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ABSTRACT 

v. faba fixes nitrogen effectively (Richards & Soper, 1979), however 

nitrogen fixation is reportedly energetically expensive and water deficit 

sensitive. Research was designed to determine whether medium nitrogen 

applications would result in increased productivities in V. faba, 

particularly during water deficits. Non-nodulated and nodulated V. faba 

were subjected to gradual water deficit imposition, and were supplied with. 

a variety of medium nitrogen nutrition. Nitrogen fixing V. faba exh.ibited 

greater productivities than V. faba which were supplied with low medium 

nitrate concentrations (0.8 roM N), even during water deficits. 

Plant performance parameters (growth; net photosynthesis; nitrogen 

assimilatory enzyme activities; osmotic adjustment) were greater in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba throughout 

water deficits, inferring water deficit tolerance for nitrogen fixation. 

However significantly greater plant performance paramaters were exhibited 

in V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition (> 0.8 roM N) than when reliant on nitrogen fixation. 

In contrast to the bulk of previous literature, NR activities were 

maintained in V. faba until water deficits became severe, inferring a role 

for nitrate assimilation in nitrogenous osmotica production. 

Medium ammonia additions resulted in the exhibition of significantly 

increased root biomasses; cumulative leaf areas (important for a green 

manure crop); heights; and nitrogen assimilation in V. faba throughout 

water deficits, and accordingly in increased osmotic adjustment (including 

compatible solute accumulation), protein concentrations and vegetative 

yields. Greater plant productivities in v. faba when supplied with medium 

ammonia additions were attributed in part to lower associated assimilatory 
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costs for ammonia than nitrate nutrition (Raven, 1992). Results indicated 

increased metabolism as opposed to storage of medium ammonia, and therefore 

potentially alleviated 'sink size' feedback inhibition of photosynthesis 

and nitrogen metabolism in V. faba when supplied with medium ammonia 

additions. Furthermore ammonia supplied V. faba may have been predisposed 

towards water deficit tolerance. 

In summary V. faba exhibited significantly greater nitrogen assimilation; 

osmotic adjustment; net photosynthesis; and growth when supplied with 

increasingly concentrated medium nitrogen nutrition (and particularly with 

medium ammonia additions) than when reliant on nitrogen fixation, both 

during periods of adequate irrigation and during water deficits. 
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CHAPTER ONE 


INTRODUCTION 


-~---------~-----.~-----------~-~----------._-----'.-. ,"-- -'---, 

If it is assumed that 10% (or some such value) of the energy in a diet should 

corne from good quality digestible protein, and that because of uneven 

distribution within the family and community, more protein than that amount 

should be available, it is clear that protein concentrates are needed. 

Wheat or potatoes will not suffice - especially if some fat and sugar is 

being eaten. Special attention must therefore be attached to foods 

that contain more than 20% protein. That excludes all the cereals 

at present on the market (Pirie, 1979). 
-,-,....""""----"'""-...,-...--,.~------- .....-~-.,----------.-.... ...,.-.,~ ..............-..--~-----

Over 20,000 species of Leguminosae are known, the majority of which can fix 

atmospheric nitrogen, however less than fifty are exploited agriculturally, 

and only five are regularly utilised to upgrade soil nitrogen status 

(Postgate, 1987). 

Vicia faba is the oldest cultivated bean (Mairs, 1996), and is associated with 

the Mediterranean, the suspected centre of diversity of the species, however a 

wild form of V. faba has not been identified to date (Zohary, 1977). As the 

first foods to be easily stored, pulses changed the nature of civilisation; 

carbonised pulses found in Neolithic villages in the Middle East are dated as 

8-9000 years old (Simpson & Ogarzaly, 1995). It has even been claimed that the 

pyramids were built on faba beans (Darling, 1982). Early CUltivation by 

Egyptians, Greeks, and Romans, led to the world-wide spread of V. faba via 

Asia. Historically important, the second governor of Columbia brought V. faha 

with him from Spain to America in 1543. Theft of V. faba fram fields once 

warranted the death penalty, and the historical value of V. faba is 
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highlighted by tradition, such as the belief that broad beans offered in 

marriage ensure the birth of a son (Mairs, 1996). 

V. faba cultivation is often associated with cool climates (Kizirian & Taha, 

1997), however V. faba is widely grown as a winter crop in sub-tropical 

countries (Saxena, 1982). China produces around 60% of the total world yield 

of V. taba (Cockbain, 1981), see table 1.1. 

Table 1.1 TOP PRODUCERS of V.£aba. 

country 1,000 MT (metric tODDes) 
China 2500 
Egypt 390 
Ethiopia 282 
Italy 141 
Australia 100 

(simpson & Ogarzaly, (1995), after FAD Production Year-book, for 1992, vol. 46, 1993. FAD, 
Rome) . 

