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Abstract 

Primary succession on the basaltic lava flows of Mt.Etna was studied 

usmg chronosequence theory to investigate the first 500 years of ecosystem 

development. Separate experiments were conducted to look at how plant species, 

nutrient availability and lichen activity on the lava changed over time under 

different conditions based on the site location (age, aspect and altitude on the 

volcano). By comparing the results of these different areas of study, close links 

were observed between soil development and nutrient availability. Lichens were 

found to be an important stage in primary succession introducing biomass to form 

a developing soil as well as weathering the lava surface. The plant species present 

on the lava were found to change as plants first colonised the lava and were then 

replaced as further species appeared over time. Nutrient availability was 

investigated in living plant material by measurement of the enzyme nitrate 

reductase and also in the developing soil. Two large inputs of nitrogen were 

observed in the chronosequences. An early input believed to be lichen derived 

and another steadily increasing input associated with the soil. The biomass of the 

nitrogen fixing lichen Stereocaulofl vesuvianum on the lava flows was found to 

change over time with a rapid increase over the first 100 years of the 

chronosequence followed by a slower decline as competition and shading from 

vascular plants covered available habitat. S. vesuvianum was also found to be an 

efficient weathering agent on the lava altering the surface morphology. This 

weathering was observed qualitatively by detailed visual examination of the lava 

surface by scanning electron microscopy. Weathering was also measured 

quantitatively using an intelligent machine vision computer system, to collate the 

surface changes of many images simultaneously and compare surface change to a 

baseline chronosequence, allowing discrimination of fine differences in the extent 

of weathering. Two of the experiments conducted on Mt.Etna (nitrate reductase 

activity and lichen weathering) were repeated on a second volcano, Mauna Loa 

(Hawaii). This tested if the trends observed on Etna were typical of primary 

succession on lava and the impact of a different climate regime (tropical) 

compared to Etna (temperate). Nitrate reductase activity was found to be very 



low in the primary colonising species studied on Hawaii indicating that nitrogen is 

limited on the early lava flows. Lichen weathering by Stereocaulon vulcani on 

Hawaii was found to occur in a comparable manner to S. vesuvianum on Etna, and 

was similarly controlled by the lichen biomass and associated climatic conditions. 



Quotations 

"From such a mountain mouth as breathes fire and smoke over Sicily came 

forth the stern king of Hades, to drive in his iron chariot across that fair isle, 

where the ground heaves beneath fruitful crops, and ruin is strangely mingled with 

the richest green." 

From the story of Persephone and Hades, Classical mythology. 

"Nature is a process, not a state - a continuous process. A striving to keep 

alive. No species has the right to exist; it simply has the ability or the inability. It 

survives by matching its fecundity against the forces that threaten it with 

destruction. It may appear for a time to have struck a balance, a fluctuating 

balance, but it has not. All the time there is change - change of competitors, 

change of environment, change of evolution - and sooner or later any species will 

prove inadequate and be superseded." 

Taken from John Wyndham's "Web." 
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Chapter 1: Introduction 

1.1. Succession 

Succession is often referred to as the first major ecological theory and was 

first proposed by Clements (1916). A loose definition would describe succession 

as 'a directional change in species composition, whether in terms of species 

present or of their relative abundances' (Grubb 1986). However a complete 

definition of the process must include the three main trends: 1) It is a time 

dependent process with changing vegetation characteristics such as density, cover 

and species richness, diversity and composition, 2) it results from a modification 

of stress and disturbance regimes, 3) it changes ecosystems which are unstable to 

stable, concerning cover, biomass and/or diversity information content (Glen­

Lewin et at 1992; Tsuyuzaki 1995). This change can often be seen as a clear 

progression in vegetation change as propounded by Clements (1916) but is more 

often a more random occurrence of chance events or discontinuities (Gleason and 

Cronquist 1964). For example the migrations of some plants at different times of 

the year may lead to a different species colonising an area first. 

This replacement of species over time can usually be divided into two 

distinct types: primary and secondary. Primary succession is the establishment 

and subsequent development of the first assemblage of species on a previously 

unvegetated surface (Miles and Walton 19~3). It only occurs following the 

destruction of biosystems where the ground surface is covered by rocks and/or 

inorganic soil substrates (Vitousek and Walker 1987; del Moral and Bliss 1993; 

Bradshaw 1983). In essence, this is where nature is starting from scratch on a 

completely raw substrate where plants and animals have not existed before. 

These conditions are rare in nature and occur only in areas such as sand dunes, 

mountain scree, lava flows, tephra cover and freshly exposed moraines due to 

glacial retreat (Miles and Walton 1993). 
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Secondary succession, is distinct from primary succession and can be 

defined as 'the changing pattern of dominance by species present through most or 

all of the succession period'. This process is usually initiated by a sudden 

catastrophic event which strips away the dominant vegetation, whilst leaving the 

soil structure, nutrients and seed bank intact. This can occur in two particular 

forms. 'Internal successions' that are part of the natural regeneration process in 

many types of vegetation (Grubb 1986) and 'Man-induced succession' on sites 

such as old-fields and forest clearcuts. For example, if a forest is felled, the initial 

regrowth will incorporate elements of the old vegetation (from the seed bank and 

root stock) as well as new species which move in to exploit the new conditions 

(e.g. increased light availability). These species are commonly recruited from a 

wide range of habitats and have not evolved together to the same degree as 

species involved in 'internal succession.' Normally, gaps caused by natural 

events such as fire, flood or animal activity are re-colonised by species that are an 

integral part of the community. Examples of this vary, from the fires that 

frequently decimate the eucalyptus forests of Australia, (and hence cause the 

seeds from many species to germinate), to wind felled trees in the rainforest, 

which open gaps in the canopy, allowing other species present in the seed bank to 

exploit the light. 

In order to study primary succession there are several key processes that need to 


be considered: 


1) Colonisation: 


This is the obvious first stage. The plants must first arrive and colonise the 

new substrate. In order to do this these species must be available in the 

vicinity and able to disperse effectively. This can lead to a stochastic effect on 

the succession as some areas closer to the edge are more readily colonised. 

The different dispersal mechanisms employed by the plants may also 

influence this. For example a wind-borne coloniser like a lichen which 

produces huge amounts of spores and fragments capable of colonising a bare 

surface will arrive on the whole of a new surface practically simultaneously. 

In contrast seed plants may require alternative methods of dispersal (e.g. 

2 
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animals) which produce a time factor of colonisation as they move in from the 

edge and this adds to the heterogeneity of the system. 

2) Establishment: 

This is closely related to the colonisation of the substrate - after all it is no use 

if what arrives cannot become established and this is controlled by the ability 

of the species to survive in the new harsh environment. This is controlled by 

seed germination, as the plants will not be able to germinate until the 

conditions are favourable. So here is a process of selection in which only 

those species adapted to the conditions can survive (Bradshaw 1993). As the 

conditions change over time (sometimes brought about by the plants on the 

surface at the start - e.g. producing a precursor soil) new species colonise the 

surface and a true succession occurs as new species replace the old. This is 

further controlled by species interaction and may lead to the formation of 

facilitation effects (symbiosis) which cause beneficial interactions or 

inhibition effects (competition) which cause negative interactions leading to 

species exclusion. 

3) Growth: 

Nothing will happen on a substrate if the plants cannot grow. This can only be 

achieved by the acquisition of nutrients by the plants. This leads to a 

consideration of the sources of nutrients and their subsequent build up and 

recycling through the ecosystem. For example nitrogen is very important for 

plant growth and is usually extremely limited on early ecosystems as it must 

first be fixed and then cycled through the system. Many influences can affect 

the nutrient accumulation during succession as the sources of nutrients may be 

allogenic (weathering and inputs of nutrients from the air) or autogenic as the 

actions of living organisms (nitrogen fixation, organic matter accumulation 

and cycling processes). 

The purpose of this project is to investigate each of these processes in tum 

occurring on the newly formed substrate of lava. This study investigates changes 

over primary successional period from the initial bare substrate. to the 

development of complex communities, as the lava flows are initially colonised by 
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cryptograms (lichens and mosses), then by seed plants (annuals and shrubs) and 

tree seedlings leading to a forest ecosystem. In order to follow this succession a 

methodology has been employed utilising the relatively new idea of 

chronosequencetheory. 

1.2. Chronosequence Theory 

One of the many problems faced with studying successional processes is 

the time that must elapse before an appreciable change can be measured. In the 

short term, permanent plots or quadrats can be set up which allow continuous 

monitoring of the vegetation change. This direct observation of vegetation change 

with the associated factors of soil development, nutrient accumulation and 

climatic variation, produce incontrovertible evidence of successional development 

over time. In other words, it is possible to document change that has actually 

happened. Studies of primary succession on tephra deposits on Krakatau 

(Whittaker et al 1989; Thornton 1997) fresh lava on Hawaii, (Smathers and 

Mueller Dombois 1974; Kitayama et al 1995) and the recently de-glaciated terrain 

of Glacier Bay (Crocker and Major 1955) are all of this type. This is clearly the 

best form of study for looking at succession, if it could only be done over a long 

enough period. However, given that the development of the more complex 

ecosystems (e.g. forests) can take from hundreds to thousands of years, this is 

clearly impossible. Therefore, when looking at successional development over 

long periods other methods must be employed. 

For long term studies a chronosequence or 'substitution of space for time' , 

can be employed (Aplet and Vitousek 1994). In this case a series of sites of 

different ages are selected, where the successional processes can be studied in 

terms of vegetation change and concurrent changes in soil nutrient content. At 

each site measurements of plant species presence, abundance, percentage cover 

can be taken simultaneously with nutrient availability in the soil and plants. Each 

of these sites is then assumed to represent the dominant vegetation I nutrient status 

of the succession at a particular time, giving a series of 'snapsh()( pictures of 
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ecosystem change and development over time. Inherent in this method, is the 

assumption that each site in the study will develop over time to produce the same 

ecosystem represented by the next 'snapshot,' and is subject to the same 

environmental conditions. When using this theory consideration must be given to 

minor topographical and environmental differences in the sites as these could 

cause variation in the outcome of the successional processes. 

As such, in a chronosequence, great care must be taken to ensure that the 

only important variable affecting plant succession is the time elapsed since the 

deposition of the substrate. Other factors capable of influencing vegetation 

development include: climate, organisms (e.g. grazing), relief and parent material. 

It is often difficult to locate sites where these factors can be controlled. However, 

where these factors can be controlled (e.g. by selecting sites at the same altitude) 

the chronosequence approach can be very useful in predicting ecosystem change 

and development. This was proved by Foster and Tilman (2000), who tested the 

validity of the chronosequence by monitoring permanent plots over a 14-year 

period on a chronosequence of 19 old-field sites. They concluded that the initial 

static chronosequence survey (essentially the year 1 data) accurately predicted 

many of the observed changes in species abundance and confirmed the validity of 

the method in its approach to infer basic patterns of successional change. 

1.3. Volcanic ecosystems 

1.3.1. Volcanic activity 

Volcanoes are a common feature around the globe, and reflect internal 

processes in our dynamic planet. There are some 600 active and several thousand 

extinct volcanoes on the continents or exposed above the sea as islands. 40 % of 

all the rock in the Earth's crust is basaltic (much of it intrusive) which is the major 

rock produced by volcanism (Press and Siever 1986). Many volcanoes erupt 

harmlessly and may be regarded as beneficial, as most matcriuls erupted by 

volcanoes are rich in valuahle nutrients. A layer of volcanic ash scattered in the 
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fields stimulates yields almost as much as artificial fertiliser. For example, 

excellent crops were produced after the eruption of Mount St.Helens in 1980 

(Dale 1988; 1991; Scarth 1994; del Moral et al 1995). Weathered volcanic soils 

like those on the lower slopes of Etna are amongst the richest in the world. This 

topic will be discussed further in the soils chapter (4) of this thesis. 

Volcanoes can also cause massive changes in local and global climatic 

conditions simply by injecting huge volumes of gas and dust into the atmosphere. 

For example the huge eruption of Tambora on 1 0-1! April 1815 produced about 

150km3 of ash, more than any other known eruption in the last 10,000 years. The 

ash cloud rose about 43km into the stratosphere and spread around the world. 

Within three months the eruption was causing optical effects in the atmosphere of 

Europe. During the next year, 1816, the summer was cool wet and gloomy and 

resulted in crop failure and famine - almost certainly precipitated by the Tambora 

aero so! cloud (Huggett 1995). 

Continuing work on colonisation patterns of flora and fauna on islands 

over time such as Krakatoa (Thornton 1997) and Surtsey (Fridrickson 1975; 1989) 

are increasing our knowledge of biogeography and evolutionary pressures and 

processes. 

1.3.2. Volcanic substrate types 

Volcanic substrates vary greatly and strongly affect the rate of succession 

depending on its topographical, morphological and elemental composition. Blong 

(1984) and del Moral (1993) described six major substrate types: Lava, Pumice, 

Scoria, Pyroclastic flow deposits, Lahars and Tephra. Each is the result of, or a 

consequence of different eruption events. However, this is a bit of a misnomer as 

Pumice, Tephra, Scoria and Pyroclastic flow deposits can all be defined as 

'Pyroclasts'. These variations in substrate greatly affect both the speed and the 

subsequent outcome of the slIccession. 

6 
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1. Lava 

Lava is molten rock or magma extruded from craters or vents which 

solidifies on cooling. It can vary in composition from the rhyolitic forms, 

which are high in silica to the basaltic forms, which are low in silica. Lava 

is a difficult surface for plants to colonise due to its thickness, hard surface 

and typically large extent. This substrate undergoes succession very slowly 

as most plants cannot grow on the surface until a soil structure has formed 

(even if this is just a scrape or hollow in a rock filled with wind blown 

debris). As a result mosses and lichens dominate early succession on 

exposed lava surfaces (Eggler 1963; Kurina and Vitousek 1999). A great 

many factors can alter the rate of colonisation of this material, resulting in a 

lava field often having concurrent successions developing at different rates 

on separate sections of the flow (e.g. distance from edge, altitude, climate 

and amount of wind blown debris or pyroclasts). This substrate comes in 

many different morphological forms and which are covered in greater depth 

later in this chapter. Few authors have looked at primary succession on lava. 

2. Pyroclastics - Tephra 

Tephra includes all airborne materials ejected form a volcano. But divided 

into three principal forms:- ash (size <2mm), lapiUi (between 2 and 64mm) 

and blocks / bombs (size >64mm). Tephra can cause a great deal of 

damage by clogging plant pores and even snapping off the leaves of plants 

(Kent et al 2001). Whittaker et al (1989) studied the effects of ash on islands 

neighbouring Krakatoa. However, usually only thick deposits kill 

vegetation as many species simply re-grow up through the deposit (Kent et 

al 2001). Eruptions on Mt.Katmai (Griggs 1932) and Paricutin (Eggler 

1963; Rejmanek et al 1982) provided early opportunities for studying the 

effects of deep tephra deposits. However, the impact of tephra may be more 

important in the development of soil on open lava, as it provides a base of 
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fine material for roots; aids in water retention and a provides a ready supply 

of nutrients as it weathers. 

2.1. Fall deposits -	 Pumice and Scoria 

Pumice consists of pale volcanic fragments riddled with gas holes, formed 

by the expansion of contained gases as the magma reaches the surface, and 

exploded violently over vast areas during an eruption (Scarth 1994). It is 

difficult for plants to invade due to low nutrient status and surface instability 

(del Moral 1993). Plant colonisation requires stable substrates followed by 

amelioration. 

Scoria is basaltic vesicular ejecta. It is denser than pumice and weathers 

readily. It occurs on volcanoes such as Mt.Etna and Mauna Kea. This 

substrate has a tendency to be local to particular volcanoes. All the cinder 

cones of Etna are composed of scoria as are large areas of Surtsey 

(Fridrickson 1975). 

2.2. Pyroclastic flow deposits 

Pyroclastic flows (also known as nuee ardente) describes an incandescent 

cloud or glowing avalanche of hot gas and fragments of all sizes, including 

ash, cinders, pumice and rock debris in an aerosol-like emulsion expelled by 

explosive eruptions, which travels across the ground at very high speeds and 

gives off billowing clouds (Scarth 1994). Plant colonisation of the flow 

deposits is usually slow (Beard 1976) although after a few years dispersal 

barriers may inhibit colonisation more than substrate conditions. Mount 

St.Helens located in south-western Washington state, which erupted on 18th 

May 1980 generated extensive pyroclastic flow deposits. Many studies have 

been conducted into successional processes on this substrate, (del Moral 

1981; 1993; del Moral and Wood 1993a; 1993b; Titus and del Moral 1998). 

3. 	Lahars 

Lahar is an Indonesian word used to describe a volcanic mudflow commonly 

formed when an eruption melts part of an ice-cap; disturbs a crater lake; or 
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even the mobilisation of tephra by heavy rainfall (Mt.Pinatubo is an example 

of this). These mudflows travel down-slope at high speed destroying 

everything in their path (Scarth 1994) producing a stripped surface ready 

for primary colonisation. However, the water saturated debris often picks up 

seeds, rhizomes and other organic material that can rapidly initiate 

succession once deposited. The 1980 eruption of Mount St.Helens (del 

Moral 1998) generated several lahars caused by the rapid glacier melt during 

the early stages of the eruption. 

1.3.3. Primary succession on volcanoes 

Primary succession following volcanic eruptions is perhaps the least well 

documented form of succession. The continuing study by Fridrickson (1987) on 

Surtsey is a good example of volcanic succession but the isolation of the island is 

a factor in the slow rate of colonisation of the lava. A great many studies of island 

biogeography and invasion of colonising species are a direct result of volcanic 

activity producing 'new' volcanic islands such as Surtsey (Fridrickson 1975; 

1987) and Krakatoa (Whittaker et a11989; Thornton 1997; Whittaker et aI1999). 

Lava substrates produce an excellent opportunity for research on 

successional processes. Often the age of a lava flow may be known to a high 

degree of accuracy (especially in historically long inhabited areas) since volcanic 

eruptions can be important events to chronicle. In addition, it is relatively easy to 

select sites in order to control for the factors affecting succession outlined above 

(e.g. select all sites at the same altitude). Since lava flows often occur at the same 

climate, altitude, aspect and can be separated by relatively short distances, these 

factors can be isolated - provided that an allowance is made for minor variations 

in the substrate. This last problem can often be compensated for by careful 

selection of sites whilst accepting the fact that over time weathering processes will 

have changed the initial morphology. 
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1.3.4. Lava Morphology 

Basaltic lava shows great variation in morphology between two extremes 

(Peterson and Tilling 1980; Pinkerton and Sigurdson 1987; Kilburn 2000). 

Relatively fluid lava erupted with low rates of shear, forms 'Pahoehoe' lava, 

which is generally smooth or ropy (Fig 1.1). 'Aa' lava is created by relatively 

viscous magma emplaced with high rates of shear, forms rough rubbly lava made 

up of many separate blocks, which are irregular and spinose (Fig 1.2). These 

differences in morphology can have a profound effect on plant colonisation. The 

smooth pahoehoe substrate produces a surface far more resistant to colonisation 

by plants, with the exception of cracks in the lava sheet, where plants can gain a 

purchase (Eggler 1971; Smathers and Mueller Dombois 1974; Drake 1992). These 

cracks provide a 'safe site' for colonisation by concentrating water and nutrients 

from 'micro-watersheds' on the surface of the flow (Aplet et al 1998). This 

produces a disjointed colonisation process, where the cracks support a high 

diversity of plants while the bulk of the surface is too smooth to allow 

colonisation of anything other than crustose lichens and mosses. Eventually, the 

areas of high diversity spread out over the surface of the lava by depositing 

organic material over the ropy surface and by weathering action breaking up the 

lava sheets. 

In contrast, the aa form is colonised by lichens almost immediately and the 

greater surface area affords a growth advantage due to higher availability of 

nutrients or to the provision of an aerated root system (Aplet et at 1998). This 

lava initially has a relatively low vascular plant diversity, until a sufficient soil 

structure has formed in the large interstitial spaces betvveen the lava blocks. Once 

a sufficient soil structure has formed the whole aa lava surface is colonised, 

producing a high biomass. These attributes are illustrated in Fig 1.3. 
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Figure 1.1. Pahoehoe lava form on Hawaii, note the relatively smooth and ropy 

structure. (Picture by M.Carpenter) . 

Figure 1.2. aa lava form on the 1981 lava flow of Mt.Etna. The surface of the 

lava is separated into many irregularly shaped blocks. The white areas are the 

lichen Stereocaulon vesuvianum (Picture by M.Carpenter). 
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aa Pahoehoe 

Figure 1.3. Colonisation of the different morphological types of lava with the 

greater plant biomass found on the aa type, where black denotes rock and brown 

is soil. Initiall y the pahoehoe form produces a higher species diversity as 

nutrients become concentrated in the cracks. 

Between these two extremes of lava there are many intermediate types 

(sheet pahoehoe - slabby pahoehoe, large boulder aa - clinker type) and many 

lava flows incorporate many of the different types as different areas of the flow, 

reflecting the complexity of flow field formation. This results in surface 

heterogeneity, which is subject to differences in colonisation and succeSSIOn 

(Chapin and Bliss 1988; Bjarnason 1991 ; Pinder et al 1997). However, as 

mentioned previously, this can be controlled by careful site selection. 

1.4. Volcanoes studied for the project 

This project IS primarily based on chronosequences of lava fl ows on 

MLEtna (Sicily), which has a wide spread of available lava flows covering many 

different aspects and altitudes - and hence climatic conditions. However the 

second part of the project compares MLEtna with several lava flo w fields on 

Mauna Loa on the Big Island of Hawaii. Both of these vo lcanoes were chosen as 

they each have a large spread of accurately dated lava flows, of similar chemical 

composition yet both have variable climatic conditions. 
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1.5. Mt. Etna 

Mount Etna (Fig 1.4), situated on the east coast of Sicily (Fig 1.5), is one 

of the most active volcanoes in the world (Chester et al 1985). Periodic eruptions 

have produced a large number of dated historic lava flows, of basaltic 

composition with remarkably consistent chemistry, extending back over several 

thousand years . These flows range in altitude from over 3000m at the summit to 

sea level on the eastern flank (Chester et al 1985). In addition, lava flows of both 

aa and pahoehoe morphology occur on Mt. Etna. Accordingly it is possible to put 

together well-defined chronosequences that vary strongly and largely 

independently of aspect, precipitation and parent material, bu t are very similar in 

other respects. 

Figure 1.4. Mt.Etna (Picture by M.Carpenter). 
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1.5.1. The Climate around Mt.Etna 

The cl imate of Mt.Etna varies quite substantially arou nd the volcano with 

both aspect and altitude (the orographic effect) which combine to produce a series 

of sectorially and altitudinally defined zones. There is detailed climatological 

data from weather stations in most of the principal towns and villages located 

around the volcano. However the spatial coverage of the stations decreases with 

altitude and near the summit area observations have only been made at the 

observatory of Serra la Nave. The east facing aspects (north-east, east and south­

east) show markedl y higher annual rainfall than the west. (Fig 1.6). However, this 

increased rainfall is seasonally orientated, wi th the higher rainfall occurring 

during the winter/spring period (Fig 1.7 ). 
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Figure 1.6. Average annual precipitation from meteorological stations in the 

principal towns from the different aspects of the Mt.Etna. (Raw data compiled 

and presented via personal communication from V.Puzzulo) 
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Figure 1.7 shows the standard climate diagrams used in biogeography (an 

example can be seen in Mueller-Dombois 2000). Each graph is divided into 

months (x-axis) and temperature (lOOC intervals) on the left y-axis and 

precipitation (20mm intervals) on the right y-axis . Within the body of the graph is 

the curve for mean monthly temperatures (lower line) and the curve fo r mean 

month ly precipitation (higher line). The different shading where these lines 

overlap indicates seasonal changes in climate. The relative period of drought 

(dotted), relative humid season (vertical hatching), and the period when mean 

monthly precipitation exceeds 100mm (black). For example a large dotted area 

shows a very hot and dry season, whereas a large area of black shading would 

indicate a very wet season (rainforests typically show this as occurring all year). 

The greatest difference in cl imate on Etna can be seen by comparing the 

weather data for the towns on the west and east aspects of the volcano. Adrano in 

the west shows a very low average rainfall pattern all year rou nd with a dry 

season extending for five months from the end of April to the beginning of 

October (Fig 1.7). This compares to Zafferana in the east, which has a smaller dry 

season (four months), and a wet season which commonly exceeds over lOOmm of 

rain. Durbin and Henderson-Sellars (1981 ) used older precipitation data to form a 

contoured precipitation map for Mt.Etna. This also shows the same rainfall 

change with altitude and aspect, this has been adapted for Fig 1.8. 

In addi tion to the variation cau sed by aspect, there is a marked change in 

precipitation due to altitude. This is demonstrated in Fig 1.9 (data from Poli et al 

198 1) where annual rainfall measured at three sites of increasing altitude on the 

south aspect of the volcano clearly increases. 
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Figure 1.9. Increasing annual rainfall with altitude on the south aspect of Mt.Etna 

(data fro m Poli et al 198 1). 

This trend fo r increasing rainfall with altitude is also seasonally orientated 

as can be seen in Fig 1.10. The temperature drops substantially as altitude 

increases, such that Serra la Nave at 1725m does not exceed 20° even during the 

summer months (Fig 1. 10). The extent of the dry season is also clearly decreasing 

with al titude (as the dotted area shrinks) such that it lasts for only three months at 

1725m, but extends for a full six months in Catania (97m). 

Although there is seasonal change in the climate of the Etna region, as 

well as variation fro m year to year, there has been no significant long-term 

climate change over the last 2000 years. This has been shown by the research of 

Sadori and Narcisi (200 1) who discovered that there has been no perceptible 

climate change in Sicily for the last 2000 years by researching lake sediments. 

Although there have undoubtedly been short periods of climate change (e.g. the 

'li ttle ice-age' in the sixteenth century) these have not caused significant 

vegetational changes and therefore do not affect the chronosequence 

methodology. This is an important factor in this project as one of the primary 

tenets of using chronosequence theory is that environmental fac tors should remain 

as constant as possible. 
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increasing altitudes. Raw data compiled and presented via personal 
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1.6. Mauna Loa· Hawaii 

The second volcano studied as part of this investigation was Mauna Loa 

on the Big Island of Hawaii. This volcano was chosen as many of the 

environmental variables of age, aspect and lava morphology can all be selected 

for by careful site selection in the same way as Mt.Etna. In addition, the lava of 

Mauna Loa has a very similar chemistry to that found on Etna (see appendix 

p270), which excludes substrate variation as a factor. However, the climatic 

conditions on Hawaii are very different to Etna, with many areas on the east 

aspect of the island dominated by dense tropical rainforest with an annual 

precipitation of over 6m (Giambelluca et al 1986; Austin and Vitousek 1998). 

This allows expansion of the project in terms of the climatic conditions and 

vegetation type (tropical systems). Many authors have studied the succession 

(Smathers and Mueller-Dombois 1974; Kitayama et al 1995) and nutrient cycling 

on Hawaii (Vitousek et al1995; Raich et a11996; Kitayama et aI1997), and it has 

been used as the base model of chronosequence theory (Vitousek et al 1992; 

Chadwick et al 1999). 

In order to avoid confusion with Etna, the information regarding the lava 

flows and climatology of Mauna Loa is presented later in thesis in the sections 

relating to the comparison of the volcanoes. 
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1.7. The Project 

Ovcr time there is change in the flora, fauna, available nutrients and even 

in the structure of the lava itself as it is compacted, weathered and finally covered 

by developing soil and plants. This creates a very wide-ranging number of topics 

for observing primary succession on volcanic ecosystems. This succession can 

continue for many hundreds to thousands of years, as seen on Hawaii where 

Vitousek et al (1983; 1988; 1995) have looked at chronosequences of several 

million years. However, many of the most obvious changes are occurring in the 

very early stages (0-500 years) of colonisation and very few authors have looked 

at this eady stage in the ecosystem development. As will be seen, this period on 

Mt.Etna can cover the change from a completely bare new lava flow, through 

initial colonisation by cryptogams to the development of a young oak woodland. 

After this period, although succession continues, it is slower and mainly concerns 

changes in the species composition, species interaction and concurrent changes in 

soil biogeochemistry. Therefore this project only looks at the earliest primary 

succession and has been limited to a time frame of the initial 500 years. 

Additionally this project has concentrated on only one form of lava morphology 

(aa). 

Earlier on in the chapter the key processes identitied, which must he 

considered in primary succession are colonisation, estahlishment and growth. In 

order to study these processes the project will look at three distinct topics for 

study over the 500 year time period of the sLlccession of the project 

1) Plant community change:- An initial colonisation by vascular plants and 

subsequent species change and replacement over the course of succession. 

2) Nutrient cycling:- over time there is a significant l:hange in nutrient 

availability as the nutrients which are initially in vcr'.y short supply arc both 

cycled and added to as the system ac\,;umulates more biomass and aeolian 

material. 
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3) 	 Lichen activity:- In the very early stages of colonisation the primary 

colonisers of Etna are the lichens and they dominate the landscape of the lavas 

for approx. 150 years in many areas. These lichens have a considerable 

impact on the accumulation of biomass (organic material), nutrient 

accumulation and weathering of the underlying rock material (releases many 

elements which are limited on the lava flows and which when leached become 

available to other parts of the ecosystem). Lichens also contribute to the 

precursor soil and the formation of microsites for subsequent plant 

colonisation. 

Though these three main sections of the project at first appear to be I 
discrete and separate entities, they are in fact closely linked together. For I
example, the factors affecting early nutrient cycling can be linked to early 

weathering and biomass accumulation of lichens. In addition, plant succession I 
may be related to nutrient availability and also the formation of suitable 	 I 

~ 
germination sites (even if this is just a tiny accumulation of matter in a rock 

crevice) which may not occur or until the rock has been weathered enough to 

produce a crevice in which the roots can take hold. As a result further nutrient 

cycling processes later in the succession will be dependent on the increasing 

biomass and species composition of the preceding successional stages. 

Although several authors have studied different facets of primary 

colonisation on volcanoes before, for example Smathers and Mueller-Dombois 

(1974) on vegetation change and Kurina (1998) on lichen biomass, this 

comprehensive examination of the different elements of primary succession on 

volcanic ecosystems is unique. This integration also allows direct observation of 

links between different facets of primary succession which have not been 

previously investigated (e.g. lichens and nutrient cycling). 
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1.S. Aims an objectives 

The main areas of interest in this study can be summed up by the following key 

aims and objectives: 

1. To assess the vegetation change over a range of chronosequences on the 

lava flows of Etna, to assess the impact of aspect and altitude on plant 

diversity. Further, to study several key primary colonising species and 

look at the changes occuring in the frequency and percentage cover. To 

observe interactions between species and the climate in order to measure 

the impact of different environmental conditions. 

II. To test if the method of nitrate reductase measurement within plant tissue 

can be used as an indicator of change in key plant species over the 

chronosequences. To test this method on a range of chronosequences 

which can then be compared and the impact of different climatic 

conditions assessed. 

III. To study soil development and nutrient availability by measuring changes 

in soil and foliar nutrients on a range of chronosequences evaluate changes 

in available nutrients in the soil and in the leaves of plants over the 

chronosequences. 

IV. To determine the impact of lichens on the lava flows in both their 

contribution to soil biomass and as a weathering agent of the lava surface 

which introduces valuable trace elements into the soil. 

V. To compare the results found on Etna of the nitrate reductase and Lichen 

weathering patterns with those found on another volcano (Hawaii) in order 

to look observe the impact of different climatic conditions. 

VI. To link up all of the information gathered on succession and ecosystem 

change on both volcanic systems and produce a model of ecosystem 

development on basaltic lava systems. 
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I 

1.9. Organisation of the thesis I 
In order to observe the three main areas of interest outlined a number of 

discrete and separate experiments were conducted on many areas of succession 

utilising many different methods (from observational to completely analytical). 

These experiments also looked into many of the factors affecting this succession 

other than age (e.g. climate, aspect, and altitude) over the SOO-year period. As a 

result of the variety of interrelated topics studied these data are presented in 

chapters dealing with each topic in turn. 

The thesis is broken down into seven experimental chapters, each dealing 

with a different set of experiments looking at a particular facet of primary 

colonisation. Each of these chapters has been further broken down into its own 

introduction, methods, results and discussion. The final integration of many of 

the different areas of study occurs in the final discussion chapter. 

The first of the experimental chapters (2) studies the vegetation changes 

during the chronosequence. Plant succession is one of the most important factors 

in the volcanic ecosystem. Species colonisation and replacement are continuous 

and dynamic processes producing a complex interrelationship between species as 

factors of competition and symbiosis alter the vegetation structure. 

Nutrient change and the associated soil development is the subject of 

chapters 3 & 4. Chapter 3 is a focused look at the availability of nitrogen as 

measured by the enzyme nitrate reductase in the leaves and roots of several key 

primary colonising species. In contrast, chapter 4 is a broader study of nutrient 

change as seen in the soil and leaves 

Lichens dominate much of the early stages of primary succession on many 

volcanoes including Mt.Etna and Mauna Loa. As a result. they have a substantial 

impact on both early nutrient cycling and the succeeding successional stages. 

Chapters 5 and 6 demonstrate many of these impacts. These shall be covered in 
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terms of the very visible contributions made by the physical structures of the 

lichens (biomass, contribution of organic matter to soil development and species 

change, chapter 5); before focusing on the less visible effects of lichen weathering 

of the lava surface (chapter 6). Although mosses are also an early lava coloniser 

they have not been studied in this project, as they are a smaller component in the 

cryptogamic stage of development (in terms of biomass and diversity). This 

project has concentrated on the dominant lichen impacts. 

The two Hawaiian chapters (7 & 8) repeat two of the experiments conducted 

on Etna on this different volcano in order to test whether several of the processes 

observed on Etna hold true for other volcanic systems. These last two 

experimental chapters will demonstrate a comparison of nitrate reductase activity 

on Hawaii (chapter 7) and lichen weathering patterns (chapter 8). 

The final discussion (chapter 9) draws together many of the threads of these 

individual experiments and point out many of the links which have become 

apparent over the course of the project - and which would not have been obvious 

without this broad and integrated approach to primary succession. 

1.1O.Notes on the ages of the lava flows 

On many of the subsequent chapters many lava flows were examined and the 

year when the lava flow was erupted is noted in the text (e.g. 1981 or 1809). In 

other areas this date has been translated into the actual age of the site when the 

sample or study was conducted. In the case of most of the Etna samples these 

were taken during the year 2000 sampling period (except where referred to 

otherwise in the text). For example, a 1981 flow was 19 years old in 2000. 

All Hawaiian samples were taken in 2001 and the age of the lava flows is 

calculated from this date (e.g. 1984 flow has an age of 17 years). 
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Chapter 2: Plant community change on the lava 

flows of Mt.Etna 

2.1. Introduction 

One of the most obvious and fundamental changes that will occur over any 

successional sequence is the alteration in plant species composition. As a site 

ages the plant available nutrients increase and a significant soil structure forms, 

thereby altering the prevalent conditions and allowing the colonisation of further 

species. Over time, the initial conditions of a nutrient poor and harsh environment 

(e.g. extremes of temperature and water availability) are gradually ameliorated as 

organic matter and nutrients accumulate (Chapin et of 1994). In addition, the 

colonising plants create shade increasing water retention, which in turn allows 

other plants to enter the developing habitat. As the conditions change and become 

suitable to other species, inter-species competition occurs, producing succession 

as one species is superseded by another. However, as time passes this process 

becomes increasingly complex as the plant species diversity increases. The 

individual needs of the plants become harder to distinguish and other factors such 

as symbiosis and the appearance of soil mycorrhizae allow the appearance of 

species that would otherwise be excluded. In addition, the heterogeneous nature 

of the habitat allows many taxonomic plant groups to become established more or 

less concurrently within a relatively small area (Clarkson 1990; Titus and Del 

Moral 1998). 

Consequently, the first assessment of the primary succession is the study 

of vegetation change that occurs over time and an investigation of the dominant 

plant species present at specific time periods. Since vegetation is linked to 

nutrient availability and climate, patterns emerge which show the importance of 

the dominant species at each particular stage of the slIccessinn. Although the 

ultimate ecosystem formed may be a forest, a study of the intermediate 

27 




Chapter 2 Michael Carpenter 

ecosystems involved (and their dominant species) will lead to an understanding of 

the contribution played by these species over time. 

This process is perfectly illustrated on volcanic substrates where these 

intermediate stages are clearly visible on a chronosequence formed by regular 

eruptions. In addition, the underlying substrate and mineralogy of the lava 

substrate tends to be uniform throughout the chronosequence. Hence, the 

processes of weathering which occur over time will introduce nutrients into the 

ecosystem in a relatively predictable manner (providing that the environmental 

conditions have not varied much over the length of the chronosequence). 

However, this may be complicated by depositions of tephra. 

2.1.1. Properties of vegetation 

When looking at the plant species of a particular area there are five mam 

properties of vegetation to take into account: 

1) Species composition: composition ranges from simple to very complex, 

depending on the habitat conditions and the relative richness of the local 

flora. 

2) Structure: some vegetation is structurally very simple, but often a degree of 

structural complexity and organisation is evident. The structural patterns 

arise from the different stature and growth forms of the constituent plant 

species and their spatial disposition relative to each other. 

3) Physiognomy: the general appearance of vegetation results from the relative 

abundance of species possessing distinctive stature, form, colour and texture 

of shoot systems and foliage. 

4) Spatial pattern: the species composition of vegetation varies in space 

because the component species respond differently to sets of habitat 

conditions, which are themselves spatially variable. 

5) Temporal patterns: the species composition of vegetation varies with time ­

this point is the main crux of this ch.apter, 

28 




Chapter 2 Michael Carpenter 

Two terms must be clarified at this point. The term 'Vegetation' is the 

plant cover of an area in which species play different roles in terms of their 

abundance or rarity and in terms of their life forms, life histories, and physiology. 

When plants interact together they form communities. 'Plant communities' can 

be distinguished by differences in life-form structure - such as forests versus 

shrub or grassland - or by differences in species assemblages (Mueller-Dombois 

and Fosberg 1998). 

There are two principal factors used when assessing a species within these 

communities - these are the density or number of plants per unit area and cover 

or percentage of the total area covered by the aerial parts of plants of a species. 

These variables can cause problems in the interpretation of the importance of a 

species on a site due to the different growth forms between species and the 

different patterns of distribution of individuals of different species on the ground 

(Tsuyuzaki 1996). For example, a weedy lawn may include at one extreme a 

grass such as Poa annua, which has a high density of shoots but relatively low 

cover value per shoot, whereas, a rossette weed like Plantago major, has few 

shoots which cover a relatively large amount of ground (Greig-Smith 1983). 

One further minor problem with observing vegetation patterns over time is 

the time-scales involved in measuring plant occurrence. Plants gradually moving 

in and out of an ecosystem over the course of many years are measured on a 

macro scale (primary or secondary succession over long periods). However, on a 

much smaller time scale is the time taken for a seed to arrive on the site. Minor 

differences in environmental conditions, landscape morphology as well as the 

factor of blind chance (whether a seed is deposited in the right place at the right 

time) may cause variation in a species distribution over a relatively small area. As 

a result, any study on plant communities must always recognise the dynamic and 

heterogeneous nature of the ecosystem. 

The smallest time-scale level is the factor of the time of year of the study, 

as the biota of any region will vary with the seasons (Phenology). Although the 
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more obvious perennial species of trees and shrubs will be distinguishable all year 

round, many annuals may be in flower for only a short period of the spring or 

summer and hence not recognisable during the other periods. This problem can 

be solved by only comparing sites at the same time of year - in the case of this 

project the vegetation study was conducted in the late spring (May / early June). 

