD2 (T cells/NK cells) 

developed NLCs of similar appearance to the unsorted PBMC culture (Nobuhiro Tsukada 2002). 

However, the exact duration and date of culture when comparisons were made was not provided. 

A thorough antigen profile revealed that NLCs expressed significantly higher CD68 and lower CD33 

than any other cells (Nobuhiro Tsukada 2002). Monocyte-derived dendritic cells expressed 

significantly higher levels of CD1a, CD40, CD80 and CD86 than NLCs (Nobuhiro Tsukada 2002). 

Interestingly, it was shown in the study that CD14+ cells from PBMCs of healthy donors can also 

differentiate to NLCs (based on morphology, phenotype and function) when co-cultured with CLL cells 

(Nobuhiro Tsukada 2002). However, NLCs derived from PBMC of CLL patients expresses a greater level 

of CD68 than those from healthy donors. 

Using a trans-well membrane separating CD14+ cells from CLLs, it was shown that NLCs were not 

developed (levels of expression of CD14 and CD33 were similar to CD14+ mononuclear cells cultured 

alone), suggesting that direct contact of CD14+ cells with CLL cells is needed to develop NLCs 

(Nobuhiro Tsukada 2002). 

Finally, to test if NLCs exists in vivo, CD14+ splenocytes from CLL patients were examined and shown 

to display NLC morphological features and express higher levels of CD68 than CD14+ splenocytes 

obtained from patients without CLL (Nobuhiro Tsukada 2002). 

Some studies reported a link between elevated peripheral blood monocyte count at the time of 

diagnosis in patients with CLL and poor clinical outcomes (Edwards et al. 2018; Friedman et al. 2016). 

It is thus speculated that high number of monocytes could lead to high number of NLCs, resulting in a 

more protective tumor microenvironment. However, the exact relationship between the number of 

peripheral blood monocytes and the number of NLCs is yet to be established. 
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1.3.5 Biological functions of NLCs 

1.3.5.1 Protection of CLL cells against spontaneous and drug-induced apoptosis when in co-culture 

In the early 2000s, in-vitro coculture with marrow stromal cells was found to have prolonged the 

viability of CLL cells when compared to CLL cells cultured alone (Burger et al. 2000). Adherent cells 

(nurse-like cells) were found to be present in such cultures after 3 days of culture and their numbers 

increased with time in culture (Burger et al. 2000). After separating the CLL cells from NLCs after 14 

days, the CLL cells displayed decline in viability (Burger et al. 2000). The proof of apoptosis was the 

reduction in mitochondrial membrane potential (Burger et al. 2000). To further prove the effect of the 

NLCs, the CLL cells were re-plated onto them and their viability was stabilised over time compared to 

their counterparts cultured alone which continued a decline in viability (Burger et al. 2000). This 

phenomenon was confirmed in other studies (Burger et al. 2005; Nishio et al. 2005; Tsukada et al. 

2002).  

When cultured with NLCs, CLL cells were found to be less sensitive to dexamethasone and 

chlorambucil compared to CLL cells cultured alone (Filip, Cisel & Wasik-Szczepanek 2015). It was also 

shown that the NLCs protected CLL cells from spontaneous and drug-induced apoptosis by 

fludarabine, cladribine, methylprednisolone, bortezomib, valproic acid and flavopiridol (Burger et al. 

2005; Fiorcari et al. 2016; Stamatopoulos et al. 2012). Therefore, there were clear evidence that NLCs 

can have cytoprotective effect on CLL cells when they were cultured together. However, how NLCs 

exert such effect on CLL cells is not well understood. 

 

1.3.5.2 Effect of NLC on expression of IgM and IgD on CLL cells 

Recently it was shown that NLCs cause a significant downregulation of surface expression of IgM and 

IgD on CLL cells when cultured together (Ten Hacken et al. 2016) . The expression of surface IgM and 

IgD recovered during 72hrs in culture in the absence of NLC, which resembles the recovery pattern of 

BCR in CLL cells when cultured in vitro in the absence of antigenic stimulation (Ten Hacken et al. 2016). 

It was postulated that NLC can present yet to be identified antigens that can trigger BCRs in CLL cells, 

resulting in down-modulation of both IgM and IgD. Although it was challenging to investigate BCR 

signaling responses with this coculture system, these data suggested that IgM and IgD may both be 

engaged and involved in activating BCR signaling in CLL cells when in coculture with NLC (Ten Hacken 

et al. 2016). 

 

1.3.5.3 Effect of CLL on NLC 

CD14+ monocytes co-cultured with CLL cells developed large, adherent  cells with cell morphology 

typical of NLCs (Nobuhiro Tsukada 2002). These cells also expressed higher level of cytoplasmic CD68, 



20 
 

when compared with CD14+ monocytes cocultured with the CD19+ cells of healthy donors (Tsukada et 

al. 2002). This indicates that CLL cells can also influence the differentiation of CD14+ monocytes into 

NLCs in vitro. 

The above finding has been confirmed by a separate study where CD14+ monocytes co-cultured with 

CLL cells displayed more characteristic features of NLCs than their counterparts co-cultured with non-

malignant B cells (Bhattacharya et al. 2011). Furthermore, CLL cells induced significant changes in 

expression of proteins involved in antigen presenting and immunity pathways in CD14+ cells. It was 

shown that NLCs had reduced levels of lysosome activity and decreased expression of CD74 and HLA-

DR in-vitro while expression of FCGR2B was increased (Bhattacharya et al. 2011). FCGR2B is an 

important inhibitory Fc-gamma receptor present on macrophages and immature dendritic cells that 

down-regulates the process of internalization (phagocytosis) (Bhattacharya et al. 2011). This in-vitro 

study suggests that CLL cells may specifically down-regulate genes in NLCs that are involved in 

immunocompetence (Bhattacharya et al. 2011). 

 

1.3.5.4 Commonalities and differences of TAMs in CLL and in other cancers 

Cancers that are not solid are generally grouped together as blood cancers and thus have differences 

in their disease presentation, pathology and progression. However, the tumor microenvironment 

within solid tumors provide the general protective function in a similar way to that in hematologic 

malignancies such as CLL disease (Petty & Yang 2019). 

It is known that macrophages infiltrate solid tumors and studies have shown that in human 

malignancies such as hepatocellular, colon, breast and lung carcinoma, poor prognosis is associated 

with high level of macrophage infiltration (Mantovani et al. 2017; Minami et al. 2018). Tumor 

associated macrophage (TAM) markers such as CD68 and CD163 have been measured to predict 

patient outcomes after chemotherapy for cancers such as follicular lymphoma, Hodgkin lymphoma, 

colorectal cancer and pancreatic cancer (Mantovani et al. 2017). Some studies have investigated role 

of TAM in these cancers using cell lines such as HepG2 (hepatoma cells) or A549 (lung adenoma cells) 

(Genin et al. 2015). 

In acute lymphocytic leukemia (ALL), it was seen that higher numbers of CD163 positive cells were 

correlated with poor prognosis (Petty & Yang 2019). Coculture with M2 macrophages in vitro induced 

cell proliferation of T-ALL cells (Petty & Yang 2019). 

In acute myeloid leukemia (AML), it was seen that the number of M2-like TAMs that expressed CD163 

CD206 was significantly increased in bone marrow (BM) compared to healthy donors (Petty & Yang 
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2019). The number of M2-like TAMs in spleen, but not in bone marrows, was correlated with poor 

prognosis in AML patients (Petty & Yang 2019). 

In Hodgkin’s lymphoma and non-Hodgkin’s lymphoma, the presence of CD68+ or CD163+ TAM is also 

a strong predictor of poor clinical outcome (Petty & Yang 2019). 

Therefore, there are many commonalities in the properties of TAM within tumor microenvironment 

between CLL and other cancers. As described in previous section 1.3.1, the research of NLCs in CLL is 

relatively new in comparison with research of TAMs in solid tumours. Even within the field of CLL 

research, other components of the CLL microenvironment (e.g. T cells and stromal cells) have been 

well characterized (Petty & Yang 2019). Therfeore, there are a need to inverstigate further the biology 

of NLCs in CLL, which will be the focus of this project. 

 

1.4 Molecules mediating interaction between NLCs and CLL cells 

1.4.1 CXCR4, CXCR5, CCL3, CCL4, CCL22 

While the cytoprotective effect of NLCs on CLL cells have been reported, the mechanisms mediating 

interaction between NLCs and CLL cells were also being investigated. It was thus shown that circulating 

CLL cells expressed high levels of the chemokine receptor CXCR4 (CD184), which mediates chemotaxis, 

migration across vascular endothelium, actin polymerization and migration under bone marrow 

stromal cells (BMSCs) in response to CXCL12 (SDF-1) (Burger 2011b). CLL cells in the tissue express 

lower levels of CXCR4 (Burger 2011b). The signalling of CXCR4 can be inhibited by PI3K-δ, SYK and BTK 

inhibitors (Burger 2011b). 

CXCR5 (CD185), the receptor for CXCL13, is also expressed on CLL cells, which regulates homing and 

positioning within lymphoid follicles. CXCL13 induces recruitment of naïve B cells into follicles and also 

induces activation via PI3K family of kinases. CXCL13 mRNA and protein are also expressed by NLC 

(Burger 2011b).  

CLL cells have been shown to secrete CCL3, CCL4 and CCL22, which are chemo-attractants for T 

lymphocytes as well as monocytes (Hartmann et al. 2016; Sivina et al. 2011; Zucchetto et al. 2009). 

The CLL cells also secrete CCL3 and CCL4 in response to BCR stimulation and in co-culture with NLCs 

(Burger 2011b; Burger et al. 2009b; Hartmann et al. 2016). 
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1.4.2 BAFF and APRIL 

CLL cells express B-lymphocyte stimulator (BLyS), otherwise known as B cell-Activating Factor of the 

tumor necrosis factor (TNF) Family (BAFF) (Kern et al. 2004; Nishio et al. 2005). BAFF is a type 2 

transmembrane protein that exists as a membrane-bound or soluble form to promote B cell survival 

(Nishio et al. 2005). It was found in a mouse study that disruptive mutations of either BAFF or its 

receptor (BAFF-R) caused extensive loss of mature B-cells, suggesting that BAFF-BAFF-R interactions 

are important in the differentiation and/or survival of mature B cells. Other receptors were found to 

interact with BAFF, including B-cell maturation antigen (BCMA) and transmembrane activator and 

calcium modulator and cyclophilin ligand interactor (TACI) (Nishio et al. 2005). 

BCMA and TACI also can bind to A Proliferating Inducing Ligand (APRIL), a factor which can also 

contribute for the survival of B-cell survival (Nishio et al. 2005). BAFF-R is specific to BAFF and cannot 

bind to APRIL. APRIL was initially observed in tumor cells which was secreted as soluble molecule 

through the action of furin proteases present in the Golgi (Nishio et al. 2005). It was shown that CLL 

cells also express surface APRIL (Cols et al. 2012; Kern et al. 2004; Nishio et al. 2005). It has been 

reported that NLCs expressed high levels of BAFF and APRIL (Nishio et al. 2005). Viability of CLL cells 

was enhanced when BAFF and APRIL were added to the culture medium (Nishio et al. 2005). However, 

the viability was still not as high as that seen when CLL cells were cultured with NLCs (Nishio et al. 

2005). This suggests that there are other undiscovered factors at work in the CLL/NLC co-culture 

setting. 

 

1.4.3 HMGB1 

In a recent study, it was shown that damage-associated molecular patterns (DAMP) molecule HMGB1 

(high-mobility group protein B1) was released from CLL cells and promoted the differentiation of NLCs 

(Li Jia 2014). HMGB1 is a DNA-binding protein and the HMGB1-DNA complex can trigger the immune 

response through the interaction with Receptor for Advanced Glycation End products (RAGE) and Toll-

like receptor 9 (TLR9) (Al-Malti, Gribben & Jia 2012; Li Jia 2014). 

In this study, HMGB1 was found in the nucleus as well as in the cytoplasm of CLL cells prior to its 

release. NLC differentiation in vitro was associated with HMGB1 release from CLL cells, whereas 

blockade of the HMGB1-RAGE/TLR9 signaling pathway prevented NLC differentiation (Li Jia 2014). 

Active release of HMGB1 was also observed in CLL lymph nodes where there was no necrotic cells 

detected (Li Jia 2014). Therefore, the authors concluded that the leukemic B cells were actively 

involved in modulating the CLL microenvironment by releasing HMGB1. 
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1.4.4 Nurse Like Cells and Hypoxia 

In a study to investigate the role of hypoxia in shaping the CLL lymph node microenvironment, a 

comparative analysis of the expression of ATP-metabolizing enzymes in NLCs uncovered a significant 

increase in expression of CD73 under hypoxia (Serra et al. 2016). CD73 is an ecto-5'-nucleotidase (5'-

NT), an enzyme which converts AMP to adenosine and is essential in generation of adenosine (Resta, 

Yamashita & Thompson 1998). Further analysis showed an increased adenosine accumulation in NLC 

cultures when exposed to extracellular AMP under hypoxia, which was not seen in their normoxic 

counterparts (Serra et al. 2016). Both mRNA and protein levels of adenosine A2A receptor were 

markedly increased in NLCs as well as in CLL cells under hypoxia condition. Increased adenosine 

production and signalling via the A2A receptor facilitated protection of CLL cells from drug-induced 

apoptosis and differentiation of monocytes from CLL PBMCs to M2 macrophages (Serra et al. 2016). 

In addition, a marked upregulation in CCL3 mRNA in NLCs was reported by the study, suggesting that 

differentiated macrophages upon hypoxia actively recruits myeloid cells. Also, optimal chemotaxis of 

normal monocytes toward conditioned media of NLCs cultured under hypoxia was observed. This 

chemotaxis was increased by A2A agonist and reduced by the antagonist (Serra et al. 2016). Finally, 

NLCs differentiated under hypoxia showed greater protection of CLL cells against cell death than those 

differentiated under normoxia (Serra et al. 2016). Therefore, the study showed that hypoxia can 

modulate the CLL microenvironment by activating adenosine signalling through the A2A receptor in 

both NLCs and CLL cells.  

 

1.4.5 Changes in molecular interactions by Lenalidomide 

Lenalidomide (Revlimid) is an immunomodulatory drug that has no direct cytotoxic effect on CLL cells 

(Chanan-Khan et al. 2011; Schulz et al. 2013). It was shown that levels of inflammatory cytokines were 

changed in patients treated with lenalidomide (Lee et al. 2011; Schulz et al. 2013). This drug was 

described to induce apoptosis in CLL cells indirectly via targeting components of the 

microenvironment (Schulz et al. 2013). A study was carried out to examine effect of lenalidomide on 

viability of CLL cells co-cultured with NLCs and reported that the mean survival rate of CLL was 

significantly reduced from 72% to 59.1% when lenalidomide was present (Schulz et al. 2013). However, 

the magnitude of response to this drug varied from patient to patient where some CLL samples even 

showed no reduction in viability of CLL cells when treated with lenalidomide (Schulz et al. 2013). 
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CCL2 (a chemokine that is involved in chemotactic activity for monocytes as well as differentiating to 

M2 type macrophages) is highly upregulated in monocytes after contact with CLL cells, was shown to 

be reduced after cultures were treated with lenalidomide (Schulz et al. 2013).  

IL-10 (an immunosuppressive cytokine) levels were shown to be increased in cultures treated with 

lenalidomide. It was shown to induce apoptosis in CLL cells via activation of STAT1 pathway (Schulz et 

al. 2013). The study also found that lenalidomide had no or minimal effect on the viability of CLL cells 

cultured alone, or that of monocytes and NLCs in culture (Schulz et al. 2013). Lenalidomide was also 

been shown to reduce migration capability of CLL cells in this study (Schulz et al. 2013). 

This suggests that some effects of lenalidomide extends to the monocytes via changes in  levels of 

CCL2 and to CLL cells via changes in levels of IL-10 and migration ability  (Schulz et al. 2013). 

 

1.5 Prognostic factors in relation to the Microenvironment 
A gold standard of prognostic marker is the mutational status of IGHV, which were first reported by 

by two independent groups (Hamblin et al. 1999; Damle et al. 1999). CLL cells with sequences in IGHV 

gene that are 2% or more non-homologous to that of the nearest germline are considered to have 

undergone somatic hypermutation (Ghia et al. 2006) (also known as M-CLL). Conversely, CLL cells 

having sequences of IGHV gene that are more than 98% homologous to that of the germline are 

considered to express un-mutated IGHV (also known as UM-CLL). Study conducted by Hamblin and 

colleagues showed that, regardless of clinical stage of the disease, the survival rate of patients with 

UM-CLL was significantly worse than those with M-CLL (Hamblin et al. 1999). In addition, work from 

Damle and colleagues showed that patients with UM-CLL had a higher percentage of CD38+ B-CLL cells 

(>30%) than patients with M-CLL and that those patients with UM-CLL and also having >30% CD38+ B-

cells did not respond well to chemotherapy drugs and their survival was shorter (Damle et al. 1999). 

Through in vitro experiments, it was shown that CLL cells from patients with UM-CLL are more likely 

to undergo rapid spontaneous apoptosis than CLL cells from patients with M-CLL (Coscia et al. 2011). 

This suggests that CLL cells with unmutated IGHV are more dependant on survival stimuli from the 

microenvironment than cells with mutated IGHV. 

ZAP70 expression has also been associated with poor prognosis of CLL (Crespo et al. 2003). It has been 

shown that ZAP70+ CLL B cells have stronger migratory ability and are characterized by a special gene 

signature associated with migration, homing or CXCR5/CXCL12 pathways (Dubois et al. 2020). 

Another prognostic marker for poor clinical outcome in CLL is the increased level of expression of CD38 

(Damle et al. 1999). It was shown that CLL cells with high expression of CD38, together with ZAP30, 
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had a greater migratory potential, which was associated with aggressive disease (Deaglio et al. 2007). 

It was suggested that the changes in expression of CD38 during the course of disease reflect the 

dynamic status of the stromal cell-CLL cell interactions in vivo (Dubois et al. 2020). 

Study by Herishanu et al. (2011) showed that levels of CCL3 and CCL4 were increased in CLL cells from 

bone marrow and lymph nodes (Herishanu et al. 2011). This increase is indicative of an in vivo 

interaction between CLL cells and NLCs as well as stromal cells (Dubois et al. 2020). 

Collectively, the prognostic markers mentioned above are associated with the in vivo interactions 

between CLL and the microenvironment, which highlight the importance of further research in 

understaning the the molecular mechanisms mediating the interactions between CLL cells and 

components of the microenvironment. 

 

1.6 Drug resistance: an area of unmet need  

Despite the advancement of our understanding of the biology of the disease and progress in 

development of new drugs, patients with CLL still develop relapsed disease even though they initially 

respond to treatment (Bakker et al. 2016). Drug resistance is thus still a serious clinical challenge in 

management of the patients with CLL.   

Advances in understanding the role of tumour microenvironment (TME) in leukaemia including CLL 

uncovered new therapeutic opportunities to target disease development and progression (Bakker et 

al. 2016; Woyach & Johnson 2015).  

The BTK inhibiter ibrutinib has been successfully developed to treat the patients with CLL as a result 

of better understanding of the interaction of CLL cells with the microenvironment. As described 

earlier, BCR signalling plays an important role in CLL cell survival and proliferaltion in response to 

antigen stimulation within the CLL microenvironment and BTK is a critical component of the BCR 

signalling complex  (Figure 1.2). Ibrutinib has been shown to reduce secretion of BCR-dependent 

chemokines (CCL3, CCL4) by the CLL cells, thus inhibiting chemoattraction of macrophages and T cells 

(Ponader et al. 2012). In the meantime, ibrutinib inhibited migration of CLL cells in response to tissue 

homing chemokines (CXCL12, CXCL13) secreted by T cells and macrophages (Niemann et al. 2016; 

Ponader et al. 2012). In patients on ibrutinib treatment, it has been shown that ibrutinib decreased 

overall T-cell numbers and disrupted the interaction between macrophages and CLL cells in the bone 

marrow (Niemann et al. 2016). Ibrutinib has also been shown to induce egress of CLL cells from the 

lymph nodes into the blood (Boissard et al. 2015b). Previous work from our Department has also 

shown that ibrutinib prevented CLL cells from entering into and retension within the lymph nodes by 
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inhibiting chemokine-induced integrin activation (Till, Pettitt & Slupsky 2015). Despite its impressive 

clinical activity, patients who fail to respond or relapse even after long periods of remission have been 

reported (Molica et al. 2020; Woyach & Johnson 2015). 

Meanwhile, due to the fact that CLL cells over-express anti-apoptotic protein BCL-2 for reasons  

described previously in section 1.2.4 and that overexpression of BCL-2 is associated with 

chemotherapy resistance and shortened overall survival in CLL patients (Kang & Reynolds 2009), 

intensive efforts have been put into developing a therapeutic agent to target BCL-2 in CLL.  Successful 

development of venetoclax, a small molecule inhibitor of BCL-2 (Souers et al. 2013), and its 

introduction into the CLL clinics have significantly improved the treatment of patients with CLL, 

particularly in those with refractory/relapsed disease or with defective p53 (Roberts et al. 2016). 

However, resistance to venetoclax has recently been reported (Blombery et al. 2019; Herling et al. 

2018). 

There are two main causes of drug resistance: intrinsic (i.e. mutations and defective activation of 

signalling pathways within cancer cells) and extrinsic (i.e. enhanced pro-survival signalling activated 

by certain components from the microenvironment) (Bakker et al. 2016). An example of intrinsic 

causes of resistance is seen in chronic myeloid leukaemia (CML) where mutations within the catalytic 

domain of ABL kinase render tyrosine kinase inhibitor imatinib ineffective as these mutations prevent 

binding of the imatinib to target effectively, resulting in drug resistance (Quintas-Cardama, Kantarjian 

& Cortes 2009).  

Drug resistance caused by extrinsic factors, also known as ‘environment-mediated drug resistance’, 

occur as a result of protective effect provided by the microenvironment (Bakker et al. 2016). An 

example of this was seen in CLL cells localised in lymph node microenvironment where CLL cells were 

exposed to varieties of pro-survival stimuli such as CD40 and/or BCR stimulation and expressed high 

levels of anti-apoptotic proteins such as MCL-1 and BCL-XL, resulting in resistance to venetoclax 

(Bojarczuk et al. 2016; Elías et al. 2018; Thijssen et al. 2015; Vogler et al. 2009; Woyach & Johnson 

2015) 

Drug resistance can also be acquired from continuous presence of the chemotherapeutic drug, which 

leads to genetic and epigenetic changes in the cells that cause resistance (Bakker et al. 2016). An 

example of this is where in CLL patients receiving ibrutinib treatment acquired mutations occurs on 

BTK at C481 which is the binding site of ibrutinib.  This leads to reduced binding affinity of ibrutinib for 

BTK, rendering ibrutinib ineffective (Woyach & Johnson 2015).  
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Regardless of what causes drug resistance, the outcome is the relapse of the disease following 

treatment (Woyach & Johnson 2015). Therefore, CLL is still an incurable disease. To improve the 

treatment of CLL, further research is required to better understand how drug resistance develop in 

the first place with the objective of developing a rational strategy for a therapeutic intervention to 

overcome drug resistance.  
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1.7 Hypothesis and Aim 

CLL is still an incurable disease and the microenvironment play an important role in disease 

progression and development of drug resistance. As described in the previous section 1.2.5, the CLL 

microenvironment comprises of CLL cells and a mixture of accessory cells including BMSCs, T cells, 

endothelial cells  and NLCs. Within the microenvironment, CLL cells interact with the various accessory 

cells. These interactions are believed to be bidirectional and CLL cells are actively involved in turning 

the surrounding into a supportive milieu, in favour of their survival and proliferation. NLCs is a major 

component of CLL microenvironment. However, molecular mechanisms mediating the interaction 

between NLCs and CLL cells are not yet fully characterised. I thus hypothesise that interactions 

between NLCs and CLL cells will activate certain pro-survival genes and pathways that are responsible 

for drug resistance. 

To test the hypothesis, I set out to address the following research questions: 

1. What are the optimum conditions to develop NLCs in vitro? 

2. What are the main biological effects of NLCs on CLL cells in co-culture? 

3. Whether the observed effects of NLCs on CLL cells can be reproduced using a cell line model? 

4. By applying the next-generation-sequencing technology (e.g. RNA-Seq), can I identify any 

previously unknown, differentially expressed genes in CLL cells following co-culture with NLCs 

that are associated with CLL-cell survival and drug resistance? 

The overall aim is to understand the molecular mechanisms mediating the interactions between NLCs 

and CLL cells at the transcriptional level with a particular emphasis on detecting changes in gene 

expression or pathways of CLL cells that are associated with drug resistance. 
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2 Methodology 

2.1 Methods 

2.1.1 Collection of primary CLL cells 

2.1.1.1 CLL sample selection 

Blood samples from patients diagnosed with CLL were obtained with informed consent and with the 

approval of the Liverpool Research Ethics Committee (REC reference no. 06/Q1505/82). The diagnosis 

of CLL was based on the revised Rai and Binet staging systems, standard morphological and 

immunophenotypic criteria (Cheson et al. 1988; Kotiah 2019; Mir et al. 2019; Rai et al. 1975). All the 

CLL samples were collected and stored by the Liverpool Blood Disease Biobank (LBDB). As there was a 

lack of readily available bone marrow or lymph node material, only peripheral blood mononuclear 

cells (PBMCs) from patients with CLL were used in the study.  

 

2.1.1.2 Isolation of fresh CLL PBMCs 

PBMCs were isolated by centrifugation of blood from CLL patients over Lymphoprep® solution (Axis-

Shield PoC AS, Oslo, Norway), as indicated in Figure 2.1, as per LBDB protocol (see Appendix 7.14.1).  

 

 

Figure 2.1 Peripheral blood mononuclear cells (PBMCs) preparation 

Lymphoprep is added to the falcon tube in a volume ratio of 2:1 (blood to lymphoprep). Blood is gently poured on top (left). 

The tube is centrifuged at 800G for 30mins. The multiple layers are formed (right) at the end of centrifugation. The PBMC 

layer (highlighted in red) is collected using a sterile Pasteur pipette. This layer is then washed, resuspended in fresh complete 

medium and cell numbers counted on Cellometer. Some of the fresh CLL PBMCs are used for NLCs development experiments. 

Centrifuge at 800 G 

for 30min at R.T. 

Blood 

Lymphoprep® 

solution 

Lymphoprep® 
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Polymorphonuclear cells 

(Eosinophils and Neutrophils 
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The rest of CLL samples was resuspended in ice-cold fetal bovine serum containing 10% DMSO and stored in the -150oC 

freezer in LBDB Biobank. 

 

After separation by Lymphoprep, CLL PBMCs were washed in fresh medium and resuspended in 100% 

Fetal bovine serum (FBS) with cell numbers countered using Cellometer. A portion of this fresh CLL 

PBMCs was used for the purpose of development of NLCs. These CLL samples were spun and 

resuspended in standard RPMI conditions, as described below. The remaining CLL PBMCs were 

resuspended in ice-cold FBS containing 10 % DMSO and stored in -150oC freezer in the LBDB Biobank. 

 

2.1.1.3 Thawing cryopreserved CLL PBMCs samples 

 Selected vials of cryopreserved CLL samples were thawed as per protocol from the LBDB Biobank (see 

Appendix 7.14.1) by adding complete RPMI 1640 medium supplemented with 100 U/mL penicillin, and 

100 μg/mL streptomycin, 2 mmol/L L-Glutamine and 10 % heat inactivated FBS (Life 

Technologies/Thermo Fisher Scientific, Paisley, UK). After recovery for 1 h in the incubator containing 

5% CO2 at 37oC, cell numbers and viability (Trypan blue exclusion) were then measured on Cellometer 

and the cell concentration was then adjusted according to the desired experiment. Clinical and 

laboratory characteristics of the CLL samples that I used in my study are summarized in Appendix Table 

7.1. 

 

2.1.2 Cell culture of primary CLL cells 

2.1.2.1 CLL cells cultured under standard conditions 

Primary CLL cells were maintained in RPMI-1640 medium supplemented with 10 % heat-inactivated 

fetal bovine serum (FBS), 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin (Life 

Technologies/Thermo Fisher Scientific, Paisley, UK), in a 37°C, 5% CO2 humidified incubator. 

For development of NLCs, initial viability and cell count were measured by trypan blue exclusion using 

the automated cell counter (Nexcelom USA CellometerTM Auto T4 cell counter). Cells were cultured at 

a high density of 10 x 106/ml in RPMI medium in a 37oC incubator containing 5% CO2 for up to 14 days, 

with partial replacement of fresh medium on alternate days. In co-culture experiments (with NLCs or 

THP-1 derived macrophages), CLL cells were plated at a cell concentration of 3 x 106/ml in complete 

RPMI medium. 
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2.1.2.2 Development of nurse-like cells (NLCs) from primary CLL PBMCs 

To mimic the in-vivo interaction of NLCs with CLL cells in the lymph node microenvironment, NLCs 

were first developed from fresh CLL PBMCs for up to 14 days, as described earlier.  The CLL cells from 

the original fresh PBMC cultures were washed away by gently pipetting (to avoid disrupting the 

monolayer of NLCs). The monolayer was observed under microscope to ensure minimum number of 

CLL cells remaining on the surface of the plate. NLCs in such conditions were ready for co-culture 

experiments Autologous CLL cells were thawed and resuspended in fresh RPMI medium at a 

concentration of 3 x 106/ml which were then plated on the monolayer of NLCs and maintained at 37oC 

for an appropriate period of time. 

 

2.1.2.3 CLL cells co-cultured with NLCs 

Autologous CLL cells were thawed and resuspended in fresh RPMI medium at a concentration of 3 x 

106/ml which were then plated on top of the monolayer of NLCs and maintained at 37oC for an 

appropriate period of time. Care was taken in handling the plates during observations and partial 

replacement of medium to avoid dislodging monolayer of NLCs.  

At the end of co-culture, CLL cells were harvested by gentle pipetting. The plate was checked under 

the phase contrast microscope to ensure most of the CLL cells have been collected. The collected CLL 

cells were then counted and used for analysis such as apoptosis assay by flow cytometry. 

 

2.1.3 Cell culture of THP-1 cell line 

2.1.3.1 THP-1 cells cultured under standard conditions 

Human THP-1 cell line was obtained from European Collection of Authenticated Cell Cultures (ECACC 

88081201). THP-1 cells were maintained in complete RPMI as mentioned above and incubated in a 

37oC, 5% CO2 humidified Incubator. Similar to NLCs development as mentioned above, PMA-

differentiated THP-1 cell line was prepared in advance by allocating 5 x 105 cells/ml of THP-1 cells in 

complete RPMI medium, followed by polarizing to M1 or M2 macrophages as required (see details 

below). Once the monolayers were prepared and confirmed by microscopy, the supernatant was 

removed and the monolayer of THP-1-derived macrophages was washed gently with PBS before 

introducing thawed CLL cells at a concentration of 3 x 106/ml.  
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2.1.3.2 Induction of differentiation of THP-1 cells into macrophages 

2.1.3.2.1 THP-1 M0 

Adjusted to a cell concentration of 5×105 cells/ml in complete RPMI 1640 medium (as described 

earlier), THP-1 cells were treated with 5ng/ml phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, 

Gillingham, UK) for approximately 2 days to induce differentiation into macrophages, as described 

(Daigneault et al. 2010; Park et al. 2007). 

The cells were checked under the light microscope and observed for formation of adherent 

macrophages, which was usually achieved after 24-48 h of incubation. These cells were generally 

considered as M0 macrophages (Daigneault et al. 2010; Park et al. 2007). 

 

2.1.3.2.2 THP-1 derived M1 macrophages 

Following differentiation of THP-1 cells to M0 macrophages, the supernatant was removed and 

replaced with complete RPMI medium with the addition of interferon-γ (IFNγ) (20ng/ml) (PeproTech 

EC Ltd, London, UK) and lipopolysaccharides (LPS) (Sigma-Aldrich) (10pg/ml) and incubated for 24 h, 

as described (Chanput, Mes & Wichers 2014; Jablonski et al. 2015; McWhorter et al. 2013; Park et al. 

2007). The polarisation into M1 macrophages was confirmed upon visualising a ‘large oval’ 

appearance under phase contrast microscope, which  was also confirmed later by 

immunophenotyping, as described (Chanput et al. 2013; Chanput, Mes & Wichers 2014; Genin et al. 

2015; Jablonski et al. 2015; McWhorter et al. 2013). 

 

2.1.3.2.3 THP-1 derived M2 macrophages 

Following differentiation of THP-1 cells to M0 macrophages, the supernatant was removed and 

replaced with complete RPMI medium with the addition of interleukin-4 (IL-4) (30 ng/ml) (R&D 

Systems, Oxford, UK) for 72 h with additional 30ng/ml IL-4 added at 48 h (without replacement of 

supernatant). This method was considered optimal after more elongated cells were observed with this 

method as compared to other variations (Chanput et al. 2013; Chanput, Mes & Wichers 2014; Genin 

et al. 2015; Jablonski et al. 2015; McWhorter et al. 2013). The total duration of incubation with IL-4 is 

72 h. 

 

2.1.3.3 CLL cells co-cultured differentiated THP-1 cells 

After THP-1 cells were differentiated into adherent macrophages with PMA, usually taking 24-48 h 

cryopreserved CLL cells from the Biobank were thawed and resuspended in complete RPMI medium 
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as per LBDB protocol (see Appendix 7.14.1 for detail). Cell count and viability were measured following 

staining cells with 0.1% Trypan blue dye on automated Cellometer (Nexcelom USA CellometerTM Auto 

T4 cell counter). CLL cells were then adjusted to 3 x 106/ml with complete RPMI medium and cultured 

alone or co-cultured with differentiated THP-1 cells. Before adding CLL cells to the monolayer of 

differentiated THP-1 cells, the culture medium of the THP-1 cells was fully removed and washed with 

fresh RPMI medium to remove any remaining PMA. CLL cells in suspension were then gently added 

onto the monolayer. 

Preparation of M1 (24hr incubation with IFNγ and LPS) or M2 macrophages (72 h incubation with IL-

4) from differentiated THP-1 cells also involved complete removal of culture medium of the THP-1 

cells in order to remove residual PMA before addition of the respective stimuli. Again, before adding 

CLL cells to the monolayer of M1 or M2 macrophages, the culture medium of these cells was fully 

removed and washed with fresh RPMI medium to remove any remaining respective stimuli. Table 2.1 

below provided a time plan when M0, M1 and M2 macrophages were prepared so that the co-culture 

experiments can start at the same time. 

Afterwards, the CLL cells on co-cultures or cultured alone were harvested for viability assays using 

Annexin/PI on FACS. 

Table 2.1 Timetable to prepare M0, M1 and M2 macrophage cultures 

Day 0 Day 1 Day 2 Day 3 Day 4 Day 5 Population Desired 

THP-1+ PMA  IL-4  IL-4 

Experiment 

M2 

  THP-1+ PMA  IFNγ + LPS M1 

   THP-1+PMA  M0 

 

2.1.3.4 Harvesting CLL cells from co-cultures with THP-1 cells derived macrophages 

Similar to harvesting CLL cells from NLCs co-cultures, CLL cells co-cultured with THP-1 cells derived 

macrophages were collected by gentle pipetting. To ensure that most of the CLL cells were harvested, 

the culture plates were checked under the light microscope. After which, the harvested cells were 

counted and cell viability was examined on FACS with Annexin V/PI staining. Since the THP-1 cells 

derived macrophages were larger than the CLL cells, a gating strategy was followed to ensure that only 

the CLL cell population was analysed.  

As seen in Table 2.1, M2 macrophages were prepared first since they took the longest time to differentiate (5 days). M1 

macrophages were then prepared afterwards (3 days) and M0 took the least time to be prepared (1-2 days). 



35 
 

2.1.4 Light Microscopy 

2.1.4.1 Basic principle 

A typical microscope that uses transmitted light to observe targets at high magnification. Generally, a 

slide is placed on a flat stage, held by stage clips where a light source is directed and intensity is 

adjusted using diaphragm and brightness knobs. The image is magnified and visualised using the 

objective lens as well as eye piece. A camera may be attached as well. The image is focussed using 

coarse or fine adjustment. 

The light microscope is often used to observe morphology of cells attached to slides which are stained 

with various dyes. 

 

2.1.4.2 Staining the peripheral blood mononuclear cells with Romanowsky stain 

May Grünwald Giemsa stain, a high quality Romanowsky stain (Hoffbrand, Moss & Pettit 2006; 

Lichtman et al. 2011b), was used with a phosphate buffer of pH6.8 for staining the cells cultured on 

slides after fixing them with absolute methanol.  

Romanowsky stains contain both acidic and basic dyes in an optimal proportion dissolved in acetone 

free absolute methanol. The acidic and basic dyes stain the different cellular components with 

different intensity, thus producing shades of colours to give a good differentiation. The slides can then 

be inspected under the light microscope for the study of morphology of the NLCs and CLL cells.  
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2.1.5 Fluorescence microscopy 

2.1.5.1 Basic principle 

Fluorescence microscopy is a tool mainly used to visually examine the cell physiology, in particular the 

dynamic details of cellular events (Sanderson et al. 2014). Like all techniques to visualise cells, 

fluorescence microscopy is subject to practical physical limitations, the most important of which is 

resolution (Sanderson et al. 2014).  Understanding the methods of microscope alignment, properties 

of light, wavelength selection, image recording techniques and image analysis all aid in achieving the 

best resolution of an image. 

The principle of fluorescence microscope is essentially the same as described in flow cytometry, in 

that it involves the absorption of light energy (photon) by an indicator followed by the emission of 

some of this light energy a few nanoseconds later. Some energy is lost in this process, the emitted 

photon has less energy than the absorbed photon (Sanderson et al. 2014). Generally, the excitation 

and emission wavelengths should be distinct. However, due to the broad spectrum of emission and 

excitation wavelengths, sometimes it can be difficult to monitor the different fluorophores because 

of spill-over of wavelengths from one fluorophore to the other (Sanderson et al. 2014). The preferred 

approach is to take separate sequential images with filters designed for each fluorophore, but some 

spill-over is still possible (Sanderson et al. 2014). 

A parallel beam of light simultaneously illuminates the whole specimen to excite the fluorophore(s) 

on the specimen (Sanderson et al. 2014). Care should be taken to minimize observation times and 

photo bleaching, where the area is illuminated but not captured, thus degrading the fluorophore due 

to prolonged exposure. This is why fluorescence microscopy is done in the dark. Auto-fluorescence 

occurs within cells as well as in whole tissues. It can interfere with imaging because it can mislead the 

observer into believing the fluorescent structure is related to the fluorophore conjugated anti-bodies 

used (Sanderson et al. 2014). 
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Figure 2.2 Schematic of Preparation of Cultures on coverslips for immunofluorescence microscopy 

 

 

2.1.5.2 Applications 

Fluorescence microscopes are used to visualise cells following staining with specific fluorochrome-

conjugated antibodies. This technique can be used on tissue sections, cultured cell lines or individual 

cells. On viewing the slides, the distribution of cells, proteins, surface and intracellular markers can be 

analysed. The localization of the antigens of the cells can also be appreciated. Mixtures of cells can be 

distinguished and their physical characteristics can be appreciated in relation to each other. Multiple 

markers can be identified and overlapped to form an image that shows a complex representation of 

 

 

Cover slips are placed on the bottom of the culture plate wells (A), the cells are cultured as normally done (B). At the end of culture, 

the cover slips are removed carefully (C). The cover slips are placed on parafilm (D), fixed with absolute ethanol, blocked, incubated 

with antibodies by flipping the cover slip onto the droplet of the solutions (green arrow). Finally, the coverslip is placed on a droplet 

of mounting medium on a glass slide (E), to be stored in the dark at 4oC.  
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all the stained regions. Additionally, when compared with an isotype control, the intensity of the 

fluorescence can be measured (Waters 2009) using ImageJ software and this can give a semi-

quantitative assessment in the level of expression of the markers ('Quantification of Fluorescence 

Intensity of Labeled Human Mesenchymal Stem Cells and Cell Counting of Unlabeled Cells in Phase-

Contrast Imaging: An Open-Source-Based Algorithm'  2010). A protocol was developed for measuring 

fluorescence using ImageJ software and was used (Burgess et al. 2010; McCloy et al. 2014). 

 

2.1.5.3 Procedure 

The steps in immunofluorescence microscopy includes preparing the cell culture on circular cover slips 

(13mm diameter, Appleton Woods, Cat. No. MS002) that fit into 24-well culture plates represented in 

Figure 2.2, so that the cells remain adherent on it. The supernatant is gently pipetted and the cover 

slip is collected. The cells are then immediately fixed and permeabilised onto the surface. 0.1% sodium 

borohydride (NaBH4) is added to remove auto-fluorescence, the cells are blocked with donkey serum 

and Fc blocker to prevent non-specific binding. The cells are then incubated with the selected 

antibodies and counterstained with nuclear staining. The cover slip is gently mounted using a 

mounting medium on a pre-cleaned glass slide and left to dry in cold temperature (4oC), stored in the 

dark, as it is prepared for microscopy. 

When ready for microscopy, in the dark room the machine is switched on and warmed up. The lens is 

adjusted and with the viewing eye-piece, the cells are located and focused using the DAPI filter at low 

exposure. When satisfied with the field of view, the selection of filters is made and sequential photos 

are taken by the machine and overlapped using the machine software. The files are saved in a TIF 

format to be further analyzed using ImageJ software. 

Using ImageJ software, the control images are used to determine the appropriate viewing parameters 

to use on the test images. The intensity of the images is thus normalized with their control images. 

Further analysis to measure cell fluorescence using ImageJ is calculated using an established method 

(Fitzpatrick 2014). 
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2.1.6 Flow cytometry 

2.1.6.1 Basic principle 

Flow cytometry is a technique that has long been considered as the useful tool in clinical diagnosis as 

well as  in research in the area of Haematology (Rane et al. 2017). Flow cytometry measures numerous 

characteristics of cells in liquid suspensions simultaneously in a quick and detailed form as they pass 

through a beam of light. Such examples of usage include immunophenotyping cells based on their 

surface markers to identify particular subsets of blood cells. 

Cells or particles between 0.2-150µm are suitable for analysis by most flow cytometers. One of the 

limitations of flow cytometry is the need for cells of interest to be in suspension and therefore any 

solid tissue cells would require disaggregating into suspension form in order to be analysed (Depince-

Berger et al. 2016). This would obviously affect the cell shape and there will also be loss of cells during 

the procedure, thus potentially introducing bias to the final results (Depince-Berger et al. 2016).  

Flow cytometers measures and analyses multiple physical characteristics of a single cell/particles They 

measure the relative size, relative granularity/internal complexity and relative fluorescence intensity 

of the cells or particles of interest (Depince-Berger et al. 2016; Rane et al. 2017).  

There are 3 main components of a flow cytometry: fluidics, optics and electronics. 

Fluidics are the transportation of the cells in a stream to the laser beam for interrogation. Optics 

consists of lasers to illuminate cells in the sample stream and optical filters to direct the resulting light 

signals to detectors. Electronics converts the detected light signals into electronic signals that can be 

processed by a computer. Additionally, if the machine can sort, it is capable of initiating sorting 

decisions based on the parameters given (Depince-Berger et al. 2016). 

In fluidics, there is hydrodynamic focusing which causes the individual cells to flow in a single file 

through a narrow tunnel, as seen in Figure 2.3. A higher sample pressure is used for more qualitative 

measurements, where there is increased flow rate and so more cells can pass through in a given time 

(Depince-Berger et al. 2016). 

Light scatter depends generally on the size (forward scatter) and internal complexity (side scatter). 
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Figure 2.3 Fluidics schematic of flow cytometry. 

Cell samples that are present in suspension are introduced in the collection column and hydrodynamically focused to a single 

file. The cells are then exposed to the laser light source on passing the channel and the resulting scatter of the light and 

fluorescence are detected by light detectors and converted in to electronic signals. Figure modified from abcam.com, using 

BioRender online tools. 

 

Fluorescent compounds absorb light energy and the electrons are raised to a higher energy level 

(excitation level) where when the electron returns to original state, photons of light are emitted 

(emission level) (Figure 2.4). An ideal experiment should ensure that the excitation and emission 

wavelengths of the chosen fluorochromes do not overlap one another (Figure 2.4). Alternatively,  a 

compensation tool is used  to remove the overlapped section, however, care should be given on the 

extent of compensation as this would remove the data points that fall in those overlapped section. 
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Figure 2.4 Excitation and Emission waves of the fluorochromes used in Flow Cytometry. 

The excitation of the fluorochromes are shown in dotted lines and the emission waves are the sold color lines. Each 

fluorochrome wavelength has a peak range which can be detected through certain filters, seen as rectangular bands. Figure 

image and legend taken from BD Biosciences Spectrum Viewer  

(https://www.bdbiosciences.com/en-us/applications/research-applications/multicolor-flow-cytometry/product-selection-

tools/spectrum-viewer) 

 

Optics involve laser and lens to shape and focus the laser beam, these are known as excitation optics. 

Collection optics are those that collect the light emitted and optical mirrors and filters to route specific 

wavelengths of collected light to the designated optical detectors as seen in Figure 2.5 (Depince-

Berger et al. 2016). The protocol detailing the use of flow cytometer was provided in Appendix 7.14.5. 

  

https://www.bdbiosciences.com/en-us/applications/research-applications/multicolor-flow-cytometry/product-selection-tools/spectrum-viewer
https://www.bdbiosciences.com/en-us/applications/research-applications/multicolor-flow-cytometry/product-selection-tools/spectrum-viewer
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Figure 2.5 Optics and Electronics schematic diagram of flow cytometry. 

As the cells pass through the column, they are hit by a single beam of laser light with a particular wavelength s. The light 

emitted from the cells is passed through multiple mirrors and filters to the respective detector. The amount of the 

fluorescence acquired by the detector is then converted into digital numbers which can be displayed in a graph. Figure 

adapted from bitesizebio.com, using BioRender online tools. 

 

2.1.6.2 Applications 

2.1.6.2.1 Analysis of Purity of CLL cells 

In most cases, CLL cells were analysed for purity using flow cytometry. Fresh and thawed CLL cells 

(1x106) were incubated with fluorochrome-conjugated antibodies against CD19 and CD5 (PE and FITC, 

respectively) or with their respective isotype controls in order to identify the CLL B Cells. The gating 

strategies were applied to exclude debris and select the homogenous populations for subsequent 

analysis. The population that co-expressed both CD19 and CD5 was considered to be B-CLL cells as 

seen in Figure 2.6. The CLL samples containing greater than 90% B-CLL cells were used in subsequent 

experiments.  

In practice, equal number of cells are collected and spun and washed with PBS and resuspended with 

staining buffer. The cells are then mixed with fluorochrome-conjugated anti-CD19 and anti-CD5 

antibodies or respective isotype controls and incubated in the dark for 30-60mins. The cells were then 

spun to remove the excess antibodies and resuspended in appropriate volume of staining buffer and 

analysed using a flow cytometer (Attune, Life Technologies). 



43 
 

 

Figure 2.6 Gating strategies for measuring purity of CLL cells. 

  

At the selected voltages, the CLL population (seen as the dense population) is gated excluding debris. This gated 

population is then analysed using BL1 and BL2 channels for their respective antibodies. A control is used (where isotype 

controls were used for the respective antibodies) as comparison. The B-CLL purity was assessed by CD19, CD5 positivity, 

using CD19-PE and CD5-FITC antibodies and control- PE, FITC antibodies on the Attune. Quadrant plots showing CD5+ 

CD19+ are displayed alongside the respective isotype control. Images produced from Attune software provided by the 

manufacturer. 
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2.1.6.2.2 Detection of cell death 

Annexins are a family of calcium-dependent phospholipid-binding proteins that preferentially bind 

phosphatidylserine (PS) (Demchenko 2013). Under normal physiologic conditions, PS is predominantly 

located in the inner leaflet of the plasma membrane. Upon initiation of apoptosis, PS loses its 

asymmetric distribution across the phospholipid bilayer and is translocated to the outer leaflet of the 

membrane, marking cells as targets of phagocytosis. Once on the outer surface of the membrane, PS 

can be detected by fluorescently labelled Annexin V in a calcium-dependent manner.  

In early-stage apoptosis, the plasma membrane of cells retains its integrity and excludes viability dyes 

such as propidium iodide (PI). These cells will stain positive for Annexin V but not a viability dye, thus 

distinguishing cells in early apoptosis. However, in late-stage apoptosis, the cell membrane loses 

integrity thereby allowing access of PS to the interior of the cell (Demchenko 2013; Rieger et al. 2011). 

The viability dye (PI) can be used to distinguish these late-stage apoptotic and necrotic cells (both 

Annexin V and viability dye-positive) from the early-stage apoptotic cells (Annexin V positive, viability 

dye negative) (Demchenko 2013; Rieger et al. 2011). 

In practice, equal number of cells are collected, spun and resuspended in Annexin binding buffer. They 

are then incubated with Annexin V for approximately 10 minutes in the dark. PI is the added to the 

cells before flow cytometry analysis. 

Analysis was carried out using the Attune Flow Cytometer (Life Technologies). Live cells appear as 

Annexin V-PI -/-, dying as Annexin V-PI +/- and dead cells as Annexin V-PI +/+, respectively seen in 

Figure 2.7. 

 

Figure 2.7 Viability assay of CLL cell population using Annexin V and PI 

 

As an example, CLL sample (3631) at Day 0, where 10,000 events were analysed within the gated area in blue (87.75% of all 

events) and from there the included events were analysed for level of fluorescence with Annexin V (BL1 channel) and PI 

(BL3 channel) in a quadrant plot. Those that were double negative for Annexin and PI (-/-) were considered as the viable 

population (74.1%). Those that were single positive for Annexin (+/-) were the dying population and those that were double 

positive for Annexin and PI (+/+) were considered as the dead population (combined to be 24.28%). 
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2.1.7 Enzyme-linked immunosorbent assay 

2.1.7.1 Basic principle 

Enzyme-linked immunosorbent assay (ELISA) is a method of detecting and quantifying specific 

antigens in a solution with the use of enzyme-bound antibodies that emit a detectable light. 

The method used was a sandwich ELISA Figure 2.8, whereupon a capture antibody is fixed on a solid 

surface. The antigen that we want to measure are added and incubated to allow binding at the 

designated sites. A detection antibody is then added which is bound to Biotin. Following this, a 

complex is formed with an enzyme-conjugated reagent. The enzyme in this complex can breakdown 

a specific substrate which produces a detectable colour. A stopping media is added to stop the 

function of the enzyme reaction and the colour is then detected by a spectrophotometer. The intensity 

of the colour detected is proportional to the amount of the antigen present and bound to the antibody 

coated on the surface of the plate. The antigen is therefore quantified using ELISA method. 

 

Figure 2.8 Diagram of Sandwich ELISA. 

Schematic of Sandwich ELISA method. 1. A multiwall ELISA assay plate is coated with a known quantity of capture antibody. 

2. Non-specific binding sites are blocked using blocking buffer and the antigen containing sample is added to the plate. 3. 

After washing to remove unbound antigen, a specific detection antibody (Biotin bound) is added which binds to the antigen. 

4. Enzyme-conjugated detection reagent complex (Avidin-HRP bound to Biotin) is added and binds to the detection antibody. 

5. A substrate is added which is converted by enzymes (Avidin-HRP) to produce a color and the reaction is stopped by an 

acidic solution. The resulting color is measured by spectrophotometer at 450nm which then determines the quantity of the 

antigen. Image was created using BioRender online tools. 
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2.1.7.2 Applications: Measurement of CCL3 and CCL4 

The ELISA 96-well plates (Nunc-Immuno™ MicroWell™, Sigma-Aldrich) are coated with antibodies that 

bind specifically to human target antigens. We used ELISA to detect CCL3 and CCL4 (Thermo Fisher) 

proteins in the supernatant of cell cultures.  

Human CCL3 (MIP-1 alpha) and Human CCL 4 (MIP-1 beta) detection kits were obtained from 

Affymetrix eBioscience which is now part of Thermo Fisher Scientific (Catalog Number 88703588 and 

88703488 respectively). 

Primary PBMC samples from CLL patients were placed in long-term cultures to generate NLCs as 

detailed earlier as well as co-cultured with differentiated THP-1 cells, described previously. 

Supernatants were obtained at 4, 5, 6, 8, 10 and 13 days of primary culturing and day 1, 2 and 3 after 

co-culture with the THP-1 cells. The supernatant samples were then assayed for CCL3 and CCL4 protein 

concentrations by ELISA (see Appendix 7.14.8 for detailed operation and sample selection for testing 

by ELISA). 

 

2.1.8 Polymerase chain reaction (PCR) 

2.1.8.1 Basic principle 

PCR is an in-vitro procedure to amplify selected DNA fragments to reach a very high concentration. 

This allows researchers to exponentially copy and amplify regions of DNA of their choosing so that 

they can investigate them further by cloning, sequencing, quantification and size measurement, etc. 

The double strand DNA template is separated in denaturation and nucleotide primers are annealed 

complementarily to each of the template strands. With the aid of a polymerase enzyme, the four free 

deoxynucleotide triphosphate nucleotides (A, C, G and T) bind to their complementary counterparts 

on the template, allowing an extension to produce a complimentary copy strand of the template. This 

cycle is repeated numerous times and the total strands increases in an exponential pattern each cycle. 

After a set number of cycles, the amplified product can then be measured. 

In conventional PCR, the amplified product is detected by end-point analysis, by running the DNA on 

an agarose gel after the reaction is completed. In contrast, real-time PCR permits detection of 

amplified products as the reaction progresses. This is made possible by including a fluorescent 

molecule that reveals the increase in DNA products with proportional increase in fluorescence.  
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2.1.8.2 Applications 

2.1.8.2.1 Major steps 

2.1.8.2.1.1 mRNA extraction and cDNA generation 

The RNA that was extracted (See 5.3.2) is converted to complementary DNA (cDNA) through reverse 

transcription. cDNA is much more stable and doesn’t degrade very quickly even in room temperature 

compared to RNA. Usually, oligo (dT) primers were used to complementally binds to poly (dA) tail at 

the 3’ end of the single strand RNA. The SuperScript III reverse transcriptase, which has a high thermal 

stability, is used to synthesize cDNA replacing U with T nucleotides. The transcriptase functions 

optimally at temperature range of 42-55oC, giving a high specificity and great yield of full-length 

cDNAs. The cDNA then remains in its double stranded helix state. To perform reverse transcription, 

the condition requires RNAse free water, oligo (dT) primers, free nucleotides (dNTPs) and RNAse 

inhibitor and the Reverse Transcriptase (Superscript III). Given a known concentration of RNA 

measured at the start, an expected concentration of cDNA can thus be predicted to be later diluted 

for PCR experiments. 

 

2.1.8.2.1.2 PCR procedure 

As seen in Figure 2.9, the double stranded cDNA is denatured to be made single stranded again by 

raising the temperature to 95oC, where the hydrogen bonds that link the double helix are broken. At 

lower temperatures (55-65oC), this will trigger primer annealing with the DNA template at their 

complementary sequences. 
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Figure 2.9 Diagram of PCR components and the steps of PCR. 