V. taba is also grown in many European countries, see table 1.2. 

Table 1.2 Area grown, average yield, and production of dried V.faba in Eqrope, 
(1980). 

Area Grown Average Yield Production 
(1000 hal t/ha lOOOt 

Czechoslovakia 41 1.8 72 
France 20 3.2 64 
Germanv (reunited) 10 5.4 27 
Greece 11 1.4 15 
Italy 172 1.3 228 
Portugal 35 0.5 16 
Spain 84 1.2 104 
UK 46 3.1 149 

Europe Total 374 1.4 529 
World Total 6980 0.9 6709 

Source: FAD, 1980 (Hebblethwaite at al, 1984). 

In marginal and low input areas in the Middle East, Asia, and Africa V. taba 

is grown as a staple food source, providing the main ingredient in the popular 

dishes foul and falafel, and in salad. 150,000 metric tonnes per year of 
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(mostly dried) pulses are imported to the Gulf Cooperation Council alone 

(includes Bahrain, Kuwait, Oman, Qatar, and United Arab Emirates) at a value 

of $90 million per annum (Kizirian & Taha, 1997). In contrast to other legumes 

(including Glycine max) toxin constituents are low (Frauen et aI, 1981), and 

lectins in V. faba reportedly reduce the progress of cancer (Comber, 1999). 

V. faba is also utilised as a green manure (Corak et aI, 1992), upgrading soil 

nitrogen status for subsequent crops in rotation. 

In temperate northern areas of Europe and the USA V. faba is utilised as 

animal fodder (sometimes harvested immature allowing biannual silage; Faulkner 

& Steen, 1984), and also as a food crop. 

The versatility and thus the widespread cultivation of V. faba reflects the 

capacity of V. faba to yield a high protein product per unit ground area (see 

table 1.3). The average (whole plant) crude protein content of V. faba is 

sixteen per cent (Falisse et aI, 1984), (G. max has forty per cent protein; 

Simpson & Ogarzaly, 1995). 

Table 1.3 Kg crude protein per unit support energy and fertiliser nitrogen for 
some UK crops. 

kg crude protein/ kg crude protein/ 
kg fertiliser N 103MJ support energy 

Wheat 4.8 30 


Barley 4.6 26 


Grass (UK average 4.9 40 


Rapeseed 2.2 19 


V.faba 30.0 74 


Data from J.e.o. (1976), (Bebblethwaite et al, 1984). 

V. faba contains several amino acids at comparable concentrations to steak, 

the traditional symbol of a complete protein, and is a much more concentrated 

source of amino acids than whole cows' milk (Simpson & Ogarzaly, 1995). The 

EEC commission on plant productivity has reported that V. laba represents one 
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of the best indigenous (Western Europe) plant proteins (Griffiths, 1981), with 

a long term future as a rival to peas. 

During and immediately following World War II up to 110 000 hectares of 

V. faba were cultivated in the UK, predominantly for utilisation as a protein

rich livestock feed (Lawes et aI, 1980). However this dwindled to around 

50 000 hectares by the 1980s, perhaps in part because V. faba is often 

characterised by large unpredictable yield variations (Bond, 1977; Dekhuijzen 

et aI, 1980). The average UK yield of V. faba can reportedly vary from one to 

six tonnes per hectare in different years on the same farm with the same 

management (Lawes, 1980). 

Nitrogen is an essential plant macro-nutrient; increasingly concentrated 

medium nitrogen nutrition reportedly results in increases in plant aerial 

growth; leaf expansion; individual leaf areas; stem elongation; and reductions 

in root growth, (roots need not 'nitrogen seek', Marschner, 1986). Furthermore 

nitrogen is an essential constituent of the enzymes which ultimately control 

plant growth; cell replication; metabolic reactions etc. In addition to 

'roles' in an array of metabolic reactions, nitrogen is a constituent of amino 

acids and thus of protein, the content of which influences the nutritional 

value of crops (Pirie, 1979). 

Fig. 1.1 illustrates that nitrogen is available to V. faba as atmospheric 

nitrogen via nitrogen fixation, or from the medi1.ll1l in the form of nitrate 

and/or ammonia. The enzymes which assimilate these potential nitrogen sources, 

and the reported water deficit tolerance of these enzymes are also given in 

fig. 1.1. 
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Fiq. 1.1 Potential nitroqen sources of V. [aba, with enzymes of assimilation 
(given in italics) and accepted water deficit tolerance of these enzymes 
(given in brackets). 