2.1.2 Analysis of specific plant species over time 

The species that colonise a volcanic ecosystem soon after the eruption will 

be dependent biologically on the locally abundant species and their seed/spore 

dispersal mechanisms (Van der Maarel 1988). Once the seed/spore of a species 

has arrived on the lava, the abiotic factors of local climatic conditions prevalent in 

the area as well as nutrient availability and substrate morphology will influence its 

germination and hence its survival to be a primary coloniser. Micro-organisms 

(including bacteria, fungi and some algae) arc very abundant in nature. They or 

their spores are dispersed into the air and can'ied by the wind to settle on suitable 

substrate. The same process holds true for the mosses, lichens and some ferns 

allowing these groups to gain a foothold on the new lava substrate almost as soon 

as the lava has cooled. In addition. the considerable fecundity of these groups 

allows a simultaneous colonisation of almost the entire lava surface. The later 

vascular plant species have a slower and haphazard method of seed dispersal 

which leads to a mosaic structure to the vegetation with small patches or 

populations of plants which gradually increase in size. In addition this will be 

controlled by the ability of these seeds to germinate on the substrate. The species 

with the slowest seed dispersal systems (e,g. trees) have greatest difficulty 

colonisjng a flow. These species will gradually encroach from the edge by seed 

dropping, wind dispersal mechanisms or they may be reliant on the activities of 

animals to carry their seeds any distance onto a flow. As such, at any particular 

time on a lava flow there will be a range of successional communities occun'ing. 

Species diversity in these communities will be dependent on which species have 

managed to encroach furthest onto the flow and the biogeophysicnl conditions that 
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occur there (once a seed arrives on a site the climatic or nutrient status may 

prevent germination). 

In dealing with an area with a potential botanical content of 9,000 species 

(Poli 1991; DiBenedetto 1983), it quickly becomes apparent that to be 

manageable botanical survey needs to concentrate on specific species, given the 

time scale of the project. This is made evident by the fact that many of the plant 

and lichen species are completely indistinguishable except for minor 

morphological differences in flowers or seeds, which might not be available at the 

time of the study. Consequently, this project identifies the general trends in 

botanical change over the chronosequence as the plant community evolves. 

2.1.3. Aspect 

The location of the chronosequence on the slopes of Mt.Etna has a 

profound effect on the vegetation found on each site, as observed by Poli et al 

(1989 and 1995 ). Variations in climate on the different aspects as outlined in 

Chapter 1, will encourage the growth of some species whilst impeding others. 

This could lead to different rates of succession and change the ultimate outcome 

and biota of each chronosequence. 

2.1.4 Altitude 

There is a distinct change in vegetation with altitude on the slopes of 

Mt.Etna, which has been observed by various authors (Poli 1970a; 1970b; 1971; 

King 1973; Poli 1991). However, in many places the impacts of agriculture and 

other forms of human activity have completely altered the types of vegetation 

present. King (1973) noted that the forest belt of Etna (1,500 - 2,OOOm) has been 

much depleted over time due to timber cutters and charcoal production with only 

the higher altitude stands of oak., beech and larch surviving. This is notable on the 

north aspect where a tourist village has been constructed among the trees. 
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However, since the establishment of Mt.Etna as a national park, human impact 

has been much reduced. In addition, there are many pockets or areas of lava, 

which are still in the natural state either because they are in remote locations or 

because it has been protected by the landowner. 

Poli et al (1981) identified and mapped many of the forested areas of Mt.Etna. 

This allowed the differentiation of dominant species at different altitude zones as 

illustrated in Fig 2.1. 

3370m 

Volcanic Desert 

High Altitude 2950m 

Mediterranean Superior Horizon - High altitude pioneers 

Level 
2450m 

Inferior Horizon - Astragalus 

--------------------------------------------~------------~2100m 
Montane Superior Horizon - Astragalus secondary 

Mediterranean 
level Infelrior Horizon - Fagus Pine 

Reforestation 
--------------------------------------~r_--------_+------~1450m 

lOOOmDeciduous oak Low Altitude Basal 
Mediterranean Forests 

Agricultural
Level 

grassland 500m 

.c~----------------------------------------------------------~Om 

Figure 2.1. Vegetation change with altitude on Etna. Translated and adjusted 

from Poli (1991). 

2.1.5. Seed dispersal- Dagalas and the edge effect 

The colonisation process can only occur if there is a source of propagules 

from which the plants can spread and is also dependent on the species seed 

dispersal mechanisms (Tsuyuzaki 1987 & 1989; Tsuyuzaki 1991; Chapin 1993). 
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Those specIes, which are wind dispersed, are quickly spread over the new 

substrate (depending on the efficiency of their mechanism). Other species are 

slower to colonise the lava, as they must encroach gradually from the edge of the 

flow by seed dropping, being carried by animals or vegetative spreading by 

stolons or rhizomes. In these cases the distance from the edge can become a 

factor in the time taken for a species to appear on the lava flow. In the case of 

lava flows, however, the edge of the flow might not be the only source of 

propagules. Occasionally when a lava flow is moving down the slope of the 

volcano a minor topographical feature (small rise or hill) may cause the lava to 

split around it and then rejoin on the other side. This leads to the isolation of a 

small pocket or island of older substrate located within the new lava field. This 

phenomenon is known locally as a Dagala (or Kipuka in Hawaii) and can provide 

a source of propagules and organic material for the new lava flow acting as a 

spreading centre of colonisation within the new lava field. 

2.1.6. Notes on the experiments 

In order to control for human impact (agriculture and areas of habitation) 

as a factor during this project, sites were chosen away from the villages and towns 

around Mt.Etna and in the more remote areas where activity was limited. In 

addition, careful selection often identified those sites, which have been disturbed 

recently, and these could then be removed from study. 

This chapter is restricted to the successional change of the vascular plants 

on the volcano. Cryptogamic species also show succession on the lava flows and 

their interactions are an important step in the colonisation process (in most cases 

they are the first step). However, the succession of lichens on the rock surface 

and the subsequent changes in biomass are sufficiently different from vascular 

plants to merit separation into another chapter (Chapter 5). 
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2.2. Methods 

2.2.1. Site selection 

The methods used were very similar to those described by Clarkson 

(1997). A total of 35 sites were visited on the lava nows of Mt. Etna on each of 

the four cardinal aspects and at different altitudes (between 750 and 1500m). 

These sites were separated into three chronosequences, on the north (nine lava 

flow fields), south (ten lava flow fields) and east (six lava flow fields) aspects. A 

western chronosequence was not possible as there is no sequence of lava flows on 

this aspect, however two lava flows (1843 and 1646) were selected and compared 

to similar aged lava flows on each of the three other aspects for a direct 

comparison of the four aspects of Etna. Similarly, other lava flows in a sequence 

of increasing altitude from 750m - 1500m on two lava flows (one nineteenth and 

one seventeenth century flows) on the south aspect, were selected to investigate 

the impact of altitude and aspect. All the chronosequence sites were pre-selected 

using the geological maps of Mt.Etna lava nows (Romano el al 1979 (accurate up 

to 1974), Abrams et al (996) and the more recent tourist maps to 2ool. Sites 

were selected to give a good range of ages in the 0-500 year period of interest (see 

Fig 2.2). 

All sites were selected usmg stringent controls over topographical, 

landscape and environmental parameters in order to equalise these factors as 

much as possible. Each site was located on a level area to eliminate the effects of 

slope such as rainwater run-off and shading which could cause variation between 

sites. All sites were located on aa lava. In addition, all sites were located a 

minimum of SOm from the roadside to limit human impact and the damage caused 

during the cutting of the road. Similarly, all sites were located a minimum of SOm 

from the adjacent lava flows to minimise the edge effect on colonisation and 

measure in-situ colonisation rather than the pattern of spread (with the exception 

of the experiment to study this phenomenon). 
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Figure 2.2. Map of the most recent lava flows of Mt.Etna. Different shadings 

indicate different lava flows (0-600 years), Revised and adjusted from the 

original Romano et al (1979) lava flow map. 
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2.2.2. Sampling methods 

During the start of this project a number of vegetation sampling methods 

were initially employed on the Etna lava flows, each of which was standard for 

the different ecosystems that had developed on the sites. For example, small 

quadrats on the younger habitats dominated by cryptogams (400cm2) and a far 

larger quadrat for the forested areas (400m2). This became a problem when 

comparing each site directly. Consequently a standard format for comparing each 

site using the same criteria was developed. On each site five quadrats of 20m x 

20m (400m2) were laid out. This size was chosen as it encompasses all the larger 

vascular plant species such as trees and yet was not impractical for the younger 

flows since species diversity was relatively low (the cryptogamic species are 

covered later). The site of the first quadrat was chosen non-randomly (due to the 

stringent controls on surface morphology). Each subsequent quadrat was set at 

least 10m apart except in those areas where this was prohibited by the size of the 

lava flow. For example, the 1809 flow on the north aspect is represented by only 

a relatively small pocket of vegetation, due to inundation by more recent lava 

flows (1911 & 1923). On this site the five quadrats were grouped together but 

still at the prescribed SOm distance from the road and edge of the flow. 

Within each quadrat the abundance of nine species was determined - by a 

direct measurement of the number of individuals of each species present per 

400m2. These nine species were chosen as they were all common on Etna and 

present over a long period of successional time. Of these species: Centranthus 

ruber, Rumex scutatus, Genista aetnensis, Helichrysum italicum, lsatis tinctoria, 

Spartium junceum and Senecio bicolor were the commonest primary colonisers 

and the oak species of Quercus ilex and Quercus pubescens were typical of a later 

stage. In the case of R.scutatus and S.bicolor which are colonial species, where it 

was impossible to ascertain the exact number of individuals present within a 

clump, the clump was taken as an individual. These species were documented to 

observe how species change over time. In addition, estimates were taken of the 

percentage cover of the commonest species found on Etna by subjective 
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observation by the author. In one quadrat from each site all vascular plant species 

present were recorded, and measurements taken of their abundance (P=present 1-5 

individuals present, O=occasional 6-15 or C=common 16+). Plants were 

identified using reference guides (Polunin 1969; Blarney and Grey-Wilson 1993; 

Press and Gibbons 1993; Davies and Gibbons 1993; Poli 1991). 

2.2.3. Plant community change on the northern chronosequence 

A chronosequence of sites was selected on the northern aspect of the 

volcano, ranging from 19 to 464 years old. These consisted of lava flows erupted 

in: 1981, 1947, 1923, 1879, 1809, 1646, 1614-24, 1566 and 1536 (Fig 2.3). Map 

grid references for all the sites can be seen in the appendix (p272). Each site was 

located at an altitude of approximately 1000m, using the parameters of 

topography, distance from the edge and lava morphology as outlined in 2.2.1. 

2.2.4. Plant community change on the southern chronosequence 

A chronosequence of sites was selected on the southern aspect of the 

volcano, ranging from 17 to 566 years old. These consisted of lava flows erupted 

in: 1983, 1910, 1886 (also marked as 1892), 1780, 1766, 1634, 1537, 1536 and 

1444 (Fig 2.4). An older 812-1169 lava flow was included in the vegetation 

survey only. Each site was located at an altitude of approximately 1000m, using 

the same parameters of topography, distance from the edge and lava morphology 

as 2.2.1. 

2.2.5. Plant community change on the eastern chronosequence 

A chronosequence of sites was selected on the eastern aspect of the 

volcano, ranging from 8 to -311 years old. These consisted of lava flows erupted 

in: 1992, 1971, 1928, 1865, 1792 and 1689. (Fig 2.5). Each site was located at an 

altitude of approximately 1000m, using the same parameters of topography, 

distance from the edge of flow and lava morphology as outlined in 2.2.1. 
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Fi2:ure 2.3. Sites on the northern chronoseauence. 
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2.2.6. Plant community change 	on the four aspects of the volcano from 

two different aged lava flows 

Two lava flows were selected on each of the four aspects of the volcano. 

These lavas were selected for comparable age - one nineteenth century and one 

seventeenth century lava flow, to test variation caused by aspect and age. The 

lavas selected were: 1879 and 1646 on the north aspect; 1865 and 1689 on the east 

aspect; 1892 and 1634 on the south aspect; and 1843 and 1651 on the west aspect 

of Etna (Fig 2.6). Each site was located at an altitude of approximately lOOOm. 

Each site was selected using the same parameters of altitude, topography, distance 

from the edge of flow and lava morphology as outlined in 2.2.1. 

2.2.7. Plant community change on a range of altitudes 

A further seven sites were selected on the south aspect of the volcano in 

order to assess the impact of altitude on plant diversity and percentage cover. 

These sites were located at 1500 m and 1250 m for the 1886 and 1634 lava flow 

fields. Other sites in the altitude sequence were the 1892 flow (800 m), 1634 flow 

(780 m) and 1910 flow (750m) (Fig 2.7). The results from these sites were 

combined with those taken at 1000 m in the southern chronosequence to give a 

near continuous altitude transect from 750 m to 1500 m on two different aged lava 

flows. Each site was selected using the same parameters of topography, distance 

from the edge of flow and lava morphology as outlined in 2.2.1. 
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Figure 2.6. Comparison of two similarly aged lava flows (one from the nineteenth 

and one seventeenth century) located on the 4 aspects of Etna. *marks the 

position of the sites. 
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position of the site 
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2.2.8. The Edge effect: 	 Change in species abundance on the 1928 lava 

flow (72 years old) as a factor of distance from the edge of the flow. 

Plant species abundance and diversity are linked to the source of the seeds 

and these are dependent on the individual species seed dispersal mechanisms. 

The dispersal of three primary colonising vascular plants was measured on a 

recent lava flow to see how some species colonise from the edge of a lava flow. 

The lava flow which erupted in 1928 on the east aspect of Etna (Fig. 2.5), 

inundated an ancient lava flow (>8,000 years old). There is a very clear 

differentiation of the two lava flows with the ancient flow acting as a source for 

colonisation of the new flow. 

To measure the frequency and distance that these species have moved onto 

the younger flow four transects were placed on the 1928 flow running from the 

edge to 50m into the flow. Along these transects the position of vascular plant 

species from the edge was noted. The data from thc four transects was then 

combined and sorted into Sm sections. These data were then plotted as a bar 

graph of increasing distance from the edge of the flow. 
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2.3. Results 

2.3.1. Changing species diversity on Mt.Etna 

Each of the three chronosequences on the south, north and east aspects of 

Mt.Etna show a rapid increase in species diversity with time. In the south and 

north chronosequences this is a steady increase over the 500 years. However the 

east chronosequence shows a much faster rate of increase and has attained the 

same diversity (42) in only 300 years (Fig 2.8). 
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Figure 2.8. Species diversity on three chronosequences on Mt.Etna. 
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On the three lava flows studied there is a clear decline in species diversity 

as altitude increases (Fig 2.9). On the 1634 flow it declines from 50 at 800m 

down to 35 at 1500m; the 1780 lava flow declines from 34 (lOOOm) to 26 

(l500m) and the 1892 from 24 (lOOOm) to 18 (1500m) 

60 .,-----------------------, 

E 50 EL, 

~ 
~ 40 
0.. 
U) 

u 
'0 30 
1:t 

<;..., '" 
o 20 
B 
§ 10 
z 

o ~--~----~------------~ 
600 800 1000 1200 1400 1600 


Altitude (m) 


-- 1892 ...... 1780 -'1634 


Figure 2.9. Species diversity on a range of altitudes on Mt.Etna. 

A full list of the species found on the southern and northern lava flows and a 

measurement of their abundance and percentage cover can be seen in the 

appendix. 
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2.3.2 	 Species change over time on Mt.Etna. Examples of nine species 

abundance and percentage cover 

All of the nine species studied on the lava flows of Etna show changes in 

their mean abundance and percentage cover over the chronosequences. Some 

species quickly colonise the flows and achieve a high abundance on the younger 

flows (C.ruber, R.scutatus, H.italicum, l.tinctoria and S.bicolor) before declining 

slowly (Figs 2.10 - 19). Whereas, other species become dominant later in the 

chronosequence (G.aetnensis, and S.junceum (Figs 2.20-23»). The final stage 

species appear in low numbers but quickly attain dominance through a high 

percentage and these are characterised by the two oak species; Q. ilex and 

Q.pubescens. Each of these nine species varies on the different chronosequences 

as shall be shown on an individual basis. 

Centranthus ruber: 

This species is an early coloniser of the lava flows achieving its highest 

abundance (17 per 400m2) on the southern aspect of Etna after only 90 years 

(1910 flow) (Fig 2.l0a). After this period it gradually declines in abundance. 

After an initial fast colonisation on the northern aspect (reaching an average of 5 

after 50 years), the abundance very gradually declines through the rest of the 

chronosequence (50-500 years) (Fig 2.1Ob). In the east it reaches its highest 

abundance (13) on the 1865 lava flow (135 year old) after which it gradually 

declines. The mean abundance of this species on all four aspects of Etna (Fig 

2.lOd) is always higher on the younger nineteenth century lava flows than on the 

seventeenth century flows. In addition, there is a clear drop in abundance on the 

northern aspect compared to the other three aspects (Fig 2.lOd). These trends in 

the abundance of C.ruber are repeated on the graphs of percentage cover (Fig 

2.11). However the percentage cover of this species is low and reaches its highest 

on the southern aspect (5.8) at the 90 year mark (Fig 2.11 a). 
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Rumex scutatus 

This species is the most abundant of all the nine vascular plant species studied in 

this project. It is present on all the sites (although rare on the oldest sites) and 

favours the young open lava fields before declining in both abundance (Fig 2.12) 

and percentage cover (Fig 2.13). On the south aspect of Etna it demonstrates a 

fast colonisation of the flows becoming very abundant by the 90 year old flow 

(density of over 20 per 400m2 (Fig 2.l2a». After this the abundance appears to 

drops down to 10 per 400m2 before increasing again to a second peak at the 

220year old flow. However, this drop does not occur in the percentage cover 

graph of the same period (Fig 2.13a), and this is the better indicator of the true .;:.:... 1.
'~ 

state of this species over time. The trend for high abundance on the younger 
i 

flows is repeated on the north chronosequence (Fig 2.12b) where it reaches a 
il.! ,

density of 12 per 400m2 after only 52 years, before declining slowly. On the east 1 
'I 

aspect R.scutatus reaches its maximum abundance on the 208 year old lava flow 

(Fig 2.12c) with 20 per 400m2. These trends of early dominance on the younger 

lava flows are clearly visible on the graphs of the species percentage cover (Fig 

2.13). On the four aspects together (Fig 2.12d), the lowest abundance and cover 

(Fig 2.13d) occurred on the eastern lava flows with a level of 1 per 400m2 and less 

than 1% cover on the 1689 lava flow. This compares to the similarly aged 1651 

west lava flow, which has a density of 10 per 400m2 and cover of 4%. 

Helichrysum italicum 

This species has low abundance on each of the three chronosequences examined 

on Etna (Fig 2.14). On the south chronosequence (Fig 2.l4a) it colonises the 

younger lava flows and remains present for approximately 350 years. This trend 

is repeated on the north chronosequence, which peaks at 6 per 400m2 quadrat 

before declining gradually throughout the rest of the sequence. In contrast, 

H.italicum is rare on the eastern chronosequence and only appears briefly at the 

200 year mark, where it averages 1 per 400m2 quadrat (Fig 2.l4c) and less than 

1% cover of the flow (Fig l.15e). This is confirmed by the results of the 

comparison of all four aspects of the volcano where the highest abundance and 

percentage cover is seen on the west aspect (Fig 2.14d & Fig 2.15d respectively). 
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Isatis tinctoria 

This is a common species throughout the chronosequences of Btna colonising the 

very young lava flows and then maintaining a presence throughout the 

chronosequences. It is most common on the southern chronosequence where it 

reaches a peak density of 12 per 400m2 on the 220 year old lava flow (1780) after 

which it declines steadily (Fig 2.16a). In the north its density remains fairly 

constant between 2 - 6 per 400m2 throughout the chronosequence (Fig 2.16b). On 

the east chronosequence the abundance peaks on the 135 year old lava flow (Fig 

2.16c) again with a density of 12 per 400m2• The average percentage cover of 

l.tinctoria remains fairly constant on all three of the chronosequences (Fig 

2.17a,b,c) as well as on the comparison of all four aspects (Fig 2.17d) varying 

between 1 and 2%. 

Senecio bicolor 

This species is abundant on the southern aspect of Etna. However, it is very rare 

on both the northern and eastern aspects (Fig 2.18a,b,c). On the southern aspect it 

reaches its highest abundance on the 90 year old flow, reaching an average of 17 

per 400m2 quadrat (Fig 2.1Sa). As the age increases the abundance drops sharply 

«2 per 400m2) from 200 years onward, and though present on the flows is very 

rare. In a comparison of all four aspects (Fig.l.18d) the species is absent on the 

two age groups of lava flows on the north and east but is common on both the 

western sites (10 per 400m2 on the 1651 How). This trend is repeated in the 

species percentage cover (Fig 2.19) where it achieves highest cover (3%) on the 

1910 (90 year old flow) on the southern aspect after which it declines. 
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Genista aetnensis 

This species is common on all aspects of the volcano except the west (Fig 2.20d). 

On the south chronosequence abundance gradually increases over time until the 

464 year old flow where it has a density of 4 per 400m2 (Fig 2.20a) and a 

percentage cover of 21 % (Fig 2.21a). On the northern chronosequence it peaks at 

a density of 3.7 per 400m2 after 121 years and the size of the G.aetnensis is 

obviously bigger as the percentage cover is up to 37% (Fig 2.21b). However the 

plants are smallest in the east where the percentage cover remains at about 10% 

from 100-300 years of age (Fig 2.21c). 

Spartium junceum 

This species appears early on in all three of the chronosequences. However there 

is a marked difference on the three aspects. On the south it has a low abundance 

until 366 years when it increases until 465 years when it averages over 7 per 

400m2 • After this it declines. In contrast the northern chronosequence shows a 

much steadier increase in abundance (Fig 2.22b) before peaking at 354 years and 

then declining. The biggest difference is on the eastern aspect where the species 

reaches its maximum abundance after only 135 years (averaging 6.6 per 400m2) 

and then declining quickly and becomes rare on lava flows older than 200 years 

(Fig 2.22c). This species was absent from the western lava flows studied on Etna 

(Fig 2.22d). These three trends for s.junceum abundance are paralleled in the 

average percentage cover (Fig 2.23). Clearly on the eastern aspect of the volcano 

it has become a dominant species after only 135 years (Fig 2.23c) attaining 30% 

cover. On the south and north chronosequences it is much slower to appear only 

achieving 25% cover after 464 years in the south (Fig 2.23a) and 20% on the 

north after 356 years at their respective peaks (Fig 2.23b). 
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Quercus ilex 

This species favours the southern aspect of the volcano where it appears after 

about 100 years and gradually increases in abundance (Fig 2.24a) to an average 

level of 14 per 400m2quadrat in the oldest site investigated (1444, 556 years old). 

It is rare in the north and east chronosequences (Fig 2.24 b and c) and absent from 

the western sites examined. (Fig 2.24d). As shown on Fig 2.25a the percentage 

cover of this species has reached nearly 100% by the end of the southern 

chronosequence and the area is a dominant Q.ilex woodland. 

Quercus pubescens 

In contrast to Q. ilex (the other oak species found on Etna) Q.pubescens clearly 

favours the east aspect of the volcano where it has achieved almost total 

dominance after only 311 years (1689 lava flow) averaging 13 per 400m2 (Fig 

2.26c) and nearly 100% cover (Fig 2.27c). Although present on the north and 

south chronosequences its abundance is low «3 per 400m2) and it is totally absent 

from the two western sites (Fig 2.26d). It does reach a percentage cover of 20% 

on the southern chronosequence after 364 years (Fig 2.27a) and at this time is co­

dominant with Q.ilex which has 40% cover during the same period (Fig 2.25a). 

However, after this point it declines in abundance and Q.ilex becomes totally 

dominant. 
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2.3.3 	 The abundance and percentage cover of nine primary coionising 

species over a range of altitudes on the south aspect of Etna 

Centranthus ruber 

G.ruber is abundant on the lower altitudes of the nineteenth century lava flow 

(1886) attaining 10 per 400m2 at lOOOm (Fig 2.28a blue line). As altitude 

increases this abundance declines to a level of 2 per 400m2 by 1500m. In 

contrast, on the seventeenth century lava flow (1634) it has highest abundance 15 

per 400m2 at an altitude of 1250m (Fig 2.28a green line). This trend is repeated in 

the graph of percentage cover (Fig 2.28b). 

Rumex scutatus 

Clearly from the data (Fig 2.29) R.scutatus favours the younger lava flow - as it 

has a higher abundance at all altitudes on the 1886 flow than on the 1634. Species 

abundance and percentage cover remain constant with altitude on the seventeenth 

century lava flow (1634 flow - green line - Fig 2.29a and 2.29b). However, there 

is a drop in the percentage cover of R.scutatus from its peak. value of 5% at 

lOOOm to 2% on the higher 1500rn site on the younger flows (Fig 2.29b) 

Helichrysum italicum 

This species clearly favours the higher altitudes of the south aspect of Etna. Both 

lava flows show an increase in abundance and percentage cover (Fig 2.30a and b) 

with increasing altitude. On the seventeenth century flow this rises from 0 on the 

lOOOm site to 12 per 400m2 quadrat at 1500m. During the same period the 

nineteenth century flow rises from 1.5 per 400m2 at lOOOm to 7 at 1500m. This 

trend is repeated in the species percentage cover (Fig 2.30b). 
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Isatis tinctoria 

This species abundance and percentage cover remains constant on the 1886 flow 

with changing altitude (Fig 2.31 a and 2.31 b). In contrast, the seventeenth century 

flow (1 634 green line) shows a large increase in abundance and percentage cover 

with altitude. I.tinctoria, rises from a low density of I per 400m2 at 7S0m to more 

than 20 at ISOOm altitude (Fig 2.31a) and a rise from less than 1% to 3% cover 

(Fig 2.31 b) over the same altitude change. This is a small plant so a change of 

cover of this size is quite significant. 

Senecio bicolor 

This species' abundance and cover changes with altitude and clearly favours the 

mid range al titude sites on the nineteenth century lava flow. Here, it shows peak 

abundance at 1000m (Fig 2.32a) with just under 6 per 400m2 before declining 

gradually on the higher altitudes. On the seventeenth century flow (green line ­

Fig 2.32a) it shows low abundance on the lowest altitude sites and peaks at 

12S0m. (4 per 400m2
) this trend is repeated in the species percentage cover (Fig 

2.33b) 

Genista aetnensis 

This species abundance remains constant on the 1886 flow with changing altitude 

(Fig 2.33a) however its percentage cover drops over the same range - from 23% 

at 7S0m to less than 10 on the 12S0 and IS00m sites (Fig 2.33b). This clearly 

shows that the species has grown well on the lower sites and is growing more 

slowly on the upper slopes. In contrast, the seventeenth century flow (1634 green 

line) shows a large increase in abundance and percentage cover with altitude. 

Rising from a low density of 2.S per 400m2 at 7S0m to more than IS at lS00m 

altitude (Fig 2.33a) and a rise from 10% to SS % cover over the same altitude 

range (Fig 2.33b). Clearly the species takes a while to colonise the younger flows 

on which it grows well at the lower al titudes. 
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Spartium j unceum 

This species is absent on the younger nineteenth century flow (Fig 2.34a). On the 

seventeenth century flow (1634) S.junceum shows a sharp drop in abundance with 

altitude. It is very common on the lowest altitude (750m, density of 11 per 400m2 

quadrat and 30% cover). After which it declines to a low level on the 1000m flow 

(density of 1 per 400m2 quadrat and 2% cover Fig 2.34a and b). It is absent from 

the higher altitudes. 

Quercus ilex 

This species is present on the lowest altitude measured (750m) on the nineteenth 

century fl ow (1 886) after which it declines and is absent from the higher altitude 

sites (Fig 2.35a). In contrast, on the seventeenth century flo w 1634 it is absent on 

the lowest site (750m) but is common on the 1000m and 1250m. This species 

clearly favours the 1000m altitude on this age lava flow as it reaches a level of 

47% cover (Fig 2.35b) before declining with higher alti tude. 

Quercus pubescens 

This species is absent on the younger nineteenth century fl ow (Fig 2.36a). On the 

seventeen th century flow (1634) Q.pubescens shows a sharp drop in abundance 

with altitude after 1000m. This is reflected in the percentage cover where it has 

achieved 20% on the 1000m fl ow but is virtually undetectable on the higher 

altitudes (Fig 2.36b) 

These data for each speCIes over the different altitudes and aspects of Etna 

correlated with environmental data and the numerous links between species 

abu ndance/percentage cover and the environmental conditions can be seen in the 

correlation tables in the appendix. 
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2.3.4. Impact of the edge effect 

On the 1928 east lava flow there is a link between the distance from the 

edge of the flow and the abu ndance of the species growing on the lava. The data 

from the four SOm transects were combined and a sum of each species per Sm 

length was gained. These data were then plotted on a bar graph. Each species 

showed a similar trend in the shape of the graphs with an ini tially high abundance, 

which declined with distance from the edge (Fig 2.36) 

R.scutatus extended furthest onto the lava flow and was found in each of 

the Sm sections . However, after ISm its density had dropped to a consistent level 

of approximately three individuals per Sm segment (Fig 2.36.b). Cruber (Fig 

2.36a) and Umbilicus rupestris (Fig 2.36c) also show a sharp decline in frequency 

with distance from the edge, afte r which they become occasional on the lava flow. 

The initial lower amount found in the first O-Sm segment fro m the edge of 

the flow for R. scutatus and C ruber is probably a facto r of slope at the edge of the 

flow . Where the two flows adjoin the younger flow has covered the older - and 

consequently the levee is steep. 
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2.4. Discussion 

These results show that on the chronosequences on three aspects of the 

volcano the species diversity present on the lava flows is characterised by two 

phases. During the first phase (0-150 years) there is a rapid colonisation of the 

lava flows with a high rate of increase in the species diversity over time. Once 

this initial period of colonisation has ended, a slower period of succession occurs 

whereby species are replaced as the changing conditions allow new species to 

enter the area which then competitively exclude other species. Despite the loss of 

some species, this second phase also shows a steady rise in species diversity over 

time, which probably continues long past the length of the chronosequences 

studied in this experiment. Given the nature of this study only the commonest 

species in an area would be observed and only at specific times of the year, so 

undoubtedly the true diversity of each site is much higher than shown here. In 

addition, as the ecosystem becomes richer in nutrients it will support more 

species, given that symbiotic relationships will form (Hobbie et al 2000) allowing 

more species to interact. 

This rate of increase in diversity varies significantly between the three 

aspects. This can be illustrated on the east aspect of Etna. Here, the number of 

species increases so rapidly in the early stages that by 150 years it has double the 

number of vascular plant species present (35) that occur on similarly aged lava 

flows on the north and south aspects of Etna. There are several factors, which 

may account for this: 

1) Climate:- The higher precipitation and more favourable temperatures in the 

east (Fig 1.7) will aid plant growth. Cloud formation in the afternoon 

produces a much cooler environment in the summer than that found on the 

other three aspects of Etna. This can be seen especially in comparison with 

the dry west. 

2) 	 Tephra:· Deposits of tephra can be found all around the volcano but are 

mainly found in the east aspect, as the prevailing wind blows most of the fine 

ash and tapilli from the summit in an easterly direction. This tephra 
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contributes nutrients and a fine particulate structure to the precursor soil 

increasing water retention and providing a matrix for the roots to grow in 

(Kent et aI2001). 

From the species data there are three distinct groups of plants occupying 

the recent (0-500 year old) lava flows of Mt.Etna. These groups appear to occupy 

different time periods of the chronosequence (although there is a great deal of 

overlap where these species meet). The first group are the earliest pioneers / 

colonisers characterised by C.ruber, /.tinctoria, R.scutatus, S.bicolor and 

H.italicum. These five species are the earliest vascular colonisers on the lava and 

quickly achieve high abundance and percentage cover before gradually declining 

due to competition with other plant species. Of this group the three species; 

R.scutatus, C.ruber and l.tinctoria survive over a wide range of ages of lava (50­

450 years on the south). However, they are reduced in abundance and superseded 

by the second group of mid-range species that appear to be slower colonisers 

(partly due to slower seed dispersal and partly the longer generation time as these 

take longer to produce seeds). These species are characterised by G.aetnensis and 

S.junceum (which appear early in the colonisation but with a low abundance). 

However, as age increases the size of these early colonising woody plant species, 

can have a significant impact on the overall diversity of flora on the lava flows. 

For instance a G.aetnensis shrub growing on a young (1910) lava flow may act as 

a diversity hotspot by creating shade and producing leaf litter as nutrient source. 

This increases the overall diversity and speeds further plant colonisation as these 

shrubs act as a spreading centre of diversity and colonisation (Certini et al 2001). 

These two species dominate the lava flows with their high percentage cover. In 

the case of S.junceum by up to 20% cover after 300-400 years on the north and 

south chronosequences and 30% cover on the east at 100 years. G.aetnensis has 

an even greater effect by averaging 20% of the cover on the south chronosequence 

from 100-450 years. However, both of these species decline after the 450 year old 

mark, as a result of competition with the third group of colonisers - the deciduous 

trees. These trees are characterised by the two oak trees, Q.ilex and Q.puhescens. 

By the end of the age range of the chronosequences covered by this study the oak 
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speCIes have risen to dominant status. However, Q.ilex dominates the south 

aspect and Q.pubescens the east, which by 300 years has produced a large oak 

forest with a high abundance (averaging 14 in a 400m2 quadrat) and percentage 

cover (90%). 

2.4.1. Change of species with aspect 

Each of the nine commonest specIes observed on Etna has specific 

requirements / preferences in order to survive in an area. For example, the early 

pioneer species S.bicolor clearly shows a preference for the early (50-150 year 

old) lava flows of the south aspect of the volcano (Figs 2.18 and 2.19) where it 

achieves an abundance of 17m-2. In contrast, it is rare on the north and east 

chronosequences. This could be caused by the different climates zones located 

around the volcano or specific nutrient requirements of each species. Seedling 

survivorship will be specific to each species nutrient needs and the sites ability to 

supply those needs (Del Moral 1993; Tsuyuzaki et a11997) 

Sjunceum clearly shows the increased rate of colonisation on the east 

aspect of the volcano. On the north chronosequence it increases gradually from 0 

- 360 years before declining. However on the east aspect it reaches its maximum 

abundance (6 per 400m2) after just 135 years and then declines and is superseded 

by the oak species Q.pubescens (as confirmed by Poli et al 1981). The diversity 

and cover of the plant species present on Etna is very complex as the changing 

conditions of the succession create a zonation of species into specific regions of 

the volcano (Eggler 1959; Poli et aI1981). For example H.italicum grows well on 

the north and south chronosequence but not on the east (Fig 2.14 and 2.15). 

71 




Chapter 2 Michael Carpenter 

2.4.2. The change of species with altitude 

There is clearly species change occurring with altitude, but this is also 

being affected by the age of the flow. In most of the nine species shown here 

there is a distinct pattern of spread, as species colonise the lower altitudes first 

before spreading over time further up the lava flow. This difference in species 

abundance at different altitudes may be due to changes in nutrient availability 

caused by the different climatic conditions (Austin and Vitousek 1998). This 

causes an effect similar to the chronosequence itself as colder conditions at higher 

altitudes slow the succession (Aplet and Vitousek 1994). As new species enter 

the system they too colonise the lava flow from the bottom - out-competing and 

replacing the other species, before spreading up the slope. This leads to 

heterogeneity on the lava flows with altitude. 

This is demonstrated when comparing G.aetnensis (Fig 2.33) and the two 

oak species Q.ilex and Q.pubescens. On the younger lava flow (1886) Genista 

has quickly grown on the lower altitude of 750m (over 20% cover) but declines 

steadily with altitude - during the same period Q.ilex has only appeared on the 

lowest altitude site (750m Fig 2.35a) and Q.pubescens has yet to appear on the 

flow. In contrast on the older lava flow (1634) G.aetnensis has declined in its 

cover of the lower altitudes (less than 10%) but its peak abundance and cover has 

now moved up the lava such that it covers over 50% at 1500m. However, Q.ilex 

and Q.pubescens have now become common on the lower slopes and covers over 

47% and 20% respectively at an altitude of 1000m (Fig 2.35 and 2.36). In effect, 

G.aetnensis has been replaced by the oaks at this stage in the succession. 

2.4.3. The edge effect 

The experiments on the edge effect undertaken on MLEtna demonstrate 

the need for selecting sites far from the edge of the flow in order to obtain 
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information on a typical site on a particular lava flow. This was one of the 

reasons why a standard distance of SOm was always chosen in site selection. The 

gradual encroachment of some species from the edge (e.g. R.scutatus Fig 2.36) 

and the sudden appearance of others simultaneously all over the lava (e.g. the 

lichen Stereocaulon vesuvianum) causes heterogeneity in the vegetation of any 

particular area of a flow depending on the distance from the edge. As distance 

increases diversity declines and eventually becomes relatively stable (given that 

minor topographical features may cause fluctuations in species diversity) as 

demonstrated by R.scutatus (Fig 2.37). In addition, the same can be said of the 

presence of dagalas on the lava flows. The presence of a small patch of an old, 

diversity rich area in the middle of a barren young lava will have a significant 

impact as a 'spreading centre' of colonisation both as a source of nutrients 

(biomass) and a seed pool. Both the edges of a flow and dagalas aid colonisation 

in several ways: 

1) 	 By producing biomass (e.g. leaf litter) to form a precursor soil. 

2) 	 By producing vegetative colonists (runners and stolons) which can encroach 

from the edges whereby the plant can deposit a new plant in a specific area 

and continue to support it from a nutrient rich area until it is big enough to 

support itself. 

3) 	 Production of seeds which will colonise the new lava. 

4) 	 By supporting an animal population which will cross between edges / dagalas 

and in so doing spread seeds across the intervening distance and also (by 

defecation), deposit biomass of a relatively high nutritional content onto the 

lava flow. 
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Chapter 3: Nitrate Reductase as an indicator of 

plant succession 

3.1. Introduction 

Nitrogen is a vital element for life. As the soil nutrient required in the 

largest quantities, it contributes between 1 and 3% of the total dry mass of higher 

plants (Lee and Stewart 1978) compared to carbon which is sourced from the 

atmosphere and which contributes 40% (Beevers and Hageman 1969). It has been 

estimated that on a world-wide scale, 200 billion tonnes of carbon are fixed 

annually by photosynthetic processes. On the basis of approximate analysis, this 

would require the assimilation of 10 billion tonnes of nitrogen (Beevers and 

Hageman 1969). Comprising nearly 80% of the atmosphere, nitrogen is fixed by 

prokaryotic organisms existing either symbiotically within plants (nitrogen fixing 

plants or lichen) or free-living within the soil matrix. These organisms reduce 

atmospheric nitrogen (N2), to form ammonia (NH3) by adding electrons and 

hydrogen ions (Campbell 1993). They catalyse the reaction using an enzyme 

complex called nitrogenase. In soil solution, the ammonia picks up another 

hydrogen ion to form ammonium (NH4+), which some plants can absorb. 