PCR components (top) consisting of Thermal cycler, cDNA sample, primers, nucleotides, Taq Polymerase, mix buffer and PCR 

tubes. A single cycle of PCR (bottom) consists of Denaturation, Annealing and Extension. This process is repeated depending 

on the number of cycles programmed. Image adapted from bosterbio.com using BioRender online tools. 

 

A pair of oligonucleotide primers (forward and reverse) initiates the process of annealing and 

extension. These primers are aligned alongside their respective starting points of the DNA fragments 

which will be amplified. Synthetic deoxynucleotides (dNTPs) are used as building blocks to extend the 

PCR products along the cDNA template from the primer using the DNA polymerase till they reach their 

respective ends (Figure 2.9). Taq-polymerase from Thermophilus aquaticus is used as this species of 

bacteria is extremophilic microorganism accustomed to living in such extremely high temperature 

conditions. This allows the enzyme to retain its function when denaturing temperatures are applied. 

The temperature is then cooled to allow the double strand to form and one cycle is ended. 

After a period of time, the PCR solution is heated again at denaturing temperatures to initiate another 

cycle for several cycles to amplify the product exponentially (Figure 2.10). Usually 20-30 standard PCR 

cycles are enough to produce 106 to 109 of DNA fragments. 
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Figure 2.10 Diagram of Amplification of original template strand of cDNA to produce multiple copies per cycle 

 

 

2.1.8.2.1.3 Reverse transcription quantitative PCR (RT-qPCR) 

Since I am using reverse transcription PCR products from RNA and quantifying them in real time, it 

would be Reverse Transcription Quantitative PCR (RT-qPCR) following the MIQE guidelines on 

nomenclature (Bustin et al. 2009). 

Following the MIQE guidelines (Bustin et al. 2009), Quantitative PCR methods allow estimation of an 

amount of sequence of a sample. This is an established tool to measure accumulation of DNA products 

after every round of amplification during PCR, which can then determine the level of gene expression 

(Bustin et al. 2009; Haimes & Kelley ; Livak & Schmittgen 2001). 

For every pair of strands to copied, another pair is made per cycle. There is an exponential increase in number of copies as the 

number of cycles increase. Eg. By the end of the 3rd Cycle there will be 8 copies, the 4th cycle would have 16 and so on. 

Eventually at the end of 30 cycles there will be 230 copies. Diagram made using BioRender online tools  
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The amplified sequences are measured in real-time using the fluorescence signal that is released from 

the SYBR green dye, as it binds to the minor groove of the newly synthesized DNA double strands 

during the elongation phase of the PCR reaction. Relative quantification is performed using a reference 

Housekeeping gene, in this case GAPDH, hereby described as Reference Gene (Bustin et al. 2009). The 

LightCycler 480 PCR machine is used to perform the RT-qPCR.  

The samples prepared for PCR were optimized by using a control sample for comparison, a PCR grade 

water with only the primer as a negative control (to observe for contamination and primer dimers). 

See Appendix 7.14.17.3 for the arrangements. 

When performing the experiment on optimized melting temperatures, the samples were all used, 

along with a control sample and negative control for each primer plate. See Appendix 7.14.17.4 for 

arrangements. 

A specific threshold is set for when a fluorescence detection level is reached. The threshold is based 

on the overall parallel pattern of lines is seen from all the samples. This ensures that there is minimal 

bias on each sample/condition. The cycle in which the sample achieves the fluorescence, is quantified 

and used to compare with other samples. Whereby, an earlier cycle suggests a greater quantity of the 

targeted DNA fragment in this sample compared to a later cycle in another sample. 

 

2.1.8.3 Designing Primers 

Designing Primers was made possible using available resources in literature (Dieffenbach, Lowe & 

Dveksler 1993) and online guides by Premier Biosoft 

(http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html) and online designing tools 

by NCBI (https://www.ncbi.nlm.nih.gov/tools/primer-blast/).  

The primers were designed to satisfy certain conditions that was found to be most beneficial, such as 

the primer length was long enough to be specific to a targeted site on the DNA, but not too long to 

use up the nucleotides in the mixture during PCR steps (Dieffenbach, Lowe & Dveksler 1993).  

The primer melting temperature (Tm) is the temperature where half of the DNA duplex will denature 

to become a single strand, indicating the stability of the duplex. Melting temperatures in the range of 

53-58oC is suggested to produce best results, where temperatures above 65oC are prone to develop 

secondary annealing. The GC content of the sequence provides a decent estimate of the primer Tm, 

where it is the number of G’s and C’s in the primer as a percentage of total bases (Dieffenbach, Lowe 

& Dveksler 1993). The melting temperatures are calculated automatically through websites and 

programs when designing the primers. 

http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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The primer annealing temperature (Ta) is the melting temperature where it is an estimate of the DNA-

DNA stability. Too high a Ta, would produce insufficient primer-template interaction, resulting in poor 

PCR product yield (Dieffenbach, Lowe & Dveksler 1993). Too low Ta, would results in multiple non-

specific products decreasing the overall PCR specificity (Dieffenbach, Lowe & Dveksler 1993). 

It is important to avoid chances of hairpins and self-dimer formations, where the primer folds on itself 

(hairpin) or anneals with another primer in the mix (self-dimer) at temperatures close to those in PCR 

steps. The presence of these artefacts results in less PCR yield from the DNA template and an 

inaccurate representation of the true expression from the DNA. 

Using the NCBI BLAST tool, the primers design is check to ensure that the primer is specific to only the 

gene of interest. If it is not specific, then other genes may be amplified in the mixture and give a false 

positive reading of the desired gene expression level of interest. 

When the primers are designed, they are ordered and received as lyophilized powder which is then 

resuspended with Molecular grade H2O into a Master stock and frozen down for storage. The Master 

stock (100x) of each primer is then diluted to produce a working stock (10x) for experiments. 

 

2.1.8.4 Agarose Gel Electrophoresis 

Agarose gel electrophoresis is a technique used in molecular biology for separation, quantification and 

purification of DNA fragments based on their length as measured by base pairs. The procedure uses 

an electrical field to separate DNA fragments within agarose gels where high percentage gels are used 

for small DNA fragments, and low percentage gels for large DNA fragments. The DNA fragment size is 

determined by comparison to a DNA ladder which is composed of DNA fragments of known base pair 

length. 

Agarose gels were prepared by weighing the desired amount of granular agarose (ULTRAPURE) and 

adding 50ml of Tris-borate-ethylenediaminetetraacetic acid (EDTA)(TBE) buffer (diluted from a 10X 

stock consisting of 0.445M Tris borate, 0.01M EDTA pH=8.2-8.4). The agarose is then melted by 

heating in a microwave for about 1.5minutes. The agarose is mixed and left to cool down but not 

solidify. At this point 1ul of Midori Green Advance DNA Stain was added to the agarose solution before 

slowly pouring it into a gel tray in order to avoid air bubble formation. The dye is added so that DNA 

can be visualized under ultraviolet (UV) light. In the event there are bubble formations, the bubbles 

are quickly fished to the side using pipette tips. With the well comb in place, the agarose solution is 

then allowed to solidify for at least 20-30minutes. 
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The solid agarose gel is placed in an electrophoresis tank with the comb gently removed. This tank is 

then filled with TBE until the gel is covered. The DNA samples prepared by mixing DNA preparations 

with DNA buffer, and then carefully pipetted into the wells. Appropriate DNA ladders (Quick-Load 

Purple 100bp and 1kb) were also used. 

An electrical field was then applied (110V constant voltage) for 1h. At this point separated DNA 

fragments were able to be seen under UV light using a manual adjust system for exposure time when 

obtaining images. 

 

2.1.9 Statistical analysis 

Where appropriate, a paired two-tailed Student’s t test was performed to determine the statistical 

significance of the difference between the two groups of data. An alpha error of 0.05 was accepted as 

a cut-off of statistical significance. SPSS version 21 and Microsoft Office Excel 2017 was used. 

 

2.2 Materials 

2.2.1 Antibodies used for flow cytometry 

The details of primary and secondary antibodies used for Phenotyping are provided in Table 2.2 and 

Table 2.3 for FACS analysis and Immunofluorescence Microscopy. Details of reagents used for Viability 

Assay is shown in Table 2.4. FACS analysis was performed on Attune NxT acoustic focusing Cytometer 

(Life Technologies). 
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Table 2.2 Antibodies used for flow cytometry and immunofluorescence microscopy 

 Company Description Cat # 

CD19 Merck Millipore Mouse anti-Human MAB1794 

IgG2a kappa BD Pharmingen Mouse anti-Human 550339 

PE-CD19 (4G7) BD Pharmingen Mouse anti-Human 345777 

PE-IgG2a kappa BD Pharmingen Mouse anti-Human 555574 

FITC-CD5 (L17F12) BD Pharmingen Mouse anti-Human 345781 

FITC IgG2a kappa BD Pharmingen Mouse anti-Human 555573 

CD20cy Dako Mouse anti-Human IR604 

CD14 BD Pharmingen Mouse anti-Human 550376 

FITC-CD14 BD Pharmingen Mouse anti-Human 555397 

PE-Cy7-CD14 BD Pharmingen Mouse anti-Human 560919 

PE-Cy7 IgG2a kappa BD Pharmingen Mouse anti-Human 557907 

CD68 Dako Mouse anti-Human M087629-2 

PE-CD68 BD Pharmingen Mouse anti-Human 556078 

PE-IgG2b kappa BD Pharmingen Mouse anti-Human 556078 

CD163 Abcam Rabbit anti-Human ab100909 

IgG Abcam Rabbit anti-Human ab172730 

PerCP-Cy5.5-CD163 BD Pharmingen Mouse anti-Human 563887 

PerCP-Cy5.5 IgG1 kappa BD Pharmingen Mouse anti-Human 550795 

CD38 Abcam Rabbit anti-Human ab183326 

PE-Cy5 CD38 BD Pharmingen Mouse anti-Human 555461 

PE-Cy5 IgG1 kappa BD Pharmingen Mouse anti-Human 555750 

CD206 BD Pharmingen Mouse anti-Human 555953 

IgG1 kappa BD Pharmingen Mouse anti-Human 555746 

FITC-CD206 BD Pharmingen Mouse anti-Human 551135 

FITC IgG1 kappa BD Pharmingen Mouse anti-Human 555748 

EGR2 LifeSpan Biosciences Inc. Mouse anti-Human LS-C174298 

APC-IgM BD Pharmingen Mouse anti-Human 551062 

APC-IgG1 kappa BD Pharmingen Mouse anti-Human 555751 

RPE-IgM Dako Rabbit anti-Human R5111 

RPE-F(ab')2 Dako Rabbit anti-Human X0930 

PE-IgD BD Pharmingen Mouse anti-Human 555779 
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Table 2.3 Secondary antibodies 

 Company Description Cat # 

Alexa Fluor 488 Life Technologies Donkey A21202 

Alexa Fluor 647 Life Technologies Donkey A31573 

 

Table 2.4 Reagents for Viability Assay by Flow Cytometry 

 Company Cat # 

FITC-Annexin V BD Pharmingen 556420 

Propidium Iodide (PI) SIGMA-ALDRICH 25535164 

 

2.2.2 Reagents used for MGG staining 

Using standard glass slides and 8 well glass slides (Chamber slide, Lab-Tek™ glass, 8-well, Thermo 

Scientific Nunc, Cat. No. 10051021), May Grünwald Giemsa (MGG) staining was performed and viewed 

under standard light microscope. Table 2.5 provides details of reagents used for MGG staining. 

Table 2.5 Reagents for MGG staining 

 Company Cat # 

May Grünwald SIGMA-ALDRICH 32856 

Giemsa SIGMA-ALDRICH 32884 
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2.2.3 Reagents used for immunofluorescent staining 

Using coverslips (13mm diameter, Appleton Woods, Cat. No. MS002) and mounted on standard glass 

slides, the cells were viewed under Immunofluorescence Microscope in a dark room. Table 2.6 

provides details of reagents and Table 6 provides details of antibodies used for Immunofluorescence 

staining. 

Table 2.6 Reagents for Immunofluorescence staining 

 Company Description Cat # 

Aqua-Poly/Mount Polysciences Europe GmbH Mounting Media 18606-20 

Donkey Serum Merck Millipore Donkey serum for blocking S30-100ML 

TruStain FcX BioLegend Fc Blocker 422302 

Hoechst 33342 Thermo Fisher Scientific Nuclear Stain 62249 

4',6-Diamidino-2-

Phenylindole, 

Dihydrochloride (DAPI) 

Thermo Fisher Scientific Nuclear Stain D1306 

 

2.2.4 Reagents used to induce differentiation of THP-1 cells into macrophages 

Human THP-1 cell line was obtained from European Collection of Authenticated Cell Cultures (ECACC 

Cat. No. 88081201). The cell line was authenticated with 100% Match with ATCC® Number of TIB-202, 

Designated as THP-1 Acute Monocytic Leukemia Human and using 9 loci (D5S818, D13S317, D7S820, 

D16S539, VWA, TH01, AM, TPOX and CSF1PO). This was performed using Cell Line Authentication 

Services by Ms. Patricia Gerard and Dr Lakis Liloglou at the Department of Molecular and Clinical 

Cancer Medicine of University of Liverpool. Table 2.7 provides details of the reagents used to 

differentiate the THP-1 cell line. 

Table 2.7 Reagents for Cell line differentiation 

  Company Cat # 

M0 Phorbol 12-ymristate 13-acetate 

(PMA) 

Sigma-Aldrich 16561-29-8 

M1 Interferon Gamma (IFNγ) Perprotech 300-02 

M1 Lipopolysaccharide (LPS) Sigma-Aldrich 8630 

M2 Interleukin-4 (IL-4) R&D Systems 6507-IL-010 
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2.2.5 Cytotoxic agents used to induce apoptosis 

2.2.5.1 Fludarabine 

Fludarabine (Cat. No. 21679141, Sigma-Aldrich) seen in Figure 2.11 was made up to 20 mM stock in 

DMSO and aliquoted in 10 l/tube, stored in -20oC freezer. 

 

Figure 2.11 Fludarabine 

2.2.5.2 ABT-199 

ABT-199 (Cat. No. GDC-0199, Selleckchem.com) seen in Figure 2.12 was made up to 10 mM stock in 

DMSO and aliquoted in 5 µl/tube, stored in -20oC freezer. 

 

Figure 2.12 Venetoclax (ABT-199) 

2.2.6 ELISA Kits 
ELISA kits were ordered and ELISA was performed on 96-well plates (Nunc-Immuno™MicroWell™, 

Sigma-Aldrich, Cat. No. M9410-1CS), using manufacturer’s instructions. The plates were measured 

using Densitometer µQuant (BioTek). Table 2.8 provides details of the kits used. 

Table 2.8 ELISA Kits 

 Company Cat # 

CCL3 (MIP-1 alpha) Affymetrix eBioscience 887035 

CCL4 (MIP-1 beta) Invitrogen Thermo Fisher Scientific 887034 
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3 Characterising nurse-like cells derived from peripheral blood 

mononuclear cells of patients with CLL 

3.1 Introduction 

The study of nurse-like cells (NLCs) in CLL took off in the early 2000’s with the initial reports of these 

cells appearing as ‘large adherent cells’ displaying morphologic and phenotypic features of 

macrophages and demonstrating pro-survival effect on CLL cells when co-cultured together (Burger 

et al. 2000; Tsukada et al. 2002). 

The studies of NLCs continued and later established the critical role of NLCs within the CLL 

microenvironment. This led to the identification of, in addition to SDF1 (CXCL12), BAFF and APRIL that 

were expressed by NLCs to activate the pro-survival signalling pathways in CLL cells (Nishio et al. 2005). 

Meanwhile, chemokines such as CCL3 and CCL4 released from activated CLL cells in the lymph nodes 

have been shown to attract T cells and other immune cells to the tissue microenvironment (Burger et 

al. 2009b), supporting the notion that CLL cells are also actively involved in developing the favourable 

microenvironment (Burger 2011a; Caligaris-Cappio, Bertilaccio & Scielzo 2014). It is now known that 

NLCs most likely originate from blood monocytes and accumulate in the lymphoid tissues such as 

lymph nodes, bone marrow and spleen (Boissard et al. 2016a; Burger et al. 2000; Jia et al. 2014; 

Tsukada et al. 2002).  

However, when my research was started back in 2015, the molecular mechanisms mediating the pro-

survival and drug resistance following interaction of CLL cells with nurse-like cells were not well 

understood. In particular, cross-communication between nurse-like cells and CLL cells at the level of 

gene expression is not fully characterised.  A good understanding of these molecular mechanisms is 

important as it may help identify key molecules that mediate survival and drug resistance in vivo. In 

turn, this may lead to discovery of novel therapeutic agents that could target these molecules and 

restore drug sensitivity. 

Therefore, whilst the overall aim of my PhD study is to understand the molecular mechanisms 

mediating effects of NLCs on CLL and vice versa, the focus of this chapter is to independently validate 

the development of NLCs using primary peripheral blood mononuclear cells obtained from patients 

with CLL and confirm the biological effects of co-culture with NLCs on CLL cells that have been reported 

in the literature. The specific objectives of this part of my PhD study are therefore: 

1. Validating the optimum culture conditions for developing NLCs in vitro; 
2. Further characterisation of the morphology and immunophenotype of NLCs; 
3. Expanding investigation of the cytoprotective effects of NLCs on CLL cells on co-culture; 
4. Investigating effects of the co-culture on NLCs.  
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3.2 Methods: 

3.2.1 Development of NLCs 

To generate the nurse like cells, fresh mononuclear cells prepared from the peripheral blood of CLL 

patients were re-suspended in complete RPMI 1640 medium supplemented with 10 % heat-

inactivated fetal bovine serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 μg/mL streptomycin 

(Life Technologies/Thermo Fisher Scientific, Paisley, UK). The cells were incubated in a 37°C, 5% CO2 

humidified incubator and followed up by observing for morphological changes under phase contrast 

microscope. They were initially cultured at different densities in 24 well plates. 

Every day, the plates were viewed under microscopy for a minimum of 3 random fields. The visual 

changes relating to the cell shape, size, and general arrangement were noted and followed for each 

sample and compared with other densities and the previous day findings. 

 

3.2.2 Replacement of media 

In order to provide nutrition for the cells during the experiment involving long-term culture, I used 

partial replacement of media as a maintenance strategy as the cytokines/chemokines released from 

the cultured cells into the supernatant could be important for the longevity of the CLL cells as well as 

NLC differentiation. Partial replacement of either ½ or 1/3 of culture media with fresh complete RPMI 

medium was performed depending on the observations seen under microscope, as needed usually 

every 3-4 days. By gently tipping the plate to one side, without shaking the plate, the supernatant was 

collected from the top so as not to disturb the already settled cells. Fresh RPMI was added by gently 

pipetting along the walls of the wells. In the cases where there was too much localisation of cells to 

the centre, gentle drops were added to disperse the CLL cells, but not to dislodge the NLCs. 

 

3.2.3 Co-culture of CLL cells with NLCs 

To prepare a co-culture experiment, NLCs are first developed as described previously (Burger et al. 

2000)  up to 14 days where their condition is checked under microscope. The CLL cells that were 

present during the 14 days in fresh PBMC are gently washed away by combination of gentle agitation, 

tipping of the plate at an angle and collecting the supernatant by pipetting. Gentle washing using warm 

complete media is used on surfaces of the plate and the area is checked under microscope. The plates 

that are not to be co-cultured with autologous CLL cells are provided with equal volume of complete 

media and kept aside in the incubator. Plates to be used for co-culture experiments are temporarily 

resuspended with warmed complete media and kept in incubator while autologous CLL cells are 
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thawed and resuspended in fixed cell density of 3x106/ml in warm complete media (as described in 

Methodology). The plates to be used are taken out and the supernatant is drained. The media mixture 

containing thawed CLL cells is then added onto the plates containing NLCs and is labelled as co-culture 

wells. A portion of thawed CLL cells is generally sent for viability testing by Trypan blue and or flow 

cytometry using Annexin/PI for record keeping as Day 0. 

 

3.2.4 Statistical Analysis 

Where appropriate, a paired two-tailed Students t test was performed to determine the statistical 

significance of the difference between the two groups of data. Chi squared test was performed to 

determine the statistical significance of the difference between two nominal and or ordinal groups of 

data and Fisher-Freeman-Halton exact test was used where Chi squared was not appropriate. SPSS 

version 21 and Microsoft Office Excel 2017 was used. 
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3.3 Results 

3.3.1 Optimising cell density of CLL PBMCs in culture for developing NLCs 

When I started my project, I noticed that the cell density of CLL PBMCs used to develop NLCs that was 

reported in the literature was different from study to study, ranging from 3 x 106 cells/ml (Filip et al. 

2013b) to 10 x 106 cells/ml (Nishio et al. 2005) to 15 x 106 cells/ml (Burger et al. 2000). Therefore, I 

first set out to establish the optimal cell density to develop NLCs in standard culture conditions. When 

I first cultured fresh CLL PBMCs at low density (7.5 x 106/ml) (Figure 3.1 left), the development of NLCs 

were poor. This is most likely due to the lower number of cells used where cell-cell interaction was 

insufficient, resulting in earlier apoptosis of CLL cells. 

At higher cell density (15 x 106/ml), the field of view looked very crowded with multilayers of cells 

heaped on top of each other (Figure 3.1, middle). This was therefore deemed an inefficient condition 

to develop NLCs from PBMC.  

In contrast, at the cell density of 10 x 106/ml, I could observe clear morphology of cells under the 

microscope and appearance of NLCs with an enlarged oval or elongated shape (Figure 3.1, right). 

These NLCs continue to differentiate into macrophage-like cells over time.  

 

   

Figure 3.1 PBMCs cultured at different cell densities affects the development of NLCs. 

Phase contrast image of fresh PBMC (3465 Day 8) cultured at cell density of 7.5 x 106/ml (left) giving a sparse arrangement 

of poor viability CLL cells (appearing as dark and shrivelled cells, blue arrows) and few NLCs (orange arrows). Phase contrast 

image of fresh PBMC (3460 Day 4) cultured at density of 15 x 106/ml (middle) giving multiple layers, obscuring the view in 

majority of viewing fields. Phase contrast image of fresh PBMC (3484 Day 6) cultured at cell density of 10 x 106/ml (right) 

giving a clear view of cells and their changes. 
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3.3.2 Morphological features of NLCs 

3.3.2.1 Phases of monocyte/ macrophage differentiation observed via phase contrast microscopy 

and MGG staining. 

Upon initial culturing the fresh CLL PBMCs in RPMI at Day 0, the appearance of monocytes was almost 

indistinguishable from lymphocytes seen in Figure 3.2, even though monocytes are generally larger 

than lymphocytes (Bain et al. 2012; Lichtman et al. 2011b).  

 

Figure 3.2 Monocytes indistinguishable from lymphocytes in fresh PBMCs cultured under standard conditions at Day 0. 

Phase contrast microscopy of the fresh PBMCs (3470) plated on Day 0 in RPMI. Based on initial appearance upon plating, it 

was almost impossible to differentiate the monocytes from lymphocytes. 

 

I next performed May Grünwald Giemsa (MGG) staining on the same cells that I observed under the 

phase contrast microscope. 

With minimal agitation, the monocytes can be distinguished by having a slightly larger circular 

appearance and displayed mild adherent properties. This can be seen as early as 24 hours to 48 hours 

later. With MGG staining as seen in Figure 3.3 (left), the monocytes have a lower nuclear (N): 

cytoplasm (C) ratio, characteristic vacuoles in the cytoplasm which is not very granular and dense. The 

nearby lymphocyte is seen having a greater N:C ratio with a smaller size in contrast to the monocyte. 
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Figure 3.3 Monocytes and macrophages are distinguishable from lymphocytes by their morphology. 

(Sample 3464 Day 12) MGG-stained cells showing a single lymphocyte and a monocyte (left). The leukocyte is showing a high 

N:C ratio with diameter just under 10um. The monocyte is having a lower N:C ratio, showing characteristic vacuoles in the 

cytoplasm which is not very granular and dense. (Sample 3470 Day 4) MGG stained slide showing a group of lymphocytes in 

close proximity to a single big macrophage (right). The macrophage is having a very large oval appearance with cytoplasmic 

vacuoles and the cytoplasm appears to have ill-defined borders being heterogeneously stained as well. 

 

Overtime, the monocytes were differentiated into large oval adherent cells, which is consistent with 

NLCs as previously described (McWhorter et al. 2013). As seen in Figure 3.3 (right), multiple 

lymphocytes are seen in close proximity to a single macrophage. The macrophage is having a large 

oval appearance with more cytoplasmic vacuoles, with the cytoplasm having an ill-defined border 

being heterogeneously stained as well. 

Also, adherent cells with varying shapes were observed where the cytoplasm was stretched and the 

membrane appeared elongated. Illustrated in Figure 3.4 (A) is an example of an adherent cell with a 

stretched vacuolated cytoplasm of a macrophage-like cells giving an appearance of a tail-like 

projection.  
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A 

 

C 

 

B 

 

Figure 3.4 Tail-like projection, spindled-shaped and elongated appearance from an adherent cell. 

(3464 Day 12) MGG stained slide showing a group of adherent cells with characteristic cytoplasmic vacuoles and lightly 

stained cytoplasm (A). One of the adherent cells has an extended cell membrane giving a tail-like appearance. (3464 Day 12) 

MGG stained slide showing a single macrophage in close proximity to lymphocytes (B). The lymphocyte is showing a high N:C 

ratio with diameter just under 10um as mentioned in literature. The Macrophage is having extension of the cell membrane 

of both poles from nucleus giving an elongated spindle shaped appearance. (3464 Day 12) MGG stained slide showing a 

single macrophage with characteristic cytoplasmic vacuoles, lightly stained cytoplasm and fine granules (C). The macrophage 

demonstrates an elongated appearance where the nucleus as well as the cell membrane are elongated. All macrophages are 

having a lower N:C ratio, showing characteristic vacuoles in the cytoplasm which is not very granular and dense. 

 

Sometime, these tail-like projections increase in number to give a spindle shaped appearance, where 

the nucleus appears to be in the middle and the tails extending towards the two opposite directions 

as seen in Figure 3.4 (B).  

Eventually some macrophages display an overall elongated appearance and seen in Figure 3.4 (C), the 

overall shape is as stated, with cytoplasmic vacuoles as well as fine granules within the cytoplasm. In 

fact, the nucleus is also appeared to be elongated in contrast to having a general oval appearance. 

Usually these adherent cells were seen in close proximity with lymphocytes forming small clusters. An 

example is shown in Figure 3.5 (left) under phase contrast and Figure 3.5 (right) following MGG 

staining.  
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Figure 3.5 Pleomorphism and cluster formation of adherent cells developed after culturing CLL PBMCs under standard 

conditions.  

CLL PBMCs (3460 Day 6) cultured in RPMI medium developed adherent cells with distinct appearance from lymphocytes (i.e. 

circular/oval cells with a diameter of just under 10um, blue arrow). These adherent cells appeared to have differentiated 

into macrophage-like cells displaying a larger more pleomorphic morphology with large oval or elongated shapes under 

phase contrast microscopy (left orange arrow). (3464 Day 12) MGG stained slide showing multiple lymphocytes and 

macrophage-like adherent cells forming a cluster (right). The lymphocyte (blue arrow) is showing a high N:C ratio with 

diameter of just under 10µm. The adherent cells (orange arrow) are having a lower N:C ratio, showing characteristic vacuoles 

in the cytoplasm which is not very granular and dense. 

 

Figure 3.6  and Figure 3.7  shows more examples of adherent cells that have formed from the CLL 

PBMCs cultures. The lymphocytes are again seen as those with densely stained nuclei, having a large 

N:C ratio and appearing in close proximity to the adherent cells. The macrophage-like adherent cells 

are pleomorphic with the appearances described above, but all having characteristic cytoplasmic 

vacuoles, a smaller N:C ratio in contrast to the lymphocytes. 
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Figure 3.6 A diverse cluster of macrophage-like adherent cells with CLL cells emerges from CLL PBMCs culture. 

(3469 Day 14) MGG stained slide showing a cluster of adherent cells with lymphocytes in close proximity. The adherent cells are distinguishable from their characteristic vacuoles in their 

cytoplasm of which is mildly granular with a lower N:C ratio than the leukocytes. The adherent cells are showing more pleomorphism where one is very large with heterogeneously densely 

stained cytoplasm and granularity. 
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Figure 3.7 Clusters of adherent cells with CLL cells is apparent. 

(3469 Day 14) MGG stained slide seen under oil immersion showing multiple clusters of pleomorphic adherent cells closely 

surrounded by leukocytes. The leukocytes have a high N:C ratio with a deeply stained nucleus. The NLCs have a broad range 

of morphology from large oval appearance to elongated and spindle shaped and having characteristic vacuoles with granular 

cytoplasm. 

 

These groups of cells may then form clusters near a greater mix of spherical/oval and elongated, tailed 

monocytes. A cluster is considered as a collection of the cells in such close proximity and overlapping 

so that their margins are not distinguishable.  

These clusters may then grow further consisting of more pleomorphic monocytes and lymphocytes to 

the point that it is seen with the naked eye in the culture plate thereby defined as colonies. As seen in 
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Figure 3.8, the visual field shows clusters formed consisting of multiple layers of cells that have 

aggregated there. Focusing on cells became difficult as a result. 

 

Figure 3.8 Abundance of cells consisting of NLCs and CLL cells populated as dense islands. 

Phase contrast a PBMC sample (3460 Day 13) where a close up is visualised of a colony formed by a very large collection of 

lymphocytes and macrophages. 

 

There was a period of plateau where there were no obvious changes in size, shape, density appearance 

of monocytes or clusters. 

After this point, the conditions of the clusters deteriorate. Eventually, dead/dying cells appear as 

floated or shrivelled cells with a darker granulated background which I considered as an apoptotic 

phase. As seen in Figure 3.9, the visual field shows multiple shrivelled cells where some have 

aggregated (left) and the macrophage-like adherent cells also start to lose their glow (right). 
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Figure 3.9 Apoptotic features start to occur in prolonged cultures. 

Phase contrast images of CLL PBMCs (3460) cultured to Day 21 showing widespread apoptosis. The CLL cells appear as 

shrivelled cells either individually or clumped together with other shrunken cells (left). The adherent cells appear apoptotic 

as well based on their dense cytoplasm and blebbing (right). 

 

Eventually there were few cells remaining adhered to the surface and the majority were dead cells. 

Collectively, the above was the overall representation describing the development of macrophage-

like adherent cells from the CLL PBMCs cultures from their initial appearance to their inevitable 

demise. The total duration of this was variable from sample to sample, however the phases described 

appeared to be consistent in all the samples examined. For the purposes of recording morphological 

features of these macrophage-like adherent cells in chronological pattern, a summary of detailed 

description of these features during different phases of their development was provided in the 

Appendix 7.4. 

Therefore, using phase contrast microscopy and light microscopy following MGG staining I have 

characterised the morphological features of the macrophage-like adherent cells that developed from 

the CLL PBMCs cultures. All these features are consistent with that of NLCs described previously 

(Burger et al. 2000; Tsukada et al. 2002). I next examined the immunophenotype of these adherent 

cells because NLCs have been shown to display a phenotype similar to that of M2 macrophages (Filip 

et al. 2013a; Ysebaert & Fournie 2011). 
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3.3.3 Immunophenotyping of macrophage-like adherent cells 

Following the morphological characterization of the macrophage-like adherent cells, I proceeded to 

investigate the expression of protein markers typical of the NLCs, including the M2 macrophage 

markers CD68 and CD163, as previously reported (Tsukada et al, 2002; Jia et al, 2014; Hume & 

Freeman, 2014; Mills, 2015; Boissard et al, 2015). First, I attempted a method of immunofluorescent 

staining for flow cytometry analysis. However, I faced many challenges. 

These macrophage-like cells were firmly attached to the culture plates. Previous attempts at 

harvesting the cells (described in Methodology) included the use of enzyme Trypsin, or cold disodium 

ethylenediaminetetraacetic acid (EDTA) buffer or a combination of both (Tsukada et al. 2002) or a 

plate cell scraper (Filip, Cisel & Wasik-Szczepanek 2015).  

I tried all the above methods to harvest the adherent cells and incubated these cells with antibodies 

against CD68 and CD163. As shown in Figure 3.10, the forward scatter and side scatter plots showed 

there wasn’t a homogenous population of intact cells within the gated region for subsequent analysis. 

Most of the cells appeared to be broken, which formed a dense cluster of debris at the bottom of the 

plots. Another difficulty I faced was that immunophenotyping by flow cytometry method required a 

large number of adherent cells to begin with. This in turn required the use of even larger number of 

CLL PBMCs, which was not always possible to obtain.  This is in contrast to other studies (Coscia et al. 

2011; Giannoni et al. 2014; Jia et al. 2014; Polk et al. 2016; Tsukada et al. 2002). I therefore used 

immunofluorescence microscopy method instead.   
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Figure 3.10 Immunophenotyping of adherent cells using flow cytometry. 

Adherent cells were harvested using a plate cell scraper (left) or by Trypsin/EDTA (right) and stained with CD68 and CD163 

antibodies as described in the Methods. 10,000 events were acquired on a flow cytometer and analysed using the channels 

BL2 and BL3 for CD68 and CD163, respectively. Histogram of fluorescence of gated events are shown. Isotype control 

antibodies were used in parallel. 

 

Immunofluorescence (IF) microscopy was thus performed using 8-well chamber slides which can be 

viewed under fluorescence microscope (described in Methodology).  

In order to optimize the conditions for IF staining, I used human monocytic THP1 cell line (see 

Appendix 7.14.6 for detail). I then applied the optimised IF conditions to immunophenotyping 

adherent cells. As shown in Figures 11-14, the lymphocytes were distinguishable from the adherent 

cells initially by their DAPI staining. The CLL lymphocytes were identified by dense DAPI staining (blue) 

and the size of the nucleus is generally smaller than that of NLCs. 

Specific staining with respective antibodies also confirmed the differential expression of protein 

markers unique for each cell type. As seen in Figure 3.11, CD19 was detected only on the CLL cells, 
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following incubation with anti-CD19 antibody. This is in contrast to the adherent cells which were 

stained positive only for CD163 which covered the whole cells, consistent with the cytoplasmic 

localisation of this plasma membrane marker (Pontén, Jirström & Uhlen 2008). 

A further example was seen in Figure 3.12 where the cells sample was immuno-stained on Day 9. 

Again, CD14 (a marker of monocyte) was detected in macrophage-like adherent cells but not in CLL 

cells. CD14 was localised in part of the cytoplasm and near the nucleus of the adherent cells. The 

staining by CD163 revealed an elongated structure of an adherent cell with the CLL cells closely 

positioned next to it.  

Also shown in Figure 3.13 were images from dual staining of the cells cultured for 4 days with 

antibodies against CD68 and CD163, classical markers for NLCs (Boissard et al. 2015a; Hume & 

Freeman 2014; Jia et al. 2014; Mills 2015; Tsukada et al. 2002). Reassuringly, CD68 was detected only 

in macrophage-like adherent cells that were also positive for CD163, whereas CLL cells were clearly 

stained negative for either marker. CD68 expression was localised within the adherent cells near the 

nucleus as part of the cytoplasm.  

The same CLL sample was dual-stained again at Day 11 of being in culture in order to detect changes 

in expression of these markers and morphology of the adherent cells. Again, the adherent cells were 

stained positive for both CD14 and CD163, whereas CLL cells were negative for either marker (Figure 

3.14). The positioning of CLL cells was again in close contact with adherent cells.  
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Figure 3.11 Immunofluorescence microscopy of adherent cells developed from CLL PBMCs culture. 

Immunofluorescence staining of CLL PBMCs (sample 3529) culture at Day 9 using DAPI (blue), CD19 antibody (green) and CD163 antibody (red) and their respective isotype controls. Fresh 

PBMCs were cultured as described till Day 9, fixed, stained with primary antibodies against CD19 and CD163, followed by incubating with respective secondary antibodies, counterstained 

with nuclear staining dye DAPI and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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Figure 3.12 Immunofluorescence microscopy of adherent cells developed from CLL PBMCs culture at day 9. 

Immunofluorescence staining of CLL PBMCs (sample 3529) culture at Day 9 using DAPI (blue), CD14 antibody (green) and CD163 antibody (red) and their respective isotype controls. Fresh 

PBMCs were cultured as described till Day 9, fixed, stained with primary antibodies against CD14 and CD163, followed by incubating with respective secondary antibodies, counterstained with 

nuclear staining dye DAPI and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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Figure 3.13 Immunofluorescence microscopy of adherent cells developed from CLL PBMCs culture at day 4. 

Immunofluorescence staining of CLL PBMCs (sample 3530) culture at Day 4, using DAPI (blue), CD68 antibody (green) and CD163 antibody (red) and their respective isotype controls. Fresh 

PBMCs were cultured as described till Day 4, fixed, stained with primary antibodies against CD68 and CD163, followed by incubating with respective secondary antibodies, counterstained with 

nuclear staining dye DAPI and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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Figure 3.14 Immunofluorescence microscopy of adherent cells developed from CLL PBMCs culture at day 11. 

Immunofluorescence staining of CLL PBMCs (sample 3530) culture on Day 11, using DAPI (blue), CD14 antibody (green) and CD163 antibody (red) and their respective isotype controls. Fresh 

PBMCs were cultured as described till Day 4, fixed, stained with primary antibodies against CD14 and CD163, followed by incubating with respective secondary antibodies, counterstained with 

nuclear staining dye DAPI and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software.  
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Taken together, the results from immunofluorescence microscopy showed that CD14, CD68 and 

CD163 were detected in adherent cells only, whereas CD19 was detected by CLL cells, as expected.   

Therefore, combined observations from morphological study and immunofluorescence microscopy 

confirmed the macrophage-like adherent cells developed from the CLL PBMCs cultures under the 

conditions used in my study are indeed the nurse-like cells (NLCs). I will thus use the term NLCs in the 

thesis thereafter. 

Whilst I successfully developed NLCs from the CLL PBMCs cultures, I also noticed considerable 

variation in the extent to which NLCs could be generated from fresh CLL blood samples under the 

experimental conditions I used. More specifically, the pace and number of the NLCs developed varied 

significantly from sample to sample. 

 

3.3.4 Variation in the development of NLCs from the CLL PBMCs samples 

Based on the morphological changes that were associated with the different phases during the 

development of NLCs that I have described (see Appendix 7.4), I noted down for each sample used 

and color-coded them in a time-course chart with the initial appearance of large oval adherent cells 

(coded purple) and appearance of maximum number of fully differentiated NLCs (coded orange) 

(Table 3.1).  It was thus obvious that the majority of samples had initial adherent appearance of NLCs 

at Day 2-4, and the majority of samples reached maximum number of fully differentiated NLCs at Day 

8-14.  
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Table 3.1 Phases of development of NLCs among CLL samples collected, from the appearance of large oval adherent cells 

(purple) to fully differentiated NLCs (orange). 

Patient 
Day 

1 
Day 

2 
Day 

3 
Day 

4 
Day 

5 
Day 

6 
Day 

7 
Day 

8 
Day 

9 
Day 
10 

Day 
11 

Day 
12 

Day 
13 

Day 
14 

Day 
15 

Day 
16 

Day 
17 

Day 
18 

Day 
19 

Day 
20 

Day 
21 

3460                                           

3461                                           

3463                                           

3464                                           

3465                                           

3469                                           

3470                                           

3471                                           

3472                                           

3481                                           

3482                                           

3483                                           

3484                                           

3485                                           

3490                                           

3491                                           
3492                                           

3493                                           

3494                                           

3500                                           

3502                                           

3504                                           

3505                                           

3506                                           

3507                                           

3508                                           

3510                                           

3511                                           

3512                                           

3492                                            

3513                                           

3516                                           

3519                                           

3520                                           

3522                                           

3523                                           

3526                                           

3527                                           

3528                                           

3529                                           

3530                                           

3536                                           

3537                                           

3539                                           

3542                                           

3561                                           

3564                                           

3566                                           

3568                                           

3574                                           

3576                                           

3577                                           

3579                                           

3582                                           

3585                                           

3587                                           

3589                                           

3599                                           

3602                                           

3603                                           

3605                                           

3606                                           

3607                                           

3609                                           

3610                                           

3611                                           

3612                                           

3613                                           

3620                                           

3621                                           

3627                                           

3631                                           

3637                                           

3639                                           

3640                                           

3642                                           

3644                                           

3645                                           

3647                                           

3650                                           

3674                                           

3679                                           

3682                                           

3684                                           

3686                                           

3691                                           

3694                                           

3696                                           

3697                                           

3707                                           

 

It was worth noting that some samples did not have any NLC development at all even the early phase 

presentation (e.g. #3536, #3537, #3539, #3542, #3564, #3568). Additionally, it was noted that not all 

samples gone through all the phases observed by the time they reached their plateau (e.g. #3519, 

#3528, #3602, #3603, #3609). The plateau period varied from sample to sample, where some samples 
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reached plateau on Day 8 (eg. #3465, #3471, #3472, #3485, #3511, #3519,) and others can last up to 

Day 14 (e.g. #3511, #3520, #3522).  

 

3.3.4.1 Scoring of NLCs developed from individual CLL samples 

Because of the considerable variation in development of NLCs among the CLL PBMCs samples used, I 

decided to assign a score of NLCs development to each individual CLL samples based on the following 

considerations:    

• Day of first sight of large oval cells (usually Day 4-6) 

• Number of NLCs of any morphology average per field at 200x magnification (≥30, 10-30, <10) 

• Progression through different phases (all or some, up to plateau) 

• Presence or absence of clusters of NLCs 

• Day of plateau phase where maximum number of fully differentiated NLCs developed (usually 

day 8-12). Plateau phase also refers to a period of little or no significant changes. This period 

is generally followed by features of apoptosis. 

Table 3.2 below provides a rough guide on how I assigned a score to individual samples. Figure 3.15, 

Figure 3.16, Figure 3.17 and Figure 3.18 were the microscopic images representative of morphology/ 

appearance of the NLCs assigned with different scores. 
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Table 3.2 NLC Scoring system 

Description of Score NLC Score 

• Large oval cells seen at Day 4 (+/- 2 days) 

• Number per field >=30 cells 

• Progressed through all phases up to plateau 

• Cluster +ve 

And/ or 

 

• Plateau Reached (Day 8-12) 

3 (+++) 

• Large oval cells seen at Day 4 (+/- 2 days) 

• Number per field >=30 cells or 10-30 

• Progressed through most phases up to plateau 

• Cluster +ve or -ve 

And/ or 

 

• Plateau Reached (Day 8-12) 

2 (++) 

• Large oval cells seen at Day 4 (+/- 2 days) or after 

• Number per field 10-30 cells or <10 

• Progressed through phases (1-3) up to plateau 

• Cluster +ve or -ve 

And/ or 

 

• Plateau Reached (Day 8-12) 

1 (+) 

• Large oval cells seen well after Day 4 (+/- 2 days) 

or 

• Number per field <10 cells 

• Progressed through only one phase 

• Cluster -ve 

And/ or 

 

• Plateau Reached (Day 8-12) or apoptosis by day 12 

0 
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3.3.4.1.1 NLC Score 0 

Starting at the lowest score, as seen in Figure 3.15, a broad view (large circle) shows a generally 

homogenous appearance. Here there are no obvious presence of large oval cells. The number of NLCs 

are minimal to absent, therefore there was no development of NLCs. The samples that have had this 

score generally underwent widespread apoptosis in the early days of the culture. 

 

Figure 3.15 Example of NLCs with score 0. 

Phase contrast image of CLL PBMCs (#3500) cultured over approximately 8 days to allow development of NLCs. Here the 

appearance of CLL cells was quite homogenous with minimum to no NLCs seen per visual field. 
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3.3.4.1.2 NLC Score 1+ 

As seen in Figure 3.16, few NLCs are present by broad visual inspection under the phase contrast 

microscope (large circle). At a closer look, the NLCs can be seen in contrast to the lymphocytes as large 

oval cells. Although the NLCs were present, their number is actually quite low. Upon follow-up checks, 

it was found that they had a very slow progression and reached their plateau after passing through 

only a few phases. Also, there were hardly any group/ cluster of NLCs to be seen. Apoptotic signs of 

the cells appear quickly in general.  

Therefore, samples with NLC score 1+ generally presented with low number of NLCs at a later date, 

with hardly any clusters to be seen. This is followed by the sign of apoptosis. 

 

Figure 3.16 Example of NLCs with score 1. 

Phase contrast image of CLL PBMCs (#3502) cultured over approximately 11 days, displaying a range of morphologies, from 

large oval (blue arrow) to elongated or spindle-shaped appearance (orange arrow).  
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3.3.4.1.3 NLC Score 2+ 

As shown in Figure 3.17, a greater number of NLCs is seen throughout the fields. On closer inspection 

a diverse collection of phases where the presence or absence of clusters were observed. These 

samples were considered as having moderate development of NLCs. Generally, samples with NLCs 2+ 

are suitable for most subsequent co-culture experiments. 

 

Figure 3.17 Example of NLCs with score 2. 

Phase contrast image of CLL PBMCs (#3529) cultured over approximately 5 days, displaying a range of morphologies, from 

large oval shape (blue arrow) to elongated or spindle-shaped appearance (orange arrow). Here numerous NLCs are seen in 

each viewing field, scattered and in groups but with the absence of multi-layered clusters. 
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3.3.4.1.4 NLC Score 3+ 

This type of sample is considered as sample with fully developed NLCs. As shown in Figure 3.18, a very 

large number of NLCs can be seen broadly (large circle). On close inspection there were numerous 

cluster formations seen as multiple layers of cells, which make it difficult to distinguish the cells. The 

clusters consist of a very diverse group of monocytes/macrophages as well as lymphocytes. The 

clusters can be so big that it can be seen by the naked eye as small specs or spots on the plate 

(colonies). The samples with score 3+ are used for subsequent co-culture experiments. 

 

Figure 3.18 Example of NLCs with score 3. 

Phase contrast image of CLL PBMCs (#3484) cultured over approximately 15 days, displaying a range of morphologies, from 

large oval shape to elongated or spindle-shaped appearance. 

 

Using the NLC scoring system I carried out scoring all the CLL samples summarized in Table 3.3. It 

showed approximately half of all CLL samples had poor or no development of NLCs. 
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Table 3.3 Variation in generation of NLCs from all CLL samples studied 

Category No. of CLL samples examined Proportion (out of 88 samples) 

Well developed (3+) 24 27.3% 

Moderately developed (2+) 18 20.5% 

Poorly developed (1+) 43 48.9% 

No NLC development (0) 3 3.4% 

Total 88 100% 

 

Samples with NLC score of 2 or 3 were therefore considered for the subsequent co-culture 

experiments, whereas those with 1 were left with morphology observations and phenotyping. Those 

with NLC score of 0 were unsuitable for any further experiments. To explain why this phenomenon 

was seen, I went back to the clinical data and performed some descriptive analysis.   
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3.3.4.2 Correlation of NLCs development with clinical features of the CLL samples 

For this part of the study, a total of 88 CLL samples were used for NLC development, consisting of 

patients who gave re-bleeds (ie. Same patient gave more than one sample over time). The total 

number of samples that were not re-bleeds from the same patient was 65 and the summary of clinical 

information of these samples is displayed in Table 3.4. A more detailed view of the clinical data can be 

seen in Appendix Table 7.1.  

Table 3.4 Summary of clinical features of non-repeat CLL case samples used in the study 

Gender Male 

Female 

46 

19 

Age at diagnosis Mean: 65.63 (95% CI: 62.33-68.93) 

Prior therapy* Yes 

No 

28 

36 

WBC# (109/L) Mean: 129.09 (95% CI: 105.60-152.59) 

FISH¶ 17p- 

11q- 

Tri 12 

13q- 

Normal 

12/60 

11/60 

6/60 

18/60 

13/60 

IGHV∆ Mutated 

Un-mutated 

14/26 

12/26 

Staging at the time of 

sample collection 

A 

B 

C 

22/60 

13/60 

25/60 

*Prior therapy included steroid, chlorambucil, or fludarabine plus cyclophosphamide and rituximab. 

#WBC (white blood cell count) was performed at the time of sampling. 

¶FISH (fluorescence in situ hybridisation) was performed at or prior to sampling. 

∆IGHV status refers to somatic mutation in IGHV gene of CLL cells as compared with the gene sequence of the nearest 

germ-line using 2% as a cut-off.  

 

Initial descriptive analysis of clinical information showed that there was a predominance of samples 

from males (>70%) over females (<30%) in this study, as well as more cases of mutated IGHV (M-IGHV) 

and un-mutated TP53 (Figure 3.19). The majority of cases (almost 50%) were of Stage C, followed by 

Stage A (31%) and Stage B (21%). 
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When categorising those treated and untreated, I grouped them into ’Untreated’, ‘Previously treated 

but not currently’ and ‘On current treatment’. As seen in Figure 3.19, almost 56% of cases in the study 

were untreated, almost 17% were previously on treatment but not on a current treatment and 27% 

were on treatment at the time of sample collection. 
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Figure 3.19 Summary of Clinical Data Analysis. 

 

 

Percentage Distribution of cases based on Gender (top left), IGVH mutational status (top middle), Staging (top right), TP53 mutational status (bottom left), Treatment category 

(bottom middle) and Risk stratification based on chromosomal abnormalities (bottom right). Statistical Analysis and figures generated by SPSS 2.4 
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As seen in Figure 3.20, only 3 cases did not develop any NLCs (NLC Score 0) and combined with poor 

NLC Score (+), this gave just under 50% of all samples. Those that gave a Moderate NLC Score (++) 

accounted for about 20% of all cases and those that gave a High NLC Score (+++) accounted for about 

30% of all cases (Figure 3.20 top left).  

I then performed statistical analysis to see if there is a significant correlation between NLCs score and 

any of clinical features using Chi squared and Fisher-Freeman-Halton exact test. There was no 

significant trend seen when comparing the proportions of NLC Score distribution within IGHV 

mutational status (p=0.729), nor TP53 (p=0.259) and Chromosomal abnormalities (p= 0.175).  

There was no trend seen with regard to NLC score distribution and treatment category with p=0.931 

(Figure 3.20 top right).  

When subdividing CLL samples according to the clinical stage, it appeared that samples with poor NLC 

Score (1+) covered just under half of Stage A and C but only 23% in Stage B (Figure 3.20, middle). 

Moderate NLC score (2+) samples accounted the most in Stage B cases (38%) followed by Stage C 

(28%) and finally Stage A (9%). High NLC score (3+) accounted the most in Stage A (45%), followed by 

Stage B (38%) and finally Stage C (16%). Interestingly, samples with the lowest NLC Score (0) were all 

in the category of Stage C (Figure 3.20, middle). This trend, however, was not significant using Fisher-

Freeman-Halton exact test (p=0.54). 

I wanted to find out if this pattern can be explained due to treatment, so I separated the samples into 

treated and untreated subgroups (See Appendix Table 7.2). The trend that was seen earlier was indeed 

replicated within untreated samples (Figure 3.20, bottom left) but not really seen with treated 

samples (Figure 3.20, bottom right). The NLCs score was inversely correlated with the clinical stage, 

which was statistically significant when analysed using Chi Squared test (p value <0.05). 

Next, I wanted to see if there was a correlation between the amount of monocytes in circulation (i.e. 

in the PBMC) and the development of NLCs (i.e. NLC score). In order to answer this, I calculated and 

used the percentage of monocytes from the sum of absolute monocytes and lymphocytes for each 

PBMC samples used. As seen in Figure 3.21, there was no significant trend seen when comparing the 

percentage of monocytes in PBMC with NLC Score, nor with the mean percentage of monocytes in 

PBMC with NLC score. 

Additionally, I analysed repeated samples (re-bleeds from same patients) to observe for any trends on 

NLC score with subsequent samples (See Appendix Figure 7.1). It is worth noting that generally with 

re-bleeds, it is usually taken before the start of treatment if not newly started. There were no 

significant trends seen with the NLC scores with repeat samples. 
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Figure 3.20 Summary of Clinical Data in the context of NLC Scores. 

 

Distribution of cases based on NLC score (top left), NLC Score distribution based on treatment category (top right), 

Distribution of NLC scoring based on Staging (middle), NLC score distribution amongst samples that were Untreated (bottom 

left) vs Treated (bottom right) and their staging at the time of sample collection. The trend seen in staging with NLC Score 3 

amongst untreated group was analysed using Chi Square test after subdividing the data into Low (0, 1, 2) and High (3) and 

was found to be statistically significant with p value < 0.05. Statistical Analysis and figures generated by SPSS 2.4. 
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Figure 3.21 Summary of NLC Scores with levels of circulating monocytes. 

 

 

 

 

Comparison of NLC scores with percentage monocytes in PBMC (left) and mean percentage monocytes in PBMC (right). With the percentage monocytes in PBMC (left) the y-axis is in log 

scale and the dark lines are Median average values. Using One Way ANOVA, there was no significant difference between the mean values (right) from the different groups. Statistical Analysis 

and figures generated by SPSS 2.4 
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3.3.5 Effects of co-culture on CLL cells 

3.3.5.1 Preparing co-culture experiments 

To confirm that NLCs exert cytoprotective effect on CLL cells when in co-culture, as previously reported 

(Burger et al. 2000), co-culture experiments were to be performed by culturing thawed autologous 

CLL cells with the NLCs developed from the same CLL samples. Viability of CLL cells with and without 

co-culture on the established NLC layer was quantified by FACS analysis (described in Methodology). 

To prepare the NLC monolayer, the NLCs were developed as previously mentioned until they reached 

their plateau phase. Figure 3.22 provides an example what NLCs look like before co-culturing with 

autologous CLL cells (A) and during co-culture with CLL cells (B). The CLL cells were removed by gentle 

pipetting so as to leave behind the NLC monolayer (A). On close view it can be seen that minimal or 

no CLL cells remained. Given that the monolayer was prepared, autologous CLL cells were thawed and 

cultured at a density of 3x106/ml. 

 

 

 

A    

 

B 

 
 

 

 

Figure 3.22 Phase contrast images of co-culture of CLL cells with NLCs. 

Phase contrast images (#3484) of a typical visual field of a culture plate where NLCs were developed for about 15 days at low 

magnification. CLL cells were washed off, leaving behind the adherent NLCs at low magnification (A), autologous CLL cells 

were added (Day 4 after co-culture, B). 
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3.3.5.2 Analysis of spontaneous cell death 

When preparing the co-culture experiments to evaluate effects of co-culture of CLL cells with NLCs, I 

also prepared both types of cells cultured alone so that I can not only directly compare the viability of 

the co-cultured CLL cells to that of CLL cells cultured alone, but also monitor how the NLCs behave in 

the absence of CLL cells. Therefore, I prepared wells on multi-well plates with CLL+NLC, NLC alone and 

CLL alone and observed for morphology and viability measured over 4 days. By morphological 

observation under the phase contrast microscope it was apparent that the CLL cells maintained their 

healthy, glowing appearance upon co-culture when compared with CLL cells cultured alone (Figure 

3.23).  