Soil nitrate is reportedly the most common nitrogen source utilized by 

plants (Marschner, 1986). NR was discovered by Evans & Nason, (1953); is 

the first enzyme in nitrate assimilation; and is probably rate-limiting due 

to its small concentration (Campbell, 1988b). The nia gene (which encodes 

NR) is reportedly expressed early during root meristem formation 

(Vuylsteker et aI, 1998), highlighting the importance of reduced nitrogen 

availability to plant metabolism. Prior to maximum rapid root NR 

induction some free nitrate escapes to the shoot where NR is quickly 

induced (Wallace & Pate, 1965). 

t Wti 

(considered intolerant of 
water defi -its; 

serraj et a1, 1998) 
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Increasingly concentrated medium nitrate nutrition may reportedly result in 

increased plant nitrate uptake (possibly through induced synthesis of 

nitrate carriers, or because increasingly concentrated nitrogen nutrition 

reportedly results in increased root and shoot growth; Ourry et aI, 1995); 

and in increased nitrate reductase activities (Shaner & Boyer, 1976a, & b). 

Furthermore V. faba reportedly exh.ibits greater aerial growth (Sprent & 

Thomas, 1984), and maintains greater cumulative leaf areas (eLAs; 

Hebblethwaite et aI, 1984), when supplied with increasingly concentrated 

medium nitrate nutrition; these parameters being reportedly strongly 

correlated with dry matter yield and seed matter yield in V. faba 

(Hebblethwaite et aI, 1984). 

Ammonia may also provide plants with a nitrogen source (Raven et aI, 1992). 

Although potentially toxic, in the soil ammonia is quickly converted to 

ammonium (Baynes & Goh, 1978). Ammonium (a soluble ion) may accumulate in 

abundance in many soils so that the medium pH rises into the alkaline range. 

Ammonium may then be converted into gaseous ammonia which is lost from the 

soil. Furthermore medium acidification may reportedly result from plant 

ammonia assimilation, and may reportedly result in growth rate restrictions; 

wilting; leaf expansion and photosynthetic rate decreases; marginal necrosis; 

interveinal chlorosis of terminal leaves; stern and leaf lesions; inhibited 

water uptake; and decreased leaf water potentials (Pill & Lambeth, 1977; 

Tolley-Henry & Raper, 1986), and sometimes ultimately in plant death (Maynard 

& Barker, 1969), in other plant species. 

However the media p8 was measured throughout the experiments conducted in this 

research, and remained between 6.5 and 7.5, indicating that neither 

rM 
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increases in media alkalinities (due to ammonium accumulation), nor media 

acidification (due to ammonia assimilation) were significant. Regulation of 

the medium pH (around neutral) reportedly results in equal growth in other 

plant species whether supplied with equimolar nitrate or with ammonia 

nutrition (Kirkby & Hughes, 1970; Marschner & Romheld, 1983; Rufty et aI, 

1983; Raven, 1985; Trolley-Henry & Raper, 1986; Chaillou et aI, 1991); thus 

many of the reported 'toxic' effects associated with ammonia nutrition may 

result from medium pH perturbations rather than from ammonia assimilation per 

se. Medium acidification is reportedly inhibitory for nitrogen absorption 

(Ryan & Walker, 1994), indicating that ammonia-associated 'abnormal' growth 

may result from nitrogen deficiency as opposed to from toxicity per se. Indeed 

symptoms associated with ammonia-toxicity are consistent with those of 

nitrogen deficiency (Rufty et aI, 1984). 

However other workers have reported that plant nitrate uptake is not 

suppressed by the inclusion of medium ammonia additions, and that other plant 

species may exhibit greater plant nitrate concentrations when supplied with 

ammonia as opposed to with nitrate nutrition (Orebamjo & Stewart, 1975a; 

Haynes & Goh, 1978). However increased nitrate concentrations could result 

from decreased NR activities, as reported in other plant species when supplied 

with medium ammonia nutrition (Breteler & Siegerist, 1984). 

Yet other workers have reported that medium ammonia additions may stimulate 

plant NR activities (Hofstra et aI, 1985; Bennet et aI, 1986; Bungard et aI, 

1999), and increasingly concentrated ammonia nutrition reportedly results in 

increased plant GOH activities (Taylor & Havill, 1981), and GS activities 

(Ortega et aI, 1999) in other plant species, and hence potentially in 

increased nitrogen assimilation. 

Unsuitable experimental design may be partly responsible for reported amrnonia
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associated toxic affects. A combination of high concentrations of media 

ammonia, with the low light levels found in many controlled environment 

cabinets can lead to high rates of ammonia absorption and low rates of ammonia 

assimila~ion, encouraging the accumulation of free ammonia (Bloom, 1988). 

However ammonia was provided as a supplement to nitrate in this research, and 

the concentrations of medium ammonia; pH; and photosynthetically active 

radiation (PAR) levels were controlled (see chapter two); accordingly toxicity 

symptoms were not expected when medium ammonia additions were supplied to 

V. faba. In the field molybdenum may be limiting (particularly in acid soils; 

Gutschick, 1981), and ammonium assimilation is the only form of nitrogen 

assimilation without a Mo requirement, an advantage in vivo. 