However, plants usually acquire nitrogen in the form of nitrate (N03-). This 

nitrate is produced in the soil by nitrifying bacteria that oxidise ammonium 

(Campbell 1993). Apart from those species that utilise symbiotic nitrogen fixing 

bacteria, the bulk of plant nitrogen arises from the reduction of nitrate from the 

soil. Under natural conditions, this inorganic form of nitrogen, occurs at 

concentrations of 1 mol m-3 or less in the interstitial water of soils, although in 

arid areas greater levels may build up (Andrews 1986). In agricultural soils, 

nitrate concentration can be as high as 20 mol m-3 because of the addition of N 

fertiliser. 
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As a result of its importance for plant growth, changes in available 

nitrogen over successional time can have implications for ecosystem development 

over a chronosequence. So methods of detecting nitrogen change over time are of 

inestimable value in this project to study ecosystem change. Therefore this 

chapter is entirely devoted to the use of nitrate reductase to detect these changes at 

an ecosystem level which will then be compared with more traditional methods of 

soil and foliar nutrient analysis outlined in the next chapter. 

3.1.1. Nitrate reductase as a successional indicator 

A characteristic feature of nitrate metabolism in higher plants is its 

susceptibility to a range of environmental conditions. It has been established that 

light, drought, mineral nutrition, and plant age all influence the capacity of nitrate 

reduction (as shall be demonstrated in the following sections). In most of these 

cases it appears that the control of nitrate reduction is mediated by the regulation 

of nitrate reductase. This is a logical conclusion since it is a) the first enzyme in 

the pathway; b) the rate limiting step; c) substrate dependent; d) relatively unstable 

(high turnover rate). In addition, the toxic effects of excess levels of nitrite and 

ammonium ions also indicate the desirability of regulating their production. As a 

result, nitrate reductase should make an excellent indicator of available nitrate at a 

set time - as well as how that system may vary under slightly different 

environmental conditions (e.g. brought about by changes in altitude). Hence, this 

should make it an extremely useful tool in determining changes in nitrogen 

availability over successional time over a range of conditions as are found on the 

lava fields of Mt.Etna. 

3.1.2. Function of Nitrate reductase 

Within the plant, nitrate must first be reduced to ammonium before being 

assimilated into amino acids (Beevers and Hageman 1969). This reaction takes 
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place in several stages. Firstly the nitrate is actively transported into root cells 

(Lee and Stewart 1978) and is then either reduced in the root or transported to the 

shoot where it is reduced in the leaves (Andrews 1986). The reduction of nitrate 

to ammonia within the cell occurs in two steps, catalysed by the enzymes nitrate 

reductase (NR) and nitrite reductase (NiR) (Crawford et al 1992) as shown below 

NR NiR 


N03- ---7 N02- ---7 NH/ 


The process converts nitrate into nitrite as a stable free intermediate and 

ammonium as a stable end-product and involves the utilisation of NADH and 

reduced ferredoxin in the donation of eight electrons per molecule of ammonium 

formed (Hewitt et al 1979). Incorporation of the ammonium into amino acids is 

carried out by the glutamine synthetase-glutamate synthase pathway (Pelsey and 

Caboche 1992). Nitrate reduction takes place in the cytosol, whereas nitrite 

reduction and ammonia fixation occur in the chloroplast. This entire set of 

enzymes and reactions is referred to as the nitrate assimilation pathway (Crawford 

et al1992). 

The first step in the conversion of nitrate to ammonia is thought to playa 

key role in nitrate assimilation by controlling the flux of nitrate through the 

pathway. In other words, nitrate reduction is the rate determining step in the 

nitrate assimilation pathway within the cell. The main evidence for this claim is 

that nitrate fed plants seldom accumulate an excess of either nitrite or ammonia 

(Lee and Stewart 1978). 
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3.1.3. Structure and enzymology of Nitrate reductase 

Due to intensive biochemical and molecular studies of nitrate reductase, 

much has been learned about its structure and enzymatic properties (Crawford and 

Glass 1998; Campbell 1996; Pelsy and Caboche 1992; Campbell and Remmler 

1986). The enzyme shows considerable variation between species in its size and 

genetic structure but all show the same basic features. A standard model as 

constructed by Notton and Hewitt (1979), and Crawford et al (1992) shows that 

the enzyme consists of three distinct structures. To quote Crawford et al (1992 

p378): "The enzyme is a homodimer of 100-110 kDa subunits. Each subunit is 

thought to be further divided into three distinct domains, which serve as redox 

centres. A subunit of NR contains Flavin Adenine Dinucleotide (FAD), a heme­

Fe and a molybdenum pterin cofactor (MoCo)." These groups are the redox 

centres that catalyse the transfer of electrons from NADH or NADPH to nitrate, in 

order to form ammonium. 

In addition, one of the features of this enzyme is that it can exist in two 

stable forms, one active and one inactive and that their mutual interconversion is 

governed by an oxidation-reduction mechanism. Under reducing conditions the 

active form is converted into the inactive one. The inactive form recovers its 

original activity when incubated with ferricyanide (Aparicio and Maldonado 

1979). 

3.1.4. Location of nitrate assimilation 

Almost all tissues of higher plants have or are capable of synthesising the 

complement of enzymes necessary to assimilate nitrate (Andrews 1986; Smirnoff 

et a11984; Lee and Stewart 1978; Beevers and Hageman 1969) although there are 

a few notable exceptions like the Erica spp which do not possess nitrate reductase. 

Evidence regarding the sites of nitrate assimilation can be found by two 
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approaches: analyses of the enzymatic composition of root and shoot tissues and 

analyses of the nitrogenous compounds exported by the root. Species exhibit 

marked differences as regards the sites of nitrate assimilation and two groups can 

be recognised. There are those in which assimilation is restricted to the shoot, 

particularly the leaves. Plants such as Borago spp. and Xanthium pensylvanicum 

(Lee and Stewart 1978) are characteristic of this group. In these species the xylem 

sap contains 95-99% of its nitrogen in the form of nitrate ions (indicating that it is 

being transported from the roots and has not been converted to ammonium or 

amino acids), and no NR is measurable in the roots (Lee and Stewart 1978). The 

other group consists of plants where assimilation is carried out in the roots. For 

example Lupinus and Vicia, (Andrews 1986) and Picea rubens (Yandow and 

Klein 1986). The majority of plants studied show a pattern intermediate between 

these two extremes. In these, both root and shoot tissues have appreciable levels 

of NR and the xylem sap contains free nitrate and organic nitrogen (Lee and 

Stewart 1978). 

On the basis of such studies it has been proposed that plants relying on 

shoot nitrate assimilation have a low capacity for root nitrate reduction. There has 

been no widespread correlation between the predominance of one particular form 

and the environment in which it is situated, but it has been proposed that in many 

species - especially the Leguminosae and other species, temperate species carry 

out most of their nitrate assimilation in the root while tropical species use their 

leaves (Andrews 1986). From an energetic viewpoint, it is thought that photon 

and water economy benefits can be gained in light photon flux density (PFD) 

environments by carrying out photoreduction of nitrate in the leaves or stems as 

opposed to respiratory driven reduction in the roots. This would explain the 

predominance of shoot NR activity in tropical species - but causes confusion 

concerning the temperate species. Andrews (1986) proposed the explanation that 

although shoot assimilation is an advantage in high PFD environments, it is a 

disadvantage in low temperatures. He supports this with evidence of work on a 

cold-sensitive normally spring-sown cultivar of Vicia faba L. and an 
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overwintering cold-tolerant variety. When the two cultivars are grown together 

both the distribution of NRA between root and shoot and xylem sap: reduced N 

indicate that the proportion of nitrate assimilation is greater in the cold sensitive 

cultivar than in the cold tolerant. However, when the cold tolerant cultivar is 

given nitrate and 'forced' to transport nitrate to the shoot, it too shows low 

temperature stress effects - indicating that decreased shoot assimilation may be a 

factor in low temperature tolerance (Andrews 1986). 

3.1.5. Diurnal variation in activity 

The level of NR in leaf tissue varies diurnally and is influenced by the 

intensity of the illumination (Wyn-Jones and Sheard 1979; Canvin and Atkins 

1974; Beevers and Hageman 1969). Extracts from plants exposed to increasing 

periods of darkness show a progressive decrease in nitrate reducing ability (even 

when adequate electron donors are present in the medium) which is restored on 

subsequent illumination (Beevers and Hageman 1969). However, there is no 

variation in the rate of nitrate uptake from the soil over the diurnal/nocturnal cycle 

as was proved by Rufty et al (1984). The nitrate then accumulates in the root. A 

large portion of the nitrate, retained in the root in darkness, is translocated and 

incorporated, into insoluble reduced-N in the shoot, in the following light period. 

The amount of nitrate assimilated during the light period exceeds the amount of 

exogenous nitrate acquired from the soil (Rufty et al 1984). In this way the 

maximum amount of nitrate is assimilated in the stem during the light period, 

utilising nitrate taken up the night before. 

Although the mechanisms involved in the link between nitrate assimilation 

and the diurnal cycle remain unclear, several hypotheses have been proposed. As 

nitrate assimilation correlates to C02 assimilation (Geiger et a11998; Steer 1973) 

an indirect control by photosynthesis has been suggested. The flow of carbon 

compounds from the shoots might regulate nitrate uptake, an ATP-dependent 

process, through root respiration. Diurnal root respiration seems closely related to 
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nitrate uptake rate (Cardenas-Navarro et al 1998). As nitrate reduction in woody 

plants is mostly a photosynthetic process, other hypotheses are based on a control 

of nitrate uptake either by some assimilation products, or by plant nitrate content 

itself. Exogenous supply of amino acids or malate, a nitrate assimilation by­

product, depress and stimulate nitrate uptake, respectively (Cardenas-Navarro et al 

1998). However, during the diurnal cycle or following nutritional treatments, 

reports of correlation between root amino acid content and nitrate uptake are 

conflicting, and malate production is not specific to nitrogen metabolism. 

However, at present these are still only hypotheses, (if backed by 

circumstantial evidence). It is probably not justified to see any single kind of 

plant-light interaction as defining the total relationship between white light and 

nitrate assimilation (Wyn-Jones and Sheard 1979). Only the barest outline of this 

relationship is currently available. 

3.1.6. The effect of drought 

Studies on the effects of drought on NR activity have clearly shown, that 

enzyme activity decreases under rapidly applied water deficits, (Foyer et al 1998; 

Smirnoff et al 1985; Rajagopal et al 1977). This decrease can be extremely 

significant to the activity of NR in the plant. For example, Smirnoff et al (1985) 

observed a 30 - 85% loss of NR over 6 days of water stress in barley (Hordenum 

vulgare) and duram wheat (Triticum durum). This can also be demonstrated in 

maize (Shaner and Boyer 1976). Foyer et al (1998) noted that foliar NR activity 

in maize leaves decreased to less than 10% of the original maximal after 7 days of 

water deprivation. The decrease has also been demonstrated in field grown plants, 

since Rajagopal et al (1977) found crops of wheat grown under drought conditions 

had lower activities than those grown with irrigation. This is significant since in 

laboratory experiments small soil volumes can lead to rapid development of stress 

over a period of days, whereas field grown plants have a much larger volume of 
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soil with a greater capacity for water retention and hence stress develops slowly 

over the growing season (Smirnoff et al 1985). 

Nitrate reductase activity recovers quickly once water is restored - which 

can be important in mediterranean climates where periods of drought are common. 

Maximal extractable NR activity recovered in Maize (Foyer et al 1998) when 

water was restored three days into the experiment. Similar results were found by 

Shaner and Boyer (1976), who showed an 80% recovery subsequent to water 

restoration. Drought induces complex changes in C and N metabolism from water 

deficits and from modifications in the availability of nutrients. This has the knock 

on effect of reducing protein synthesis and hence NR production. In consequence, 

while the rate of enzyme degradation remains constant, the rate of production 

falls, causing an overall decrease (Shaner and Boyer 1976). This reduced rate of 

protein synthesis may be the result of a direct effect of the water potential within 

the plant, or indirectly from an alteration in the signals that in tum control 

synthesis. The first alternative has been proved in maize (Shaner and Boyer 

1976). 

It is worth noting at this point that NR activity in young leaves varies little 

under stress conditions, and it is the older leaves that show a marked decrease. 

This suggests a link between NR activity and increased senescence caused by the 

water deficit (Smirnoff et al 1985). 
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3.1.7. Substrate induction 

Evidence that nitrate reductase is inducible, (i.e. production is stimulated 

by addition of nitrate) has been produced by many workers (Min et al 1998; 

Imsande and Touraine 1994; Hofstra et al 1985; Shaner and Boyer 1976). One 

thing that quickly becomes clear, is that different levels of nitrate are required for 

optimum induction in different species and in some cases high concentrations are 

needed (Beevers and Hageman 1969). These differences almost certainly relate to 

differences in rate of uptake. For example in the trembling aspen, (Populus 

tremuloides Michx.) optimum NR activity is achieved 12h after exposure to 

nitrate around the roots. Whereas in the lodgepole pine (Pinus contorta Dougl.) 

optimum activity does not occur until 4 days later (Min et al 1998). Shaner and 

Boyer (1976) took this one step further when they first lowered, then restored, 

nitrate to maize plants (Zea mays L.) kept under controlled conditions. These 

plants showed a marked decline in NR activity, but quickly recovered once the 

nitrate was restored. This rapid recovery allows plants to quickly assimilate 

nitrate when it becomes available, since this element is usually limiting to plant 

growth (Imsande and Touraine 1994). 

82 




Chapter 3 Michael Carpenter 

3.2. Methods 

During the course of this investigation various methods have been used to 

determine nitrate reductase activity change over successional time - in order to:­

1) test the sensitivity of the enzyme to changes in the ecosystem properties 

(environment and nutrient availability). 2) refine the experimental procedure for 

field work. 3) to compare the field results with those taken from simulated 

environmental conditions in the laboratory, in order to show that NR activity is a 

good determination of successional change and not merely random or due to other 

factors. In addition, to find out which particular factor of ecosystem change has 

the greatest effect on NR activity. 

3.2.1. Species selection 

In order to trace variation in NR activity over time on Mt.Etna, it was 

necessary to select species that are represented over a long period of successional 

time, starting at the earliest possible phase of colonisation. In addition, these 

plants would have to produce an easily measurable amount of nitrate reductase. 

The first factor limited the plant selection to seven species: Centranthus ruber, 

Rumex scutatus, Helichrysum italicum, Genista aetnensis, Senecio bicolor, 

Linaria purpurea and Echium vulgare. Of these species, both E. vulgare and 

L.purpurea are small plants of low abundance and biomass. G.aetnensis is a 

leguminous tree with tiny leaves utilising photosynthetic stems - and hence was 

unlikely to contain nitrate reductase. This was inferred by preliminary testing of a 

similar Genista species prior to the field trip to Sicily. This testing also confirmed 

the presence of easily measurable amounts of NR within C.ruber, which is 

commonly found in Britain. Time constraints and preliminary testing of some of 

the species for nitrate reductase activity once in Sicily, indicated that two of the 

species - C.ruber, and R.scutatus, were both abundant enough and produced 

enough leaves, to enable harvesting of some leaves without causing damage to the 
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plants in an area. Both species are primary colonisers of the lava and continue to 

thrive for many hundreds of years until shading by Genista and competition with 

other species reduces the population. In addition, both species produce large 

quantities of nitrate reductase in their leaves. 

Both R.scutatus and Cruber are the first colonisers of aa lava in any great 

abundance. These species commonly co-occur in clumps on the lava - although it 

is unknown if this is due to a scarcity of sites for colonisation or due to a 

symbiotic relationship. It may well be a combination of both, since there does not 

appear to be any competition between the species with both members in a clump 

growing extremely vigorously. 

3.2.2. 	 Nitrate reductase activity in plant leaves of pre-watered and nitrate 

treated plants on the northern chronosequence 

A chronosequence of sites was selected on the northern aspect of the 

volcano, ranging from 52 to 463 years old. These consisted of flows erupted in: 

1947, 1923, 1879, 1809, 1646, 1614-24, 1566 and 1536 (Fig 2.3 for site 

locations). Map grid references for all the sites studied can be seen in the 

appendix. Each site was located at an altitude of 1000m, using the same 

parameters of topography, distance from the edge of flow and lava morphology as 

outlined in 2.2.1. On each site, a number of clumps of Cruber and R.scutatus 

were selected (each clump roughly 0.5m x 0.5m). One group of clumps was then 

watered with IL of 5mol Nitrate and another with lL of water. Both induce 

nitrate reductase activity in the plants, but the addition of nitrate induces higher 

levels. After two days samples consisting of the top two leaves (the youngest) 

were taken from each species and amalgamated to form an average representation 

of each site. These leaves were then taken and analysed using a variation of the 

method described in Stewart and Orebamjo (1979). 
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Leaf tissue was cut into 1-2mm strips, 400mg was then taken and 

incubated at 25°C in the dark, under a vacuum, in 10ml of the following assay 

medium: 100 mol potassium phosphate buffer, pH 7.5 containing 75 mol m-3 

potassium nitrate and 1 % propanol. Incubation lasted 45 minutes after which 4ml 

of the assay mix was taken and mixed with 4 ml of Sulphanilic acid (1 % 

Sulphanilic acid in 3 M Hel) and 4 ml of 0.02% Napthyl ethylene diamine 

hydrochloride (NED) (Stewart and Orebamjo 1979). The subsequent colour 

change after 20 minutes was measured at 540nm, using a Hatch DR/2000 

spectrophotometer. Four replicates were taken of each species from which an 

average and standard error was determined. 

The results were compared to a standard of sodium nitrite in the 1-100 

nmol range, to determine the amount of nitrite formed as a result of enzyme 

activity. This value was then converted into the amount of nitrite in nmol formed 

per gram of fresh weight of leaves per hour (nmol GFW- 1 h -I) to give a standard 

format of readings for comparison between sites. 

A second experiment compared samples taken from plant clumps of both 

species on the 1879 flow. These plants, taken from both treatment types (nitrate 

and water), were compared to leaves of untreated 'natural condition' plants to 

determine the effect of the treatments on the plants to determine how necessary it 

is to treat the plants before sampling. 

3.2.3. Nitrate reductase activity in plants on the two chronosequences 

A series of sites were selected on the southern aspect of the volcano, 

ranging from 89 to -566 years old. These consisted of flows deposited in: 1910, 

1886, 1766, 1634, 1537, and 1444 (Fig 2.4). Map grid references for all the sites 

studied can be seen in the appendix. Each site was located at an altitude of 

1000m, using the same parameters of topography, distance from the edge of flow 

and lava morphology as outlined in 2.2.1. At each site, leaf samples of C.ruber 
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and R.scutatus were taken from plants using the same method outlined in 3.2.2. 

with the exception that none of the plants was pre-watered or given additional 

nitrate - from this, measurements of NR activity of plants in their natural state 

were taken. These samples were amalgamated and analysed using the same 

method in 3.2.2. This experiment was repeated on two separate occasions at two 

different times of the year; once in the autumn (29 th October - 2nd November 

1999) and once in the spring (May 2000). In addition, the northern 

chronosequence was sampled again using this method at the same time of the year 

(May 2000) in order to directly compare the two chronosequences. 

3.2.4. 	 Nitrate reductase activity in plants from the four aspects of the 

volcano from two different aged lava flows 

Two lava flows were selected on each of the four aspects of the volcano. 

These lavas were selected for comparable age - one nineteenth century (approx. 

1850) and one seventeenth century lava flow (approx. 1650) to test variation 

caused by aspect and age. The lavas selected were: 1879 and 1646 on the north 

aspect, 1865 and 1689 on the east aspect, 1886 and 1634 on the south aspect, and 

1843 and 1651 on the west side of Etna. Each site was selected using the same 

parameters of altitude, topography, distance from the edge of flow and lava 

morphology as outlined in 2.2.1. NR activity was measured using a variation of 

the method described in Stewart and Orebamjo (1979) as outlined in the field 

experiment 3.2.2. 

3.2.5. 	 Nitrate reductase activity in the leaves of plants taken from a range 

of altitudes 

Two lava flows on the southern aspect of Mt.Etna were selected - one 

from the 17th Century (1634) and one from the 19th Century (1882). At 250m 

intervals from 1500m down to 400m, leaves of the two target species were 
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gathered and analysed for NR activity using the method outlined in 3.2. The sites 

were located at 1500m, 1250m, 1000m, 750m and 400m (1634 lava flow) and 

1500m, 1250m, lOOOm, 800m (1892 lava flow). Each site was selected using the 

same parameters of topography, distance from the edge of flow and lava 

morphology as outlined in 2.2.1. NR activity was measured using a variation of 

the method described in Stewart and Orebamjo (1979) as outlined in the field 

experiment 3.2.2. 

3.2.6. 	 Laboratory nitrate reductase activity experiments - The effects of 

drought 

Twelve pots of R.scutatus were grown under artificial light under 

controlled conditions of 20°C day length 16 hours. These plants were well 

watered for three weeks and saturated with water at the start of the experiment, to 

the carrying capacity of the soil. At this point leaves were harvested from each 

pot and measured for NR activity and percentage water content. From this point 

on the plants were not watered and the pots allowed to dry out. Every seven days 

after this, leaves were harvested and analysed for NR activity, up until the plants 

died of water stress. Concurrently, measurements of soil water content were made 

by wet/dry weight samples (drying the soil at 70°C for three days and re-weighing) 

and by direct measurement using a moisture probe (theta meter) on the pots and a 

control pot. NR activity was measured using a variation of the method described 

in Stewart and Orebamjo (1979) as outlined in the field experiment 3.2.2. 
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3.2.7. 	 Laboratory nitrate reductase activity - plants under different 

Nitrogen treatments 

Twelve pots of R.scutatus were grown under artificial light under 

controlled conditions of 20°C day length 16 hours. These twelve pots were 

separated out into three experimental treatments. Four pots were used as a 

control and were watered once a week for a two month period with lL of distilled 

water only. Four pots were watered once a week with for a two month period with 

1 L of a 2.5 mol nitrate solution. Four pots were watered once a week with lL of 

a 5.0 mol nitrate solution over a two month period. After the two months leaves 

of each treatment were harvested from each pot and measured for NR activity. 

NR activity was measured using a variation of the method described in Stewart 

and Orebamjo (1979) as outlined in the field experiment 3.2.2. 
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3.3. Results 

3.3 .1 . Nitrate reductase activity in plant leaves of pre-watered and nitrate 

treated plants on the northern chronosequence (May 1999) 

The activity of nitrate reductase in the leaves of R.scutatus (Fig 3.1) and 

Cruber (Fig 3.2) varied considerably over the chronosequence, both between 

species and treatments. Increased activity was induced in both species as a result 

of adding nitrate to the plants (hence activity is consistently higher in nitrate fed 

plants as evidenced by the red line always being above the blue), but the extent of 

inductance varied depending on site. Both species showed maximum rates of 

inductance on the oldest sites (1535 and 1624 lava flows). 
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Figure 3. 1. Nitrate reductase activity in R.scutatus leaves from plants on the 

northern chronosequence, in both nitrate treated plants (red line) and water treated 

plants (blue line) (n=4,+I- S.E. ). 
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Figure 3.2. Nitrate reductase activity in the leaves of C. ruber on the northern 

chronosequence, in both nitrate treated plants (red line) and water treated plants 

(blue line)(n=4,+I- S.E.). 

In add ition, both species displayed a trend for high enzyme activity in the 

h- I younger flows (attaining 280 GFW-' in watered R.scutalus on the 1879 fl ow 

and 60 GFW-1 h-' in watered Cruber on the 1947 flow). This activity then 

declined with age between 200 and 300 years reaching a low point of 189 GFW-I 

h- ' in R.scutalus and 16.5 GFW I h- I in C ruber on the 1646 flow. After this point 

the enzyme act ivity rapidly increased again on the oldest sites attaining levels of 

290 GFW-I h- J in R.sculatus and 59 GFW-' h- ' in C ruber respectively. During the 

course of this experiment, it was decided to drop the results of the 1566 site as this 

lava flow was later reclassified as slabby pahoehoe morphological type. This 

occurred, as it is often difficult to discern the underlying lava morphology of the 

older flows and a definitive conclusion is only reached after more observation. 
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The second experiment to determine the effect of watering and nitrate 

treatment as compared to plants in their natural state showed that nitrate 

treatments induced a considerable increase in the NR activity of both plant 

species. R.scutatus gave an average of 377 GFW-I h-I in the nitrate treated plots 

against 280 GFW-I h-I in the water treated plants on the 1879 lava flow. However 

there was only a slight inducement of NR activity on the water treated plants as 

compared to the untreated 'natural ' plants, which averaged 258 GFW-I h-I (Fig. 

3.3). 

N itrate Water No Treatment 

Figure 3.3. Average nitrate reductase activi ty in the leaves of R.scutatus plants on 

the 1879 lava fl ow under three treatments : ni trate addition (red), water addition 

(blue) and no treatment control (green), (n=3 +/- S.E.). 
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Figure 3.4. Average nitrate reductase activity in the leaves of Cruber plants on 

the 1879 lava flow under three treatments - ni trate addition (red), water addition 

(blue) and No treatment (green) (n=3 +/- S.E.). 

Similarly, Crube r was induced to produce more NR act ivity in the nitrate 

treated plots with an average of 69 GFW- 1 h-I against 43 GFW-1 h- I in the water 

treated plants on the 1879 lava flow. However there was no inducement of NR 

activity on the water treated plants as compared to the untreated ' natural' plants, 

which averaged 258 GFW-1 h- I (Fig. 3.4). 

As a result of these findings, that there was little effect of giving water to 

the plants in the field, it was decided to change the methodology for further field 

experiments to exclude treatments as this was logistically difficul t. By 

disconti nuing this method the number of sites was increased in the available time. 
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3.3.2 . Nitrate reductase activity in plants on the two chronosequences 

There is considerable variation in the activity of nitrate reductase on the 

lava flows of Mt. Etna. This can be seen clearly in the activity in the leaves of 

R.scutatus on the southern chronosequence in November 1999 (Fig 3.5). There is 

an initially low level of NR activity (230 GFW-I h-I
) which then drops sti ll further 

until it rapidly increases to reach a peak on the 1634 lava fl ow (366 y.o) of more 

than 450 GFW-I h- I
. 
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Figure 3.5. NR activity in the leaves of R.scutatus on the southern 

chronosequence of Mt.Etna, November 1999. (n=3, +I-SE). 

This pattern was repeated in the leaves of Cruber which initially dropped 

in activity from 86 GFW-l h-I on the 19 10 flow (89 y.o) to a low point of35 GFW 

I h- l before steadily increasing to reach a level of 130 GFW-I h- I on the 1537 lava 

flow (Fig 3.6). 
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Figure 3.6. NR activity in the leaves of Cruber on the southern chronosequence 

of Mt.Etna, November 1999. (n=3, +/-SE). 

However, the enzyme activity varied considerably when the experiment 

was repeated on the same sites in the foll owing springtime (May 2000). On this 

occasion the enzyme activity on the 1892 lava flow for both plant species was 
1 h-1 very high (341 GFW- and 103 GFW-1 h- 1 for R.scutatus and C ruber 

respectively) followed by a decl ine in enzyme activity and then a rise again (this 

is very clear on Fig. 3.8 and less so on Fig. 3.7) 
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Figure 3.7. NR activi ty in the leaves of R.scutatus on the southern 

chronosequence of Mt. Etna, May 2000. (n=3, +I-SE). 
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Figure 3.8. NR activity in the leaves of C ruber on the southern chronosequence 

of Mt.Etna, May 2000. (n=3, +I-SE). 
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In contrast, the north chronosequence shows much higher levels of NR 

activity throughout the age range of si tes (most of the R.seutatus sites averaging 

more than 300 GFW-' h- ' , Fig 3.9). The activity in R.seutatus also shows a much 

more distinctive change over time with the early peak in activity around 100 year 

old fl ows and the second rise occurring after 400 years. 
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Figure 3.9. NR activity in R.seutatus on the northern chronosequence of Mt.Etna, 

May 2000. (n=3, +I-SE). 

The activity 10 C. ruber on the northern chronosequence is also 

consistently higher than that found on the southern chronosequence. Here, most 

sites averaged over 140GFW-1 h- I (Fig 3.1 0) compared to less than 120 GFW-I h-' 

on the southern chronosequence taken at the same time (Fig 3.8). 

96 




Chapter 3 Michael Carpenter 

200 


180 


160 


140
:.co 
-

:s- 120 
Lt.. 
0 
0 100 

5 
~ 

80.!? 

"B
> 

60 

~ 

40 


20 


0 


0 100 200 300 400 500 

Age offtow (years) 

Figure 3. 10. NR activity in C. ruber on the northern chronosequence of Mt.Etna, 

May 2000. (n=3, +I-SE). 
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3.3.3 	 Nitrate reductase activity in plants from the four aspects of the 

volcano 

There is a marked difference in enzyme activity in the leaves of the two 

target spec ies on the different aspects of the Mt.Etna on lava flows of similar age 

and morphology. As Fig 3.11 shows, R.scutatus varies widely, with a peak in 

activity observed on the 1879 North fl ow (390 GFW- 1 h-1
) a decrease in activity on 

the south and west aspects (325 GFW-1 h-1
) and a low point on the east aspect of 

250 GFW- 1 h- 1
• This trend is almost exactly matched on the 1 i h Century lava 

flows (red bars) but at a consistently lower level (e.g. the peak value in the north is 

290 GFW-1 h- I) . 
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Figure 3.11. Nitrate reductase activity in the leaves of R.scutatus on the four 

aspects of the volcano, Mt.Etna. 
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Figure 3.12. Nitrate reductase activi ty in the leaves of eruber on the four aspects 

of the volcano , Mt.Etna. 

Activi ty in e ruber is slightly different, with both the eastern and western 

aspects producing higher readings on the older lava flows than in their northern 

and southern counterparts (Fig 3. 12) . 
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3.3.4 	 Nitrate reductase activity in the leaves of plants taken from a range 

of altitudes 

The average nitrate reductase activity In the leaves of the two target 

species varied with alti tude and with age. As altitude increases the enzyme 

activity in R.scutatus also increases. This can be clearly seen in F ig 3.1 3 where the 

activity on the 1634 lava flow gradually climbs from 190 to 300 GFW- I h-I (r2 

value = 0.932). The 1892 lava flow shows a similar trend but drops substantially 

between the al titudes of 1250m and 1500m. In addi tion, there is a consistent trend 

of higher activi ty on the younger lava flow. 
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Figure 3.13. Ni trate reductase activity in the leaves of R.scutatus over increasing 

alti tude on two lava flows (1634 red line, 1892 blue line). 
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However, this trend is only partially seen in Cruber where there is a very 

minor increase in NR activity with altitude (r2 = 0.2344) on the 1634 lava flow 

(fig 3.1 4). But the trend for higher activity on the younger (1 892) lava flow is 

clearly visible (hence the blue 1892 line is consistently above the 1634 red). 
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Figure 3. 14. Nitrate reductase activity in the leaves of C ruber over increasing 

alti tu de on two lava flows (1 634 red line, 1892 blue li ne). 
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3.3.5. Laboratory nitrate reductase activity experiment - The effects of 

drought 

During the course of th is experiment a range of readings were taken to 

show the effect of drought on Nitrate reductase activity on the species R.scutatus 

in order to compare with the fie ld responses and show the importance of this 

factor between the si tes on Etna. To observe the effects of drought many 

measurements of the physical changes in the plants and the growth medium (soil) 

were taken to establish the exact changes that occurred. The change in soil water 

content (taken as a percentage of mass lost after drying for 3 days at 70°C) over 

time can be seen in Fig 3.15. 
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Figure 3.15. Change in the percentage water content of the soil around R.scutatus 

plants calculated using loss of water after three days drying at 70°C. 
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This clearly shows a linear drop in soil water content with time. This is confirmed 

with the results from the theta moisture probe which show a similar drop in the 

amount of soil organic water content (Fig 3.16) and in the mi neral water content 

of the soil (Fig. 3. 17). 
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Figure 3. 16. Organic water content of the soil around Rumex plants taken using a 

theta meter (n=4 +/-S.E. ). 

However, during the course of the experiment, the nitrate reductase 

acti vity init ially remains constant at a level of about 100 nmol GFW -I h -I for the 

firs t week of the experiment, befo re slowly declin ing over the remaining time 

period of the experiment (Fig 3.18). 
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Figure 3.17. Mineral water content of the soil around R.scutatus over time of the 

drought experiment. (n=4 +/-S.E. ). 
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Figure 3.18. Nitrate reductase activity in the leaves of R.scutatus over the time 

frame of the experiment. (n=4 +/-S.E.). 
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This drop in NR activity after an initial 'plateaux' around 100 nmol GFW­

I h-I can be seen more readily when the NR activity and organic soil water content 

are plotted together (Fig 3.19). From this, it is clear that Nitrate reductase activity 

3remains constant in the leaves until the soil water content drops below 0.3 m3.m- . 
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Figure 3. 19. Change in ni trate reductase activi ty in the leaves of R.scutatus under 

increasing drought conditions. (n=4 +/-S.E.). 

In addition, the plant does its best to maintain the water content of the 

leaves for as long as possible, despite the drop in soil moisture. This can be seen 

in Fig 3.20. which clearly shows the plant maintaining leaf water content at more 

than 950/0 until more than 20 days into the experiment. From observation of the 

plant leaves, it does this by concentrating the water in the youngest / smallest 

leaves at the growth tips and allows the older leaves to droop and totally desiccate 

so that they fall off the plant. As a result the NR activi ty was measured only using 

these young leaves. 
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Figure 3.20. Percentage water content of the leaves of R.scutatus over time, under 

simulated drought conditions . 

3.3.6. Laboratory nitrate reductase activity - plants under different 

nitrogen treatments 

Plants grown in the laboratory under the three different treatments of 

nitrate showed a d ear difference in their ni trate reductase activity after a two 

month period. While the control plants showed a reading of about 100 nmol / 

GFW / hr both the nitrogen treated samples showed an increase in activity with 

the 2.5 mol treatment giving a reading of 235nmol / GFW / hr and the 5.0 mol 

treatment giving a 294nmol / GFW / hr respectively (Fig 3.21) 
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Figure 3.21. Nitrate reductase activi ty in leaves of R.scutalus grown under three 

treatments of nitrate. 
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3.4. 	 Discussion 

3.4.1. 	 Nitrate reductase activity in plant leaves of pre-watered and nitrate 

treated plants on the northern chronosequence. 

The high rates of inductance found on almost all the sites, indicates that 

nitrogen is limiting on all the lava flows of the chronosequence. In the younger 

sites this is due to the lack of soil structure whereas in the later stages it is a result 

of the increased inter-species competition. However, this experiment has shown 

that the plants are capable of responding quickly once nitrogen becomes available. 

The higher rates of inductance in the youngest and oldest sites (as evidenced by 

the greater gap between the two experimental plots on Figs 3.1 and 3.2) are almost 

certainly due to higher background levels of nitrogen. This seems to be present at 

these two stages of development (as indicated by the higher levels ofNR when the 

plants are only water treated). That is that these plants already have a ready source 

of nitrate reductase present in the leaves with which to utilise the additional 

nitrogen. 

As a result this experiment indicates that there is a two phase system of 

nitrogen inputs occurring over the succession - an early input occurring at around 

one hundred years which then declines, and a second gradual rise occurring after 

300 years. The second phase can be easily explained if the source of the nitrogen 

is coming from the soil development increasing the microbial and organic biomass 

(which is further studied in the next chapter). The first phase however is less 

easily explained and shall be covered using the other experiments in the 

proceeding chapters to pinpoint the source of this nitrogen. 
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3.4.2. 	 Nitrate reductase activity in plants on the two chronosequences 

Although the graphs of data (Figs 3.6 - 3.11) show considerable variation 

between chronosequences and sites over time, there is a distinct trend which is 

appearing repeatedly within the data - an early peak of nitrogen followed by a 

decline and then a second rise in activity over the time span of the 

chronosequence. This confirms the results of 3.4.1 and supports the proposition 

that there are two large inputs of nitrogen occurring during the chronosequence. 

The huge variation seen within and between sites is possibly due to the high site 

heterogeneity and the considerable variation in environmental conditions from day 

to day - or seasonally. This is one of the major problems of dealing with 

ecological data. This problem has been addressed here in the only method 

possible - repeating the experiment several times. The consistency of the trend 

here confirms the value of repeating the experiment. 

The much larger early peak in activity observed in the springtime is partly 

due to the increased rainfall at this time of year as opposed to the extreme drought 

conditions of the summer from which the plants are barely recovering in the 

OctINov sampling. 

3.4.3. 	 Nitrate reductase activity in plants from the four aspects of the 

volcano 

On each of the four aspects of Etna there is more nitrate reductase activity 

III R.scutatus on the younger nineteenth century flows than on the older 

seventeenth century sites (Fig 3.11). However, this trend is only repeated on the 

north and south aspects in the case of C.ruber (Fig 3.12). In addition, there is a 

high peak of nitrate reductase activity in the east 1651 sample (l20nmol). 

However this is still lower than that seen in R.scutatus on the same site 

(200nmol). Variations between species and sites in this way reflect the stochastic 
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nature of the data, whereby minor changes can reflect in the results. Since this 

experiment was only done once (whereas most of the others were repeated), these 

data could be due to minor variations within sites or a major difference in the 

nitrate reductase activity between the two species. As such this is worthy of 

further study. 

3.4.4. 	 Nitrate reductase activity in the leaves of plants taken from a range 

of altitudes 

There is a clear link between NR activity and altitude in R.scutatus, with 

activity increasing with altitude up the volcano - with the exception of the 1500m 

point on the 1892 flow which shows a rapid decline. The increase in activity is 

probably correlated to the increased rainfall and generally cooler, more favourable 

conditions found higher up the volcano. This will allow more water to remain 

within the soil profile without evaporating as happens in the harsher conditions 

lower down the volcano (e.g. 400m). In addition, the higher temperatures lower 

down the slopes may impede the enzyme activity. However, above 1250m on the 

19th century flow there is little vegetation cover and the temperature variation is 

more extreme with high temperature during the day and low at night - which may 

partly explain the drop in enzyme activity above 1250m. 

3.4.5. Laboratory nitrate reductase activity experiment 

The results of this experiment show that nitrate reductase activity in the 

leaves of R.scutatus plants under increasing water stress remains constant at a 

level of 99 nmol GFW-1 h-1, until the organic soil water content drops below 0.3 

m3.m-3 (Fig 3.19). After this point the activity gradually declines until the plants 

die (when the organic water content is less than 0.03 m3.m-3). Other experiments 

into drought effects on plants by Foyer et al (1998); Smimoff et ai, (1985) and 

Rajagopal et al (1977), also found decreased nitrate reductase activity. 
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From observation of physical changes in the plants, the leaves started to 

wilt at the 0.3m3.m-3 point. By 0.13 m3.m-3, there were few healthy leaves left 

unaffected and many had died completely. There is therefore a strong link 

between the NR activity and the water content of the leaves. However, as the 

plant maintains the level of NR activity in light drought conditions - and further 

that when the NR activity is dropping it is clearly visible in the plants physical 

appearance (desiccated / wilting leaves). It is therefore possible to extrapolate this 

to what occurs in plants growing in the field. Hence, by careful selection of plants 

which are in healthy condition (or using pre-watered plants where this is 

logistically possible given time / travel constraints) the effects of drought can be 

removed as a factor influencing the NR activity in R.scutatus. Factors that affect 

nitrate reductase activity in plants include drought, light and available nutrients 

(Beevers and Hageman 1969). Light can be controlled by locating plants in open 

areas with little shade. Therefore by selecting plants which show no signs of 

wilting we can be certain that the major factor causing variation in nitrate 

reductase activity in the field is the availability of nutrients on lava of different 

ages. 