 

Figure 3.23 Co-culture conditions maintained healthy, glowing appearance of both NLCs and CLL cells when compared to 

their respective cells cultured alone. 

Phase contrast images of co-cultured NLCs and CLL cells (3484) on Day 6 (left panel), NLCs cultured alone (middle panel) and 

autologous thawed CLL cells cultured alone (right panel). Fresh PBMCs was cultured as described till the fully developed NLCs 

appeared at approximately Day 14. Cryopreserved autologous CLL cells were then thawed and cultured with the NLCs. 

 

Interestingly, the NLCs also displayed a healthy, glowing appearance when in co-culture with CLL cells 

as compared with NLCs cultured alone (Figure 3.23, compare right panel to middle panel). The NLCs 

cultured alone appeared to be dislodged from the groups/clusters and some NLCs seemed to lose 

glowing appearance. Eventually the NLCs also started to disintegrate. It was not possible to quantify 

the viability of the NLCs by flow cytometry due to the difficult and inefficient method of harvesting 

them form the culture plate. I therefore focused on analysis of cell death of CLL cells harvested from 

both culture conditions by flow cytometry. 

As shown in Figure 3.24, in contrast to CLL cells cultured alone, the CLL cells in co-culture retained 

better viability throughout the 4-day period of observation. This coincided with what was seen under 

phase contrast microscope. In total, 8 CLL samples were used and the difference in viability between 

CLL cells in co-culture and cultured alone was statistically significant from Day 2 with a p value of less 
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than 0.05. Therefore, co-culturing CLL cells with NLCs protected them from spontaneous death, a 

result in agreement with previous reports (Burger et al. 2000; Tsukada et al. 2002). 
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Figure 3.24 Co-culture with NLCs protected CLL cells against spontaneous cell death. 

Cryopreserved CLL cells were thawed and co-cultured with NLCs as described in Methods. CLL cells cultured alone were used a control. Viability of CLL cells was monitored over 4 days by flow 

cytometry following Annexin V/ PI staining. Each data point represents mean ± SEM of 8 independent experiments using 8 different CLL samples. * refers to p value of <0.05 which is considered 

statistically significant. 
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3.3.5.3 Levels of CCL3 and CCL4 in the culture medium 

It has previously been reported that NLCs induce CLL cells to secrete the T-cell chemokines CCL3 and 

CCL4 into the culture medium where they can be measured by ELISA (Burger et al, 2009). I therefore 

also measured levels of CCL3 and CCL4 in the supernatant collected from co-cultures of CLL cells with 

NLCs.  

As seen in Figure 3.25, the levels of CCL3 (blue) and CCL4 (red) were increased from day 5 and reached 

a plateau by day 10, which continued to day 13. This result was similar to what has been reported 

(Burger et al. 2009b). 

 

3.3.5.4 Expression of sIgM and sIgD 

It has also been shown that CLL cells co-cultured with NLCs displayed significant reduction in surface 

expression of IgM and IgD, which may indicate that NLCs can engage B cell receptors (BCR) of CLL cells 

(Ten Hacken et al, 2016). I therefore monitored expression of surface IgM (sIgM) and IgD (sIgD) in CLL 

cells co-cultured with NLCs on days 0, 8/9 and 13/14 by flow cytometry.  

As seen in Figure 3.26 (top), the average sIgM expression appeared to have been quite low at the start, 

then rose by two-fold on Day 8/9 of co-culture and then fell back to base-line on Day 13/14. Overall 

the changes in sIgM was not significant and there was no consistent trend of either direction (i.e. 

increase or decrease). The average sIgD expression was quite high at initial stage on Day 0, in contrast 

to sIgM (Figure 3.26 bottom). At the subsequent time points the levels of sIgD seemed to have 

decreased over the 14 days. Although a clear trend was seen, the changes were not statistically 

significant.  
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Figure 3.25 CCL3 and CCL4 protein expression in CLL-NLC cultures. 

CLL PBMCs were cultured for up to 13 days with concurrent development of NLCs and supernatant samples at the indicated time points were collected for analysis of CCL3 (blue line) and 

CCL4 (red line) by ELISA, as described in Methods. 
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Figure 3.26 Surface expression of IgM and IgD of CLL cells cultured with NLCs over 14 days. 

Surface expression of IgM (top) and IgD (bottom) of CLL cells cultured with NLCs over 14 days. Fresh PBMCs was cultured as 

described for up to 14 days. Surface IgM and IgD of CLL cells was monitored three times during the 14 days by flow cytometry 

as described. Data represent mean ± SD of independent experiments using 3 different CLL samples. Mean fluorescence 

intensity ratio (MFIR) of CLL cells stained with respective isotype control antibodies (Control) was also shown as mean ± SD. 

 

Taken altogether, a pro-survival effect by NLCs on CLL cells was seen compared to CLL cultured alone. 

There was a trend of rising CCL3 and CCL4 in the supernatant of PBMC cultures till Day 5 where they 

remained high till the end of the experiment. sIgM of CLL cells did not give a clear trend with the 

presence of NLCs, however, sIgD had a trend of decreasing expression in the presence of NLCs.  
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3.4 Discussion 
 

In this chapter, I confirmed and expanded the previous finding that NLCs can be developed using fresh 

PBMCs from CLL patients under standard culture conditions. The optimal cell density for development 

of NLCs I found was 10 x 106 cells/ml. This is consistent with conditions described previously by some 

researchers (Nishio et al. 2005). However, others have reported to develop NLCs using much lower 

cell densities of CLL PMBCs (Filip et al. 2009; Jia et al. 2014; Nishio et al. 2005; Polk et al. 2016). Use of 

higher cell densities to develop NLCs was also being reported (Burger et al. 2000). It thus indicates 

that, although the cell density of 10 x 106/ml was an optimal concentration of cells used to develop 

NLCs under the culture conditions in my study, it is not a critical factor in determining whether NLCs 

can be developed in vitro.  

My description of NLCs detailing their pleomorphism (ranging from large oval, tail-like projections, 

spindle appearance, elongated, group/cluster formation, etc.) independently confirmed the dynamic 

process of NLCs development. The early description of NLCs in literature, e.g. being ‘oval/adherent’ 

by (Burger et al. 2000) or ‘large/round/adherent’ (Tsukada et al. 2002) provided a basic description of 

morphological features of NLCs. In my study, I used the MGG staining technique and produced images 

with more detailed cellular structure and shape of NLCs, revealing the vibrant process of 

differentiation from monocytes to macrophages. For example, the descriptions of large oval adherent 

and tail-like projections suggests that NLCs exhibited features of cell motility, similar to motile cells 

such as fibroblasts (Herant & Dembo 2010).  

The time course observation that I recorded revealed that most CLL PBMCs samples present with 

distinguishable NLCs as early as 2 days after culturing and NLCs reach their plateau by Day 8-12. I 

performed my co-culture experiments as soon as NLCs reached plateau. This is in contrast with other 

researchers who performed their experiments at Day 14 (Burger et al. 2000; Gautam et al. 2016; Jia 

et al. 2014), which may explain the different results observed between the studies. Reassuringly, one 

of the earlier studies also mentioned the appearance of the NLCs after 3 days in culture, which 

increased in number in the following  days and finally formed a layer of large, round adherent or 

fibroblast-like cells after 14 days in culture (Burger et al. 2000). This description was entirely consistent 

with what I have observed in my study. 

The most striking observation I made was the wide variation in developing NLCs from primary CLL 

PBMC samples and this variation applied to both the kinetics and magnitude of NLCs generated. 

Although it has been previously reported that not all CLL PMBC samples developed NLCs (Jia et al, 

2014), the extent of the variation prompted me to devise an NLC score system to assign an NLC score 
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for each and every samples used. To investigate if the NLC scores correlate with any clinical features 

of CLL samples, I collected available clinical information for all the samples used. Over the course of 

over 4 years, 88 samples were used for this chapter, 65 of which were samples not re-bled from the 

same patient. The clinical data analysis showed that the samples were primarily from male patients, 

almost half of samples from treatment naive patients, and majority of the patients with a Stage C 

progressive disease. Most of the samples had 13q- or no chromosomal abnormalities, accounting to 

over 50% of the cohort. The clinical information is thus very similar to the general population of CLL 

patients (Baliakas et al. 2019). The samples used in my study is thus a representative cohort of CLL 

patients.  

When subgrouping CLL samples based on the NLC scores, I did not find any correlation between NLC 

score and IGHV mutation, TP53 mutation, treatment history nor chromosomal abnormalities. 

However, when analysing clinical staging I observed that samples with increasing NLC Scores inversely 

correlated with clinical staging of the disease. This inverse correlation was statistically significant in 

CLL samples from untreated patients. The exact cause is yet unknown and would thus require further 

work to explain.  

Previous studies have reported the correlation between number of NLCs and clinical outcome of 

disease. In a study where authors examined the development of NLCs from CLL PBMC samples from 

65 treatment naïve patients, they found that various number of NLCs was developed in 58 samples 

(Filip et al., 2009 and 2013). Among the samples that have developed NLCs, 49 CLL samples developed 

more than 20 NLCs/mm2 and 9 samples developed fewer than 20 NLCs/mm2. They found that the 

number of NLCs was positively correlated with serum level of β2-microglobulin and absolute 

monocyte count (AMC). However, no correlation was found between number of NLCs and clinical 

stage of the disease, whole blood count, lymphocyte count, or CD38 and ZAP70 expression. 

Interestingly, during a 6-year follow-up a shorter overall survival was observed in patients whose CLL 

samples produced a higher NLC count (i.e. >20 NLCs/mm2), albeit not statistically significant (Filip et 

al., 2009 and 2013). Higher number of NLCs was also reported to correlate with shorter treatment-

free survival and shorter overall survival (Boissard et al. 2016).  

Meanwhile, higher AMC has been reported in CLL patients compared to normal healthy controls 

(Maffei et al. 2013). Higher AMC has been linked to progressive disease and early treatment in CLL 

(Herishanu et al. 2013, Friedman et al. 2016).  

In my study, however, there was no significant correlation between the blood monocyte count and 

the NLC scores, which is in disagreement with the findings from the previous studies (Filip et al., 2009 

and 2013). This may be due to the fact that the studies by Filip et al. (2013a) recorded the amount of 
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NLCs as absolute upon counting rather than categorising into NLC scores. Perhaps if I were to use 

meticulous methods to record absolute counts of NLCs, I may be able to perform accurate statistical 

analysis to correlate with absolute monocyte count. The NLC scoring could possibly be refined to 

include absolute NLC count. 

Regarding the phenotypic marks of NLCs, I was able to confirm the expression of CD14, CD68 and 

CD163 in NLCs and CD19 CLL cells, respectively, by immunofluorescence microscopy. CD14 and CD68 

were exclusively present in NLCs, localised within the cytoplasm near the nucleus. They also had 

variable levels of expression during the different phases of NLC development. CD163 was also present 

exclusively in NLCs and localised throughout the cytoplasm depicting the actual shape of the cells. It 

was also present throughout all phases of development of NLC. This suggests that CD163 may be a 

potential marker for NLCs in vivo. This notion is in agreement with the finding from a study 

investigating the relationship of NLCs with disease progression of CLL (Boissard et al. 2016a), where 

CD163 was considered to be the most reliable marker for NLCs as compared to CD68. The above result 

was also consistent with reports from others that NLCs express CD68, CD163 and CD14 (Boissard et 

al. 2015a; Fiorcari et al. 2015; Marchesi et al. 2015). Other studies had also shown that the expression 

of CD163 and CD68 was detected in monocytes/macrophages in the spleen (Nagelkerke et al. 2018; 

Ysebaert et al. 2010) and lymph nodes (Giannoni et al. 2014; Ysebaert et al. 2010). This suggests that 

what is seen in vitro of NLCs derived from CLL PBMCs culture is also relevant in vivo within the tumour 

microenvironment such as lymph nodes and spleen. I have observed the variation in levels of CD68 

and CD14 during the different phases of development of NLCs. The levels of CD68 and CD14 expression 

may influence differentiation of the NLCs, particularly for the subsequent polarisation towards M2-

type macrophages, as suggested by Gu et al. (2019). Therefore, the biological significance of the 

variation in expression of CD68 and CD14 by NLCs is still unclear and merits further investigation. 

The co-culture experiments I have performed clearly demonstrated the protective effects of NLCs on 

CLL cells, which is entirely in agreement with the findings reported by numerous studies (Burger et al. 

2000; Filip et al. 2013b; Nishio et al. 2005; Tsukada et al. 2002). My co-culture experiments 

predominantly used CLL samples with an NLC Score of 2 or 3. Co-cultured NLCs and CLL cells, as well 

as their respective counterparts cultured alone, were closely monitored under light microscope for 

morphologic changes. Indeed, compared with their counterparts cultured alone, CLL cells co-cultured 

with NLCs looked more viable, as indicated by their healthy-looking appearance. One study, however, 

reported that samples with lower viability developed NLCs faster and those with higher viability failed 

to develop NLCs in an experiment using 5 samples (Jia et al. 2014), which was not observed in my 

study. 
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Unexpectedly, compared to NLCs cultured alone, NLCs co-cultured with CLLs also displayed healthy-

looking appearance. This suggests that CLL cells could also actively influence the wellbeing of NLCs. As 

of yet, there have been no report in the literature describing the effect that CLL cells have had on NLCs 

in vitro. This effect clearly merits further study as it could potentially unravel how CLL cells participate 

in shaping the microenvironment into a safe haven for the leukemic cells.    

I also examined the levels of CCL3 and CCL4 in the medium of the co-cultures as it was shown that 

NLCs can induce CLL cells to express CCL3 and CCL4 and that increased levels of CCL3 and CCL4 were 

detected in the supernatant collected from medium of CLL PBMCs cultures over time (Burger et al., 

2009; Zucchetto et al. 2009).  The increased levels of CCL3 and CCL4 was also linked to unfavourable 

clinical outcome of CLL patients (Hartmann et al. 2016; Sivina et al. 2011). Solid cancers such as colon 

cancer, as well as local reaction to pathogenic challenge and wounding have been shown to secrete 

CCL3 and CCL4 which lead to recruitment of macrophages (Pollard 2004). 

I also investigated the effect of NLCs on CLL cells regarding changes in surface expression of IgM and 

IgD of co-cultured CLL cells. Decrease in levels of sIgM and sIgD could be a result of activation of BCR 

signalling pathway, which plays a critical role in CLL biology (Ten Hacken et al. 2016). My results 

showed a continuous decrease in the level of sIgD in co-cultured CLL cells over the 14 days of co-

culture, although the decrease is not statistically significant. In contrast to sIgD, changes in sIgM did 

not occur in a clear trend. Instead, overall expression of sIgM of CLL cells remained low throughout 14 

days of co-culture. My results thus were in contradiction to a previous report where a significant 

decrease in both IgM and IgD of CLL cells was seen during a 14-day co-culture with NLCs using 4 CLL 

samples from patients with un-mutated IGHV (Ten Hacken et al. 2016). This discrepancy could be 

because of a low number of samples examined in my study. It is thus important that a greater number 

of randomly selected CLL samples should be used to get a clearer picture as to whether NLCs affect 

the expression of sIgM and sIgD in CLL cells. 

In summary, after I optimised conditions to develop NLCs from fresh CLL PBMCs, I have confirmed 

many features of NLCs in terms of their morphology, expression of phenotypic markers and biological 

effects of on CLL cells. In addition, I made an important observation on the wide variation in both 

temporal and spatial terms in development of NLCs between individual CLL samples. This variation 

may well reflect the heterogeneous nature of the disease. This observation is thus relevant to the in 

vivo interaction between NLCs and CLL cells in the tumour microenvironment such as lymph nodes, 

bone marrow and spleen. To better understand the molecular mechanisms mediating the in vivo 

interactions of NLCs with CLL cells, further study is required to understand how NLCs and CLL cells 

cross-communicate each other at the level of the gene expression.  
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One further point to make is that study of NLCs requires continuous supply of fresh CLL PBMCs 

samples. Given the difficulty experienced in obtaining fresh CLL samples on a regular basis and the 

laborious, time-consuming techniques used to prepare the NLCs for subsequent experiments, 

together with the considerable variation in generating NLCs from CLL PBMC samples, there is clearly 

a need to explore the use of a cell line model of NLCs. In the next chapter, I will therefore describe the 

development of a cell line model of NLCs.  
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4 Development of a cell line model using THP-1 cells to mimic the 

pro-survival effects of NLCs on CLL cells 

 

4.1 Introduction 

I have shown in the previous chapter that the interaction between NLCs and CLL cells is a complex 

process which clearly impacted on the survival of CLL cells. Better understanding of this process is 

important as it may shed light to how CLL cells evade apoptosis within the tissue microenvironment 

via the interaction with NLCs and eventually develop resistance to therapies. However, I have also 

shown that there was a huge variation in the amount of NLCs generated from individual CLL samples. 

Among the 88 CLL samples I used in the previous part of the study, only about half of the samples 

developed adequate amount of NLCs that can be used for the subsequent co-culture experiments. 

Although this variation was not overly surprising given the heterogeneous nature of the disease, it 

caused a significant problem to me in obtaining consistent and reproducible results. This problem, 

together with some practical constraints such as entirely relying on supply of fresh CLL blood samples 

and continuous maintenance of primary cell cultures (for up to 2 weeks for each sample), prompted 

me to look for a cell line model of NLCs so that I can use it to perform experiments consistently and 

efficiently. 

Cell lines have been used by cancer research scientists as model systems of cancer cells ever since the 

first human cancer cell line (i.e. Hela cells) was established in the 1950s (Masters 2002). Discoveries 

made from cell line-based research have complemented that from studies using tumor cells/tissues 

and animal models for different types of cancers. Together, they advanced our understanding of the 

biology of cancer and contributed to development of new treatment of cancer. Therefore, cell lines 

are valuable tool for discovery. However, cell lines have major limitations, namely the genetic 

instability acquired during long term culture, selective growth of subclones of cancer cells caused by 

culture condition and lack of interaction of components within the tumour microenvironment 

(Gazdar, Gao & Minna 2010; Kaur & Dufour 2012). Additional differences in other characteristics are 

summarized in Table 4.1. Therefore, with the advantages and limitations of cell lines in mind I set out 

to search a suitable cell line that can be developed as an in-vitro model for NLCs in my study. 
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Table 4.1 Brief summary of characteristics of primary cells vs cell Lines 

Characteristics: Primary Cells Immortalized Cell Lines 

Lifespan Limited  Infinite  

 Resemblance of tissue 

characteristics 

Good Partial 

Genetic 

mutations/Modifications 

Low High 

 

Since NLCs are monocyte derived macrophages, I focused my search on cell lines of monocytic origin. 

 

4.1.1 Choice of human monocytic cell lines 

Monocytes are circulatory cells from myeloid origin that when migrating from circulation to tissues, 

can develop into macrophages or dendritic cells (Chanput, Peters & Wichers 2015). They serve three 

main functions in the immune system, namely phagocytosis, antigen presentation and cytokine 

production. The cell lines THP-1 and U937 are of monocytic origin that can be differentiated into 

various types of macrophages (Chanput, Peters & Wichers 2015). 

 

4.1.1.1 THP-1 cell line 

The THP-1 cell line is derived from leukemic cells from a patient with acute monocytic leukemia, with 

the cell line established in 1980 (Chanput, Peters & Wichers 2015; Tsuchiya et al. 1980). THP-1 cells 

retain morphological and differentiation properties of primary monocytes and macrophages. They 

appear in a large, round single-cell morphology and express distinct monocytic markers (Chanput, 

Peters & Wichers 2015; Tsuchiya et al. 1980). They can be differentiated into macrophages with the 

addition of phorbol 12-myristate 13-acetate (PMA). They grow in suspension and do not adhere to 

surface of the plastic culture plates/flasks (Chanput, Peters & Wichers 2015; Takashiba et al. 1999; 

Tsuchiya et al. 1980). 

THP-1 cells have relatively homogenous genetic background, resulting in fewer changes in cell 

phenotype (Chanput, Mes & Wichers 2014; Chanput, Peters & Wichers 2015). Their average doubling 

time is around 35-50 h (Chanput, Mes & Wichers 2014). The growing rate in complete RPMI medium 

is much higher as compared to that of primary PBMC-derived monocytes (Chanput, Mes & Wichers 
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2014). There is no report for presence of infectious viruses in the THP-1 cells, making them relatively 

easy and safe to use (Chanput, Mes & Wichers 2014). It was reported that this cell line can be cultured 

in vitro for up to 25 passages (approximately 3 months) with no detectable changes in cell phenotype 

and function (Chanput, Mes & Wichers 2014). The availability of primary PBMC-derived monocytes is 

often limited and these monocytes are not suited for long-term storage in liquid nitrogen (Tedesco et 

al. 2018). THP-1 cells, however, can be stored for a number of years following appropriate storage 

protocol, without any obvious effects on monocyte-macrophage features and cell viability (Chanput, 

Mes & Wichers 2014). Co-cultivation of THP-1 cells with other cell types has been reported for use as 

cell line models to mimic in-vivo situation (Chanput, Mes & Wichers 2014). 

 

4.1.1.2 U937 cell line 

The U937 cell line is derived from human myeloid leukaemia cells that was isolated from the histiocytic 

lymphoma of a 37-year-old male patient (Chanput, Peters & Wichers 2015). Similar to THP-1 cells, 

U937 cells also exhibit many features of monocytes, differentiate into macrophages with typical 

morphology and characteristics (Chanput, Peters & Wichers 2015; Mendoza-Coronel & Castanon-

Arreola 2016). It is used to study the behaviour and differentiation of monocytes, as U937 cells can be 

induced to differentiate in response to a number of stimuli (Chanput, Peters & Wichers 2015; Rots et 

al. 1999; Strefford et al. 2001).  

Similar to THP-1 cells, U937 cells can also be cultured in vitro for up to passage 25 or higher (Chanput, 

Peters & Wichers 2015). Unlike THP-1 cells originated from blood monocytes with less differentiation 

characteristics, U937 cells are of tissue origin, thus maintain more differentiation features (Chanput, 

Peters & Wichers 2015). For example, U937 cells can be induced to differentiate into macrophages 

with the use of 1,25-dihydroxyvitamin D3 (VD3 at 100nM) or 12-O-tetradecanoylphorbol-13-acetate 

(TPA at 20ng/ml) (Chanput, Peters & Wichers 2015). 

Other cell lines with similar properties to THP-1 and U937 cells include ML-2, HL-60 and Mono Mac 6 

cells, but there are far fewer reported studies using them (Chanput, Peters & Wichers 2015).  

Given the information described above, together with the fact that far more studies were published 

using THP-1 cells than U937 cells and that THP-1 cells closely resemble primary monocytes, I decided 

to use THP-1 as the cell line of choice in an attempt to mimic NLC behaviour. 
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4.1.2 PMA vs VD3 for chemically differentiating the cell line monocytes to macrophages 

PMA inhibits the growth and allow differentiation of THP-1 and U937 cell line in dose dependent 

pattern. PMA does this by activation of Protein Kinase C (PKC) because it mimics the physiological 

Diacylglycerol (DAG) which is a PKC activator (Chang et al. 2012; Schwende et al. 1996). PKC comprises 

of a series of kinases that are involved in the regulation of cell proliferation, differentiation, and other 

cellular functions (Schwende et al. 1996). 

High concentrations of phorbol ester results in downregulation of certain isoforms of PKC and 

decreased activity of PKC so this will lead to downregulation of certain transcriptional factors 

(Schwende et al. 1996). 

According to one study, THP-1 responded better with PMA with an almost complete arrest in 

proliferation but VD3 was less effective with unchanged division up to 48h (Schwende et al. 1996). 

THP-1 cells incubated with PMA became adherent and developed a macrophage-like appearance but 

not with exposure to VD3 (Schwende et al. 1996). THP-1 was able to phagocyte target foreign bodies 

and the phagocytic activity was enhanced with PMA and VD3-differentiated cells. PMA-differentiated 

cells showed almost 2-fold higher phagocytic activity than those with VD3 (Schwende et al. 1996). 

Based on literature, 0.5x106/ml of THP-1 monocytes fully differentiated into macrophages after 48h 

incubation at minimal concentration of 100ng/ml of PMA, resulting in macrophages with a phagocytic 

capacity for latex beads and expressing cytokine profiles that resembled PBMC monocyte-derived 

macrophages (Chanput, Mes & Wichers 2014; Chanput, Peters & Wichers 2015). 

Given the information, I decided to use PMA as the agent of choice to chemically differentiate the 

THP-1 cell lines to macrophages for the study. 

 

4.1.3 Polarization of THP-1 macrophages 

THP-1 cell lines have been shown to differentiate into macrophages using phorbol 12-myristate 13-

acetate (PMA) (Aldo et al. 2013; Chang et al. 2012; Chanput et al. 2013; Daigneault et al. 2010; Genin 

et al. 2015; Kohro et al. 2004; Park et al. 2007; Ramprasad et al. 1996; Schwende et al. 1996). Once 

differentiated with PMA (M0), they do not proliferate further and adhere to the surfaces of culture 

plates (Aldo et al. 2013; Chanput et al. 2013; Chanput, Mes & Wichers 2014; Chanput, Peters & 

Wichers 2015; Daigneault et al. 2010; Forrester et al. 2018; Genin et al. 2015; Kohro et al. 2004; Park 

et al. 2007; Qin 2012; Ramprasad et al. 1996; Schwende et al. 1996; Takashiba et al. 1999; Tsuchiya et 

al. 1980).  
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When exposed to interferon gamma (IFN-γ) and lipopolysaccharide (LPS), the M0 cells differentiate to 

M1 phenotype (Chanput et al. 2013; Genin et al. 2015; Park et al. 2007; Takashiba et al. 1999), and 

with exposure to interleukin-4 (IL-4) the M0 cells differentiate into M2 phenotype (Chanput et al. 

2013; Genin et al. 2015; GmbH 2015; Gordon 2003; Gordon & Martinez 2010; Italiani & Boraschi 2014; 

Jablonski et al. 2015; Mantovani et al. 2002; McWhorter et al. 2013; Mills 2015; Roszer 2015; Sica et 

al. 2008).  

It is important that the monocyte be PMA-differentiated first (M0) and then polarized to either M1 or 

M2, as the THP-1 cell (unexposed to PMA) would not change their morphology into macrophage-like, 

and only mild expression of some M1/M2 marker genes were observed (Chanput, Mes & Wichers 

2014). 

This THP-1 cell line was also used in co-culture experiment studies, with platelets, T-lymphocytes, 

vascular smooth muscle cells (Aslam et al. 2007; Azenabor et al. 2011; Chanput, Mes & Wichers 2014; 

Qin 2012; Zhang et al. 2008), and interestingly with adipocytes where it was shown that co-cultured 

primary human adipocytes with THP-1 macrophages resulted in a induced shift of THP-1 macrophages 

to M2 phenotype (Chanput, Mes & Wichers 2014; Spencer et al. 2010). 

 

4.2 Objectives 

• To determine if THP-1 cells can be developed as an in-vitro model of NLCs, 

• To compare the similarities and differences of the cell line model to NLCs in aspects of 

morphology, phenotype and biological functions. 
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4.3 Methods 

4.3.1 Summary of CLL samples used for this part of the study 

For this chapter, a total of 14 CLL samples were used and the summary of clinical information of these 

samples is displayed in Table 4.2. A more detailed view of the clinical data can be seen in Appendix 

Table 7.1. The samples were selected based, in part, on their sensitivity to fludarabine.  

Table 4.2 Summary of clinical features of the CLL samples used in this chapter 

Gender Male 

Female 

11 

3 

Prior therapy* Yes 

No 

4 

8 

FISH¶ 17p- 

11q- 

13q- 

1/10 

2/10 

7/10 

IGHV# Un-mutated 2 

Staging at the time of sample collection A 

B 

C 

2/10 

5/10 

3/10 

*Prior therapy included steroid, chlorambucil, or fludarabine plus cyclophosphamide and rituximab. 

¶FISH (fluorescence in situ hybridisation) was performed at or prior to sampling. 

#IGHV status refers to somatic mutation in IGHV gene of CLL cells as compared with the gene sequence of the nearest 

germ-line using 2% as a cut-off.  

 

Of the 14 samples were used, the majority were from male patients, untreated and were of stage B.  
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4.3.2 Culturing and differentiation of THP-1 cells.  

The THP-1 cell line (derived from human monocytic leukaemia cells) was obtained from the European 

Collection of Authenticated Cell Cultures (Salisbury, UK), and maintained in culture flasks containing 

the complete RPMI-1640 medium as described above. To induce differentiation into macrophages, 

THP-1 cells (5 x 105 cells/mL) were treated with 5 ng/mL phorbol 12-myristate 13-acetate (PMA) 

(Sigma-Aldrich, Gillingham, UK) for 2 days, as previously described (Daigneault et al. 2010; Park et al. 

2007). For polarization to M1 macrophages, the medium of PMA-differentiated THP-1 cells was 

removed and replaced with fresh complete medium containing 20 ng/mL interferon- γ (IFN-γ) 

(PeproTech EC Ltd, London, UK) and 10 pg/mL lipopolysaccharides (LPS) (Sigma-Aldrich) for 24 h, as 

previously described (Chanput, Mes & Wichers 2014; Genin et al. 2015; Jablonski et al. 2015). To 

induce M2 macrophages, the medium of PMA-differentiated THP-1 cells was removed and replaced 

with the fresh complete medium containing 30 ng/mL interleukin-4 (IL-4) (R&D Systems, Oxford, UK) 

and incubated for 72 h, with additional IL-4 (30 ng/mL) being added at 48 h (Chanput, Mes & Wichers 

2014; Jablonski et al. 2015; McWhorter et al. 2013; Park et al. 2007). As described in Methodology, to 

perform a combined set of experiments using M0, M1 and M2 a timetable (Table 2.1) is followed to 

allow all conditions to be ready by the time the experiments are started. 

 

4.3.3 Co-culture experiments 

As described in Methodology, cryopreserved CLL samples were thawed and co-cultured at 3 x 106 

cells/mL with differently differentiated THP-1 cells for the indicated times. 

 

4.3.4 Analysis of cell death by flow cytometry 

As described in Methodology, CLL cells co-cultured with differentiated THP-1 cells in the presence or 

absence of cytotoxic agents were harvested at the end of indicated time points and analysed for cell 

death by flow cytometry following staining with FITC-labelled Annexin V (BD Biosciences, Oxford, UK) 

and propidium iodide (Sigma-Aldrich). 

 

4.3.5 Immunofluorescence microscopy 

As described in Methodology, cells were fixed with 4% paraformaldehyde and permeabilized in PBS + 

0.2% Triton X-100 in accordance with the manufacturer’s protocol (BD Biosciences) before staining 

with primary antibodies and their corresponding isotypic controls. Fluorescence-labelled secondary 
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antibodies were then applied to amplify the signal and the nuclei counterstained with diamidino-2-

phenylindole (DAPI).  

 

4.3.6 Measuring CCL3 and CCL4.  

As described in Methodology, levels of human CCL3 and CCL 4 in the culture medium were measured 

using commercial ELISA kits, in accordance with the manufacturer’s instructions (Thermo Fisher 

Scientific). The colour-metric changes were read using a spectrophotometer at 450nm. 

 

4.3.7 Surface IgM and IgD 

The THP-1-derived M0 and M2 macrophages are prepared as previously described. A level of surface 

IgM and IgD on CLL after thawing is measured as described  (Ten Hacken et al. 2016) and used as a 

basal level of expression (Day 0). The levels of expression in IgM and IgD on CLL cells co-cultured with 

M0 or M2 macrophages were measured for 3 consecutive days using 3 different CLL samples and then 

compared to Day 0. Following 3 days in co-culture, CLL cells were collected from the co-cultures and 

incubated at 3x106/ml under standard culture conditions and the levels of IgM and IgD on CLL cells 

were monitored for another 3 days. The expression levels are measured at 24, 48 and 72hrs, as 

described in Methodology. 

 

4.3.8 Measuring drug-induced cell death 

To determine drug-specific effect on cell death, cells that were not treated with the drug was used as 

a control. The amount of cell death in the control is considered as spontaneous cell death. Using 

Equation 4.1 below, the percentage of drug induced cell death can be calculated, as previously 

described (Zhuang et al, 2014). 

 

Equation 4.1 Drug Induced Cell Death 

% drug-induced cell death = 100 x (% cell death of drug-treated cells – % cell death of untreated cells) 

(100 – % cell death of untreated cells) 
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4.3.9 Statistical analysis 

Where appropriate, the paired, two-tailed Student’s t test was performed to determine the statistical 

significance of the difference between the two groups of data using SPSS (version 21) and Microsoft 

Office Excel 2017. 
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4.4 Results 

4.4.1 Morphological features of PMA-treated THP-1 cells resembled that of macrophages 

As shown previously, NLCs were developed from circulating monocytes and exhibited a macrophage 

phenotype. To differentiate THP-1 cells into macrophages, I added phorbol 12-myristate 13-acetate 

(PMA) as described in Methods. This caused the cells to become adherent and their proliferation 

ceased as expected from other studies (Chanput, Peters & Wichers 2015; Spano, Barni & Sciola 2013).  

As seen in Figure 4.1 (left), the PMA-treated THP-1 cells became adherent with a flattened oval and 

elongated shape, which resembled NLC cells.  Next, I wanted to see if there were any further changes 

of the PMA-treated THP-1 cells in the presence CLL cells. 

It is known from other studies that PMA induces differentiation of CLL B cells (Ghamlouch et al. 2014), 

so it was imperative to remove PMA from the differentiated THP-1 culture medium. Therefore, I 

removed the supernatant and washed the culture plate with pre-warmed PBS to remove residual PMA 

and any undifferentiated THP-1 suspension cells. I then plated thawed CLL cells on top of adherent 

THP-1 cells (Figure 4.1, middle). CLL cells were plated alone as a control (Figure 4.1, right).  

 

Figure 4.1. PMA-treated THP-1 cells co-cultured with CLL cells when compared to their counterparts cultured alone. 

Phase contrast images of THP-1 cells treated with PMA for 48 h when cultured alone (left), co-cultured with CLL cells (middle, 

red arrow head) and CLL cells cultured alone (right). THP-1 cells were plated at 5 x 105/ml and treated with PMA as described. 

Supernatant was removed and the monolayer was gently washed with PBS before adding CLL cells. CLL cells were thawed as 

described and plated with PMA-treated THP1 cells as well as cultured alone as described. 

 

A previous study has examined morphology of PMA-treated THP-1 cells using MGG staining and shown 

that they looked similar to NLCs displaying a flattened adherent morphology (Tsai et al. 2016). Thus, 

PMA-treated THP-1 cells displayed morphology similar to NLCs. Next, I looked at the 

immunophenotype of these cells using immunofluorescence microscopy.  
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4.4.2 Immunophenotype of PMA-treated THP-1 cells resembled that of NLCs 

There had been numerous studies characterising the phenotype of differentiated THP-1 cells where 

expressions of CD14 and CD68 were reported (Aldo et al. 2013; Forrester et al. 2018; Genin et al. 2015) 

as well as CD163 (Chimal-Ramirez et al. 2016; Genin et al. 2015; Riddy et al. 2018). In my study, 

immunofluorescence microscopy showed that the PMA-differentiated THP-1 cells expressed both 

CD14 and CD163 (Figure 4.2). As seen in Figure 4.2, the DAPI staining revealed the location of the cell 

nuclei. CD163 was scantly detected in the cytoplasm of the cells, whereas CD14 expression was more 

confined within the cytoplasm.  

 

Figure 4.2. PMA-treated THP-1 cells expressed CD14 and CD163. 

Immunofluorescence microscopy of PMA-differentiated THP-1 cells stained with DAPI (blue), antibodies against CD14 (green) 

and CD163 (red), and their respective isotype controls. Images were prepared using ImageJ software. 

 

The above result was in agreement with phenotype of NLCs described in the previous chapter where 

the expression of both CD14 and CD163 was detected. Expression of CD68 in PMA-treated THP-1 cells 

was also confirmed in previous studies (Genin et al. 2015; Maeß et al. 2014). 

Taken together, the morphology and phenotype of PMA-differentiated THP-1 cells resembled that of 

NLCs. I then proceeded to assess the functional features of PMA-treated THP-1 cells. 
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4.4.3 Effects of co-culture of PMA-treated THP-1 cells on CLL cells 

To investigate if PMA-differentiated THP-1 cells exert any cytoprotective effect on CLL cells when in 

co-culture like NLCs, I performed the co-culture experiments the same way as previously described 

with NLCs. Cryopreserved CLL cells were first thawed and recovered and then cultured at a density of 

3 x 106/ml over the washed monolayer. CLL cells cultured alone were used as controls. Viability of CLL 

cells with and without co-culture with the PMA-differentiated THP-1 monolayer was measured using 

FACS analysis (described in Methodology). 

 

4.4.3.1 Analysis of spontaneous cell death 

As seen in Figure 4.3, the co-cultured conditions preserved the viability of CLL cells significantly better 

than CLL cells cultured alone from as early as day 1 after co-culture. The average viability of CLL cells 

alone (blue) decreased following initial culturing, however, the average viability of CLL cells in co-

culture (red) did not decrease as drastically. From Day 1 the co-cultured CLL cells had a significantly 

higher viability can those cultured alone. 

 

Figure 4.3 Co-culture with PMA-treated THP-1 cells preserved the viability of CLL cells over 3 days when compared to CLL 

cells cultured alone. 

CLL cells were cultured alone and with PMA-differentiated THP-1 cells and the viability was monitored over 3 days. Viability 

of CLL cells was measured using Annexin V/ PI staining by flow cytometry. Data points represent mean ± SEM of 5 

independent experiments using 5 different CLL samples. * refers to p value of <0.05 which is considered statistically 

significant. 
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Thus, like NLCs, PMA-treated THP-1 cells protected CLL cells from spontaneous cell death when in co-

culture. Next, I wanted to examine if PMA-treated THP-1 cells also protect CLL cells against drug-

induced cell death. 

 

4.4.3.2 Analysis of drug-induced cell death 

Fludarabine, a major component of first line therapy in treatment of CLL was used as a cytotoxic agent 

to assess if the co-culture conditions could protect CLL cells from fludarabine-induced cell death. It 

was previously shown that 10µM fludarabine is capable in killing CLL cells following 48h incubation 

under standard culture conditions (Zhuang et al. 2014). Also, since CLL cells with 17p deletion do not 

respond to fludarabine-induced apoptosis (Turgut et al. 2007), I selected CLL samples that do not 

contain 17p deletion for the experiment. I incubated CLL cells with 10µM fludarabine for 48h and cell 

death was measured by flow cytometry.  

Percentage of fludarabine-induced cell death was calculated as described (Zhuang et al, 2014). Figure 

4.4 showed that there was a significant difference in cell death between co-cultured CLL cells and CLL 

cells cultured alone. On average, fludarabine killed ~50% of CLL cells when they were cultured alone, 

whereas only ~20% of CLL cells co-cultured with PMA-differentiated THP-1 cells were killed. This 

suggests that the PMA-differentiated THP-1 cells protected CLL cells from fludarabine-induced cell 

death. 
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Figure 4.4 Fludarabine drug-induced cell death was significantly reduced in CLL cells co-cultured with PMA-treated THP-1 

cells when compared to CLL cells culture alone.  

Cryopreserved primary CLL cells were thawed and plated in co-culture with PMA-treated THP-1 cells or cultured alone in 

standard conditions. CLL cells cultured in respective conditions were incubated with 10µM fludarabine for 48 hrs. The viability 

of CLL cells was measured by flow cytometry following annexin V/ PI staining. The percentage of drug-induced killing was 

calculated as described in Methods. Data points represent mean ± SEM of 2 independent experiments, each experiment 

performed using 4 different CLL samples. * refers to p value of <0.05 which is considered statistically significant. 

 

Taken altogether, the above results have shown that similar to NLCs, PMA-treated THP-1 cells 

conferred protection to CLL cells against spontaneous and drug-induced apoptosis. Importantly, co-

culture with PMA-treated THP-1 cells significantly protected CLL cells from fludarabine-induced cell 

death, resulting in drug resistance in CLL cells.  

As NLCs have been shown to more closely resemble M2 than M1 macrophages (Ysebaert et al, 2011; 

Filip et al, 2013), I further polarized PMA-differentiated THP-1 cells (here designated as M0 

macrophages) into M1 macrophages by IFN-γ and LPS, and into M2 macrophages by IL-4, as previously 

described (McWhorter et al, 2013; Chanput et al, 2014; Genin et al, 2015; Jablonski et al, 2015). In 

doing so, I hope to establish the relative contribution of M1 and M2 macrophages to the 

cytoprotective effect seen. 
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4.4.3.3 M1 and M2 macrophages can be distinguished using CD38 and EGR2 

Using the protocols reported from other studies to differentiate THP1 cells to M1 and M2 

macrophages (Chanput, Mes & Wichers 2014; Genin et al. 2015; Jablonski et al. 2015), I optimised 

conditions of polarisation of M1 and M2 macrophages from PMA-differentiated THP-1 cells for my 

study (See Appendix 7.14.7). To confirm phenotype of M1 and M2 macrophages, I examined the 

expression of the respective markers CD38 and EGR2 (Jablonski et al. 2015) by immunofluorescence 

microscopy. As seen in Figure 4.5, M0 macrophage did not express EGR2 nor CD38 (top row), M1 

macrophage expressed only CD38 (middle row) and M2 macrophage expressed only EGR2 (bottom 

row).  

 



120 
 

 DAPI EGR2 CD38 Merged 

M0 

    

M1 

    

M2 

    

Figure 4.5. M0, M1 and M2 macrophages were distinguishable by the unique expression of EGR2 or CD38. 

Immunofluorescence microscopy of PMA-differentiated THP-1 cells (M0 macrophages) and M1 and M2 macrophages, stained with anti-EGR2 (green), anti-CD38 (red) antibodies and 

counterstained with DAPI (blue). THP-1 cells were PMA differentiated for 24-48 hr (top row), M1 macrophages were prepared using IFN-γ and LPS (middle row) and M2 macrophages were 

prepared using IL-4 (bottom row) as described in the Methods. Images were prepared using ImageJ software. 
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4.4.3.4 M1 and M2 macrophages have distinguishable morphological features 

I also examined morphological features of M1 and M2 macrophages using corresponding polarising 

protocols. As seen in Figure 4.6 it was noted that M1 macrophages appear as large, oval-shaped cells 

(top left panel) whereas M2 macrophages are large and elongated (top right panel). These 

observations were consistent with the respective morphology of M1 and M2 macrophages 

(McWhorter et al. 2013).Co-culture with CLL cells did not alter the distinct morphology of M1 or M2 

macrophages (Figure 6, bottom panels). 

 

Figure 4.6. M1 and M2 macrophages have distinct morphological features with or without CLL cells. 

Phase contrast microscopy of PMA-differentiated THP-1 cells which were further polarized to M1 (Top left), and to M2 

macrophages (Top right). M1 and M2 macrophages were prepared using IFN-γ + LPS and IL-4, respectively as described in 

Methods. Bottom panels showed the respective images of M1 and M2 macrophages (red arrow heads) in co-culture with 

CLL cells. 
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4.4.4 Effects of co-culture with Polarised macrophages on CLL cells 

4.4.4.1 Analysis of spontaneous cell death 

I next repeated the same co-culture experiments I performed with M0 macrophages described 

previously, but this time using M1 and M2 macrophages for up to 3 days (Figure 4.7). CLL cells cultured 

alone were used for comparison. As shown in Figure 4.7, CLL cells co-cultured with M1 macrophages 

retained a higher viability than CLL cells cultured alone, however, the difference was not significant. 

In contrast, CLL cells co-cultured with M2 macrophages retained greatest viability than that of CLL cells 

cultured alone, which was statistically significant as early as 24h after co-culture. Furthermore, the 

viability of CLL cells co-cultured with M2 macrophages was significantly higher than those with M1 

macrophages from day 2 onwards. 

Therefore, both M1 and M2 macrophages provided protection against spontaneous apoptosis of CLL 

cells. However, M2 macrophages provided significantly greater protection than M1 macrophages. 

I next investigated the cytoprotective effect of M1 or M2 macrophages on drug-induced cell death of 

CLL cells.
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Figure 4.7 Co-culture with M2 macrophages provided greater protection than M1 macrophages against spontaneous apoptosis of CLL cells over 3 days. 

Primary CLL cells were cultured alone or co-cultured with M1 or M2 macrophages derived from differentiated THP1 cells and their viability was monitored over 3 days by flow cytometry 

following annexin V/ PI staining. M1 and M2 macrophages were prepared using IFN-γ + LPS and IL-4 respectively as described in Methods. Data points represent mean ± SEM of independent 

experiments using 5 different CLL samples. * refers to p value of <0.05 which is considered statistically significant. 

 

0

10

20

30

40

50

60

70

80

90

100

C
LL

-c
el

l v
ia

b
ili

ty
 (

%
) 3381

3369

3259

3482

3385

Average

Day    0       1        2       3       0        1       2       3    0        1         2       3 

Cultured alone Co-cultured with M1 Co-cultured with M2 

* 
* 

* 
* 

* 

* p= <0.05 



124 
 

4.4.4.2 Analysis of drug-induced cell death 

I repeated the same co-culture experiments I performed with M0 macrophages described earlier but 

this time with M1 and M2 macrophages in the presence of 10µM fludarabine CLL cells cultured alone 

were used for comparison. As shown in Figure 4.8, co-culture with M0 macrophages significantly 

protected CLL cells from fludarabine-induced cell death, compared to CLL cells cultured alone. CLL cells 

co-cultured with M2, and to a lesser extent M1, macrophages were also protected from fludarabine-

induced cell death, although not statistically significant. Interestingly, protection against fludarabine-

induced cell death provided by M2 macrophages was not as great as M0 macrophages. 

 

Figure 4.8. Co-culture with M0 macrophages provided the greater protection than M1 or M2 macrophages against 

fludarabine-induced cell death of CLL cells. 

M0, M1 and M2 macrophages derived from PMA-differentiated THP-1 cells were prepared as described in Methods. Primary 

CLL cells were incubated alone or in co-culture with M0, M1 or M2 macrophages, as described in Methods, in the presence 

of 10µM fludarabine for 48 h and their viability were monitored by flow cytometry following annexin V/ PI staining. The 

percentage of drug-induced killing was calculated as described in Methods. Data points represent mean ± SEM of 2 

independent experiments, each experiment performed using 3 different CLL samples. * refers to p value of <0.05 which is 

considered statistically significant. 

 

Next, I was interested to see what effect the co-culture condition would have with ABT-199, a BCL-2 

specific inhibiter, which showed impressive clinical activity in CLL (Roberts et al. 2016). As expected, 

ABT-199 caused concentration-dependent cell death in CLL cells cultured alone (Figure 4.9, red line). 
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However, ABT-199-induced cell death of CLL cells were not affected by co-culture with M0 (yellow 

line), M1 (blue line) or M2 macrophages (green line). The above result showed that the cytoprotective 

effect against fludarabine shown earlier was lost in the presence of ABT-199, suggesting that this 

protective effect is BCL-2-dependent. It also showed that ABT-199 is effective killing n CLL cells that 

are in co-culture with macrophages. 

 

Figure 4.9 Co-culture with M0, M1 or M2 macrophages failed to protect CLL cells against ABT-199-induced cell death. 

M0, M1 and M2 macrophages derived from PMA-differentiated THP-1 cells were prepared as described in Methods. Primary 

CLL cells were incubated alone or in co-culture with M0, M1 or M2 macrophages, as described in Methods, in the presence 

of ABT-199 at the indicated concentrations for 24 h and their viability were monitored by flow cytometry following annexin 

V/ PI staining. The percentage of drug-induced killing was calculated as described in Methods. Data points represent mean 

± SEM of 2 independent experiments, each experiment performed using 3 different CLL samples. 

 

Taken together, the cytotoxic effect of fludarabine on CLL cells was impeded by co-cultures with M0, 

M1 and M2 macrophages derived from PMA-differentiated THP-1 cells, but the greatest protection 

was provided by co-cultures with M0 macrophages. Co-cultures with M2 macrophages provided the 

greater protection than M1 macrophages against fludarabine-induced cell death of CLL cells, even 

though not as great as M0 macrophages. 

In contrast, the cytotoxic effects of ABT-199 on CLL cells was not impeded by co-cultures with M0, M1 

or M2 macrophages, suggesting that the drug is still effective in killing co-cultured CLL cells and that 

the protection against fludarabine-induced cell death shown earlier is most likely mediated by BCL-2. 
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4.4.4.3 Levels of CCL3 and CCL4 in the culture medium 

It has previously been reported that NLCs induce CLL cells to secrete the T-cell chemokines CCL3 and 

CCL4 into the culture medium where they can be measured by ELISA (Burger et al. 2009b). I therefore 

sought to establish if the differentiated THP-1 cells have the same effect. As described in the previous 

chapter, the levels of CCL3 and CCL4 proteins in the culture medium were increased from day 5 and 

reached a plateau by day 10 from fresh CLL PBMC cultures. I thus measured levels of CCL3 and CCL4 

in the supernatant of differentiated THP-1 cells. As shown in Figure 4.10, PMA-differentiated THP-1 

cells (M0 macrophages) alone secreted high levels of CCL3 and CCL4. In keeping with previous reports 

(Mantovani et al. 2004; Mantovani et al. 2002), THP-1 cell-derived M1 macrophages cultured alone 

secreted even more CCL3 and CCL4 (Figure 4.10). In contrast, levels of CCL3 and CCL4 in the medium 

of M2 macrophages cultured alone were similar to those produced by CLL cells alone (Figure 4.10). 

Culturing CLL cells with various differentiated THP-1 cells (M0, M1 or M2) did not increase the total 

amount of CCL3 and CCL4 that were secreted into the supernatant for up to 3 days (Figure 4.10). My 

results thus indicated that, THP-1 cell-derived M0 and M1 macrophages secreted CCL3 and CCL4, but 

did not induce CLL cells to secrete these chemokines.  
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Figure 4.10 Co-culture conditions did not affect the levels of CCL3 and CCL4 in the medium of CLL cells co-cultured with M0, M1 or M2 macrophages. 

CLL cells were cultured alone or with various differentiated THP-1 cells for 3 days and supernatant samples at the indicated time points were collected for analysis of CCL3 (top panel) and CCL4 

(low panel) by ELISA. The medium of M0, M1 and M2 macrophages cultured alone was also collected for analysis of CCL3 and CCL4 in a similar manner. Levels of CCL3 and CCL4 were measured 

using ELISA kit as described in the Methods. The concentrations of CCL3 and CCL4 are displayed in log scale. Data points represent mean ± SEM of independent experiments from available 

samples. 
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4.4.4.4 Expression of sIgM and sIgD 

It has also been reported that CLL cells co-cultured with NLCs displayed significant reduction in sIgM 

and sIgD expression and that these CLL cells re-expressed both IgM and IgD following in-vitro culture 

in the absence of NLC, indicating that NLCs can engage B cell receptors (BCR) of CLL cells (Ten Hacken 

et al. 2016). I thus tried to determine if the cell line model replicated this activity. First, I screened CLL 

samples to select those that recover the expression of IgM when cultured alone under standard 

conditions This is because it has been shown that not all CLL samples are able to recover the expression 

of IgM under such culture conditions and that ability to re-express IgM is strongly correlated to BCR 

signalling capacity (Mockridge et al. 2007). As shown in Figure 4.11, on average the expression of IgM 

in all 9 CLL samples increased over three days of incubation under standard culture condition. 

However, CLL samples 3557, 3609 and 3691 clearly recovered expression of IgM well, whereas sample 

3684 hardly recovered expression of IgM (Figure 4.11). 

 

Figure 4.11 Surface expression of sIgM on CLL cells when cultured for three days under standard conditions. 

Surface expression of IgM on CLL cells cultured under standard conditions over 3 days were measured by FACS as described 

in Methods. Data points represent mean ± SD of independent experiments using 9 different CLL samples. 

 

I next measured expression of IgD of these samples in a similar manner. To my surprise, these CLL cells 

did not recover their IgD expression over the three days in culture (Figure 4.12). 
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Figure 4.12 Surface expression of sIgD was not increased on CLL cells when cultured for three days under standard conditions.  

Surface expression of IgD on CLL cells cultured under standard conditions over 3 days were measured by FACS as described 

in Methods. Data points represent mean ± SD of independent experiments using 9 different CLL samples. 

 

Next, I decided to use M2 macrophages for co-culture experiments as NLCs were described as 

displaying predominantly ‘M2 subset’ by literature (Ysebaert & Fournie 2011). I used M0 for 

comparison as the unpolarised macrophage subset. I also used CLL cultured alone as a control. 

As shown in Figure 4.11, all nine CLL samples initially exhibited reduced expression of IgM 24 h after 

incubation in vitro. However, some but not all samples recovered their expression of IgM at 48 h. We 

next used these samples for co-culture with M0 or M2 macrophages for up to 72 h and compared the 

surface expression of IgM and IgD on co-cultured CLL cells to that on CLL cells cultured alone (Figure 

4.13). As shown in Figure 4.13, the expression of IgM on CLL cells cultured alone was reduced at 24 h, 

but recovered at 48 h and further increased at 72 h. Similar to CLL cells cultured alone, CLL cells co-

cultured with M0 or M2 macrophages expressed reduced IgM at 24 h, but restored expression of IgM 

at 48 h and increased the expression further at 72 h (Figure 4.13). At all these time points the levels 

of expression of IgM on CLL cells co-cultured with either M0 or M2 macrophages were not lower than 

that on CLL cells cultured alone.  

I monitored the expression of IgD on CLL cells cultured in the three culture conditions described above 

and observed a similar trend of the increase in expression of IgD as with IgM on CLL cells over 72 h 

(Figure 4.14). Overall, the surface expression of IgM and IgD was not reduced in CLL cells co-cultured 

with M0 nor M2 macrophages over a 72h incubation period. 

0

500

1000

1500

2000

2500

CLL alone CLL alone CLL alone CLL alone

D0 D1 D2 D3

M
FI

IgD

3603

3679

3684

3115

3609

3557

3605

3379

3691

Average

Control



130 
 

 

Figure 4.13 Surface expression of IgM was not decreased in CLL cells co-cultured with M0 or M2 macrophages for 3 days. 

THP-1 cells were differentiated into M0 or M2 macrophages as described in the Methods. Primary CLL cells were cultured alone or co-cultured with M0 or M2 macrophages over 3 days and 

surface expression of IgM on CLL cells was analyzed by flow cytometry as described in Methods. Data points represent mean ± SD of independent experiments using 3 different CLL samples. 
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Figure 4.14 Surface expression of IgD was not decreased in CLL cells co-cultured with M0 or M2 macrophages for 3 days. 

THP-1 cells were differentiated into M0 or M2 macrophages as described in Methods. Primary CLL cells were cultured alone or co-cultured with M0 or M2 macrophages over 3 days and surface 

expression of IgD on CLL cells was analyzed by flow cytometry as described in the Methods. Data points represent mean ± SD of independent experiments using 3 different CLL samples. 
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Taken altogether, a pro-survival effect was seen by co-cultures with differentiated THP1 on CLL cells 

when compared to alone. Co-culture with M2 macrophages provided the best survival environment 

for CLL cells against spontaneous apoptosis. 