V. faba may also utilise atmospheric nitrogen as a nitrogen source. In 

1800, Humphry Davy suspected nitrogen fixing systems in plant roots; 

Boussingault realized that atmospheric N2 was utilised by legumes in the 

1830s; and nodules were described by Hellriegel & Wilfarth in 1886, 

(Burris, 1974). 

V. faba infected with Rhizobium leguminosarum may form symbiotic nodules 

which are extremely effective at fixing atmospheric nitrogen; fixation 

reportedly accounts for over eighty per cent of the total plant nitrogen 

content in this species (Richards & Soper, 1979). 

However nitrogen fixation is reportedly an energy intensive process (Pate 

et ai, 1979). When carbon-limited populations of nitrogen fixing bacteria 

are compared with similar populations which are utilizing nitrate or 

ammonium ions as their nitrogen source, yields of the latter are often 

substantially higher (Pate et ai, 1979; Schilling, 1983), inferring that 

ATP may be diverted away from biomass production to nitrogen fixation. 
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Accordingly host plants dramatically sever their associations with rhizobia 

when external nitrogen is plentiful, producing fewer curled root hairs and 

fewer effective nodules, both in V. faba (Dean & Clark, 1980), and in other 

plant species (Bauer, 1981; Caba et ai, 1998). Phaseolus vulgaris 

reportedly exhibits reduced nitrogenase activities when supplied with 

medium nitrate; <200 ppm nitrate in the medium reportedly results in fifty 

per cent decreases in nitrogen fixation (Trinchard & Rigaud, 1981). 

As NR activities and nitrogenase activities both rely on phloem 

translocated substrates (Oghoghorie & Pate, 1971) competition may occur. NR 

is reportedly activated in the shoots of V. faba when supplied with medium 

nitrate nutrition (Sutherland et ai, 1985), and may therefore be better 

positioned to compete for substrates, which may contribute to the reported 

inhibition of nitrogen fixation in V. faba when supplied with medium 

nitrogen. Nitrogen fixation is also reportedly suppressed in other plant 

species when supplied with medium ammonia nutrition (Kennedy & Eady, 1979; 

Serraj et ai, 1999), and feed-back inhibition mediated by increasing xylem 

amino acid concentrations has also been implicated as a possible cause of 

decreasing nitrogen fixation in plants when supplied with medium nitrogen 

nutrition (Baker at ai, 1997). 

Accordingly methodology was designed so that one group of V. faba was 

germinated in a Rhizobia-rich medium (see sections 2.3 & 2.4.2) and 

supplied with nutrition ranging from 'nitrogen-free' to 4.0 roM nitrogen, in 

order that the effects of increasingly concentrated medium nitrogen 

nutrition on nitrogen fixation could be determined. 

Other v. faba seeds were surface-sterilised and germinated in Rhizobia-free 

media and were thus unable to fix atmospheric nitrogen (see section 2.3), 

and relied upon medium nitrogen nutrition (supplied to different groups as 
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increasingly concentrated nitrate solutions, with and without increasingly 

concentrated ammonia additions) in order that the effects of different 

forms and concentrations of medium nitrogen nutrition on the physiology of 

non-nodulated V. faba could be determined (see fig. 2.1 for an overview of 

the methodology). 

The efficiency of utilisation of specific nitrogen sources may be species 

dependant. T. pseudonana exhibits the same specific growth rates whether 

supplied with nitrate or with ammonia nutrition (Thompson et aI, 1989); 

however many photolithotrophs reportedly exhibit lower maximum growth rates 

when supplied with ammonia as opposed to with nitrate nutrition (even when the 

medium pH is controlled; Allen & Smith, 1986); while species 'preferring' 

ammonia and supplied with nitrate reportedly develop iron deficiencies (Nelson 

& Selby, 1974). However species already adapted towards the utilisation of a 

specific nitrogen source reportedly do not exhibit toxicity or deficiency 

symptoms when provided with their 'preferred' nitrogen source (Krajina et aI, 

1973), and the metabolic pathway of nitrate utilisation reportedly differs 

among species, which reportedly exhibit varying degrees of 'nitrophilia'. 

Legumes reportedly exhibit lower km values (higher affinities) for ammonia 

than cereals, and translocate absorbed nitrogen to the shoots more quickly 

(Hogh-Jensen et aI, 1997). As a legume V. faba is adapted to receive nitrogen 

from the roots via nitrogen fixation; via ammonia assimilation (which is a 

root phenomenon); or via nitrate reduction (which is also predominantly a root 

phenomenon in v. faba; Sutherland et aI, 1985). Indeed similarities are noted 

when nitrogen fixation and ammonia assimilation are compared, for example 

xylem sap compositions are similar in ammonia supplied and in nitrogen fixing 

199umes (Baker et aI, 1997), and ammonia assimilation and nitrogen fixation 
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both result in the production of H+ ions (Raven, 1985). If the entire 

physiology of V. faba is predisposed towards root assimilation, medium ammonia 

additions may not result in the exhibition of toxicity symptoms in this 

leguminous species. 