3.4.6. 	 Laboratory Nitrate reductase activity - plants under different 

Nitrogen treatments 

The results from the plants grown under laboratory conditions show that 

nitrate reductase is a very good indicator of nitrate availability as nitrate reductase 

activity clearly increases with available nitrate. The treated plants both showed 

increased nitrate reductase activity (240nmol / GFW / hr and 294nmol / GFW / hr) 

over the control (lOOnmol / GFW / hr mol). 
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Chapter 4: Soil and Foliar nutrient change 

4.1. Introduction 

4.1.1. Soil formation and development over time 

Once the initial colonisation by lichens, mosses and first stage vascular 

plant colonisation has occurred soil begins to develop. From that point on plant 

succession and soil development occur concomitantly. Increases in plant species 

and in the biomass produced are reflected in the developing soil. In addition, the 

presence of the lichens and plants serve to trap and bind wind borne particles and 

tephra. Deposition of organic material following plant growth in and on this 

initial parent material initiates depth-gradients in the soil profile of many soil 

characteristics such as pH, bulk density and contents of organic carbon, nitrogen, 

phosphorous and many trace metals. Over time, the further processes of 

weathering and leaching cause large gains, losses, transformations and 

redistributions of many organic and inorganic constituents (Stevens and Walker 

1970). By studying a chronosequence of soils, these losses and gains can be 

observed and the relative importance of the various factors acting on the lava 

flows can be assessed for their contribution to soil development. 

Soil can be defined as a natural body composed of solids (minerals made 

up of sand, silt and clay size particles and organic material), liquids and gases that 

form on the rock surface, occupy space and are characterised by horizons or layers 

(Fig. 4.1). These layers are classified according to their order and mineral content 

as follows in a temperate soil profile 
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Figure 4.1. Standard profile of the major horizons present on a well drained and 

developed soil in temperate humid system (Ping 2000). 

o -Organic horizon. 


At the top of the soil profile is the organic horizon. Derived from animal and 


plant remains it consists of humus. Full of microorganisms it is usually dark in 


colour with 20-30% or more organic matter. It is very important in water 


retention in the soil profile. Where conditions favour rapid decomposition of 


organic matter and its mixing with mineral material by organisms, there may be 


no separate organic horizon. Where a deep organic layer does not accumulate, 


however, a humus horizon (H) may occur on the soil surface. This is thinner than 


an 0 horizon. 


R - Rock horizon. 


At the bottom of the soil profile consisting of unconsolidated material or bedrock 
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A, E, B, and C. 

These horizons are found between the two extremes of 0 and R. They are 

composed of sand, silt and clay and other weathered by-products. These four 

horizons are collectively known as the solum. The major constituents of the 

horizons are : 

A : Humus and clay, also rich in organic material and hence dark. Bioturbation, 

the mixing of organic and mineral material within the soil (Singer and 

Munns1991) is important where organisms such as earthworms, ants and 

gastropods are favoured. 

E : Lighter coloured due to silicate clays and oxides of aluminium and iron which 

have leached out and descended to lower horizons (caused by eluviation - the 

removal of fine particles and minerals by water). 

B Accumulated clays, aluminium and iron. Dominated by illuviation 

(depositional process, as opposed to eluviation which is a process of removal). 

May have red or yellow hues because of mineral content. Where effects of 

illuviation are minimal a cambic B horizon develops as a result of in situ 

weathering and other changes (Ashman and Puri 2002). On young soils (like 

those found on Etna chronosequences), a more fully developed B horizon is 

unlikely. Even a cambic B horizon may not have developed, in which case the 

soil has an A-C profile. 

C Weathered Bedrock - also known as the Regolith. Plant roots and 

microorganisms are fewer than in the upper horizons although in shallow soils, 

roots may in fact be concentrated at the rock interface. It lacks clay 

concentrations and is made up of carbonates, gypsum, or soluble salts or iron and 

silica, which form cemented soil structures. This system holds true in many 

mature soils although in very dry systems the net salt movement will be up the 

soil profile as evaporation draws water up the profile. 

The relative age or maturity of a soil is reflected in the degree of 

differentiation of the horizons. In many instances, the greater the distinction 

between horizons, the greater the age of the soil and the greater the thickness and 

intensity the more mature the soil (Stevens and Walker, 1974). Erosion by water 
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or wind is important in removing soil and limiting profile depth where vegetation 

is disturbed by natural or anthropogenic means. 

Soil texture refers to the mixture of sizes of its particles and the proportion of 

different sizes. All particles smaller than 2mm are considered part of the soil and 

these particles can be further subdivided by size into three types: Sand « 2 ­

0.05mm), Silt (0.05 - 0.002mm) and Clay « 0.002mm). 

The production of clay minerals is also important in volcanic soils as this 

influences nutrient holding capacity (particularly exchangeable cations like 

(Calcium (Ca2+) and Potassium (K+) and water holding capacity. The clay 

minerals of tephra soils are very distinctive (less so on lava). Nevertheless clay 

formation is a major aspect of soil development throughout the early lava flows of 

this chronosequence. 

4.1.2. Volcanic soils 

Volcanic ecosystems provide a perfect field for studies of primary 

succession and the corresponding soil development during a chronosequence. 

This has been studied by many authors including Dickson and Crocker (1953a), 

(1953b), (1953c) working on Mt.Shasta; Tezuka (1961) on Oshima; Fridrikson 

(1975) on Surtsey; Kitayama and Mueller-Dombois (1995) and Vitousek et al 

(1995) working on Hawaii. They have all observed the changing organic and 

other properties of the soil and the nutrient content at particular points in time. 
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... 

4.1.3. Etna soils 

Four soil associations are classified and mapped for Mt.Etna by Fioretti 

(1988) the soil taxonomy classes being those of the Soil Survey Staff, 1975 (Table 

4.1). Rock outcrops occur frequently on all the lava fl ows - both as small 

protrusions on the surface which are hardly visible and as larger sheets or tumuli . 

The smaller outcrops reflect the initial uneven nature of lava and differences in 

weathering rates as soil and debris develops in hollows on the surface gradually 

rising up to cover all but the highest protrusions. This will aid weathering of the 

surface bringing the underlying rock into contact with roots and organic acids. 
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Table 4.1 The four Etna soil associations mapped by Fioretti (1988). 
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4.1.4. Foliar nutrients 

Often when studying changing nutrient status ill the soil there is a 

corresponding change in the amount of elements within the leaf structures of the 

plants that grow on these surfaces. Clearly if a plant lives on a nutrient rich soil it 

will have large quantities of essential elements present in the leaves, whereas 

those living in nutrient poor sites will be nutrient deficient (although there will 

probably be more obvious differences like number of leaves and size of the plant). 

By studying the relative amounts of these nutrients in the leaves it is possible to 

gain more information about the available nutrient status of an ecosystem than a 

soil analysis on its own. This gives a comparison between the amount of nutrients 

available to the plants and what the plant is actually utilising. Factors such as 

competition can affect the amount of nutrients in the plant leaves regardless of the 

soil nutrient status as some species are better at taking in nutrients than others. In 

addition, there is the possibility that soil data may be affected on a temporal scale 

by sudden surges of nutrients (e.g. caused by a rain depositing and redistributing 

nutrients) whereas the foliar nutrient status will be laid down over the growth of 

the plant and can give a more accurate reading of a site's true nutrient status. 

4.1.5. Soils project 

The changing soil properties over the period of the 500 year 

chronosequence has important implications on the changing ecosystem. 

Individual plant species have specific nutrient requirements - however these vary 

between species. Therefore, as nutrient status in the soil changes, species will 

move in and out of the ecosystem. The purpose of this part of the project is to 

investigate these changes in several soil properties (nutrients, pH and biomass) as 

well as foliar nutrient change during the 500 year chronosequences on Etna. 
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4.2. Methods 

4.2.1. Soil sampling and preparation 

From each of the 35 sample sites located on Mt.Etna (for site selection see 

section 2.2.3 - 2.2.7) samples of the top 5cm of soil (to represent the most recent 

products of the lava flow and hence its nutrient cycling ability) were taken. On 

the early lava flows this soil was scraped from between the cracks and crevices of 

the lava. On the later flows where a clear soil profile had formed the overlying 

leaf litter (L horizon) was removed and the sample taken from directly 

underneath. These samples were stored in a fridge at 5°C until required for 

analysis. Before chemical analysis each sample was air dried for three days and 

sieved to < 2mm particle size (except in the case of the nitrate analysis which was 

carried out on fresh material two days after returning from Etna). A small sub­

sample (5g) was oven dried at 70°C for two days to determine total water content. 

4.2.2. Soil pH 

Three 5g sub-samples of the air-dried soils from each of the sites visited 

were taken and placed in lOOmI beakers. These samples were mixed with distilled 

water to a depth twice that of the soil, as outlined in Allen (1989). The samples 

were stirred and then allowed to stand for ten minutes before being analysed by 

immersing a pH probe on a pH meter with a temperature probe to correct for 

variation in ambient temperature. The three samples were combined and an 

average and standard deviation obtained. 
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4.2.3. Soil organic matter by loss on ignition 

Three replicates of the air dried / sieved to < 2mm particle size soils were 

taken for organic material content analysis. Each sub-sample of approximately Ig 

was weighed precisely to three decimal places and placed in a Carbolite CSF 1200 

oven. The temperature was then gradually raised to 600°C (as suggested in Allen 

1989). The samples were left at this temperature for eight hours to ignite all 

organics present. Then the temperature was lowered gradually to 150a C at which 

point the samples were removed from the oven and placed in a desiccator (to 

prevent water absorption by the samples) until cool enough for re-weighing. 

Percentage organic matter was then calculated from the following equation: 

% Organic matter = ((WI - W2)/ WI) x 100 

Where: WI =Initial weight of soil; W2 =Weight of soil after 8hrs at 600°C 

4.2.4. Soil nitrate analysis of the north and south chronosequences 

The amount of free nitrate in the soil samples of the north and south 

chronosequences was determined using the Ion-selective electrode method 

outlined in Allen (1989). In this method 5g of fresh (analysed within two days 

and stored in a coolant bag during transport) soil material was weighed precisely 

to four decimal places. The soil was then mixed with 50rnl of distilled water for 

ten minutes on a rotary shaker and then filtered. 25ml of the resulting supernatant 

was then combined with lOmi of a buffer solution to remove chloride, carbonate 

and bicarbonate ions, which would affect the ion electrode. The buffer solution 

consisted of 17.32g Aluminium Sulphate (Ab(S04).18H20). 3.43g Silver 

Sulphate (AG2S04), 1.28g Borax (H3B03) and 2.52g Sulphamic acid (H2NS03H). 
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This was made up to 800ml and adjusted to pH 3.0 by adding NaOH. Then made 

up to IL. 

The solution was then analysed by immersing the nitrate electrode of a 

Jenway 3040 Ion analyser, into the solution whilst continuously stirring with a 

magnetic stirrer and reading of the result in mY. This value was then converted 

into parts per million (PPM) of nitrate by comparing to a calibration curve 

determined using a KN03 standard plotted on semi-logarithmic paper with 

concentration (l-lOOppm) on the log axis and instrument reading on the linear 

axis (as in Allen 1989 - p132). 

Finally, the extractable nitrate in the soils was determined using the following 

equation: 

Extractable N03- - N (rug lOOg-l) =	C (ppm) x soln vol (run 

10 x sample weight (g) 

Where C = ppm N 03- - N obtained from the calibration graph. 

4.2.5. Soil total organic nitrogen analysis 

Three replicates of the air-dried and sieved < 2mm particle size soil 

samples were analysed for total soil Nitrogen. From each site three replicates of 

Ig sub-samples were taken. Total soil nitrogen was analysed using a variation of 

the Kjeldahl method outlined in Allen (1989). Using this method organic-N is 

converted to NH3 by boiling with H2S04. Ammonia is then liberated from the 

sulphate by distillation with NaOH and determined by titration with HCl. The 

exact procedure used was as follows: ­
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1 g of soil was weighed out to an accuracy of four decimal places and placed in a 

kjeldahl flask. lOml of catalyst containing Sodium Sulphate, Copper Sulphate 

and Selenium mixed to give proportions of 20: 1 : 0.1 (mixed from a ready made 

tablet produced by B.D.H. Ltd.) was added to the flask and then left to stand for 

30 mins. At this time 7.5ml of H2S04 was pipetted into the flask. The flask was 

then placed in a digestion rack and heated slowly to a temperature of ISO°C. 

Once the initial vigorous reaction had subsided and the liquid stopped refluxing 

up the side of the tube the temperature was gradually increased to 400°C. After 

several hours the liquid became colourless and as this occurred it was necessary to 

tilt the flask gently, in order to agitate those particles of soil that had moved up the 

side of the flask, during the earlier vigorous stage, back down into the acid. This 

was to make sure all the soil particles had been digested. 

Funnel 

entry 

Steam 

Glass hooks 
for retention 
springs 

entry 

Removable 
flasll: 

(b)tal 

Figure 4.2. Distillation apparatus (taken from Allen 1989). The semi-micro b) 

apparatus was used in this experiment. 
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On completion of the digestion the sample was allowed to cool until just 

warm and then diluted with distilled water. The sample was then filtered into a 

distillation flask (Fig 4.2). 40ml of sodium hydroxide was then carefully added to 

the sample and steam allowed into the tube. 30ml of distillate was then collected 

in a beaker containing SOml of Boric acid and indicator solution. The distillate 

was then titratated with 0.05 molar HCI until the liquid changes from light blue to 

a pale neutral colour. A standard plant reference material was also run 

concurrently with the soil/plant samples to test the accuracy of the method along 

with acid digest blanks and titrate / distilled water blanks to determine % nitrogen 

content. 

Total Soil nitrogen was determined using the following equation: ­

% N = (T - B) x N x 1.4/ S 

Where: T =Sample titration ml HCI, B =Blank titration ml HCl, N = Normality 

of HCI and S = Soil weight (g). 

4.2.6. Soil cations (Calcium, Magnesium and Potassium) 

The total Calcium (Ca2+), Magnesium (Mg2+) and Potassium (K+) in the 

Etna soils was determined using a Perkin Elmer plasma 40 Emission spectrometer 

which is an Inductively Coupled Plasma Emitter (ICP), using the method outlined 

in Wray (1998). The samples were first acid digested in a sample of Aqua Regia 

(ratio of 3: 1 Hydrochloric : Nitric acid). A sample of O.Sg of the dried soil 

material (dried overnight at 70°C to completely desiccate the sample) was 

weighed precisely to 4 d.p. This sample was placed in a sterile volumetric flask 

with lOml of Aqua Regia, and left overnight to passively react. The sample was 

then heated for 4 hours at 130-150° to completely digest the soil material (NB this 
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required the occasional addition of distilled water to prevent it from boiling dry). 

Once digestion was complete all that remained was a totally clear liquid with 

possibly a small quantity of colourless waste. This liquid was then filtered 

through filter paper and thoroughly rinsed through with distilled water to draw out 

all the supernatant. The resultant sample was returned to a volumetric flask and 

made up to l00ml. 

These samples were then analysed using the ICP with an Argon carrier 

gas. The readings were auto calibrated by the ICP using pre-prepared standards in 

the 0-1 OOppm range prepared using a separate standard for each element sought. 

Total soil cations was determined using the equation: 

Total element (g / kg) = Concentration (PPM) x volume x dilution factor 

Weight of sample 

4.2.7. Foliar total nitrogen 

Samples of five primary colonising plant species were taken from each of 

the sites located on the slopes of Mt.Etna. These species were selected for their 

long-term presence on many of the lava flows over a long age sequence and their 

abundance on the earliest lava flows. The species sampled were: Centranthus 

ruber, Rumex scutatus, Genista aetnensis, Helichrysum italicum, Senecio bieolor. 

Sampling consisted of taking the youngest leaves from the top of the plants. In 

the case of G.aetnensis, which has only a very few, tiny leaves, sections of 

photosynthetic stems were taken instead. The stems taken were the youngest (at 

the tip of the branches) and from the highest level. Similarly in the case of 

H.italieum, stems were taken which were covered in the tiny spine like leaves. 

These leaves were later removed in the laboratory in Luton for analysis. All the 

samples were taken from the field and weighed to determine water content. These 

samples were then transferred to large paper envelopes and hung outside to dry in 

order to prevent decomposition. Upon return to the laboratory the semi-dry 
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samples were then completely dried in the oven at 70°C for two days. These 

samples were then re-weighed to determine total water content. Once dry, the leaf 

samples were ground to a fine powder using a coffee grinder and stored in 

standard plastic sampling bags until needed for analysis. This material was then 

used in each of the following foliar nutrient experiments. 

The total foliar nitrogen was determined using the same method outlined 

in 4.2.5 but with the following adjustments. In this case, three replicates of O.lg 

of finely ground samples of the commonest plant species (C.ruber, R.scutatus, 

H.italicum, S.bicolor and G.aetnensis) were used for analysis. These samples 

were acid digested, distilled and titrated as in Allen (1989). These samples were 

then compared to a standard reference material to determine the accuracy of the 

method. 

4.2.8. Foliar cations (Calcium, Magnesium and Potassium) 

Sub-samples of the vegetation (for sampling method and preparation see 

4.2.7) were analysed for foliar concentrations of Ca2+, Mg2+, and K+. This method 

was the same as that outlined in 4.2.6, with the exception that only O.1g of leaf 

material was required per replicate. 
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4.3. Results 

4.3.1. Soil pH 

Soil pH on the four aspects of the volcano varied considerably both with 

the age of flow and with aspect. By looking at the data in tabular form it is clear 

that when averaged there is little variation between the north, south and west 

aspects of the volcano (all around 6.5 - see Table 4.2). However, when looking at 

the east aspect there is a clear drop in soil pH, to below pH of 6 (Fig 4.3). The 

relatively high 1992 value of 7.16 is a measurement of the pH of a pocket of 

tephra ejected by the volcano just prior to sampling and can be excluded as it is 

atypical. 

Soil pH readings 

South aspect North aspect East Aspect West Aspect 
Lava 
Flow 

pH 
Lava 
Flow 

pH 
Lava 
Flow 

pH 
Lava 
Flow 

pH 

1910 5.9 1981 6.54 1992 7.16 1651 6.52 
1892 6.77 1947 6.73 1928 5.71 1843 6.44 
1780 6.79 1923 6.00 1865 5.72 
1766 6.50 1879 6.85 1792 6.24 
1634 5.86 1809 6.08 1689 5.72 
1537 6.21 1646 6.41 
1536 6.45 1614 6.51 
1444 6.06 1536 7.17 
1334 7.08 Ancient 6.06 
812 6.87 

Table 4.2 Soil pH readings on the four aspects of the volcano. 
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Figure 4.3. Average soil pH on the four aspects of the volcano. 

In contrast, a closer look at what actually happens over the southern 

chronosequence shows us that there appears to be a pattern of pH change over 

an early peak of pH of around 6.7 (1892 and 1780 lava flows) 

followed by a decline to a level of 5.8 (1634 flow) before rising again in the latest 

stage flows of the sequence (Fig 4.4 a). 

A similar pattern is discernible on the northern chronosequence as well with the 

early peak in pH (6.7 on the 1947 flow) which then declines during the mid age 

range flows (1 809 flow = pH 6. 1) before gradually increas ing again to a level of 
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Figure 4.4. Soil pH change on the southern (a) and northern (b) chronosequences 

on Mt.Etna. 

However, over a range of different altitudes there is a linear relationship ­

with a decline in soil pH with increasing altitude (Fig 4.5). In addition, the 

strength of that change appears to vary with age of lava flow. The younger lava 

flows (1910 and 1892, Fig 4.5 a & b) show the greatest change (from pH 5.5 ­

7.5) and hence have steeper gradients on their trend lines. In contrast, the older 
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flows (1780 c and 1634 d) show much less variation of pH with altitude (from 5.5 

- 6.4 and 5.8 - 6.8 respectively). 

8.0 8.0 
a 	 b

7.5 	 7.5 ­

7.0 7.0 

:a 6.5 6.5 

• 
R2 =0.777 

6.0 6.0 

5.5 	 5.5 • 
5.0 5.0 

400 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 

8.0 	 8.0 

C d 
7.5 	 7.5 

7.0 	 7.0 
1R2 = 0.999 	 • R~ =0.501 

:a 6.5 	 6.5 

6.0 	 6.0 

5.5 	 5.5 

5.0 	 5.0 
400 	 600 800 1000 1200 1400 1600 400 600 800 1000 1200 1400 1600 

Altitude (m) Altitude (m) 

Figure 4.5. pH of the soil on 4 lava flows over a range of altitudes. Where a is a 

1910 flow, b is 1882, cis 1780 and d is a 1634 lava flow. 
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4.3.2. Soil organic matter by loss on ignition 

There is a clear linear relationship between the percentage of organic 

material in the soil and the age of the flow (Fig 4.6). All three chronosequences 

show a statistically significant increase in soil organics as the age of the flow 

increases. The southern chronosequence (Fig 4.6.a) has an r2 value of 0.93 very 

significant. The northern chronosequence (Fig 4.6.b) has an r2 value of 0.72 

(partially significant) and the eastern chronosequence (Fig 4.6.c) which is very 

significant (r2 =0.92). The use of r2 values was employed as the sample number 

was low «3) for this experiment (p values require a sample number of 4 or more). 

r2 values will show a trend in the data only. 

Organic matter content on the three lava flows all show a peak at an 

altitude of 1250m (Fig 4.7) with the eldest flow (1634 flow, 365 years old) 

showing the highest (14%). As altitude increases to 1500m all three flows then 

show a decline in their organic matter content. All three flows also clearly show 

that as age of the lava increases so too does the organic matter content. 

Organic matter content in a comparison of the four aspects on two age 

matched lava flows (Fig 4.8) clearly shows that in each case there is a larger 

organic matter content on the older lava flow (e.g. north has 14% on the 1646 lava 

flow whereas the 1879 has only 5.5%). The lowest recorded organic matter was 

measured on the west aspect (1843 flow) with less than 2% content. 
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4.3.3. Soil nitrate analysis 

Both the south and north chronosequences show a trend for a increasing 

extractable soil nitrate with increasing age of the site (Fig 4.9). On the south flow 

the nitrate rises from a low level of 2mg/l00g to a level of over 5mg l100g (r2 = 
0.71). The north rises from a level of 0.5 mg/WOg to 2.5mg (r2 =0.70). 
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4.3.4. Soil total nitrogen analysis 

All three chronosequences on the south (Fig 4. lOa), north (Fig 4. lOb) and 

east (Fig 4.1 Oc) aspects of Etna show an increasing soil total nitrogen with age of 

the site. Each chronosequence shows an increase in from 0.1 to 0.6 %, however 

while there is very little difference between the south and north chronosequences 

(Fig 4.10a and b) the east chronosequence is increasing faster. On this east 

chronosequence the 1792 lava flow (208 years old) has reached a level of 0.7%, 

far higher than either of the other chronosequences during this period 

There is a trend for decreasing soil nitrogen content with increasing 

altitude on the south aspect of Etna (Fig 4.11). The youngest flow (1892) has a 

peak of 1 % at an altitude of 750m but this quickly drops to 0.1 % by l000m (fig 

4.11 blue line). The total nitrogen on the 1780 flow remains constant (green line) 

while the 1634 flow also shows a drop with increasing altitude (red line) 

On the four aspects of Etna on the two age matched lava flows there is a 

clear trend for higher total nitrogen on the older seventeenth century flows on all 

four aspects. For example the south has more than 0.4% nitrogen on the 1634 

flow in comparison to the 1892 flow which has less than 0.1% (Fig 4.12). 

Between aspects, there is no difference between the north and east sites (both have 

0.2% on the nineteenth century flows and 0.3% on the seventeenth). However the 

south and west nineteenth century flows have a very low nitrogen content 

(>0.1 %). In contrast, the western 1651 flow (seventeenth century) has the highest 

nitrogen content at 0.55% (Fig 4.12). 
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4.3.5. Soil Cations (Calcium, Magnesium and Potassium) 

For each of the three cations examined there was a larger concentration found in 

the soils of the northern chronosequence compared with the south (Fig 4.13). 

Magnesium 

On the south chronosequence magnesium in the soil shows a slight increase from 

6g/kg on the 90 year old site to just over 8g/kg on the 464 year old site (Fig 4.13). 

In contrast, the north shows a slight decline in magnesium from 14g/kg at 53 year 

old site to 8g/kg on the 464 year old site. 

Calcium 

Calcium III the soil on the southern chronosequence shows an increasing 

concentration over time (from 4g/kg on the youngest 90 year old flow to 16 on the 

556 year old flow). In contrast the north chronosequence remains constant at 

approximately 25 g/kg. 

Potassium 

This element remains constant on both the north and south chronosequences on 

Etna. The south at a level of 3g1kg and the north at a level of approximately 4glkg 

(Fig 4.13). 
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Figure 4.13. A comparison between three essential nutrients Magnesium (Mg2+), 

Calcium (Ca2+) and Potassium (K+) in the soil in the south and north and south 

chronosequences 

137 



Chapter 4 Michael Carpenter 

4.3.6. Foliar total nitrogen 

C.ruber 

The foliar percentage nitrogen in the leaves of C.ruber remains constant at about 

2.8% on sites of increasing age (Fig 4.14a). 

R.scutatus 

The foliar percentage nitrogen in the leaves of R.scutatus remains constant at 

about 4% on sites of increasing age (Fig 4. 14b). 

G.aetnensis 

The foliar percentage nitrogen in the leaves of G.aetnensis remains constant at 

about 2 % on sites of increasing age (Fig 4.14c). 

S.bicolor 

There is a slight trend for increasing foliar nitrogen over time from 1.8 to 2.2 % 

over the time period of the chronosequence (Fig 4.14d) 

H.italicum 

This species shows an increase in foliar nitrogen over the chronosequence (Fig 

4.14e) with a starting amount at 1.5% after 90 years (1910 flow) rising to 3.5% 

after 144 years (1766 flow) 
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Fig 4.1 5 demonstrates a trend for increasing total fo liar nitrogen in the leaves of 

R.scutatus on the southern aspect of Etna as altitude increases, from 3.3% at 450m 

to 5% at 1500m. 
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4.3.7. Foliar cations (Calcium, Magnesium and Potassium) 

For each of the three cations R.scutatus has consistently higher levels in its leaves 

than Cruber (Fig 4.16). 

Magnesium 

R.scutatus varies from 6g/kg to 12g/kg over the time of the chronosequence but 

there is no discernible trend over time. However, Cruber maintains a foliar 

magnesium level of 3glkg. 

Calcium 

R.scutatus shows a declining trend in the total calcium content in the leaves from 

approximately 35g/kg down to 12g/kg on the oldest 566 year old flow. Cruber 

shows a similar trend from 14g/kg down to approximately 109/kg. 

Potassium 

Both R.scutatus and Cruber vary widely in their foliar potassium levels but 

neither show a trend with increasing age of the flow. 
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4.4. Discussion 

4.4.1. Soil pH 

The first thing that is obvious about the soil pH readings is that the east 

aspect of the volcano has a lower soil pH than that of all the other aspects. This is 

probably due to two factors acting on the soil. 1) The prevailing wind across the 

volcano blows to the east carrying volcanic gases towards the east aspect (see 

climate maps in chapter 1) and 2) the later stages of the eastern chronosequence is 

dominated by oak woodland. 

The prevailing wind will affect the soil pH by causing the east aspect to 

get a disproportionately larger share of the volcanic gases that are continually 

being produced by Btna. This has been demonstrated (Davies and Notcutt 1988; 

Notcutt and Davies 1989) with volcanic fluorides where there is a demonstrably 

larger deposition on the east side of the volcano. As such it is no surprise that the 

sulphides and other pollutants produced by the volcano would be affecting the soil 

pH. This prevailing wind theory is further supported when it is noted that the 

1792 flow which has a higher pH than the other eastern sites is located at the 

southernmost tip of the chronosequence and is probably escaping the worst of the 

volcanic deposition. Finally the increased precipitation on the east aspect of Btna 

(see climate map Fig 1.8) will increase the leaching of bases from the lava. The 

oak dominance on the 1689 lava flow causes the build up of decaying oak leaf 

litter which invariably lowers the soil pH (Campbell 1993) i.e. oaks thrive in 

mildly acidic conditions which then helps to continue the acidification of the soil. 

However this effect will only occur on the well developed oak woodlands of Btna, 

of which only the 1689 site was investigated here. 

Variation in pH over the chronosequences and with changing altitudes 

(Figs 4.4 and 4.5) reflects changing bases in the soil during the ecosystem 

development. The variation may be due to the increased weathering activity of 
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the lichens in the early (50-150 year) lava flows. Soil pH clearly declines with 

altitude on the slopes of Etna (Fig 4.5). Again this may be due to the increasing 

proximity to the volcanic crater. However, as the age of the flow increases this 

decline is ameliorated (as shown, the trend line becomes less steep) probably by 

the developing soil and vegetation. 

4.4.2. Soil organic matter content 

The clear trend of increasing soil organic matter content with age of site 

on the three aspects of Etna can be directly linked to the increasing biomass of 

vegetation growing on the lava flows and to the concurrent increase in species 

diversity as outlined in chapter two. Similarly, the increasing organic matter 

content with altitude is related to the increasing precipitation over the same 

change in altitude, which is similar to the findings of Vitousek et al (1992) on 

Hawaii. In this case the higher water content of the soils aids decomposition and 

the incorporation of the organics into the soil. The drop in organics, which occurs 

above 1250m, is almost certainly related to the temperature drop above this 

altitude - this is probable as it occurs on all three ages of lava flows, at the same 

altitude (1250m) indicating that age is not a factor. This drop in temperature 

reduces the growth period and bacterial activity on the higher altitude sites and so 

the higher altitude soils are generally less fertile/favourable for plant growth. 

4.4.3. Soil nitrogen 

Over time nitrogen fixation and atmospheric deposition increase the 

quantity and biological availability of nitrogen in the system as a whole and this 

is reflected in the trends for increasing nitrogen both as available nitrate (Fig 4.9) 

and as total nitrogen (Fig 4.10). This is similar to the results found by Stevens 

and Walker (1970) and Vitousek and Farrington (1997) who showed that nitrogen 

is a limiting factor in the early stages of primary succession. The faster trend for 
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nitrogen accumulation on the eastern chronosequence is probably related to the 

much faster soil development (and vegetation diversity and size), caused by the 

higher precipitation in this region. This results in a higher nitrogen fixing 

potential in the soil as microorganisms and nitrogen fixing plants grow. 

4.4.4. Soil cations 

Most of the soil cations in the very early soils of the Etnean lava flows are 

derived by weathering of the lava surface - both abiotically and biotically by 

lichen activity. Abiotic disintegration will directly release available cations. 

However, biotic weathering will increase over an initial colonising period as the 

weathering action is enhanced by the increasing plant and lichen biomass. Over 

time this will stabilise as the primary surface of the lava is depleted in these 

elements and there is a steadier long-term release of elements from further inside 

the rock. In addition the elements mobilised by the weathering process will be 

incorporated into the plants growing on the lava flows and this may influence 

overall cation availability. Ca and Mg are abundant in the lava (Chester et al 

1985; Giammanco et al 1996). However, the available fraction of cations is 

largely exchangeable and can be adsorbed on well decomposed organic matter ­

humus. Thus, as humus content increases in the topsoil, the cation exchange 

capacity and potential adsorbing power of these nutrients increases. 

4.4.5. Foliar nitrogen 

Although total nitrogen on the flows is increasing with the age of the flow, 

the nitrogen in the leaves of only two the plant species reflects this increase 

(S.bicolor and H.italicum). The three remaining species show no trend for 

changing levels of nitrogen - it is possible that these plants have mechanisms 

which keep an optimum level of nitrogen within all the leaves. For example, if a 

plant grows in a nutrient poor area it will simply grow fewer leaves (as these are 
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small plants with a limited number of leaves this is possible). Most studies on 

foliar nutrients have been conducted on tree species (Vitousek et al 1988; 1989) 

so the larger plant size will reflect if nitrogen is limited (e.g. thousands of leaves 

so if nitrogen is low this will be spread very thinly between many leaves). 

4.4.6. Foliar cations 

Foliar cations in both species on Etna show a similar trend in both Cruber 

and R.scutatus. Both show increasing magnesium concentration over time; 

decreasing calcium and no trend (but considerable variation) in the potassium. 

Magnesium is increasing in the soil on the south chronosequence and this is 

reflected in the foliar content. However, in contrast while the soil calcium levels 

increase, the foliar content decreases. This could be due to increased competition 

for this element between species or the calcium could be in plant unavailable 

forms. Potassium shows no change in the soil - and a great deal of variation in 

the foliar samples. This may relate to general soil formation - humus production, 

nutrient cycling and weathering. 

4.4.7. Summation 

This work contributed to a larger study into the soils of Etna being led by 

Peter James at Liverpool University (James et al unpublished data). However the 

experimental planning and execution was conducted independently. All the soil 

data in this thesis was gained by the author alone and was later passed on to form 

part of the larger study. These data demonstrate that nitrogen is limited in the 

soils of the early primary succession on Etna. This coupled with the small size of 

the early soil matrix (as the initial samples were merely scrapings in rock hollows) 

will limit the ability of plants to colonise the flows. 
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Chapter 5: Stereocaulon vesuvianum: Biomass 

change over time, evidence for pedogenesis and 

distribution 

5.1. Introduction 

5.1.1 Main characteristics of lichens 

Lichens are symbiotic organisms composed of a fungal partner (the 

mycobiont) and one or more photosynthetic partners, (the photobiont) that may be 

either a green algae or a cyanobacterium (Smith 1962; Smith and Douglas 1987; 

Hawksworth and Hill 1996; Nash 1996). Most species of mycobiont are 

ascomycetes, (in a few cases a basidiomycete or deuteromycete; Chen 2000) and 

do not occur in a non-lichenised state. In comparison, several photobiont 

members of the chlorophyta and cyanobacteria, can occur in a free-living form 

(Adamo and Violante 2000). The occurrence of lichens may date from the early 

Devonian, 400 million years ago (Taylor et al 1995). However, the sheer 

diversity of the lichenised fungi and the occurrence of many classes of fungi in the 

lichens has led to the assumption that the evolution of the lichen form has 

occurred several times (Nash 1996). 

Lichens are the earliest colonisers of terrestrial habitats. This, coupled with 

their resilience in surviving extreme environmental conditions in both polar and 

tropical systems - especially the xerophytic conditions found on bare lavas, has 

resulted in them becoming an extremely successful group, covering an estimated 

8% (Chen 2000) of the terrestrial surface on the Earth. In many polar and sub­

polar ecosystems lichens are the dominant autotrophs, fonning the basis of many 

food chains. For example, in the arctic tundra herds of caribou and reindeer graze 

on carpets of 'reindeer lichen' during tilnes of the year when other foods are 
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unavailable (Campbell 1993). This success has led to an estimated worldwide 

species total of around 17,000 (Hale 1974). 

The lichen symbiosis involves a close physiological integration of the 

mycobiont and the photobiont. The dominant mycobiont is a heterotrophic 

organism that derives its carbon nutrition from the photobiont. This movement of 

carbohydrates as polyols in the case of green algal lichens and glucose in the case 

of cyanolichens has been well-established (Drew and Smith 1967; Hale 1974; 

Smith and Douglas 1987). Investigations have shown that radioactive 14C which 

is taken up during photosynthesis by the algal cells, very quickly appears in the 

fungal hyphae (Richardson 1973). This is facilitated by fungal structures called 

haustoria, which surround and penetrate the photobiont. In addition, the 

photobiont cell walls are more permeable to carbohydrate loss in the lichenised 

than in the non-lichenised state (Nash 1996). This process is of great benefit to 

the mycobiont. However, no comparable flux of nutrients from the mycobiont to 

the photobiont has been proved (Nash 1996). It is suspected that the fungus 

serves as a reservoir for inorganic nutrients - as other fungi facilitate nutrient 

uptake in other symbiotic relationships such as mycorrhizae. In addition, the 

fungus enhances water uptake and retention due to its low water potential, as well 

as reducing light intensity on the photobiont and hence allowing growth in high 

light intensity environments where it would otherwise not survive. Therefore, as a 

result of symbiosis, both mycobiont and photobiont can expand into habitats 

where separately they would be rare or non-existent. For example, most algae or 

cyanobacteria require an aquatic or moist environment to survive - but as part of a 

lichen they can survive dry habitats as well (Nash 1996). 

Lichens have long been used as bioindicators of pollution (both natural 

and man-made). Studies have shown that many volcanic products build up in the 

vegetative material and can be used to see where the volcanic products are 

concentrated (e.g. by prevailing wind). These include studies on volcanoes by 

Davies and Notcutt (1988); Nottcutt and Davies (1989); Barghigiani et at (1990); 

Grasso et al (1999); Loppi and Bonini (2000). 
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5.1.2. Lichen structure. 

In all lichens, the two bionts form a heterogeneous structure called the 

thallus or lichenised stroma. This structure can be stratified into several distinct 

layers (see Fig 5.1). A cortical layer (absent from some species) is formed by 

closely meshed, heavily gelatinised hyphae firmly cemented together (Hale 1974) 

and always covers the upper-side of the thallus. The photobionts are usually 

restricted to a particular algal layer on the top of the medulla (the central section) 

which consists of loosely interwoven hyphae forming a cottony layer with a very 

large internal air space (Budel and Scheidegger 1996). 

Fruiting body 
(ascocarp) of fungus 

Figure 5.1. Typical lichen structure (from Campbell 1993). 

The hyphal cell walls of the medullary and photobiont layers are often 

encrusted with crystalline secondary products. These crystals make the medullary 

hyphae hydrophobic which keeps the medullary and photobiotic layers air filled 

during wet periods, and hence optimum for air flow and photosynthesis. Water 

transport to the photobiont appears to be limited to the mycobiont cell walls 

(Budel and Scheidegger 1996). Typical foliose lichens like the Parmeliaceae have 
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a well-developed lower cortex, but unlike the upper surface it is often strongly 

pigmented. The ability of this lower cortex to absorb water directly is well­

documented (Budel and Scheidegger 1996). 

Lichen reproduction is extremely complex given that there is a necessity 

for the fungal spores to meet the proper photosynthetic partner for establishment 

of symbiosis. The mycobiont symbiote can produce fungal spores from an 

ascocarp or fruiting body, which can vary greatly in size and structure between 

groups and species within that group. However, the photobiont reproduction 

mode is reduced in the lichenised state (Budel and Scheidegger 1996). As such, 

many fruticose lichens reproduce vegetatively by broken fragments reattaching to 

the substrate and growing into a new lichen. For instance sections of Ramalina 

species can be tom off and dispersed by strong winds. However the most 

important methods of vegetative reproduction are isidia and soredia. Isidia are 

scattered across the thallus surface and range from 30~..tm to 1 mm. Often 

cylindrical, these structures serve the dual purpose of reproductive propagules 

once detached from the surface and also help to increase the surface area of the 

thallus while still attached - increasing the photosynthetic area and enhancing 

interaction with the atmosphere (trace gas emission). The most well known 

method of vegetative reproduction is via soredia. These consist of a few 

photobiont cells enveloped by a loose spherical mantle of hyphae. Ranging from 

20-50~m in diameter, soredia form by proliferation of the algal and medullary 

layers, often in specially delineated areas called soralia, (Budel and Scheidegger 

1996). Once separated from the lichen body both isidia and soredia can form a 

new lichen. 

These different methods of propagation allow lichens to spread very 

rapidly when a new primary substrate (e.g. lava flow) is produced. The high 

fecundity of the lichen Stereocaulon vesuvianum on Etna and Stereocaulon 

vulcani on Hawaii allows these species to colonise the newly produced lava 

surface almost as soon as it has cooled. 
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5.1.3. Lichens as nitrogen fixers 

Although the dual nature of lichens is widely recognised, it is less 

commonly known that some lichens are symbioses involving three or more 

partners, from each of the three kingdoms of fungi, green algae and cyanobacteria. 