M0 and M2 co-cultures offered the best protection against fludarabine-induced cell death upon CLL 

cells, where M0 was the best condition. There was no protection seen at all against ABT-199 induced 

cell death. 

There was no clear trend seen on the levels of CCL3 and CCL4 in the supernatants of co-culture 

conditions. Rather, it appears that there is a very high level of CCL3 and CCL4 secreted by the cell lines, 

which may conceal any minor changes expected. 

Finally, although I demonstrated that the CLL samples selected regained their sIgM expression when 

cultured alone, the expression levels were not decreased when in co-culture with M0 and M2 

macrophage conditions.  
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4.5 Summary of Results 

I showed that THP-1 cell line can be used to differentiate into macrophages by incubating with PMA. 

In order to mimic the distribution of NLCs seen in the previous chapter, a density of 5x105/ml was 

preferred. Upon PMA differentiation, the THP-1 cells demonstrated the morphological features of 

adherent macrophages with oval and elongated shapes. The differentiated THP-1 cells (M0 

macrophages) were distinguishable from CLL cells by their shape and size when in co-cultures.  

Through IF staining, the M0 macrophages demonstrated some expression of CD14 and CD163. 

Although the expressions were weak, this was consistent with the observations from other studies 

who performed more in-depth investigations on PMA differentiated THP-1 cells (Chimal-Ramirez et 

al. 2016; Neu et al. 2013; Tedesco et al. 2018).  

Co-culture with M0 macrophages showed significantly improved viability of CLL cells over 3 days of 

co-culture compared to CLL cells cultured alone. This co-culture condition also showed significant 

protection against fludarabine-induced cell death of CLL cells. 

The phenotype of M1 and M2 macrophages were confirmed by IF techniques for CD38 and EGR2. 

When comparing morphology of M1 and M2 macrophages that were developed by using the 

respective polarising techniques, they exhibited distinct morphological features. Co-culture of CLL 

cells with M1 or M2 macrophages showed an improved viability of CLL cells for 3 consecutive days 

comparing to CLL cells cultured alone. The protection against fludarabine-induced cell death of CLL 

cells was found to be most pronounced with co-culture conditions with M0 macrophages, followed by 

with M2 macrophages with M1 macrophages offering the least protection.  

However, no such protective effect against ABT-199-induced apoptosis was seen in CLL cells co-

cultured with M0, M1 or M2 macrophages. 

M0 and M1 macrophages produced high levels of CCL3 and CCL4 in the culture medium, whereas M2 

produced low levels of the two chemokines when cultured alone. There was no increase in the amount 

of CCL3 and CCL4 in the culture medium for up to 3 days when CLL cells were co-cultured with M0 or 

M1 macrophages. These findings suggested that M0 and M1 macrophages derived from THP-1 cell 

line secreted CCL3 and CCL4 but did not induce CLL cells to secrete them. 

CLL cells were found to recover the expression of sIgM upon thawing for up to 3 days, however in co-

culture conditions it was not found to be decreased. CLL expression of sIgD was generally found to 

decrease upon thawing for up to 3 days but upon culture conditions was also found not to decrease 

further. 
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4.6 Discussion 

 

In this chapter I showed that THP-1 cell line can be used to investigate the function of NLCs by 

differentiating them into macrophages using PMA. Generally, human primary monocytes from 

circulation are isolated and commonly used as precursors for study of macrophages in vitro (Tedesco 

et al. 2018). However, these primary monocyte-derived macrophages (MDMs) cannot be stored in 

liquid nitrogen, plus the evident heterogeneity between the monocyte samples (Tedesco et al. 2018). 

Cell lines are thus used to compensate these issues as they can be easily expanded and stocked in 

frozen temperatures in non-differentiated state (Tedesco et al. 2018). THP-1 cell lines have been used 

in numerous studies demonstrating that they can be differentiated to macrophages which can be 

further polarised to M1 and M2 macrophages (Aldo et al. 2013; Daigneault et al. 2010; Forrester et al. 

2018; Park et al. 2007; Tedesco et al. 2018). Alternatives to THP-1 cell line are U937, ML-2, HL-60 and 

Mono Mac 6 cells (Chanput, Peters & Wichers 2015), however there are limited information available 

in the literature because of significantly fewer published studies reporting using these cell lines. 

Between THP-1 and U937 cells, the choice was based the fact that THP-1 cell line was derived from 

blood monocytic cells whereas U937 cells from tissue resident monocytic cells (Chanput, Peters & 

Wichers 2015).  In addition, in studies comparing the difference and similarities of two cell lines, it has 

been found that, although they both can be differentiated into macrophages with the similar stimuli, 

U937 cells can also be differentiated into macrophages using retinoic acids, Vitamin D3 and TPA 

(Chanput, Peters & Wichers 2015; Chun et al. 2001). Differentiated THP-1 cells yielded a ‘macrophage-

only’ phenotype where there was no expression of dendritic cell markers CD80 or CD86 (Riddy et al. 

2018). U937 cells did not migrate in response to any chemoattractant whereas THP-1 cells and PBMCs 

migrated well in response to chemoattractant using trans-well migration assay (Riddy et al. 2018). 

PMA was the preferred choice for differentiating into macrophages as it was the most widely used 

chemical for differentiation of monocyte cell lines (Riddy et al. 2018). 

I selected a density of 0.5x106/ml of THP-1 cells to be differentiated into macrophages for subsequent 

experiments because this closely represent the distribution of well-developed NLCs as described in 

the previous chapter. This cell density used in my study was similar to that reported by some studies 

(Forrester et al. 2018; Park et al. 2007; Takashiba et al. 1999), but different to that from other studies 

(Aldo et al. 2013; Daigneault et al. 2010; Schwende et al. 1996; Genin et al. 2015). Since the studies 

using the density of 0.5x106/ml had also prepared THP-1 cells for co-culture experiments, I therefore 

used this density for my co-culture experiments. Next, I was able to demonstrate the similarities in 

morphology and phenotype of PMA-differentiated THP1 (M0 macrophages) with those of NLCs 

described in the previous chapter.  
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The morphology and phenotype of CD14 in M0 macrophages observed were consistent with the 

results found with studies from Genin et al. (2015) and Chimal-Ramirez et al. (2016). They showed the 

macrophages displayed a flattened appearance with mild expression of CD14. Regarding the 

expression of CD163, some studies did not observe the expression of CD163 in PMA-differentiated 

THP-1 cells (Forrester et al. 2018; Tedesco et al. 2018) whereas others did observe its expression 

(Chimal-Ramirez et al. 2016; Genin et al. 2015; Riddy et al. 2018). Thus, my study agreed with the latter 

group where expression was observed in PMA-differentiated THP-1 cells by immunofluorescence 

microscopy. 

I further polarised M0 macrophages into M1 or M2 subtype. This was carried out by using an 

established procedure of polarising the M0 into M1 and M2 using LPS+ IFNγ and IL-4, respectively. To 

distinguish the subsets, I observed the morphology under phase-contrast microscope and IF following 

staining the cells using CD38 and EGR2. The M1 macrophages expressed CD38, whereas M2 expressed 

EGR2 and M0 expressed neither. This is in agreement with a study using these markers to define the 

M1 and M2 populations (Jablonski et al. 2015).  

Furthermore, by observation of morphology, I found that M1 macrophages as appeared to be round 

and flattened after the addition of LPS and IFNγ and M2 macrophages displayed the elongated 

appearance upon addition of IL-4. It has been reported that the degree of elongation correlates with 

the phenotypic polarization of M2 macrophages (McWhorter et al., 2013). The study showed that 

preventing cell elongation inhibits the complete polarization of M2 macrophages following incubation 

with IL-4. Therefore, elongation and polarisation possibly represent a unified process leading to fully 

differentiated M2 macrophages. Reassuringly, elongated and polarised NLCs similar to M2 

macrophages were also seen in CLL PBMC cultures as described in the previous chapter, thus providing 

further evidence that NLCs resemble M2 macrophages (Hanna et al, 2015; Marchesi et al, 2015, 

Ysebaert and Fournie, 2011; Ysebaert et al, 2010).  

Likewise, I was also able to demonstrate the pro-survival effects of THP-1-derived macrophages on 

CLL cells as compared to CLL cells cultured alone. Unexpectedly, co-culture with M0 macrophages 

displayed the greatest protection against spontaneous and fludarabine-induced apoptosis of CLL cells, 

with M2 macrophages offering modest protection and M1 macrophages with the least protection. My 

result was thus in disagreement with that reported by a study where HepG2 (human hepatoma) and 

A549 (lung adenoma) cancer cells were co-cultured with THP-1 cells-derived M1 or M2 macrophages 

and etoposide-induced apoptosis was significantly reduced in cancer cells that were incubated with 

M2 macrophages (Genin et al. 2015). 
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The reason why M0 macrophage condition was better than M2 macrophage condition, to protect 

against fludarabine induced cell death, is still unclear. A study by Caras et al. (2011) using tumour-

secreted soluble factors on THP-1 cell line, found that THP-1 macrophages were able to switch their 

phenotype or induce functional polarization towards a mixture of M1/M2 phenotype. This occurred 

when the macrophages were incubated with supernatant of primary tumour cells which contained 

tumour-secreted soluble factors (Caras et al. 2011; Chanput, Mes & Wichers 2014). In my study, I did 

not inspect the phenotype of M2 macrophages after co-culture with CLL cells. Therefore, further 

studies are required to check if the phenomenon of phenotype switching occurs and thus be able to 

offer some explanation. The differentiated THP-1 cells offered no protection against Venetoclax (ABT-

199)-induced cell death, the result is consistent with a report that NLCs failed to protect CLL cells from 

ABT-199 induced apoptosis (Boissard et al. 2015b). 

In an attempt to reproduce the effect of NLCs in inducing CLL cells to express CCL3 and CCL4 

chemokines when in co-culture, I co-cultured CLL cells with the THP-1 cells-derived macrophages and 

monitored the level of CCL3 and CCL4 in the culture medium.  Although there was an increase in levels 

of CCL3 and CCL4 in the medium from CLL cells co-cultured with M0 or M1 macrophages compared to 

CLL cells cultured alone, similar increases were also observed in the medium from the corresponding 

macrophages cultured on their own. Thus, the increase in levels of CCL3 and CCL4 was likely due to 

the presence of differentiated THP-1 cells in the co-culture system. It has been shown that M1 

macrophages intrinsically expressed higher levels of certain chemokines such as CCL3 and CCL4 than 

M2 macrophages (Mantovani et al. 2002). My results were thus consistent with the findings reported 

in this study. In this regard, the cell-line model therefore does not appear to fully recapitulate the 

chemokine-inducing properties of primary NLCs (Burger et al. 2009b).  

Another functional difference between primary NLCs and cell-line model was highlighted by the 

finding that CLL cells co-cultured with M0 or M2 macrophages over 72 h did not express reduced levels 

of IgM or IgD, whereas CLL cells co-cultured with primary NLCs displayed significant reduction in 

surface expression of IgM and IgD (Ten Hacken et al. 2016). One possible explanation can be that IL-4 

enhances the expression of sIgM in CLL cells (Aguilar-Hernandez et al. 2016) and that IL-4 has been 

shown to be secreted in small amounts by macrophages themselves (La Flamme et al. 2012), although 

it is unclear if NLCs specifically secrete IL-4. To confirm this, an experiment observing the levels of IL-

4 in CLL cells co-cultured with M0/M1/M2 as well as cultured alone needs to be performed, in parallel 

to the experiment using primary NLCs as a comparison. 
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Taken together, I have shown that the THP-1 cells derived macrophages do share many functional 

similarities to NLCs. However, I have also found some differences between THP-1 cells derived 

macrophages and NLCs. Here, I gave my explanations to potential causes to these differences. 

One possible explanation for the dissimilarities with NLC experiments is the use of PMA to 

differentiate THP-1 cells to M0 macrophages. PMA is a known potent mitogen which activate many 

immune cells including monocytes and induces TNF-α production in these cells (Mendoza-Coronel & 

Castanon-Arreola 2016). TNF-α signals through the receptors TNFR1 and TNFR2 and regulates cell 

functions such as proliferation, survival, differentiation and apoptosis. Macrophages secrete TNF-α  

and are also highly responsive to TNF-α, thus rendering TNFα as a “master-regulator” of inflammatory 

cytokine production where it mediates the cytokine cascade in inflammatory diseases (Parameswaran 

& Patial 2010). 

Therefore, cell line model is subject to manipulation by PMA which could result in non-naturally 

occurring functions. This may explain why the cell line model could not recapitulate the effects of BCR 

stimulating and chemokine induction of CLL cells by NLCs. Another explanation is that, as M1 and M2 

macrophages represent the two opposing ends of a continuum (Mantovani et al, 2002) whereas NLCs 

are heterogeneous in their development as described in previous chapter, it is possible that NLCs could 

be a mixture of M1 and M2 macrophages, despite that they have been shown to resemble 

predominantly the M2 macrophages. Therefore, the results from the cell line model that M0 

macrophages conferred greater protection than the M1 or M2 macrophages against spontaneous and 

fludarabine-induced cell death may reflect what NLCs did to CLL cells.  

Last but not the least, it is important to recognise the weakness of in-vitro cell cultures, both primary 

cells and cell lines, where they are being studied in the absence of their local environment in-vivo. It 

is also well established that cell lines cannot replace primary cells despite their ease to use and 

providing consistent results (Kaur & Dufour 2012; Riddy et al. 2018). Therefore, great caution was 

needed when interpreting the results from studies using cell lines. In addition, validation experiments 

should ideally be replicated in primary cells. For these reasons, in the next part of my study to 

investigate how CLL cells and NLCs influence each other at the level of gene expression, I chose to use 

primary NLC cells as the overall objective of my study is to understand the mechanisms mediating the 

interactions of CLL cells with NLCs. 
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5 Identification of differentially expressed genes and significantly 

enriched functional pathways in CLL cells co-cultured with NLC 

cells 

 

5.1 Introduction 

From the previous chapters I have shown that NLCs can be developed from CLL PBMC samples from 

patients with CLL and that they displayed many morphological features of macrophage and expressed 

CD68 and CD163, the phenotypic markers of M2 subset of macrophages.  The NLCs were able to 

reduce spontaneous apoptosis of CLL cells when in co-culture, as compared to CLL cells cultured alone. 

I have also shown that human THP-1 cell line can be used to mimic many behaviours of NLCs, 

particularly on the pro-survival effect on CLL cells against spontaneous apoptosis. However, the THP-

1 cell line model did not replicate all of biological effects of NLCs, especially in regulating the release 

of chemokines and expression of surface IgM and IgD on CLL cells. This disparity was further 

highlighted by the observation that cell lines such as THP-1 cells can only partially reproduce the 

genotypic and phenotypic properties of monocytes isolated from fresh PBMC samples (Riddy et al. 

2018). Therefore, to investigate the mechanisms mediating the interaction between NLCs and CLL cells 

at the level of gene expression, I chose to use fresh CLL PBMCs samples to develop NLCs and use 

cryopreserved autologous CLL cells for co-culture experiments.  

So far, the studies that have looked into the difference in gene expression between CLL cells co-

cultured with or without NLCs have relied on microarray techniques using a limited number of 

established gene sets to acquire targeted gene expression profiles (Bhattacharya et al. 2011; Boissard 

et al. 2016b; Burger et al. 2009b; Burgess et al. 2016; Fiorcari et al. 2015; Maffei et al. 2013). These 

studies helped identify several molecules potentially important in mediating the pro-survival effect of 

NLCs on CLL cells. The molecules included ICAM-1 and CD31 (Boissard et al. (2016b) and CSF-1 (Polk 

et al. (2016). However, subsequent studies showed that inhibition of these molecules or blocking NLC 

development did not significantly increase the spontaneous apoptosis (Boissard et al. 2016b) or 

ibrutinib-induced cell death of CLL cells (Polk et al. 2016), indicating that other yet-to-be-identified 

mechanisms may operate concomitantly to compensate the inhibition of the known targets. Further 

studies are thus still required in order to gain better understanding on how NLCs and CLL cells 

influence each other, resulting in sustained survival and expansion of CLL cells in the tissue 

microenvironment.        
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RNA-sequencing (RNA-seq), also called whole-transcriptome shotgun sequencing, is a newly 

developed, high throughput sequencing technology for characterising RNA content and composition 

in a sample of cells (Hrdlickova, Toloue & Tian 2017; Wang, Gerstein & Snyder 2009; Wolf 2013).  

Until the arrival of RNA-seq, microarrays were the standard method of gene expression quantification. 

However, RNA-seq can not only quantify the gene expression, but also give the precise location of 

transcript boundaries to a single base resolution (Wang, Gerstein & Snyder 2009). Short reads of 30-

base pair (bp) can uncover how two exons are connected whereas longer reads or pair-end short reads 

can reveal the connectivity between multiple exons (Wang, Gerstein & Snyder 2009). This allows the 

sequencing-based technique to identify different transcripts of individual genes.   

Compared with microarrays, RNA-seq can capture a wider range of expression values. The “Count 

data” is a digital measure and can be scaled linearly with no upper limit, whereas microarrays can 

display saturation of analogue-type fluorescent signals (Wolf 2013). It is structured as a table where it 

reports the number of sequence fragments detected to each gene for each sample (Nguyen et al. 

2016). RNA-seq has a very low background signal because sequences can be mapped to unique regions 

of the gene (Hrdlickova, Toloue & Tian 2017; Wang, Gerstein & Snyder 2009; Wolf 2013). RNA-seq can 

give information on RNA splice events, which are not easily detected by microarray (Wolf 2013). Thus, 

short reads of 30-base pair (bp) can uncover how two exons are connected whereas longer reads or 

pair-end short reads can reveal the connectivity between multiple exons (Wang, Gerstein & Snyder 

2009). This allows the sequencing-based technique to identify different transcripts of individual genes.  

RNA-seq produces results with high levels of reproducibility. As it does not involve cloning or 

amplification step, RNA-seq requires less RNA sample (Wang, Gerstein & Snyder 2009).  

In this Chapter, I will therefore describe the findings obtained through comparison of globe gene 

expression profiled by RNA-seq in different populations of cells, namely between CLL cells co-cultured 

with NLCs versus CLL cells cultured alone and between NLCs co-cultured with CLL cells versus NLCs 

cultured alone.  

 

5.2 Objectives 

• Establish a comprehensive list of differentially expressed genes in primary CLL samples 

cultured with or without NLCs through RNA-seq analysis, 

• Validate the RNA-seq results using RT-qPCR on selected genes from the list, 

• Identify molecules and pathways critically involved in survival and resistance of CLL cells to 

therapy in vivo through bioinformatics analysis.  
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5.3 Methods 

5.3.1 CLL cell samples and coculture 

In order to carry out the experiments, the NLCs were developed as described in Methodology and for 

this chapter the cases chosen had NLC Score of 2 or 3. This was to ensure a good number of NLCs were 

developed so enough RNA can be extracted. 6 CLL cases were used for the RNA-seq analysis and 

validation (#3577, #3599, #3627, #3682, #3679 and #3684). A further 8 cases were used for validation 

of RNA-seq results (#3620, #3645, #3686, #3605, #3607, #3621, #3631 and #3637).  Clinical 

information of CLL samples used in this part of the study was provided in Table 5.1. To meet the 

objectives of the study, I designed the following 4 populations: 

• CLL alone (CLL cells cultured alone) 

• CLL + NLC (CLL cells co-cultured with NLCs) 

• NLC alone (NLCs cultured alone) 

• NLC + CLL (NLC co-cultured with CLL cells) 

The changes seen on CLL + NLC when compared to CLL alone is due to the effects that NLCs have on 

CLL cells. Conversely, the changes seen on NLC+CLL when compared to NLC alone is due to the effects 

CLL cells have on the NLCs. 24-hour period of culture/co-culture was chosen based on the results 

described in the previous chapters where protection of CLL cells against spontaneous apoptosis was 

detected at that time point (see previous chapters).  This means that at the cellular level the protective 

effect of NLCs on CLL cells can be seen in 24 hours and that the changes in gene expression caused by 

the co-culture condition should have taken place within 24 h of co-culture.  

As illustrated in Figure 5.1, fresh CLL PBMC sample was first cultured under standard conditions in a 

multi-well culture plate until the NLCs have developed and reached their plateau. The CLL cells in the 

PBMC co-cultures were then removed by gentle pipetting to leave NLCs behind. Wells containing NLCs 

were equally divided.  For NLCs cultured alone, standard RPMI medium was added to the wells.  For 

NLCs selected for co-culture, autologous CLL cells were thawed and resuspended in complete RPMI 

medium and added onto the wells. Aliquots of thawed CLL cells from the same sample were cultured 

alone in a separate well as CLL alone. The three groups of cells were incubated for 24 hours in 

humidified incubator at 37oC at 4% CO2. Following the 24-hour incubation, the cells from the 3 groups 

were harvested and prepared for RNA extraction.  
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Table 5.1 Clinical Data of Samples used for RNA-seq and RT-qPCR. 

 

Sample 

number 
WBC 

Absolute 

Lymphocyte 

Count 

Absolute 

Monocyte 

Count 

Drug 

Treatment 

IGHV 

status 

Chromosomal 

status 

Age at 

Diagnosis 

Age at 

collection 

of 

samples 

Gender Staging 

Date of 

sample 

collection 

Percentage 

Monocytes of 

PBMC 

PBMC 

total 

RIN on sending to 

RNAseq 
Purity 

CLL 

alone 
CLL+NLC 

CLL 

alone 
C+ N 

3577 85.7 75.8 1.4 ibrutinib NA 17p-  55 Male A 28/07/2017 1.813 77.2 9.3 9.1 2.1 2.09 

3599 63.9 59.2 0.9 untreated NA 13q- 62 70 Female A 13/09/2017 1.498 60.1 7.7 9.2 2.08 2.1 

3627 136.7 129.4 2 ibrutinib unmutated 13q del 58 68 Male C 06/12/2017 1.522 131.4 8.7 9 2 2.08 

3682 33.2 25.8 0.5 untreated NA normal 71 74 female A 13/06/2018 1.901 26.3 8.8 9.2 1.97 2.01 

3679 171.4 164.7 1.6 untreated NA 13q- 53 54 male C 06/06/2018 0.962 166.3 8.8 8.2 1.92 1.97 

3684 230.1 220.8 NA untreated mutated 13q- 75 84 male A 18/06/2018   8.4 9 1.97 1.98 

3620 145.9 142.6 1.2 untreated mutated normal 69 76 Female C 15/11/2017 0.834 143.8   1.91 1.95 

3645 264.1 258.8 1.5 untreated unmutated normal 68 72 male C 14/03/2018 0.576 260.3   2.09 2.07 

3686 38.5 31.3 1 untreated mutated trisomy 12 70 71 female A 25/06/2018 3.0960 32.3   1.97 1.94 

3605 252.8 244 1.6 untreated mutated 13q- 60 63 Male B 27/09/2017 0.651 245.6   2.15 2.21 

3607 254.2 247.7 2.2 untreated mutated normal 66 69 Male B 02/10/2017 0.880 249.9   2.05 2.1 

3621 70.2 60.6 2 ibrutinib mutated 13q- 58 59 Female B 15/11/2017 3.195 62.6   1.93 1.91 

3631 256.1 >200 4.7 ibrutinib mutated 13q- 60 64 Male B 13/12/2017     1.9 1.89 

3637 144.6 134.9 2.2 untreated unmutated 11q-, 13q- 66 69 Male A 24/01/2018 1.605 137.1   2.15 2.02 

Details of each sample with clinical data information and RNA sample information. Samples with blue highlight are indicated on those that were not included in RT-qPCR analysis, red 

marked samples are those that were sent for RNA-seq and green Highlight are those that are from the same patient. RIN is from QC performed by the outsourced Novogene. Purity 

was measured using Nanodrop as described in Methods. 
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Figure 5.1 Schematic of preparing samples for RNA extraction 

 

 

5.3.2 RNA preparation 

As seen in Figure 5.1, CLL cells from CLL alone and CLL in co-culture with NLCs are harvested by gentle 

washing and collected into 1.5 ml Eppendorf tubes total RNA was extracted using a commercial kit 

(RNeasy Mini Kit, Qiagen).In brief, the cell pellet was resuspended in 400ul RNA lysis buffer and mixed 

thoroughly before it was transferred to the 2ml Shredder spin column (QIAshredder, Qiagen). 

To extract RNA from NLCs cultured alone and NLCs in co-culture with CLL cells, NLCs were lysed by 

adding the RNA lysis buffer directly on the surface of the culture plate. The cell lysate was then 

collected and transferred to the shredder spin column, as described above. 

As shown in Figure 5.2, RNA was extracted following the Manufacturer’s instruction. Isolated RNA was 

then kept in ice cold temperature to assess for purity and quantity. The remaining RNA was then 

stored and kept at -80oC. 

Allow 
development of 
NLCs from fresh 
PBMCs to 
plateau (8-14 
days) giving a 
plate of CLL + 
NLCs 

Wash off 
CLL cells, 
leaving 
behind 
NLCs 

NLC alone 

Add autologous 
CLL cells 

CLL + NLCs 

CLL alone 

CLL from 
coculture 

NLCs from 
coculture 

CLL + NLCs 

NLC alone 

CLL alone 

24 hours incubation 

Diagram of experiment design to produce 4 populations to compare the effects of CLL cells on NLCs and NLCs on CLL cells. The 

starting CLL PBMC culture (red) produces developed NLCs (8-14 days later) and the CLL cells are washed off. Autologous CLL cells 

(green) are added. After the incubation period of 24 hours, the new co-culture condition CLL cells (purple) are collected leaving 

behind the new conditioned NLCs (blue). By the end of the 24 h incubation, all 4 populations of cells are harvested and RNAs from 

respective cell populations extracted. 
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Figure 5.2 Procedure for extracting RNA from cells by Qiagen RNeasy Mini kit. 

Using the Qiagen RNeasy Kit and the Qiagen Shredder, a lysis buffer is prepared as per instructions and added to the cell 

samples. The lysate is then transferred to the QIA Shredder Column for homogenization to reduce viscosity (1). Together 

with the shredder it is spun for 2 minutes at max speed in a microcentrifuge (2). After discarding Shredder column, ethanol 

is added to flow-through solution and mix (3). The mixture is transferred to RNeasy Spin Column (4) and spun for 15s at 

≥8000g and the flow through is discarded while the RNA is bound to membrane on the RNeasy Spin Column (5). The column 

is washed three times with washing buffers provided within the kit and the follow through is discarded (6). Finally, RNAse 

free water is added to the column and the RNA is eluted (7) from the column as follow through (8). The RNA sample is then 

measured for purity and quantity and stored in freezer. Image adapted from Qiagen RNEasy Mini kit manual using BioRender 

online tools. 

 

5.3.3 Measuring Purity and Quantity of RNA 

The quality of extracted RNA was assessed using a Nanodrop 2000 spectrophotometer (Thermo Fisher 

Scientific, UK) and quantity was measured Qubit® 2.0 Fluorometer (Thermo Fisher Scientific, UK). 

In brief, 1ul of each RNA sample was used to measure the purity of the RNA extracted using the 

Nanodrop machine where it measures the absorbance ratio at OD260/280 and OD260/230, with 

RNAse-free water as a control. 

 

5.3.3.1 Quantification using Qubit 

Qubit® 2.0 Fluorometer is an instrument used for quantification of protein, DNA and RNA in the same 

principle as Beer-Lambert Law (relates to the reduction of amount of light to the properties of the 

media through which the light is travelling through). The Qubit uses fluorescent dyes to measure the 
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concentration where each dye is specific for one molecule i.e. DNA, RNA or protein. The natural 

absorbance light at 260nm is used to measure DNA and RNA whereas 280nm is used to measure for 

proteins.  The dyes have a low fluorescence until they bind to their targets, where upon their binding, 

they intensely fluoresce, which is then measured by the Qubit.  

Qubit is preferred for the quantitative measurement over Nanodrop due its greater sensitivity and 

specificity. Quantification is done by Qubit giving a concentration of ng/ul. The kit used for quantifying 

was the Qubit® RNA HS Assay Kit with quantitation range of 5-100ng (Thermo Fisher Scientific Life 

Technologies). Using this kit, including a buffer, a fluorochrome and the standards Standard 1 (with 

no RNA) and Standard 2 (with high RNA quantity), a linear curve is made. Based on that the sample 

RNA quantity would be measured against the concentrations within the ranges of the standard curve.  

Those RNA samples that had good quality and quantity as defined in 5.3.4 were reserved for 

commercial RNA-seq service, as described in Methods. The remaining RNA samples that had good 

quality but enough quantity for RNA-seq were stored in -80oC freezer. These RNA samples were 

subsequently used to synthesise cDNA (as described in Methodology) to be used for optimising and 

validation by RT-qPCR. The summary information of the RNA samples is provided in Table 5.2. 

The quality and quantity of the RNA was verified by Novogene as well as assessing the integrity of the 

RNA with RNA integrity number (RIN) values of 7 and higher. For more information on Integrity of 

RNA, please refer to Appendix 7.5. 
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Table 5.2 Summary information of RNA samples regarding RNA quality and quantity 

Sample 
ID 

Purity of CLL 
sample from 
Biobank (CD5 

CD19) 

Viability of 
CLL sample 

from 
Biobank 

Population 
Purity 

(Nanodrop) 
260/280 

Quantity 
(Qubit as 

ng/ul) 
Volume (ul) Total (ng) 

3577 

95.04% 95.10% CLL alone 2.1 238 30 7140 
  NLC alone 2.07 33.02 25 825.5 
  CLL from NLC+CLL 2.09 458 30 13740 
  NLC from NLC+CLL 2.08 57.3 25 1432.5 

3599 

99.20% 96.10% CLL alone 2.08 258 29 7482 
  NLC alone 2.1 187 29 5423 
  CLL from NLC+CLL 2.1 323 29 9367 
  NLC from NLC+CLL 2.12 101 29 2929 

3621 

91.94% 92.80% CLL alone 1.93 550 30 16500 
  NLC alone 2.05 37.2 30 1116 
  CLL from NLC+CLL 1.91 578 30 17340 
  NLC from NLC+CLL 1.99 68.8 30 2064 

3627 

90% 78% CLL alone 2 212 30 6360 
  NLC alone 2.07 344 30 10320 
  CLL from NLC+CLL 2.08 220 30 6600 
  NLC from NLC+CLL 2.07 364 30 10920 

3605 

98.64 87 CLL alone 2.15 488 35 17080 
  NLC alone NA 7.48 35 261.8 
  CLL from NLC+CLL 2.21 391 35 13685 
  NLC from NLC+CLL NA 11.2 35 392 

3607 

93.64 84.77 CLL alone 2.05 358 30 10740 
  NLC alone 2.53 21 30 630 
  CLL from NLC+CLL 2.1 570 30 17100 
  NLC from NLC+CLL 2.1 27 30 810 

3631 

93.911 74.11 CLL alone 1.9 165 30 4950 
  NLC alone 1.98 14.88 30 446.4 
  CLL from NLC+CLL 1.89 230 30 6900 
  NLC from NLC+CLL 1.92 22.2 30 666 

3637 

84.15 80.11 CLL alone 2.15 51.8 30 1554 
  NLC alone 2.18 12.4 30 372 
  CLL from NLC+CLL 2.02 282 30 8460 
  NLC from NLC+CLL 2.21 28.8 30 864 

3645 

84 85.6 CLL alone 2.09 103.5 30 3105 
  NLC alone 2.26 11.4 30 342 
  CLL from NLC+CLL 2.07 124.5 30 3735 
  NLC from NLC+CLL 2.07 22.4 30 672 

3620 

NA 20.35 CLL alone 1.91 990 29 28710 
  NLC alone 1.95 28.8 27 777.6 
 36.55 CLL from NLC+CLL 1.9 420 29 12180 
  NLC from NLC+CLL 1.95 63.6 28 1780.8 

3679 

97.12% 90.90% CLL alone 1.92 520 30 15600 
  NLC alone 2.01 58 30 1740 
  CLL from NLC+CLL 1.97 830 30 24900 
  NLC from NLC+CLL 1.96 63 30 1890 

3682 

95.00% 89.00% CLL alone 1.97 251 30 7530 
  NLC alone 2.07 189.6 30 5688 
  CLL from NLC+CLL 2.01 112 30 3360 
  NLC from NLC+CLL 2.05 118.4 30 3552 

3684 

97.38% 86.40% CLL alone 1.97 730 30 21900 
  NLC alone 2.09 49.2 30 1476 
  CLL from NLC+CLL 1.98 5000 30 150000 
  NLC from NLC+CLL 2.01 65.2 30 1956 

3686 

83.60% 83.00% CLL alone 1.97 289 30 8670 
  NLC alone 2.1 98.8 30 2964 
  CLL from NLC+CLL 1.94 306 30 9180 
  NLC from NLC+CLL 2.1 66.4 30 1992 
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5.3.4 RNA sequencing 

The samples that met the quality control criteria for RNA-seq sequencing, i.e. having ≥1µg RNA 

measured by Qubit®, purity measured by Nanodrop of OD260/280 ≥2.0 and OD260/230 ≥2.0, with a 

volume ≥20µL and RIN values ≥7.0 were used for sequencing by RNA-seq technology at Novogene 

(Novogene (UK) Ltd, Cambridge, UK). The details of RNA sequencing were described in Methodology. 

The completed sequencing data was returned electronically and analysed by the Bioinformatics 

specialists at Computational Biology Facility (CBF) of the University of Liverpool. 

Due to the technological requirement for sequencing, the population of RNA is converted to a library 

of cDNA fragments with adaptors attached to one or both ends of up to several base pairs which will 

undergo short reads. The transcripts first need to be reconstructed with these reads, referred to as de 

novo assembly. In the case where transcript or genome information readily available, the reads are 

aligned onto the reference. The number of reads that fall to a given transcript provides a digital 

measurement of the level of expression of each gene, which is a starting point for a biological 

conclusion (Hrdlickova, Toloue & Tian 2017; Wang, Gerstein & Snyder 2009; Wolf 2013). 

 

5.3.5 Sequencing Data Analysis 

The analysis portion was performed under the supervision of Professor Francesco Falciani of 

Computational Biology Facility (CBF) of the University of Liverpool. 

 

5.3.5.1 Quality Control 

The data generated by RNA-seq is in the format of bam and FastQ files. FastQ files contain sequences 

and quality scores for each nucleotide. 10% of the data was fed into FASTQC tool to check the quality 

of FastQ files. FASTQC generates an html file for each sample. All of this is fed into MultiQC which then 

gives an overview of quality control of all samples in a single html file as a one report. The graphs that 

are generated determine whether the samples pass or fail (see Appendix Figure 7.10).  

The sequence counts give number of reads sequenced from either direction. The base quality in DNA 

sequencing is presented by Phred Score. The larger the value the better the quality of a sequenced 

base. The average GC content of reads was also analysed in the QC report. The Sequence Duplication 

levels counts the degree of duplication for every sequence in the library and the plot shows the relative 

number of sequences with different degrees of duplication. A low level indicates a high level of 

coverage without enrichment bias. The frequency of A/T/C/G on each base position is measured as a 



148 
 

percentage and should be approximately constant across the read. Due to the very sensitive 

measurement, this commonly results in a ‘failed’ parameter in the report. 

 

5.3.5.2 Obtaining Counts 

The sequence reads are aligned onto a reference genome using Bowtie 2 and SAM tools. The reference 

genome chosen was homo_sapiens _NCBI_GRCh38. The prerequisite for mapping is having index files 

for the genome, which were built using Bowtie 2. Bowtie 2 outputs the alignments in SAM format 

where it is then processed using SAMtools resulting in bam files. From bam files, counts were 

generated using htseq_count tool. The counts were then used for data processing. 

 

5.3.6 Data Processing 

From the starting number of genes and their corresponding counts, the CBF team filtered out genes 

which had a sum of counts over all samples <10. The filtered counts were fed into DESeq2 which then 

makes corrections for library size. DESeq2 generates log2fold change values (CN vs CL), p-values and 

p-adj values using Benjamini-Hochberg correction. 

 

5.3.6.1 Principle Component Analysis  

Principal Component Analysis (PCA) is a method of spreading the whole data observations of possibly 

correlated variables as far apart based on the overall spatial orientation. PCA calculates the most 

separation among the data points. Therefore, if the data includes outliers, the outlier and the data 

points will have the largest separation. Through transformations of data, multiple PC values were 

obtained, labelled as PC1-PC20. The first principal component accounts for as much of the variability 

in the data as possible, and each succeeding component accounts for as much of the remaining 

variability as possible. The amount of variance that can be described by a principle component is 

usually represented as a percentage, where it represents how much of the variance is explained in the 

direction of the vector.  

 

5.3.6.2 Differential Gene Expression Analysis 

Two packages for R software (Bioconductor website) were applied to the RNA sequencing data in 

performing gene expression analysis: DESeq2 (Love, Huber & Anders 2014) and SAM using SAMseq 

method (Li & Tibshirani 2013).  

http://samtools.sourceforge.net/SAM1.pdf
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5.3.6.2.1 DESeq2/SAM 

This file is input to DESeq2 / SAM function to give out statistical information. DESeq2 and SAM are 

both methods of statistical analysis. From this the genes of statistically significant difference are 

separated out using adjusted p value of 0.05 as a cut-off. Those that are positive log2fold values are 

upregulated, whereas negative values are considered downregulated.  

While performing DESeq2 analysis, False Discovery Rate (FDR) 5% was used with Benjamini-Hochberg 

correction and genes with adjusted p value <0.05 were considered significantly 

upregulated/downregulated. 

For SAM, which is a more stringent method, the FDR was lowered to 10%.  

 

5.3.6.3 Functional annotation against Database for Annotation, Visualization and Integrated 

Discovery (DAVID) 

DAVID was originally a web based functional annotation tool that identifies enriched biological Gene 

Ontology (GO) terms and clusters the redundant ones (Dennis et al. 2003). A newer version provides 

a greater integrated annotation knowledgebase, built on the newly developed ‘DAVID Gene Concept’. 

It provides a more complex set of tools to methodically summarize relevant biological patterns from 

user-classified gene list (Dennis et al. 2003). 

 

5.3.6.4 Gene Set Enrichment Analysis 

All of the filtered genes were ranked based on “stat” values provided by DESeq2. Stat is a measure of 

log2fold change divided by its standard error. Gene sets selected (KEGG and Gene Ontology) were 

mapped onto the ranked genes. A gene set is considered to be either positively or negatively enriched 

if its genes are clustered high or low on the ranked list, respectively, and with the family-wise error 

rate (FWER) p-value <0.05 (Figure 5.3). 
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Figure 5.3 Example of Positive enrichment gene set 

 

 

In order to visually represent Gene Set Enrichment Analysis (GSEA) results a bioinformatics analysis 

tool, REVIGO, was used that takes a long list of Gene Ontology terms and summarizes them by 

removing redundant GO terms (Supek et al. 2011). From GSEA results, they extracted GO terms only, 

fed them into  the web server 'Reduce and Visualize Gene Ontology’ (REVIGO) and the results are 

shown in a “TreeMap” as well as scattered plot representation (Supek et al. 2011). Each rectangle is 

representative of a single cluster. The representatives are joined into ‘superclusters’ of loosely related 

terms which are then visualized with different colors (Supek et al. 2011). The size of the rectangles 

may be modified to either the p-value, or the frequency of the GO term in the underlying GOA 

database (Supek et al. 2011). 

In scatterplot representation, cluster representatives (i.e. terms remaining after the redundancy 

reduction) are shown in a two dimensional space based on semantic similarity (Supek et al. 2011). 

 

Enrichment plot of a gene set ‘GO_RESPONSE_TO_INTERFERON_GAMMA’. The Enrichment score (ES) seen in the Y-axis (top). 

The score at the peak of the plot (the score furthest from 0.0) is the ES for the gene set (green). Gene sets with a distinct peak 

at the beginning (such as the one shown here) or end of the ranked list are generally the most interesting. The bottom portion 

of the plot shows the value of the ranking metric as you move down the list of ranked genes. The ranking metric measures a 

gene’s correlation with a phenotype. A positive value indicates correlation with the phenotype profile and a negative value 

indicates no correlation or inverse correlation with the profile. Image taken from Gene Set Enrichment Analysis website 

(https://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html) 

https://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html
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5.3.6.5 Ingenuity Pathway Analysis (IPA) 

5.3.6.5.1 Downstream Effector Analysis (DEA) 

The IPA database of diseases and biological functions contains information on whether a gene is 

known to promote or inhibit a certain function. From gene matching, depending on the logFC, an input 

gene is matched to an increase or decrease of activity of a certain function. This is visualised by a 

“TreeMap” or a hierarchical heatmap, where the major boxes represent a family or category of related 

functions or diseases. Each individually coloured rectangle is referring to a particular biological 

function and if the function is found to be increasing, it will be shown in orange, otherwise it is shown 

in blue as decreasing (Kramer et al. 2014). A table of top categories of Disease and Function from IPA 

database is also generated. 

 

5.3.6.5.2 Upstream Regulator Analysis 

Differentially expressed genes in CLLcc (up and downregulated) along with their logFC were selected 

and input in the IPA database of prior knowledge of expected effects between transcriptional 

regulators and their target genes. Analysis examines how many known target genes of each 

transcription regulator are present in the input and compares target genes direction of change with 

the expected change if the transcriptional regulator increases/decreases its activity. If the direction is 

mostly consistent with activation/inhibition of the transcriptional regulator, a prediction is made 

about the activation state (Dennis et al. 2003). Upstream regulators were fed as official gene symbols 

into DAVID to classify them by function. Through DAVID, enriched biological themes (GO terms) can 

be identified, clustering of annotation terms can be made, genes can be visualized on KEGG pathway 

maps and more. 
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5.3.7 Real time Quantitative PCR (RT-qPCR) 

A selected number of genes from a list of differentially expressed genes from RNA-seq dataset (see 

Appendix Table 7.7) was chosen for validation by RT-qPCR following literature search for their function 

and relevance to CLL. Due to the large number of differentially expressed genes identified, for practical 

reason those genes with the biggest log2 fold-changes and the known association with the CLL 

microenvironment and NLC function were given the priority to be included for validation. In total, 20 

genes were initially selected for validation purposes.       

 

5.3.7.1 Primer Designing 

Designing primers is a very meticulous, but important step in ensuring correct amplification of a 

gene of interest (Ye et al. 2012). In brief, sensitivity and specificity of the primers to the 

complementary sequence of the genes of interest were carefully taken into accounts. A forward and 

reverse primer would ensure an accurate amplification during the polymerase chain reaction. The 

primer are designed in such a way that the primer itself is stable with melting temperatures (Tm) of 

50-60oC. The primer pairs should have a Tm within 5oC of each other. The primer pairs are designed 

to avoid complementary regions or be possible hairpin structures. The primers are prepared using 

the online tools from Ensembl Genome Browser 

(https://www.ensembl.org/Homo_sapiens/Info/Index), NCBI Primer Designing 

(https://www.ncbi.nlm.nih.gov/tools/primer-blast/), Oligonucleotide Properties Calculator 

(http://biotools.nubic.northwestern.edu/OligoCalc.html) and NCBI Homo sapiens (human) 

Nucleotide BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=OGP__9606__9558)

. Detailed sequences of the primers used for this chapter were provided in Appendix Table 7.7. 

 

5.3.7.2 Selection of Reference Gene 

GAPDH, RPL27 and ACTB were used for housekeeping/reference genes based on consensus in the 

literature (Eisenberg & Levanon 2013; Nakayama et al. 2018). Using the counts for each sample, the 

three mentioned genes were compared with each other using linear correlation. Those that had good 

correlation of at least 2/3 combinations was considered to be used as the Reference Gene of choice. 

Further details are seen in Appendix Figure 7.11. 

 

https://www.ensembl.org/Homo_sapiens/Info/Index
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://biotools.nubic.northwestern.edu/OligoCalc.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&BLAST_SPEC=OGP__9606__9558
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5.3.7.3 The use of a Calibration Sample 

A calibration sample had to be included in all batches of RT-qPCR with all the primers. Ideally, the 

calibration sample had to have a high expression of all the primers to ensure appropriate technical 

replicates. Addition to that there must be enough cDNA of the calibration sample to be used in 

optimising as well as in the actual RT-qPCR experiments. Within the raw data of the RNAseq, the 

sample with the highest counts, for each primer was considered a good candidate. The CN of 3679 

and 3627 were therefore considered to be the calibration positive control samples. 

 

5.3.7.4 Calculation of Relative Gene expression 

The Livak Method for relative gene expression analysis (Livak & Schmittgen 2001) was used  where 

the result was expressed as the fold change of the expression of target gene in the test sample over 

that in the calibrator sample with expression of target gene in both test and calibrator sample 

normalized to the expression of a reference gene. Normalizing the expression of the target gene to 

that of the reference gene compensates for any difference in the amount of sample tissue. 

The CT of the target gene is normalised to that of the reference gene for both test sample and the 

calibrator sample to give ∆CT(test) (Equation 5.1). This is then normalised to that of the calibrator. 

Finally, the expression ratio is calculated, where the gene expression is considered increased if >1.0 

and decreased if <1.0. 

Equation 5.1 Calculation of Relative Gene expression. 

 

1. Normalise the CT 

∆CT(test) = CT(target, test) – CT(ref, test) 

∆CT(calibrator) = CT(target, calibrator) – CT(ref, calibrator) 

 

2. Normalise the ∆CT of the test sample to the ∆CT of the calibrator: 

∆∆CT=∆CT(test) - ∆CT(calibrator) 

 

3. Calculate the expression ratio: 

 

 

 

Calculation of relative gene expression is by normalising the CT (1) and then normalising that of the test sample to that of the 

calibrator (2). Finally, the normalised expression ratio is calculated (3). 



154 
 

The RT-qPCR data, must meet the following criteria for analysis.  

1. GAPDH must be expressed in all sample pairs.  

a. If it is not expressed in one, the pair is excluded from interpretation. 

2. CT of the sample pair should ideally be less than 45 cycles.  

a. If both the sample pair is more than 45 cycles then the pair should be excluded.  

b. If one sample in the pair has CT more than 45 cycles then the sample pair can follow 

the equation provided that the weakest expression sample is set at default CT of 45. 
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5.4 Results 

5.4.1 Case Summary 

In this chapter a total of 14 CLL samples were used and the summary was displayed in Table 5.3. A 

more detailed description of the clinical information of the CLL samples used in the study was provided 

in Appendix Table 7.1. 6 CLL cases were used for RNA-sequencing and validation by RT-qPCR (3577, 

3599, 3627, 3682, 2679 and 3684) and 8 cases for validation of RNA-seq results (3620, 3645, 3686, 

3605, 3607, 3621, 3631 and 3637).  

Table 5.3 Summary of clinical features of the CLL samples used in this chapter 

 RNAseq  RT-qPCR  

Gender Male 

Female 

4 

2 

Male 

Female 

9 

5 

     

Prior therapy* Yes 

No 

2 

4 

Yes 

No 

4 

10 

     

FISH¶ 17p- 

13q- 

 

1/5 

4/5 

17p- 

11q- 

Trisomy 12 

13q- 

 

1/10 

1/10 

1/10 

7/10 

IGHV# Mutated 

Un-mutated 

1/2 

1/2 

Mutated 

Un-mutated 

7/10 

3/10 

Staging at the 

time of sample 

collection 

A 

B 

C 

4/6 

0/6 

2/6 

A 

B 

C 

6/14 

4/14 

4/14 

*Prior therapy included steroid, chlorambucil, or fludarabine plus cyclophosphamide and rituximab. 

¶FISH (fluorescence in situ hybridisation) was performed at or prior to sampling. 

#IGHV status refers to somatic mutation in IGHV gene of CLL cells as compared with the gene sequence of the nearest germ-

line using 2% as a cut-off.  
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5.4.2 Bioinformatics analysis of sequencing data generated by RNA-seq 

5.4.2.1 Quality Control 

After receiving the RNA-seq data, the Bioinformatics specialists at the Computational Biology Facility 

(CBF) of the University did the initial data quality control check and concluded that the quality of the 

sequencing data for each sample had passed the minimum requirement for downstream 

bioinformatics analysis. The details of their report were provided in the Appendix Figure 7.10. 

 

5.4.2.2 Data Processing 

After performing the quality control test on the RNA sequencing data, the Bioinformatics team was 

able to include 33,121 genes for subsequent data analysis. They filtered out genes which had a sum 

of counts of <10 over all samples, resulting in a total of 19,595 genes. Next, a file was produced after 

feeding the read counts into DESeq2, where log2fold change values were generated. The fold change 

was comparing the CLL cells cocultured with NLC (CN) versus CLL cells cultured alone (CL). Addition to 

log2fold change, p values and adjusted p values (padj) values were generated using Benjamini-

Hochberg correction method which can reduce the false discovery rate (FDR). 

 

5.4.2.2.1 Principle Component Analysis (PCA) 

PCA was then performed using the 19,595 genes from all 4 groups of samples. As seen in Figure 5.4, 

overall there was a clear separation between CLL and NLC populations among the 24 samples. Also, 

there was a separation among the 12 samples of CLL cells in the two groups, i.e. cultured alone versus 

co-culture. Regarding NLCs, however, there was no clear separation among samples in the two groups, 

i.e. cultured alone versus co-culture. 
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Figure 5.4 Principal Components of all groups from filtered genes separates the CLL samples from the NLC samples 

PCA was repeated using only the CLL samples (alone and co-cultured). As shown in Figure 5.5, a mild 

form of separation was again seen.  

 

 

Figure 5.5 Principle Component analysis of CL vs CN samples among the filtered genes 

 

The data observations on the left are those from CLL alone (red) and CLL co-cultured with NLCs (green) and on the right are 

those from NLCs alone (black) and NLCs co-cultured with CLL cells (orange). This PCA plot used 24 samples and all genes from 

the filtered set of 19,595. 

The data observations are those from CLL alone (red) and CLL co-cultured with NLCs (green) This PCA plot used 12 samples 

and all genes from the initial filtered set of 19,595. 
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PCA was also repeated using only the NLC samples (alone and co-cultured). As shown in Figure 5.6, 

there was again no obvious separation among the samples. 

 

Figure 5.6 Principle Component analysis of NL vs NC samples among the filtered genes 

 

 

Upon performing differential expression analysis using DESeq2 (as described in Methods) on the 

19,595 genes, 333 genes were identified as significantly differentially expressed among all samples, 

with 326 differentially expressed genes from CLL samples (alone versus co-culture) and 7 from NLCs 

(alone versus co-culture) (for details, see Appendix Tables 7.3, 7.4, 7.5 and 7.6). PCA was again 

performed using the 333 differentially expressed genes. As seen in Figure 5.7, the CLL group was 

clearly separated from the NLC group. 

The data observations are those from NLCs alone (black) and NLCs co-cultured with CLL cells (orange). This PCA plot used 

12 samples and all genes from the initial filtered set of 19,595. 
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Figure 5.7 Principal Components of all groups from filtered 333 genes that were significantly dysregulated, showed 

separation between the CLL samples and NLC samples. 

 

 

PCA was repeated only for CLL groups using 326 significantly differentially expressed genes. As seen 

in Figure 5.8, a separation between the CLL cells cultured alone (within the blue) and the CLL cells co-

cultured with NLCs (within the pink). 

  

The data observations on the left are those from CLL alone (red) and CLL co-cultured with NLCs (green) and on the right are 

those from NLCs alone (black) and NLCs co-cultured with CLL cells (orange). This PCA plot used 24 samples and all genes from 

the filtered set of 333 significant genes from DESeq2 results with padjusted<0.05, FDR 5% and use of Benjamini-Hochberg 

correction. 
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Figure 5.8 Principle Component analysis of CL vs CN samples among the filtered 326 significant genes. 

 

PCA was repeated on the NLC group using 7 significantly differentially expressed genes. As shown in 

Figure 5.9, even with only 7 genes, there was a mild separation between the NLCs cultured alone 

versus in co-culture. 

 

Figure 5.9 Principle Component analysis of NL vs NC samples among the filtered genes 

 

The data observations are those from CLL alone (red) and CLL co-cultured with NLCs (green) This PCA plot used 12 samples 
and all significant genes from the initial filtered set of 326 from DESeq2 results with padjusted<0.05, FDR 5% and use of Benjamini-
Hochberg correction. 

The data observations are those from NLCs alone (black) and NLCs co-cultured with CLL cells (orange). This PCA plot used 12 

samples and all significant genes from the initial filtered set of 7 from DESeq2 results with padjusted<0.05, FDR 5% and use of 

Benjamini-Hochberg correction. 
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Based on the plots from PCA, there was clear indications that the global gene expression from the 4 

cell populations were indeed distinct from each other. 

 

5.4.2.2.2 DESeq2 vs SAM 

Differential Gene Expression Analysis (DGEA) was performed comparing the list of differentially 

expressed genes using DESeq2 and SAM R software packages. As described in Methods, the number 

of differentially expressed genes from DESeq2 was compared to SAM with their respective FDR on the 

CLL and NLC groups. Those with positive and negative log2fold values were upregulated and 

downregulated respectively. When comparing CLL alone (CLL) with CLL in co-culture (CLLcc) as seen in 

Figure 5.10, it was seen that more significant genes were detected using DESEq2. 

 



162 
 

  

 
Figure 5.10 Differential Expression with two method comparing DESeq2 with SAM for CLL cells 

 

 

When comparing NLC alone (NLC) with NLCs in co-culture (NLCcc) as seen in Figure 5.11, more 

significant genes were detected in DESeq2. 

Signif. CLLcc vs CLL, ↑ in CLLcc  

264 58 5 

DESeq2, FDR 5% SAM, FDR 10% 

Signif. CLLcc vs CLL, ↓ in CLLcc  

Venn diagrams (top) showing the number of genes that were upregulated (left) and downregulated (right) among the CLL 

comparison group using DESeq2 and SAM method of differential gene expression analysis. DESeq2 (orange) results with 

padjusted<0.05, FDR 5%, Benjamini-Hochberg correction was used and SAM (blue) results with FDR 10%, Benjamini-Hochberg 

correction. Volcano plot (bottom) displaying the number and expression of genes, based on DESeq2 analysis, according to the 

log2foldchange and adjusted p value. The red indicates the genes that are having log2foldchange more than 2 with a 

significant p adjusted value. 

DESeq2, FDR 5%  SAM, FDR 10%  

4 0 

SAM, FDR 10% 
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Figure 5.11 Differential Expression with two method comparing DESeq2 with SAM for NLCs 

 

 

Based on the findings, DESeq2 was preferred to be the method of choice for subsequent analysis as it 

was not as stringent as SAM. The list of differentially expressed genes were those from DESeq2 

analysis. 

 

Signif. NLCcc vs NLC, ↑ in NLCcc  Signif. NLCcc vs NLC, ↓ in NLCcc  

Venn diagram (top) showing the number of genes that were upregulated (left) and downregulated (right) among the NLC 

comparison group using DESeq2 and SAM method of differential gene expression analysis. DESeq2 (orange) results with 

padjusted<0.05, FDR 5%, Benjamini-Hochberg correction was used and SAM (blue) results with FDR 10%, Benjamini-Hochberg 

correction. Volcano plot (bottom) displaying the number and expression of genes, based on DESeq2 analysis, according to 

the log2foldchange and adjusted p value. The red indicates the genes that are having log2foldchange more than 2 with a 

significant p adjusted value. 