In addition to nitrogen, water is also fundamentally important to plant 

productivity (Sinha & Nicholas, 1981), driving expansive growth; providing 

support; forming the medium in which metabolic reactions occur; and acting as 

a reactant in photosynthesis, etc. 

Water deficits are often labelled 'drought stress', a vague umbrella as the 

effects of such 'stress' on V. faba may vary as affected by many factors 

including the life cycle stage during which the water deficits are 

experienced, and the severity and duration of water deficit imposition 

(Plies-Balzer et aI, 1995). 

The term 'drought stress' when used in biology, has general connotations and 

not precise definitions (Osmond et al, 1987). Drought is described in the 

Collins English Dictionary as a 'prolonged period of scanty rainfall', while 

Katz & Glantz, (1977), suggested that there are meteorological and 

agricultural definitions of drought; meteorological drought being a time 

period of less than expected precipitation; agricultural drought referring to 

unseasonable vegetative development (in which case one day of dry, hot weather 

may be classed as 'drought'). Furthermore Palmer, (1974), suggested that a dry 

spell is not drought until the economy is affected, and Morris, (1974), 

defined drought as an unseasonably rapid rise in agricultural prices. 

The definition of stress as an 'overpowering pressure of some adverse force or 

influence' (Shorter Oxford English Dictionary, 1983) is useful when describing 

the effects of 'drought stress' on plants (Jones et al, 1989). However while 
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Osmond et al, (1987), defined 'stress' as a factor which results in decreases 

in plant growth and reproduction below the genotype's potential, it is 

apparent that the term 'drought stress' is an unscientific description. water 

deficit is the preferred term in this thesis. Water deficits occur when rates 

of transpiration exceed those of water uptake (Bray, 1997), and are 

characterised by alterations in the physiology and metabolism of plants 

(including v. faba) in efforts to maintain water uptake, and to conserve water 

contents and metabolism. 

In Maharashtra (India) rainfall was twenty-five per cent below average in 

1971. In 1972 it was forty per cent below average. Average pulse/cereal crop 

production was 64,000 tonnes per year for ten years prior to 1971, and dropped 

to 44,000 tonnes in 1971-72, then to 30,000 tonnes in 1972-73 (Subramanian, 

1975), indicating the extent to which crop yields may be devastated by water 

deficits. 

Harvest index is defined as the ratio of dry seed yield to the maximum dry 

matter production of the aerial part of the plant during vegetative growth, 

and is variable in v. faba (DUC & Picard, 1982). A water deficit is possibly 

the primary factor to which limited and varied V. faba yields may be 

attributed throughout Europe (Thompson & Taylor, 1981; Hebblethwaite et al, 

1984) . 

Water deficits at any stage of growth reportedly result in yield reductions in 

V. faba, with little evidence of a particularly sensitive developmental stage 

(Day & Legg, 1981). V. faba can only extract water up to about 0.9 m, which is 

much more shallow than cereals, sugar beet, and grasslands, and V. faba roots 

predominate in the top 30 em of the medium (an adaptation to regular limited 
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water supplies), inferring an increased susceptibility to root dehydration 

during water deficits in V. faba as compared with cereals (Hebblethwaite, 

1982). 

Water deficits provide an interesting platform for research as a variety of 

water deficit tolerance adaptations are invoked in nodulated and in non

nodulated V. faba (Sau & Ines-Minguez, 1990). Plant responses to water 

deficits may be categorised as structural; physiological; stomatal; or 

metabolic. 

Physiological adaptations to water deficits often involve altered growth 

patterns. Root: shoot ratios (R:Ss) reportedly alter from 1:3 in well watered 

plants, to 10:1 in plants experiencing severe water deficits (Etherington, 

1962), during which more branched root profiles are reportedly exhibited, 

deeper in the soil (Sharp & Davies, 1979). Increasing R:Ss have the 

consequence of increasing the root area available for water (and nitrogen) 

uptake while simultaneously reducing the above ground biomass, and hence the 

potential for transpiration (McDonald & Davies, 1996). However cumulative leaf 

areas, photosynthetic potential and yields may simultaneously be reduced as a 

consequence (Yoshida, 1972). 

The effects of nitrogen applications on growth parameters during water 

deficits are of interest, as nitrate nutrition reportedly stimulates aerial 

growth in v. faba (Sprent & Thomas, 1984), and sixty kg N ha-1 urea 

applications to Vigna unguiculata during late water deficits reportedly 

results in the exhibition of growth which is comparable to that of adequately 

irrigated plants (Elowad & Hall, 1987). Accordingly growth parameters were 

quantified in nodulated and in non-nodulated V. £aba when supplied with 
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different forms and concentrations of medium nitrogen nutrition, throughout 

water deficits (fig. 2.1). 