In this case, a secondary photobiont may form a second layer underneath the 

green algal layer (as in Soiorina) , or more usually it is restricted to minute to 

several millimeters wide structures called cephalodia which vary widely In 

morphology (from warty, glabose or shrubby) and are often characteristic of 

individual species (Budel and Scheidegger 1996). An example of this can be seen 

in Stereocaulon ramulosum, (Fig 5.2) which incorporates a pseudochlorella 

species as the green algal photobiont and a scytonema sp. of heterocystous 

cyanobacterium as a nitrogen fixer (Nash 1996). 

PseudochloreJla Sp. (photosynthesis} 
green algal photobiont 

Scytonema Sp. 
(diazotroph) 

Ileterocystous 
cyanobacterium 

cephalodium with 
conglutinate peripheral 
cortical layer and aerial hyphae 
In the microaerobic central part 

main axis and lateral ramuies With 
loosely interwoven aerial hyphae at the periphery 
(-gas exchange) and a conglutinate central strafld 
(_mechanical stability}StereocauJon ramulosum 

Figure 5.2. The tri-partate structure of Stereocaulon ramulosum (taken from Nash 

1996) showing the cephalodium filled with nitrogen fixing bacteria 
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Nitrogen fixation can be an important input of nitrogen into the young lava 

flows ecosystems. This has been shown by Kurina and Vitousek (2001) who 

found that showed that Stereocaulon vulcani fixes between 0.2 and 0.45 kg N ha- l 

yr- l at an altitude of 1500m on Hawaii. Nitrogen fixation on the tropical volcano 

La Soufriere has also been shown by Fritz-Sherridan (1987); Fritz-Sherriden and 

Coxson (1988). 
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5.1.4. Stereocaulon vesuvianum 

Stereocaulon vesu vianum Pers. is a fruticose lichen. It is a widespread, 

more or less boreal-montane, bipolar species, which occurs on different types of 

silicate rocks. It is common in upland areas of southern Europe, especially on the 

volcanic substrates of Etna and Vesuvius (Gri llo 1988; Nimis 1993). 

Figure 5.3. Stereocaulon vesuvianum Pers. Growi ng on clinker on the 1910 aa 

lava flow on Mt.Etna (picture by M.Carpenter). 

One of the first colonisers of new lava substrate (in most cases it is the 

first), this species dominates the early stages of primary succession on Etna 

(Fig.5 .3 where the lichen can be see to cover almost the entire surface of the 

rocks). It may very well be the lynchpin on which the later succession stages 

depend, as it allows the colonisation of pioneer vascular species by nutrient 

accumulation (Cooper and Rudolph 1953; Knops et al 1991 and Kurina 1998). In 

addition, its contribution to the organic content of the developing soil, as 

evidenced by the presence of lichen structures in the soil in samples from 

successional stages where it is absent on the rock sutface (450+ years), may be of 

equal importance . 
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5.2. Methods 

5.2.1. S. vesuvianum biomass change over time 

S. vesuvianum biomass change over time was measured using a variation of 

the method developed by Kurina and Vitousek (1 999). On each of the north, south 

and east aspects of the volcano a chronosequence of lava flows was selected. 

These consisted of a sequence of the 1947,1923, 1879, 1646 and 1566 lava flows 

in the north (Fig 2. 3), the 1910, 1892, 1780, 1766, 1634, 1537 and 1444 lava 

flows in the south (Fig 2.4), and the 1992, 197 1, 1928, 1865, 1792 1689 and 165 1 

were selected from the east aspect (Fig 2.5). No western chronosequence was 

possible due to the absence of a spread of suitable lavas at th is altitude. 

Figure 5.4. Sampling area for lichen biomass. A 3x4m quadrat laid out on the 

lava. Samples taken from 100cm2 quadrats at 1m increments in a grid pattern to 

give a total of 20 samples (1947 north sample site, picture by M.Carpenter). 
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Each site was located at an alti tude of ca lOOOm, using the same 

parameters of topography, distance from the edge of fl ow and lava morphology as 

outlined in 2.2.1. At each sampling site, an area was selected that was both open 

and flat for lichen biomass estimation. A measuring tape was laid out into a grid 

measuring 3m x 4m (Fig 5.4). At 1 m intervals along the grid a lOx lOcm 

(l OOcm2
) quadrat was positioned over the rock surface and all the lichen present 

within the quadrat was removed (Fig 5.5) and placed in a sealed bag unti l returned 

to the laboratory. The variable surface area of the lava presents a problem in this 

regard as a number of small lava blocks in the 100cm2 quadrat have a 

correspondingly large surface area fo r lichens, whereas few large blocks have a 

small surface area (Fig 5.6). This is difficult to control as a factor and so an 

optimum number of samples was determined (Fig 5.7). 

a b 

Figure 5.5. Samples of lichen biomass were removed from the rock fro m lOOcm2 

quadrats, as can be seen here. a is pre-sampling and b is sampled (pictures by 

M.Carpenter). 

A total of 20 samples were taken per site. In those samples where the 

quadrat contained no lichen, this point was taken as a zero value. Once in the 

155 




--

Chapter 5 Michael Carpenter 

laboratory, the sample was carefully sorted by hand to remove all other plant 

species (e.g. mosses and other lichens) as well as particles of soil and other debris, 

which had accumulated around the base of the lichen thallus. After sorting, the 

lichen was placed in an oven at 70°C for three days to dry out completely and then 

weighed. A verage biomass per site was then calculated by averaging the 20 

samples and converting to g/m2
. 

I ().enl IUcm 

Lat,'a Lichen 

Figure 5.6. Changes in the lava surface area can cause great differences in lichen 

biomass, as cracks between the blocks allow the lichen to penetrate deeper. 
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Figure 5.7. Average dry mass of lichen biomass with a cumulatively increasing 

sample size (1 892 south lava flow ). As sample size increases the average settles 

and the standard-error bars decline in size. From this a sample size of 20 was 

determi ned as most appropriate without using a prohibitively large number of 

samples. 
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5.2.2. 	S. vesuvianum biomass change with altitude 

The method of sampling and analysis of samples is the same as that 

outlined in 5.2.1. Sites were selected on three lava flows on the south aspect of 

the volcano at 250m increments of altitude variation. These were the 1892, 1780 

and 1634 flows (Fig 2.7). Altitudes measured were 1500m, 1250m, lOOOm for all 

three lavas. Additional sites at 850m on the 1892 flow (the furthest extent of this 

flow) and 750m on the 1634 flow were also taken (the 1780 flow has been 

extensively modified by human activity below lOOOm and hence not sampled). At 

each site 20 samples of 100cm2 quadrats were taken for analysis. 

5.2.3. 	S.vesuvianum biomass variation with aspect 

The method of sampling and analysis of samples is the same as that 

outlined in 5.2.1. Samples were taken from sites at an altitude of lOOOm on all 

four aspects of the volcano on two chronologically similar lava flows (one site 

from a 17th and another from a 19th Century flow). These were the 1892 and 1634 

lava flows on the south. The 1865 and 1689 on the east. The 1843 and 1651 on 

the west, and the 1879 and 1646 on the north aspect (Fig 2.6). At each site 20 

samples of l00cm2 quadrats were taken for analysis. 

5.2.4. Evidence 	 of S. vesuvianum as a source of organic matter in 

pedogenesis 

The role of S. vesuvianum as a component of soil development on the lava 

flows was investigated by scanning electron microscopy (SEM). Soil cores from 

1566 north and 1536 south sites (where S. vesuvianum is extremely rare- and 

hence its presence in the soil is likely to be from a previous successional stage) 

were taken to the depth of the underlying bed-rock (approx. 1Ocm). These 

samples were dried in the oven at 70°C for three days to remove all moisture. 
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Once dry, small sub-samples of soil were then taken from the end of the cores 

(greatest depth). These were then mounted on an Aluminium stub, coated in a 

thin layer of gold and examined using an ISA-lOGA .scanning electron 

microscope. These samples were compared to samples of living S. vesuvianum 

structures to look for any identifying structures. This method has to be by visual 

identification as a search for fungi would not work as mycorrhizae and other soil 

fungi would also be detected. 

5.2.5. 	 S. vesuvianum distribution and percentage cover on the rock 

surfaces 

The factors affecting lichen distribution on the rock surfaces were 

estimated by measuring the percentage cover of S. vesuvianum present on the lava 

flows over a range of different aspects and slopes located on and around the 

largest lava blocks. This micro-scale approach allows study of minor variations in 

temperature, and light interception over very small areas on the lava flows. A 

series of 10-25 quadrats of lOOcm2 were placed on aa chronosequencs of lavas at 

1000m. Large boulders were selected to reduce the effects of competition from 

vascular plants and allow continuity in method for the later flows (smaller lava 

blocks are covered by soil/plants in later stages of succession). On the oldest sites 

rock outcrops were selected for analysis. 

Topographical measurements for each quadrat (the aspect on the rock and 

the slope) were taken. In addition, measurements of relative humidity, light and 

temperature were also taken. These measurements allowed comparison in 

physical conditions between the quadrats - but not between sites, as variation in 

the time of sampling would vary enormously (e.g. comparing early morning and 

noon). 
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5.3. Results 

5.3.1. S. vesuvianum biomass change over time 

The S. vesuvianum biomass on the three chronosequences shows a 

consistent pattern of a skewed distribution on the south and north aspects of the 

volcano (Figs 5.8 and 5.9) . In each case the biomass rapidly increased over time 

to a maximum level after approximately 100 years (of 1870 g/m2 in the south and 

1780g/m2 in the north). After this point, there is a gradual decline in biomass 

until the lichen disappeared after about 500 years. 
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Figure 5.8. S. vesuvianum biomass on the south chronosequence of Mt.Etna. 

(n=20 +/-SE). 
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Figure 5.9. S. vesuvianum biomass on the north chronosequence of Mt.Etna. 

(n=20 +I-SE ) 
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Figure 5. 10. S. vesuvianum biomass on the east chronosequence of Mt.Etna. (n=20 

+I-SE) 
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In contrast the third chronosequence on the east aspect of Mt.Etna (Fig 

5.10) did not reach the high levels of biomass of the north and south aspects. This 

chronosequence showed a much lower maximum level of about 800g/m2 on the 

1928 lava flow. In addition, the lichen had completely disappeared from the 

sequence after only 300 years. 

5.3.2. S. vesuvianum biomass change with altitude 
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Figure 5.11. S. vesuvianum biomass change on three lava flows over increasi ng 

alti tude. n=20 +I-SE. 

S. vesuvianum biomass change with altitude varies wi th the age of the lava 

flow upon which it is growing (Fig 5. 11 ). The you ngest lava flow (1 892) shows a 

peak of lichen abundance at 1000m (1870g/m2) after which it declines steadily . 

However, the 1780 and 1634 flows both show a peak in biomass at 1250m 

2(1 350g/m and 370g/m2 respectively). These data, re-plotted into 

chronosequences at the three altitudes (Fig 5. 12) show a peak biomass at 1000m 
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at '" 100 years, which then decl ines rapidly. However the 1250m sequence has a 

peak at :o::: 150years and a much steadier decline. The 1500m sequence peak is also 

at ",1 50years but is far lower than that found on either the 1000m or 1250m 

chronosequences. 
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Figure 5. 12. S. vesuvianum biomass on three chronosequences of lavas at three 

altitudes. 1000m (blue) 1250m (red) and 1500m (green). n=20 +/-SE. 
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5.3.3. S. vesuvianum biomass variation with aspect 

Lichen biomass on each of the four aspects of Mt.Etna clearly shows a 

decline over time from the 19th century fl ows to the 17th century. For example the 

south aspect shows a decline from 1868g/m2 to 138g/m2 and the west from 

993g/m2 to 21 7g/m2 confirming the results of the three chronosequences. 

However, there is considerable variation between samples taken from each of the 

four aspects arou nd the volcano. By comparing all four together (Fig 5. 13) it is 

clear that the east aspect does not favour lichen growth compared to the other 

three aspects. On the 19th century flows, where the south has a biomass of 1868 

glm2 the east has 113g/m2 (less than 10%) and there is almost no S. vesu vianum on 

the eastern 17th century flow (7g/m2) 
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Figure 5.13 . S. vesuvianum biomass on the two aged matched lava flows on each 

of the four aspects of Mt.Etna. 
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5.3.4. 	Evidence of S. vesuvianum as a source of organic matter in 

pedogenesis 

Visual examination of the soil under the electron microscope shows a 

large number of degraded structures (Figs 5.14 and 5.15) clearly analogous to 

those of the living S.vesu vianum (Figs 5.16 - 5.18). This proves that this lichen is 

contributing to the biomass of the developing soil on Etnean lava flows. 

However, th is material is impossible to quantify due to the degraded nature of the 

structures, as a consequence much of the unrecognisable material may also be 

lichen in origin. 

Figure 5.14. Lichen structure in the soil of the 1566 sou th lava flow. This long 

thin structure is typical of the hyphae of S. vesuvianum. (x500). 
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Figure 5. 15. Lichen thallus fragment from the soil of the 1566 south lava fl ow. 

Clearly visible is a branching of the thallus, which has then been sheared off to 

display the lichen hyphae (on the left). The right side of the lichen is a mostly 

intact fruiting body. (x580). 

Fru iting body 

Thallus 

Figure 5.16. S. vesuvianum. This diagram displays the major morphology of the 

lichen with a central thallus and fruiting bodies. (Picture taken from the internet 

and adjusted by the author). 
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Figure 5.17. Intact Ii ving S. vesuvianum, showing the various structures, with the 

thallus in the middle, and the fru iting bodies on the right (x60) 

Figure 5.18. Broken off cross-section of the lichen thallus of a living 


S. vesuvianum (x650). This clearly shows the lichen hyphae within the thallus and 


is very similar to that found in Fig 5.14. in a soil sample. 
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5.3.5. S. vesuvianum distribution on different rock aspect surfaces 

There is a significant variation in the surface distribution of lichens on 

different aspects of the lava surface. This is demonstrated in Table 5.1 which 

shows the distribution and percentage cover of S. vesuvianum on found within a 

100cm2 quadrat on a range of aspects on boulders located on the 1981 lava flow. 

Clearly S. vesuvianum favours the north aspect of the rocks at this stage of the 

succession. For example its cover on a north aspect is 90% (quadrat 2) in contrast 

its cover on a south aspect is a negligible 5% (quadrat 3). The progressive growth 

of this lichen and interaction with other species can be seen in further tables of 

percentage cover in the appendix. 

Quadrat 

1981 1 2 3 4 5 

Stereocaulon vesuvianum 65% 90% 5% 75% 7% 

Temperature 19.9° 21.1 ° 23.9° 22.5° 22.2° 

Relati ve humidity 22.7 23.7 19.2 23.3 21.5 

Slope 35.0° 60.0° 50.0° 32.0° 47.0° 

Aspect N400W N75°W S NIOoW N1200W 

Light 458 146.5 1285 342 1460 

Quadrat 

1981 6 7 8 9 10 

Stereocaulon vesuvianum 5% 25% 70% 60% 10% 

Temperature 24.3° 24.0° 22.5° 22.3° 23.4° 

Relative humidity 19.3 21.3 23 22.3 23.2 

Slope 34.0° 4S.0° 33.0° 57.0° 85.0° 

Aspect S N60 0 W NI00E N30 0 E SlsoE 

Light 1358 846 137 lOS 1247 

Table 5.1. Examples of how the percentage cover of S.vesuvianum in lOOcm2 

quadrats changes with aspect and other environmental conditions located on 

different large lava blocks on the 1981 south lava flow. 
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5.4 Discussion 

5.4.1 S. vesuvianum biomass change 

The lichen S. vesuvianum clearly shows a distinct pattern of biomass 

distribution on each of the three chronosequences on Etna (Figs 5.8 - 5.10). The 

lichen biomass increases to a maximum level (usually around 100 years) which 

then declines over time (almost certainly due to competition and shading from 

vascular plants arriving later in the succession). This is similar to the findings of 

Kurina and Vitousek (1999) who suggested that lichen decline is linked to shading 

by colonising vascular plants. However, on Etna, there is considerable variation 

between the three aspects of the volcano, with the north and south aspects 

producing a far larger biomass than the east. Several factors could explain this 

variation. The higher rainfall in the east (Fig 1.7 and 1.8) speeds up the 

colonisation of vascular plants, which then shade out the lichens at an earlier age 

of lava flow than in the north and south. This is coupled with large, regular 

deposits of tephra in the east, which occasionally cover the lichen, killing off 

those living in the cracks in the rock (which in-fill with this material). Such large 

tephra deposits like those seen in 2000 and 200 1 on the east slopes of Etna, would 

severely curtail lichen growth, killing off the lichen on almost the entire lava 

surface and forcing re-colonisation. This new growth could never attain the 

biomass of that in undisturbed areas, as vascular plants are not as affected by 

tephra deposits and would continue to grow relatively normally (Kent et al200l). 

Many such disturbance events have occurred in Etna's history. Finally, fine 

tephra deposits speeds soil-forming processes by increasing soil water holding 

capacity and providing a substrate for plant roots, this leads to faster vascular 

plant succession. 

The effect of altitude on lichen biomass is not at first clear (Fig 5.11) until 

the data are formed into a separatechronosequence at the different altitudes (Fig 
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5.12). This factor is complicated by the fact that the lichen at a higher altitude, 

although following the same pattern of distribution over time, has a different 

maximal biomass due to the changing climatic conditions as altitude increases. 

Clearly the lichen colonises the lower slopes of the volcano and quickly 

accumulates a high biomass (maximum of ::=2000g/m2 at calOOOm). In contrast at 

higher altitudes the lichen growth is slower and does not achieve the high biomass 

at lower levels (maximum of ::=400g/m2 at ca1500m) - but it does however persist 

as the dominant species for a longer period of time. This shows a strong link 

between S. vesuvianum biomass and the prevalent climatic conditions of rainfall 

and temperature. This agrees with the findings of Kurina and Vitousek (1999) 

who found that rates of Stereocaulon vulcani colonisation and accumulation on 

Hawaii, were greatest at low elevation where conditions are warm and wet but 

that the lichens persisted longest in the colder, drier, higher elevation sites where 

vascular plant colonisation was inhibited. 

It is also probable that pollution in the form of sulphides and fluorides 

from the volcanic vents is also retarding lichen growth at higher altitudes. The 

lower slopes receive fewer sulfides from the volcanic plume, this can be inferred 

as other pollutants like fluoride are more prevalent in lichens nearer the vents 

especially those located on the east aspect (Davies and Notcutt 1988; Notcutt and 

Davies, 1989) which is where the prevailing wind carries the products of the 

plume. 

Since S. vesuvianum growth is tied to climatic conditions it is possible to 

speculate that further down-slope on the lava flows «1000m) the lichen is also 

producing the same pattern of biomass distribution, but the maximum biomass 

probably declines again as the drier, hotter conditions do not favour lichen 

growth. Unfortunately, it is difficult to investigate this relationship below 1000m 

given that only a few lava flows have extended this far from the vents in the last 

500 years and where these do occur (e.g. 1928 east) these flows have been 

extensively modified by quarrying, building, agriculture and other human activity. 

(which is why it was not possible to sample the 1780 lava flow lower than 
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5.4.2. Lichen biomass in the formation of a precursor soil 

The measurement of the S. vesuvianum biomass on the younger (0-100 

year old) lava flows of Etna shows that a huge quantity of organic material is 

being produced. This biomass formation is in a period when the other sources of 

organic material are few and also much more random in their distribution (e.g. 

spreading centres of organics around the few early vascular colonisers; wind 

blown aeolian material). It is therefore highly likely that this lichen forms a large 

proportion of the precursor soil on Etnean lava flows. The discovery of lichen 

structures deeply buried in the soil of older lavas supports this finding. The 

relatively high resistance of the lichen to decomposition would also be useful in 

the developing soil as lichens ability to retain water would probably likewise be 

retained for a long period. 

5.4.3. S. vesuvianum distribution 

There is clearly a link between surface morphology and the distribution of 

lichen on the lava surface (Table 5.1). Minor changes in surface structure lead to 

changes in the ambient environmental conditions and the formation of several 

microclimates within a relatively small area. Moreover, these microclimates shift 

during the course of the day, as the sun changes position and heats different areas 

of the rock as well as causing different areas to move into shade. This will clearly 

have an impact on lichen colonisation patterns as the longer the conditions are 

good the faster the lichens will grow - as opposed to the exposed drier harsher 

conditions where S. vesuvianum growth will be retarded. This leads to differences 

in the initial colonisation patterns and is amply demonstrated on the younger lava 
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flows where the lichen covers one side of the rocks and simply by turning around 

to face the another direction the rocks appear to change colour due to the absence 

of the lichens. As the colonisation progresses over time the increasing lichen 

biomass itself provides shade and water allowing the colonisation to spread to all 

sides of the lava blocks until all are covered. 
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Chapter 6: Stereocaulon vesuvianum: weathering of 

the lava surface 

6.1. Introduction 

6.1.1. Weathering processes 

Weathering processes can have a significant effect on the texture and 

morphology of rock surfaces over time. This can have severe implications for 

cryptogamic species living on the rock surface. In addition, the breakdown of the 

surface into smaller particles and the attendant mobilisation of elements locked in 

the rock structure, contributes to pedogenic processes occurring during primary 

succession. This weathering activity will occur in many different forms by the 

action of abiotic and biotic factors. Abiotic weathering occurs in the absence of 

direct or indirect effects of living organisms. This incorporates elements of 

geochemical (e.g. acidic effects of rainwater) and mechanical (e.g. erosion and 

frost/thaw cycles) weathering to break down the rock substrate into smaller 

particles and to release elements important for pedogenesis. In contrast, biotic 

weathering is by definition the weathering of the substrate in association with 

organic agencies. This particular study is to assess the impact of biotic 

weathering on the early stages of primary succession on Etna's basaltic lava. A 

comparison between abiotic and biotic weathering on Hawaiian lava will be 

shown later in chapter 8. 

6.1 .2. Biotic weathering 

This is an extremely broad area encompassing the effects of animals, 

plants and microorganisms (Schwartzman and Yolk 1989). Animal activity may 

include the physical break up (}f rock from burrowing animals or passage through 

the guts of worms or other species (Ollier 1984), For example. Shachak et al 
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(1987) showed that the grazing activity of two snail species feeding on endolithic 

lichens (lichens occurring under the rock surface) in the Negev desert had a major 

impact on weathering on the desert, of 0.7-1.1 metric tons per hectare per year. 

This is about the same as the amount of wind borne dust deposition in arid areas, 

which is widely recognised as a major physical factor in soil formation. However, 

the main contribution of animals to weathering is by mixing of the soil materials, 

thus bringing fresh material into exposure to weathering agents and increasing 

contact between mineral particles with air and water (Ollier 1984). 

A far greater role in weathering processes is played by the vascular plants. 

This is a major process affecting global levels of C02 by accelerating the release 

of Ca2+ and Mg2+ which are then carried in solution to the oceans where they are 

precipitated out as carbonates (Berner 1997). The vascular plants affect 

weathering in a number of ways, both physically and chemically. Cracks may be 

widened by root pressure, breaking up the rock structure. In addition, larger 

plants create distinct microc1imates at the ground level and affect soil gas 

composition by root respiration and as a route of gas exchange via the vascular 

system and stomata. Increased C02 in the soil from root respiration can be a 

significant feature in chemical weathering (OIlier 1984). Cochran and Berner 

(1996) found that the rate of weathering of Hawaiian basalts by plants was of an 

order of magnitude higher than that seen by cryptogams and microorganisms 

alone. They hypothesised that since the density of rhizospheric microflora is 

always higher around plant roots, that these associated fungi and bacteria would 

produce a number of organic acids (including chelating agents) which would 

promote chemical weathering. Decaying organic matter also produces organic 

acids and carbonic acid, providing additional acids for the breakdown of minerals 

(Moulton and Berner 1998). The addition of the decaying vegetative matter 

(humus) would increase the moisture holding capacity of the soil, in tum 

favouring the weathering process. Finally. transpiration in the plant would draw 

up solutions from the substrate through the plant and into the atmosphere. In 

doing so, it would draw out the water from the micropores in the substrate before 

those waters could become super-saturated with ions and silica from mineral 
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dissolution. If this super-saturation occurred it would cause retardation of the 

chemical weathering (Cochran and Berner 1996). However, as rainfall constantly 

replenishes these solutions with fresh water, enriched on its passage through the 

soil with the chelating agents produced by the microflora, chemical weathering 

can proceed at a much faster rate. This is supported by the study of Gislason et al 

(1996) which found that fluxes of Mg, Ca and Sr increase with increasing 

vegetative cover. However, fluxes of Na and K decline (possibly due to their 

being retained by the plants). 

6.1.3. Weathering by lichen activity 

It has been accepted for some time that lichens weather the substrates upon 

which they grow - both organic and inorganic. This has been supported by many 

studies including: Jackson (1969); Jackson and Keller (1970); Syers and Iskandar 

(1973); Ascaso et al (1976); Jones and Wilson (1985); Cooks and Otto (1990); 

Adamo and Violante (1991); McCarroll and Viles (1995). The destructive effects 

of this weathering have been recognised on many of the oldest buildings and 

monuments. It has even resulted in the practice in some orchards in Europe of 

destroying lichen growth on fruit trees for fear of the damage they can do to the 

outer layers of the trees - cork, cortex, bast and cambium (Hale 1974). 

However, when it comes to the activity of lichens on lava flows, a more 

beneficial effect can be observed. As has already been seen in chapter 5, a large 

biomass of lichens quickly colonises the newly formed lava surface. Once there, 

the ability of these lichens to weather the lava surface will ultimately contribute to 

the development of a precursor soil by introducing small fragments, biomass and 

freeing trace elements from within the lava for use by vascular plants. In the short 

term it will also alter the very surface of the rock allowing greater water retention 

and the formation of micro-sites where microorganisms, mosses and small 

vascular species can gain a foothold. The purpose of this study is to establish the 

weathering activities of lichens on the lava flows of Mt.Etna and hence gain an 
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insight into their effect on the early stages of primary succession by observing and 

attempting to quantify the changes in surface texture. 

6.1.4. Mechanical weathering by lichens 

All lichens are firmly attached to the substrate by the hyphae in an 

intimate association, but this varies in structure and form between the three main 

groups of lichens. Crustose lichens are fixed to the substrate by the hyphae of the 

medulla. The thallus of foliose lichens adheres by bundles of tendentially parallel 

aligned hyphae called rhizomes or rhizoidal hyphae (Adamo and Violante 2000). 

In this group either the whole lower surface is in contact with the substrate or the 

margin of the lobes becomes free and bends upwards. Fruticose lichens, which 

are strap-shaped or threadlike in structure, are attached by the base to the 

substrate. The fruticose stalk is called the podetium or pseudopodetium when 

formed from the generative or vegetative primary thallus tissue, respectively. 

However, these differences in morphology do not necessarily imply differences in 

weathering ability, which are more likely to be due to physiological differences 

among species, e.g. greater water holding capacity (Adamo and Violante 2000). 

The close and intimate association of the lichen lower cortex and the 

underlying substrate, suggests that the physical weathering abilities of the lichen 

thallus is essentially due to the actions of the mycobiont (Wilson and Jones 

1983). This is demonstrable as the phycobiont algal cells are usually found in the 

sections of the lichen furthest from the substrate. The lichen exerts its mechanical 

action on the substrate in two ways; by rhizome and rhizoid penetration, 

exploration and adhesion or more generally fungal penetration and thallus 

expansion and contraction. This expansion and contraction is usually brought 

about by wetting / drying of the thallus. The lichen medulla is well known for its 

water holding qualities and is capable of holding up to 300% of the dry weight in 

moisture, when water is available (Chen et al 2000). With the ability to produce 

such an appreciable change in mass (and hence volume) it is unsurprising that 

where alternate wetting I drying is frequent, considerable physical weathering of 
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the substrate rocks can take place in a relatively short period of time (Chen et al 

2000). This is demonstrated further by observations of rock fragments embedded 

in the underlying surface of a lichen which has been subjected to repeated drying / 

wetting (Moses and Smith 1993), in such cases the fragments have been literally 

tom from the substrate surface. 

So regardless of morphology, the lichen thallus exerts a mechanical action 

on the rock, producing extensive dis-aggregation and fragmentation of the lithic 

surface immediately below the lichen. The extent of the disintegration will be a 

result of both the physico-chemical properties of the rock (compactness, hardness, 

lamination or pre-existing surface alteration) and the nature of the lichen thallus 

(Adamo and Violante 2000). For example, the presence of many vesicles and less 

coherent areas allows easier penetration of the lichen, S. vesuvianum, into the lava 

substrate. As such its pseudopodetium has been observed to penetrate down to 

30mm into the rock (Adamo et al 1997). 

6.1.5. Chemical weathering by lichens 

Lichens produce many organic compounds formed by the fungal symbiote. 

These have many functions including: toxins and antibiotic compounds (e.g. 

phenolics), metal-chelating compounds (e.g. organic acids like oxalic acid), 

coloured pigments (for light protection), dark pigments (to increase heat 

absorption) and hydrophobic compounds to prevent water loss (Nash 1996). It is 

partly the production of oxalic acids and their subsequent actions in substrate 

weathering which is the focus of this study. 

The chemical decomposition of rocks almost certainly proceeds hand in 

hand with the physical disintegration. Mechanical fragmentation increases the 

surface area of the mineral or rock upon which chemical action can occur (Adamo 

and Violante 2000). One of the first studies to provide direct evidence of the role 

of lichen acids in rock weathering was that of Ascaso et al (1976) working on the 

pedogenic effects of three lichen species on granite, gneiss and various primary 
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rock forming minerals. Using techniques such as transmission electron 

microscopy and spectrophotometric chemical analysis they identified several key 

features of lichenised rock; 1) the mineralogy of the rock at the interface varied 

from that found in fresh rock, 2) that pure lichen acids incubated with various 

types of feldspars and mica to form metal complexes and 3) that lichen fragments 

incubated with these minerals to form similar metal complexes and underwent 

mineral alteration. 

Syers and Iskander (1973) suggested that the main chemical processes by 

which lichens solubilise minerals are: (1) the production of respiratory CO2, (2) 

the excretion of oxalic acid, and (3) the production of biochemical compounds 

with complexing ability. The dissolution of respiratory CO2 in water held by 

lichen thalli results in the generation of carbonic acid, which advances 

solubilisation processes by lowering the local pH values of the thallus and the 

related microenvironment (Chen et al2000). 

6.1 .6. Lichen weathering of basaltic lava 

Brady et al (1999) found that weathering intensity under the lichen 

Stereocaulon vulcani on the basalt lava of Hawaii is routinely 2-18 times greater 

than that found under abiotic conditions. This agrees broadly with the findings of 

Jackson and Keller (1970) on lichen covered Hawaiian basalts who estimated 

weathering was enhanced by 12-72 times, and McCarroll and Viles (1995) on 

lichen covered gabbros on the foreland of Storbreen (southern Norway). On the 

Hawaiian basalts, three major factors controlling weathering have been discovered 

(Brady et al 1999): 1) both plagioclase and olivine (important constituents of 

basalt lava) weather faster when lichens are present and become increasingly 

porous, 2) weathering increases with rainfall and 3) weathering increases with 

temperature. However, S. vulcani has a greater effect than rainfall, which in tum 

is more important than temperature. 
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S. vesuvianum which grows commonly on lava flows of Mt.Etna and 

Mt.Vesuvius (Nimis 1993), has also been proved to weather the rocks of 

Mt.Vesuvius (Adamo and Violante, 1991) resulting in the formation of iron 

oxides in the lichen / rock interface (Adamo et at 1997). In addition, Stretch and 

Viles (2002) observed S. vesuvianum growing on basaltic lava in Lanzarote where 

they estimated that the weathering rate was 16 times that of bare surfaces by 

comparing the thickness of the weathering rinds. This study looks at the 

weathering effects of S.vesuvianum on the recent (O-500yr old) lavas of Mt.Etna. 

6.1.7. Etna lava petrographic texture 

The lava flows of Mt.Etna are porphyritic in texture. Basaltic lavas of the 

alkalic series contain three main phenocryst minerals; plagioclase (NaAISi30g­

CaAbSh08), clinopyroxenes, variety augite, «(CaMgFehSiz06) and olivine 

«MgFehSi04) see Fig 6.1. The proportion of these three phenocrysts in the lavas 

varies across the alkalic series, giving rise to the different classifications of alkalic 

lavas (Fig 6.2). Most of the recent lava flows on Mt.Etna are Hawaiites (Chester 

et al 1985). The fact that the recent lava flows of Etna are so consistent in 

composition, is very important for this study, as variation in the initial substrate 

elemental chemistry can impact on the rate of weathering. 

As the lichen weathers the rock surface those elements which are easily 

released are quickly depleted leaving the tougher minerals intact. As a result this 

uneven weathering produces a 'lattice' of tougher material which can be readily 

broken apart at weak points into flakes of rock by the mechanical activity of the 

lichens. This is aided by the vesicular nature of the lava, which is filled, with 

small air bubbles (vesicles) formed during the cooling process. In so doing, in the 

most rapid phases of weathering a clearly defined 'weathering rind' (a band on the 

outer layer of the rock which is visibly different from the inside) develops. This 

rind is formed partly of the lichen weathered material and partly by the oxidation 

of minerals near the surface. 
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Figure 6. 1. Thin section of rapidly cooled Hawaiite lava (1 983) showi ng the three 

different forms of Phenocryst: plagioclase (P), augite (A) and oliv ine (0 ). 

Vesicles (V) or gas bubbles in the lava are also visib le. (Picture by M.Carpenter) 
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Figure 6.2 . Modal analyses of phenocryst content of lavas of the alkalic series 

from Adrano area (Chester et al 1985 ). 
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Olivine Ca++ Plagioclase (An) 

... Typical Etna 
(plagioclase) 

Augite 

Hornblende 

Biotite Na+ Plagioclase (Ab) 

Figure 6.3. Weathering sequence for the common rock forming minerals (Gerrard 

1988). Plagioclase feldspars show a continuous compositional range from 

Anthorite (An) to Albite (Ab). 

The relative mobilities of common elements in order of decreasing mobility are : 

Ca, Mg, Na, K, Fe, Si, Ti, Al 

Augite breaks down to clay minerals with 'etch' pits developing along pre­

existing cleavages rather than a general surface attack. Of all the minerals, quartz 

is the hardest to weather but it is broken down most rapidly in the presence of 

organic acids. However, quartz is not present in basaltic lavas. Olivine often 

possesses many irregular cracks and is one of the first minerals to weather 

(Gerrard 1988). 

6.1 .8. Weathering and Primary succession 

The importance of cryptogam weathering was summed up in four statements by 

Walton (1993): 

1) Biophysical attack at and just below the rock surface, and biochemical attack 

of particles incorporated within a lichen or algal thallus comminutes the parent 
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, 

rock to provide an increased surface area for further disintegration by 

environmental processes. 

2) 	 Penetration by rhizines, hyphae and rhizomes almost certainly assists in 

micro-fracturing of the rock, expanding access channels for other organisms 

(bacteria, fungi and algae) to colonise and provide increased protective niches. 

3) 	 Biogeochemical weathering both releases biologically useful trace elements 

from the rock which, when leached, are available in other parts of the 

ecosystem and provides new secondary mineral substrates for attack. 

4) 	 Lichens, mosses and algae establishing on rock surfaces or on unstable soil act 

as foci for the development of more complex miniature ecosystems. 

Following on from these four points, observing and quantifying weathering 

processes over a chronosequence of lava flows is essential in assessing the impact 

of these early cryptogams in the first stages of primary succession. The 

contributions of this weathering to the developing soil and the introduction of 

trace elements to the developing ecosystem could be essential to the future stages 

of colonisation. 

6.1.9. Aims and objectives of the study 

To this end three methods were employed to observe the changes 

occurring on the surface and just under the surface: 

1) Visual observation of the changing surface morphology of the lava by 

scanning electron microscopy. 

2) 	 Petrographic analysis of thin sections to observe the interface between the 

lichen / rock boundary and determine the extent of lichen penetration and the 

physical and mineralogical changes occurring over time (alteration in the 

phenocryst structures). 

3) 	 An attempt to quantify the rate of lichen weathering of the lava using 

intelligent machine vision sensing (this will be discussed in full in the results 

section as it is a method for interpreting the SEM pictures). 
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6.2. Method 

6.2.1. Sample collection 

A minimum of four samples of lichen encrusted lava were taken from sites 

along three chronosequences and on the four aspects at two age groups (19th 

century and 17th century) on Mt.Etna. These samples were taken from the lava 

flows erupted in the following years: 

East chronosequence: 1992, 1971, 1928, 1865, 1792, 1689. 

North chronosequence: 1981, 1947, 1923, 1879, 1809, 1646, 1614, 1566, 1536. 


South chronosequence: 1983,1910,1892,1780,1634,1537. 


Aspects: 1865 & 1689 East; 1879 & 1646 North; 1892 & 1634 South; 1843 & 


1651 West. 

These samples were taken from the same sites, using the same selection criteria as 

shown in section 2.2.1. Map grid references to the location of these sites can be 

seen in the appendix. 

Each lava sample was taken as a sub-sample from a much larger rock or 

boulder (by geological hammer), to reduce the possibility that the rock may have 

been disturbed I turned over during the time elapsed since the lava cooled, altering 

the surface being weathered. Each boulder was located in an open flat area to 

maximise optimum growth conditions of the lichens, minimise the effects of other 

weathering processes (e.g. surface runoff) and also minimise variation in 

conditions between sites. Areas of recent tephra fall were also avoided. A control 

(year 0), unweathered specimen was obtained from a freshly cooled 1999 lava for 

comparison. 
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6.2.2. Observations of weathering by Scanning Electron Microscopy 

The samples were removed to the laboratory where each was broken up 

into smaller samples of approximately 1 em3 and the lichen carefully removed by 

hand, taking care not to damage the underlying surface. Each sample was 

mounted on an Aluminium stub, coated in a thin layer of gold and examined 

under an ISA-lOOA Scanning Electron Microscope (SEM). This follows the 

methods of Viles (1987); Adamo and Violante (1991) and Jones et al (1981). A 

minimum of 15 black and white photographs were taken of each sample at a 

magnification of x200. These pictures were then compared and the key 

differences / similarities between the year groups noted by direct observation. 

6.2.3. Observations of lichen penetration of lava by petrographic analysis 

Thin sections of a from the north Mt.Etna chronosequence of three lava 

flows (1981, 1879, 1646) were cut taking care not to remove the lichen from the 

rock surface. In addition, a section of unweathered 1999 rock was sectioned for 

comparison. These thin-sections were examined under a petrological microscope 

and compared to observe how the lichen attached to the rock, how far the lichen 

rhizome had penetrated and interactions between the lichen and the rock interface. 

In addition, observations of physical changes in the phenocryst minerals (olivine, 

plagioclase and pyroxene) were made to see how they weathered over time. 

These were then photographed in thin section. 
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6.3 Results 

6.3.1. Direct observation of the lichen weathered surface 

Direct observation of the lava surface directly under the lichen structure 

revealed varying degrees of weathering. This can be demonstrated by looking at 

the eastern chronosequence shown in Figs 6.4.a and 6.4.b. This shows a range of 

representative lavas taken from the eastern aspect of Mt.Etna at an altitude of 

lOOOm. There is a clear progression from a smooth / glassy surface in the earliest 

flows of 1999 and 1992 (Fig 6.4.a. a and 6.4.a.h respectively), to an increasingly 

etched, pitted and roughened surface 1983 and 1892 (Fig 6.4.a. c and d). This 

weathering continues with the formation of large hollows and extensive 

disintegration of the rock surface (Fig 6.4.b f and g). This same pattern of lichen 

weathering is also clearly shown on the northern (Fig 6.5) and southern (Fig 6.6) 

chronosequences. However, on these last two chronosequences a final phase of 

rock weathering can be seen, as the rock surface begins to crack and break up into 

small flakes. This forms an 'aggregate' like structure formed of broken up 

particles (descriptive terms based on Heiken and Wohletz 1985). 