4 

DESeq2, FDR 5% SAM, FDR 10% DESeq2, FDR 5%  SAM, FDR 10%  

3 1 0 
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5.4.2.3 Comparison of differential gene expressions with those of microarray data on tissues 

A study that investigated effects of tumour-host interactions in vivo (Herishanu et al. 2011), were 

compared with our data. In that study, peripheral blood (PB), bone marrow (BM) and lymph node (LN) 

biopsy samples were collected from treatment naïve CLL patients and matched samples were taken 

from different anatomic compartments on the same day, processed and were analysed at the same 

time (Herishanu et al. 2011). The CLL patient cohort were a mix of male and female, Rai stage 1-4, 

mutated and unmutated IGHV and all common chromosomal aberrations investigated in CLL 

(Herishanu et al. 2011). SAM differential expressions on microarray data from the study, where gene 

expression profiling was performed on peripheral blood (PB), bone marrow (BM) and Lymph Nodes 

(LN), were compared with that of our data using FDR 0.5%, Benjamini correction. 

Gene set enrichment analysis was performed three times, each time using different differential 

expression microarray tissue data as input ranked list, comparing Lymph/Marrow, Lymph/Blood and 

Marrow/Blood. 

Four custom gene sets were generated using our differentially expressed genes (CLL_up, CLL_down, 

NLC_up, NLC_down, DE genes overlapping with tissue data only), when CLLcc was compared with CLL 

alone and NLCcc was compared with NLC alone as described earlier. 

The Bioinformatics team generated 322 genes that were significantly upregulated when comparing 

CLLcc with CLL alone. 4 genes were significantly downregulated when comparing CLLcc with CLL alone. 

These were then made into custom gene sets, however only CLL upregulated passed the size 

threshold. Therefore, this could not be performed with NLC genes of total of only 7. 

Using the microarray data from the study as described in Methods, the custom gene sets were 

compared with LN/BM and LN/PB ranked- retrieved positive enrichment only, and showed statistically 

significant comparisons (FWER p-value <0.05). Among the statistically significant gene sets were 61 

genes which can be seen in Table 5.4. This significant finding was not detected when comparing with 

BM/PB ranked- retrieved positive enrichment only.  
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Table 5.4 Core enriched genes from Custom Gene sets vs LN/PB 

 PROBE 
RANK IN 

GENE LIST 

RANK 

METRIC 

SCORE 

RUNNING 

ES 

  

PROBE 
RANK IN 

GENE LIST 

RANK 

METRIC 

SCORE 

RUNNING 

ES 

 1 RRM2 5 11.533 0.0376  32 GBP1 1903 2.424 0.3175 

2 ICAM1 106 6.935 0.0543  33 BHLHE41 1943 2.395 0.323 

3 CTSB 111 6.899 0.0767  34 COL8A2 1951 2.384 0.3304 

4 EGR2 158 6.321 0.0947  35 STAT1 1974 2.36 0.3369 

5 MKI67 170 6.269 0.1147  36 PARP9 2080 2.258 0.3379 

6 HJURP 296 5.412 0.1249  37 TICRR 2109 2.231 0.3435 

7 PKMYT1 530 4.467 0.1254  38 PHLDA3 2111 2.23 0.3508 

8 OAS3 565 4.384 0.1377  39 FNDC3B 2168 2.177 0.3546 

9 RCN1 581 4.339 0.1511  40 CR1 2197 2.145 0.3599 

10 C1QA 582 4.338 0.1653  41 WDFY1 2292 2.067 0.361 

11 LILRB4 621 4.213 0.1769  42 GADD45G 2588 1.856 0.3492 

12 PTGDS 637 4.175 0.1897  43 MREG 2596 1.845 0.3548 

13 C1QC 652 4.142 0.2025  44 FBXO6 2670 1.797 0.3563 

14 PKM 769 3.903 0.2082  45 UBE2L6 2698 1.776 0.3605 

15 MMP9 777 3.857 0.2205  46 CSF1 2700 1.773 0.3663 

16 MRC1 1018 3.457 0.2173  47 PARP14 2716 1.762 0.3712 

17 CXCL9 1064 3.383 0.2257  48 C1S 2851 1.669 0.3685 

18 GALNT6 1075 3.366 0.2361  49 EGLN3 2958 1.598 0.3673 

19 PLIN3 1122 3.298 0.2442  50 BPGM 3028 1.56 0.3683 

20 C1QB 1125 3.29 0.2549  51 CCL22 3042 1.55 0.3726 

21 EBI3 1131 3.284 0.2654  52 MT1E 3124 1.489 0.3725 

22 APOE 1158 3.234 0.2744  53 NUPR1 3203 1.443 0.3726 

23 SIRPA 1361 2.961 0.2719  54 FSCN1 3229 1.436 0.3758 

24 TAP1 1398 2.917 0.2793  55 PRR11 3314 1.388 0.3752 

25 STEAP3 1579 2.733 0.2773  56 QPRT 3416 1.328 0.3735 

26 TNFRSF9 1596 2.717 0.2853  57 CXCL12 3526 1.278 0.371 

27 ITGB2 1624 2.687 0.2925  58 PLAU 3531 1.275 0.375 

28 C17orf96 1628 2.682 0.3011  59 MMP14 3581 1.247 0.3761 

29 PGD 1709 2.603 0.3048  60 GPRC5B 3634 1.219 0.377 

30 LAP3 1802 2.524 0.3075  61 PRRG4 3643 1.214 0.3805 

31 PLOD1 1882 2.443 0.3108       

List of genes generated when comparing custom gene sets vs Lymph/Marrow, ranked – retrieved positive enrichment only. 

This custom gene set were inlcuding genes upregulated in CLLcc vs CLL, and was ranked with those from the study microarray 

data (Herishanu et al. 2011). 

To confirm the RNA-seq results, some of the differential expressed genes identified by RNA-seq were 

to be selected for validation in RT-qPCR.  
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5.4.3 Validation by RT-qPCR 

5.4.3.1 Selection of Primers 

I decided to select genes from my Differential Gene Expression Analysis (DGEA) list that were also 

found to be in the study of microarray genes as described in Methods. Among the 61 genes listed, I 

selected 13 candidate genes. Primer designing difficulties and lack of available resources forced us to 

exclude the other genes of interest. On deciding the most appropriate reference gene out of GAPDH, 

RPL27 and ACTB, the comparison using R2 calculation in linear correlation and regression analyses 

revealed that GAPDH has a closer positive correlation with other two and is therefore used  as house-

keeping gene (see Appendix Figure 7.11). I proceeded to test all the cDNA samples for their expression 

of GAPDH using gel electrophoresis. As seen in Figure 5.12, it was clear that GAPDH are not amplified 

to an acceptable level in some samples, likely due to insufficient RNA, thus unsuitable for RT-qPCR. 

These samples (3599, 3577 and 3637) were therefore scrutinised with caution when interpreting the 

results. 

 

Figure 5.12 PCR gel of GAPDH Primer for all the samples used with a DNA ladder, to determine which samples are suitable 

to be used for comparison. Here 3599, 3577 and 3637 are seen as unsuitable samples. 

 

 

  

Agarose gel electrophoresis was performed, as described in Methodology, on PCR products of the cDNA samples (as 

described). The Quick-Load Purple 100bp DNA ladder was used. Both CN and CL samples were used for each sample. 
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5.4.3.2 Optimising Conditions of the RT-qPCR  

All the primers were prepared as described and RT-qPCR was performed for each of them using either 

of the mentioned calibration samples with a negative water control. I first observed the melting curves 

for each primer. As seen in Figure 5.13, there are two peaks formed. The start of the bigger peak is 

the temperature which should be set for detection of maximum fluorescence.  

 

Figure 5.13 Example of Melting curve of all samples with GAPDH Primer run on RT-qPCR. 

 

 

It is seen that the smaller peak is the location of primer dimer formation which appeared to be present 

in most of the samples. Individually, this phenomenon can be seen per sample, as seen in Figure 5.14. 

The use of water control without cDNA shows at what temperature the primer forms primer dimers. 

Melting curve from RT-qPCR of all cDNA samples showing the presence of primer dimer formation at 77-83oC (left peak).  The 

detection temperatures should be adjusted to 84oC. cDNA is synthesised from RNA as described. cDNA for RT-qPCR is 

prepared as described using standard protocol available in Appendix. Image is generated by the Lightcycler 480 PCR machine. 
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Figure 5.14 Melting curve of sample 3679, control positive sample and control negative water, all with GAPDH Primer 

showing the presence of primer dimer formation at 77-83oC 

 

 

Addition to melting curves made by the LightCycler 480 PCR machine, I also ran an agarose gel 

(described in Methodology) to observe how specific the Primers were. As seen in Figure 5.15, most of 

the primers were working well. This was also agreed upon by their qPCR results from their melting 

curves. 

 

 

 

Melting curve from RT-qPCR of cDNA sample 3679,  control positive sample and control negative water, all with GAPDH Primer 

showing the presence of primer dimer formation at 77-83oC (left peak).  The detection temperatures should be adjusted to 

84oC to detect the peak formed (right). Control negative water is used with GAPDH primer to show the position of primer dimer 

formations. cDNA is synthesised from RNA as described. cDNA for RT-qPCR is prepared as described using standard protocol 

available in Appendix. Image is generated by the Lightcycler 480 PCR machine. 
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Figure 5.15 Agarose gel using a control sample with all the primers of interest. 

 

 

Based on the results (Figure 5.15), depicting the presence of primer dimers identified as detection at 

half the expected product length (eg. EGLN3) as well as non-specific binding as detection higher than 

the product length (eg. CCL13), these primer results were to be highly scrutinized with caution. 

Based on all the data from position of melting curves of RT-qPCR as well as bands formed from PCR 

gel electrophoresis, an optimised set of conditions was prepared to read the level of fluorescence for 

each primer (Table 5.5). 

  

Using a control sample with all the primers of interest (column #3-#16). The Quick-Load Purple DNA ladders 100bp (column 

#1) and 1kb (column #2) were used to compare the bp. The agarose gel electrophoresis was performed as described in 

Methodology. This was performed to determine which primers are suitable to be used. Here a primer dimer formation is 

seen for EGLN3 and nonspecific binding is seen with CCL13 and EGR2, thereby making these primers unsuitable to test on 

samples. 
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Table 5.5 Optimal conditions to read the level of fluorescence for each primer 

Temp for signal capture oC Genes Comments 

80 MCL1  

82 
CXCL12  

CSF1  

84 

GAPDH  

GBP1  

EBI3  

YPEL4 Expected to be downregulated 

STEAP3  

86 EGLN3  

NOT GOOD 

CXCL10 Overlap with dimers 

CCL13 gDNA amplified 

CXCL9 Overlap with dimers 

NUPR1 Overlap with dimers, gDNA amplified 

EGR2 Partially overlap with dimers, non-specific amplification 

 

The conditions were therefore optimised, supported by evidence of PCR products on agarose gel and 

I could go ahead and confirm the findings of DGEA of RNAseq. 

 

5.4.4 Confirmation of differentially expressed genes by RT-qPCR 

Using the conditions optimised for RT-qPCR for all the primers, I performed the experiment on all the 

CLL paired samples (14 CL and 14 CN) for all the primers (8 primers). The method is described in 

Methodology with the grid outlines in the Appendix Table 7.14. 

As seen in Figure 5.16, the amplification curves were produced for all the samples (pooled) in their 

replicates for each primer.  

Individually, the cases can be analysed to compare each case (CLL alone and CLL co-cultured with NLC) 

with positive control and negative water control. As seen in Figure 5.16, the negative (water) control 

did not amplify anything suggesting no contamination. The presence of the positive control shows the 

experiment ran correctly. Observed a parallel exponential curve at threshold level, suggested the 

appropriate threshold level and quality of the experiment. The presence and distance of parallel waves 

between CL and CN shows the change in level of expression. This was performed on all primers for all 

case pairs. A representative example of #3620 is shown for each primer in Figure 5.16, where the 

negative control (water with primer), positive control (control sample) and the pair of CLL alone and 

CLL in co-culture with NLCs can all be appreciated. When one of the curves reach threshold (CT) later, 
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this means the expression of that gene is lower than a curve that reaches threshold (CT) earlier. Each 

report generated the CT at the selected fluorescence threshold. Now that all the RT-qPCR data was 

acquired, I was ready to calculate and compare the gene expression changes with that of RNAseq data. 
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 Pooled Example  Pooled Example 
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GAPDH  CSF1 

  

 

  
CXCL12  EGLN3 

  

 

  
GBP1  MCL1 

  

 

  
STEAP3  YPEL4 

  

 

  
 

Cycles (1-45) 

Figure 5.16 Amplification Curves of cDNA samples (Pooled in Blue column and #3620 as representative example in Orange column) for each primer at their optimised conditions. 

A control positive (CN 3627 as grey for GAPDH, green for others) and a control negative (PCR grade water with respective primer) in beige colour. For GAPDH, #3620 pair of CLL alone as dark 
green and CLL in coculture with NLCs as pale blue. For remaining primers, #3620 pair of CLL alone as green and CLL in coculture with NLCs as pale blue. Fluorescence measured in log scale and 
threshold (red horizontal line) set at 0.4. The point in which the wave for each sample passes the red line is the CT. RT-qPCR was performed as described and the images were generated using 
Lightcycler 480 machine software. 
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5.4.4.1 Relative Gene expression changes 

Here the gene expression values were calculated by the method described (Equation 5.1). It became 

clear that with the additional evidence by the PCR products on agarose gel, the samples #3577 and 

#3637 were degraded. Additionally, EBI3 were not detected at all in any of the samples. In order to 

calculate gene expression ratio values, there was a strict requirement of GAPDH CT values to be 

present to perform the calculation. If samples from either CLL cells cultured alone or in co-culture with 

NLCs or both did not have GAPDH values, then that case cannot be used in further analysis. The next 

strict requirement is that samples from either CLL cells cultured alone or in co-culture with NLCs 

should have CT values for each primer. If both were absent then the calculation cannot be performed. 

As seen in Table 5.6, based on the values as either >1 or <1 corresponding to upregulated or 

downregulated respectively, it was colour coded for ease in visual representation. 

Table 5.6 RT-qPCR results displaying gene expression changes across all the samples for each primer. 

 
3682 3679 3684 3620 3645 3686 3605 3607 3621 3631 

MCL1 

          
CXCL12 

          
CSF1 

          
GBP1 

          
YPEL4 

          
STEAP3 

          
EGLN3 

          
           

   Increased 

         
   Decreased 

         

 

 

The samples #3577, #3599, #3627 and #3637 had to be excluded because calculation of gene 

expression ratio was not possible for the majority of the primers. #3627 was excluded entirely because 

the GAPDH of CL was very weakly expressed which would not have given a justifiable analysis of the 

primers. The empty spaces are where both the samples in the pair could not be used to calculate the 

RT-qPCR results displaying gene expression changes as green (increased) or blue (decreased) compared between CLL alone 

and CLL in co-culture with NLCs. Samples in purple font are those that were also sent for RNAseq. Gaps are indicated where 

qPCR data was not obtainable. CT values were obtained from Lightcycler 480 machine software. Gene expression ratio was 

calculated as described in Methods. Each sample was normalised to a calibration sample, and each of that was normalised 

to reference gene GAPDH. 
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relative gene expression. As seen in Table 5.6, of the 10 cases remained for 7 primers (excluding 

GAPDH) there was an increased expression of most of the genes for the majority of samples, except 

#3621 and #3631. I then proceeded to compare the expression changes of these remaining 10 cases, 

with that of the expected changes from RNAseq analysis. 

 

5.4.4.2 Compared results from RT-qPCR with RNA-seq data 

Using the gene expression changes from Table 5.6, I compared with the expected changes from 

RNAseq analysis, where if the RT-qPCR data coincided with the expected change in gene expression, 

the applied colour coding is green and similarly if they go against the expected change in gene 

expression, the applied colour coding is red (Table 5.7). 

Table 5.7 Comparison of RT-qPCR gene expression changes with that of expected changes from RNAseq analysis. 

 
3682 3679 3684 3620 3645 3686 3605 3607 3621 3631 

MCL1 
          

CXCL12 
          

CSF1 
          

GBP1 
          

YPEL4 
          

STEAP3 
          

EGLN3 
          

           
  As expected 

  Not expected 

 

 

Here it can be seen in Table 5.7, 24 gene expression change observations (red) did not agree with that 

of RNAseq analysis, but 41 did (green). It can be seen that the sample #3679 displayed all the changes 

in RT-qPCR that was expected from DGEA of RNAseq data. The next best samples were #3620 and 

#3682. A further detailed descriptive analysis seen in Table 5.8, show that among the RNAseq samples, 

3 primers were consistently differentially expressed as expected, namely MCL1, CSF1 and GBP1. 

  

Comparison of gene expression changes obtained from RT-qPCR with that from RNAseq DGEA as green (as expected with 

RNAseq results) or red (not expected with RNAseq results) compared between CLL alone (CL) and CLL in co-culture with 

NLCs (CN). Gaps are indicated where RT-qPCR data was not obtainable. The samples that were also used in RNAseq are in 

purple. 
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Table 5.8 Descriptive analysis of RT-qPCR vs RNA seq data 

 RNAseq samples (3) Other Samples (7) All samples (10) 

MCL1 3 out of 3 100.00% 3 out of 7 42.86% 6 out of 10 60.00% 

CXCL12 2 out of 3 66.67% 4 out of 7 57.14% 6 out of 10 60.00% 

CSF1 3 out of 3 100.00% 4 out of 7 57.14% 7 out of 10 70.00% 

GBP1 3 out of 3 100.00% 4 out of 5 80.00% 7 out of 8 87.50% 

YPEL4 1 out of 3 33.33% 3 out of 7 42.86% 4 out of 10 40.00% 

STEAP3 1 out of 2 50.00% 3 out of 6 50.00% 4 out of 8 50.00% 

EGLN3 2 out of 3 66.67% 5 out of 6 83.33% 7 out of 9 77.78% 

 

 

To further understand why these specific primers (MCL1, CSF1 and GBP1) were faithful in their 

expression changes detectable by RT-qPCR and RNA-seq DGEA, I looked at the raw read counts from 

the RNA-seq data. 

 

5.4.4.3 Read counts from RNA-seq 

As shown in Table 5.9, the read counts obtained from RNA-seq in order to calculate differential gene 

expression analysis, revealed a wide range of absolute values from 0-18079. 

  

Descriptive analysis of gene expression changes of RT-qPCR compared with DGEA of RNAseq data. 7 primers were 

compared among 3 groups: RNAseq samples themselves, other samples and all samples combined. Highlighted in blue are 

the primers that were differentially expressed as expected by all the samples within their respective groups. 
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Table 5.9 Read counts of Primers investigated for each RNA sample sent for RNAseq. 

 
CL 

      

 
CL27 CL77 CL79 CL82 CL84 CL99 Average read 

YPEL4 61 32 51 53 33 90 53.33333 

CXCL12 1 0 1 1 0 0 0.5 

EGLN3 2 0 1 1 0 0 0.666667 

GBP1 34 13 12 59 26 12 26 

EBI3 2 2 0 3 3 0 1.666667 

CSF1 55 76 31 48 30 44 47.33333 

MCL1 6418 6256 4451 8709 6264 4898 6166 

STEAP3 8 189 26 18 7 14 43.66667 

GAPDH 3701 3804 2847 4037 2983 1929 3216.833 

 

 
CN 

      

 
CN27 CN77 CN79 CN82 CN84 CN99 Average read 

YPEL4 32 30 32 25 7 85 35.16667 

CXCL12 2 22 2 7 6 14 8.833333 

EGLN3 10 7 7 6 0 5 5.833333 

GBP1 224 59 28 1586 47 231 362.5 

EBI3 17 4 0 45 10 2 13 

CSF1 498 314 75 815 80 231 335.5 

MCL1 10638 10221 6281 18079 9243 9546 10668 

STEAP3 141 497 55 45 37 263 173 

GAPDH 3909 4220 2814 4534 3800 2312 3598.167 

 

 

Interestingly, the genes MCL1, CSF1 and GBP1 had a much higher read count (2-4 digits) than the 

remaining genes across all the samples. (1-2 digits). Those with 2 digit read counts but compared 

poorly in RT-qPCR had counts in the lower range (ie 10-50) such as YPEL4, CXCL12, EGLN3, EBI3 and 

STEAP3. The average read count for those with poor comparison with RT-qPCR were 0.5-53 (CL) and 

5.8-173 (CN).  

Raw read counts for each sample sent for RNAseq for each primer investigated. Green indicates the gene that was 

significantly differentially downregulated by DGEA. Yellow indicates genes that were significantly differentially upregulated 

by DGEA. Orange indicates the reference gene selected. Red indicates the Genes whose RT-qPCR data completely coincided 

with expected changes of RNAseq DGEA. CLL alone (CL) are those on top and CLL Co-cultured with NLCs (CN) are those 

bottom. The individual samples have numbers after their designated culture condition. Raw counts were obtained during 

DGEA by the Bioinformatics department of Computational Biology Facility. 
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Given that the majority of Primers (6/7) were validated with more than 50% of samples we can have 

good confidence on the validity of the RNAseq data by the differential gene expression analysis. 

So far, the analysis of samples for qPCR and RNAseq was more or less validated. The samples that 

were not sent for RNAseq but had qPCR performed gives a similar picture, though the findings can be 

explained by the heterogeneity of the CLL disease (Table 5.3).  
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5.4.5 Functional and Pathway analysis 

5.4.5.1 Functional annotation (DAVID) 

With the use of DAVID, as shown in Table 5.10, CLLcc vs CLL comparison showed 322 upregulated 

genes as input data, out of which 313 genes were mapped in by DAVID, resulting in 10 clusters. Out of 

these 10, 2 clusters had significant Benjamini corrected p-values. The first cluster is of inflammatory 

response (26/313 genes) and the second cluster is of platelet degranulation (10/313 genes). 

The number of differentially expressed genes in NLC was not enough to perform DAVID analysis. 

Table 5.10 Functional Annotation (DAVID) in CLLcc vs CLL comparison 

 

 

 

 

  

CLLcc vs CLL comparison: 322 upregulated genes were fed into DAVID and found 10 clusters, of which only 2 had significant 

Benjamini corrected p-values. 
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5.4.5.2 Gene Set Enrichment Analysis (GSEA) 

Gene sets were selected (KEGG and Gene Ontology) and were mapped onto the ranked genes. When 

comparing CLLcc with CLL, 15,796 were selected and 104 positively enriched gene sets were found to 

be significant when FWER p-value <0.05. As seen in Table 5.11, the top 10 enriched and upregulated 

gene sets included those involved in chemokine and cytokine signalling. 

Table 5.11 Gene set enrichment analysis of CLL co-cultured with NLC (CLLcc) vs CLL alone (CLL) 

 

 

Furthermore, as seen in Figure 5.17, REVIGO was used to visualize the GSEA results and showed 

involvement of ‘Regulation of response to wound’ and ‘Lymphocyte migration’.  

 

Figure 5.17 “TreeMap” view of REVIGO Gene Set Enrichment Analysis comparing CLL co-cultured with NLC vs CLL alone 

 

GS

follow link to MSigDB

1 GO_RESPONSE_TO_INTERFERON_GAMMA Details ... 115 0.7 2.6 0 0 0 2225 tags=53%, list=14%, signal=61%

2 GO_CHEMOKINE_RECEPTOR_BINDING Details ... 40 0.8 2.6 0 0 0 1936 tags=65%, list=12%, signal=74%

3 GO_CELLULAR_RESPONSE_TO_INTERFERON_GAMMA Details ... 96 0.7 2.5 0 0 0 1970 tags=49%, list=12%, signal=56%

4 GO_CHEMOKINE_ACTIVITY Details ... 32 0.8 2.5 0 0 0 1075 tags=59%, list=7%, signal=64%

5 GO_CHEMOKINE_MEDIATED_SIGNALING_PATHWAY Details ... 49 0.8 2.5 0 0 0 1936 tags=61%, list=12%, signal=70%

6 KEGG_COMPLEMENT_AND_COAGULATION_CASCADES Details ... 41 0.8 2.5 0 0 0 440 tags=44%, list=3%, signal=45%

7 GO_CYTOKINE_MEDIATED_SIGNALING_PATHWAY Details ... 350 0.6 2.4 0 0 0 2558 tags=43%, list=16%, signal=50%

8 GO_PROTEIN_ACTIVATION_CASCADE Details ... 35 0.8 2.4 0 0 0 1186 tags=51%, list=8%, signal=55%

9 GO_INNATE_IMMUNE_RESPONSE Details ... 419 0.6 2.4 0 0 0 2344 tags=39%, list=15%, signal=45%

10 GO_INTERFERON_GAMMA_MEDIATED_SIGNALING_PATHWAY Details ... 63 0.7 2.4 0 0 0 2130 tags=52%, list=13%, signal=60%

FWER p-val RANK AT MAX LEADING EDGEGS DETAILS SIZE ES NES NOM p-val FDR q-val

Top 10 gene sets that were enriched based on their rank on the list and with FWER p-val <0.05. Data sets are predefined 

by KEGG or GO and is ranked based on “stat” values provided by DESeq2. 

Each rectangle is a single cluster representative. The representatives are joined into ‘superclusters’ of loosely related terms, 

visualized with different colors. Size of the rectangles may be adjusted to reflect either the p-value, or the frequency of the 

GO term in the underlying GOA database. 
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A ‘‘Scatterplot & Table’’ view of REVIGO was also generated when comparing CLLcc with CLL alone, as 

seen in Figure 5.18, and showed the involvement of lymphocyte migration, extracellular matrix 

disassembly, tissue remodelling, inflammatory response, regulation of response to wounding, positive 

regulation of ERK1 and ERK2 cascade and positive regulation of vasculature development. 
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Figure 5.18 ‘‘Scatterplot & Table’’ view of REVIGO comparing CLL co-cultured with NLC vs CLL alone 

 

This GSEA was performed the same way again in the comparison between NLCcc and NLC using 19,595 

genes and found 18 significantly enriched gene sets with positive enrichment when p<0.0.5, which is 

displayed in Table 5.12. 

The scatterplot shows the cluster representatives (i.e. terms remaining after the redundancy reduction) in a two-

dimensional space derived by applying multidimensional scaling to a matrix of the GO terms’ semantic similarities. 
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Table 5.12 Gene set enrichment analysis of NLC co-cultured with CLL (NLCcc) vs NLC alone (NLC) 

 

GS

follow link to MSigDB

1 KEGG_RIBOSOME Details ... 85 0.6 2.4 0 0 0 4281 tags=60%, list=22%, signal=76%

2 GO_ESTABLISHMENT_OF_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM Details ... 102 0.6 2.4 0 0 0 4281 tags=57%, list=22%, signal=72%

3 KEGG_SPLICEOSOME Details ... 125 0.6 2.4 0 0 0 3422 tags=46%, list=17%, signal=55%

4 GO_CHEMOKINE_MEDIATED_SIGNALING_PATHWAY Details ... 59 0.6 2.4 0 0 0 4238 tags=56%, list=22%, signal=71%

5 GO_CYTOSOLIC_RIBOSOME Details ... 105 0.6 2.3 0 0 0 4281 tags=54%, list=22%, signal=69%

6 GO_RIBOSOMAL_SUBUNIT Details ... 156 0.5 2.3 0 0 0 3861 tags=48%, list=20%, signal=59%

7 GO_CYTOSOLIC_SMALL_RIBOSOMAL_SUBUNIT Details ... 42 0.7 2.3 0 0 0 3693 tags=60%, list=19%, signal=73%

8 GO_RRNA_METABOLIC_PROCESS Details ... 249 0.5 2.3 0 0 0 5074 tags=49%, list=26%, signal=66%

9 GO_CHEMOKINE_ACTIVITY Details ... 38 0.7 2.3 0 0 0 3458 tags=50%, list=18%, signal=61%

10 GO_RIBOSOME Details ... 212 0.5 2.3 0 0 0 4281 tags=45%, list=22%, signal=57%

11 GO_RIBOSOME_BIOGENESIS Details ... 298 0.5 2.3 0 0 0 5089 tags=49%, list=26%, signal=65%

12 GO_SMALL_RIBOSOMAL_SUBUNIT Details ... 66 0.6 2.3 0 0 0.001 3693 tags=53%, list=19%, signal=65%

13 GO_PROTEIN_LOCALIZATION_TO_ENDOPLASMIC_RETICULUM Details ... 121 0.5 2.2 0 0 0.003 4281 tags=53%, list=22%, signal=67%

14 GO_PROTEIN_TARGETING_TO_MEMBRANE Details ... 149 0.5 2.2 0 0.001 0.02 4281 tags=46%, list=22%, signal=59%

15 GO_CCR_CHEMOKINE_RECEPTOR_BINDING Details ... 26 0.7 2.1 0 0.002 0.033 4238 tags=54%, list=22%, signal=69%

16 GO_RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS Details ... 419 0.4 2.1 0 0.002 0.034 5089 tags=44%, list=26%, signal=59%

17 GO_CHEMOKINE_RECEPTOR_BINDING Details ... 47 0.6 2.1 0 0.002 0.034 3103 tags=40%, list=16%, signal=48%

18 GO_CYTOSOLIC_LARGE_RIBOSOMAL_SUBUNIT Details ... 56 0.6 2.1 0 0.002 0.039 4281 tags=55%, list=22%, signal=71%

FWER p-val RANK AT MAX LEADING EDGEGS DETAILS SIZE ES NES NOM p-val FDR q-val

All 18 gene sets that were enriched based on their rank on the list and with FWER p-val <0.05. Data sets are predefined by KEGG or GO and is ranked based on “stat” values 

provided by DESeq2. 



183 
 

5.4.5.3 Ingenuity Pathway Analysis (IPA) 

IPA was performed as described in Methods to identify any pathways that is suggested to be involved 

based on the genes that is known to promote and inhibit a function. As seen in Figure 5.19 (top), the 

TreeMap shows an involvement of several functions.  

 

5.4.5.3.1 Diseases and Functions 

 
© 2000-2019 QIAGEN. All rights reserved.

Categories Function Diseases or Functions Annotation p-Value
Predicted

Activation State

Activation

z-score
Molecules # Molecules

Cellular Movement migration Migration of cells 1.06E-19 Increased 4.5 A2M,ACTN1,ADGRE2,ALOX15B,APBA1,APOE,BCAR1,BHLHE41,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD38,CD4,CDCP1,CDKN1A,CHI3L1,CLEC11A,COL6A1,CSF1,CTSB,CTSL,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,CYP2S1,EBI3,EGLN3,F3,FPR2,FSCN1,GBP1,ICAM1,IGFBP6,IL6,ITGB2,KCNMA1,LGALS3BP,LPAR1,LRP12,MMP14,MMP7,MMP9,MSR1,NCF2,NES,NFKBIA,NRP1,OLR1,PANDAR,PARP9,PKM,PLAU,PLAUR,PLXNA1,PROS1,PTAFR,PTPRF,S100A11,SDC4,SEMA3A,SERPINA1,SERPINE1,SH3PXD2B,SHC4,SIRPA,SLC7A11,SLC8A1,SOCS3,SOD2,SORT1,SPARC,SPP1,SPSB1,STAT1,TFPI,TGFA,TGM2,TIMP3,TXN,USP2,WARS87

Cellular Movement cell movement Cell movement 1.29E-18 Increased 4.809 A2M,ACTN1,ADGRE2,ALOX15B,ANOS1,APBA1,APOE,BCAR1,BHLHE41,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD38,CD4,CDCP1,CDKN1A,CHI3L1,CLEC11A,COL6A1,CSF1,CSPG4,CTSB,CTSL,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,CYP2S1,DRAM1,DST,EBI3,EGLN3,F3,FPR2,FSCN1,GBP1,ICAM1,IGFBP6,IL6,ITGB2,KCNMA1,LGALS3BP,LPAR1,LRP12,MMP14,MMP7,MMP9,MSR1,NCF2,NES,NFKBIA,NRP1,OLR1,PANDAR,PARP9,PKM,PLAU,PLAUR,PLXNA1,PROS1,PTAFR,PTPRF,S100A11,SDC4,SEMA3A,SERPINA1,SERPINE1,SH3PXD2B,SHC4,SIRPA,SLC7A11,SLC8A1,SOCS3,SOD2,SORT1,SPARC,SPP1,SPSB1,STAT1,TFPI,TGFA,TGM2,TIMP3,TXN,USP2,WARS91

Cell-To-Cell Signaling and Interaction adhesion Adhesion of blood cells 3.23E-15 Increased 3.07 A2M,APOE,CCL22,CD4,CD59,CR1,CSF1,CXCL10,CXCL12,CXCL8,CXCL9,F3,FPR2,ICAM1,IL6,ITGB2,MARCO,MRC1,PLAU,PLAUR,SERPINA1,SERPINE1,SERPING1,SPP1,STAT1,TGM2,TXN27

Inflammatory Response inflammatory response Inflammatory response 8.25E-15 Increased 3.258 APOE,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,IL6,ITGB2,LGALS3BP,LYZ,MCL1,MMP9,NFKBIA,PLAU,PLAUR,PROS1,SERPINA1,SERPINE1,SERPING1,SIRPA,SOCS3,SPP1,TNFAIP6,VNN134

Cellular Movement cell movement Cell movement of myeloid cells 1.24E-14 Increased 4.372 CCL1,CCL13,CCL22,CCL24,CCL7,CCL8,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,ICAM1,ITGB2,MMP14,MMP9,PLAU,PLAUR,SEMA3A,SERPINA1,SERPINE1,SIRPA,SPP1,TGM2,TIMP327

Cell-To-Cell Signaling and Interaction binding Binding of blood cells 2.01E-14 Increased 2.948 A2M,APOE,CCL22,CD4,CD59,CR1,CSF1,CXCL10,CXCL12,CXCL8,CXCL9,F3,FPR2,ICAM1,IL6,ITGB2,MARCO,MRC1,PLAU,PLAUR,SEMA3A,SERPINA1,SERPINE1,SERPING1,SPP1,STAT1,TGM2,TXN28

Cellular Movement,Hematological System Development and Function,Immune Cell Traffickingcell movement Cell movement of leukocytes 3.86E-14 Increased 4.573 ADGRE2,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD38,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,ICAM1,IL6,ITGB2,MMP14,MMP9,PLAU,PLAUR,SEMA3A,SERPINA1,SERPINE1,SIRPA,SOCS3,SPP1,TGM2,TIMP332

Cell-To-Cell Signaling and Interaction,Hematological System Development and Function,Immune Cell Traffickingadhesion Adhesion of immune cells 5.14E-14 Increased 2.455 A2M,APOE,CCL22,CD4,CSF1,CXCL10,CXCL12,CXCL8,F3,FPR2,ICAM1,IL6,ITGB2,MARCO,MRC1,PLAU,PLAUR,SERPINA1,SERPINE1,SERPING1,SPP1,STAT1,TGM2,TXN24

Cellular Movement cell movement Cell movement of tumor cell lines 8.63E-14 Increased 4.261 A2M,ACTN1,BCAR1,BHLHE41,CCL1,CCL13,CCL18,CCL22,CCL7,CCL8,CDCP1,CDKN1A,CSF1,CTSB,CTSL,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,DRAM1,EBI3,EGLN3,F3,FPR2,FSCN1,IGFBP6,IL6,LGALS3BP,LPAR1,MMP14,MMP7,MMP9,NES,NFKBIA,NRP1,PANDAR,PKM,PLAU,PLAUR,PLXNA1,PTAFR,S100A11,SDC4,SEMA3A,SERPINA1,SERPINE1,SH3PXD2B,SHC4,SIRPA,SOCS3,SOD2,SPARC,SPP1,SPSB1,STAT1,TFPI,TGFA,TGM2,TIMP3,USP261

Cellular Movement migration Migration of tumor cell lines 1.77E-13 Increased 3.645 A2M,ACTN1,BCAR1,BHLHE41,CCL1,CCL22,CCL7,CDCP1,CDKN1A,CTSB,CTSL,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,EBI3,EGLN3,F3,FSCN1,IGFBP6,IL6,LGALS3BP,LPAR1,MMP14,MMP7,MMP9,NES,NFKBIA,NRP1,PANDAR,PKM,PLAU,PLAUR,PLXNA1,PTAFR,S100A11,SDC4,SEMA3A,SERPINA1,SERPINE1,SH3PXD2B,SHC4,SIRPA,SOCS3,SOD2,SPARC,SPP1,SPSB1,STAT1,TFPI,TGFA,TGM2,TIMP3,USP255

Cellular Movement,Hematological System Development and Function,Immune Cell Trafficking,Inflammatory Responsemigration Migration of phagocytes 2.34E-13 Increased 3.21 CCL1,CCL22,CCL7,CCL8,CD38,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,ICAM1,ITGB2,MMP14,MMP9,PLAU,SEMA3A,SERPINE1,SPP1,TIMP319

Cellular Movement,Immune Cell Trafficking migration Leukocyte migration 3.05E-13 Increased 4.702 ADGRE2,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD38,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,ICAM1,IL6,ITGB2,MMP14,MMP9,OLR1,PLAU,PLAUR,PROS1,SDC4,SEMA3A,SERPINA1,SERPINE1,SIRPA,SLC7A11,SOCS3,SPP1,TGM2,TIMP3,TXN37

Cellular Movement chemotaxis Chemotaxis 4.65E-13 Increased 4.501 ACTN1,ADGRE2,ANOS1,BCAR1,CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,IL6,ITGB2,LPAR1,MMP9,NRP1,PLAU,PLAUR,SEMA3A,SERPINA1,SERPINE1,SOCS3,SPP1,TXN32

Cellular Movement,Hematological System Development and Function,Immune Cell Trafficking,Inflammatory Responsecell movement Cell movement of phagocytes 9.12E-13 Increased 4.07 CCL1,CCL22,CCL24,CCL7,CCL8,CD38,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,ICAM1,ITGB2,MMP14,MMP9,PLAU,PLAUR,SEMA3A,SERPINA1,SERPINE1,SPP1,TIMP325

Cellular Movement,Hematological System Development and Function,Immune Cell Trafficking,Inflammatory Responsechemotaxis Chemotaxis of leukocytes 1.3E-12 Increased 4.062 CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD4,CSF1,CXCL10,CXCL12,CXCL5,CXCL8,CXCL9,FPR2,IL6,ITGB2,MMP9,PLAU,PLAUR,SERPINA1,SERPINE1,SOCS3,SPP124

Free Radical Scavenging metabolism Metabolism of reactive oxygen species 2.3E-12 Increased 3.35 APOE,APOL6,CCL13,CDKN1A,CLEC7A,CSF1,CXCL8,FPR2,FTH1,GSN,IL4I1,IL6,ITGB2,MRC1,NCF2,NFKBIA,OLR1,PLAU,PLAUR,PRCP,SERPINA1,SH3PXD2B,SLC8A1,SMOX,SOD2,TGFA,TGM227

Cellular Movement,Hematological System Development and Function,Immune Cell Traffickingcell movement Cell movement of mononuclear leukocytes 2.42E-12 Increased 3.783 CCL1,CCL13,CCL18,CCL22,CCL24,CCL7,CCL8,CD4,CXCL10,CXCL12,CXCL8,CXCL9,FPR2,ICAM1,ITGB2,MMP14,MMP9,PLAU,PLAUR,SEMA3A,SERPINE1,SOCS3,SPP1,TGM2,TIMP325  

Figure 5.19 “TreeMap” (hierarchical heatmap) of downstream effector analysis (DEA) comparing CLLcc with CLL alone cells 

 

 

Among the top categories are cellular movement, cell-cell signalling interaction (adhesion, binding), 

inflammatory response, free radical scavenging, cellular proliferation, shape change, cell death and 

cell viability. Details of those that are increased are shown in Figure 5.19 (bottom). 

 

  

DEA results for CLL cells in co-culture with NLCs. The visualization is a TreeMap (top) where the large boxes represents a 

category of related functions. Each smaller box are coloured at a particular biological function or disease. Orange is the 

predicted increase and blue is the predicted decrease. Darker colours indicate higher absolute Z-scores. The image has been 

cropped for better readability. The details of the functions that are top increases is listed (bottom). 
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5.4.5.3.2 Upstream Regulator analysis 

326 differentially expressed genes in CLLcc (up and downregulated) along with their logFC were 

selected and input in the IPA database. The database then analysed these genes with those of its own 

from other studies to identify the common upstream regulators for a dataset of genes. As seen in 

Table 5.13, a list of upstream regulators according to their p-value of overlap shows the involvement 

of TNF, NF-ĸB, ERK and TLR4. 

Table 5.13 Upstream Regulator analysis of the 326 differentially expressed genes in CLL co-cultured with NLCs 

Upstream Regulator Expr Log Ratio Molecule Type

Predicted

Activation

State

Activation

z-score

p-value of

overlap
Target molecules in dataset

TNF  cytokine Activated 4.249 2.42E-22 ALOX15B,APOE,CCL18,CD59,CDKN1A,CHI3L1,CLEC11A,CSF1,CXCL10,CXCL5,CXCL8,CXCL9,DCSTAMP,EBI3,F3,G0S2,GBP1,ICAM1,IFIT3,IL1RN,IL6,IRF1,MCL1,MMP9,NCF2,NFKBIA,NR1H3,PKM,PKMYT1,PLAU,PLAUR,PTGES,RRM2,SDC4,SERPINE1,SLC1A2,SLC8A1,SOD2,STAC,STAT1,TAP1,TGFA,TIMP3,TNFAIP2,USP2

IFNG  cytokine Activated 4.786 2.31E-21 ACE,APOL6,C1QA,C1QB,C1QC,CCL18,CCL22,CDKN1A,CISH,CXCL10,CXCL8,CXCL9,DAPK1,EBI3,ETV7,FPR2,GBP1,ICAM1,IFIH1,IFIT3,IL1RN,IL6,IRF1,KCNMA1,LGALS3BP,MMP9,NCF2,NFKBIA,OAS3,PTAFR,PTGES,SDC4,SOCS3,SOD2,STAT1,TAP1,TAP2,UBD

IL1B  cytokine Activated 3.921 1.23E-17 APOE,CCL13,CCL7,CHI3L1,CXCL10,CXCL5,CXCL8,CXCL9,FPR2,ICAM1,IL1RN,IL6,IRF1,MCL1,MMP7,MMP9,NFKBIA,NR1H3,NRP1,PTGDS,PTGES,SEMA3A,SERPINE1,SOCS3,SOD2,TNFAIP6,UBD

STAT1 1.982 transcription regulator Activated 3.756 6.96E-17 C1S,CDKN1A,CXCL10,CXCL9,GBP1,GBP3,GBP4,ICAM1,IFIH1,IFIT3,IRF1,MMP9,PARP9,PDCD1LG2,SAMD9L,SLAMF8,SOCS3,STAT1,TAP1,TRIM21,WARS

IL1A  cytokine Activated 3.447 3.95E-15 ALDH1A1,CCL8,CDKN1A,CSF1,CXCL10,CXCL5,CXCL8,HSD11B1,ICAM1,IL6,NFKBIA,PDCD1LG2,PLAU,PTGES,SERPINA1,SERPINE1,SOD2

NFkB (complex)  complex Activated 4.426 1.37E-14 CCL1,CCL22,CCL8,CDKN1A,CXCL10,CXCL12,CXCL8,CXCL9,F3,FTH1,G0S2,ICAM1,IL15RA,IL6,IRF1,MCL1,MMP9,NCF2,NFKBIA,PLAU,SDC4,SLC1A2,SOCS3,SOD2,TAP1,TGM2

Interferon alpha  group Activated 2.034 3.81E-14 ADAR,CCL22,CDKN1A,CXCL10,CXCL9,EPSTI1,FBXO6,GBP1,IFIH1,IFIT3,IRF1,LAP3,MCL1,NFKBIA,OAS3,PARP14,PARP9,PTGES,SAMD9L,STAT1,TAP1,TAP2,UBE2L6,WDFY1,ZBED2

RELA  transcription regulator Activated 3.488 5.23E-13 CD59,CDKN1A,CXCL10,CXCL5,CXCL8,CXCL9,FSCN1,ICAM1,IL1RN,IL6,IRF1,MMP9,NFKBIA,PKM,PLAU,SLC1A2,SOD2,TAP1,TAP2,TGM2,UBD

TREM1  transmembrane receptor Activated 2.527 3.07E-12 ARRDC4,CCL18,CCL7,CRTAM,CSF1,CXCL5,CXCL8,DCSTAMP,EBI3,EGR2,F3,IL15RA,IL6,IRF1,MT1E,NRIP3,PHLDA2,SLC1A3,SPP1,TCEAL9

IFNA2  cytokine Activated 3.113 4.43E-12 APOL6,CISH,CXCL10,GBP1,IFIH1,IFIT3,IL6,IRF1,LGALS3BP,LILRB4,MMP9,OAS3,SOCS3,STAT1,UBE2L6

RNASE2  enzyme Activated 3.113 5.49E-12 CCL1,CCL22,CCL24,CCL7,CCL8,CSF1,CXCL10,CXCL5,CXCL9,IL6

TGM2 3.191 enzyme Activated 4.518 9.66E-12 ADGRE2,CCL22,CCL24,CXCL10,CXCL8,DCSTAMP,HK3,IFIT3,MMP9,NCF2,OAS3,PARP14,PARP9,PTGES,SAMD9L,SIRPA,SPP1,STAT1,TAP1,TNFAIP2,VSIG4

IL27  cytokine Activated 3.032 1.21E-11 CCL7,CR1,CXCL10,CXCL8,CXCL9,ICAM1,IL1RN,IL6,IRF1,MRC1,SOCS3,STAT1,TAP1

JUN  transcription regulator Activated 2.47 1.21E-11 CCL8,CDKN1A,CXCL10,CXCL5,CXCL8,FTH1,ICAM1,IGFBP6,IL6,MMP7,MMP9,NCF2,NFKBIA,PLAUR,PTGES,SERPINE1,SOD2,SPP1

RNASE1  enzyme Activated 2.97 1.34E-11 CCL1,CCL22,CCL24,CCL7,CCL8,CXCL10,CXCL5,CXCL9,IL6

TLR7  transmembrane receptor Activated 3.642 6.13E-11 CD38,CXCL10,CXCL8,CXCL9,ICAM1,IFIT3,IL4I1,IL6,IRF1,KCNMA1,NFKBIA,OAS3,PLAU,STAT1

IL13  cytokine Activated 2.117 8.92E-11 ADAMDEC1,ARNTL2,CCL18,CCL22,CD1B,CD1E,CISH,CLEC4E,CXCL5,CXCL8,G0S2,GSN,HSD11B1,IL13RA1,IL1RN,MRC1,SLC8A1,SORT1,TGM2

Immunoglobulin  complex Activated 3.138 1.97E-10 CCL1,CCL7,CCL8,CISH,CXCL10,CXCL9,IL6,IRF1,NFKBIA,UBD

PRL  cytokine Activated 3.039 7.78E-10 ADAR,CDKN1A,CISH,CTSB,CXCL10,CXCL9,DTX3L,EPSTI1,IFIH1,IFIT3,OAS3,PARP14,SAMD9L

IFNL1  cytokine Activated 3.41 9.01E-10 APOL6,CXCL10,CXCL8,CXCL9,GBP1,IFIH1,IFIT3,IL6,LGALS3BP,OAS3,STAT1,UBE2L6

EGFR  kinase Activated 3.011 1.63E-09 CDCP1,CHI3L1,CXCL8,E2F2,F3,GBP1,ICAM1,NFKBIA,PKM,PLAU,PLAUR,PTGES,SLC7A11,TGM2

PRKCD  kinase Activated 2.901 1.77E-09 CD4,CDKN1A,CTSB,CXCL10,CXCL12,CXCL8,HJURP,ICAM1,IL1RN,IL6,JCAD,MMP9,NES,NFKBIA,SERPINE1

TLR9  transmembrane receptor Activated 3.229 2.61E-09 CD38,CXCL10,CXCL8,CXCL9,IFIT3,IL4I1,IL6,IRF1,MCL1,OAS3,STAT1

P38 MAPK  group Activated 3.384 2.73E-09 CCL8,CDKN1A,CXCL10,CXCL12,CXCL8,CXCL9,EGR2,GBP1,ICAM1,IL6,MMP9,RBP1,SERPINE1,STAT1,TGFA,VDR

NFKB1  transcription regulator Activated 2.744 3.64E-09 CD59,CHI3L1,CXCL10,CXCL8,CXCL9,FSCN1,IL1RN,IL6,IRF1,MMP9,NFKBIA,PLAU,SOD2

TGFB1  growth factor Activated 3.263 7.06E-09 CD59,CDKN1A,CHI3L1,COL6A3,CXCL8,FSCN1,IL6,ITGB2,MKI67,MMP9,MRC1,NFKBIA,NRP1,PLAU,PLAUR,SCD,SEMA3A,SERPINA1,SERPINE1,SPARC,TGFA,TGM2,TIMP3

ERK  group Activated 3.045 7.75E-09 CDKN1A,CXCL10,CXCL8,ICAM1,IL6,ITGB2,MCL1,MMP14,MMP9,SERPINE1,STAT1,TGFA,TGM2

JAG2  growth factor Inhibited -2.121 2.01E-08 CCL13,CCL24,CXCL5,CXCL9,IL13RA1,IL1RN,IL6,SPP1

TLR4  transmembrane receptor Activated 2.401 5.72E-08 CCL8,CD38,CXCL10,CXCL8,ICAM1,IL6,MMP9,NFKBIA,SLC7A11,SOCS3,SOD2 

 

 

Just over 100 upstream regulators produced were fed as official gene symbols into DAVID to classify 

them by function. The genes were analyzed with DAVID online tool for KEGG (Kyoto Encylopedia of 

Genes and Genomes) pathways analysis. As seen in Table 5.14, KEGG pathway were listed according 

to count, genes and FDR in order to plot out pathways connected. 

 

Segment of upstream Regulator Analysis as part of Ingenuity Pathway Analysis of 326 differentially expressed genes. The 

regulators are listed according to p-value of overlap and activation z-score. A total of 102 upstream regulators were 

produced. 
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Table 5.14 DAVID Top 12 KEGG pathways analysis of genes directed from validated mRNA targeting 

KEGG pathway Count Genes FDR

Toll-like receptor signaling pathway 17/78 IL6, TNF, RELA, MAP2K3, NFKB1, TLR4, CD40, STAT1, TAB1, CCL5, TLR7, TLR9, IFNA2, JUN, IL1B, IRF3, SPP1 5.22E-13

Cytokine-cytokine receptor interaction 19/78 IL4, CSF2, IL6, TNF, IL18, IL13, CD40, CCL5, TGFB1, OSM, IFNA2, IFNL1, IL17A, CD40LG, IFNG, TNFRSF18, IL1B, PRL, IL1A 2.14E-09

NF-kappa B signaling pathway 12/78 TNF, PTGS2, CD40LG, RELA, IL1B, NFKB1, TLR4, UBE2I, CD40, MAP3K14, TAB1, ATM 2.47E-07

TNF signaling pathway 12/78 CSF2, IL6, TNF, PTGS2, RELA, JUN, MAP2K3, IL1B, NFKB1, CCL5, MAP3K14, TAB1 2.38E-06

HIF-1 signaling pathway 11/78 EGFR, IL6, HIF1A, RELA, ERBB2, VEGFA, IFNG, NFKB1, TLR4, EGF, GAPDH 1.22E-05

Pathways in cancer 18/78 CEBPA, EGFR, IL6, PTGS2, ERBB2, RELA, FOXO1, NFKB1, STAT1, MMP1, TGFB1, GLI1, HIF1A, JUN, VEGFA, RARB, EGF, FGF2 4.24E-05

T cell receptor signaling pathway 10/78 IL4, CSF2, TNF, CD40LG, RELA, JUN, IFNG, CTLA4, NFKB1, MAP3K14 2.56E-04

MAPK signaling pathway 14/78 EGFR, TNF, JUN, MAP2K3, RELA, IL1B, NFKB1, MAP3K14, TAB1, EGF, ECSIT, FGF2, TGFB1, IL1A 3.26E-04

Jak-STAT signaling pathway 11/78 OSM, IL4, CSF2, IFNA2, IFNL1, IL6, SOCS1, IFNG, IL13, STAT1, PRL 6.32E-04

NOD-like receptor signaling pathway 8/78 IL6, TNF, IL18, RELA, IL1B, NFKB1, CCL5, TAB1 6.63E-04

Cytosolic DNA-sensing pathway 8/78 IFNA2, IL6, IL18, RELA, IL1B, NFKB1, IRF3, CCL5 0.001678771

PI3K-Akt signaling pathway 14/78 EGFR, OSM, IL4, IFNA2, IL6, RELA, VEGFA, NFKB1, TLR4, FOXO3, EGF, FGF2, PRL, SPP1 0.010648413   

 

 

5.4.5.3.3 KEGG Pathways generated 

KEGG pathway analysis revealed pathways being the most relevant to CLL-NLC interaction and 

produced figures for Toll-like receptor (TLR) signalling (Figure 5.20) and NF-Kappa B (NF-ĸB) signalling 

(Figure 5.21) as among the top ranked pathways.  

 

Upstream regulators were fed into DAVID to classify them by function. The KEGG pathways are listed according to the 

count, genes involved and the FDR. 



186 
 

 

Figure 5.20 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in Toll-Like Receptor Signalling Pathway 
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Figure 5.21 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in NF-Kappa B Signalling Pathway 
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In addition to TLR and NF-ĸB signalling pathways, other pathways were also produced as being relevant 

to CLL-NLC interaction, (see Appendix 7.13) including but not limited to Tumor necrosis factor (TNF) 

signalling (Appendix Figure 7.12), Hypoxia-inducible transcription factor (HIF) signalling (Appendix Figure 

7.13), T cell receptor signalling (Appendix Figure 7.14), Mitogen-activated protein kinase (MAPK) signalling 

(Appendix Figure 7.15), Janus kinase (JAK) and signal transducer of activator of transcription (STAT) 

signalling (Appendix Figure 7.16), phosphoinositide-3-kinase (PI3K-AKT) signalling pathway (Appendix 

Figure 7.17) as well as general pathways involved in cancer (Appendix Figure 7.18). Other pathways (see 

Appendix 7.13) produced by KEGG pathway analysis include nucleotide-binding oligomerization domain 

(NOD)-like receptor signalling pathway (Appendix Figure 7.19), cytosolic DNA-sensing pathway (Appendix 

Figure 7.20) and cytokine-cytokine receptor pathway (Appendix Figure 7.21). 

On closer inspection of the pathways, it was revealed that NF-ĸB pathway seemed to be the most mutually 

connected pathway in the network of all the mentioned pathways. To decide which genes to investigate 

for further work, a number of areas of Bioinformatics results should be considered. 

The first area to investigate are the GSEA visualized by REVIGO, where Regulation of response to wounding 

was quite prominent. The next area is from IPA under diseases and functions where cellular movement 

and adhesion was among the highest rank of predicted involvement. 