A second adaptation to water deficits involves stomatal closure, which results 

in reduced transpirational water losses, however CO2 uptake and hence net 

photosynthesis are simultaneously reduced (Lawlor, 1995). Stomatal closure may 

therefore incur decreased plant survival prospects during water deficits as 

photosynthates and reductants are required to 'fuel' plant water deficit 

tolerance adaptations. Within the physiology of any plant, water use, nitrogen 

metabolism and carbon metabolism are intertwined; for example adequate 

nitrogen, carbon and water supplies are required for the maintenance of 

growth, photosynthesis, nitrogen assimilation etc. (Martinez-Carrasco et aI, 

1998) . 

Some plant species reportedly increase the capacity of the light reactions of 

photosynthesis in response to increasingly concentrated medium nitrate 

nutrition (Bjorkman, 1981; Marques et aI, 1983). Furthermore lower stomatal 

resistances; greater photosynthetic rates; and greater water use efficiencies 

are reportedly exhibited in some plant species when supplied with increasingly 

concentrated medium nitrate nutrition (Radin & Ackerson, 1981; Radin et aI, 

1985; Ghashghaie & Saugier, 1989). 

However 2 roM ammonia reportedly results in an uncoupling of 

photophosphorylation in isolated chloroplasts (Good, 1960; Chaparro et aI, 

1976), and ammonia nutrition reportedly results in lowered photosynthetic 

rates and thylakoid malformations (Takacs & Tecsi, 1992). Furthermore 1-3 roM 

ammonia reportedly inhibits respiration in isolated mitochondria (Vines & 

wedding, 1960), however Wakiuchi et aI, (1971), reported that respiration was 

maintained with ammonia nutrition. Wann & Raper, (1979), postulated that if 



15 


photosynthetic reserves fall below a critical level which allows maintenance 

respiration, then leaf organic nitrogen compound degradation may be required 

as an energy source with the release of free ammonia, and an exasperation of 

toxicity symptoms (Barker, 1966). However at concentrations below those 

required to uncouple photophosphorylation the ammonia ion reportedly has a 

stimulative effect on photosynthesis in intact chloroplasts (de-Beneditti et 

aI, 1976), through an activation of ribulose bisphosphate (RUBP) carboxylase 

reactions, and ammonia nutrition may reportedly result in increased CO2 

fixation (Michael et aI, 1970). 

It is thus proposed that medium nitrogen applications prior to and during mild 

water deficit development may result in the exhibition of increased 

photosynthetic rates and improved water use efficiencies in nodulated and in 

non-nodulated v. faba (as reported for other plant species) during this key 

time (Radin et aI, 1985). Accordingly stomatal conductances and net 

photosynthesis were quantified in nodulated and in non-nodulated V. faba when 

supplied with different forms and concentrations of medium nitrogen nutrition, 

throughout water deficits (see fig. 2.1). 

Increased root growth and increased stomatal resistances reportedly occur 

during mild water deficits, while at lower water potentials osmotic adjustment 

is initiated, both in V. faba (Sau & Ines-Minguez, 1990), and in other plant 

species (Turner & Stewart, 1986). 

Osmotic adjustment refers to the regulation of cellular osmotic pressure and 

therefore water potentials during water deficits as mediated by increases in 

<::lellular solute concentrations as opposed to decreases in cellular volumes 

i;a"p.son & Bitz, 1982; Morgan; 1984; Rhodes & Samaras, 1994; Zhang et aI, 

1999), and has been observed in V. faba (Van dar Wal, 1981; Sharma & Rai, 
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1989), and in other plant species (Waldren & Teare, 1974; Wignarajah et aI, 

1975; Sharp & Davies, 1979; Stewart & Lahrer, 1980; Stewart, 1981; Borowitzka, 

1981; Hanson & Hitz, 1982; Singh & Gupta, 1983; Wyn Jones, 1983; Morgan, 1984; 

Morgan & Condon, 1986; Whittington & Smith, 1992; Wang et aI, 1995; Bussis & 

Reineke, 1998; Cellier et aI, 1998; Clifford et aI, 1998; zhang et aI, 1999). 

Plants which accumulate greater concentrations of osmotica reportedly maintain 

greater solute potentials; greater relative water contents (Singh & Gupta, 

1983); greater stomatal conductances (and by inference carbon acquisition); 

extract more water (Kumar & Singh, 1998); and exhibit greater yields (Van der 

Wal, 1981; Rodriguez-Maribona et aI, 1992) during water deficits than those 

which accumulate lower concentrations of osmotica. 

Sugars are reportedly major contributors to osmotic adjustment, while amino 

acids and quaternary ammonium compounds reportedly contribute smaller 

concentrations of osmotically active solutes (Hanson & Bitz, 1982; Turner & 

Stewart, 1986). Nitrate may also act as an osmoticurn (Cram, 1974; Martinoia et 

aI, 1981; Pate, 1983). 