From the three chronosequences it is also clear that the rate of weathering 

around the volcano is not constant but varies considerably with aspect. The east 

chronosequence initially shows the most rapid weathering. In contrast, the north 

and south chronosequences are initially slower to weather. This can be by 

comparing samples from each of the four aspects of Etna (Figs 6.7 and 6.8, which 

include the two western sites). The east 19th century sample shows the most 

extensive disintegration of the lava surface in comparison with the other aspects 

(Fig 6.7). However, on the 17th century flows it is more difficult to discern 

differences between weathering rates as there is greater surface heterogeneity 

between the samples (the four shown in Fig 6.8 are representative only). 

In order to quantify the weathering activity between these later stage 

samples a new method was conceived using a computer intelligent machine vision 

system (Clark 2003), the method for this analysis is described in 6.3.5. 
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.--.-~--.-

.- ---- "----~, ..-,­



I-' 
00 
\0 

CD 
'"1 

0\ 

j
,....,. 

Figure 6.5.c Continuation of Lichen weathering along the northern chronosequence of Mt.Etna. Where i is the 1566 flow (433 
years old), j is 1536 flow (463 years old). Magnification x200 
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Figure 6.6.h. Continuation oflichen weathering along the southern chronosequence of Mt.Etna. Where e is the 1780 flow (219 ~ 
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Figure 6.7. Typical lichen weathering of the lava smf~eeQii:tll~4'aspectsofEtna 
on a 19th Century flow: 1879 north a; 1865 east b; 1843~istt;ltg92southd. All 

are x200. 
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Figure 6.8. Typical lichen weathering of the lava surface on the 4 aspects of Etna 

on a 17th Century flow: 1614 north a; 1689 east b; 1651 west c; 1634 south d. All 

are x200. 
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6.3.2. Petrographic analysis of the lava 

Figs 6.9 and 6.10 clearly show the interface between the lichen 

S. vesuvianum and the underlying lava on a relatively young sample (year 1981: 19 

years old). The lichen binds to the lava surface and penetrates the surface with 

the thallus. 

Lichen thallus 

o 0 

1 100 

Figure 6.9. Thin section of the interface between the lichen S. vesuvianum and 

lava. The lichen thallus has penetrated approximately 0.5mm (50fl,m) into the 

lava. 

The large lichen thallus (on the right of the picture) and the smaller thallus 

which has penetrated further into the lava (marked with red arrow) can clearly be 

seen on Fig 6.9. This has been magnified further on Fig 6.10. 
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o 0 

0.4 40 

Lichen thallus 

Figure 6.10. Lichen thallus interface with the rock surface on 1981 lava flow. 

Over time the weathering rind formed around the outside of the rock 

surface gradually deepens as the organic and inorganic weathering processes 

occur. This leads to a clear zonation of the rock with the outer weathering rind 

(Fig 6.11) being much paler on thin section than the un-weathered interior (Fig 

6.12). This is due to fragmentation and dis-aggregation of the glassy matrix 

around the phenocryst particles. It appears that these phenocrysts are relatively 

unaffected by the weathering process - with only olivine showing a noticeable 

change over time. Olivine shows visible alteration to iddingsite around the 

margins and within cracks (Fig 6.13) on the older samples of lava. In addition, it 

is worth noting that a piece of olivine that is near the root of a lichen thallus on the 

young 1981 sample (Fig 6.14) also shows this alteration to iddingsite, which does 

not occur anywhere else on the sample. This leads to the hypothesis that it is its 

proximity to the lichen, which is causing this effect. 
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o 0 


100 


Figure 6.11. Thin section of the outer weathering rind on the 1879 lava flow 

(depth of 3mm). The glassy matrix of the lava is dis-agreggated and the section is 

relatively clear. 

o 0 

Figure 6.12. Thin section of the unweathered 1879 lava flow (section taken from 

lcrn inside the rock, past the weathering rind). The glassy matrix is solid and the 

phenocryst particles are solidly held. 
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Figure 6.13. Olivine phenocrysts on the 1646 lava sample showing an alteration 

to iddingsite around the edges and in cracks caused by weathering. 

Lichen 

Olivine phenocrysts 

with cracks of 

iddingsite. 

Figure 6.14. Alteration of the olivine to iddingsite on the 1981 sample around the 

lichen structures. 
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Figure 6.13. Olivine phenocrysts on the 1646 lava sample showing an alteration 

to iddingsite around the edges and in cracks caused by weathering. 

Lichen 

Olivine phenocrysts 

with cracks of 

iddingsite. 

Figure 6.14. Alteration of the olivine to iddingsite on the 1981 sample around the 

lichen structures. 
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6.3.3. Quantifying the weathering by image analysis 

A great many papers have been published demonstrating the ability of 

lichens to weather rocks over time - usually by observing surface etching and 

associated mobilisation of elements (e.g. Iron in Adamo et al 1997). However 

there has been no attempt made to quantify the rate of this weathering in a testable 

and quantitative manner. By determining the rate of weathering of lava, using 

chronosequence theory over a variety of environmental conditions, an 

understanding can be gained, of the effect of lichens in the early stages of primary 

colonisation. The impact that this weathering has on the mobilisation of elements 

and the rock surface area (which has water retention repercussions) can be 

observed. In addition, changing rates of weathering over time could indicate 

changing environmental conditions such as rainfall and temperature. 

6.3.4. Intelligent machine vision system 

Machine vision tools are being increasingly used for a wide variety of 

medical, scientific and industrial applications. However, many of these systems 

require a large database of images to classify textures and can be prohibitively 

expensive to maintain efficiently. A new and less complex system, developed at 

the University of Luton (Clark et al2000; Clark 2003), offers a more efficient and 

novel method of interpreting weathering of the basaltic lava from Etna. In 

addition, it allows for the quantitative variation in the extent of weathering over 

time sought by the chronosequence theory. This system uses an 'intelligent 

machine vision system' (IMVS) to classify textures in a systematic way. The 

intelligence feature allows for incremental learning by the program based on 

features extracted from Gabor space. Therefore, by training the program using a 

large database of images of a known age/aspect from a particular chronosequence 

the program could then learn to distinguish between each 'set' (in this case a lava 

of different age class). Therefore, by using this method it is hoped that the system 

can quantify the changes in surface textures over time over a chronosequence. 

This sequence can then be compared to the other aspects and their associated 
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environmental conditions prevalent on the volcano, to discover the relative 

weathering rates around the volcano. 

6.3.5. Quantitative analysis 	of the lava using Intelligent machine vision 
system: Method 

The SEM pictures obtained from each of the lava flows making up the 

south chronosequence were split into two sets; one set for training the program 

and the second to calculate the recognition rate. This chronosequence has the 

most complete data set that had a representative lava flow in a consistent time 

pattern over the 500 years of the study. The lava flows sampled were the: 1983, 

1910, 1892, 1780, 1766, 1634,1537. In addition, the east facing lava of 1992, 

and a fresh sample of lava from a 1999 flow were added to the data set as the most 

recent lavas in order to include unweathered samples. Each picture was scanned 

by the IMVS and the features on the lava surface noted. The program then scans 

in the surface features again at an angle of 45 0 , 900 and 135° to determine the 

surface features of the sUlface along the vertical (0°) Horizontal (90°) and two 

diagonal pla..'1es (4SO and 135°) and completely map the surface (Fig 6.15). 

The aim of the training exercise was to run different combinations of 

images using the program to look at different numbers of feature points (vector 

size) extracted from each image and then calculate the recognition rate using the 

second data set. So for each sample site a large number of images was scanned 

(see examples in Figs 6.16 and 6.17). By running many combinations of age 

groups (Fig 6.18) and using different numbers of feature points the program was 

gradually trained to give a recognition rate of 95% accuracy (Fig 6.19). In doing 

so the optimum number of vectors and feature points required to accurately 

analyse the sample area was determined. This was a time consuming exercise but 

once achieved could then be used on all the sites sampled on the other 

chronosequences. 
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6.3.6. 	 Intelligent machine vision imaging comparing the south and north 
chronosequences 

The results from the machine vision analysis indicate a similarity between 

the weathering rates on the north and south two chronosequences (Table 6.1). 

There is a very close match between the early lava flows (1981 north has an 84% 

match to 1983 south; 1923 north has a 77% match to 1910 south). However, as 

the age of the lava flow increases the weathering rates gradually differentiate, 

with a slightly slower weathering rate becoming apparent in the north (1646 N has 

a 60% match to 1766 south and a 40% match to 1892 south; 1536 north has a 75% 

match to 1766 south). 

Both the 1566 and 1536 north samples appear to have greatest similarity 

with the 1766 South samples - and so have clearly weathered more slowly than 

their southern contemporaries (e.g. 1536 north has only a 6% match to 1537 

south). 
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Sample Intelligent Machine vision match 

84.78% match to 1983 South 

1981 North 10.78% match to 1910 South 

4.35% match to 1992 South 

73.08% match to 1983 South 

1947 North 25.00% match to 1910 South 

1.92 match to 1892 South 

77.09% match to 1910 South 
1923 North 

22.91 % match to 1983 South 

65.22% match to 1910 South 

1879 North 	 23.91 % match to 1983 South 

10.87% match to 1892 South 

81.29% match to 1892 South 

1809 North 10.41% match to 1910 South 

8.30% match to 1766 South 

59.10% match to 1766 South 
1646 North 

40.09% match to 1634 South 

76.8% match to 1766 South 

1614-24 North 8.92% match to 1780 South 

7.14% match to 1892 South 

7.14% match to 1634 South 

78.86% match to 1766 South 

1566 North 17.30% match to 1634 South 

3.84% match to 1780 South 

75.00% match to 1766 South 

1536 North 18.75% match to 1634 South 

6.25% match to 1537 South 

Michael Carpenter 

Weathering rate 

(=1+1-) 

Equal 

Equal 

Equal 

Slightly slower 

Slightly slower 

Slightly slower 

Slower 

Slower 

Slower 

Table 6.1. Weathering rate comparison between the 'fixed baseline' south 

chronosequence and the north chronosequence. 
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6.3.7. Intelligent machine vision imaging comparison of the south and east 
ch ronoseq uences 

These two chronosequences show a marked difference in their weathering 

rates with only the youngest sample showing a good match of ages to weathering 

(1983 south has a 88% correlation to the 1971 east). As the age of the lava flow 

on the east aspect increases, the difference becomes more pronounced (1928 east 

matches 87% to 1983 south). The final measurement which shows that the extent 

of weathering on 1689 lava flow on the east side most closely matches a sample 

from an 1892 south sample. This indicates that the weathering rate on the east 

aspect of the volcano is actually slower than that found on the south aspect. 

Weathering rate 
Sample Intelligent Machine vision match 

(=1+1-) 

1971 East 
87.50% match to 1983 South 

12.50% match to 19lO South 
Equal 

87.00% match to 1983 South 

1928 East 10.00% match to 19lO South 

1.70 match to 1992 South 
Slower 

1.70% match to 1892 South 

1865 East 
79.00% match to 1910 South 

21.00% match to 1892 South 
Slower 

1792 East 
73.00% match to 1910 South 

27.00% match to 1983 South 
Slower 

1689 
71.00% match to 1892 South 

29.00% match to 1766 South 
Slower 

Table 6.2. Weathering rate comparison between the 'fixed baseline' south 

chronosequence and the east chronosequence. 
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6.4. Discussion 

It is clear from each of these three chronosequences that the surface of the 

lava weathers over time through the action of the lichens in a very distinct pattern. 

The lichen begins to weather the rock almost immediately upon deposition. This 

agrees with the work of Jackson (1969); Jackson and Keller (1970) (working on 

Hawaiian basalts) and Stretch and Viles (2002) working on the lava flows of 

Lanzarote. The initially smooth almost glassy surface (e.g. Fig 6.4.a a 1999 east 

unweathered fresh lava) is gradually pitted by the small lichen colonisers, which 

in turn allows further colonisation as the surface becomes easier to cling onto, as 

well as increasing the surface area for water retention. This continues until the 

pitting results in a rougher surface as the lichen 'burrows' into some areas of the 

rock forming large hollows in the surface (Fig 6.4.b. e and f; 135 and 210 year old 

respectively). Over time these hollows increase in volume as the lichens grow, 

forming large cracks in the surface (6.5.b f and g). Eventually these cracks so 

weaken the rock as to break it off into flakes of lava (no doubt assisted by the 

lichen hyphae penetrating under the flakes). These flakes are initially held onto 

the lava by the lichen itself and can become stuck to the base of the lichen hyphae. 

These flakes are then broken apart still further and when the lichen breaks off the 

rock will be carried away to form an inorganic component of the precursor soil. 

This initial soil is formed of lichen debris and aeolian material as discussed in 

chapter 4. 

It is clear that the fastest lava weathering occurs on the southern 

chronosequence, which also sustains the highest lichen biomass (see Fig 5.8). 

The southern chronosequence is very similar to its northern counterpart (so 

similar as to be indistinguishable under the naked eye). However, the IMV results 

indicate that the northern weathering rate is slower than that found in the south 

(Table 6.1). Once again this correlates to the lower lichen biomass found on the 

northern chronosequence. 
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The surprising result on the north IMVS data (Table 6.1) where the 1614­

24 flow shows a 76.8% correlation with the 1766 lava flow - but only an 8.92% 

match to the 1780 flow, indicates that the IMVS requires further testing. This 

discrepancy may be caused by problems with the IMVS reading of several of the 

1780 pictures which were blurred around the edges. Alternately, this may be a 

morphological feature of the two sample sites which were several km apart. 

Surprisingly, given the prevalent climatic conditions on the eastern 

chronosequence, this is where the weathering rate was lowest (although in the 

youngest flows there is no difference). However, given that the lichen biomass in 

the east is low (Fig 5.10) and also quickly replaced early in the succession by 

vascular plants this would explain the discrepancy. The weathering caused by 

S. vesuvianum is higher than the climate or vascular plant activity can produce in 

these early stages of colonisation/succession (Waskiewicz 1994). 

From these results the following three conclusions can be drawn: 

1) 	 S. vesuvianum weathers the lava surface as soon as it finds purchase on the 

rock. The lichen first etches and pits the surface and then gradually the extent 

of weathering increases until flakes of rock break off due to the mechanical 

action of the thallus (and penetration into the rock increases). This weathering 

occurs primarily on the early (0-200 year old) lavas on Etna, but where the 

lichen persists longest the extent of weathering is increased. 

2) 	 The higher the biomass of S. vesuvianum the greater the extent of weathering. 

3) 	 The longer the period of S. vesuvianum being present the greater the 

weathering and hence the greater the amount of weathered material that must 

be entering the ecosystem. 

It is possible that on the older lava flows where the lichen remains 

dominant a state of equilibrium is reached in the weathering, as the surface cannot 

become further roughened due to particles of lava being lost but the lichen 

continues to gradually erode the rock surface. The alteration of olivine to 
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iddingsite noticed by petrographic analysis is similar to the findings of 

Waskelwicz (1994) on Hawaiian basalts, who showed that lichen acids caused the 

dissolution of olivine to be much faster than is normal in the absence of lichens. 

All this results in an ongoing process of weathering on the lava surface 

under the lichens. This is largely controlled by the climatic conditions prevalent 

on the site as this will control the growth of a sufficient lichen biomass. Warm 

wet conditions encourage lichen growth (Kurina and Vitousek 1999, Kurina et al 

In press). The lichen weathering is aided by abiotic weathering of freeze thaw 

cycles, which weaken the rock still further. Undoubtedly, other lichens species 

growing Etna are also weathering the lava surface and also contributing to the 

mobilisation of elements which will be incorporated into the developing 

ecosystem. However, given the high biomass and percentage cover of 

S. vesuvianum (up to 100% cover in some areas) on these young (0-500 year old) 

lava flows the bulk of lichen weathering is being produced by this particular 

species. 
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Chapter 7: Nitrogen availability and nitrate 

reductase activity on recent Hawaiian lava flows. 

7.1. Introduction 

7.1.1. Purpose of the experiment 

The aim of the final section of the project was to take the results gained on 

Btna and to investigate to what extent these are applicable to another basaltic 

volcano - taking into account the differences in climate and flora. In order to 

discover if the basic processes observed on Btna also hold true on another volcano 

and find out if there is a basic pattern to primary succession on lava regardless of 

local species. As a result another volcano was needed for study, which would 

have similar properties to Btna in terms of lava morphology, composition and 

situation. In order to reduce the number of factors affecting the succession, the 

underlying substrate should match Btna as closely as possible to enable a good 

comparison. 

The following selection criteria were employed when choosing the volcano to be 


studied: 


1) A good selection of recent lava flows in the 0-1000 year range. 


2) The lavas to cover a range of altitudes with particular emphasis at lOOOm for 


direct comparison with Btna. 

3) Available data on climate (allows comparison between sites and with Btna). 

4) Similar basaltic composition of the lava with that of Btna (as a different 

elemental composition of the lava would weather differently to Etna creating 

different nutrient availability and potentially change the rate and possible 

outcome of succession). 

5) Easy access to a range of sites. 
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6) Similar lava morphology to Mt.Etna. 

After considering various volcanoes (e.g. Arenal in Costa Rica and 

Vesuvius in Italy) Mauna Loa on the Big Island of Hawaii, U.S.A was chosen. 

This volcano addressed all of the criteria required since it has a wide range of 

recent basaltic lava flows in several climatic zones ranging from dry temperate to 

tropical rainforest. In addition, this volcano boasts a permanent team of 

researchers from Stanford University (under Prof. P.Vitousek) and the University 

of Hawaii, with extensive field know ledge of many of the proposed sites and plant 

species. These researchers agreed to provide logistical support (transport and 

laboratory equipment) during the project. 

Many studies have been conducted on the volcanic ecosystems of Hawaii 

in terms of nutrient change where there is an exceptionally long chronosequence 

of 4 million years (Chadwick et al 1999) and long term studies of species

I, succession (Smathers and Mueller-Dombois 1974). However, there has been no 
, 

..'..'.'~.' investigation into nutrient availability and change over the initial (O-500year) ,~ 

period of chronosequence, or any work on nitrate reductase activity of native 

Hawaiian species. 

The purpose of this study was to measure nitrate reductase activity and 

total foliar nitrogen and to compare the results to those found on Etna. 
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7.1.2. The Hawaiian Islands 

The Hawaiian Island volcanic chain (Fig 7.1) has been formed over many 

millions of years by periodic eruptions from a convective plume (hotspot) that 

generates magma in the upper mantle. The islands have been created as the 

mantle plume rises (possibly from the core / mantle boundary) to impinge on the 

base of the Pacific oceanic lithosphere which glides slowly over it. Magma 

erupted from the hotspot forms a volcanic construct, which eventually grows 

above sea level to form a sub-aerial shield volcano. Over time, the volcano drifts 

northwest as the pacific lithospheric plate moves over the centre of the 'hotspot' 

(Fig 7.2). This plate moves at a rate of about Wcm per year (Hazlett and 

Hyndman 1996). Once the island has shifted sufficiently away from the magma 

source the old volcano becomes extinct and a new volcano forms over the hotspot. 

This has resulted in a number of islands of increasing age gradually moving north 

west of the hotspot. This allows and unparalleled investigation of 

chronosequences of hundreds of thousands to millions of years old (Chadwick et 

al 1999). 

This process has created an island and sea mount chain extending 

northwest-ward from the big island to just past Kure Atoll, then north to the 

Aleutian Islands. The big island of Hawaii lies mostly over the hot spot. This 

largest and youngest island is made up of five volcanoes; Kohala, Mauna Kea, 

Hualalai, Mauna Loa and Kilauea (Fig 7.3). A sixth volcano, Loihi, lies just off 

the south east coast and has yet to reach sea level. Large areas of the big island 

are covered in recent lava flows. Most of these recent lava flows have been 

erupted by Mauna Loa and Kilauea. Mauna Loa last erupted in 1984 sending a 

large lava flow eastwards before stopping approximately 10kIn from the outskirts 

of the town Hilo. Kilauea has been continuously erupting since 1983 with lava 

entering the Pacific Ocean and forming new land on the south east of the island. 
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Figure 7. 1. The Hawaiian Island chain. 
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Figure 7.2. Each of the Hawaiian Islands was formed over the hot spot and was 


then carried to the northwest by the shifting pacific plate. (Taken from Hazlett 


and Hyndman 1996). 
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Figure 7.3. The Big island of Hawaii. Showing the five volcanoes that make up 

the island. 
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.. 

7.1.3. Climatic conditions 

Climatic conditions vary greatly across the big island. Both rainfall and 

temperature change with altitude and aspect in a complex manner related to the 

position of the volcanoes (Fig 7.4). Rainfall varies tremendously with areas of the 

Kona coast receiving less than 500mm a year on the west coast, whereas some 

areas on the east of the island receive 6000mm of rain (Fig 7.4). The reason that 

the Kona coast is so dry is that it lies on the leeward side of the volcanoes Mauna 

Loa and Hualalai (Fig 7.4). The saddle between Mauna Loa and Mauna Kea is 

2000m at its centre, and thus Kona is cut off from the trade winds, which bring 

rain to the east of Hawaii. However, Kona does receive some rainfall, due to the 

size of these two volcanoes. They present a large expanse of land, which absorbs 

heat, creating updrafts leading up toward the summit (Carlquist 1980). During the 

afternoon, air surrounding the mountains is rapidly drawn upward and the 

moisture it carries forms rain. This is the source of the annual rainfall of 1000mm 

down near the west coast. However, as noted before, this is far less than the 

6000mm of the east side of the island. 

The climatic pattern on Hawaii is made even more complex by the 

formation of localised climatic zones in many areas around the volcanoes (in areas 

so small they are not placed on the climate map). For example, by travelling on 

the crater rim road around the caldera of Kilauea it is possible to move from areas 

of dense rainforest, scrubland and through to desert in the space of a few 

kilometres. Although there are no rainfall data for the Kau desert (by which the 

barren desert area is known) it is thought that a decrease in rainfall and a more 

porous substrate coupled with greater surface evaporation (due to the lack of plant 

cover) causes the drier conditions (Carlquist 1980). 
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Figure 7.4. Average annual rainfall (black contour lines measured in mm) on the 

Big Island of Hawaii. Precipitation contours from Giambelluca et al1986. 
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HOi RISING AIR eMEA rES UPDRAFT 

Figure 7.5. Climate system for Hawaii (the Big Island). Taken from Carlquist 

(1980). 

7.1.4. The Hawaiian islands as indicators of successional change 

Many studies have been conducted on the volcanic ecosystems of Hawaii 

in terms of nutrient change (Vitousek et al 1983; Drake and Mueller-Dombois 

1993; Vitousek et a11995; Raich et al2000). Studies have also analysed changes 

in the ecosystem by variations with altitude (Kitayama and Mueller-Dombois 

1994; Raich 1997; Austin and Vitousek 1998). In addition, there have been long 

term studies of species succession (Smathers and Mueller-Dombois 1974). 
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7.1.5. Nutrient change on the Hawaiian Islands 

Nutrient availability and change over the period of long term 

chronosequences has been extensively studied on Hawaii by many authors 

(Vitousek 1982; 1997; Vitousek et al1987; 1992; 1995; Riley and Vitousek 1995; 

Kennedy 1998; Chadwick et at 1999). These authors have found that nutrient 

availability varies greatly with age of flow, altitude and the resident climatic 

conditions. This is similar to the pattern observed on Mt.Etna. 

Since the nutrient availability has already been investigated in detail 

(Vitousek et at 1983; 1993; 1995), this study only looks at leaf nitrogen 

availability in terms of the total foliar nitrogen and nitrate reductase activity. This 

will directly compare with the results from the chronosequences on Mt.Etna. 
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7.2. 	 Methods 

7.2.1. Species selection and sampling 

To compare the Nitrate reductase activity and foliar nitrogen content with 

that found on Etna, five early colonising species on Hawaii were investigated. 

These five species were; Metrosideros polymorpha, Myrsine lessertiana, 

Vaccinium reticula tum, Coprosma ochracea, Hedyotis centranthoides (identified 

using Lamoureux (1976); Kepler (1997) and Pratt (1998). These species were 

the commonest consistently occurring species (over the chronosequence) and a 

full description of each can be seen in the appendix. M.polymorpha was the chief 

subject for investigation, due to its wide abundance throughout Hawaii and its 

presence as one of the earliest colonisers of new lava flows. From each site small 

branchesfleaves were taken from the topmost level of the canopy. The branches 

were collected either by hand (on the younger sites where the plants were still 

small) or by use of a shotgun to bring down leaves from the tops of trees on the 

older lava flows (Vitousek et al 1995). The youngest sun leaves from each branch 

were then selected and homogenised together for analysis. 

7.2.2. Nitrate 	 reductase activity in the leaves of plants along a 

chronosequence at two elevations (1800m and 1000m) 

Sites were selected along two chronosequences of lava flows on the wet 

east aspect of Mauna Loa during the summer of 2001. Each chronosequence was 

located at a different altitude (one at approximately 1000m and another at 

1800m). Sites were selected using the same criteria as that used on Mt.Etna 

(topography, distance from the edge of flow and lava morphology) as outlined in 

2.2.1. 	 Sites selected at lOOOm were the: 1984 (17 year old), 1942 (59 year old), 
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1852 (149 year old), 400 year old and 3,000 years old lava flows (Fig 7.6). Map 

grid references for the location of all the sites can be seen in the appendix. The 

older 3,000 site was added to compare the differences between the younger flows 

and a fully developed system. Sites on the 1800m chronosequence were the: 1984 

(17 year old), 1852 (149 year old), 400 years old, 3,000 year old and a 5,000 year 

old lava. These sites were identified using the geological maps of Hawaii (Wolfe 

and Morris 1996). These sites have been used consistently as part of research 

relating to the development of a chronosequence of the Hawaiian ecosystems 

(Vitousek et al 1992; Vitousek et al 1995; Kitayama and Mueller-Dombois 1994; 

Kitayama and Mueller-Dombois 1995; Kitayama et al1995; Raich et al1996 and 

1997; Kurina 1998; Kurina and Vitousek 1999; Raich et al 2000; Kurina and 

Vitousek 2001). 

On each site the five target species were sampled wherever possible (some 

species were not present on all sites). Nitrate reductase activity in the leaves and 

roots was determined using the same analytical method outlined in section 3.2.3. 

The concentration of the total nutrients for each altitude was analysed using an 

ANOVA on SPSS 10.0. 
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7.2.3. Foliar Nitrogen 	in plant species along a chronosequence at two 

elevations (1800m and 1 a~Orn). 

A large subsample of the leaf material gathered from each of the sites (Fig 

7.6) during the nitrate reductase experiment (Section 7.2.2), was oven dried at 

70°C for three days and then ground down to a fine powder. Total foliar nitrogen 

was determined using the same method outlined in section 4.2.8. Three replicates 

of O.lg of finely ground samples of the commonest plant species (M.polymorpha, 

C.ochracea, V.reticulatum, M.lessertiana and H.centranthoides) were taken to 

Liverpool University for analysis. These samples were acid digested, distilled and 

titrated as described by Allen (1989). These samples were then compared to a 

standard reference material to determine the accuracy of the method. Variation 

between sites was then determined using an ANOV A on SPSS 10.0. 

7.2.4. Nitrate reductase activity 	in the leaves of plants under different 

nutrient regimes 

The Nitrate reductase activity in the leaves and roots of the dominant plant 

species present on a site subjected to fertilisation experiments, (Vitousek et al 

1993), was determined to contrast nitrate reductase activity under different 

nutrient regimes. The fertilisation experiment begun in 1985 by Vitousek et al 

(1993) established a complete factorial fertilisation experiment on several sites 

over a chronosequence of lava flows in order to test how limiting nitrogen, 

phosphorous and all other essential nutrients (in a combined fertilisation 

treatment) are during primary succession on Hawaii. They found the most 

limiting factor to plant growth was nitrogen as significant growth was observed in 

plants on the youngest N fertilised plots. However this growth declined on the 

older flows, an indication that N becomes less limited on the older flows. As a 

result a comparison of the nitrate reductase activity in leaves on different 

experimental plots will test how the plants nitrate reductase activity reacts to the 

increased nutrient availability. 
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The site is located at an altitude of 1190m, near the Thurston lava tube on 

the edge of the Kilauea Iki crater (Fig 7.7). An explosive eruption of Kilauea Iki 

in the year 1790 deposited a 30-40cm layer of coarse tephra overlying a several 

hundred year old pahoehoe flow. The site has an annual precipitation of 2500rnm 

(Giambelluca et al 1986) and is dominated by 14-16m tall forest of 

M.polymorpha, with an understory dominated by the tree fern Cibotium glaucum 

and wild ginger (Zingiber zerumbet). 

Craler rim road 

o Ikm 115Dm 

GThurston site 

~ Cratorrim 

-I 150m- Elevation contours _ Road 

Figure 7.7. Site map for the Thurston nitrate reductase experiment. 

For the purposes of this experiment samples were taken from the control 

and nitrogen treatments only - as nitrogen is the nutrient most likely to affect NR 

. ., 1" 10 0 I 2 as nitrogenactivity. The treatments were nitrogen (mItIal app lcatlon . g m , 

half as urea and half as (NH4hS04, (Vitousek et aI1993). Treatments consisting 

of 25% of the initial applications were repeated at six month intervals. 
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Small branches were randomly collected from the top of two trees in each 

of the four experimental plots. Branches from the taller trees were brought down 

using a 12 bore shotgun (as used in Vitousek et al 1995). The youngest sun 

leaves from each branch were then selected and all four plots (eight trees) 

homogenised together for analysis. Nitrate reductase activity in the leaves and 

roots of M.polymorpha, C.ochracea, and M.lessertiana was determined using the 

same analytical method outlined in chapter 3.2.3. The NR activity between 

treatments was statistically analysed with an ANOVA using SPSS 10.0. 
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7.3. 	 Results 

7.3.1. Nitrate 	 reductase activity in the leaves of plants along a 

chronosequence at two elevations (1800m and 1000m) 

In each of the five species measured for nitrate reductase activity on the 

slopes of Hawaii there was a low measurement of nitrate reductase activity. 

However, each species did produce significantly more nitrite than that detected in 

a blank sample showing that nitrate assimilation was occurring. There was some 

variation between species with C.ochracea and M.lessertiana producing the 

highest readings of around 20 nmol / GFW / hr. whereas M.polymorpha, 

H.centranthoides and V.reticulaturn all produced less than 10 nrnol / GFW / hr. 

As the readings and the variance for each of these species is so small (e.g. 

M.polymorpha with a variance between 5 and 8 nmol / GFW I hr, compared to 

R.scutatus on Etna which varied between 250 and 500 nmol I GFW I hr) the 

variation between sites and samples is insignificant. All the data is included here 

in graphical form but it would be difficult to try and draw any conclusions from 

such low readings and variation except that nitrogen is limited on all sites 

investigated. 

This method was thoroughly tested in the laboratory in Hawaii against a 

sample of a Buddlea sp. (this genus is a known large NR producer) which 

detected a large amount of activity (over 500 nmol / GFW / hr). This proved that 

that the methodology and chemical reagents were functioning as normal but the 

low readings were consistent from the Hawaiian species and sites examined. This 

low reading was discovered in all the Hawaiian plants tested on the recent (0­

500year old) lava flows. 
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Figure 7.8. Nitrate reductase activ ity in the leaves of Metrosideros polymorpha on 

sites of increasing age at two altitudes where a is 1000m and b is 1800m 
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Figure 7.9. Nitrate reductase activity in the leaves of Coprosma ochracea on sites 

of increasing age at two altitudes where a is 1000m and b is 1800m 
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Figure 7.10. Nitrate reductase activity in the leaves of Vaccinium reticulatum on 


sites of increasing age at two al titudes where a is 1000m and b is 1800m 
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Figure 7.11. Nitrate reductase activity in the leaves of Myrsine lessertiana on sites 


of increasing age at two altitudes where a is 1000m and b is 1800m 
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Figure 7.12. Nitrate reductase acti vity in the leaves of Hedyotis centranthoides on 

sites of increasing age at an altitude of 1000m. 
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7.3.2. Foliar Nitrogen 	in plant species along a chronosequence at two 

elevations (1800m and 1000m) 

Metrosideros polymorpha: 

There was little variation between the readings on the five sites on the 

1000m chronosequence for this species. There was a small decrease in nitrogen 

on the 68 and 148 year old flows (0.5%) Fig 7.13a. However, there was 

considerable difference between the three sites at 1800m with the highest reading 

on a 3000 year old flow (0.9 %) and the lowest on the 1852 flow (0.2 %) see Fig 

7.13b. 

Coprosma ochracea: 

The foliar nitrogen in C.ochracea was highest in the 148 year old 1000m 

site leaves 0.3%) and then decreased on the 400 rear old flow to 0.9% (Fig 

7.14a). There a small increase in the nitrogen in the leaves on the 1800m flows 

with a reading of 0.9 (400 yrs, 1000m) and 1.4 % (400m 1800m); 1.0% (3,000 

yrs, lOOOm) and 1.2% at 1800m (Fig 7.14b). 

Vaccinium reticulatum: 

This species shows an opposite to C.ochracea with a lower level of 

nitrogen found in the leaves at the higher altitude (1.2% at 400yrs 1000m; 0.6% 

at 400yrs 1800m) and 1.2% at 3,OOOyrs IOOOm; 0.6% at 3,000yrs 1800m) see Fig 

7.15. 

Myrsine lessertiana: 

At lOOOm these appears to be a slow increase in foliar nitrogen in 

M.lessertiana with age (Fig 7.16a). As this is a much rarer tree species it could be 

argued that as this is an old growth species it is better at competing in the fully 

developed (3,000 yr. old) forests rather than in the primary (1-100 yrs old). There 

is no significant difference between the two altitude readings (only on the 3,000 

yr. old flow) which are both at about 0.9 % 

228 



Chapter 7 	 Michael Carpenter 

5 08 
~ . 
.2 
~ 

-: 0.6 

" ~ 

;..'I 0.4 -
~ 

z 
:::: 0.2 

0.0 

a 

~rl- r+-I+ tf-
I 

1.0 T 	 1.0 
b 	 r-h 

0.8 
r-+--­

0.6 

0.4 

0.2 I ri­
0.0 

17 	 59 149 400 3000 149 400 3000 

Age of lava flow substrate (years) 

Figure 7.13 . Total fo liar nitrogen in Metrosideros polymorpha on sites of 

increasing age at two altitudes where a is 1000m and b is 1800m 

-- - . -- ---- ­

a 1.4 rl, 	 b 

1.21A r 	
IIr+1 

n~ 1.2 

~ 1.0 1.0 

: 0.8 -1 0.8 
~ 

~ 0.6 0.6 

Z0.4 0.4 
.,. 

0.2 0.2 

0.0 0.0 

149 	 400 3,000 400 3,000 5,000 

Age of lava flo w substrate (years) 

Figure 7.14. Total foliar nitrogen in Coprosma ochracea on sites of increasing age 

at two altitudes where a is 1000m and b is 1800m 

229 




Chapter 7 Michael Carpenter 

1.4 
'JJ 

~ 
~ 

1.2 
~ 

; 1.0 
-5 
.: 0.8 
c: 
() 

~ 0.6 ... ... 
Z 0.4 
~ 

0.2 

0.0 

17 149 400 


a b1.4 

1.2 

1.0 

0.8 

. 0.6 I 
0.4 

0.2 

0.0 

f 

3,000 400 3,000 


Age of lava flow substrate (yea rs) 

Figure 7.15. Total foliar nitrogen in Vaccinium reticulatum on sites of increasing 

age at two altitudes where a is 1OOOm and b is 1800m 

1.0 
'JJ 
V 
> 
(OJ 

~ 0.8 
v 
..c .... r-+-­:: 0.6 
t: 
v 
01) 

2 0.4 .... 
Z 

~ 0.2 

0.0 

149 

r+ 


400 

b1.0r+-, a 

I 0.8 

0.6 

0.4 

0.2 

0.0 

T 
1.. 

3,000 3,000 5,000 

Age of lava fl ow substrate (years) 

Figure 7. 16. Total fol iar nitrogen in Myrsine lessertiana on sites of increasing age 

at two altitudes where a is 1000m and b is 1800m 

230 




Chapter 7 	 Michael Carpenter 

2.0 T 1

1 
! 

1.6 ~ 
</) 
<U 
> ro 
~ 
<U 1.2 
-5 
S 

T 

T 
I 

.L 
I

1 
c: 
<U 0.8 

I 

00 
0 1 

b 
Z 
~ 0.4 

I 

0.0 

Hedyotis centranthoides: 

H.centranthoides is a much rarer understory plant which showed a significant rise 

in foliar nitrogen between the 2 younger fl ows (1.2% at 16 and 148 yrs old) and 

1.8 on the 400 year old fl ow. This species was not found on the higher altitude 

sites (Fig 7.17). 

17 149 400 

Age of lava flow substrate (years) 

Figure 7.17. Total foliar nitrogen in Hedyotis centranthoides on si tes of increas ing 

age at an altitude of 1000m 

7.3.3. 	Nitrate reductase activity in the leaves and roots of plants under 

different nutrient regimes 

In a comparison of the leaves and roots of plants growing on the Thurston 

site there was no difference for M.polymorpha (Fig 7.18a) However, both 

C.ochracea and M.lessertiana produced more nitrite in the leaves than in the roots 

(Fig 7. 18b and c). There was no difference between the two nutrient regimes. 
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Figure 7 .18. Comparison of the Nitrate reductase activity in the leaves and roots 

of three plant species on two nutrient regimes on Thurston site. a Metrosideros 

polymorpha, b Coprosma ochracea, c Myrsine lessertiana. 
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7.4. Discussion 

The surprising low nitrate reductase activity in the leaves of native plant 

species on Hawaii makes it difficult to draw any firm conclusions about nitrogen 

assimilation on the slopes of Hawaii. However, as the low readings were 

discovered in all the Hawaiian plants tested this indicates that nitrogen is very 

limited on the recent lava flows of Hawaii. The relatively low variance between 

sites for the total nitrogen in the leaves suggests that even on the older (400 and 

3,000 year old) sites the plants are competing for a relatively small supply of 

nitrogen. It is likely that although the nitrogen in the system has increased over 

this period, the greater competition due to the larger diversity and mass of plants 

makes nitrogen very limited on an individual plant basis. This is supported by 

Chadwick et al (1999) which shows a slow increase in total nitrogen over the time 

of their chronosequence (many thousands of years). However, the sites included 

in this study in the 0-500 year range (even including the additional 3,000 year old 

samples) are clearly still so nitrogen limited that there is very little variation 

between the plants found on these chronosequences. 

This low nitrogen availability is a common occurrence in tropical 

ecosystems where most of the available nutrients in the system are bound up in 

the plant biomass and nutrient cycling processes or leached out by the high 

rainfall (Vitousek 1982; Austin and Vitousek 2000). This low nitrogen 

availability on the recent lava flows of Hawaii has been shown many times in 

numerous studies (Vitousek 1994; Kitayama 1996). 

One possible explanation for the low nitrate reductase readings is that as 

nitrogen is so limited on these flows that nitrate reductase in the leaves may be 

reduced to a low level in each species leaves. All the plants will be 'primed' with 

the same low level of nitrate reductase. This enzyme is metabolically expensive 

to construct and hence on the limited nitrogen flows all the plants will have 

reduced levels of NR in their leaves. The different levels of nitrate reductase 
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activity between the species would support this argument, as each has a different 

'minimum level' of nitrate reductase. This could be tested by examining leaves 

from plants grown on much older nutrient rich sites or from plants grown in the 

laboratory under different nutrient regimes. 