Next, are the upstream regulators derived from IPA (and used for KEGG analysis) indicating which genes 

are predicted to be activated or inhibited which lead to the differentially expressed genes initially found. 

I decided to look into upstream regulators predicted as well as those differentially expressed in order to 

narrow down which genes could be investigated on next. 

Of the listed genes from the KEGG pathways, three were found to be significantly upregulated in CLL cells 

co-cultured with NLCs, namely STAT1, SPP1 and IL6. Table 5.15 summarises the genes mentioned in their 

rank, log2fold change and read count from each sample. 

Table 5.15 Summary of Genes of interest 

Gene 
Rank on 

DESeq2 List 

log2fold 

increase 

Mutual pathway 

involved 

Read count from CLL cells 

Range Mean among CL Mean among CN 

IL6 47 3.82 

TLR signalling 

0-15 0.33 ± 0.816 8.33 ± 5.28 

SPP1 102 2.79 15-1260 65 ± 49.52 463 ± 411.76 

STAT1 179 1.98 443-6979 510.67 ± 118.09 2774.3 ± 2563.07 
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Based on the information from Table 5.15, it appears that TLR signalling was the mutual pathway among 

these three genes, which is of no surprise as it was ranked as highest from Bioinformatics analysis. TLR 

itself is linked with NFĸB pathway quite closely. Based on the read count and experience during validation 

during RT-qPCR, the genes SPP1 and STAT1 would be most appropriate to investigate further in the 

practical setting. SPP1 and STAT1 are also among the highest ranked clusters in a number of functional 

annotation pathways such as inflammatory response and cell adhesion. I therefore suggest the genes 

STAT1 and SPP1 to be chosen for further work up in the setting of CLL-NLC interaction.  
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5.5 Summary of Results 

Through outsourcing the RNA sequencing, using RNA that were of good quantity and quality, >100GB of 

data was generated from the 6 cases (24 samples). With the crucial help of the Bioinformatics team of 

Computational Biology Facility, a comprehensive analysis of data was performed. Using DESeq2 package 

for R software, a list of differentially expressed genes were generated when comparing CLLcc with CLL 

alone and NLCcc with NLC alone. The overall number of genes that were upregulated were significantly 

greater when CLL cells were exposed to NLCs for 24hrs. 

Comparing with a study using ranked microarray data, generated 61 genes that were upregulated and 

coincided with my data. Using these 61 genes, I prioritized the selection process of genes to validate using 

RT-qPCR. I concluded with testing 13 designed primers for their respective genes on cDNA synthesised 

from the RNA extracted. With the aid of agarose gel electrophoresis, control samples and the reference 

gene GAPDH, I was able to optimise and run an intricate RT-qPCR on 14 case pairs with 9 primers.  

I was able to generate relative gene expression ratio values after normalising the CT with control and 

reference gene. Through exclusion of samples that were not fit to calculate relative gene expression and 

one primer that did not give confident results, I was able display an overall increase or decrease in gene 

expression. 

On comparing with the expected changes from DGEA of RNA-seq, the primers for MCL1, CSF1 and GBP1 

gave the most parallel findings with the samples sent for RNA-seq. When looking at all the samples, 41/65 

gave parallel findings with the expected changes. This gave an overall confidence of validating the data 

from DGEA. The differences can be speculated as due to heterogeneity of CLL disease. 

From the data generated from RNA-seq, it was shown by PCA that there was clear separation of all 4 

populations of cells cultured under different conditions. The most significant differences were between 

CLL cells co-cultured with NLCs and CLL cells cultured alone. A subset of 326 genes were identified that 

discriminate between both cell conditions (CLLcc vs CLL) and was able to link these genes to relevant 

biological functions and pathways. Biological functions included inflammatory response and platelet 

degranulation.  Cellular functions involved included, but not limited to, lymphocyte migration, cell death, 

cellular proliferation, tissue remodelling and regulation of response to wounding. 

My study data have shown some discrepancy of results between RNA-se and RT-qPCR.  This emphasizes 

an necessary of validating RNA-seq data, particularly those with low depth of read cover.   
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Through DAVID, KEGG analysis showed the involvement of upstream pathways including TLR signalling, 

NF-κB signalling and cytokine-cytokine receptor interactions. Pathways which are relevant to CLL-NLC 

interaction included, but not limited to, tumour necrosis factor (TNF) signalling pathway, Hypoxia-

Inducible Factor-1 (HIF-1) signalling pathway, T cell receptor signalling pathway, MAPK signalling pathway, 

JAK-STAT signalling pathway and PI3K-AKT signalling pathway. By observing the pathways, it showed that 

NF-κB was the most commonly involved pathway. Addition to that, the genes STAT1, SPP1 and IL6 were 

found to be common among the TLR pathway as well as significantly upregulated in CLL cells co-cultured 

with NLCs. Comprehensive pathway analysis indicated that the genes SPP1 and STAT1merit further 

investigations. 
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5.6 Discussion 

 

5.6.1 Quality of RNA samples used for sequencing 

RNA samples from a total of 9 cases (4 samples each) were sent for RNA sequencing using RNA-seq 

technology by Novogene. In the end, RNA samples from 6 cases were used for RNA-seq due to the low 

quantity of RNA extracted from NLC populations in the other 3 cases. The main reason to exclude RNA 

samples with low quantity is the unreliable global profiling of miniscule RNA generated by RNA-seq 

(Ozsolak & Milos 2011). Additionally, to ensure that samples were free from contamination of non-CLL 

cells, I checked purity of CLL samples by CD5 & CD19 co-expression by flow cytometry purity testing 

(described in Methods) after observing by microscopy. The Qubit 2.0 is considered to be a more accurate 

instrument than Nanodrop in quantitating RNA, as it was found to be highly reproducible and consistent 

with qPCR measurements (Simbolo et al. 2013). It was also reported that Nanodrop was not as accurate 

in quantifying very low levels of RNA as Qubit (Nakayama et al. 2016). Therefore, I relied on Qubit for the 

measurement of RNA before sending the RNA samples to be sequenced. 

When the RNA sequencing data was produced by Novogene and released to us, it was analysed by 

Bioinformatics team of Computational Biology Facility at the University.  

 

5.6.2 Quality control of sequencing data used for subsequent analysis  

MultiQC software was initially used, as described (Ewels et al. 2016), to produce a single report visualising 

the data from all 24 samples. The sequence reads were aligned onto the reference genome 

homo_sapiens_NCBI_GRch38 (NCBI - Genome Reference Consortium Human Build 38) and subsequently 

levels of gene expression were estimated by counting the number of reads that maps to an exon (Kukurba 

& Montgomery 2015). Initially 33,121 genes were identified. However, after removing genes that had a 

sum of counts of <10 over all 6 samples within each group, 19,595 genes were taken forward for 

subsequent analysis. This included all the 24 samples i.e. 12 CLL and 12 NLC samples. Out of 19,595 genes, 

322 genes were significantly upregulated and 4 were significantly downregulated in co-cultured CLL cells 

when compared to CLL cells cultured alone. However, only 4 genes were significantly upregulated and 3 

were downregulated in co-cultured NLCs when compared to NLCs cultured alone. 
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5.6.3 Comparison of gene expression profile from my study with that from other studies 

A study performed cDNA gene expression analysis of CLL samples after 14 days of co-culture with NLCs 

(Burger et al. 2009b). The top genes induced by 14 days of NLC co-culture with at least 3-fold up-regulation 

were CC chemokine CCL4, BCMA (TNFRSF17), EGR3, CCL3, PSAT1, MYCN, EGR2, K1AA0101, KMO and 

FCRL5 (Burger et al. 2009b). Down regulated genes included HRK, RGS2, TUBB2A, KLF6, TSC22D3, 

TMEM66, CHPT1, MXI1, MAFF and RHOB (Burger et al. 2009b). They performed DNA microarray analysis 

and identified a homogenous gene expression response across 9 different CLL cells after 14 days of co-

culture with NLCs (Burger et al. 2009b). 

A study (Boissard et al. 2016b) compared NLCs from CLL patients with monocytes of healthy donors and 

found 2589 overexpressed genes, while CLL cells compared to healthy B-lymphocytes over expressed 225 

genes. After filtering out genes by applying different functional ontology criteria, the genes involved with 

NLC/CLL cell interaction included VCAM1, CD28, PECAM1 (for CD31 antigen), SELPLG (for LFA-1 antigen), 

CD2, CD86, CTLA4, SELP (for CD62 antigen) and CD58 (for LFA-3 antigen) (Boissard et al. 2016b). 

A study generated NLCs from CLL patients for 10 days and treated with lenalidomide, that were then 

harvested and microarray was performed to give whole-genome expression profiles (Fiorcari et al. 2015). 

584 genes were differentially expressed with lenalidomide treatment, of which 352 were up regulated 

and 232 were downregulated (Fiorcari et al. 2015). Categorised by Gene Ontology, the genes enriched by 

lenalidomide were those involved in immune responses, activation/proliferation of T cells, complement 

activation, antigen processing and presentation and regulation of cellular movement, cytokine and 

chemokine activity (Fiorcari et al. 2015). Specifically, CXCL11, CXCL9, CCL19, XCL1 XCL2, CCL2 and CCL12 

was apparent (Fiorcari et al. 2015). 

A study compared gene expression between NLC from purified PBMC of CLL patients with CD14 cells from 

healthy donors exposed to CLL culture (CD14CLL) and CD14 cells from healthy donors cultured on healthy 

B-lymphocytes (CD14B) (Bhattacharya et al. 2011). They found the gene expression profile (GEP) of NLCs 

to be closely similar to that of CD14CLL cells than to the GEP of CD14B cells (Bhattacharya et al. 2011). They 

also found that the antigen presenting pathway was the most significantly deregulated pathway, where 

the genes were mostly HLA class II genes and the CD74 gene. Also, the genes found dysregulated between 

NLCs and CD14CLL cells were FCGR2B, LYZ, HLA-DRA and CD74 (Bhattacharya et al. 2011). 

In a study that compared CLL monocytes with monocytes from normal controls, where the CD14+ 

monocytes were highly purified, they identified 65 significantly upregulated genes and 48 downregulated 
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genes in the CLL monocytes compared to normal controls (Maffei et al. 2013). Of the upregulated genes, 

the involved pathways include those for Wnt signalling, VEGF signalling, angiogenesis and apoptosis 

(Maffei et al. 2013). The downregulated genes were involved in inflammation signalling, cytoskeletal 

regulation and oxidative stress response (Maffei et al. 2013). Specific genes involved in the CLL CD14+ 

monocytes that were upregulated, included RAP1GAP (reported to be involved in Fcγ-receptor and 

complement-receptor phagocytosis), ARHGEF12/LARG and LPAR6/P2Y5 which are involved in cell 

migration and Raf/ERK signalling (Maffei et al. 2013). Additionally, there was upregulated genes of toll-

like receptor 4 (TLR4), Lipin-2 (LIP2), Lipin-3 (LIP3), phosphatidic acid (PA) and phosphatases (PAP). 

PLA2G4A was also upregulated (Maffei et al. 2013). Down-regulated genes in the CLL CD14+ monocytes 

were tubulins TUBB3 and TUBB2, CDC42EP3, chemokine (C-C motif) ligand 5 (CCL5) and PTGR2 (Maffei et 

al. 2013). 

A study investigated the survival of CLL cells (by trypan blue exclusion) in cultures with anti-human CD62L 

(involved in controlling the traffic of T-lymphocytes) with untreated CLL PBMCs and performed microarray 

analysis on the monocytes/macrophages after 7 days of culture and found that the NLCs did not have 

statistically significant differentially expressed transcripts between sensitive and resistant patients 

(Burgess et al. 2016). When they compared their data with that from the study by Martinez et al (Martinez 

et al. 2006), they found that day 0 monocytes were similar and the NLCs they developed displayed an M2-

like transcript profile (Burgess et al. 2016). 

A previous study investigated the changes in gene expression by microarray in CLL cells after 14 days of 

co-culture with NLCs, as compared to CLL cells without co-culture (Burger et al. 2009b).  The gene EGR2 

was found to be among the top 10 genes to be significantly upregulated in co-cultured CLL cells (in 6 out 

of 9 paired samples). The other 9 genes included CCL4, TNFRSF17, EGR3, CCL3, PSAT1, MYCN, KIAA0101, 

KMO and FCRL5. In my study EGR2 was also significantly upregulated in CLL cells following 24 h co-culture 

with NLCs. The other 9 did not match with those of my study. 

The study that compared the gene expression profiles of purified CD14 monocytes from CLL patients with 

those from normal controls, identified 65 upregulated and 48 downregulated genes (Maffei et al. 2013). 

Of the mentioned list, none had matched with my DGEA findings comparing NLC exposed and unexposed 

to CLL for 24 hours. The study did identify solute carrier family 25 (SLC25A17) to be upregulated, whereas 

my data identified solute carrier family 1 (SLC1A5) to be downregulated. The solute carrier families are a 

group of membrane transport proteins. The study used 5 sample pairs on whole human genome 

microarray, whereas I performed whole RNA sequencing using 6 sample pairs of NLC groups. It is likely 
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that the discrepancy between my study and the study mentioned is that a different method of analysis 

was used as well as a different control group was used. As mentioned earlier, the changes the study had 

identified is likely due to the heterogeneity of monocytes particularly in a heterogeneous disease of CLL 

patients. To solve this discrepancy, I would suggest performing an experiment using normal controls as 

the study used, with my two comparison groups and using whole RNA sequencing. RNA sequencing can 

detect higher percentage of differentially expressed genes than microarray. Increasing the number of 

sample pairs sent would be advantageous to provide a more accurate profile when predicting in vivo 

condition. 

Comparing to the study that identified genes differentially expressed in M1 and M2 macrophages 

(Martinez et al. 2006), I was not able to have a suitable comparison with my NLC gene sets due to the low 

number of significantly expressed genes from 6 pairs of NLC groups. An increase in N number of NLC pairs 

for RNA-seq could be used to compare with gene subsets of this study in order to explore if NLCs are 

indeed M2 type of macrophages as well as to explore if there are any changes in the phenotype in the 

absence of CLL stimuli. 

The Bioinformatics team compared the significantly upregulated genes among co-cultured CLL cells from 

my study to gene expression profile of CLL cells collected from the tissues by microarray (Herishanu et al. 

2011). In their study, when peripheral blood (PB) CLL cells were compared with lymph nodes (LN) resident 

CLL cells, 151 differentially expressed genes were detected with at least 2-fold difference (false discovery 

rate, FDR <0.2). Of these, 133 were upregulated and 18 were down regulated (Herishanu et al. 2011). 

Between bone marrow (BM) and PB CLL samples, 26 genes were differentially expressed, in which 24 were 

upregulated and 2 were downregulated (Herishanu et al. 2011). Almost all the up-regulated genes in BM-

derived CLL cells were also up-regulated in LN-derived CLL cells (Herishanu et al. 2011).  

In comparison, the bioinformatics team found that 61 differentially expressed genes in co-cultured CLL 

cells from my study coincided with ranks of expression (See Gene Set Enrichment Analysis) based on “stat” 

values from DESeq2. These 61 genes were also found to be upregulated in LN CLL cells, but not PB CLL or 

BM CLL cells.  This showed that the gene expression profile of CLL cells co-cultured with NLCs resemble 

that of LN CLL cells. Based on this observation, I selected 13 genes from a list of 63 genes for validation by 

RT-qPCR. 

Validation of differentially expressed genes by RT-qPCR conformed changes detected by RNA-seq, in 

particular Myeloid Cell Leukaemia sequence 1 (MCL1, an apoptosis regulator which is a member of the 
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Bcl-2 family) (Pepper et al. 2008), Colony Stimulating Factor 1 (CSF1, produces cytokine that plays a role 

in survival, proliferation and differentiation of macrophages and monocytes) (Janowska-Wieczorek et al. 

1991; Polk et al. 2016) and Guanylate Binding Protein 1 (GBP1, induced by interferon, the proteins are 

able to specifically bind to guanine nucleotides such as GMP, GDP and GTP) (Honkala, Tailor & Malhotra 

2020).  

Similarly, a study that showed that lenalidomide treated CLL patients identified 79 responded genes, of 

which 67 were upregulated included GBP1 (Aue et al. 2018). This study investigated the response of 

tumour microenvironment to lenalidomide through lymph node biopsy samples and microarray analysis. 

They found that IFN-y signalling pathway was of the most significantly overrepresented pathway. In my 

study, using RNA-seq data from CLL PBMC samples, GBP1 was among those significantly upregulated and 

IFN-y signalling pathway was among the highest predicted pathway involved. 

 

5.6.4 A possible explanation to the findings from validating RNAseq DESeq2 list using RT-qPCR 

results: 

Although both my study and the study by Burger et al (Burger et al. 2009b) found EGR2 to be upregulated 

in CLL cells after co-culture with NLCs, I was not able to validate by RT-qPCR because the primers available 

overlapped with the reading temperatures of primer dimers as well as produced a non-specific PCR 

product detected by agarose gel electrophoresis. Perhaps a better designed set of primers for EGR2 may 

be used to further validate the RNA-seq data. 

In addition, both my study and the study by Boissard et al. (2016c) found CD28 to be upregulated in NLCs 

co-cultured with CLL cells, I was not able to validate this result as there were not enough cDNA samples 

to perform thorough optimisation and validation experiments. More NLCs collection is needed to confirm 

the findings in future. 

Nonetheless, given that the majority of validated genes (6/7) were confirmed by RT-qPCR in more than 

50% of samples, I was confident that the RNA-seq data was valid for the differential gene expression 

analysis. 
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5.6.5 Significantly Enriched Functional Pathways 

Functional pathway analysis based on the differentially expressed genes was then performed, which 

revealed enriched set of genes involved in chemokine and cytokine signalling. REVIGO, a web server that 

summarizes and visualizes list of Gene ontology terms (Supek et al. 2011), identified that regulation of 

response to wounding and lymphocyte migration were the largest categories. This is not surprising as it is 

well known that CLL lymphocytes migrate into lymph nodes giving rise to the clinical feature of 

lymphadenopathy among CLL patients. It is also known that the tumour microenvironment exhibits 

features of chronic inflammation or response to wound healing, such as the differentiation of 

macrophages to M2 class, the production of CCL3 and CCL4, the release of IL-10, IL-6, the decreased pH, 

increased vasculature and remodelling to incorporate the involvement of various cell types (Krzyszczyk et 

al. 2018). 

When comparing NLCcc with NLC using the same method described above, 18 enriched gene sets were 

identified including those for chemokine activity. This is also not surprising as one of the functions of 

macrophages are to move to the site of inflammation as a result of secreted chemokines and chemo 

attractants (Martinez et al. 2006). Given that only, 7 differentially expressed genes were detected, the 

predicted gene sets should be scrutinized. Perhaps a larger sample number of NLC would provide more 

detected differentially expressed genes and thus more accurate gene sets after GSEA. 

A study investigating NLC from CLL patients with CD14 monocytes with CLL cells found 149 differentially 

expressed genes and 5 involved pathways (IPA) and 4 annotations (DAVID) (Bhattacharya et al. 2011). Due 

to the lower number of differentially expressed genes (n=7), the Bioinformatics team was not able to 

perform IPA and DAVID analysis. 

 

5.6.6 Upstream Regulators and Pathways Involved 

When feeding the 326 differentially expressed genes in co-cultured CLL cells (both up and downregulated) 

along with their fold-changes in log conversion (logFC) into IPA database of diseases and biological 

functions, it was found that the top categories of functions were of Cellular movement, Cell-cell signalling 

interaction (adhesion, binding), Inflammatory response, Free Radical Scavenging, Cellular Proliferation, 

shape change and cell death and viability. This is in agreement to what has been reported through 

numerous studies on CLL microenvironment (Kipps et al. 2017; Ten Hacken & Burger 2016). 
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Finally, Upstream Regulator analysis of the 326 differentially expressed genes in co-cultured CLL cells 

showed the top most enriched regulators included tumour necrosis factor (TNF) and interferon gamma 

(IFNγ). This was further evidenced by functional annotation using DAVID where major pathways involved 

were Toll-like receptor (TLR) signalling pathway, cytokine-cytokine receptor interactions and nuclear 

factor kappa B (NF-ĸB) signalling pathway. This is in agreement with numerous studies in literature 

investigating pathways involved in CLL (Arvaniti et al. 2011; Aue et al. 2018; Herishanu et al. 2011; Kipps 

et al. 2017; Muzio, Fonte & Caligaris-Cappio 2012). Through further DAVID KEGG pathway analysis, the 

pathways found to be relevant to CLL-NLC interaction included but not limited to, tumour necrosis factor 

(TNF) signalling pathway, Hypoxia-Inducible Factor-1 (HIF-1) signalling pathway, T cell receptor signalling 

pathway, MAPK signalling pathway, JAK-STAT signalling pathway and PI3K-AKT signalling pathway. In 

literature these pathways are also found to be involved (Ten Hacken & Burger 2016) as well as the basis 

of developing targeted drug therapy (e.g. PI3K inhibitor Idelalisib). 

Activation of toll-like receptor (TLR) signalling pathway has been identified in CLL cells from the lymph 

node, which is consistent with the notion that CLL cells in the microenvironment behave differently from 

that in circulation (Dadashian et al. 2019). TLR pathway is involved in mediating immune surveillance and 

is known to promote pro-tumorigenic pathways (Ridnour et al. 2013). Depending on the type of TLR ligand 

binding, it produces pro-inflammatory cytokines (Spaner & Masellis 2007) that influence the immune 

response with T cell-mediated responses (via CD40), angiogenesis as well as initiate downstream response 

via NF-ĸB pathway (Spaner & Masellis 2007).  The resulting effects include CLL proliferation, increased 

expression of adhesion molecules and CD40 (Spaner & Masellis 2007). This leads to pro-survival, 

proliferation and tissue homing of CLL cells. 

JAK-STAT3 pathway consisting of Janus kinase (JAK) family of non-receptor kinase and signal transducer 

of activator of transcription (STAT) family of transcription factors are normally short and strictly regulated 

(Severin et al. 2019). In CLL there is aberrant activation which support survival, proliferation and 

metabolism of neoplastic cells (Severin et al. 2019). This pathway has also been implicated in CLL cells, its 

activation resulting in increased transcription of pro-survival and anti-apoptotic genes such as MCL-1 and 

BCL-2 (Severin et al. 2019). It has also been shown that the targeting of this pathway with inhibitors 

resulted in CLL-cell apoptosis (Severin et al. 2019). 

Mitogen-activated protein kinase (MAPK) signalling pathway is a common event in pathogenesis of CLL 

(Shukla, Shukla & Joshi 2018). This pathway plays a fundamental role in the maintenance of basic cellular 

processes such as proliferation, differentiation, migration and inflammation (Shukla, Shukla & Joshi 2018). 
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In CLL, the level of MAPK activation is considered to link to the level of BCR signalling (Shukla, Shukla & 

Joshi 2018). In the microenvironment, molecules such as CD38, BCR and CXCR4 may modulate MAPK of 

proliferation centres (Shukla, Shukla & Joshi 2018). It was reported that an increased MAPK activation was 

seen in patients who displayed prognostic markers associated with poor disease outcomes (Shukla, Shukla 

& Joshi 2018). Novel molecularly targeted drugs such as ibrutinib, Idelalisib and fostamatinib show a 

suppressive effect on this pathway in CLL cells (Shukla, Shukla & Joshi 2018). 

Activation of tumour necrosis factor (TNF) signalling pathway, particularly involving TNF receptor 1 

(TNFR1), has been shown to activate NF-κB which promotes cell proliferation and survival of CLL cells (Dürr 

et al. 2018). It has also been shown that TNFR1 was highly expressed in CLL cells and its high expression 

in CLL patients has been associated with disease poor outcome (Dürr et al. 2018). High level expression of 

TNFR1 was also detected in proliferation centres of lymph nodes in patients with CLL (Dürr et al. 2018).  

Hypoxia-inducible transcription factor (HIF) signalling, particularly with HIF protein 1α (HIF-1α), regulates 

the interaction between CLL cells and the microenvironment and is involved in a positive feedback loop 

that promotes cell survival and adaptation to hypoxic environment (Valsecchi et al. 2016). HIF-1α is found 

to be increased in CLL cells compared to non-malignant B and T cells in hypoxic conditions (Yosifov et al. 

2020). It was shown that inhibiting this pathway impaired the interaction between CLL cells and its 

microenvironment (Valsecchi et al. 2016). HIF-signalling has also been implicated in vascular endothelial 

growth factor (VEGF) signalling that promotes angiogenesis (Shachar et al. 2012). Targeting this pathway 

could aid in preventing CLL cells from adapting and retuning the microenvironment. 

In my study, it was observed that the most significant pathway enriched by the 326 differentially 

expressed genes of co-cultured CLL cells included NF-ĸB pathway. This is not unexpected, as NF-ĸB has 

been shown to be constitutively activated in CLL cells (Mansouri et al. 2016). NF-κB pathway has also been 

implicated as playing a central role in the pathology of CLL (Mansouri et al. 2016). Therefore, the result 

from my study provides further evidence that this gene expression data as measured by RNA-seq was 

consistent with what was published in the literature.  

Furthermore, the genes that were found to be significantly upregulated in co-cultured CLL cells and in the 

top ranked pathways predicted by KEGG pathway analysis include Signal Transducer and Activator of 

Transcription 1 (STAT1), Secreted Phosphoprotein 1 (SPP1, also known as osteopontin) and Interleukin 6 

(IL6).  
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The role of STAT1 has been well documented in CLL disease where it plays a role in the differentiation of 

CLL cells (Battle & Frank 2003). It has been shown that lenalidomide acts on STAT1 phosphorylation via 

interleukin 10 (IL-10) secretion, which leads to disruption of CLL-NLC interaction (Schulz et al. 2013).  

IL6, a mediator of normal B cell differentiation and proliferation (Zhu et al. 2018), has also been 

documented in relation to CLL where it was shown to be secreted at high levels in bloodstream of CLL 

patients as well as correlated with poor prognosis (Zhu et al. 2018).  

In contrast, the role of SPP1 (also known as osteopontin) in CLL is not well known. Only a handful studies 

have been performed and reported its overexpression in CLL cells in comparison to normal B cells 

(Dielschneider et al. 2016; Shukla 2013). One study showed that pharmacologically targeting lysosomes 

in CLL cells can be effective to lysosomal disruption leading to CLL cell apoptosis (Dielschneider et al. 

(2016). However, further studies are required to provide mechanistic insight into the role of SPP1 in CLL.   

 

  



201 
 

5.6.7 Conclusion 
 

Collectively, the results from this chapter suggests that, there are numerous pathways involved in CLL-

NLC interaction, that are supported by published studies in the literature. RNA sequencing is a valuable 

tool to identify such pathways, however, care must be taken when deriving conclusions from the data. In 

the cases of small changes, perhaps a sensitive (although more expensive) approach should be used to 

validate the changes biologically i.e. digital droplet PCR. In other cases, I have shown RT-qPCR is a useful 

efficient method to validate the changes detected by differential gene expression analysis (DGEA). 

Therefore, the pathways highlighted by the bioinformatics analysis from the RNA-seq data merit further 

investigations.  

Numerous pathways have been identified that are well known in the research community of CLL such as 

NF-ĸB, PI3K, JAK-STAT3 and T-cell receptor signalling particularly on CD40L. The effect of NLCs on the gene 

expression of CLL cells shown from my study confirms that these pathways are indeed involved and may 

represent the mode of action of NLCs in CLL microenvironment in vivo. Pathways involving angiogenesis 

such as HIF-signalling pathway, however, have not been as intensively investigated as other pathways in 

CLL, and merits further study. The most significantly enriched pathway is the NF-B Pathway as it is an 

integral player in the network of involved pathways. Additionally, identifying the genes STAT1, SPP1 and 

IL-6 suggests that they play additional roles in the interaction between CLL cells and NLCs. 
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6 General Discussion 

 

In CLL microenvironment, one of the main components are the NLCs which provide pro-survival signals to 

the CLL cells (Burger et al. 2000). The NLCs appear to be a large oval adherent macrophages (Burger et al. 

2000). NLCs which express CD163, was found in lymph node and spleen sections of CLL patients (Blonska, 

Agarwal & Vega 2015; Burger 2011a; Hanna et al. 2015; Ysebaert et al. 2010). The presence of NLCs may 

represent an unfavourable prognostic marker in patients with CLL, where the number of NLCs were 

positively correlated with beta 2 microglobulin (B2M) serum levels and SURVIVIN gene expression in CLL 

cells ex vivo (Filip et al., 2009 and 2013). It was also shown that a high density of CD68+ CD163+ NLCs at 

diagnosis was significantly correlated with unfavourable prognostic markers and to poor clinical outcomes 

in patients with DLBCL (Marchesi et al. 2015). A study investigating hepatocellular carcinoma showed a 

possible association between overexpression of CD163+ NLCs and worse patient outcome (Minami et al. 

2018). 

Although studies in this area of tumour microenvironment has been ongoing for the last two decades, 

exactly how NLCs protect CLL cells is still unclear. CLL remains an incurable disease and it is known that 

the microenvironment plays an important part in disease progression and the development of drug 

resistance. It becomes clear to me that more studies are required to comprehensively characterise the 

NLC development, in particular understanding the molecular mechanisms mediating the interaction 

between CLL cells and NLCs.  

In my PhD study, I hypothesised that interactions between NLCs and CLL cells activate certain genes and 

pathways which are responsible for survival and drug resistance of CLL cells. To address this hypothesis, I 

attempted to first independently characterise NLCs developed in vitro. I then set up co-culture 

experiments and extracted RNA from the cultured CLL cells and NLCs using their respective counterparts 

cultured alone as controls, and identify the differentially expressed genes using NGS sequencing 

technology. Through the bioinformatics analysis, I identified a few molecules and pathways that are likely 

associated with the enhanced survival and resistance to apoptosis in CLL cells following interaction with 

NLCs.  

 

https://medlineplus.gov/lab-tests/beta-2-microglobulin-b2m-tumor-marker-test/#:~:text=B2M%20is%20found%20on%20the,myeloma%2C%20lymphoma%2C%20and%20leukemia.
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6.1 Independent confirmation of development of NLCs from primary CLL PBMC cells 

In the first part of my PhD study, I sought to optimise the culture conditions for developing NLCs in vitro 

by modifying the established cell culture techniques published in literature. 

Previous studies have reported that various densities of CLL PBMCs were used for developing NLCs (Burger 

et al. 2000; Filip et al. 2009; Jia et al. 2014; Nishio et al. 2005; Polk et al. 2016). In my study, the use of a 

high cell density is found to be more favourable for NLC development and a cell density of 10 x 106/ml 

was an optimal concentration of CLL PBMC cells used to develop NLCs under the culture conditions used. 

Although, to truly assess the in vivo microenvironmental influences, bone marrow and lymph node 

samples would be ideal, I was only able to experiment on the available fresh PBMC. I next tried to 

independently confirm the morphology and immunophenotype of NLCs. 

 

6.1.1 Morphology 

The morphology of NLCs was first described as ‘large oval adherent shape’ by Burger et al. (2000). I 

investigated the morphological features of NLCs developed using a density of 10 x 106/ml CLL PBMC 

cultures throughout my study for consistency.  

The morphology of NLCs was found to be more complex than that described in literature, particularly the 

cell shape and size were more dynamic than just becoming large oval adherent.  

In addition, in order to distinguish the cellular components of the NLCs in development, I used MGG 

staining as detailed in results Chapter 1. Careful observations of morphology revealed that the NLCs 

appear not only as ‘large oval adherent cells’, but also display pleomorphism in appearance such as looking 

‘elongated’, ‘spindle-shaped’ and ‘clustered’. This detailed assessment of morphology of NLCs showed 

that the developmental of the NLCs is a very dynamic process, which was very much underappreciated 

previously.  

 

6.1.2 Immunophenotype 

To further confirm the immunophenotype of the NLCs, I performed immunofluorescent staining of the 

NLCs following morphologic identification. I investigated the several surface markers that were reported 

to be expressed by NLCs. In addition, the cellular localisation of these proteins has also been examined. 
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I confirmed that NLCs express CD68, CD163 and CD14, but not CD19 the CLL specific marker. CD163 

expression was cytoplasmic and seen in all NLCs from all the CLL samples, whereas expression of CD68 

and CD14 was variable and not as strong as CD163 although they were both detected. This suggests that 

CD163 is a better marker to identify NLCs in a research setting. My observation on the localisation and 

expression of the above markers for NLCs is largely in agreement with findings from others reported in 

the literature (Boissard et al. 2015a; Fiorcari et al. 2015; Marchesi et al. 2015). One study also showed 

that CD163 was a reliable marker for NLCs and has been used to investigate the link of NLCs with disease 

progression of CLL (Boissard et al. 2016a). 

 

6.1.3 Biological function 

It was known that NLCs provide pro-survival signals to CLL cells which protect the leukemic cells against 

spontaneous apoptosis, which I also confirmed in the co-culture experiments of my study. 

I demonstrated that there was significant protection of CLL cells from spontaneous apoptosis following 

the first 24 h of co-culture when compared to CLL cells cultured alone. This was confirmed by apoptosis 

assays using flow cytometry with the reagents Annexin V and Propidium Iodide. It was also noted that NLC 

cultures which contained higher number of NLCs (observed by microscope) gave a greater protection to 

CLL cells. This was similarly shown in a study that found a positive correlation between number of NLCs 

counted and the viability of CLL cells (Boissard et al. 2016a).  

I also investigated the levels of the T cell chemokines CCL3 and CCL4 in the supernatant of fresh CLL PBMC 

cultures in a time-course experiment and found that levels of CCL3 and CCL4 were increased over time, 

which was consistent with the findings of a previous study (Burger et al, 2009). In that study, authors also 

detected the increased levels of CCL3 and CCL4 in blood plasma from CLL patients who had adverse 

prognostic features (Burger et al, 2009), suggesting that by secreting these chemokines to attract T cells 

to the lymph node microenvironment CLL cells actively contribute to the development of CLL 

microenvironment. Due to time constraints, I did not perform correlation study of plasma levels of CCL3 

and CCL4 from CLL patients with their clinical characteristics. 

It is worth noting that I also observed interesting, previously unreported effects of the CLL cells on NLCs 

when in co-culture. I found that NLCs also displayed a healthy-looking appearance in co-culture with CLL 

cells when compared to their counterparts cultured alone. Although this was not thoroughly studied, the 



206 
 

presence of CLL cells appeared to be conducive to NLCs, implying that there is a two-way, mutual influence 

taking place between CLL cells and NLCs. 

 

6.2 Wide variation in the NLC development between CLL samples 

6.2.1 Variation in the magnitude of NLCs development 

During the time period of developing the NLCs, I observed that not all the CLL samples had developed the 

similar number of NLCs, in fact some sample did not develop any NLCs. Some samples had less than 10 

NLCs per field when viewed under light microscope (at 10 x magnification), whereas others had between 

10-30 and in some cases more than 30. This finding was also reported by others (Filip et al. 2013a; Jia et 

al. 2014). Therefore, I confirmed that number of NLCs observed is variable from sample to sample, which 

makes it a challenge to reproduce the similar results using individual CLL samples. 

 

6.2.2 Variation in the dynamic of NLC development 

Most strikingly, I observed that the speed of NLC development were also variable from sample to sample. 

Whilst the changes in the shape and size were observed over the course of NLC development in the 

majority of NLC samples, these changes were not happening at the same rate. I observed changes in shape 

and size during NLC development under phase contrast microscope and confirmed these changes by MGG 

staining. Most other studies have reported that NLCs were developed following 14 days in culture, 

displaying a flattened adherent appearance (Burger et al. 2000; Gautam et al. 2016; Jia et al. 2014). My 

work largely confirmed this finding in many CLL samples I studied. However, I also noticed that there are 

many cases where mature, fully developed NLCs were seen as early as 8 days after culturing. 

The observation of wide variation in development of NLCs between CLL samples led to the development 

of a unique NLC scoring system which assigns a number (from 0 to 3) to individual samples based on how 

well the CLL PBMC cells develop NLCs. This was done in order to determine whether the variation in 

developing NLCs may be correlated to the clinical features of the CLL samples used in the study.   

 

6.2.3 Lack of correlation between NLC development and clinical features of CLL samples 

To address the above question, I collected available clinical information of all the CLL samples used. 

However, I did not detect any statistically significant correlation of NLC development with gender, IGHV 
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mutational status, clinical staging, chromosomal abnormalities or treatment history. Therefore, exactly 

why there is such wide variation in generation of NLCs between CLL samples from individual patients 

remains unclear. Interestingly, one study reported that, in a 6-year follow-up, a longer survival rate in CLL 

patients who had a lower NLC count was observed, although this finding was not statistically significant 

(Filip et al, 2013). Therefore, whether the NLC number developed in vitro can be used to predict the clinical 

outcome of patients with CLL still remains to be seen.  

 

6.3 Need for a cell line model of NLCs 

Over the course of my PhD study, I encountered many technical difficulties in establishing optimal 

conditions to produce consistent results of developing NLCs using primary CLL PBMC samples. In 

particular, a continuous supply of fresh CLL PBMC samples poses a logistical challenge to me. Together 

with the variation in generating NLCs, it becomes clear to me that an alternative system to carry out NLC 

experiments needed to be explored. 

 

6.3.1 Justification for selection of THP-1 cell line 

In the next part of my PhD study, I attempted to determine if THP-1 cells can be developed as an in-vitro 

cell line model of NLCs. THP-1 cells derived from human monocytic leukemic cells and can be 

differentiated into macrophages and further polarised to M1 and M2 macrophages. This cell line has been 

commonly used for studies into behaviour of monocytes and macrophages (Tedesco et al. 2018). There 

are other cell lines which were also considered, such as U937, ML-2, HL-60 and Mono Mac 6 (Chanput, 

Peters & Wichers 2015).  However, large number of studies have used THP-1 cells in preference to other 

cell lines (Aldo et al. 2013; Daigneault et al. 2010; Forrester et al. 2018; Park et al. 2007; Tedesco et al. 

2018). It was soon evident that THP-1 cells were far more befitting to my requirements. First, comparing 

to the tissue resident monocyte-derived U937 cell line, THP-1 cells originated from blood monocytes and 

are more closely resembling to blood monocyte-derived NLCs (Chanput, Peters & Wichers 2015). Second, 

THP-1 cells is known to produce a phenotype of macrophage only with no expression of dendritic cell 

markers (Riddy et al. 2018). Finally, U937 cells do not display chemoattractant behaviour when using 

trans-well migration assay, whereas THP-1 cells (Riddy et al. 2018) and NLCs (Boissard et al. 2016b) share 

the similar chemoattractant property. Based on the above considerations, I chose THP-1 cells for my study.  
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An optimised density of 0.5 x 106/ml of THP-1 cells was used following a modified protocol to produce 

adherent macrophages (M0), which were further polarised to become M1 and M2 populations of 

macrophages using established protocol. M1 and M2 macrophages were confirmed by 

immunofluorescent microscopy using CD markers EGR2 and CD38, respectively. 

6.3.2 Similarities of cell line model to primary NLCs 

I then proceeded to compare the similarities and differences of this cell line model to primary NLCs in 

aspects of morphology, phenotype and biological functions. 

The morphology of differentiated THP-1 cells largely matched those of NLCs. They exhibited the adherent 

macrophage property, as reported previously in other studies (Chimal-Ramirez et al. 2016; Genin et al. 

2015). The phenotype of NLCs being of M2 subtype macrophages was replicated in differentiated THP-1 

cells in which the expression of CD14 and CD163 as well as the elongated morphology were observed 

following polarisation to M2 subtype. 

The NLCs were described as having predominantly M2 macrophage phenotype (Hanna et al, 2015; 

Marchesi et al, 2015, Ysebaert and Fournie, 2011; Ysebaert et al, 2010). I therefore induced the THP-1 

cell-derived M0 macrophages to differentiate into M1 and M2 subtypes of macrophages and compared 

their relative contribution to the pro-survival effect towards CLL cells. My results showed that M2 

macrophages conferred greater protection than M1 macrophages against spontaneous and fludarabine-

induced cell death of CLL cells. Therefore, the cell line model using differentiated THP-1 cells can 

recapitulate the cytoprotective effect of NLCs on CLL cells.  

 

6.3.3 Limitations of the cell line model  

As with any model, there are limitations with the THP-1 cell line model which precludes it to completely 

replace primary NLCs. First, there were difficulties of using this model to verify the increased levels of 

CCL3 and CCL4 secreted by CLL cells when in co-culture with NLCs, as reported (Burger et al, 2009). This is 

due to the observations that the differentiated THP-1 cells alone spontaneously produce a high level of 

CCL3 and CCL4 as reported here in my study (Figure 4.10 in Section 4.4.4.3) and by others (Harrison et al. 

2005; Mantovani et al. 2002). This makes it very difficult to measure the difference in the levels of the 

chemokines in the cultures of THP-1 cells with or without CLL cells. 
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Another limitation to this model was its inability to mimic the effect of NLCs on the levels of surface 

expression of IgM and IgD on CLL cells. It was reported that the expression levels of sIgM and sIgD of CLL 

cells were reduced when co-cultured with NLCs (Ten Hacken et al. 2016). However, the THP-1 cell-derived, 

polarised macrophages were not able to replicate this effect. This could be caused by addition of cytokine 

such as IL-4 that was used to induce polarisation of THP-1 cells to M2 macrophages. IL-4 has been shown 

to enhance the expression of sIgM in CLL cells (Aguilar-Hernandez et al. 2016). It has also been shown that 

small amounts of IL-4 are secreted by macrophages (La Flamme et al. 2012). Therefore, presence of 

exogenous IL-4 may have prevented the reduction in expression of sIgM and sIgD in CLL cells by the THP-

1 cell-derived macrophages.   

Therefore, it became clear that there are limitations to the use of cell line model as to how much it is truly 

representative of NLCs. Caution is thus required when interpreting the results generated from the use of 

cell line model and further extrapolating such interpretation to explain in-vivo events. 

 

6.4 Comparison of global gene expression in CLL cells cultured with or without NLCs  

Due to the limitations of the cell line model outlined above, in the final part of my PhD study I chose to 

use fresh CLL PBMCs samples to develop NLCs and apply cryopreserved autologous CLL cells for co-culture 

experiments and investigated at the level of gene expression the molecules and pathways involved in 

survival and resistance of CLL cells to therapy as a result of interaction between NLCs and CLL cells. Thus, 

my intention was to identify differentially expressed genes that could be targeted by future therapy to 

overcome resistance. 

 

6.4.1 Identification of differentially expressed genes 

I first sought to establish a comprehensive list of differentially expressed genes in primary CLL samples 

that were cultured with or without NLCs through RNA sequencing analysis. RNA samples were thus 

extracted from CLL cells cultured with NLCs for 24 h as well as cultured alone for the same time period 

and RNA sequencing was performed by a commercial biotechnology firm Novogene using RNA-seq 

technology. Bioinformatics analysis of the sequencing data was performed by Computational Biology 

Facility (CBF) of University of Liverpool. In total, 6 CLL samples were used to generate the RNA samples 

for sequencing. Out of 19,595 genes analysed, 326 genes were significantly differentially expressed among 

CLL cells in co-culture with NLCs in comparison with CLL cells cultured alone. Among the 326 differentially 
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expressed genes, 322 gene were upregulated in CLL cells co-cultured with NLCs. When compared to 

published comparative gene expression data from CLL cells isolated from lymph nodes versus peripheral 

blood (Herishanu et al. 2011), 61 out of 322 upregulated genes in our study were found in the list of the 

overly expressed genes (133 in total) in CLL cells from lymph nodes. Gene set enrichment analysis also 

produced a statistically significant positive enrichment of the two data sets, indicating that gene 

expression profile of CLL cells co-cultured with NLCs shared a high degree of similarity to that of CLL cells 

from the lymph nodes. Encouraged by the above results, I selected some of the 61 differentially expressed 

genes identified by RNA-seq for validation using RT-qPCR.  

In the end, I managed to validate 9 genes for which RT-qPCR were optimised and performed on 14 CLL 

samples (with or without co-culture). Results from RT-qPCR largely confirmed the findings from RNA-seq 

analysis. 

 

6.4.2 Molecules and pathways critically involved in the survival and resistance of CLL cells to 

therapy in vivo 

Using the list of differentially expressed genes described above, I attempted to identify molecules and 

pathways critically involved in the survival and resistance of CLL cells to therapy in vivo through 

bioinformatics analysis. With the support from the CBF team of University of Liverpool, using the Ingenuity 

Pathway Analysis I was able to identify several significantly enriched upstream regulators, with the top 

most significantly enriched regulators including tumour necrosis factor (TNF) and interferon gamma 

(IFNγ). Using the identified upstream regulators, KEGG pathway analysis revealed several highly enriched 

signalling pathways involved in mediating the CLL-NLC interaction. The highest ranked pathway included 

the toll-like receptor (TLR), TNF, hypoxia-inducible factor (HIF) and NF-ĸB signalling pathways. NF-ĸB 

signalling pathway is known to be activated in the CLL cells that are localised within the lymph node 

microenvironment (Mansouri et al. 2016). The activation of NF-ĸB pathway leads to sustaining CLL 

proliferation and survival in vivo. My study therefore confirms the findings of NF-ĸB pathway involvement 

in survival signalling of CLL cells.   

TLR signalling pathway is also known to be activated in CLL cells (Arvaniti et al. 2011; Dadashian et al. 

2019; Muzio, Fonte & Caligaris-Cappio 2012), where it cooperates with BCR signalling to activate NF-ĸB 

pathway (Dadashian et al. 2019). My study is thus in agreement with this finding by implicating that TLR 

signalling pathway is strongly activated following NLC-CLL interaction. 
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Activation of TNF signalling pathway is known to play a role in CLL pathology (Dürr et al. 2018). Thus, it 

has been shown that the level of TNF receptor is increased in CLL cells (Dürr et al. 2018). Also, level of 

TNF-α is increased in CLL cells and high levels of TNF- are indicative of aggressive disease states (Dürr et 

al. 2018). Activation of TNF signalling pathway can also activate NF-ĸB signalling pathway, contributing to 

the survival of CLL cells and their resistance to apoptosis (Dürr et al. 2018). 

HIF signalling pathway has been reported to be activated in CLL cells residing in hypoxic tumour 

microenvironment where the upregulated HIF-1α regulates the interactions between CLL cells and the 

microenvironment, promoting cell survival and adapting to hypoxic environments (Valsecchi et al. 2016). 

However, in my knowledge there are not many studies reporting findings from experiments that were 

performed under hypoxic conditions in CLL, further investigation is warranted to investigate NLC-CLL 

interaction in a hypoxic culturing condition. 

Further analysis also revealed some significantly enriched genes critically involved in these signalling 

pathways. They include STAT1, SPP1 and IL6.  

It has been shown that STAT1 plays a role in the differentiation of CLL cells mediated by Byrostatin 1 

(Battle & Frank 2003). Tyrosine phosphorylation of STAT1 promotes further maturation of CLL B cells 

leading to up-regulation of CD22 expression and IgM production (Battle & Frank 2003). It was also shown 

that lenalidomide treatment resulted in an increased level of the immunosuppressive cytokine IL-10 which 

was shown to induce apoptosis in CLL cells via STAT1 activation (Schulz et al. 2013). The activated STAT1 

was shown to inhibit matrix metallopeptidase 9 (MMP9) expression in CLL cells, which is normally 

upregulated and important in cell migration and promote survival of CLL cells (Schulz et al. 2013). 

IL6 is also a known mediator of B cell differentiation and proliferation (Zhu et al. 2018).  High levels of IL-

6 in CLL patients have been reported to be correlated with poor prognosis (Zhu et al. 2018).  

The exact role of SPP1 (osteopontin) is not well known in the context of CLL. The role of osteopontin has 

been documented in a number of other cancers such as breast cancer, colorectal cancer and lung cancer 

(Shevde & Samant 2014) and disruption of the lysosomes has been shown to induce cell death in the 

cancer cells (Dielschneider et al. 2016). It was shown that SPP1 was overexpressed in CLL cells at the mRNA 

level as well as at protein level compared to normal B cells, but no difference between CLL patients with 

mutated IGHV and unmutated IGHV (Dielschneider et al. 2016). However, the clinical significance of this 

finding is not clear. It was suggested that in the sphingolipid pathway, the dephosphorylation of S1P by 

SPP1 (to produce sphingosine) makes CLL cells more sensitive to lysosome permeability (Dielschneider et 
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al. 2016). However, the exact mechanism of lysosome permeabilization leading to loss of mitochondrial 

potential in CLL cells is unknown (Dielschneider et al. 2016). It was speculated that the lysosome 

membrane oxidation can open the pore of the mitochondria which leads to cell death cascade 

(Dielschneider et al. 2016).  

The role of SPP1 in survival of CLL cells following interaction with NLCs is still unclear, which requires 

further investigation.  

 

6.5 Suggestions for future experiments 

It is my view that the study of NLCs is still in its infancy, despite being researched for almost two decades. 

NLCs remain a key component of the CLL microenvironment. The interaction between NLCs and CLL cells 

in the microenvironment, to a large degree, resembles reciprocal interaction of cancer cells with the 

tumour microenvironments in general. It is still not yet known the exact mechanisms of how CLL cells are 

supported by NLCs. Further studies are required to not only understand better the underlying pathways 

that sustain a tumour microenvironment, but also help identify molecular targets for therapeutic 

intervention.  

A pathway that was significantly activated following KEGG pathway analysis of the gene expression data 

from co-cultured CLL cells is the HIF signalling pathway. There are not many studies specifically looking at 

role of this pathway in mediating NLC-CLL interactions (Koczula et al. 2016; Yosifov et al. 2020). 

Considering that tumour microenvironment produces a hypoxic condition in vivo (Kim et al. 2009; Lyssiotis 

& Kimmelman 2017), it would be worth investigating of involvement of the HIF pathway in CLL-NLC 

interaction, ideally in a hypoxic condition. The protocols of creating hypoxic conditions using cobalt 

chloride (CoCl2) solution or in Modular Incubator Chamber may be adapted when performing such 

experiments (Wu & Yotnda 2011). The pursuit of NLC study using CLL cells in a hypoxic environment would 

create a closer replica of environmental conditions in vivo. I hypothesize that in a hypoxic condition, there 

will be an enhanced development of NLCs as well as the greater protective effects on CLL cells. Since it 

has been shown that M2 macrophages are present more in hypoxic conditions (Bingle, Brown & Lewis 

2002b; Petrova et al. 2018), more NLCs may develop in most CLL samples and protect the CLL from 

spontaneous apoptosis for a longer duration. A hypoxic condition experiment may uncover a trait of NLC 

interaction with CLL that would not have been so obvious in a standard non-hypoxic culture condition. 
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One of the upstream regulators that was also among the top “significantly enriched pathways” was SPP1 

(osteopontin). Currently there are only two studies that investigated SPP1 in the CLL setting (Dielschneider 

et al. 2016; Shukla 2013). Since the understanding of the biological function of this gene in CLL is in its 

infancy, independent studies are required to first ascertain if findings from the two studies (Dielschneider 

et al. 2016; Shukla 2013) could be reproduced in CLL cells cultured with or without NLCs. If the pro-survival 

effect of SPP1 is confirmed, further experiments will be needed to provide definitive evidence of its 

function by manipulating gene expression (up or down regulation) and clear explanation on the 

mechanism of how SPP1 mediates its function. Finally, therapeutic potential of targeting SPP1 should be 

explored using pharmacological inhibitors.  

Finally, a model system encompassing multiple components and stimuli relevant to an in vivo 

microenvironment has yet to be produced in a laboratory setting. The pursuit of such a model system can 

allow researchers to use such platform to perform cell death assay with drugs that target various 

components of the microenvironment, including CLL cells, NLCs, cancer associated stromal cells, in a 

hypoxic, vasculature environment. Current advances in this direction include development of cancer-on-

a-chip models where microfluidic chips contain chambers for cell culture, which control fluid flow, oxygen 

diffusion, tissue mechanics and composition of cellular components (Asghar et al. 2015; Sleeboom et al. 

2018; Wu & Swartz 2014). Although the in vitro models will not fully reproduce the microenvironment  

conditions in vivo and produce a truly representation of the responses from primary cells (Goodspeed et 

al. 2016), development of the in vitro system to mimic the in vivo conditions would enable researchers to 

gain an better understanding of an underlying pathology of a disease. This in turn will facilitate testing of 

the new drugs that target the molecules/pathways associated with survival and resistance to therapy. It 

is obvious that achieving such objectives will require the teamwork of bioengineering, cell culture 

specialists, computational biologists and histopathologists. 

 

6.6 Conclusions 

I independently confirmed many features of NLCs developed in vitro using primary CLL samples, but also 

produced an NLC scoring system based on the number and morphology of NLCs developed to reflect the 

wide variation in the development of NLCs between individual CLL samples. The NLCs indeed prolonged 

the survival of CLL cells as well as contributed to the increasedserum levels of CCL3 and CCL4. To 

determine if these effects can be reproduced using a cell line model, I showed that THP-1 cells can be 

used as a cell line model to mimic the pro-survival effect of NLCs and evaluated advantage and 
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disadvantage of the use of cell line model. Finally, I identified a list of differentially expressed genes 

involved in mediating the pro-survival effect of NLCs on CLL cells, some of which was validated using RT-

qPCR techniques. Using contemporary bioinformatics tool, I analysed in depth the role of several 

molecules and pathways that are likely critically involved in the survival and resistance of CLL cells to 

therapy in vivo, and highlighted some molecules/pathways that could be therapeutically targeted to 

overcome therapy resistance in future.  
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7 Appendix 

7.1 Clinical Data 

Appendix Table 7.1 Clinical data on CLL Samples used in my study. 

IGHV status refers to somatic mutations in IGHV gene of CLL cells compared to gene sequence of the nearest germ line. IGHV mutation rates of ≥2% difference from germline are 

considered mutated, while un-mutated disease has a <2% mutation rate (Crombie & Davids 2017). WBC, White Blood Cell (109/l); Absolute Lymphocyte Count (109/l); Absolute 

Monocyte Count (109/l); ritux, Rituximab; FCR, Fludarabine Chlorambucil and Rituximab; lenalid, lenalidomide; NA, not available. 