Water deficits can have deleterious consequences for proteins which are 

easily denatured (Stryer, 1988). Brown & Simpson, (1972), introduced the 

term 'compatible solute' which describes solutes which are non-inhibitory 

to metabolism and which accumulate in the cytoplasm of cells subjected to 

low external water potentials. Potential compatible solutes include 

polyols; sucrose; fructose; glucose; proline; alanine; beta-alanine; 

taurine; and glycine betaine, and appear to reduce water deficit associated 

protein degradation at almost every stage of various 'stresses' (Paleg at 

aI, 1985; Samaras at aI, 1995; Smirnoff, 1995). Compatible solute 

accumulation may contribute significantly to overall osmotic adjustment 
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(Wood I 1998). 

Z. mays supplied with increasingly concentrated medium nitrogen nutrition 

reportedly exhibited lower leaf osmotic potentials (Bennet et aI, 1986). As 

osmotic adjustment and therefore RWCs may be maintained at greater levels 

throughout water deficits in plants when supplied with increasingly 

concentrated medium nitrogen nutrition, stomatal conductances may be 

maintained at lower water potentials, allowing maintained carbon 

acquisition (Bennet et aI, 1986; Hawkins & Lewis, 1993). Accordingly 

osmotic adjustment (including compatible solute accumulation) was 

quantified in V. faba when supplied with different forms and concentrations 

of medium nitrogen, throughout water deficits. 

V. faba which are reliant on nitrogen fization reportedly exhibit 

statistically similar biomasses as V. taba which are supplied with medium 

nitrogen nutrition during periods of adequate irrigation (Dekhuijzen et aI, 

1981; Simon & Skrdleta, 1983). Indeed Richards & Soper, (1979), reported 

that nitrogen fixation rendered medium nitrogen applications superfluous 

during periods of adequate irrigation, as very concentrated medium nitrogen 

nutrition was required before yield increases were exhibited in nodulated 

V. faba when supplied with sufficient water. 

However nodule numbers and nitrogen fixation reportedly decrease during 

water deficits, both in V. faba (Hamdi, 1982; Guerin et aI, 1990; 

Sangakkara et aI, 1996), and in other plant species (Serraj et aI, 1998). 

The survival of Rhizobium in the medium during water deficits is probably 

not limiting as rhizobial strains are reportedly resistant to soil 

desiccation and may survive in water films surrounding soil particles 

(Serraj et al, 1999). However rhizobial motility and the infection process 

~-.--- -~. -------
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(mucigel production, root hair curling and infection thread formation) are 

reportedly seriously inhibited during water deficits (Sprent, 1971; Greaves 

& Derbyshire, 1972). Water deficit resistance in nodulated plants is 

reportedly proportional to the position of the nodule in the cortex 

(Sprent, 1971). V. faba has a large root diameter, however nodules form 

close to the epidermis and are often positioned close to the substrate 

surface and may therefore be susceptible to dehydration during water 

deficits (Sprent, 1971). Up to half of the water required by nodules may be 

supplied via the phloem along with carbohydrates making nitrogen fixation 

expensive to V. faba in terms of water economy (Sprent, 1971). Furthermore 

nitrogen fixation is reportedly energetically expensive (Schilling, 1983) 

and water deficits result in decreases in carbon acquisition (Epron, 1997; 

Clifford et aI, 1998); and in reductions in the phloem transportation of 

carbohydrates and water to nodules (Walsh, 1995). 

Indeed the water deficit sensitivity of nitrogen fixation has been 

attributed to many factors, including increasing nodular asparagine 

concentrations (Serraj et aI, 1999); increasing glutamate: glutamine 

ratios (Curioni et aI, 1999); decreasing leghaemoglobin contents 

(Oghoghorie & Pate, 1971; Arrese-Igor, 1998); decreasing bacteroid 

respiration rates (Guerin et aI, 1990); and more recently to decreasing 

nodular sucrose synthase activities during water deficits (Gordon & James, 

1997; Gonzalez et aI, 1998; Serraj et aI, 1998). However the meristematic 

nodules of V. faba reportedly recover well upon re-watering (Sprent, 1972). 

PlieS-Balzer et aI, (1995), reported that growth in V. faba during water 

deficits was not limited by decreases in nitrogen fixation, and that water 

deficits during pod-filling resulted in maintained nitrogenase activities and 

biomass production. Furthermore a G. max cultivar, ('Jackson'), has been 
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identified as water deficit tolerant for nitrogen fixation (Serraj & Sinclair, 

1997). Thus controversy surrounds the sensitivity of nitrogen fixation to 

water deficits. Accordingly the effects of water deficits on parameters of 

growth; stomatal conductance and net photosynthesis; osmotic adjustment; and 

nitrogen assimilatory enzyme activities were quantified in nodulated V. faba 

grown without medium nitrogen, in order that the effects of increasing water 

deficits on nitrogen fixing V. faba could be determined. 