The lack of response between the samples from the different nutrient plots 

on the Thurston site, is most likely a factor of the time lapse since the last nutrient 

treatment. As stated in Vitousek et al (1993) there was an initial treatment of 

nutrients followed by repeated additions at further 6 monthly intervals. However, 

when this experiment was conducted it was just coming up to the time for the next 

treatment - so it had been nearly six months since the last application of nitrogen. 

As a result all the applied nitrogen has probably already been bound up into the 

biomass of the plants existing on the site and is therefore equally limited on both 

experimental plots. This experiment should be repeated shortly after the next 

application of nutrients to determine if there is a nitrate reductase response to the 

addition of nutrients. 

The lack of a detectable variation In the nitrate reductase activity on 

Hawaii is not reflected in the foliar nitrogen experiments. V.reticulatum, 

M.lessertiana and H.centranthoides all show a small increase in foliar nitrogen 

over time on the chronosequence at an altitude of lOOOm. In addition, the foliar 

nitrogen in M.polymorpha (Fig 7.13a) shows a higher level of nitrogen on the 17 

year old flow followed by a drop in nitrogen which then increases steadily. This 

is similar to the early nitrogen input observed on the Etna lava flows in Fig 3.2. 

After this early peak there is a decline in foliar nitrogen followed by another 

gradual rise with increasing age of the flow. Foliar nitrogen measurement, is a 

much less temporally variable measurement of nitrogen than using nitrate 

reductase. This gradual increase in nitrogen is similar to that found in Vitousek et 

al (1983); Vitousek et al (1989); Vitousek (1999); Crews et al (1995). 
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Chapter 8: Lichen weathering rates on lava flows 

of Hawaii. With further comparison of weathering 

rates with Mt.Etna 

8.1. Introduction 

8.1 .1. Purpose of the experiment 

Lichen weathering of the lava surface on Mt.Etna was studied in chapter 6 

and was found to cause extensive micro-morphological changes in surface texture 

and surface area which aided further colonisation by increasing water retention, 

and creating cracks and crevices for further plant colonisation. In addition, the 

weathering of the lava releases valuable trace elements, which aid further 

colonisation. The purpose of this experiment was to demonstrate that the same 

processes of lichen weathering during primary succession are also occurring on 

Hawaii. This study primarily looks at the differences between two different 

chronosequences on the big island of Hawaii, which are located in two distinct 

climate zones, one extremely wet (east aspect) and one dry (south-west aspect) 

Fig 8.1. By comparing the differences between the weathering of these 

chronosequences and then further comparing these Hawaiian chronosequences 

with those found on Mt.Etna an understanding will be gained of the role of lichen 

weathering in early basaltic lava succession and how this is influenced by the 

prevalent climate. 

In order to compare the two volcanic ecosystems the lichen Stereocaulon 

vulcani was selected for study on the lava flows of Hawaii. This species is 

common on the recent lava flows of Mauna Loa and is very similar to 

S. vesuvianum on Etna, filling the same ecological niche. 
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8.1.2. Stereocaulon vulcani 

One of the commonest occurring lichen species on Hawaii, S. vulcani (Fig 

8.2) is very similar in structure and habitat to S. vesuvianum on Etna. S. vulcani is 

common on the young aa lava flows (Uhe 1988). It is a tripartite symbiont 

involving the fu ngus Stereocaulon vulcani, the green algae Trebouxia irregularis 

and a cyanobacterium in the genus Stigonema (Kurina and Vitousek 1999). 

Investigations into the biomass of this lichen have shown that its abundance is 

linked to precipi tation on the lava flows of the east side of Mauna Loa (Kurina 

1998; Kurina and Vitousek 1999). This species is a demonstrated nitrogen fixer 

(Kurina and Vitousek 2001). 

Figure 8.2 Stereocaulon vulcani growing on the 1984 Mauna Loa lava flow at an 

altitude of 1000m (Picture taken by M.Carpenter) 
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• 

8.2. Methods 

8.2.1. Lichen weathering of the eastern wet chronosequence 

Samples of lava were taken from five sites of aa lava on the eastern wet 

side of Mauna Loa located at two different altitudes. Sites sampled were: 

1000m: 1984 (17 year old), 1942 (59 year old) and 1852 (149 year old). 

1800m : 1984 (17 year old) and 1852 (149 year old). See Fig 7.6 for site map 

Each site was sampled using the same methodology for site selection as used on 

Mt.Etna (topography, distance from the edge of flow and lava morphology) as 

outlined in 2.2.1 and 6.2.1. These samples were then photographed under a 

Scanning electron microscope at x200 magnification as outlined in 6.2.2. All the 

samples for the project were taken from lava covered in S. vulcani. 

8.2.2. Lichen weathering of the western dry chronosequence 

Samples of lava were taken from eight sites of aa lava on the dry east, and 

southeast coast of Hawaii. All sites were located at the same altitude of 

approximately 600m. Lava flows sampled were:- 1974 (27 year old), 1950 (51 

year old), 1926 (75 year old), 1919 (82 year old), 1907 (94 year old), 1868 flow 

(133 years old), 200 year old and 750-1500 year old lava (Fig 8.3). Each site was 

sampled using the same methodology as those taken from Mt.Etna (topography, 

distance from the edge of flow and lava morphology) as outlined in 2.2.1 and 

6.2.1. These samples were then photographed under a Scanning electron 

microscope at x200 magnification as outlined in 6.2.2. 
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Figure 8.3 . Site map for the dry west chronosequence 
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8.2.3. Comparison 	of weathering between lichen weathered and non­

lichen weathered rocks 

On the west 1950 (51 year old) lava flow there was a very clear zonation 

of the lichen on many of the larger boulders. The lichen mainly grew well on the 

sheltered east facing side of the lava, but gradually declined in abundance on the 

other aspects of the rocks until the west facing side was totally barren. This 

resulted in a good opportunity to compare the effects of lichen weathering of lava 

with that of un-lichenised rock. Samples of lava from the different aspects, were 

taken from boulders on the 1950 east lava flow using the same methodology as 

those taken from Mt.Etna (6.2.1). These samples were then photographed under a 

scanning electron microscope at x200 magnification as outlined in 6.2.2. 

8.2.4 	 Machine vision comparison of the weathering of lava by S. vulcani 

on Hawaii with the south chronosequence of Etna 

Samples taken from three of the sites on the eastern chronosequence of 

Hawaii 	were compared using the intelligent machine vision system with the 

weathered samples of lava taken from the south chronosequence of Mt.Etna as 

used in 6.3.5. This will confirm if S. vulcani weathers the lava in a similar fashion 

to S. vesuvianum (on Etna). In addition it will measure the extent of weathering on 

the Hawaiian lavas in comparison with the weathering rate of the southern 

chronosequence of Etna - directly comparing the weathering rates of the two 

volcanoes 
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8.3. Results 

8.3.1. Lichen weathering of the eastern wet chronosequence 

The three sites on the lOOOm chronosequence (Fig 8.4) show a clear 

progression of rock weathering from a relatively smooth unweathered surface 

(1984) through an initial cracking and further disintegration as the lava surface is 

split into fine flakes of rock giving a more 'aggregate' structure. The two samples 

at 1800m show a similar trend with the smooth 'blocky' 1984 (Fig 8.5a 17 year 

old) surface structure being replaced by the cracked and pitted 1852 surface (Fig 

8.5b) the descriptive terms are based on Heikens and Wohlentz (1985). 

A comparison of the two 1984 flow samples at the two altitudes show 

greater weathering on the lOOOm flow (Fig 8.4a) than on the 1800m altitude (Fig 

8.5a). The higher 1800m flow shows a relatively smooth surface, whereas the 

l000m sample shows a much finer etching of the lava surface. Similarly, a 

comparison of the two 1852 lava flow samples (149 years old) at the two altitudes 

show a greater extent of weathering at the 1000m (Fig 8.4c) altitude than at the 

higher 1800m (Fig 8.5b) 
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Figure 8.5. Lichen weathered samples from the 1800m chronosequence on the 

east side of Hawaii . Where a is the 1984 flo w (17 years old) and b is the 1852 

flow (149 years old) . Magnification x200. 
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8.3.2. Lichen Weathering of the western dry chronosequence 

There is a very clear progression in the weathering by lichen activity on 

the western chronosequence. This can be seen in Figs 8.6a - 8.6h, where there is 

an initial slow period of weathering from the initial glassy surface (Fig 8.6a) 

through minor surface weathering (Fig 8.6c etched surface) which increases as the 

lichen becomes more dominant on the 1919, 1926 and 1950 flows. After this 

period the lichen abundance is slowly declining (although it persists for longer 

than on the east chronosequence where the S. vulcani disappears after 100 years). 

Many patches on these later sites remain surprisingly bare of vascular plants (due 

to the low rainfall) but weathering continues as demonstrated in the 200 and 750 

year old flows. 

The extent of weathering on this eastern chronosequence does not achieve 

the 'aggregate' like fine flake structure found on the 1852 flow on the east lOOOm 

flow. 

, I 

244 




N 
~ 
VI 

(")
::::r 
pV 

'"0 
(0 
>; 

00 

~ o· 
:::; 
pV 

g. 
n 
~ 

>d 
(1) 
::l ....... 

(1) 

Figure 8.6. Lichen weathering along the south western chronosequence of Hawaii. Where a is the 1974 flow (27 years old), 
>; 

b is the 1950 flow (51 years old) ; cis 1926 flow (75 years old) and d is 1919 flow (82 years old) . Magnification x200 



N 
+:>. 
0\ 

() 
::;
s:» 

"0 ...... 
('b..., 
00 

3: o· 
::; 
s:» 
~ 
n 
.a 

('b 
::s 
~ ..., 

Figure 8.6 .continued Lichen weathering along the south western chronosequence of Hawaii. Where e is the 1907 flow (94 years 

old), f is 1868 flow (1 33 years old); g is an estimated 200 year old flow and h is an estimated 750-1500 year old. Magnification x200 



_____ 

Chapter 8 Michael Carpenter 

8.3.3. Comparison 	of weathering between lichen weathered and non­

lichen weathered rock 

There is a clear difference between samples taken from two different 

aspects of a large lava boulder on the 1950 east lava flow. The lichenised rock 

surface shows the distinctive pitting and surface cracks associated with lichen 

weathered rock (Fig 8.7.a). Whereas the un-lichenised rock surface was much 

smoother with only a little pitting and no cracking or flaking of the surface (Fig 

8.7.b). This proves that the lichen is weathering the rock surface faster abiotic 

factors alone. 

Figure 8.7. A comparison of weathering between a lichen covered (a) and a non­

lichen covered (b) sample taken from the 1950 east lava flow. x200 
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8.3.4. 	Machine vision comparison of the weathering of lava by S. vulcani 

on Hawaii with the south chronosequence of Etna 

The pattern and morphology of the weathering of the lava by S. vulcani on 

the lava of Hawaii was practically identical to that caused by S. vesuvianum on 

Etna. Three samples from the east wet chronosequences were compared to the 
II. 

Etna south chronosequence baseline as used in 6.3.9. These samples were chosen ~ 
as they were dominated by the lichen S. vulcani and were very similar to the Etna 

flows of roughly the same age. These flows also covered two different rainfall 

regimes on Hawaii, (4000mm at lOOOm and 2000mm at an altitude of 1800m see 

Fig 7.4). The results matched the three Hawaiian samples with the closest 

matching weathered lava from the southern chronosequence of Etna. 

The 1984 (1800m) sample from Hawaii was a very good match to the 

1983 (lOOOm) lava flow on Mt.Etna (93.76%). The weathering rates of these two 

sites was identical (Table 8.1). However, the weathering rate of the same lava 

flow (1984) at the lower altitude of 1000m was a close match to the 1892 lava of 

Etna - indicating a much faster rate of weathering than that seen on Etna (it took 

only 17 years to weather the rock to the same degree as 108 years on Etna). The 

sample from the 1852 lava flow on Hawaii was a close match (95.52%) to the 

1892 sample from Etna, showing that the rate of weathering had slowed and was 

now roughly equal to the rate of weathering on Etna 

These weathering data can be compared to the variables of Stereocaulon 

biomass and annual precipitation rates for the sites (Table 8.1). S. vesuvianum 

biomass data has been transformed (Logged) in order to be comparable to the data 

of Kurina and Vitousek (1999). The data from Kurina and Vitousek (1999) was 

taken 7 years before this study and so is a rough guide only to the biomass on the 

1984 lava flow (which would have increased). However, there would be little 

change on the 1852 flow - based on the rapid increase followed by slow decline 

pattern that is typical of Stereocaulon (Fig 5.8). 
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From table 8.1, it can be seen that the 1984 1000m lava flow on Hawaii has a 

biomass of 2.55 (Log g/m2) (based on 7 year old data which will have increased 

by the time of this study). This has a 91 % match to the 1892 1000m lava flow of 

Mt.Etna. In essence, the Hawaiian flow at this altitude has produced a biomass 

comparable to the 1892 lava flow on Etna during only 17 years. This is probably 

due to the far greater precipitation on this site, which favours the rapid growth of 

lichens. This difference in biomass can be seen clearly by comparing photographs 

of two similar aged lava flows: Fig 8.2 shows that S. vulcani completely covers 

the surface of the 1984 Mauna Loa lava at 1000m. In comparison, the 1981 Etna 

lava flow (Fig 1.2) has little S. vesuvianum cover. 

When the precipitation is reduced higher up the slope of Mauna Loa 

(1984, 1800m data) the lichen biomass is also reduced, to a level comparable to 

the 1983 Etna flow (both reading 0 Log g/m\ As a result the extent of 

weathering is also reduced giving an age match to the 1983 lava flow on Etna. 

Finally, on the 1852 Hawaiian lava flow the weathering rates match for the 

1892 Etna flow. In this case while lichen biomass has declined on Hawaii, it has 

increased on Etna - in a sense the extent of weathering on Etna has 'caught up' 

with the weathering on Hawaii. 
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8.4. Discussion 

Lichen weathering of the lava of Hawaii by S. vulcani shows a similar 

pattern to that found on Mt.Etna by S. vesuvianum. Both species of lichen quickly 

colonise the rock surface and begin etching / pitting the surface almost 

immediately. This pattern can clearly be seen by comparing the electron 

microscope pictures of a chronosequence on Etna (Fig 6.4) with those of Hawaii 

(Fig 8.4). This close similarity is further confirmed by the results of the computer 

machine vision analysis. This identified the lichen weathering on Hawaii and 

grouped it to its nearest match on the Etna baseline chronosequence. 

This weathering takes the form of pitting, cracking and eventually flaking 

of small chunks of the lava to form an 'aggregate' like structure on the surface of 

the rock (Heiken and Wohletz 1985). This is produced as the lichen penetrates 

the lava surface by means of organic acids and by physical pressures exerted by 

the thallus. However, there are clear differences between the weathering rates on 

the two climatic chronosequences on Mauna Loa. The weathering is fastest on the 

east facing slopes of Mauna Loa. This is linked to the wet humid climatic 

conditions in the east which favour the growth of a large S. vulcani biomass as 

opposed to the dry southwest chronosequence where lichen growth is much 

slower (Kurina 1998). Weathering is linked to the lichen biomass on the rock and 

the amount of time that the lichen is present on the rock. This in tum is related to 

the climatic conditions of the site as it effects the lichen growth (Kurina 1999). 

The comparison between the similarly aged lava flows of Etna and Mauna 

Loa clearly shows that weathering is occurring in the same way on both volcanoes 

but at a greatly accelerated rate on the east Hawaii sites. The 1984 lOOOm Mauna 

Loa site has weathered to the same extent as the 1892 lOOOm site on Etna. 

(91.6% match). There is a very high similarity (94% match) in the extent of 

weathering on the Hawaiian 1984 flow (at an altitude of 1800m) and the Etna 

south 1983 flow (at an altitude of lOOOm). This would indicate that the 

weathering rates of these two sites is almost exactly alike at this stage of 
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ecosystem development, and the similar biomass on these sites explains the 

matching weathering rates. The 1852 lOOOm lava flow on Hawaii shows a good 

weathering match to the 1892 lOOOm Etna lava flow. At the same time there is a 

reduction in lichen biomass on Hawaii and an increase on Etna. This shows that 

the weathering on Etna has 'caught up' with the extent of weathering on Hawaii. 
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Chapter 9: Primary succession on volcanic 

ecosystems. Discussion and conclusions 

9.1. Introduction 

From this study it is clear that the processes controlling colonisation and 

primary succession that occur after a volcanic eruption has produced a new lava 

substrate are complex and inter-related. Changes in vegetation type, nutrient 

availability and the gradual processes of soil formation are all evident during the 

500 year period investigated during this project. Each of these processes is 

affected by the climatic and environmental conditions prevalent on each site. 

These processes have been examined individually through the experimental 

chapters of this thesis. However, these different processes interact increasing the 

complexity of the system. The multidisciplinary nature of this research project 

allows many of the links between certain inter-related factors to be explored. 

The frequent volcanic eruptions of Etna and Hawaii create new lava 

substrates creating ecosystems at different stages of chronological successional 

development. This produces a great deal of ecosystem heterogeneity. As a result 

the overall diversity of these regions is increased and many communities of plants 

can live in a small geographical area (Motzkin et al 1999) due to these disturbance 

events. 

This project has contributed to the research into primary succession by using 

chronosequence theory on the lava flows of Mt.Etna, which has not been 

attempted before. These flows are a perfect research area for looking at species 

change and the attendant nutrient change during long periods of time. In addition, 

it has expanded the knowledge of the Hawaiian ecosystems as it investigated the 

early (0-500 year) period of primary colonisation. Previous research on Hawaii 

(the many papers by Vitousek and Kitayama) has looked at specific changes of a 
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long-term chronosequence of thousands to millions of years of change on the old 

Hawaiian volcanoes, which make up the islands. 

9.2. Vegetation changes 

Over the 500 years time interval investigated in this project the lava flows 

of Etna show a considerable change in vegetation - both in terms of species 

present but also in the more fundamental terms of growth form (from cryptogam 

to trees). The initial stage is characterised by cryptogams, especially the lichen 

S. vesuvianum. This species has a considerable impact on the developing lava 

flow as shown in the many experiments to measure its changing biomass and 

contribution to weathering. This early lichen phase gradually gives way to the 

domination by vascular plants (although several species including R.scutatus and 

C.ruber do occur in the very early lichen phase). This study of vegetation change 

on Etna using chronosequence theory has not been done before as other studies on 

Etna (Poli and Grillo 1972; 1975; Grillo and Caniglia 1988 Poli et al 1995) have 

concentrated on the vegetation heterogeneity located on specific lava flows due to 

differences in surface morphology and altitude. 

Species succession occurs fastest on the east chronosequence as 

demonstrated by the smaller lichen dominant phase and the attendant decrease in 

S. vesuvianum biomass. In addition, the faster colonisation of the later stage 

species like S.junceum (Fig 2.22), and the growth of an oak woodland of 

Q.pubescens (Fig 2.26) which dominates after only 300 years of succession 

support this conclusion. This can be linked to the climatic conditions prevalent on 

this aspect of the volcano as the increased rainfall and humid conditions support 

the faster growth of vascular plants. This is also seen on areas of Hawaii where 

the increased rainfall on the east side of the Kilauea caldera supports a large 

biomass and plant diversity in comparison with the drier Kau desert in the west 

(Smathers and Mueller-Dombois 1974; Carlquist 1980). On Mt.Etna there may 

also be an impact from the tephra fall which predominantly falls on the east aspect 
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of the volcano. This speeds colonisation by contributing to the precursor soil in 

terms of a fine material and enriching the soil with nutrients. 

The harsh environment initially present on the open lava fields leads to a 

successional system quite similar to the older theories of Clements (1916) with a 

slow but guided change in species over time with a very similar outcome in most 

of the lava flows (eg from lichen to shub to trees). In the newly formed lava only 

the cryptogams can survive which starts the succession. It is only later in the 

succession when the conditions can support a much wider range of species that 

the more random elements and discontinuities of Gleason (1964) are introduced. 

This may lead to different dominance by tree species in an area. For example this 

may explain the separation of the two oak species on Etna where Q.pubescens is 

dominant on the east and Q.ilex on the south aspect. 

The general changes that occur during a typical chronosequence on 

Mt.Etna can be shown in a series of stages on Figs 9.1-6. 
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Figure 9.1 . Stage 1: Year O. The initial bare aa lava. 

At this stage the lava is bare and formed from many irregular, loose basaltic 

blocks. The smaller rocks constantly shift and fall into cracks between larger 

blocks forming an unstable substrate. This is an extremely harsh and nutrient 

pooF environment. 

Figure 9.2. Stage 2: 0-20 Years. First lichen colonisation 

The first lichens colonise and grow on the most sheltered / wettest areas on the 

lava surface. The lava is still unstable and nutrient poor. 

Figure 9.3 . Stage 3: 20-50 years. Lichen and moss biomass growth 


The lichen biomass has now increased to cover almost all of the uppermost areas 


of the lava, fo rming a 'blanket' over the rocks under which a continual 'rain' of 


weathered rock debris and broken off lichen material drops between the cracks to 


form the precursor soil. This material starts to bind the rocks together and 

prevents shifting. 
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Figure 9.4. Stage 4: 50- 150 years. Vascular plant colonisation 

Lichens still dominate the rock surface but in soil pockets and cracks in the lava, 

vascular plants have begun to colonise. This increases the organic matter 

production, which in turn supplies the soil with further nutrients to drive the 

succeSSlOn. In addition, nutrient cycling and accumulation by plants (nitrogen 

fixation) continues to enrich the soil. 

Figure 9.5. Stage 5: 150 - 250 years. Vascular plant dominance. 

At this stage the lichens are restricted to large boulders and open areas of the lava 

flow. Woody scrub plants and small trees (especially G. aetnensis) are scattered 

randomly throughout the fl ow. These form spreading centres of high vegetation 

diversity and biomass due to the associated organic debris, shade and water 

retention. These in turn allow the seeds of more species to gain a foothold on the 

lava. There are very few gaps left in the lava, most having been filled with soil 

and debris. 
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Figure 9.6. Stage 6 : 250-450 years. Succession. 

In this final stage of the chronosequence lichens have almost completely 

disappeared from the lava flow (restricted to under-story and epiphytic species). 

Most of the surface is now covered in vascular plants and the trees are becoming 

dominant. The soil has thickened and has become richer in nutrients. Continuing 

processes of nutrient cycling and nitrogen fixation gradually build up available 

nutrients. In addition, environmental condi tions have been ameliorated by the 

growth of the ecosystem (e.g. water retention) . Over this period, the processes of 

succession and species replacement occur, increasing vascular di versity 

These general changes in vegetation fo llow a similar trend on both Mt.Etna 

and Hawaii. However, on Hawaii the lichen phase (stages 1-4) is of a much 

shorter duration on the eastern chronosequence as characterised by S. vulcani 

which shows peak biomass on the 1984 and 1942 lava flows (Kurina 1998; 

Kurina and Vitousek 1999). This is linked to the increased precipitation on this 

aspect of Mauna Loa which speeds both the growth of the lichen and the 

follow ing vascular plant colonisation and growth (which rapidly out-shade and 

supplant S. vulcani) . 
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9.3. Nutrient cycling, the changing sources of Nitrogen 

At the end of chapter 3 the behaviour of nitrate reductase in the leaves of 

plants on Mt.Etna showed two peaks of nitrogen entering the system during the 0­

500 years of the chronosequence. There was an early peak at the 70-120 year 

mark, foll owed by a decl ine during the 200- 300 year period before once again 

increasing rapidly (Fig 3.2 repeated below). However, the soil nitrogen over the 

same period on the lava flows is increasing in a nearly linear fashion (Fig 4.1 O.a. 

repeated below) . This strongly indicates that there is another source of nitrogen 

entering the ecosystem and supplying the plants on these early lava flows. Not 

only this, but the limited time frame of this source (70-120-year mark) indicates a 

specific nitrogen source. Atmospheric and volcanogenic deposition of nitrogen 

are unlikely sources of this peak as these would be acting on all the sites on each 

chronosequence (al though these will vary between chronosequences on the 

different aspects of the volcano). 
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Figure 3.2. Nitrate reductase activity in the leaves of C ruber on the 

northern chronosequence, in both nitrate treated plants and water treated plants 

(n=4 ,+I- S.E.). 
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Figure 4. 1O.a. Percentage total nitrogen in the soil of the nor1h chronosequence. 

(N=3, +/- S.D). 

As has already been shown, lichens of the genus Stereocaulon are ni trogen 

fixers (section 5. 1.3). This, cou pled with the large biomass of lichens on Etna, 

would indicate this lichen is fixing a large quantity of nitrogen. The peak in 

lichen biomass occurs at the same time as the early nitrogen peak (Fig 5.9). 

Therefore, it is likely that some of the nitrogen produced by the lichens is leaching 

out into the ecosystem and is the source of the early peak in nitrogen found in the 

plants. 
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Figure 5.9. S. vesuvianum biomass on the north chronosequence of Mt.Etna. 

(N=20 +/-SE). 
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The leaching of nitrogen from lichens has been noted before and has been 

measured in epiphytic lichens growing in oak woodlands (Knops and Tilman 

2000; Knops et al I99 l). These epiphytic lichens fix 2.85 kg N ha-1y(i in this oak 

woodland (Knops 1994). An additional study by Kurina and Vitousek (2001) 

showed that Stereocaulon vulcani fixes between 0.2 and 0 .45 kg N ha- I yr- at an 

altitude of 1500m on the lava flows of Hawaii. Using this nitrogen leaching from 

the lichen as a basis it can be seen how a combined model of nitrogen sources on 

the lava flows may work (Fig 9.7). 
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Figure 9 .7. A model of the main nitrogen inputs on the early volcanic ecosystems 

on Etna. The avai lable nitrogen shows an early peak as shown by the nitrate 

reductase activity results (dashed part of the line is the theoretical rise from 0) 

This graph of avai lable nitrogen (broadly based on the nitrate reductase 

results on Fig 3.2) is a combination of the soil ni trogen (4. lOa) and the lichen 

biomass (Fig 5.9) . This model fi ts much of the available data found on Etna and a 

similar process may be occurring on Hawaii. The graph of M.polymorpha (Fig 

7.13a) shows a similar trend for a higher reading of foliar nitrogen in the leaves 

when S. vulcani is dominant (17years old). 
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The newly produced substrate is limited in nitrogen and other essential 

nutrients and it is only when a sufficiency of these nutrients has been produced by 

the autotrophs (lichens) or blown in as wind borne organic material that other 

species can colonise the rock. 

One of the most important findings of this project is the importance of 

lichens in the successional sequence. Clements (1916) stated that lichens were a 

very important life stage in early colonisation patterns. This has been clearly 

shown on the recent (0-200 year old) lava flows of Etna where lichens dominate 

the lava surface and make an important contribution to the developing ecosystem. 

This project demonstrates that lichens facilitate succession by harvesting nitrogen 

from the atmosphere and enhance the further colonisation and growth of vascular 

plants. In addition, Stereocaulon introduces a large biomass to the initially 

nutrient poor lava ecosystems. This agrees with other studies conducted by 

Cooper and Rudolph (1953); Knops et al (1991) and Kurina (1998). 

9.4. Weathering by the lichens S.vesuvianum and S. vulcani 

This study has shown how the lava surface changes over the time period of a 

chronosequence under the weathering action of Stereocaulon (by visual 

observation of the changing surface). These data adds to the debate as to the 

nature and extent of lichen weathering on lava. Several authors attribute the 

breakdown of the lava substrate and the formation of secondary products as well 

as etching and pitting of the surface to lichen activity (Jackson 1969; Jackson and 

Keller 1970; Adamo and Violante 1991; Stretch and Viles 2002). For example, 

Stretch and Viles (2002) showed that weathering on Lanzarote is high even in the 

arid areas (x16 higher than bare surface weathering). However, Cochran and 

Berner (1993 and 1996) working over a longer chronosequence attribute more 

importance to the vascular plant and soil weathering, and dismissing the lichen 

contribution. They reinterpreted Jackson and Keller's (1970) work as evidence of 

aeolian material thus reducing the importance of lichen weathering. In a further 
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paper the same authors (Berner and Cochran 1998) showed that plant weathering 

on the older flows can penetrate to depths of thousands of micrometers (in 

comparison to S. vulcani, which they estimate penetrates to 50-100/lm). However 

the results of this project support the earlier premise of lichens being a significant 

weathering agent on the early (0-300 year old) lava flows of Etna and Hawaii. 

Moreover the introduction of this new data from Mt.Etna (where no previous 

work on lichen weathering of this nature has been done before) on three 

chronosequences clearly demonstrates that lichens weather the lava in a 

predictable manner. 

This project has taken forward the methods of image analysis of weathering 

by using the computer machine vision system to quantify minor changes in the 

lava surface using a large database of images. This allowed comparison of 

weathering rates of sites under different climatic and environmental conditions as 

seen on Etna. This was then studied further by the comparison with sites on 

Hawaii, which expanded the model of lichen weathering under different climatic 

conditions. The two studies on Etna and Mauna Loa show that the weathering 

action and rate of the two lichens S. vesuvianum and S. vulcani is similar and 

occurs in a predictable and quantifiable manner. Both of these lichens are very 

similar in structure and growth form. The weathering rate of these lichens is 

controlled by the extent of lichen biomass on the rocks. This occurs in two ways: 

1) the more lichen present the greater the mechanical action on the rock surface 

and 2) the greater the lichen biomass the more organic acids produced and hence 

more chemical weathering can occur. As a result the weathering rates are closely 

linked to the factors which affect the lichen development on the rock surface. 

These have been identified as climate (warm humid conditions promote growth) 

and a gradually increasing effect of competition and shading by vascular plants 

(which reduce lichen growth on older flows). 

The intelligent machine vision analysis allows comparison of the weathering 

rates of the two Hawaiian chronosequences and correlation of these weathering 

rates to the Etna baseline. The three sample results shown (Table 8.l) clearly 
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indicate that weathering of the lava by the two Stereocaulon species is comparable 

and suggest that the extent of weathering is closely linked to the lichen biomass 

on the rock surface. The Etna data shows that weathering is related to the climatic 

conditions controlling lichen growth (primarily precipitation). 
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9.5. The inter-relatedness of the processes on lava ecosystems. 

Most of the works by other authors, which have been discussed in this thesis, 

have been focused on one particular facet of primary succession (e.g. vegetation 

change by Smathers and Mueller-Dombois 1974). However this multi­

disciplinary study has a quite different holistic approach. As a result, the 

investigations of this project into many different aspects of primary colonisation 

on lava, show that the processes of primary succession are all inter-related. For 

example the process of weathering (by lichens) speeds soil formation which in 

turn aids plant succession which then out-competes and shades the lichens. This 

chain of events is based on the initial colonisation of the lichens - which leads to 

faster colonisation of vascular plants on the lava. Similarly the production of 

lichen organic matter also aids vascular colonisation. In essence the lichens 

initiate colonisation of the bare surface. This then changes the ecological 

conditions enough to support a large vascular biomass, which in tum impedes 

further lichen growth. This is supported by Kurina (1998), as well as Kurina and 

Vitousek (1999) who showed that lichen biomass decline is linked to increased 

shading by vascular plants. 

Another similar linkage can be seen when the initial lichen and vascular plant 

biomass initiates nutrient accumulation and cycling leading to soil development. 

This soil can in turn support a higher diversity of plant species leading to 

competition between species and further succession. The wide scope of the study 

on Etna and its further expansion by research of specific areas on Hawaii (NR and 

S. vulcani weathering) has shown many such links between the ecological 

processes and the vegetation during the primary succession. A simplistic web 

diagram of these interrelated processes and their effect on succession can be seen 

in Fig 9.8. These processes, inputs and vegetation changes, apply to both volcanic 

systems investigated. However, on Hawaii the lichen stage is reduced on the east 

chronosequences as the wet tropical climate in many areas allows several vascular 

species (e.g. M.polymorpha) to colonise the bare lava directly. 
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Figure 9.8. Simplistic web diagram of the major inputs, processes and vegetation 

changes that occur over a chronosequence on a lava flow. Where vegetation 

change can be linked to the many different processes and vice-versa. 
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9.6. Final conclusions. 

The final conclusions of this project work can be summed up in the following 

sections: 

1) 	 Succession of vegetation on fresh lava is related to the substrate, climate and 

distance from a source of propagules. All the species present on the flows are 

effected both temporally (due to changing nutrient availability) and 

geographically (by aspect / climate). In addition, seed/spore dispersal 

mechanisms of the plant species also influences the colonisation process ­

with some species colonising the whole flow simultaneously (e.g. 

S. vesuvianum) and others encroaching gradually from the edges (e.g. Q.ilex). 

Each species investigated has different environmental and nutritional 

requirements and hence occupies a different niche (and time period) on the 

chronosequence. This forms a heterogeneous complex of species present over 

the lava flows. 

2) 	 Nitrate reductase has been shown to be a good indicator of nitrogen 

availability in temperate primary successional ecosystems. It is a good field 

experiment to measure available nitrogen in indicator plant species over 

successional time as it measures nitrogen within the leaves of the plants. By 

doing so it allows the perception of pulses of nitrogen present on the lava 

flows from sources other than the soil. This was shown on the lava flows of 

Etna where an early input of nitrogen was detected. On Hawaii the nitrate 

reductase activity was very low in all species studied indicating that nitrogen 

is limited on the early (0-500 year old) lava flows. 

3) 	 Nitrogen and many other nutrients are limited on the early primary ecosystems 

and this is a major barrier to plant colonisation of the lava. The slow increase 

in available nutrients allows the slow colonisation of further species. 

However, the results from this project show that lichens of the genus 

Stereocaulon are introducing a large pulse of nitrogen onto the lava flows 
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when they are dominant on the ecosystem (approximately 0-200 years on Etna 

and 0-100 on the Hawaii east chronosequences). This aids the colonisation 

and growth of vascular plants. 

4) 	 Lichens of the genus Stereocaulon introduce a huge biomass into the system 

during early successional stages on both volcanic systems. This biomass 

forms a suitable precursor to the soil allowing further colonisation by vascular 

plants and also contributes a large amount of nitrogen during a period when 

this would otherwise be limited. The growth of the biomass is controlled by 

the climate. The lichen grows fastest in warm wet conditions (Etna and 

Hawaii east sites) however it is also replaced faster by vascular plant species. 

The lichens persist longest in the drier areas where vascular plants take longer 

to colonise and become dominant. 

5) 	 The two species of Stereocaulon investigated on the two volcanic ecosystems 

(Etna and Hawaii) weather the lava in a distinct and predictable manner. This 

will introduce valuable trace elements to the developing soil (as shown by the 

disintegration of the lava surface and the breakdown of minerals like olivine). 

In addition, weathering alters the surface morphology of the lava on a micro­

scale allowing greater water retention and the formation of suitable sites for 

vascular colonisation. The rate of lava weathering is related to the ambient 

climate (both temperature and precipitation) as this influences the biomass of 

the lichen on the rock. Weathering is fastest in areas of high lichen biomass 

over long periods of time. 

6) 	 The same processes of weathering, nutrient cycling and plant colonisation 

occur on both lava ecosystems investigated. However, the major differences 

between the sites investigated are caused by the different climatic conditions ­

primarily precipitation. Primary succession is slowest on the dry temperate 

sites of Mt.Etna and the dry west of Hawaii. In contrast, the wet humid 

conditions of the east aspects of both Mt.Etna and Mauna Loa show the fastest 

colonisation and succession. On the east of Etna this leads to the formation of 
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oak woodland within 300 years, whereas on east Mauna Loa a dominant 

M.polymorpha rainforest forms within 150 years. However, the nutrient 

availability (especially nitrogen) within the rainforest is still limited as nutrient 

cycling binds up nutrients within the rainforest biomass. 
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1. Comparison of the composition of typical lavas of Etna and Hawaii. 

Etna lavas (year erupted) Hawaiian lavas (year erupted 
Element 

1947 1923 1809 1614-24 1950 1926 1907 1868 

Si02 47.77 46.33 48.30 48.86 50.54 52.29 52.12 47.68 

Ah0 3 17.84 17.84 17.35 18.94 12.92 13.64 13.74 8.95 

Fe203 5.48 5.69 7.06 6.03 2.86 I 2.43 2.80 3.67 

FeO 5.82 I 5.24 3.95 3.01 8.26 8.74 8.38 7.90 

I 
MnO 0.18 0.15 0.16 0.16 0.18 0.17 0.17 0.16 

MgO 4.44 5.85 5.14 5.24 8.99 7.90 7.23 21.02 

ICaO 9.82 10.37 10.79 9.53 9.85 10.61 10.65 6.99 

Na20 4.40 3.70 3.32 4.16 2.29 2.28 2.30 1.48 

K20 1.76 1.52 1.50 1.74 0.35 0.37 0.36 0.27 

Ti02 1.56 1.55 1.80 1.55 1.92 2.06 2.11 1.40 

P20S 0.62 0.51 0.47 0.69 0.22 0.24 0.23 0.17 

H2O 0.17 0.09 0.07 0.04 - 0.24 0.23 0.28 

L.O.I. 0.58 0.43 0.34 ND ND ND ND 

CO2 ND ND ND ND - 0.08 0.13 0.06 

Totals 99.86 99.42 100.34 100.29 98.38 101.05 100.45 100.03 

A comparison of the composition of 4 typical Etnean and 4 Hawaiian historic lava 

flows. Data for Etna lavas taken from Romano and Guest (1979) and the Hawaiian lavas 

from the Basaltic Volcanism Study Project (1981). L.O.! is the 'Loss On Ignition'. NO is 

'Not Determined'. Etnean hawaiite lavas are porphytitic with up to 45% phenocrysts 

comprising plagioglase, clinopyroxene and olivine (typically in that order of abundance) set 
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in a matrix of microlites and glass with scattered granules of titanomagnetite (Chester et al 

1985). 

Hawaiian lavas are less porphyritic than Etna. Phenocrysts typically make up less 

than 1% and consist of olivine, plagioclase and pyroxene largely restricted to ground mass 

(microlites and glass). In terms of major element chemistry the Hawaiian lavas are slightly 

richer in Si02 and MgO and slightly poorer in AhO, Na20 and K20. 
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II. Mt.Etna site locations 

North chronosequence (1000m) 

Sample site 


1981 lava flow ( year old) 


1947 lava flow (53 year old) 


1923 lava flow (77 year old) 


1879 lava flow (121 year old) 


1809 lava flow (191 year old) 


1646 lava flow (354 year old) 


1614-24 lava flow (376 year old) 


1566 lava now (436 year old) 


1536 lava flow (464 year old) 


East chronosequence (1 aDOrn) 

Sample site 


1992 lava flow ( year old) 


1971 lava flow (53 year old) 


1928 lava flow (77 year old) 


1865 lava flow (121 year old) 


1792 lava flow (191 year old) 


1689 lava flow (354 year old) 


Michael Carpenter 

Site location (map grid reference) 


896,979 


894,021 


884,082 


893,033 


886,079 


892,041 


894,001 


875,091 


887,924 


Site location (map grid reference) 


723,080 


777,091 


811,099 


820,115 


720,073 


768,093 
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South chronosequence (10aOm) 

Sample site 

1983 lava flow (17 year old) 

1910 lava flow (90 year old) 

1886 / 1892 lava flow (108 year old) 

1780 lava flow (220 year old) 

1766 lava flow (234 year old) 

1634 lava flow (366 year old) 

1537 lava flow (463 year old) 

1536 lava flow (464 year old) 

1444 lava flow (556 year old) 

812-1169 lava flow (1000 year old) 

West sites (1000m) 

Sample site 


1843 lava flow (157 year old) 


1651 lava flow (349 year old) 


Michael Carpenter 

Site location (map grid reference) 

680,982 

667,997 

668,003 

669,972 

670,019 

672,025 

673,012 

677,982 

664,020 

674,985 

Site location (map grid reference) 

796,874 

804,873 
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South altitude sites 

Sample site 

1892 1500m lava flow 

1892 1250m lava flow 

1892 850m lava flow 

1780 1250m lava flow 

1780 1500m lava flow 

1634 1500m lava flow 

1634 1250m lava flow 

1669 650m lava flow 

1669 400m lava flow 

1910 750m lava flow 

Michael Carpenter 

Site location (map grid reference) 

712,025 

693,017 

648,013 

702,952 

712,962 

710,028 

692,022 

624,008 

577,010 

635,995 
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III. The nine plant species studied on Etna 

Rumex scutatus var aetnensis (Shield Dock) . 