Sample 

number 
WBC 

Absolute 

Lymphocyte 

Count 

Absolute 

Monocyte 

Count 

Drug Treatment IGHV status 
Chromosomal 

status 

Age at 

Diagnosis 

Age at 

collection 

of samples 

Gender Staging 

3259 209 123.1 1.4 other NA NA NA 70 Male NA 

3314 359.8 351.2 NA NA NA 17p- 13q- NA 51 Male C 

3369 163.5 157 2.2 untreated NA 13q- 37 39 Male NA 

3379 228.5 NA NA NA NA NA 69 70 Male NA 

3381 157.4 149.7 3.1 ritux, bendamustine NA normal 67 74 Female NA 

3385 56.5 53.1 0.6 ritux, bendamustine unmutated normal 70 76.9 Male C 

3436 144.3 137 2.2 untreated NA 13q- NA 72 Male B 

3460 80.5 73.7 2 ibrutinib NA 17p-13q- NA 51 Male NA 

3461 22.6 15.3 1.1 untreated NA NA 73 74 Male A 

3463 52.7 46.7 1.1 DIB4 NA normal 67 76 Female A 

3464 224.9 220.8 2 CLL210 induction NA 17p- 13q- NA 68 Male B 
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3465 32.1 29.7 0.3 ibrutinib NA 17p- NA 55 Male C 

3469 65.4 63.3 0.5 FCR NA normal 55 63 Male C 

3470 159.6 149.9 2.7 untreated NA 13q- 77 97 Female A 

3471 23.6 21.7 0.5 ibrutinib NA 17p- NA 55 Male C 

3472 149.9 144.8 0.7 untreated NA 13q- 75 77 Female B 

3481 21.3 16.5 0.6 ritux, bendamustine unmutated normal 70 78 Male C 

3482 61.8 56.5 0.6 untreated NA 11q- 13q- 70 71 Male B 

3483 3.7 1.3 0.3 ibrutinib NA 17p- NA 56 Male C 

3484 212.2 208.2 2.2 untreated unmutated 13q- 58 65 Male B 

3485 100.8 89.6 3.2 untreated NA NA 74 79 Female A 

3490 196.3 190.8 NA untreated NA 13q- 82 82 Male C 

3491 66.4 62.7 1.1 ritux, idelalisib NA 11q- 13q- NA 66 Male C 

3492 67.6 63.8 0.8 FCR NA 11q- NA 77 Male A 

3493 72.8 67.6 1.3 untreated NA 13q- 62 68 Female A 

3494 111.1 108.6 1.2 ritux, idelalisib unmutated 17p-, trisomy 12 NA 74 Male C 

3500 226.7 224.5 NA venetoclax NA trisomy 12 67 76 Male C 

3502 196.3 194.3 NA venetoclax NA trisomy 12 67 76 Male C 

3504 129.5 126.7 1.6 venetoclax NA trisomy 12 67 76 Male C 

3505 38.1 36.9 0.8 venetoclax NA trisomy 12 67 76 Male C 

3506 5.7 0.6 0.1 venetoclax NA trisomy 12 67 76 Male C 
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3507 33 30.7 0.3 untreated NA NA 63 65 Female A 

3510 275.6 268.8 2.7 untreated NA 13q-, trisomy 12 73 80 Male C 

3511 226 221.9 1 untreated NA 13q-, trisomy 12 73 80 Male C 

3512 138.3 130.3 2.3 FCR, Ibrutinib NA 13q- NA 67 Male C 

3513 112.8 109.8 0.8 fcr NA 11q- NA 67 Male C 

3516 55.9 53.4 1.5 ibr NA 11q-, 13q- NA 66 Male C 

3519 39.3 30.1 1 ibr NA 17p-, 13q- NA 52 Male NA 

3520 51.2 44.2 1.1 untreated mutated 17p- 13q- 75 77 Female A 

3522 79.7 76.7 0.6 ibr NA 11q-, 13q- NA 71 Male C 

3523 15.7 14.8 0.1 FCR NA 13q- NA 68 Male C 

3526 244 224.7 NA NA NA trisomy 12 NA 74 Male C 

3527 98 95 1.1 untreated mutated normal 69 75 Female C 

3528 23.3 17.5 1.4 FCRM NA 11q- 55 68 Male A 

3529 42.1 36.2 1 ibrutinib NA 11q- 13q- NA 59 Male C 

3530 243.2 234 1.4 untreated unmutated normal 56 56 Male C 

3536 7 3 0.7 dex, ofatumumab, lenalid NA 17p- 76 80 Male A 

3537 9.7 1.8 1.2 venetoclax NA 17p- NA 52 Male A 

3538 20.8 16.1 0.8 untreated NA 11q- NA 66 male C 

3539 56.6 50.7 1 untreated NA 13q- 93 94 Male B 

3542 45.8 40.6 0.9 FCRM NA 11q- 55 68 Male A 
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3544 13.5 0.4 2.3 venetoclax NA 17p-  57 Male A 

3561 85.8 76.8 1.7 untreated unmutated 11q- 30 38 Male B 

3564 63 58.7 0.8 ofatumumab, chloramb NA 11q- 13q- 52 84 Male C 

3566 70.3 63 1.6 untreated mutated 13q- 59 66 Male C 

3568 155.8 148.9 1.4 
ofatumumab, chloramb, 

idelalisib 
unmutated normal 72 76 Male C 

3574 71 65  ritux and idelalisib normal trisomy 12 NA 86 Male B 

3576 47.5 43.9 0.5 fludarabine mutated NA 57 82 Female C 

3577 85.7 75.8 1.4 ibrutinib NA 17p- NA 55 Male A 

3579 162.8 159.4 2 bendamustine, ritux NA 11q-, 13q- NA 58 Male C 

3582 147.8 143.9 1.2 untreated 
no clonal rearranged 

IGHV detected 
normal 62 66 Male A 

3585 109.9 101.4 1.5 untreated unmutated 11q-, 13q- 66 68 Male A 

3587 257.2 >200 5.3 untreated mutated 13q- 54 55 Male  

3589 170.6 104.9 1 untreated mutated normal 69 76 Female C 

3599 63.9 59.2 0.9 untreated NA 13q- 62 70 Female A 

3602 50.8 49.9 0.6 untreated unmutated 11q- NA 61 Male C 

3603 106.2 101.7 2.5 
ofatumumab, chloramb, 

idelalisib 
unmutated normal 72 77 Male B 

3605 252.8 244 1.6 untreated mutated 13q- 60 63 Male B 

3606 109.2 103.6 1.8 ofatumumab, chlor, idel unmutated 13q- 58 67 Male B 
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3607 254.2 247.7 2.2 untreated mutated normal 66 69 Male B 

3609 120.8 109 3.7 untreated NA normal 46 62 Male B 

3610 240.9 237.9 1 ibr, ritux NA normal 62 66 Male A 

3611 74.3 65.5 1.5 untreated NA 11q- 13q- 88 89 Female A 

3612 59 54.3 1.7 untreated mutated 13q- 79 81 Female B 

3613 147.8 145.5 1.2 untreated mutated normal 56 67 Female A 

3620 145.9 142.6 1.2 untreated mutated normal 69 76 Female C 

3621 70.2 60.6 2 ibrutinib mutated 13q- 58 59 Female B 

3627 136.7 129.4 2 ibrutinib unmutated 13q del 58 68 Male C 

3631 256.1 >200 4.7 ibrutinib mutated 13q- 60 64 Male B 

3637 144.6 134.9 2.2 untreated unmutated 11q-, 13q- 66 69 Male A 

3639 277.2 266.1 2.4 ofatumumab, chloramb unmutated normal 72 77 Male C 

3640 177.5 163.4 2.3 untreated unmutated 13q- equivocal 78 82.9 Male A 

3642 129.4 122.8 1.3 ibrutinib unmutated normal 67 73 Male C 

3644 187.6 174.1 5.1 ibrutinib unmutated normal 72 77 Male C 

3645 264.1 258.8 1.5 untreated unmutated normal 68 72 male C 

3647 145.9 138.2 2.8 untreated mutated IGHV2-21 normal 66 67 Female A 

3650 119.6 110 1.9 untreated mutated normal 63 70 Female B 

3674 116.1 108.7 1.5 untreated mutated normal 63 70 Female B 

3679 171.4 164.7 1.6 untreated NA 13q- 53 54 male C 
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3682 33.2 25.8 0.5 untreated NA  71 74 female A 

3684 230.1 220.8 NA untreated mutated 13q- 75 84 male A 

3686 38.5 31.3 1 untreated mutated trisomy 12 70 71 female A 

3691 226.5 216.1 2.9 ibrutinib, ritux unmutated 13q-, trisomy 12 65 69 female NA 

3694 119.8 99.3 NA ibrutinib NA normal 55 66 Male C 

3696 125.4 116.8 1.7 untreated NA 13q- 61 71 Female NA 

3697 113.7 96.2 2.3 ibrutinib, ritux unmutated 13q-, trisomy 12 65 69 female NA 

3707 108.7 100.8 2.3 untreated unmutated 13q- equivocal 78 83 Male B 
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Appendix Table 7.2 Summary of Clinical features with context of treatment 

 

Untreated Treated 

Frequency Percentage Frequency Percentage 

Staging 

A 17 42.5 8 19.5 

B 12 30.0 6 14.6 

C 11 27.5 27 65.9 

NLC Score 

0 2 4.8 1 2.2 

1 16 38.1 26 57.8 

2 11 26.2 7 15.6 

3 13 31.0 11 24.4 
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Appendix Figure 7.1 NLC score changes with time among patients with multiple re-bleeds.  

Reorganising all samples collected into those from the same patients (A-M), the changes in NLC score (0-3) were plotted with the date in which the sample was taken. Image created using SPSS 

software. 
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7.2 Phenotyping NLCs using Flow Cytometry 

Similar to analysis of cell purity, when the cells of interest are harvested, spun and washed with PBS 

at 300G at 4oC, Fixation/Permeabilisation is done to allow antibodies to cross and bind to selected 

intracellular CD Markers. The cells are washed to remove excess debris with fixation/permeabilisation 

solution. After this, the cells are dehydrated so the size of the cells and overall pellet size is smaller. 

Fluorochrome-conjugated antibodies are added at appropriate volume and incubated for at least 1 

hour. The cells are washed thoroughly to remove the excess unbound antibodies. The remaining 

complexes are then sent for FACS analysis. Compensation using beads are used to allow well spread 

out peaks of each fluorochromes and an isotype control and test is done on each sample harvested. 

Data Collection is performed using Attune software and Analysis is done by both Attune software and 

Flowing Software. 

When analyzing, appropriate gating strategies are made to ensure that CLL cells (the majority) are 

identified and not selected seen in Appendix Figure 7.2. It is known that macrophages are bigger and 

more complex (higher granularity and vacuoles) so it is expected to see that their population would 

have a higher Forward Scatter. This was also observed in early literature pertaining to NLCs (Burger et 

al. 2000; Tsukada et al. 2002). 

  



243 
 

 3492 3511 

FS/SC 

  

BL2-PE-CD68 

    

BL3-PerCP-

CD163 

    

 Isotype Control Test Isotype Control Test 

Appendix Figure 7.2 Phenotyping NLCs using Flow Cytometry. NLCs were harvested using cell scraping method (left) and 

Trypsin/EDTA (right) 

 

 

  

Sample 3492 and 3511, when harvesting NLCs using a plate scraper (left), the gated region of NLCs is selected as R1 and the level 

of antibody is detected with the histograms comparing the test with isotype control. Image taken from Attune Flow Cytometry 
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7.3 RNA Sequencing 

7.3.1 Library Preparation 

RNA samples are sent in ice cold temperature following extraction from harvested cells and checked 

for eligible purity and quantity as per requirements of the outsourced sequencing company 

(Novogene). 

The mRNA is enriched and fragmented, followed by reverse transcription to produce cDNA fragments 

from the mRNA template (Appendix Figure 7.3). Adapters are added to the ends to make it easier to 

perform cluster generation. This is known as Next Generation Sequencing (NGS) Library preparation.  

 

Appendix Figure 7.3 Diagram of New England Biolabs (NEB) library preparation of mRNA for RNAseq. Image adapted from 

Novogene report using BioRender online tools. 
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7.3.2 Cluster generation 

This is where the fragments with adapters are added onto a glass slide with lanes (Appendix Figure 

7.4). The lanes are coated with a lawn. Here, the lawn is composed of two types of oligos that are 

complimentary to one of the two ends of the DNA fragments. Polymerase action occurs to amplify the 

strands into millions. 

 

 

Appendix Figure 7.4 Steps of preparing DNA for sequencing. Image adapted from Novogene report using BioRender online 

tools. 

 

7.3.3 Sequencing 

Sequencing starts with the reading of the primer (Appendix Figure 7.4). Fluorescently tagged 

nucleotides then come and bind complement to the strand. On binding, the fluorescence is excited 

and detected by the machine. Forward and reverse reads occur to avoid ambiguous alignments. 

The machine converts the signals detected into digital representations of the sequence and produces 

raw data as bam and FastQ files for data analysis (described in Appendix Figure 7.10). 
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7.4 Phases/ progression of Monocyte/macrophage differentiation observed 

These observations are made on following cultures from the start of plating the PBMC from CLL 

patients. 

1. Well defined monocyte seen with spherical/oval shape that is slightly larger than 

lymphocytes. Nucleus show chromatin pattern and cytoplasm appear grey. Granules appear 

as very fine specs in cytoplasm. Slight gap may be seen between monocyte and lymphocytes 

giving a sort of halo like appearance around the monocyte. Almost no pleomorphism 

2. Monocytes appear larger now with more granules giving a darker denser appearance than 

other monocytes. Shape is still spherical/ oval. Some may show some fine fibrous extensions 

from well-defined cell membrane. Slight pleomorphism. 

3. Shape of monocyte is altered giving an elongated look, where nucleus and cytoplasm is harder 

to distinguish under PC. Obvious pleomorphism is observed. 

4. Tail-like projections are observed extending from the cytoplasm as if leaving a trail. This is 

seen on one pole of the cell giving a distinct head and tail appearance, suggestive of active 

motion of the cell. Cell membrane at tip of tail is not well defined. 

5. Tail-like projections increase in number to give a spindle shaped appearance, where the 

nucleus appears to be in the middle and the tails are at separate ends extending or projecting 

outwards, giving a strong adherent appearance. Usually in close proximity with lymphocytes 

or other earlier monocytes. (monocytes in general appear very pleomorphic) 

6. Monocytes may form clusters near less healthy (dead or dying lymphocytes), others may join. 

Mix of spherical/oval and elongated, tailed monocytes. 

7. Cluster may grow consisting of more pleomorphic monocytes and lymphocytes. 

8. Period of plateau where this not much difference in size, shape, density appearance of 

monocytes, clusters. 

9. Clusters reduce in number, with darker looking cells yet not as granulated. Pleomorphism may 

be less. Most monocytes may appear smaller with occasional giant-sized monocytes 

10. More dead/dying cells are observed where lymphocytes appear dark and shrunken if adhered 

and floating aggregate bodies. Number of both lymphocytes and monocytes seem reduced, 

predominantly the lymphocytes. Mild apoptotic background is observed where small particle 

bodies are seen, giving a darker background. Areas of dead cells appear as black opaque 

aggregates. 

11. Tail like projectioned monocytes and occasional giant-sized monocytes remain unaltered in 

number, however, other forms appear reduced or nil. Background appears more apoptotic. 
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12. Under the dark opaque dead aggregates if washed, may show some early Phased monocytes. 

Overall number of monocytes is reduced. 

13. Number of live cells in general is severely reduced leaving behind a darkly apoptotic 

background with shrivelled and shrunken dying cells. No visual color change in medium by 

naked eye. 
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7.5 Integrity of RNA 

The integrity of RNA was analysed using Agilent Bioanalyzer by Novogene. Samples that achieve RIN 

≥7.0 are acceptable and used for sequencing. Samples which do not meet the required RIN can 

undergo an additional step of purification by Novogene to raise the RIN to acceptable level. 

The Agilent Bioanalyzer is based on microfluidics technology and is also capable of performing 

electrophoretic separations using capillary electrophoresis. The Bioanalyzer uses Lab-on-a-chip 

technology which have tiny channels analogous to capillary tubing, where the proteins or other 

analytes are subjected to an electric field, migrate along a separation channel and are picked up by 

the detector.  These LabChip Kits are now a standard in RNA quality assessment and quantitation. 

Using electrophoresis-based techniques on micro-fabricated chips, RNA samples are separated and 

subsequently detected via laser induced fluorescence detection. 

The machine can run small sample volumes, requiring short analysis time and is generally automated 

which improves accuracy, precision and productivity.  

The software generates an electropherogram and gel-like image and displays results such as sample 

concentration and the ribosomal ratio. The electropherogram provides a detailed visual assessment 

of the quality of the RNA sample.  

RNA degradation is a gradual process where there is a decrease in the 18S to 28S ribosomal band ratio 

and increase in the baseline signal between the two ribosomal peaks and the lower marker. The 

software automatically generates the ratio of the 18S to 28S ribosomal subunits. However, a further 

analysis using RNA Integrity Number (RIN) can adequately describe the sample integrity. The RIN 

considers the entire electrophoretic trace. The software algorithm for RIN allows for the classification 

of total RNA based on a numbering system from 1 to 10, with 1 being the most degraded profile and 

10 being the most intact. RIN is generated based on a number of features such as: Peak 

height/position, Areas/Area ratio, Signal/Noise ratio, Max Min values, waviness of the curve etc 

(Schroeder et al. 2006). The total RNA ratio measures the fraction of the area covered by 18S and 28S 

compared to the total area under the curve (Schroeder et al. 2006). The height of 28S peak gives 

additional information on the state of degradation process where the 28S band vanishes faster than 

18S during degradation (Schroeder et al. 2006). Accurate RIN values can be obtained when 

concentration values are above 50ng/ul. The RIN, however, cannot predict the usefulness of gene 

expression data without prior validation work (Schroeder et al. 2006). As seen in Appendix Figure 7.5, 

the sample has a distinct high 28S and 18S peak that contributes to most of the total area, giving a 

high RIN value of 9.9. 
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Appendix Figure 7.5 Bioanalyzer report of a sample with a high RIN value. 

 

 

  

Bioanalyzer report of a sample sent for RNAseq. 18S (pink) seen as the middle peak and 28S (green) seen as the peak on the 

right. The sample was harvested and RNA was extracted as described in Methods. Bioanalyzer report was generated using 

outsourced Agilent machine by Novogene 
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7.6 Purification of sample 

Some of the RNA extracted unfortunately do not meet the RIN requirements to perform the RNAseq 

and so an option of purification of RNA is offered. This technology combines the selective binding 

properties of a silica-based membrane with speed of microspin technology. First lyzed and 

homogenized in presence of denaturing guanidine-thiocyanate-containing buffer, which inactivates 

the RNases to ensure purification of intact RNA. Ethanol is used to provide appropriate binding 

conditions. The sample is applied into RNeasy Mini spin column, where the total RNA binds to the 

membrane and the contaminants are efficiently washed away. This procedure provides enrichment of 

mRNA since most RNAs <200 nucleotides (such as ribosomal RNA and translational RNA, which 

together comprises of 15-20% of total RNA) are selectively excluded. This was done solely by the 

outsourced agent Novogene. As seen in Appendix Figure 7.6, the sample 3679 CL had an initially low 

RIN value and undergone purification and as seen in Appendix Figure 7.7 the same sample then had 

an improved RIN value, acceptable for RNAseq experiment. 

 

 

Appendix Figure 7.6 Bioanlayzer report and Agarose gel electrophoresis of RNA sample with low RIN value. 

 

Bioanalyzer data (left) of Sample 3679 CL with low RIN number (5.1), Agarose gel electrophoresis (right) where the sample 

is in well #1 with the conditions of Gel Conc.: 1%,  Voltage: 180v and Run Time of 16min. The sample was harvested and 

RNA was extracted as described in Methods. Bioanalyzer report was generated using outsourced Agilent machine by 

Novogene. 
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Appendix Figure 7.7 Bioanalyzer report and Agarose gel electrophoresis of an RNA sample following purification with a good 

RIN value.  

 

 

  

Following purification of Sample 3679 CL, Bioanalyzer data (left) with encouraging RIN number (8.8), Agarose gel 

electrophoresis (right) where the sample is in well #1 with the conditions of Gel Conc.: 1%,  Voltage: 180v and Run Time of 

16min. The sample was harvested and RNA was extracted as described in Methods. Bioanalyzer report was generated using 

outsourced Agilent machine by Novogene. 
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7.7 Preliminary steps to confirm quality of cDNA and PCR primers 

To confirm the quality of the cDNA, cDNA from CLL samples was first used to measure the expression 

of GAPDH using PCR primers by agarose gel electrophoresis. As shown in Appendix Figure 7.8, it 

showed that the old stock of GAPDH primer was not suitable as all the samples did not properly 

express GAPDH, but rather showed expression below the expected length. This suggested that new 

stock of GAPDH was imperative for subsequent experiments. 

 

Appendix Figure 7.8 PCR gel run on four samples with an old stock of GAPDH 

 

 

After ordering new GAPDH primers and preparing them (as described in Methodology 2.1.8.3), I 

repeated agarose gel electrophoresis and as seen in Appendix Figure 7.9, GAPDH was detected at the 

expected location at around 400bp. This suggested that this stock of GAPDH was suitable. 

An old stock of GAPDH primers was used on 4 RNA samples (Wells #3-6). The Quick-Load Purple DNA ladders 100bp (Well #1) 

and 1kb (Well #2) were used to compare the bp. The agarose gel electrophoresis was performed as described in Methodology. 
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Appendix Figure 7.9 PCR gel run on two samples with a new stock of GAPDH primer 

 

 

  

A new stock of GAPDH primers was used on 2 RNA samples (Wells #3-4). The Quick-Load Purple DNA ladders 100bp (Well 

#1) and 1kb (Well #2) were used to compare the bp. The agarose gel electrophoresis was performed as described in 

Methodology. 
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7.8 Quality Control 

Briefly, as mentioned in Methods, the MultiQC report was generated from the FastQ files. As seen in 

Appendix Figure 7.10, the number of unique reads were more than duplicate reads as well as being 

quite high. This was indicative of good quality of the reads. Mean quality scores were produced based 

on Phred Score. It was found that the scores were all above 30 in the ‘green zone’ which was indicative 

of a pass. The average %GC content of reads was calculated, all the samples were around 51-54% 

which was considered a pass. Sequence duplication levels was represented and showed that the levels 

were all low thereby considered to be a pass. The percentage reads of T, C, A and G nucleotides were 

measured according to position (bp) and except for the first 10bp or so, the levels were all 

approximately 25%. As with every template the beginning would have oligo reads and so the initial 

part is expected to have a jagged graph. The remaining portion of the positions in the graph was flat 

line and excluding the first 10bp it was considered a pass. Two measurements that usually results in 

failure because they are very sensitive. Per-base sequence content and Per-sequence GC content. Per-

base sequence content is common to show variation in the first 10 base pairs which was seen in our 

data as well. 
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A     B     C     D 

     

E     F      G 

 

Appendix Figure 7.10 RNAseq MultiQC Report generated from FastQ files 

MultiQC Report generated from FastQ files from RNAseq raw data. The report consists of Sequence Counts (A), Mean Quality Scores (B), Average %GC content (C), Per Base N Content (D), 

Sequence Duplication Levels (E), Adapter Content (F) and %Reads of T, C, A and G nucleotides measured according to position (G). 
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7.9 Differential Gene Expression List 

Appendix Table 7.3 Differential Gene Expression Analysis of significantly upregulated genes in CLL samples 

 

Gene log2FoldChange lfcSE stat pvalue padj ExpressionLevelCLL ExpressionLevelCLLcc 

CHI3L1 6.626538 0.547598 12.10109 1.04E-33 8.23E-30 7.018133985 8.97364278 

CCL13 6.623863635 0.762716 8.684575 3.80E-18 8.58E-15 3.741797174 6.108092264 

CXCL9 6.472251527 1.002515 6.456016 1.07E-10 7.38E-08 4.007903563 5.975133685 

SPARC 6.28328509 0.501492 12.52918 5.17E-36 8.17E-32 6.088225541 8.319318944 

C1QA 5.605885135 0.542476 10.33389 4.95E-25 1.96E-21 7.053632523 9.382525933 

ANKRD22 5.543077736 0.973897 5.691645 1.26E-08 4.42E-06 1.33334491 2.919537681 

SLC1A2 5.463363463 0.875512 6.240193 4.37E-10 2.56E-07 2.432986191 3.930114202 

C1QB 5.319892541 0.6103 8.716848 2.86E-18 7.53E-15 6.075224015 8.329537997 

GPC4 5.251611677 0.75173 6.986033 2.83E-12 2.79E-09 5.128599786 6.593348076 

APOE 5.111120844 0.480545 10.6361 2.02E-26 1.07E-22 9.055853644 11.18368727 

KREMEN1 5.08319543 0.891993 5.698697 1.21E-08 4.33E-06 2.347373709 3.822795255 

KAL1 5.036022762 0.946592 5.320162 1.04E-07 2.78E-05 1.989989525 3.16329548 

CCL18 5.008110973 0.658317 7.607441 2.80E-14 4.91E-11 3.680027204 5.52084199 

NUPR1 4.998388338 0.81886 6.104085 1.03E-09 5.83E-07 3.334462361 4.982100132 

STAC 4.954662635 0.725022 6.833806 8.27E-12 7.26E-09 3.175955907 5.303174349 

Differential Gene Expression of significantly upregulated genes in the comparison between CLL alone (CLL) with CLL cultured with NLC (CLLcc). The genes are listed according to their 

log2fold change among CLLcc where CLL alone is the control. All the genes are statistically significant with their pvalue and padj values mentioned. Highlighted are those that were also 

upregulated in the literature study mentioned (Herishanu et al. 2011). 
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DCSTAMP 4.846985448 0.659995 7.343971 2.07E-13 2.52E-10 4.600787681 6.028399576 

IGFBP6 4.735214774 1.063908 4.450775 8.56E-06 0.001165 2.604781652 3.848555095 

AK4 4.729690626 0.837811 5.645296 1.65E-08 5.66E-06 2.255642297 3.640282549 

SLITRK4 4.661927929 0.955611 4.878478 1.07E-06 0.000201 1.690721383 2.74645581 

TSKU 4.610341963 0.643165 7.168209 7.60E-13 8.57E-10 3.836114315 5.436698925 

ZBED2 4.609355576 0.79343 5.809403 6.27E-09 2.54E-06 1.959037927 3.701267881 

UBD 4.594555212 0.798702 5.752525 8.79E-09 3.39E-06 2.500421617 4.336665778 

PRRG1 4.535987405 0.93604 4.845931 1.26E-06 0.000226 2.020187683 3.057216291 

ZBTB7C 4.53E+00 0.953224 4.756361 1.97E-06 0.000328 1.940282272 2.848593146 

P2RY13 4.438806046 0.850559 5.218695 1.80E-07 4.31E-05 1.966519088 3.478319838 

TRPV4 4.431821585 0.748424 5.921535 3.19E-09 1.57E-06 2.840077584 4.374728274 

TNFAIP6 4.378211526 0.868035 5.04382 4.56E-07 9.48E-05 2.084370432 3.444422059 

HJURP 4.353566596 0.820154 5.308228 1.11E-07 2.91E-05 1.163358911 2.400684275 

HSD11B1 4.263068739 0.953851 4.469325 7.85E-06 0.001084 1.732209015 2.605374498 

CD1B 4.261200749 0.90875 4.68908 2.74E-06 0.000442 1.482004733 2.613510067 

GNG4 4.228534081 0.806909 5.240407 1.60E-07 3.89E-05 0.963593869 2.182950795 

SUCNR1 4.183642328 0.792086 5.2818 1.28E-07 3.31E-05 2.906331676 4.158310801 

LCNL1 4.156275291 0.959284 4.332684 1.47E-05 0.001711 2.182145481 3.201184587 

GJB2 4.142628894 0.839569 4.934234 8.05E-07 0.000159 2.858312722 4.257472156 

ALOX15B 4.090781412 0.938938 4.356818 1.32E-05 0.001604 2.30671985 3.621888841 

CXCL10 4.089416869 1.013389 4.035385 5.45E-05 0.005156 2.638053066 4.17251983 
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CXCL12 4.079820404 1.021651 3.993359 6.51E-05 0.00588 1.55402758 2.826468618 

SH3PXD2B 4.03504769 0.41138 9.808568 1.03E-22 3.27E-19 5.477802162 7.344849929 

NPR1 4.030785297 1.061584 3.796952 0.000146 0.011287 2.332771802 3.387439989 

CCL1 4.021500827 0.936356 4.294844 1.75E-05 0.001972 1.838320702 2.806584649 

SERPING1 3.981529848 0.745435 5.341218 9.23E-08 2.60E-05 3.624071175 5.438191304 

F3 3.939404622 0.840849 4.685033 2.80E-06 0.000447 3.15458496 4.125749821 

KCNF1 3.914441753 0.899025 4.354097 1.34E-05 0.001611 2.051602963 2.984318707 

TMTC1 3.894855418 0.882287 4.414498 1.01E-05 0.0013 1.868938318 3.043258983 

BCAR1 3.823695239 0.7295 5.241528 1.59E-07 3.89E-05 3.17706564 4.363881608 

IL6 3.820445498 0.923348 4.137599 3.51E-05 0.003465 1.607223176 2.916593341 

LINC01010 3.802950694 0.846245 4.493912 6.99E-06 0.001004 2.920231489 3.797758229 

SSPN 3.78830165 0.73605 5.146802 2.65E-07 5.98E-05 2.070894758 3.310948344 

SEZ6L2 3.7552522 0.788793 4.76076 1.93E-06 0.000328 1.803568957 2.871153306 

PTGES 3.72938821 0.824049 4.525689 6.02E-06 0.000872 1.72875144 2.847733269 

SLC30A3 3.719924818 0.918314 4.050818 5.10E-05 0.004857 1.900486089 2.562603033 

CCL8 3.717788937 0.695538 5.3452 9.03E-08 2.59E-05 3.134032515 4.630204181 

C1QC 3.699102233 0.558358 6.624961 3.47E-11 2.74E-08 7.962435867 9.920848403 

SULT1C2 3.694020337 0.891696 4.14269 3.43E-05 0.00341 1.844328993 2.599796633 

RRM2 3.684022831 0.755041 4.879236 1.06E-06 0.000201 2.077368816 3.453782845 

SHC4 3.680497755 0.977372 3.765707 0.000166 0.012259 1.487501245 2.390795804 

NES 3.664349132 0.77722 4.714689 2.42E-06 0.000394 3.537111122 4.647522845 
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UNQ6494 3.652027398 1.075025 3.397156 0.000681 0.036708 1.008573869 1.941173679 

SLC6A12 3.627039533 0.777236 4.666588 3.06E-06 0.000479 2.556788927 3.528327743 

GPR85 3.601887213 1.049371 3.432424 0.000598 0.033628 0.814492825 1.526694072 

KIAA1462 3.49309833 1.036551 3.369924 0.000752 0.039589 0.906553991 1.749111651 

PROS1 3.470245452 0.88182 3.935321 8.31E-05 0.007172 1.767187088 2.841225116 

MMP7 3.456616895 0.681633 5.071086 3.96E-07 8.44E-05 3.474453786 4.514641131 

TMEM130 3.451263435 1.00128 3.446851 0.000567 0.032379 0.651995921 1.512203112 

VNN1 3.431769903 0.53583 6.404581 1.51E-10 9.53E-08 3.723711811 5.049868843 

COL6A3 3.407492601 0.714617 4.768277 1.86E-06 0.000323 2.129063163 3.409556138 

KCNMA1 3.391712798 0.794424 4.269397 1.96E-05 0.002112 4.206601342 5.746010893 

TFCP2L1 3.382286955 0.711103 4.756397 1.97E-06 0.000328 2.363376541 3.364466008 

CLEC6A 3.354986484 0.940165 3.568508 0.000359 0.022684 1.396445349 2.126641153 

ETV7 3.354168829 0.832662 4.028247 5.62E-05 0.005284 0.947260402 1.905024354 

RP11-1008C21.1 3.353940458 0.811997 4.130486 3.62E-05 0.00353 1.404456006 2.387237331 

RBP1 3.350847524 0.686901 4.878211 1.07E-06 0.000201 2.383067794 3.61545953 

CLEC1A 3.303857379 0.977185 3.380993 0.000722 0.038413 1.340837097 2.047449498 

UNC13A 3.303187894 0.942694 3.503986 0.000458 0.027321 1.915654819 2.976503112 

DIRAS2 3.268983297 0.936438 3.490869 0.000481 0.028453 1.515874934 2.213049072 

ACOX2 3.265349343 0.984634 3.316307 0.000912 0.045887 0.799834348 1.5833897 

SLC28A3 3.239167139 0.647832 5.000009 5.73E-07 0.000118 3.219850144 4.259834449 

STOX2 3.232196196 0.782185 4.132264 3.59E-05 0.003524 2.041684395 2.940638303 
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ALDH1A1 3.224246257 0.553085 5.829567 5.56E-09 2.31E-06 3.525088345 4.932737576 

LILRB5 3.209866305 0.737627 4.351614 1.35E-05 0.001617 5.280097282 7.099933041 

LOC101928716 3.206469862 0.767099 4.179997 2.92E-05 0.002952 2.237089859 3.007439665 

TGM2 3.19071212 0.458486 6.959236 3.42E-12 3.18E-09 6.628500378 8.031114549 

PIR 3.177872627 0.926577 3.429689 0.000604 0.033728 1.445906959 2.274696327 

EGLN3 3.177700594 0.848007 3.747257 0.000179 0.012895 1.597394375 2.577946667 

MKI67 3.165215913 0.574545 5.509086 3.61E-08 1.14E-05 3.909497173 5.826288065 

RAI14 3.095768613 0.794785 3.895101 9.82E-05 0.008076 2.32760727 3.299609543 

PGM5 3.075041485 0.847871 3.626779 0.000287 0.019108 1.438239416 2.384984401 

C3 3.036073249 0.779399 3.895402 9.80E-05 0.008076 2.5428523 3.690269073 

CD1E 2.965642577 0.839192 3.533927 0.000409 0.025165 1.201941975 2.08749124 

ACE 2.959932995 0.50061 5.912648 3.37E-09 1.61E-06 5.285715512 6.765415501 

STAC2 2.928547428 0.823014 3.558319 0.000373 0.023211 2.707554667 3.358691357 

GPRC5B 2.926645251 0.849394 3.44557 0.00057 0.032379 1.25605411 1.932332848 

TCN2 2.917771807 0.639284 4.564123 5.02E-06 0.00074 3.687374274 5.039426127 

CCL24 2.882530445 0.762078 3.782462 0.000155 0.01185 4.754146721 6.486863487 

C5orf20 2.877608007 0.67666 4.252667 2.11E-05 0.002224 3.380267591 4.727984181 

FGD5 2.875595942 0.769633 3.736323 0.000187 0.013347 2.054799134 2.832587351 

SLAMF8 2.868013916 0.378328 7.580769 3.44E-14 5.43E-11 6.616365029 8.102927884 

LYZ 2.810718653 0.424889 6.615179 3.71E-11 2.79E-08 11.01941977 12.50647395 

CCL7 2.805728662 0.625242 4.487429 7.21E-06 0.001017 3.154842062 4.496967665 
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GBP1 2.79436008 0.543899 5.137647 2.78E-07 6.15E-05 5.470164254 7.090013599 

SPP1 2.788645231 0.344373 8.097737 5.60E-16 1.11E-12 8.054320427 9.224239119 

USP2 2.779727582 0.796448 3.490158 0.000483 0.028453 2.808053936 3.526143712 

MMP9 2.770866693 0.370179 7.485208 7.14E-14 9.40E-11 10.59207459 12.14787944 

CLEC4E 2.767874458 0.508155 5.44691 5.13E-08 1.59E-05 3.53636976 4.776920727 

SHOX2 2.766616748 0.828377 3.339803 0.000838 0.042858 1.844631378 2.604162233 

TICRR 2.761454998 0.738661 3.738462 0.000185 0.013294 1.315315689 2.417409092 

CSPG4 2.760948304 0.662223 4.169215 3.06E-05 0.003075 3.21514844 4.163186054 

PKMYT1 2.759253811 0.76035 3.628928 0.000285 0.019049 1.704284485 2.746633491 

BHLHE41 2.757111192 0.435531 6.330454 2.44E-10 1.49E-07 5.946217502 7.316384931 

FAM213A 2.737070334 0.555965 4.923101 8.52E-07 0.000166 3.830178907 5.066674648 

LOC101927029 2.726699572 0.784229 3.476919 0.000507 0.029564 1.592828889 2.449367305 

TMEM119 2.726549108 0.815821 3.342092 0.000831 0.042644 4.044543288 5.39719044 

PTPRF 2.724727353 0.744212 3.661223 0.000251 0.017165 2.530394599 3.753364658 

MYOF 2.722972101 0.501278 5.432061 5.57E-08 1.68E-05 3.801199821 4.967605769 

MT1G 2.720817084 0.649719 4.187682 2.82E-05 0.002872 2.30734131 3.139373622 

PADI2 2.720103321 0.755537 3.600223 0.000318 0.020668 3.189776968 4.26230293 

ACOT11 2.69E+00 0.811978 3.307069 0.000943 0.047127 1.803145581 2.675574747 

MARCO 2.67898073 0.815608 3.284644 0.001021 0.049629 1.235895595 2.054373152 

EBI3 2.659217679 0.632781 4.202429 2.64E-05 0.002726 2.061149028 3.0127506 

SLCO5A1 2.653973418 0.77056 3.444212 0.000573 0.032426 1.357637485 2.548511567 
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CCL22 2.653022873 0.767905 3.454885 0.000551 0.031854 7.122369841 8.392779356 

COL6A1 2.645220064 0.480097 5.509761 3.59E-08 1.14E-05 5.407021025 6.665951187 

FBP1 2.642875468 0.396407 6.667074 2.61E-11 2.17E-08 6.207922368 7.547922296 

ARNTL2 2.638560879 0.451181 5.848123 4.97E-09 2.12E-06 4.185195333 5.510800143 

GPR84 2.615458358 0.498819 5.243296 1.58E-07 3.89E-05 4.562793111 5.923592934 

CDC42EP1 2.584476285 0.503192 5.136161 2.80E-07 6.15E-05 3.850052746 5.047192383 

CDA 2.511516789 0.494641 5.077451 3.83E-07 8.28E-05 3.795760363 4.905958734 

LPAR1 2.489597482 0.430616 5.781482 7.40E-09 2.92E-06 4.309036284 5.61479244 

FAM127C 2.484470805 0.649126 3.827411 0.000129 0.010279 2.703005591 3.527991494 

CXCL5 2.471649939 0.509193 4.854052 1.21E-06 0.000221 7.815298248 9.353058605 

TIFAB 2.470237877 0.738775 3.343694 0.000827 0.042537 2.946708582 3.905951445 

MSR1 2.464043688 0.506729 4.862644 1.16E-06 0.000215 5.730586603 7.057665376 

RTN1 2.459389725 0.452945 5.42977 5.64E-08 1.68E-05 4.814632831 6.13663653 

FPR2 2.447902115 0.458717 5.336407 9.48E-08 2.63E-05 3.217218036 4.441548028 

C2 2.429211788 0.376893 6.445369 1.15E-10 7.59E-08 5.077187028 6.383838821 

MT1E 2.425969555 0.718355 3.377116 0.000733 0.038827 1.8587446 2.659906651 

PTGDS 2.418592411 0.600898 4.024964 5.70E-05 0.005295 4.35620859 5.613856277 

TIMP3 2.41150927 0.661106 3.647687 0.000265 0.017862 4.939966201 5.940408997 

DSC2 2.400472724 0.501573 4.785886 1.70E-06 0.0003 3.794322575 5.037415027 

TNFRSF9 2.398691656 0.50504 4.749513 2.04E-06 0.000336 5.043936003 6.340854187 

TFPI 2.389388921 0.624174 3.828081 0.000129 0.010279 2.812443585 3.705247277 
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SAMD4A 2.385365493 0.557682 4.27729 1.89E-05 0.002061 4.374930783 5.57454348 

TIE1 2.38341902 0.63878 3.731207 0.000191 0.013559 4.012050775 4.885536361 

CSF1 2.37726335 0.415585 5.720284 1.06E-08 4.00E-06 7.404226384 8.565177123 

ADAMDEC1 2.362678981 0.393012 6.011722 1.84E-09 1.00E-06 6.462885682 7.747883958 

RTN4RL2 2.328651608 0.643397 3.619305 0.000295 0.019442 3.980305975 4.934984123 

IL1RN 2.30478328 0.532014 4.332188 1.48E-05 0.001711 6.084326651 6.963612062 

TGFA 2.294242964 0.415541 5.521096 3.37E-08 1.11E-05 3.52472785 4.693753884 

LDHD 2.27964988 0.653997 3.485718 0.000491 0.028715 2.209035353 2.855411095 

TSPAN15 2.264951581 0.397169 5.702733 1.18E-08 4.33E-06 4.1508152 5.208028694 

A2M 2.262830322 0.528847 4.2788 1.88E-05 0.002061 4.8079415 5.815978803 

CBX2 2.246039797 0.648436 3.46378 0.000533 0.030932 1.535814257 2.418783091 

PHLDA3 2.216261722 0.493825 4.487948 7.19E-06 0.001017 5.681075852 6.862112308 

MREG 2.202493167 0.413215 5.330141 9.81E-08 2.67E-05 5.513168253 6.584007332 

GPR150 2.189617865 0.660511 3.315037 0.000916 0.045949 2.498785733 3.395116423 

PPM1H 2.158482329 0.599986 3.597554 0.000321 0.020772 3.361673765 4.370781455 

ZNF366 2.145760737 0.601813 3.565496 0.000363 0.022855 3.255714277 4.107759816 

C17orf96 2.144970685 0.489167 4.384942 1.16E-05 0.001454 6.132419143 7.307959685 

PLAU 2.144497271 0.501344 4.277493 1.89E-05 0.002061 5.4716579 6.75269536 

ZNF618 2.137287136 0.566022 3.775982 0.000159 0.012104 3.10857692 4.086807059 

TMEM176B 2.132997105 0.512796 4.159547 3.19E-05 0.003188 6.849769687 8.019348051 

PLAUR 2.111031835 0.280184 7.53444 4.90E-14 7.04E-11 5.727854979 6.816071225 
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PDCD1LG2 2.098348 0.452356 4.638705 3.51E-06 0.000538 3.8515348 4.995069464 

PRKCDBP 2.097546699 0.472707 4.437304 9.11E-06 0.001209 3.774291278 4.704240818 

DST 2.096791802 0.404277 5.186523 2.14E-07 5.05E-05 3.403828787 4.445323266 

LILRB4 2.090648151 0.317599 6.582658 4.62E-11 3.32E-08 7.023214378 8.143477734 

SIGLEC15 2.079723103 0.596395 3.487154 0.000488 0.028667 3.34345732 4.138771974 

STEAP3 2.077690072 0.538506 3.858248 0.000114 0.009204 5.676499042 6.949527809 

C1S 2.073592619 0.418188 4.958522 7.10E-07 0.000142 5.032248321 6.16824813 

IL4I1 2.0720521 0.627954 3.299687 0.000968 0.048231 6.753139574 8.018442978 

CRTAM 2.058016668 0.397966 5.171334 2.32E-07 5.32E-05 3.421394275 4.447714953 

E2F2 2.048348164 0.539164 3.799121 0.000145 0.011244 2.753861549 3.89767876 

SERPINA1 2.03150396 0.378247 5.37084 7.84E-08 2.29E-05 5.710689004 6.969767601 

GADD45G 2.031244364 0.518212 3.919716 8.87E-05 0.007489 3.401437528 4.369301519 

SLC1A3 1.99517996 0.584703 3.412295 0.000644 0.035332 5.477782165 6.47126489 

QPCT 1.991083695 0.410293 4.852838 1.22E-06 0.000221 3.666247963 4.746379519 

APBA1 1.983135603 0.504194 3.933275 8.38E-05 0.007194 3.739169082 4.709318248 

STAT1 1.981890105 0.356148 5.564791 2.62E-08 8.82E-06 9.495398091 10.74298069 

SEMA3A 1.962978794 0.542346 3.619419 0.000295 0.019442 3.482740835 4.345685706 

ADAMTS14 1.945162117 0.569193 3.417405 0.000632 0.034917 3.18210349 4.288981994 

CECR6 1.931012046 0.432183 4.468046 7.89E-06 0.001084 3.721786856 4.637300096 

LGALS3BP 1.925234014 0.441184 4.363785 1.28E-05 0.001565 6.019772323 7.189864882 

OLR1 1.91422206 0.444873 4.30285 1.69E-05 0.001918 4.567127206 5.666832353 
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MSC 1.904327179 0.400119 4.759404 1.94E-06 0.000328 6.007669842 7.0151259 

NHS 1.891086119 0.555742 3.402812 0.000667 0.03608 2.500424126 3.358133897 

SDC4 1.886936549 0.322086 5.858485 4.67E-09 2.05E-06 5.598424331 6.622193422 

FSCN1 1.884562399 0.410634 4.589399 4.45E-06 0.000675 6.268463806 7.283809482 

SERPINE1 1.868627725 0.528946 3.532738 0.000411 0.02518 5.039959913 6.113502445 

ICAM1 1.865175567 0.454343 4.105213 4.04E-05 0.003915 8.159556908 9.272797397 

CRIM1 1.8595304 0.473016 3.931222 8.45E-05 0.007216 6.251741337 7.249421139 

TTC7B 1.855936865 0.431351 4.302614 1.69E-05 0.001918 4.139051105 5.045587965 

MMP14 1.85207004 0.426737 4.340078 1.42E-05 0.001679 9.851417816 10.85562218 

QPRT 1.827217727 0.538365 3.394014 0.000689 0.037006 3.983546535 4.847414531 

CLEC7A 1.8259118 0.26056 7.007655 2.42E-12 2.55E-09 6.787067164 7.813706321 

PVRL2 1.816874544 0.308624 5.887023 3.93E-09 1.77E-06 6.284927503 7.29920649 

SCN1B 1.804112598 0.503165 3.585529 0.000336 0.021426 3.546342209 4.373289918 

GPR141 1.799936523 0.538271 3.343923 0.000826 0.042537 4.129112945 5.148662041 

NRP1 1.770450064 0.350115 5.056769 4.26E-07 8.98E-05 7.602675168 8.637881655 

LINC01094 1.769017525 0.50248 3.520573 0.000431 0.026061 3.700976562 4.633324057 

CTSB 1.759837871 0.378671 4.647407 3.36E-06 0.000521 12.71276193 13.72257275 

MAP1A 1.740909391 0.455333 3.82338 0.000132 0.010397 3.983916724 4.79438377 

TMEM176A 1.737015584 0.517542 3.356283 0.00079 0.040913 5.345163698 6.30735233 

G0S2 1.727882546 0.501464 3.445678 0.00057 0.032379 3.936498337 4.792955296 

GBP4 1.721031323 0.473705 3.63313 0.00028 0.018821 8.127818706 9.398371407 
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IFIT3 1.717430495 0.386377 4.444957 8.79E-06 0.001177 5.78840605 6.885662806 

EMILIN1 1.71319934 0.383255 4.470127 7.82E-06 0.001084 6.688811307 7.625877516 

CR1 1.703994902 0.40333 4.22482 2.39E-05 0.002485 4.315474518 5.234952521 

LRP3 1.697773835 0.445617 3.809943 0.000139 0.010869 4.533592527 5.353975101 

RNF207 1.687143094 0.461491 3.655852 0.000256 0.017452 2.811595968 3.643489424 

FXYD6 1.687080663 0.480339 3.512272 0.000444 0.026719 3.363256865 4.320780463 

CISH 1.678065571 0.37905 4.427031 9.55E-06 0.001247 5.400595563 6.361826753 

KIAA1522 1.671504444 0.416317 4.014978 5.95E-05 0.005463 4.73952298 5.587551326 

PXDC1 1.666247472 0.374798 4.445724 8.76E-06 0.001177 5.087743736 6.00327779 

CACNA1A 1.664383947 0.446551 3.727196 0.000194 0.013593 6.167550872 7.345509983 

CYP2S1 1.663761947 0.426342 3.90241 9.52E-05 0.00796 4.48900512 5.367128626 

MGST1 1.649673448 0.417058 3.955504 7.64E-05 0.006665 4.902050939 5.711915634 

CLEC11A 1.648301024 0.4372 3.770128 0.000163 0.012244 4.168739036 5.028223137 

SPSB1 1.646824213 0.441712 3.728277 0.000193 0.013593 4.647949985 5.438176002 

PRR11 1.638520221 0.273176 5.998042 2.00E-09 1.05E-06 4.598553953 5.548284217 

CD38 1.628108205 0.483855 3.364869 0.000766 0.040177 3.184110173 4.052285894 

HK3 1.627280516 0.44568 3.65123 0.000261 0.017693 6.328672451 7.156113749 

TUSC1 1.62E+00 4.76E-01 3.414283 0.00064 0.035197 3.688615425 4.503893379 

LOC100132891 1.621025043 0.438862 3.6937 0.000221 0.015245 3.539717581 4.324697037 

CDCP1 1.613470182 0.42803 3.769524 0.000164 0.012244 3.576578679 4.377385621 

SOCS3 1.606208769 0.402692 3.988675 6.64E-05 0.005963 6.850228029 7.822685109 
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CD300LF 1.586723111 0.349081 4.545433 5.48E-06 0.000802 4.398984912 5.193485115 

ME1 1.575592507 0.299892 5.253859 1.49E-07 3.79E-05 4.430867963 5.207767067 

NCS1 1.567630826 0.356399 4.398523 1.09E-05 0.001377 5.083364237 5.887082715 

VSIG4 1.552228188 0.455146 3.410397 0.000649 0.035374 5.800552769 6.689975459 

LAMB2 1.541601983 0.467975 3.294198 0.000987 0.048875 4.010206668 4.715167414 

DAPK1 1.529660386 0.407361 3.755047 0.000173 0.012674 7.410945644 8.287764988 

DRAM1 1.523557209 0.305749 4.983037 6.26E-07 0.000127 7.843388471 8.737692116 

IGSF6 1.494036504 0.401289 3.723095 0.000197 0.013755 6.017348311 6.85664924 

ZNF697 1.481319249 0.286314 5.173766 2.29E-07 5.32E-05 4.701802982 5.494242723 

SLC7A11 1.455268134 0.304145 4.784789 1.71E-06 0.0003 8.404588054 9.28026671 

GAS2L1 1.454118799 0.402813 3.609913 0.000306 0.019993 5.761362354 6.511316796 

TBC1D16 1.426997086 0.408325 3.494754 0.000474 0.028177 5.387439627 6.142566086 

EGR2 1.421167023 0.358133 3.968266 7.24E-05 0.006353 7.715223942 8.502206279 

RCN1 1.415075253 0.39148 3.614685 0.000301 0.01971 4.84984228 5.773138518 

IL13RA1 1.413919314 0.302262 4.677791 2.90E-06 0.000458 7.214300426 8.044699452 

IL8 1.412098876 0.354772 3.980305 6.88E-05 0.006074 8.800519427 9.688728538 

GSN 1.379571635 0.323789 4.260711 2.04E-05 0.002175 6.667014682 7.413904327 

CYP1B1 1.379508647 0.314961 4.37994 1.19E-05 0.001477 11.12625466 11.91698286 

PSTPIP2 1.3751902 0.418523 3.285814 0.001017 0.049616 6.826314333 7.612555235 

COL8A2 1.374888112 0.361421 3.804113 0.000142 0.011074 6.048610369 6.860703528 

IRF1 1.372668205 0.324528 4.229737 2.34E-05 0.002447 9.271304747 10.31693483 
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NR1H3 1.360850229 0.335129 4.060675 4.89E-05 0.004684 6.782265023 7.545468109 

TNFAIP2 1.341269991 0.40851 3.283324 0.001026 0.049709 8.418716987 9.143392848 

SMOX 1.338071113 0.354951 3.769739 0.000163 0.012244 4.650555634 5.394482567 

SOD2 1.337102015 0.338985 3.944433 8.00E-05 0.006942 9.622857587 10.41539699 

NRIP3 1.327510857 0.389328 3.409747 0.00065 0.035374 4.412116485 5.048162113 

SLC8A1 1.319245512 0.288364 4.574932 4.76E-06 0.00071 6.186571119 6.94467915 

EMR2 1.318678174 0.223206 5.907896 3.47E-09 1.61E-06 5.492923793 6.22111072 

PHLDA2 1.316825898 0.345439 3.812037 0.000138 0.010831 3.518929106 4.160671923 

FTH1 1.314352465 0.296534 4.432386 9.32E-06 0.001227 12.42247851 13.17506191 

WBP5 1.310263131 0.326826 4.009052 6.10E-05 0.005534 4.480915332 5.185931098 

LRP12 1.308681837 0.296702 4.41076 1.03E-05 0.001312 5.237593393 5.956953544 

CTSL 1.307064611 0.36769 3.554803 0.000378 0.023432 8.165076798 9.003925476 

NFAM1 1.293022788 0.375897 3.43983 0.000582 0.032838 7.893941397 8.661703406 

MRC1 1.286677548 0.320591 4.013461 5.98E-05 0.005463 7.63812517 8.41236587 

PTAFR 1.282629734 0.299627 4.280756 1.86E-05 0.002061 8.696884507 9.473556166 

SCD 1.279602037 0.371262 3.446625 0.000568 0.032379 8.094244092 8.904858601 

FBXO6 1.252642656 0.336008 3.728019 0.000193 0.013593 6.222487869 6.975905348 

VDR 1.252341943 0.351775 3.560063 0.000371 0.023149 6.334891336 7.077692429 

PRRG4 1.250462185 0.336774 3.713055 0.000205 0.014249 4.283328343 5.05196881 

GLRX 1.224291998 0.322556 3.795596 0.000147 0.011294 6.066187111 6.784797888 

SORT1 1.192866223 0.274473 4.346026 1.39E-05 0.001646 5.61722794 6.273527354 
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WARS 1.174485949 0.349514 3.360341 0.000778 0.040583 9.895620744 10.7103906 

CD4 1.142979836 0.317778 3.596783 0.000322 0.020772 8.357101769 9.016755566 

GALNT6 1.141681455 0.267452 4.268736 1.97E-05 0.002112 5.760946748 6.463982597 

VANGL1 1.141398977 0.311227 3.667411 0.000245 0.016827 3.758494531 4.394404335 

APOL6 1.137911252 0.260124 4.374499 1.22E-05 0.001502 9.482012437 10.33195001 

PARP9 1.134157438 0.264915 4.281219 1.86E-05 0.002061 8.64216067 9.439790228 

ITGB2 1.101961942 0.273781 4.024974 5.70E-05 0.005295 9.787509346 10.45695783 

FNDC3B 1.097825905 0.291397 3.767461 0.000165 0.012259 6.630309259 7.293599959 

ARHGAP31 1.096869722 0.184199 5.954805 2.60E-09 1.33E-06 8.102767813 8.787197005 

ACTN1 1.032773883 0.313724 3.291982 0.000995 0.048955 6.270576905 6.867922322 

ARRDC4 1.028201506 0.256184 4.013524 5.98E-05 0.005463 6.034255799 6.623128108 

PLD3 1.012249133 0.247666 4.087159 4.37E-05 0.004206 10.59298382 11.18672339 

SGMS2 1.005630188 0.286347 3.511929 0.000445 0.026719 4.497613558 5.116981833 

UBE2L6 1.00070244 0.259785 3.85204 0.000117 0.009392 8.597448871 9.330144786 

TXN 0.97339544 0.289844 3.358343 0.000784 0.040743 4.616988131 5.156539 

NFKBIA 0.971499409 0.274468 3.539571 0.000401 0.024729 9.086207819 9.775131437 

IL15RA 0.951760798 0.28226 3.371926 0.000746 0.039434 5.951039122 6.637743017 

EPSTI1 0.920621967 0.276221 3.332912 0.000859 0.043651 7.305540578 7.990038534 

CDKN1A 0.917031452 0.207578 4.417774 9.97E-06 0.001291 9.086247563 9.674095561 

OAS3 0.911452261 0.258666 3.523663 0.000426 0.025858 8.089851891 8.767542925 

PLEK 0.909576196 0.241499 3.766371 0.000166 0.012259 9.049542707 9.60947955 
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SIRPA 0.896194474 0.264959 3.382387 0.000719 0.038347 9.224259594 9.762751504 

DTX3L 0.89335188 0.209908 4.255916 2.08E-05 0.002207 10.03192658 10.65075862 

MOB3B 0.889248009 0.260161 3.418065 0.000631 0.034917 5.103679081 5.653567799 

CREG1 0.884129157 0.265135 3.334634 0.000854 0.043521 9.77881841 10.30289055 

TRIM21 0.871340446 0.221963 3.92561 8.65E-05 0.007347 7.67616144 8.274978937 

LAP3 0.869162439 0.235269 3.694342 0.00022 0.015245 6.640079525 7.221350461 

SAMD9L 0.858141057 0.257549 3.331958 0.000862 0.04366 9.450360184 10.10564841 

PANDAR 0.844434633 0.215836 3.912388 9.14E-05 0.007679 8.1406666 8.707774192 

SQRDL 0.809132638 0.208456 3.881554 0.000104 0.008495 6.795210478 7.306393762 

STX11 0.805145162 0.206669 3.895819 9.79E-05 0.008076 8.227171916 8.770137681 

IFIH1 0.79526682 0.212194 3.747825 0.000178 0.012895 7.769123303 8.315472393 

TAP1 0.793857952 0.22478 3.531713 0.000413 0.025181 10.10645246 10.72183956 

NCF2 0.782352206 0.234875 3.330928 0.000866 0.043682 8.159922926 8.63589692 

GBP3 0.766277835 0.232721 3.292689 0.000992 0.048955 6.569272518 7.105437543 

PARP14 0.759049027 0.196615 3.860587 0.000113 0.009163 10.40799141 10.94856917 

PLXNA1 0.743149699 0.197736 3.75829 0.000171 0.012569 8.397245163 8.882458581 

S100A11 0.71940713 0.166106 4.331 1.48E-05 0.001711 7.331013641 7.766355143 

MCL1 0.678802868 0.161914 4.192367 2.76E-05 0.002832 12.42520851 12.90463029 

BPGM 0.675198951 0.169395 3.985942 6.72E-05 0.005969 6.869370351 7.341985072 

PLOD1 0.66587457 0.185647 3.586782 0.000335 0.02141 6.352201592 6.776201013 

GNS 0.651923791 0.142149 4.586207 4.51E-06 0.000679 10.20985295 10.61944687 



271 
 

CD59 0.63123875 0.1628 3.87738 0.000106 0.008597 9.246134461 9.663956475 

PGD 6.23E-01 1.72E-01 3.625947 0.000288 0.019108 8.270082583 8.658090527 

ACO1 0.579587026 0.176171 3.28992 0.001002 0.049162 6.461648692 6.820603187 

PRCP 0.563449449 0.167492 3.36403 0.000768 0.040177 8.259459453 8.637617111 

WDFY1 0.562897437 0.149968 3.753442 0.000174 0.012697 10.0799269 10.47454181 

PKM 0.554604485 0.163931 3.383159 0.000717 0.038347 11.09969364 11.46298606 

ATP6V1A 0.519134428 0.150471 3.450053 0.00056 0.032311 8.859468141 9.196640715 

TAP2 0.50549182 0.144042 3.509336 0.000449 0.026879 10.31773321 10.68956285 

PLIN3 0.497820508 0.138705 3.589047 0.000332 0.021311 8.473635063 8.805794073 

ARHGAP17 0.458817886 0.128772 3.56302 0.000367 0.02298 8.866751019 9.193224248 

NECAP2 0.407313225 0.118964 3.423827 0.000617 0.034343 9.135100424 9.413017019 

ADAR 0.314667647 0.087922 3.578937 0.000345 0.021886 11.99512068 12.22772073 

CDC42SE2 0.301087677 0.091309 3.297461 0.000976 0.048463 11.48281287 11.70869316 
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Appendix Table 7.4 Differential Gene Expression Analysis of significantly downregulated genes in CLL samples. 