Rumex scutatus var. aetnensis. (Picture taken by M.Carpenter). 

This species, also known as shield dock or French Sorrel is very common on the 

slopes of Mt.Etna. It is a woody-based many branched perennial, which grows to a size 

of 25-50cm in height (Polunin 1969) and has very characteristic leaves - 3-4 em long 

which are about as long as broad. The morphology of these leaves does vary widely 

with some almost round whi lst others become elongated to become arrow shaped. In 

addition, the pigmentation of these leaves also varies considerably , with the common 

dark green variety being replaced with a grey leafed variety in some areas (Luciani et al 

1977a and 1977b). The flowers are unisexual but located on the same plant, reddish in 

lax branched clusters . 

276 




Appendix Michael Carpenter 

Centranthus ruber 

Centranthus ruber - Red Valerian. (Picture taken by M.Carpenter). 

Centranthus ruber is also extremely common on the lava flows of Mt.Etna. It is 

an erect somewhat glaucus, hairless perennial growing from 30- lOOcm in height. It has 

numerous red, pink or rarely white flowers in a rather dense oval or branched pyramidal 

cluster. Each flowe r has a corolla tube which is slender and 8-lOmm long, (Polunin, 

1969). 

Both this species and Rumex aetnensis are the first colonisers of aa lava in any 

great abundance. These species commonly co-occur in clumps on the lava - although it 

is unknown if this is due to a scarcity of sites for colonisation or due to a symbiotic 

relationship. It may well be a combinat ion of both, since there does not appear to be 

any competition between the species with both members in a clump growing extremely 

vigorously. 
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Isatis tinctora - Woad. 

Isatis tinctora. (Drawing from Blarney and Grey- Wilson 1993; picture taken by 

M.Carpenter). 

Early coloniser of the lava - one of the first to arrive and abundant on the open 

areas of the bare lava (after 50-100years). Medium to tall, mostly hairless biennial 

species. Leaves form a basal rosette in the first year. Stem leaves arrow shaped, 

clasping the stem. 3-4 mm yellow flowers in much branched racemes. Fruit is oblong, 

flattened 
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Genista aetnensis Mt. Etna broom 

Genis fa aetnensis. (Drawing from Blarney and Grey- Wilson 1993; picture taken by 

M.Carpenter). 

This large shrub (or small tree) grows up to Sm high forming a substantial trunk up 

to 30cm in diameter. The young stems are slender and greatly branched. The leaves are 

simple and elliptical. Yellow flowers 9-13 mm long borne in lax racemes. Has an oval 

pod, which is flattened 6- lOmm long. Grows very well on the relatively young lava 

flows of Etna. This species has been linked to colonisation processes on lava as it 

creates shade and ameliorates the environmental conditions so that other species can 

colonise the lava (Certini et al 200 1). 
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Helichrysum italicum 

Helicrysum italicum. (Drawing from Blamey and Grey- Wilson 1993; picture taken by 

M.Carpenter). 

A distinctly aromatic species of small shrub, which grows to height of 

approximately SOcm. Grey fel ted when the stems are young. Leaves are greenish with 

revolute margins, becoming hairless above. Flow heads are yellow in clusters lS-80mm 

across. This species is also an early coloniser to the lava flows - but its abundance is 

low. 
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Senecio bicolor Cineraria 

Senecio bieolor. (Drawi ng from Blarney and Grey-Wilson 1993 ; picture taken by 

M.Carpenter) 

A white felted dwarf shrub which is abundant on the early lava flows of Etna ­

usually in the same clumps as R.seutatus and C. ruber. Grows up to 50cm high and is 

much branched at the base of the flo wering shoots. Leaves oval to lanceolate, toothed 

to pinnately lobed with rather narrow segments, white beneath the upper surface of the 

leaf can be white, grey or green. Flower heads are yellow 12-15mm long and borne in 

dense terminal clusters. 
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Quercus ilex Holm oak 

Quercus ilex. (Drawing from Blarney and Grey-Wilson 1993; picture taken by 

M.Carpenter). 

Large evergreen tree which grows up to 25 m with downy twigs and grey bark with 

fine fissures. The leaves are leathery, oblong to lanceolate and can be toothed or un ­

toothed. The leaves are downy beneath when mature. The oak cup is distinctive with 

scales closely pressed together and downy. Acorn 1.5-2 em long. Common on the 

southern aspect of Etna. 
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Quercus pubescens Downy oak 

Quercus pubescens (Drawing from Blamey and Grey-Wilson 1993; picture taken by 

M.Carpenter). 

Deciduous tree (in contrast to Q.ilex which is evergreen). This tree grows up to 

25m tall and has densely downy twigs. Its bark is dark grey and finely cracked into 

scales. The leaves are grey/ green oblong and lanceolate. Bluntly lobed and 6- 12cm 

long,.the leaves are densely downy beneath (especially when young). Acorn cup has 

narrow closely pressed hairy scales. The acorns are short stalked. This species 

dominates the older lava flows on the east aspect of Etna. 
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Spartium junceum Spanish broom. 

I 


Spartiumjunceum (Drawing fro m Blarney and Grey- Wilson 1993; picture taken by 

M.Carpenter). 

A large spineless shrub which grows up to 3m in height (occasionally more). Has 

numerous cylindrical bluish green rush like stems. The leaves are sparse, linear oblong 

and soon fall ing. Flowers are large, bright yellow 20-25 mm long, each usually solitary 

but borne in profusio n (see pic) sweetly scented. Pod is fl attened 50-80mm long. 
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SdVa ;:WIlY/ana - P"ruvian Bluebell. 

, S&C>i'/tlQiVl"ii "aninil - Frenoh Figwort. 
S~I'..I#~'IJm ­ Rook Stonecrop p 
Snil.tm (f>flIJi/oIiIJm - Stonecrop p p 

~ !.WflilfL" Bladder Cam ion. p P P P 
SondnJ..<:oo~<: - Common Sow Thistle. p C P C C 
5l'w-,,,_"Il 
TiIf.iW~ lil<'lIigilfllm - Dandqlion SD. 

T/tIttmL<: <l//lgilfL<: - Thyme. s:;::..... 
ff iIf/'fi.<:J..<: - Goatsbeard. 
ffilc>#uminc.-",nilfllm - Crimson olover 
ffilc>#um /pPt>il.<:. white clover 
11mbilk>ll-"'lH'ff's"L" - Nave!wort. 
l~tk>" clic>hii - Stinging Nettl ... 

P p P 

C 

0 
p 

(")
:::r 
[ 
o 

Uml>t!'llilii-"p.
/1...,."....<:cum (!tilft,<:l.I..<: Great Mulll?in. Aarons rod. 
I'A~:'- ~<:iI - Fodder Vetch, Shaggy vetch. 

0 
p p 

P 
p 

p 
P 

~ 
('l> 

I'b/IJ(",iii1iJ:>J;W'. ~ Co-mmon ·c Occasional· 0 Present· p LLAbsent·a 

Species abundance on the south chronosequence continued 



~gJ!l! ($! kA,,3W";;';.,¥jS;:;g:g;UA,..J41fkJ!6i&&.&t&44£bAU4_.l;;;:,itM_4££QtPZ _Mk--w@W"ki ,1:- .Jt¥m.p~ a A-Nl'iMXi;;;; %i'-bJi" '1L &$30/.. , QiJ ~~ 

Oateofflow 

! Primar, Colonising SPl!cil!s 
CfflIr.mtItu..<:,1Il>H - Red Valerian 

1910 
lOX 

1886 
15-20X 

1780 
5x 

1766 
lax 

1634 
5x 

E",'x/um 1IIJIg",*lW-~tuliNum ­ Vipers BuQloss 
Genisf" .>Hmm..<:i." Mt Etna Broom. 

OX 
15X 

2x 
20x 

IX 
25x 15x 

Ix 
15x 

J-IeIidtfIl-"umftalkumftalkum - 5x 4x 5x 
l"iNL"lmMcvi" - W'oad. Ix 2x <Ix <1X 
lin",i"pwpwt'" Purple T oadflaH. 

! RutrIf'J'sC//(uliNlL" .>HfJt'fl..<:i.<: - Etna t~pe French Sorrel. 
Ix 
7 

IX 
5X 

<IX 
<IX 5x Ix 

S~~ S:~"'/:'-/-Cineraria. 3 5x 
SP...tium~ - Spanish Broom. 
SlHl'Of'.>u/an W>_"IlVI-...wm 

OX 
85x 

Ox 
75x 3x 

30x 
50x lax 

Other 
Adti/tf'"miIt>fo/ium - Yarrow, Milfoi!. <1x 
AchJ#t'"JiQIL"Iit:>a - Sneezewort <Ix 
Al1'oslL<: tenuiloHtJm - Bent. 
kar....~a 
~ llf'iIiICIHIMtIm - Naples Qarlio. 
Amimm:<:dtI:.--CIt~ 
Amhcu'.mt!wmodaF~um- Sweet Vernal Grass. 
~um_';tl 

A.~<:mk>i''''WIW-<: - Common Asphodel. Ix 
A.~/'idtomarlf'_<: Maid,mnair Spleenwort. <1y. lY. <ly. 
Atrar.t¢..<:htH1liIi.." 
B.1Pot"J>-<:~amn/I..<:-
Bi",,­__wa-"I'­ -

Bi"iumt1.l!im" - LafQe Qual:.inQ Grass <1y. 
. Bi"omu..<:tH'fCVlJfl1. - Droopinq Brome <1y. 
C~&lJI!'~"" - Hairy Spiny Broom. 

N 
00 
-.l 

Ca.<:'fflI'"-"~VI:'- - Sweet Chestnut. 
CfflI.wIl:'- (>//iJfi/L" ­ Cornflower 
CHHafflco'lidnNlJfl1- Rus\ubaok fern <Ix <Ix <1x 
C»_<:itIm r¥Hic-um-
Cm:>L<:#roiodro/oidPs - Haw~sbeard. 
Dar.U$~IL" 

<1Y. <1Y. 
<IX 

<IX 

Dupin" Nupina.<:111.Im­
! Oar.t¢..<:q/omHiNa - Cocksfoot. 

D"'''lIPIPtIm !lilk>stlm 
OawtL<:"...ota- W'ildCarrot 
D&1t<'Rit=m...suttlm - Hair~ Dorycnium. 

I Or~'Opt(>fL<: viII~ii ­
E/it!rnI..<: rt!'Pt'fl..<:- Common Couch grass. 

I E,odium l'iwf~ium ­ Common Storks Bill. 
. ElIPhorbJ:'- M",~a.<: - LarQ~ Meditellanean Spurge. 

<IX 
2x 

. E~bJ:'-/igld~ ­ Broad-Leaved olaucous spuroe. 
FHuI~ tx>IlJIlWfli..<: - Giant Fennel 2X 2x 
Ft'$(U{>aT<Jb/'a - CreellioQ fescue. 
F~vuIg.wp· Fennel 
Go-lium i¥'~int> - Goose Glrass. 

; CfYamumdi.__<:H>fum - Cut L"aved Cranes Bill. 
, C_amitmlol<Hll-...wm - Herb Robert 
Ht'dHa};ells Iv~. <1X 

1537 
5-10x 

3x 
30x 

<IX 

Ix 

3x 
2x 

<Ix 

5x 

<1Y. 

5x 
1X 

1536 
2x 

lax 

<IX 

<IX 
<Ix 

Ix 

<Ix 
<IX 

Ix 

<Ix 

<Ix 

Ix 
<1X 

3x 

1444 
5X 
IX 
15x 
Ox 
IX 

Ox 

<Ix 

IX 

lY. 

Ix 

IX 

<1x 

812-1169 

5x 

<1x 

5x 

Ox 

<Ix 

<IX 


Ox 

<1x 

IX 
<1x 

<Ix 

<1Y. 

<1x 

<IX 

~ 

(1) 

::::: 
0...;;;;. 

~ 
0­

[ 
D" 

(".l 

,a 
(1) 

::::: ....... 

(1) 

Species percentage cover on the south chronosequence 
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Datt' of flow 
Prima., Colonisinq species 	 1910 1886 1780 1766 1634 
Heff~ (yMIJm - Hawkwt'"d. 


· HQ~/w..<:Nifflf.1/L<: - Huaointh 

f-IItperkumPP/iofMIJm - Common St.John's Ylort. 


i..<:m.owl"'~ 
· ,ta..<:k>nt> CLyqm/>a..<:a - Corumbose Sheep:;: bit. 
Li1fl/61L<: =,ww, - Hares tail. dx 
Lmoda d>'W>/l..<:/..<: ­
lind>'iil w/gd>'L~ - Common To~dflaH. <Ix 
L.imJm/>it>tme - Pale FlaH. 
Lr::>(IL<:."'I< 
L~."l'artlJm-
/I'lffl(lta.<:u~<: - I'.DDle Mint. 

Narci..<;..<:II..<:.W . ­
[qol>~Fii>utii - Gireate-r Broom Rape. 

PiiflWi'f/~t1..<: • Common Popp~ 


· Parentuc£'lliavi..<:(:O.<:a - Yellow Bartsia. 

~Lc:sa.WBQi1 ­
PhQ,Wti.<:.<:.!1flittMil - Hearts-TonQue Fe-In. 

Pim.I.!<nklra-

Po ciinWk:um - <1x 


· Pr::>(yi/m lllWIJ£>C!.<:/Im - M"diterranean Salad Burn"t. 
Prqdwti.<:.<:adYilQa - Pwohotis 
Quycu..<: jk>),' - Holm Oak. 5X 5x 15X 
Qwrcu..<:ItH_"Ilfi/m - DownuOak. 

Quetcu..<:jIIJ/lF-.<Cffl..< - Downq Oal<., Ylhite- Oal<.. 
 lOx 	 lOX 

· Rt>.<:Ma all<a - Idhlte Mignonette, Upright Mignonettt'. 10 
00 Rhinsm/w..<:minc>r - Ye-liow Rattle. 
00 RO$;",,8IJinil • Idild Rose. 

Rubu..<:saneta.<: - Blaol<.be-rrQIBramble-. 3x 
S.N/JI;>j8 c$/aminrlta - Summer Savoru. <1x 
S.NIHf!iallultko..<:a 
S.NIHHahoTfffl..<:J..<: Summer Savorg. 
SciUapp/1NI8na - Pt'ru~ian Bluebell. 
S~an8,,8IJina - French Fiawort. 
St!>dum;t>llI!wum - Rook Stonecrop 
St>dum t£'lWifoHum - Stonecroo 
~w/gaFi." • Bladder Campion. <1x <IX <1x 
Sondw.."oIHaaeu..<: - Common Sow Thistle. <Ix 
sr700ii.<:I>." 

i 	TOIi1JJ<JCUm/~.N1lm - Dandijlion SP. 
T/tJtml1.c: w/g0li.<: - Thurne. 
T!aorooOC>flN.NPIl.<:/..<: - Goatsbeard. 
T;ilcliumim:-OIP.N1lm - Crimson clover 
Trilclium/pPffl..<:' white olover 
lImN/iClL<rlH>e's(;i.<: - N"..,elwort. <1:% <1x Ix 
lNiaadioha- StiOoliiONetUe. 
Unb~~_<;p. 

3X• /I""'''a..''{>U/J?tlt_~IL''' Great Mullein, Aarons rod . 

: /lKja~,a - Fodder Vetch, Shaoou vetch. 
 dx 

/I~..,.ia~-

Species percentage cover on the south chronosequence continued 

1537 

20x 

5x 

3:--: 
<Ix 
<1x 

<1x 

2x 

5:--: 

d:-:: 

1536 

20x 

30X 

<1X 

<Ix 

<1X 

<1X 

1444 

<1x 

20X 

40X 

15X 

Ix 
Ix 

Ix 

IX 
<Ix 

812-1169 

<1x 

5x 

5X 

Ix 

<IX 

<IX 

<IX 
<1X 

>:g 
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'fear of lava flow 
Primar. Colonisina sDt'cies 1981 1947 1913 1879 1809 
CPrtfrnliil$l'uiw - Red Valeri,m P e p e c 

. Er:>hiIIl7H)IJ!g,iY""PU-"fu!dfum - Vipers Bugloss P 0 P 
6t>ni"td' di"t~<i." Mt Etna Broom. e p C C 
HeikWf-"umj(~j(~ - C P C C 
L"dfL<: tHN>rOl'id' Woad. P P P P 
Lm",jd'1'/JI1'/JIf'" - Purple ToadfiaH. P P 

, RlJmf'J'_"(>/Hu!dfu.." di"t~<i.<: - Etna tqpe French Sorrel. P C P C C 
S~~(S~",id'l- Cineraria. P P 
S1>",tit.m~ - Spanish Broom. e p c C 
StH~auk>hW_<:WI__ elV.Smalil c p C C 
Other 
A~amil!f'lolilJm - Yarrow, Milfoil. P 

• A~d'JIqu..<:tkd' Sneezewort. P 
A(II"-"ti.tr:tffll.lilc<!ium - Bent. P P 
Aila(Iar..~a C 

AdfumM,;pdj(Q1l/Hll- Naples garlio. 
AnrItPmJ..<: dt!~- CIt~ 

AnrItClJ.'imtilllmodolatum- Sweet Vernal Grass. 

Alum.~ 
A""wodeiu-"mk-rw",t>/J..<: - Common Asphodel. 
A~t{idtaJTtaMs - Maidenhair Soleenwort P P 
Atlar.";(t/If.<:hiu7Jii..' P P 
BitIIofap-"f'!Idctdir.r$I7){;/J..<: ­ P 
B!~~WiU:P.· 

tv 
00 

Bri.·ama.fima - Large Quaking Grass 
Bf="tN.101'Ilm . - Droopina Brame 
Ca/JIC:NC1ITlf' ~<:a - Hairq Spinq Broom. 

p e e 
e 

\D C~"tPnid'_<:dfWiI - Sweet Chestnut. 
CPrtfatJli" (iffatW..<:. Cornflower p 

CPrf'r.uli c>IIidfl",llm- Rustyback fern P p 

CIF-Wm«Prkum-
ClfPi.."l<¥:<Qtod<m(ai<#." - Hawksbe.,d. P 
Clo",u!::~u.." 

Cll.Il"<iha «l.Il"<ihil.."tlllm­
. Dilt.YIllL<:q/amHdfd' - Cocl'sloot. 

D<nJt!I/L<: ",,iYe>til- Wild Carrot 
DalI,Jmiumw_"urum- Hairy Dorycnium. 
D~"1IPW1lm lIiIk>..<:um P 
G-QC>t>(HL<: viIJ,iYjj - P P 
Elllmu..<: ff'PE'll." - Common Couoh grass. 
EladiiHll ckIJ(,iYit.m - Common Storle$ Bill. 
E~N",ch,iYsclil.." - Large Mediterranean SDurae. 
EuNh:vNiIdgidd' - Broad·Leaved glaucous SDurae. C 

FHtJ/iI~" Giant Fennel P p P 
Fp-"t!l{>$I'uiv$ - Cr~~ping fescue. 

. FC"",*"ilkH1H,,<lI1,iYP' Fennel 

. 6a/ium ap",iflp - Goos~ Grass. 
, trNaniumdi.<;.,mllf11 Cut Lea\l~d Cr anes Bill. 
.r~~nr",u-,rN;Nti~~ _ Hprh Robeort. p 

p 

- -
0 p 

1646 
0 
0 
C 
P 
0 

e 

1614-1624 
e 
0 
0 

c 

1566 
0 
p 

0 

0 

C 

1536 
c 
C 

C 

P 
C i 

>::g 
(1) 
::;I 
p.
X· 

C 
P 

C 
C 

P 
C 

C 
p 

I 

! 

P 
: 

P 0 

P 
P 
0 

p 

'I.e 

P 
0 

p 

C 

C 
P 
p 

p 

P 

P 

I 
I 
I 
I 

0 
P 
0 0 

P 
C 

P 

P 

P P 

0 
0 

p 
P 

P 

C 
P 

p 

p 

p 

P 
P 

C 
C 
C 

p 

C 
p 

C 

p 
p 

0 

p 

C 

P 

C 
C 
P 
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Year of lava flow 
Primar" Colonising species 1981 1941 1923 1819 1809 1646 
~",heIiI,' -IllY. 
Heif",dumCl'wlHlJ' - Hawkweed. P P P P 

. l-llto>dntlnL"cviem,M'.." -Hyacinth P 
~k.iJmPt'fIcv.;(1.IIl1 - Common St.John'S 'w'ort. 

i"m~,M",..'>/>/> 
,Ia.~u.v~"'" - Corymbose Sheeps bit. P P 
L <tQiH1L" (w,MIL" - Hares tail. P P C 0 0 
Lhilrl'uid'Hn.!d.., ­
Lhilrl'u l'UlQilrL" - Common ToadflaM. 
J.hI.IIl1iIimnP - Pale FlaM. 
LOfIL".q< ­
t /IQf'IJm -<'/:>iIr(/JIl1 - P P 0 C 0 
"''/Mflr''''''u~'' - Apple Mint 	 C 
Nilrd..<:."lL"."P . 
(§""~,_ -Greater Broom RaDe. P 
PilPBWf ,/toes.., - Common PODDU 

P;tMt/J(#li~ vL"oo."~ - Yel/ow B,utsia. P 
.Pfm:otL"-,,aciftag~ ­
P/rq/ti(L<: -<agff(,wtt - Hearts-TonQlJe Fern. 

Pinu.<:niflFtt- P 

Po l''''''*k.iJm ­
Pc>twit!m wr,uGOSI.lll1- JL'lffllfw,~im 84/;;-(/BlHn£>t. 

Ptltdtc>tk."aciftggtt - Ptychotis P 

Q/JwctL"i/i'),' - Holm Oak. 

(i!lJwc.u."hIt.'<lJ(it!m - Downu Oak, P 


(i!lJwctL<:/II.IM>.<:un<; - Downu Oak, 'w'hite Oak. 

pR£>sw", ~'" - 'w'hi!e Mignonette, Uprklht Miqnonette. 

tv RNnMtInL<;mHwr Yellow Rattle. \D o 	 Ro"<:",c<mintt - 'w'ild Rose. 
Rubu.".<:iiRdC<.<: - Blackberry/Bramble. P P 0 

S,Mlfff'l~ c4/ilrninflt., - Summer Salloru, 
S,Mlfff'j", huitko..<;", 
S.,,'l.Heitt Itcv/,*-"L" - Summer Sal/oru. P 

pSc$ttpwu<,jim'" - Peruvian Blueb.>l1. 
pSCI'e>p/wIilriHc<min", - Fren"h Figwort P 

Sti'dllmH'~le),VHn - Rock StoMcroD P 
Sti'dllm tenuilcJium StoM"rop p 0 0 
~ l'UlQilrL<: Bladder Campion. P 
St:wc.hu...'=' ok-F~~ Common Sow Thistle. 
S7it:>1:>a.q< 
T~aJ,.acum/~at"'" - Dandylion sp. 

T/WmIL<;I'UIQ~L<: - Thume, 

# atM.<i..<: - Goa\sbeard. P 

Tiil<:WlHn inc~n,Mum - Crimson "Ioller 


· Tiil<:WlHn !'''PH'-'' - white elOller 
p p 	 pUnNIk./L<: flJl'r'strL<: Nallelwort. 

•Utk:;J(;W(ltl- Stinging Nettle, 
· Unlwlifup, 


PftP:1,.f\{!I)/!tfitK'-<:/I.' - Great Mullein, Aarons rod, 
 p 
1''h';viI/a.<a -Fodder Vetoh, ShaQQq vetoh, 	 pp
fdlllNiJfffi;'. 

Soecies abundance on the north chronosequence continued 

1614-1624 
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C 

P 
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Year of lava flov 
Primar!! Co'onising speeies 1981 1947 1923 1879 1809 1646 1614-1624 1566 
CfflffaM/w..<rlJiw - Red Valerian Ox 3x 8X 2X 5X IX 3X 2X 
Edti/.mViJ/gafat'PtL"tuliltl.lm - Vipers Bugloss Ox Ix <Ix <1X Ix <Ix 
Ot'msta ilt'tnNl.<:i." - Mt. Elm Bloom. Ox lOx 15X 25x 35x 35x 5X 4x 
J-Ir>Jidvq.!'1lm /(a/icum /(a/icum - OX 2X 5x 3X 2X Ix 
l.<iltiNincr&ia - \Yoad. Ox <Ix <1x <IX 2X IX 
i.inBl'18pilfpilfea - Purple T oadfla~. Ox <Ix <1X 
Rumt>J.'_<~uliltl.L< ilt'tnNl.<:i." - Elna type French Sorrel. Ox 2-4x 2x 5X 2x 3x 2x 
Sfflt>doMx<Ic>f f&cinerNi$/ ­ Cineraria. Ox IX <1X 
Si><rf"tium~ - Spanish Broom. OX 15X 2X 35x 20x 25X 80X 2X 

, $rH~~Vt'_"lMI"anum 50x SOx 90x 15x 70x Ix 5x 3x 
Other 
A~..~ -Yarrow,Milfoil. <Ix <1x 
A~aHtw-"tka - Sneezewort. 
AQlC<.,,(L< tt>mJilc>!Jum - Bent. <Ix <1x <1x 4x 
AU.. c<rf"/fC>I>itI$a IX 
Abiumllt'.iIJ'(:'I(MI.Im- Naplesqarlie. <1x 
AmhemJ." dd~- CIt;;momi/e. <1x 
Amho.!.'aMlwmodofiltl.lm- Sweet Vernal Grass. 3X 2x 
AlI.Im-<:f.'. 
A.~<mklMNI'I.L" - Common Asphod€'1. Ix 2X 
A.<:p/t'nillmtlidc>mMt'_" - Maidenhair Spleenwort. 
AtliK>f!tH-<:IwmiH..<: <1x {/x 

<Ix <1x 
IX 

<1x 
<1x 

<1x 
Ix 

B.MOtaHl'IJ{/o(H(:(ammL<­
Br,,-,,-wa-<:f.'. -

<Ix 
<IX 

N 
\0 
I-" 

BJ-i....milSlm.. - LaNe Qual<.inQ Gr ass 
Blomu..<: tm&l.Im. ­ Drooping Brome 
Ca-/Jtco(ame 0l'C<."a - Hair~ Spin~ Broom. 

2X 3x 
2x 

Ix 2X 2x 

3x 
C"-"(fflia_"atw8 - Sweet Ch€'stnut. 
CfflfatPia""iIPIJ.." - Cornflower <1x 
C£>(HiICh~Num- Ruslybaokiern <Ix <1X <Ix 
CH.Wm Netkum­

. Dl'Pi-</eon(e>dontoidt>_< - Hawl<.sbeard. <1x IX Ix 
Dow.."1t:>mli/kv1.L" 
Dl!Pina NI!Pin,,-"trum­
DiK>f!tH-< !lk>mMiIt.. -Cool:.sfoot. 

Ix 
IX 

Ix 
Ix 

D-Wl'!L< C<rf"o(a­ \oIild Carrot <1X 
. DC>fIlcniIJm/wt_"lJtum- Hairy Dorycnium. 
DQ..~l/P!Ifum 0l'C<.<UIll 
Dr./tOPfl'fi..< viQN/i -
EJgmu.!"r~< Common Couch QI<1ISS. 

<1x 
<Ix <1x 

<IX 
12x 

3x 
80dum ciwfldium - Common Storks Bill. <1~ 

EIIPhwN.. <>ItSf"i>CJ ..... ~ - LarQe MediterraMan Spurge. 
EIIPhwNarigid;;­ - Broad-Leaved glaucous spurg". 
Fl'fula cammtmi." Giant Fennel IX 

4x 
Ix IX 

lOx 
<1:Yo 

3~ 

2X 
Ix IX 

1536 
2x 
2x 

30X 

Ix 
Ix 

lOX 
2x 

<IX 

<1X 

<Ix 

<Ix 
2x 

Ix 

IX 

<1X 

5X 
2"~ 
IX 

.6' 

'0 
(p 
:::l 
0­
><­

I s:: 
& 
[ 

,a n 

F"s(uc..,uka - Creepingfesoue. (j) 

FC>MicIJ/um v/JIgldf.> - Fennel 
6i11k1m- """arifle - Goose Grass. >-t<1X f? 

,C_aml,Yl"Ii..",-<ff'f/H7> - Cut Leaved Cranes Bill. 
GA-imkJm ,a1><¥,iamlm - Herl> Robert <1x IX <1x IX IX <1x 
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Primar. ColonisinQ species 
· I-INflBhe,U' - Ivy. 
Ht'1i'a<Wm~Ji?i(um - HawKw....d. 
hltoYdmhlL" cviHttM..~ . H~acinth 
/iQt>ffiromIW/aBfum - Common St.John's \oIort. 

~">f'Ti.<:mawlBf~..":?·'> 

.t3..<:i=e c:orl/l1IDCtSB - Cor~mbose Sheeps bit. 

LBqlHu..~{WBfu.." - Hares tail. 

Lh~/~ ~W'n.si." ­

· l.m~iBwJg~i.~ •Common Toadflu 
L~~ - Pale Fla~. 
1.0(lJ..<:_"I' -
lltQt't.ll1l_"I'Bltum ­

· /lWKIt~_qJ.w-eoIt>lJ..<: - Apple Mint. 
N~ci.,,-~u..<:_"I:> • ­

&oi>.mcItP/dP/ffTI - Greater Broom Rape. 
P~~/~3.."-CommonPoppy 

P~ffl(U<:>i'#JB ;;1.<:="B - Yellow Bartsia. 
P/tIi<>a(L<: _".>ciIrags ­
PlfftlJjti.<:s<Nh(Bf~ - Hearts-Tongue Fern. 
Pitw.!<nislrs· 

Po camkkl.lm ­
PO(yium W/IIK-C>..<:um - /lofedi(YNlM',m SBla-dBwM1. 

.PrQd'iot~"-".>ciIr<lfl*' Ptqchotis 

Clvff=<:iks - Holm Oak. 

QIIer=<:Nt_<:/ltium - Downq Oal\. 

Qllercll.!<pui>(-Sf'lffl..<: - Downy Oak. \oIhite Oak. 


tv P"SMS iiIf,~ - \.Jhite Mignonette, Upright Mignonette. 
\0 Rl!inil/)(I'JIJ..<:I1l:inclf - Yellow Rattle. tv 

. Ro..<:~ cYlihs - \oIild Rose. 
Rul>u..<:_<:imCte>...<: - Blackberry/Bramble. 
SBfur£'1~cBlMlimlts - Summer Savor~. 
SBfurl'is/ruitico..<:s 
Sst<#tP/s~tff>..<:L<;- SummerSavolq. 
ScJbs f'H1Wi-ms - Peruvian Bluebell. 
S~C<fi/WI.!djscYlihs - French Figwort 

, St'dunut>&~YH1> Rock Stonecrop 
Sf'dum{~ - Stonecrop 
Si!fflt>wJg",L<: - Bladder Campion. 
SOI1CIIu..<: cWv.xf!>/J.<: - Common Sow Thistle. 

· Sti«<~_"I' 
, T<>I~·=J~Bfum - Dandylion sp. 

TItJImu-<: wJg.!di..<: - Thyme. 

· TI atro..<:L<: - Goatsbeard. 
T/JIoJium ibc..,,,Bfum - Crimson clover 
lfJloJiumFt1'<ff>.."· white ololler 

, llm1;flk>u.."rWt'slri..< - Navelwort 
£if(ic~ dioics - Stinging Nettle. 
,l~~sp. 

jlyh3..<:C/Jm tlt,W-"lJ..< - Great Mullein, Aarons rod. 
/lK:i~!1i/h."" - Fodder VetCh. Shaggy lIetch. 

· p'cIMNi~JippQ'-

1981 1941 1923 1819 
Year of lava flow 

1809 1646 1614-1624 1566 1536 

<Ix 

( Ix 

<IX 

2x 

dx 

<1x 
2x 

< Ix 
<IX 

<1x 
<Ix 

Ix 
2x 

Ix 

2x 

IX 

IX 

<1x 
Ix 

<1x 
IX 

;:t> 
'"0 
'"0 

(11 

::l 
0..
>;" 

<Ix <IX 7x <IX 
2x 2x 

5x 
2x 

<1x 

dx 

<Ix <IX 
<Ix 

2X 

<1y. 

<Ix 
<Ix 

2x 2x 

5Y. 

<1x 

2x 

<IX 
3X 

5Y. 

4X 

<Ix 

lOX 

<Ix 

<1X 

2X 
<Ix 
IX 

<Ix 
<Ix 
IX 

IX 

<1X 

<1X 

<Ix 
<IX 

<Ix 
IX 

<Ix 

<1X 

Ix 
<1X 

<IX 

3X 

<IX 

2X 

IX 
<Ix 
IX 

<1X 

<IX 

IX 

<1X 
<1X 

~ 
0" 
C:r' 
[ 
('l 

,a 
(11 
l:l 
0­
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Appendix Michael Carpenter 

v. Statistical correlation's between the nine species on Etna and 

Environmental data 

The following tables show statistical correlations of the nine species investigated 

on Mt.Etna and environmental data such as rainfall, age of site, aspect and organic 

matter in the soil (OM). The first set of tables show the percentage cover and 

abundance of the species analysed using a parametric pearsons correlation. The second 

set analyses the same data using a spearmans non-parametric correlation. A significant 

correlation is denoted by ** 
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Appendix Michael Carpenter 

VI. Stereocaulon vesuvianum d.istribution on rock surfaces 

The following six tables show lichen percentage cover on lava surfaces on a 

range of aspects and slopes on large lava blocks on Mt.Etna. The cover changes with 

time (age of the flow). The lichen shows a clear preference for the north aspects of the 

rocks as it is here that the first growth is observed and the lichen then spreads across the 

whole lava rock surface. 
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the 1981 north lava flow over a range of different slopes and aspects, 

~ 
& 
~ 
n 

-& 
(l> 
::J 
(ti...., 



w 

~ 

>'i:l 
'i:l 
(ll 
::J 
0­
~. 

~ 
Stereocaulon vesuvianum percentage cover distribution on 25 Quadrats located on large lava blocks on ~ 

[the 1910 south lava flow over a range of different slopes and aspects. 
(1 

~ ...., 

.8 



w 
S 

~ 
(t) 
i:! 
0­..... 
>< 

~ 
Stereocaulon vesuvianum percentage cover distribution on 25 Quadrats located on large lava blocks on & 

~ ....... 

the 1843 west lava flow over a range of different slopes and aspects. n 

~ 
::l 

& 



:> 
"C;) 
"0 o 
::l 
0­S<. 

w 
o 
00 

3::: 
& 
[ 

Stereocaulon vesuvianum percentage cover distribution on 15 Quadrats located on large lava blocks on (J 

~ the 1536 south lava flow over a range of different slopes and aspects. ::l 
(;...., 



Appendix Michael Carpenter 

VII. Plant species studied on Hawaii 

Metrosideros po/ymorpha 

Metrosideros polymorpha (picture taken by M.Carpenter) 

This very adaptable tree occurs in almost every habitat avai lable on Hawaii. As its 

name polymorpha suggests it comes in a huge range of phenotypical types. It can be a 

pioneer on a new lava flow , a low shrub of montane bogs or a tall rainforest tree (Pratt 

1998). In most areas this tree is the dominant canopy tree , only in certain low 

precipitation areas at the top of the tree line is it replaced by the Koa (Acacia Koa) . 
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Appendix Michael Carpenter 

Myrsine lessertiana 

Myrsine lessertiana (picture taken from Lamoureux 1976). 

A Hawaiian endemic species where it is a common tree growing up to 30-40 feet 

tall in the tropical forests. The young leaves are sometimes pale green but more often 

pink. Mature leaves are green and leathery. Small green flowers occur among the 

leaves. Ripe fruits are purple to black berries. 
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Appendix Michael Carpenter 

Vaccinium reticula tum 

Vaccinium reticulatum (picture taken from Lamoureux 1976). 

A shrub about two feet high, which is especially common in Kilauea crater. 

Leaves are oblong to nearly circular in shape, about one inch long and often bluish or 

grey-green in colour. Flowers are usually red, orange or yellow berries one forth to one 

inch in diameter. 
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Appendix Michael Carpenter 

Coprosma ochracea 

Coprosma ochracea (picture taken from Lamoureux 1976). 

Six species of Coprosma grow on the lava field s of Hawaii. C. ochracea is a tree 

which grows commonly in the tropical fo rests. It has thin oval leaves about 1 in wide. 

Bares red or dark orange egg shaped fruits about 1,4 inch long. 
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Appendix Michael Carpenter 

Hedyotis centranthoides 

Hedyotis centranthoides (picture taken from Lamoureux 1976). 

H.centranthoides is an endemic shrub with weak sprawling almost vine like 

branches which is common on both the wet forest sites and the recent open lava flows. 

Pairs of oval leaves two to three inches long are widely scattered on the stem. Tiny 

yellow green flowers grow in several clusters arising from the bases of the uppermost 

leaves and develop into seed pods about one inch long. 
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Appendix 

VIII. Hawaii - Site locations 

East chronosequence (1 OOOm) 


Sample site 


1984 lava flow (17 year old) 


1942 lava flow (49 year old) 


1852 lava flow (149 year old) 


3000 year old lava flow 


4000 year old lava flow 


East chronosequence (1800m) 

Sample site 

1984 lava flow (17 year old) 

1852 lava flow (149 year old) 

400 year old lava flow 

3,000 year old lava flow 

4,000 year old lava flow 

South west chronosequence 


Sample site 


1950 lava flow (51 year old) 


1926 lava flow (75 year old) 


1919 lava flow (82 year old) 


1907 lava flow (94 year old) 


1868 lava flow (133 year old) 


200 year old lava flow 


750-150051 year old lava flow 


Michael Carpenter 

Site location (map reference) 

19° 39' 01" N 155° 15' 58" W 

19° 37' 46" N 155° 15' 08" W 

19° 38' 57" N 155° 16' 21" W 

19° 40' 43" N 155 0 16' 59" W 

19° 41' 18" N 155° 17' 28" W 

Site location (map reference) 

19° 36' 45" N 15SO 21' 32" W 

19° 37' 07" N 1550 21' 38" W 

19° 38' 40" N 1550 21' 46" W 

19° 37' 30" N 155° 22' 44" W 

19° 37' 53" N 155° 22' 02" W 

Site location (map reference) 

19° 19' 18" N 15SO 52' 26" W 

19° 11' 34" N 1550 51' 47" W 

19° 13' 55" N 1550 52' 30" W 

19° 05' 37" N 155° 46' 28" W 

19° 03' 57" N 1550 41' 53" W 

19° 06' 47" N 1550 49' 33" W 

19° 05' 34" N 1550 44' 27" W 

,& 
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