 

Gene log2FoldChange lfcSE stat pvalue padj ExpressionLevelCLL ExpressionLevelCLLcc 

SLC12A9 -0.277864424 0.069714 -3.98576 6.73E-05 0.005969 9.832294893 9.62873565 

ABHD16A -0.400266298 0.121825 -3.29E+00 0.001018 0.049616 7.635560807 7.348312123 

YPEL4 -0.859812745 0.250681 -3.4299 0.000604 0.033728 5.777184655 5.233534269 

RN7SK -1.211002739 0.355222 -3.41E+00 6.52E-04 0.035374 6.430653545 5.559862195 

 

Appendix Table 7.5 Differential Gene Expression Analysis of significantly upregulated genes in NLC samples. 

 

Gene log2FoldChange lfcSE stat pvalue padj ExpressionLevelNLC ExpressionLevelNLCcc 

GLRA3 3.918075639 0.901167 4.35E+00 1.38E-05 0.044912 1.387227048 2.730208571 

PPBP 3.175807416 0.636214 4.991726 5.98E-07 0.005863 4.312860313 6.851488588 

CD28 2.619639645 5.21E-01 5.028325 4.95E-07 0.005863 7.156489894 8.83889896 

CXCL1 2.062421425 4.79E-01 4.31E+00 1.63E-05 0.045677 7.216240319 8.879749244 

 

  

Differential Gene Expression of significantly downregulated genes in the comparison between CLL alone (CLL) with CLL cultured with NLC (CLLcc). The genes are listed according to their 

log2fold change among CLLcc where CLL alone is the control. All the genes are statistically significant with their pvalue and padj values mentioned. 

Differential Gene Expression of significantly upregulated genes in the comparison between NLC alone (NLC) with NLC cultured with CLL (NLCcc). The genes are listed according to their 

log2fold change among NLCcc where NLC alone is the control. All the genes are statistically significant with their pvalue and padj values mentioned. 
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Appendix Table 7.6 Differential Gene Expression Analysis of significantly downregulated genes in NLC samples. 

 

Gene log2FoldChange lfcSE stat pvalue padj ExpressionLevelNLC ExpressionLevelNLCcc 

SLC1A5 -0.775945044 1.77E-01 -4.38E+00 1.18E-05 0.044912 11.29980371 10.71055042 

GATA4 -1.79E+01 3.744001 -4.77E+00 1.83E-06 0.011974 -1.249859707 -1.474156508 

RP11-40F8.2 -1.91E+01 4.23E+00 -4.52E+00 6.32E-06 0.030963 -1.294469758 -1.415283878 

Differential Gene Expression of significantly downregulated genes in the comparison between NLC alone (NLC) with NLC cultured with CLL (NLCcc). The genes are listed according to their 

log2fold change among NLCcc where NLC alone is the control. All the genes are statistically significant with their pvalue and padj values mentioned. 
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7.10 Primer Designing 

Appendix Table 7.7 Sequence of the primers used to validate DGEA of RNAseq data. 

 

Gene Direction Primer 
Product 

length 

Genotype 

length 

GC content 

% 

Temperature 

(salt adjusted) 

CCL13 
F GCAGGTGTCCCCAGAAG 

83 519 
65 57.3 

R CTGGACCCACTTCTCCTTT 53 57.5 

CXCL9 
F AAGTGGGAGAAACAGGTCAG 

131 1240 
50 

46 

58.4 

R GGTGAAGTGGTCTCTTATGTAGTC 63.6 

NUPR1 
F TGAGACAGAGCTGGAGATGAG 

90 426 
52 61.2 

R ATCCTGTCCTGGGTCCTC 61 58.4 

CXCL12 
F TACAGATGCCCATGCCGAT 

225 2264 
52.6 60.5 

R GTGGGTCTAGCGGAAAGTCC 60 62.5 

EGLN3 
F GGCGTCTCCAAGCGACAC 

246 19426 
67 60.8 

R GCAGGTGATGCAGCGACCAT 60 62.5 

GBP1 
F GGGCGACTGATGGCGAAT 

243 2963 
61 58.4 

R CTCGGTGTCCAGCAGAACTA 55 60.5 

EBI3 
F GCTCCCTACGTGCTCAATGT 

221 1580 
55 60.5 

R CCCTGACGCTTGTAACGGAT 55 60.5 

CSF1 
F GCCATCAAGAGCCTCAGAG 

119 >4119 
58 59.5 

R TGTGCGTCCAGCTTAGAATT 45 56.4 

STEAP3 
F GGAGGGAGTTCAGCTTCGTT 

124 8208 
55 60.5 

R GGCAGGTAGAACTTGTAGCGG 57 63.2 

EGR2 
F CCTTTGACCAGATGAACGG 

97 1489 
53 57.5 

R AAGCTGCTGGGATATGGG 56 56.3 

MCL1 
F GTCTCGAGTGATGATCCATGTT 

254 1006 
45.5 60.1 

R CATTCCTGATGCCACCTTCT 50 58.4 

CXCL10 
F TGTACGCTGTACCTGCATCA 

268 920 
50 58.4 

R CTGTGTGGTCCATCCTTGGAA 52.38 61.2 

YPEL4 
F TCACCGCACTTACAGCTGTG 

260 1003 
55 60.5 

R TCCCTTCCTTGTACTTCTGGC 52.38 61.2 

GAPDH 
F TCACCATCTTCCAGGAGCGA 401 905 55 60.5 

R GATGATGTTCTGGAGAGCCC   55 60.5 

 

Genes of interest and their primer sequences, product lengths, genotype length, GC content and expected Tm. Genes are 

selected as described from DGEA. 
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7.11 Reference Gene comparisons 

 

 
Appendix Figure 7.11 Linear correlation graphs to compare the housekeeping genes from DGEA. 
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7.12 Clinical Data analysis of the combined data 
I attempted to analyse the samples based on their clinical data (See Appendix Table 7.1) to explain the 

findings and found that the majority of the samples were untreated (except for 2) and originating from 

different patients (except two). As seen in Appendix Table 7.8, a comparison between samples treated 

(with ibrutinib) and untreated of the same patient, shows an almost complete reversal in gene 

expression changes of each gene of interest.  

Appendix Table 7.8 Comparison of gene expression changes between samples that were treated and untreated from the 

same case. 

 Untreated 
Treated with 

ibrutinib 

 3605 3631 

MCL1   
CXCL12   

CSF1   
GBP1   
YPEL4   

STEAP3   
EGLN3   

 
 Expected 
 Not Expected 

 

 

It is possible to consider that based on this finding, that the treatment with ibrutinib in this patient 

may have caused a change in the direction of gene expression of these selected genes. However, 

further investigations are required. 

Given that the reliability of the RNA-seq results were confirmed, I then proceeded with pathway 

analysis by the Bioinformatics team. 

Comparison of gene expression changes from samples #3605 and #3631 which were derived from the same patient. 

Sample #3631 was collected after the patient was treated with ibrutinib for approximately one month. Changes that are 

in agreement by both RT-qPCR and DGEA of RNA-seq are in green and those that are not in agreement are in red. The gene 

expression changes are those from samples that are CLL alone and CLL in co-culture with NLCs. Gaps are indicated where 

qPCR data was not obtainable. These samples were not sent for RNA-seq. 
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7.13 Other Pathways generated from DAVID KEGG analysis 

 

Appendix Figure 7.12 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in tumour necrosis factor (TNF) signalling pathway 
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Appendix Figure 7.13 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in Hypoxia-Inducible factor-1 (HIF-1) signalling pathway 
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Appendix Figure 7.14 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in T cell receptor signalling pathway 
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Appendix Figure 7.15 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in MAP kinase (MAPK) signalling pathway 
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Appendix Figure 7.16 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in JAK-STAT signalling pathway. 
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Appendix Figure 7.17 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in PI3 kinase- AKT (PI3K-AKT) signalling pathway 
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Appendix Figure 7.18 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved known pathways in cancer
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Appendix Figure 7.19 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in nucleotide-binding oligomerization domain-like (NOD-Like) receptor signalling pathway 
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Appendix Figure 7.20 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in cytosolic DNA-sensing pathway 
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Appendix Figure 7.21 DAVID KEGG pathway analysis; mRNA targeted genes (red star) are involved in Cytokine-cytokine receptor interactions. 
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7.14 Protocols 

7.14.1 PBMC and Plasma Separation 

Into 50ml falcon tubes, pour Lymphoprep solution in a ratio of 2:1 ratio of blood to Lymphoprep. Blood 

sample is slowly poured on top of the lymphoprep making sure that blood doesn’t disturb the layers. 

Centrifuge at 800RCF for 30 minutes where the brake setting is off. 

Following centrifuge, carefully remove some of the plasma layer starting from the top most part using 

sterile Pasteur pipette. 

Using a sterile Pasteur pipette, collect the dense cloud of mononuclear cells, careful not to disturb nor 

collect any of the other layers. Collect into a labelled falcon tube. Wash the collected later by filling 

the tube with RPMI up to 50ml. Centrifuge at 550RCF for 10 minutes with standard brake settings. 

Following centrifugation, remove the supernatant and resuspend the pellet with a known volume of 

100% Fetal calf serum (FCS) media. Take a small diluted volume for cell counting. 

Based on cell counting, take a known volume of fresh PBMC for primary cell culture experiments, the 

remainder is for storage in freezing conditions. 

After cell counting, while in 4oC ice cold temperature, add media containing DMSO in a drop wise 

fashion slowly, to ensure the final media contains 10% DMSO. Aliquot the sample in pre-labelled 

cryovials at 1ml each and immediately transfer to freezing storage (-80oC and then -150oC). The 

number of vials and location of such vials are recorded for future reference. 
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7.14.2 Cell Counting 

7.14.2.1 Automated 

CLL cells and cell lines were counted for experimental purposes using an automated cell counter 

(Nexcelom USA CellometerTM Auto T4 cell counter), using disposable cell counting slide (Nexcelom 

Cat# CHT4/PD100/002), after mixing the cells 1:10 with a 0.1% Trypan blue dye solution in PBS. Errors 

in this method of counting are usually from introducing too high a concentration of cells into the 

machine. 

Appendix Equation 7.1 was used to calculate the volume of cell suspension required to obtain desired 

cell density for each experiment as indicated. 

Appendix Equation 7.1 Calculating concentration of desired suspension from current suspension 

V1C1=V2C2 

Where V1= volume of current suspension, C1= concentration of current suspension, V2= volume of desired suspension and 

C2= concentration of desired suspension. 

Eg. If the Volume of the current suspension is 3ml with a concentration of 15x106/ml, the desired 

concentration is 10x106/ml what is the volume required to be resuspended? 

3x15=V2x10 

V2=4.5ml 

 

7.14.2.2 Neubauer Chamber 

The Neubauer chamber, a hemocytometer, is a counting-chamber device that was designed to count 

blood cells. It consists of a thick glass microscope slide with indentations that make up a chamber. 

Within the chamber are perpendicular lines (Appendix Figure 7.22) that are of known distance and 

depth. Cells are counted within the gridlines and subsequently the number of cells can be counted 

within a specific volume, thereby calculating the concentration in the original solution overall. 

The chamber and cover slip are first cleaned with 70% ethanol, the cover slip is placed on the counting 

area and pressed down until rainbow spectrum waves are seen. A diluted known volume of cells (up 

to 20ul) stained with trypan blue is added into the chamber under the cover slip. The chamber is then 

placed under the microscope and focused to the desired counting region. CLL cells are counted within 

the four large squares. Using Appendix Equation 7.2, the concentration of cells in suspension can be 

found. 
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Errors are common in this method due to pipetting errors, statistical errors, chamber volume errors, 

and errors from volume of sample introduced into the chamber. Regardless, the Neubauer chamber 

remains the most widely used cell counting method in the world. 

 

 

Appendix Figure 7.22 Schematic of counting fields of Neubauer Counting Chamber seen from above (top) and side (bottom) 
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To calculate the number of viable cells/mL: 

Take the average cell count from each of the sets of 16 corner squares. 

Multiply by 10,000 (104). 

Multiply by dilution factor. 

The final value is the number of viable cells/mL in the original cell suspension. 

 

Appendix Equation 7.2 Concentration of cells in original mixture 

Cells in suspensionx104/mL= Number of cells counted  x  Dilution Factor 
Number of large squares counted 

 

Example:  

If the cell counts for each of the 16 squares were 50, 40, 45, 52 and dilution factor of 5 the average 

cell count would be: 

(50 + 40 + 45 +52) ÷ 4 = 46.75 

46.75 x 104 

46.75 x 5 = 233.75x104 live cells/mL in original cell suspension 

 

7.14.3 Calibrating and adding a scale bar using ImageJ software 

The pictures were captured using phase contrast microscope at 20x objective lens, Light microscope 

with 40x objective lens or Light microscope 100x objective lens. In order to provide a scale, an image 

of a section of a Neubauer Chamber grid is also captured at the same magnification of objective lens 

using the same microscope. Using the ImageJ software, the known distance on the grid is calibrated 

to the number of pixels in the image. Once this is set, the other images can therefore have the same 

scale (ie. Number of pixels equate to a known distance). The scale is then added using tools of ImageJ 

software. Scale for IF images was pre-calibrated using IF microscope software. 
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7.14.4 Viability assay using FACS Attune 

FITC Annexin V, Propidium Iodide, (BD Pharmingen 556420), (BD Pharmingen 556463) 

Annexin Binding Buffer preparation: 

(From Data Sheet) 10x Binding Buffer: 0.1M Hepes (pH7.4), 1.4M NaCl, 25mM CaCl2 

1x Binding buffer is therefore: 10mM Hepes (pH7.4), 140mM NaCl, 2.5mM CaCl2 

 

For 500ml stock: 

5ml of 1M Hepes Stock 

14ml of 5M NaCl stock 

1.25ml of 1M CaCl2 stock 

Then add 479.75ml of distilled H20, mix well, then filter with 0.45um through syringe. 

 

1. Wash with cold PBS and re-suspend cells in 1x Binding buffer at concentration of 1x10^6/ml 

volume of 100ul. 

2. Add 2.5µl of FITC Annexin V, incubate for 8 minutes at RT 

3. Add 5µl of PI (concentration of 50µg/ml), incubate for further 2 minutes. 

4. Add up to 400ul of Binding Buffer and analyze by flow cytometry within 1 hour 
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7.14.5 Immunofluorescence Microscopy 

7.14.5.1 Coverslip Preparation 

Sterilize by cleaning with absolute ethanol, dry in hood for 10-30mins (May use UV light for 10mins). 

 

7.14.5.2 Grow the cells 

Place the coverslips in culture plate for adding cells in medium. Gently press on coverslips with pipette 

tip to remove air bubbles to avoid cells from growing under the coverslip. 

Once ready, drain the medium, gently wash with PBS, drain the PBS (leave some behind). Transfer the 

coverslips to a sterile platform. Place damp cloth near the plate to provide humidity and avoid quick 

drying. 

 

7.14.5.3 Fixation/Permeabilization 

Fixation using 4% Paraformaldehyde for 10mins, then Permeabilisation with 0.5%Triton X (in PBS) for 

10mins in room temperature. 

 

7.14.5.4 Removing Autofluorescence 

Prepare 0.1% sodium borohydride (NaBH4) (in PBS). CAUTION: Hydrogen gas is produced, FLAMMABLE 

Prepare 0.2g powder NaBH4 and dissolve in 20ml of PBS to make 0.1% in Fume cupboard. 

Place plate on ice and add the NaBH4 approx. 250-400ml in each well. There will be bubble formations, 

so this needs to be replaced after 5mins. Do twice. (5mins, replace, 5mins) 

When completed, wash properly 3x with PBS. 

 

7.14.5.5 Blocking 

Leaving behind some PBS from last wash, lift the coverslips, drain from the side on tissue. If possible, 

wipe the surface of the coverslip NOT with cells. 

Drop approx. 100ul of blocking solution (1%BSA in PBS) on parafilm. Place coverslip face down on the 

drop. Leave for 30mins room temperature. This step can be prolonged. Additional step of using 

TruStain Fc blocker can be used in the same manner. 



293 
 

7.14.5.6 Incubate with Antibody 

Remove blocking buffer by holding at angle over fibre-free paper or tissue. No need to wash with PBS. 

Dilute antibody to 1.0-10ug/ml in blocking buffer, Add 100ul onto parafilm and place coverslip face 

down on it. Incubate at room temperature for 30mins in humidified chamber. Remove antibody by 

lifting coverslip off it, wash with PBS 3x 5mins each wash. 

If more than one antibody, (secondary antibody) then block with Serum of that species (eg. Donkey 

Serum) as before, then repeat procedure using secondary antibody (prepare dilution in Donkey 

serum). Incubate for 30mins at room temperature in humidified chamber. Remove antibody by lifting 

coverslip off it, wash with PBS 3x 5mins each wash. 

 

7.14.5.7 Incubate with DAPI/Hoechst stain 

Prepare DAPI/Hoechst stain (with staining buffer) in covered Eppendorf tube (100ul per coverslip). 

Place a drop on parafilm. Transfer coverslip face down on the drop. Incubate for 5mins at room 

temperature in humidified chamber. Remove excess stain by lifting coverslip off it, wash with staining 

buffer 3x 5mins each wash. 

Make sure to let the coverslip dry as much as possible before mounting. 

 

7.14.5.8 Preparation for Microscopy 

Take a clean slide. Add 10ul of mounting medium. Invert coverslip and apply onto that. 

Remove excess mounting media with fiber-free paper. Allow to solidify for a few hours (overnight is 

best). Avoid touching the coverslip as this would alter the volume of medium underneath and 

introduce air bubbles. 

Seal the edges of coverslip with nail polish. Allow to dry for 3mins. Keep slides in dark (cover with 

aluminium foil) and in 4oC till microscopy. 

At the time of microscopy, observe in dark room. Using Q-tip, dip in distilled water and gently wipe 

the surface of the coverslip (exposed part) in circular outward motion to remove dust. 
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7.14.5.9 Microscopy 

Prepare machine: switch on camera, laser, microscope and computer. Open ImageJ Microscopy 

Software. Adjust magnification at 40x. Locate, focus and identify cells using DAPI at LOW exposure. 

This will avoid excess spill over onto Green 
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7.14.6 Optimizing IF protocol 

As shown in Appendix Figure 7.23 using PMA differentiated THP1 cell line, it seemed there was clear 

spill-over of Hoechst 33342 (blue) over to green, with co-expression of both antibodies in same 

location giving an orange colour. In addition to that, there wasn’t any difference in intensity of either 

colours with their respective isotype controls. Even their unstained counterpart showed expression in 

both the antibody colours. The level of expressions of the antibodies were quite weak despite using 

low dilution.  

The use of secondary antibodies was advised and the experiment was repeated. The results (Appendix 

Figure 7.24) showed that there was a greater intensity seen at greater dilutions, however the problem 

of auto fluorescence, spill over and nonspecific binding persisted. 

The use of Fc-receptor blocker reagent was suggested to reduce non-specific binding, the reason was 

that the monocyte-lineage cells are essentially immune cells that express Fc-receptors for antigen 

binding (Andersen et al. 2016; Forrester et al. 2018). By blocking these Fc sites, this reduces or 

eliminates the chances of false positive detection. As seen in Appendix Figure 7.25, despite using the 

Fc-receptor blocker, there was still non-specific binding as well as auto-fluorescence. 

To tackle the auto-fluorescence, 0.1% Sodium Borohydride was used based on literature 

recommendations (Clancy & Cauller 1998; Davis et al. 2014). The results (Appendix Figure 7.26) 

showed a decrease in auto fluorescence however there was still nonspecific binding. 

The presence of non-specific binding was resolved using an additional blocking step using donkey 

serum (of same species as secondary antibody) and as seen in Appendix Figure 7.27, it showed further 

reduction in nonspecific binding. 

Despite optimising secondary antibody and performing stains on primary cells, there was still too 

much spill-over of blue (Hoechst 33342) onto green, despite using greater dilution of Hoechst 33342 

of 1:20,000 Appendix Figure 7.28) 

It was then suggested to use DAPI as alternative to Hoechst 33341 as a nuclear stain. Using different 

concentrations, (Appendix Figure 7.29), it was found that DAPI was indeed stained much better and 

clear staining of nucleus was achieved even at a dilution of 1:10,000. In addition, the duration of 

exposure to DAPI was compared at 2 minutes versus 20 minutes and it was found that there was less 

spill-over at short exposure time.  

Using the previous adjustments, the final protocol was used and there was minimal spill-over from 

blue to green. 
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Using the optimised conditions to remove auto-fluorescence, non-specific binding (by using 0.1% 

NaBH4 and Fc-receptor blocker and DAPI respectively) and DAPI for nuclear staining, I then proceeded 

to perform IF on primary cells. 
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THP1 PMA Hoechst 33342 FITC-CD14 PE-CD68 Merged 

Unstained 

    

Isotype 
Control 

    

Test 

    

Appendix Figure 7.23 Initial IF staining showed auto-fluorescence, non-specific fluorescence and spill-overs of nuclear stain. 

 

  

Immunofluorescence staining of PMA differentiated THP1 cell line to test out fluorescent conjugated anti CD14 (green), anti CD68 (red) and counterstained with Hoechst 33342 (blue)nuclear 

staining. THP-1 cells were PMA differentiated for 24-48 hr as described, fixed, stained with fluorochrome-conjugated antibodies as described, counterstained with nuclear stain as described and 

viewed under fluorescence microscope in the dark. Corresponding Isotype controls were used for each antibody. Images were prepared using ImageJ software. 



298 
 

THP1 PMA Hoechst 33342 CD14 Merged 

Isotype 
Control 

   

Test 

   

Appendix Figure 7.24 Use of secondary antibodies improved the IF staining. 

 

  

Immunofluorescence staining using chemically differentiated THP1 cell line with anti-CD14 and secondary antibody (green), counterstained with Hoechst 33342 nuclear stain (blue). THP-1 

cells were PMA differentiated for 24-48 hr as described, fixed, stained with primary and secondary antibodies as described, counterstained with nuclear stain as described and viewed under 

fluorescence microscope in the dark. Corresponding Isotype controls were used for each primary antibody. Images were prepared using ImageJ software. 
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THP1 PMA Hoechst 33342 CD163 Merged 

Isotype 
Control 

   

Test 

   

Appendix Figure 7.25 Use of Fc-receptor blocker reduced non-significant fluorescence. 

 

 

Immunofluorescence staining using chemically differentiated THP1 cell line with anti-CD163 and secondary antibody (red), counterstained with Hoechst 33342 nuclear stain (blue). Fc-receptor 

blocker was used. THP-1 cells were PMA differentiated for 24-48 hr as described, fixed, stained with primary and secondary antibodies as described, counterstained with nuclear stain as 

described and viewed under fluorescence microscope in the dark. Corresponding Isotype controls were used for each primary antibody. Images were prepared using ImageJ software. 
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NaBH4 absent 

Secondary absent 

NaBH4 present 

Secondary absent 

NaBH4 present 

Secondary present 

   

Appendix Figure 7.26 Auto-fluorescence was removed using 0.1% sodium borohydride. 

 

  

Immunofluorescence staining using chemically differentiated THP1 cell line under green light merged with blue, without any primary antibody but with secondary antibody (green), 

counterstained with Hoechst 33342 nuclear stain (blue). Here Fc-receptor Blocker was used. 0.1% Sodium Borohydride incubation was introduced and compared with those not incubated. 

Secondary antibody was either absent or present as indicated. THP-1 cells were PMA differentiated for 24-48 hr as described, fixed, stained with secondary antibodies as described, 

counterstained with nuclear stain as described and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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Hoechst 33342 CD14 Merged 

   

 

   

Appendix Figure 7.27 The combined used of Fc-receptor blocker and Donkey serum reduced non-specific fluorescence. 

 

  

Immunofluorescence staining using chemically differentiated THP1 cell line with anti-CD14 and secondary antibody (green), counterstained with Hoechst 33342 nuclear stain (blue). Here 

0.1% sodium borohydride, Fc-receptor Blocker and donkey serum blocking step was used. THP-1 cells were PMA differentiated for 24-48 hr as described, fixed, stained with primary and 

secondary antibodies as described, counterstained with nuclear stain as described and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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3528 D8 Hoechst 33342 CD14 CD163 Merged 

Isotype 
Control 

   
 

 

Test 

    

Appendix Figure 7.28 Spill-over was still seen using Hoechst 33342 nuclear stain. 

 

  

Immunofluorescence staining using sample 3528 at day 8, with anti-CD14 (green), anti-CD163 (red) and counterstained with Hoechst 33342 nuclear stain (blue). Here 0.1% sodium 

borohydride, Fc-receptor Blocker and donkey serum blocking step was used. Fresh PBMC were cultured as described till Day 8, fixed, stained with primary and secondary antibodies as 

described, counterstained with nuclear stain as described and viewed under fluorescence microscope in the dark. Corresponding Isotype controls were used for each primary antibody. 

Images were prepared using ImageJ software. 
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THP1 + PMA Nuclear staining CD14 Merged 

Hoechst 33342 
1:20,000 

  
 

 

DAPI 1:10,000 

   

Appendix Figure 7.29 Use of DAPI nuclear staining significantly reduced the spill-over and still efficiently fluoresced at diluted concentrations. 

Immunofluorescence staining using chemically differentiated THP1 cell line with anti-CD14 and secondary antibody (green), counterstained with either Hoechst 33342 or DAPI nuclear stain 

(blue). Here 0.1% sodium borohydride, Fc-receptor Blocker and donkey serum blocking step was used. THP-1 cells were PMA differentiated for 24-48 hr as described, fixed, stained with primary 

and secondary antibodies as described, counterstained with nuclear stain as described and viewed under fluorescence microscope in the dark. Images were prepared using ImageJ software. 
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7.14.7 Reagent preparation for THP-1 cell line experiments 

IL-4 stock of 10ng/ul. In order to achieve 20-30 ng/ml, take 1 vial and add either 2ul of stock (20ng/ml) or 

3ul of stock (30ng/ml). 

IFNγ stock of 1000ng/ul (100ul). Aliquoted into 5ul of 20ng/ul). In order to achieve 20ng/ml, take 1ul and 

add into 1ml of cells. 

LPS stock of 500ng/ml (500pg/ul) where each vial has 1ul. To achieve 10pg/ml, on the day of experiment, 

add 49ul of media to the 1ul to make 10pg/ul, then take 1ul of that and add into 1ml of cell mixture. 
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7.14.8 ELISA 

Materials Needed: 

• Buffers 

o Wash buffer: 1x PBS, 0.05% Tween-20 (or Thermo Fisher ELISA Wash Buffer Powder, Cat 

No. 00-0400) 

o Stop Solution: 1M H3PO4 (recommended or 2N H2SO4 

• Pipettes 

• Refrigerator & frost-free -20oC freezer 

• 96-well plate (Corning Costar 9018 or NUNC MaxicorpTM)  

• 96-well ELISA plate reader (microplate spectrophotometer 

• ELISA plate washer (highly recommended) 

 

Time Requirements 

• 1 overnight incubation 

• 4.5 hour incubations 

• 1 hour washing and analysing samples 

 

Experimental Procedure 

1. Coat ELISA plate with 100 μL/well of capture antibody in 1X Coating Buffer. Seal the plate and 

incubate overnight at 4°C.  

2. Aspirate wells and wash 3 times with >250 μL/well Wash Buffer. Allowing time for soaking (~ 1 

minute) during each wash step increases the effectiveness of the washes. Blot plate on absorbent 

paper to remove any residual buffer.  

3. Dilute 1 part 5X ELISA/ELISPOT Diluent with 4 parts DI water. Block wells with 200 μL/well of 1X 

ELISA/ELISPOT Diluent. Incubate at room temperature for 1 hour.  

4. Optional: Aspirate and wash at least once with Wash Buffer.  

5. Using 1X ELISA/ELISPOT Diluent, dilute standards to prepare the top concentration of the 

standard. Add 100 μL/well of top standard concentration to the appropriate wells. Perform 2-fold 

serial dilutions of the top standards to make the standard curve for a total of 8 points. Add 100 

μL/well of your samples to the appropriate wells. Seal the plate and incubate at room 

temperature for 2 hours (or overnight at 4°C for maximal sensitivity).  
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6. Aspirate/wash as in step 2. Repeat for a total of 3-5 washes.  

7. Add 100 μL/well of detection antibody diluted in 1X ELISA/ELISPOT Diluent. Seal the plate and 

incubate at room temperature for 1 hour.  

8. Aspirate/wash as in step 2. Repeat for a total of 3-5 washes.  

9. Add 100 μL/well of Avidin-HRP diluted in 1X ELISA/ELISPOT Diluent. Seal the plate and incubate at 

room temperature for 30 minutes.  

10. Aspirate and wash as in step 2. In this wash step, soak wells in Wash Buffer for 1 to 2 minutes 

prior to aspiration. Repeat for a total of 5-7 washes.  

11. Add 100 μL/well of 1X TMB Solution to each well. Incubate plate at room temperature for 15 

minutes.  

12. Add 50 μL of Stop Solution to each well.  

13. Read plate at 450 nm. If wavelength subtraction is available, subtract the values of 570 nm from 

those of 450 nm and analyze data.  
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7.14.8.1 Grid Outline for CCL3 CCL4 for 3605, 3606 and 3607 with cell line or with primary cocultures and alone 

Appendix Table 7.9 An example of Grid Outline for measuring CCL3 and CCL4 using ELISA 

Duplicates are prepared for each. Standards are prepared as instructed (Std); Supernatant from freshly prepared THP-1, M0, M1 and M2 cell line cultures; Supernatant from Samples (3605, 

3607, 3606, 3605 and 3607) were used as either cultured alone, with M0, with M1, with M2; Supernatant of primary samples from fresh PBMC of Days 4, 5, 6, 7 and 8; Supernatant from co-

culture experiments of 3607 and 3605 from the 3 conditions; Supernatant from co-cultures after CLL samples were removed; Control wells containing only RPMI and diluent used for the 

samples. 

Std1 Std1 3605 3605 3605 M0 3605 M0 3607 3607 3607 M0 3607 M0 3607 D6 3607 D6 

Std2 Std2 3605 M1 3605 M1 3605 M2 3605 M2 3607 M1 3607 M1 3607 M2 3607 M2 3607 D8 3607 D8 

Std3 Std3 3606 3606 3606 M0 3606 M0 M2 3605 M2 3605 M0 3606 M0 3606 3607 CC 
CLL 

3607 CC 
CLL 

Std4 Std4 3606 M1 3606 M1 3606 M2 3606 M2 M1 3606 M1 3606 M2 3606 M2 3606 3607 CC 
NLC 

3607 CC 
NLC 

Std5 Std5 M0 3605 M0 3605 M1 3605 M1 3605 M0 3607 M0 3607 M1 3607 M1 3607 3607 CC 
C+N 

3607 CC 
C+N 

Std6 Std6 M1 M1 M2 M2 M2 3607 M2 3607 3605 d5 3605 d5 3605 CC 
CLL 

3605 CC 
CLL 

Std7 Std7 THP-1 THP-1 M0 M0 3605 d7 3605 d7 3605 d8 3605 d8 3605 CC 
NLC 

3605 CC 
NLC 

Std 8 Std8 diluent Diluent RPMI RPMI 3606 d4 3606 d4 3606 d6 3606 d6 3605 CC 
C+N 

3605 CC 
C+N 
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7.14.8.2 Grid Outline of Primary Cells time course experiment 

Appendix Table 7.10 An example of Grid outline of measuring CCL3 and CCL4 on Primary Cells in time course 

Duplicates are prepared for each. Standards are prepared as instructed (Std); Supernatant from Samples (3561, 3577, 3621, 3627, 3609, 3585, 3510, 3589, 3492, 3564, 3493, 3523, 3507, 3612, 

3530, 3483, 3512, 3484, 3491 and 3599) from fresh PBMC of Days 4-14; Control wells containing only RPMI and diluent used for the samples. 

STD1 STD1 3561 D4 3561 D4 3577 D4 3577 D4 3621 D4 3621 D4 3627 D4 3627 D4 3609 D4 3609 D4 

STD2 STD2 3561 D10 3561 D10 3577 D10 3577 D10 3621 D8 3621 D8 3627 D8 3627 D8 3585 D5 3585 D5 

STD3 STD3 3510 D5 3510 D5 3492 D6 3492 D6 3564 D6 3564 D6 3523 D6 3523 D6 3507 D6 3507 D6 

STD4 STD4 3589 D5 3589 D5 3492 D10 3492 D10 3564 D9 3564 D9 3523 D9 3523 D9 3507 D10 3507 D10 

STD5 STD5 3529 D5 3529 D5 3492 D13 3492 D13 3493 D7 3493 D7 3612 D8 3612 D8 3507 D13 3507 D13 

STD6 STD6 3530 D6 3530 D6 3483 D7 3483 D7 3512 D8 3512 D8 3484 D9 3484 D9 3491 D7 3491 D7 

STD7 STD7 3530 D8 3530 D8 3483 D11 3483 D11 3512 D14 3512 D14 3484 D12 3484 D12 3491 D9 3491 D9 

STD8 STD8 Diluent Diluent RPMI RPMI 3599 D9 3599 D9 3484 D14 3484 D14 3491 D13 3491 D13 
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7.14.8.3 Grid outline of Cell line coculture time course 

Appendix Table 7.11 An example of Grid outline to measure CCL3 and CCL4 using Cell lines with Sandwich ELISA method 

Duplicates are prepared for each. Standards are prepared as instructed (Std); Supernatant from Samples (3587, 3379 and 2916) were used as either cultured alone, with M0, with M1, with M2; 

Each culture mixture is taken on Days 1, 2 and 3; Supernatant from M0, M1 and M2 cultured alone at day 1, 2 and 3; Control wells containing only RPMI and diluent used for the samples. 

Std1 Std1 3587 
Day 1 

3587 
Day 1 

3587+ 
M0 
Day 1 

3587+ 
M0 
Day 1 

3587+ 
M1 
Day 1 

3587+ 
M1 
Day 1 

3587+ 
M2 
Day 1 

3587+ 
M2 
Day 1 

M0 
Day1 

M0 
Day1 

Std2 Std2 3587 
Day 2 

3587 
Day 2 

3587+ 
M0 
Day 2 

3587+ 
M0 
Day 2 

3587+ 
M1 
Day 2 

3587+ 
M1 
Day 2 

3587+ 
M2 
Day 2 

3587+ 
M2 
Day 2 

M0 
Day 2 

M0 
Day 2 

Std3 Std3 3587 
Day 3 

3587 
Day 3 

3587+ 
M0 
Day 3 

3587+ 
M0 
Day 3 

3587+ 
M1 
Day 3 

3587+ 
M1 
Day 3 

3587+ 
M2 
Day 3 

3587+ 
M2 
Day 3 

M0 
Day 3 

M0 
Day 3 

Std4 Std4 3379 
Day 1 

3379 
Day 1 

3379+ 
M0 
Day 1 

3379+ 
M0 
Day 1 

3379+ 
M1 
Day 1 

3379+ 
M1 
Day 1 

3379+ 
M2 
Day 1 

3379+ 
M2 
Day 1 

M1 
Day1 

M1 
Day1 

Std5 Std5 3379 
Day 2 

3379 
Day 2 

3379+ 
M0 
Day 2 

3379+ 
M0 
Day 2 

3379+ 
M1 
Day 2 

3379+ 
M1 
Day 2 

3379+ 
M2 
Day 2 

3379+ 
M2 
Day 2 

M1 
Day 2 

M1 
Day 2 

Std6 Std6 3379 
Day 3 

3379 
Day 3 

3379+ 
M0 
Day 3 

3379+ 
M0 
Day 3 

3379+ 
M1 
Day 3 

3379+ 
M1 
Day 3 

3379+ 
M2 
Day 3 

3379+ 
M2 
Day 3 

M1 
Day 3 

M1 
Day 3 

Std7 Std7 2916 
Day 1 

2916 
Day 1 

2916+ 
M0 
Day 1 

2916+ 
M0 
Day 1 

2916+ 
M1 
Day 1 

2916+ 
M1 
Day 1 

2916+ 
M2 
Day 1 

2916+ 
M2 
Day 1 

BLANK BLANK 

Std 8 Std8 diluent Diluent RPMI RPMI M2 
Day 1 

M2 
Day 1 

M2 
Day 2 

M2 
Day 2 

M2 
Day 3 

M2 
Day 3 
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7.14.9 Homogenising samples using QiaShredder – purple columns 

1. Thaw samples if frozen 

2. Spin to get all of the sample down to the bottom 

3. Label columns – number them and keep a list of what the numbers correspond to! 

4. Add a maximum of 700uL to each column  

5. This can be done in the UV hood, or at the bench but if at the bench be careful not to 

contaminate – the RNA is very delicate and easily contaminated! So: obtain sample from tube 

using filter tip – open lid, take up sample and then close. Open cap from column add sample 

and close quickly – try not to pick up the columns as its quicker to do it from the stand 

6. Spin the samples for 2 mins at maximum speed 

7. The flow through is then used for the RNeasy protocol 

 

7.14.10 RNeasy Protocol 

1. Label RNeasy spin columns with the corresponding numbers you used for the QiaShredder 

2. Add the same volume of 70% ethanol as you did of RLT buffer (ie 350uL or 600uL) 

3. Mix well by pipetting 

4. Following RNeasy steps 

5. Use nanodrop to quantify RNA 

6. You need 1ug of RNA for to convert to cDNA 

7. This then needs to be made up to constant volume for each sample = 12.5Ul 
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7.14.11 RNA extraction using RNeasy mini kit (Qiagen) 

1. Clean the hood with 10%bleach and 70% ethanol and turn on UV light for at least 30min to 

get read off RNAs. 

2. Prepare RLT buffer under the hood according the final volume you want (for each 1ml RLT + 

10πl β-mercaptoethanol) 

3. Add 700 µl of RLT buffer to lysis cells, mix by pipetting than transfer into labelled Q1Ashredder 

column for homogenizing, Spin for 2min at 14000g. 

4. Add 700 µl of 70% ethanol to the sample, mix and transfer 700 µl of the mix to a new labelled 

RNeasy spin column, centrifuge for 30sec at ≥8000 x g, discard the flow-through, add the 

remaining lysis cells from the main sample to the same RNeasy column and repeat the spin, 

discard to maximize the RNA yield. 

5. Add 350 μl Buffer RW1 to the RNeasy spin column. Close the lid gently, and centrifuge for 

30sec at ≥8000 x g. Discard the flow-through. 

6. (on-column DNase digestion) calculate the mount needed of DNase I stock, each sample 

column will take 10 μl DNase I stock to 70 μl buffer RDD. So, for 2 samples>> 22 μl DNase+154 

buffer RDD>> give 176μl from which we add 80μl to each sample 

7. Add DNase I incubation mix (80 μl) directly to RNeasy column membrane, and place on 

benchtop for 15 min. 

8. Add 350 μl Buffer RW1 to the RNeasy spin column. Centrifuge for 30sec at ≥8000 x g. Discard 

the flow-through. 

9. Add 500 μl Buffer RPE to the RNeasy spin column. Centrifuge for 30sec at ≥8000 x g. Discard 

the flow-through. 

10. Add 500 μl Buffer RPE to the RNeasy spin column, centrifuge for 2min at ≥8000 x g to wash 

the spin column membrane. 

11. Place the RNeasy spin column in a new 2 ml collection tube (supplied), and discard the old 

collection tube with the flow-through. Centrifuge at full speed for 1 min to dry the membrane. 

12. Place the RNeasy spin column in a new 1.5 ml collection tube (supplied). Add 50 μl RNase-free 

water directly to the spin column membrane, incubate for 5min and centrifuge for 1 min at 

≥8000 x g to elute the RNA. Put the samples on ice. 

13. Add 2μl of the sample into labelled Eppendorf to measure RNA concentration using Nanodrop. 
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7.14.12 Nanodrop measurement 

Blank with 1μl RNase-free water and measure RNA by adding 1μl of the sample into the reader. 

(260/280) represent RNA & DNA purity. 

(260/230) represent DNA purity. 

Both should be between (1.8 - 2.1) 

RNA calculation: Concentration X dilution factor X 40 (Constant) = ? ng/µl 

                                                                                                           ?/1000 = ? µg/µl in total 

if the expected RNA yield is >30 μg, repeat last step using another 30–50 μl RNase free water, or using 

the eluate (if high RNA concentration is required). Reuse the collection tube from last step. 

Freeze down samples at -80°C. to obtain 1μg for RT we divided 1000/?ng 
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7.14.13 Reverse transcription protocol (RT) 

Reagents: 

dNTP 10mM 

Oligo (dT) 15 primers (Promega UK, C1101) 

RNase inhibitor (Promega UK, N2511) 

Superscript III (Invitrogen UK, 18080-044) 

 

Procedure: 

- To a labelled RNase-free tube, add: 

Oligo (dT) 15 primers (0.5μg/μl)       1.0 μl 

dNTPs (10 mM)                                    1.0 μl  

Total mRNA                                           1μg (up to 9.5 μl) 

RNase free H2O                                    variable (final volume 20 μl) 

Heat at 70°C for 5 mins, then cool on ice for 5 mins. 

5x Reaction buffer                                 4.0 μl 

DTT (0.1M)                                             1.0 μl 

Superscript III                                         1.0 μl 

RNase inhibitor (40u/μl)                       1.0 μl 

____________________________________ 

Total                                                          20 μl 

 

- Heat tubes on heating block for 50°C for 60 min and then 95°C for 5 min. Store cDNA samples 

at -20°C freezer. 
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7.14.14 Polymerase Chain Reaction (PCR) 

Reaction mix (20µl) 

One-Taq 2Xmm (#M0486S)       10 µl 

20 µM Forward primer              (1 µl of 100 µM primer + 4 µl free RNA water, mix and then take 1 µl) 

20 µM Reverse primer               (1 µl of 100 µM primer + 4 µl free RNA water, mix and then take 1 µl) 

cDNA                                             1.0 µl 

Free RNA water                           7 µl 

 

PCR programme (GAPDH)                                                          

Stage 1       95°c for 2 min 

Stage 2       95°c for 30 sec 

                    56°c for 30 sec (annealing) 

                    72°c for 1 min 

                    (Repeated for 35 cycles) 

Stage 3       72°c for 5 min 

Stage 4       4°c indefinitely 
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7.14.15 Agarose gel electrophoresis 

Materials 

Agarose (ULTRAPURE) 

1X TBE (Tris-Borate electrophoresis buffer) (1L= 20ml 50XTBE + 980ml dH2O) 

Midori Green Advance DNA Stain 

Procedure 

1. For a 1 % gel, add 0.5 g agarose to 50 ml 1x TBE. (for 1.5% gel, add 0.75g to 50ml) 

2. Heat the solution in the microwave to dissolve the agarose. Let it cool down (~5min) and 5 μl 

of Midori Green Advance DNA Stain to the dissolved agarose and mix. 

3. Prepare the gel assembling box, pour the melted agarose and place the comb on the top. 

4. Allow the gel to solidify (about 20 minutes); then carefully remove the comb and tape, transfer 

the gel to the electrophoresis box. Make sure that the comb is nearest to the black electrode 

(cathode), as the DNA migrates towards the red electrode (anode).  

5. Top up the box 1X TAE buffer, make sure it covers the gel. 

6. Load the gel with 8μl of Ladder and 20μl samples. 

7. Electrophorese at 110 V for 25 minutes. 

8. View the gel against a white light box or bright surface. 

Quick-Load Purple 100bp DNA Ladder 

Size range: 100 bp to 1,517 bp 

 

 

Quick-Load Purple 1kb DNA Ladder 

Size range: 500 bp to 10 kb 
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317 
 

7.14.16 Protocol for Resuspending PCR Primers 

7.14.16.1 Materials 

• Molecular Grade H2O 

• Primers (dry) 

• Sterile Microcentrifuge Tubes 

 

7.14.16.2 Method 

Primers are often shipped and received in a lyophilized state. First create a master 100× stock (for 

each primer and then dilute it to a 10× working stock. 

This reduces the number of freeze/thaw cycles that the master primer stock goes through and reduces 

the chances of contaminating the primary source for the primer.  

 

Spin Down Tubes 

Primers should always be spun down before opening the tube for the first time.  The pellet can often 

come dislodged during shipping and may be in the cap! 

 

Master stock, 100 µM  

100 µM = X moles lyophilized primer + (X × 10 µl molecular grade H2O)  

To determine the amount of H2O to add to the lyophilized primer simply multiply the number of nmol 

of primer in the tube by 10 and that will be the amount of H2O to add to make a 100 µM primer stock.  

For example, if there are 38.2 nmol of primer then by adding 382 µl of H2O, a 100 µM primer stock is 

created. 

The original primer tubes are often used for this 100 µM stock. 

Master stock primers newly suspended in H2O should be allowed to sit at room temperature for 10 

minutes before they are used for working stock dilutions.  Mix well before making working stock 

dilutions. 

Mix the solution by vortexing to reconstitute the primers. Store primer stocks at -20oC. 

 

Working stock, 10 µM 

Dilute the primer master stock in a sterile microcentrifuge tube 1:10 with molecular grade H2O.  

You should never use the stock primers directly into a PCR because they are so concentrated. Working 

from one tube is also a bad idea. It only takes a bit of contamination to creep in to the tube and you 

will have to re-order the primers again. 
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Therefore, it is best practise to create working solutions that are of lower concentrations. The 

concentration of choice for the working primer solution is totally user-determined. The most common 

concentration for a working primer solution is 10 μM. 

To make a 10 μM working primer solution, follow these steps: (1 in 10 dilution) 

1 Add 10 μL of primer stock solution to an RNase- and DNAse-free tube. 

2 Add 90 μL of PCR-grade water. 

3 Mix by vortexing. 

Aliquot and store working primer solutions at -20oC. Avoid excessive freeze-thawing of working 

primers. 

 

Thaw SYBR Green Mix and Water PCR grade. 

While thawing: 

1. Dilute cDNA (1+4) in H2O 

2. Work out total volume of diluted cDNA needed. 

Total reactions = 8(primers) x2(duplicates)= 16 reactions 

In each reaction you need 2 ul of diluted cDNA. 

So… total vol of diluted working stock of cDNA is 16x2=32ul 

7ul of Master stock of cDNA + 28ul of H2O= 35ul of working stock cDNA 

3. Dilute stock of primers from Master stock of 100mM to 10mM in H2O (1ul Primer + 9ul H2O)= 

10ul working stock of primer. 

Then add 0.8-1ul of diluted primers to each tube 

Seal and spin in centrifuge. 

Run in PCR machine. It will take about 1hr 45mins 
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7.14.17 Protocol for RT-qPCR 

7.14.17.1 Preparation of Primers 

1. Dilute cDNA 

1+4 (H2O) 

2. Work out total volume of diluted cDNA needed 

Total reactions = 8 x 2 = 16 

In each reaction 2ul of diluted cDNA needed 

Therefore, Total volume of diluted cDNA = 16 x 2 = 32 ul 

7ul original cDNA + 28ul of H2O = 35ul (enough for 32ul of reactions) 

3. Dilute Stock Primers (100pmol) to 10 pmol in H2O 

1ul of primer + 9ul of H2O 

Then add 0.8-1ul of diluted primer in each tube 

 

7.14.17.2 qPCR Programming for Light Cycler 480 

Name   Cycles   Analysis Model 

Preincubation  1   None 

Amplification  45   Quantification 

Melting   1   Melting Curve 

Cooling   1   None 

 

Preincubation 

None  95oC  x10min  RamptT. 4.4C/s 

 

Amplification 

None  95oC  x15s  RamptT. 4.4C/s 

None  58oC  x20s  RamptT. 2.2C/s 

None  72oC  x20s  RamptT. 4.4C/s 

Single  81oC  x10s  RamptT. 4.4C/s 

 

Melting 

None  95oC  x1s  RamptT. 4.4C/s 

None  65oC  x10s  RamptT. 2.2C/s 

Continuous 97oC  acquisition 4-5/per oC  0.14C/s 

 

Cooling 

None  40oC  Hold 10s   2.2C/s 
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7.14.17.3 Grid Outline for qPCR for Primer Optimizing 

Appendix Table 7.12 An example of Grid outline of optimising qPCR for selected primers 

Duplicates were done for each sample; cDNA from a control sample was used for all coloured wells; Primers (CXCL12, EGLN3, GBP1, EBI3, MCL1, CXCL10, YPEL4 and GAPDH) were 

used in combination with the control sample or alone in PCR water (+ Water); Control of only water was used to detect contamination. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A CXCL12 CXCL12  EGLN3 EGLN3  GBP1 GBP1  EBI3 EBI3  

B + WATER + WATER  + WATER + WATER  + WATER + WATER  + WATER + WATER  

C             

D MCL1 MCL1  CXCL10 CXCL10  YPEL4 YPEL4     

E + WATER + WATER  + WATER + WATER  + WATER + WATER     

F             

G GAPDH GAPDH           

H + WATER + WATER         Only 
WATER 

Only 
WATER 

 

Appendix Table 7.13 An example of Grid outline to optimize the qPCR reading temperature for selected Primers 

Duplicates were done for each sample; cDNA from a control sample was used for all coloured wells; Primers (CCL13, CXCL9, NUPR1, CSF1, STEAP3, EGR2 and GAPDH) were used 

in combination with the control sample or alone in PCR water (+ Water); Control of only water was used to detect contamination. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A CCL13 CCL13  CXCL9 CXCL9  NUPR1 NUPR1  CSF1 CSF1  

B + WATER + WATER  + WATER + WATER  + WATER + WATER  + WATER + WATER  

C             

D STEAP3 STEAP3  EGR2 EGR2        

E + WATER + WATER  + WATER + WATER        

F             

G GAPDH GAPDH           

H + WATER + WATER         Only 
WATER 

Only 
WATER 
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7.14.17.4 Grid Outline for qPCR after optimizing 

Appendix Table 7.14 An example of Grid outline to perform optimized qPCR on cDNA samples for each Primers of Interest 

Triplicate wells were done for each sample; cDNA from a sample (3599, 3627, 3682, 3577, 3679, 3684, 3620, 3637, 3645, 3686, 3605, 3607, 3621 and 3631) was used for all 

coloured wells as CLL cultured alone (CL) or CLL cultured with NLCs (CN); A selected control sample was used; Single primer and GAPDH were used in combination with the samples; 

Control of primer with water was used. 

 1 2 3 4 5 6 7 8 9 10 11 12 

A 
3599 

CL 

3599 

CL 

3599 

CL 

3627 

CL 

3627 

CL 

3627 

CL 

3682 

CL 

3682 

CL 

3682 

CL 

3577 

CL 

3577 

CL 

3577 

CL 

B 
3599 

CN 

3599 

CN 

3599 

CN 

3627 

CN 

3627 

CN 

3627 

CN 

3682 

CN 

3682 

CN 

3682 

CN 

3577 

CN 

3577 

CN 

3577 

CN 
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