PlieS-Balser et aI, (1995) also reported that medium 'combined nitrogen' 

applications did not result in the exhibition of greater aerial biomasses, 

total nitrogen concentrations, or yields by V. faba (cv. 'Alfred') than were 

exhibited by nitrogen fixing 'Alfred' during water deficits. However Purcell & 

King (1996) reported greater nitrogen and biomass accumulation rates and seed 

yields in G. max when supplied with 'combined nitrogen' nutrition (336 kg/ha 

NH 4N03 ) than when reliant on nitrogen fixation during water deficits. A major 

aim of this research was to determine whether medium nitrogen applications (in 

increasing concentrations, and particularly with ammonia additions) would 

result in the exhibition of increased productivities by V. faba, particularly 

during water deficits. 

NR is also classically considered to be sensitive to water deficits (Mattas & 

Pauli, 1965; Ferrario-Mery et aI, 1998), however a small number of studies 

have reported that NR activities are maintained during water deficits in other 

plant species (Smirnoff et aI, 1985; Ladley, 1990). 

V. faba supplied with increasingly concentrated medium nitrate nutrition 

reportedly exhibits increasing NR activities (Sutherland et aI, 1985; Hocking 

& Meyer, 1991). Furthermore while ammonia nutrition has previously been 

reported as inhibitory for NR activities in some plant species (Orebamjo & 
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Stewart, 1975ai Raper et aI, 1991; Muller & Janiesch, 1993), contrasting 

earlier literature describes increases in NR protein, and in NR activities in 

G. max and in other plant species when supplied with 'combined nitrogen' 

nutrition as opposed to with nitrate or with ammonia nutrition (Lillo & 

Henriksen, 1984; Guerrier, 1991). A proposal is that increasingly concentrated 

nitrate or 'combined nitrogen' plant nutrition during water deficits may 

result in the production of increasing concentrations of nitrogenous osmotica 

should NR prove water deficit tolerant. 

In contrast to NR, the enzymes of ammonia assimilation (GDH and GS GOGATi 

enzymes which also assimilate the ammonia produced via nitrate reduction; see 

fig. 1.1), are classically considered insensitive to periods of water deficit 

in other plant species (Sinha & Nicholas, 1981; Taylor et aI, 1982). As such 

plant medium ammonia additions may incur 'benefits' during water deficits, as 

nitrogen is central to water deficit tolerance adaptations, being a component 

of many of the compatible solutes previously described. Furthermore 

increasingly concentrated medium ammonia nutrition may reportedly result in 

increased plant NR (Hofstra et aI, 1985; Bennet et aI, 1986; Bungard et aI, 

1999); GDH (Taylor & Savill, 1981); and GS (Ortega et aI, 1999) activities in 

other plant species, and hence in increased nitrogen assimilation, which in 

turn may result in increased growth maintenance, net photosynthesis, and 

osmotic adjustment as previously discussed. Indeed continuing nitrogen 

metabolism (as opposed to nitrate storage) during water deficits may result in 

an alleviation of 'sink size' feedback inhibition of photosynthesis and of 

nitrogen assimilation (and potentially in reduced photoinhibition during water 

deficits Smirnoff, 1985). If ammonia proves a 'beneficial' supplicant, 

economic benefits may be incurred, as ammonia is cheaply available in the form 
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of bird droppings. 


Accordingly methodology was designed so that groups of nodulated and non


nodulated v. faba were supplied with increasingly concentrated medium ammonia 


additions in order that the effects of medium ammonia additions could be 


determined on growth; stomatal conductances and net photosynthesis; osmotic 


adjustment; and nitrogen assimilatory enzyme activities (fig. 2.1). 


The discussion so far has concentrated on the reported effects of single 


nitrogen sources (either nitrate or ammonium alone) on plant physiology during 


water deficits. However the optimum nitrogen source is often 'combined'. 


'Combined nitrogen' nutrition refers to simultaneous nitrate ana ammonium 


applications. A 'combined nitrogen' source may offer benefits as compared with 


nitrate or with ammonia nutrition, for example earlier literature which 


described greater NR activities in other plant species when supplied with 


'combined nitrogen' as opposed to with nitrate nutrition has already been 

detailed (Guerrier, 1991). Furthermore although ammonia uptake reportedly 

competes with magnesium, calcium, and potassium uptake, medium nitrate 

additions may reportedly aid cation uptake (Fagena, 1974). 

The capacities to absorb nitrate or ammonia as sole nitrogen sources are 

reportedly similar, but z. mays reportedly assimilates twice as much ammonia 

as nitrate when supplied with 'combined nitrogen' nutrition, inferring that 

ammonia may satisfy nitrogen requirements a more energy efficient way than 

nitrate (Taylor & Bloom, 1998; Colmer & Bloom, 1998; Martinez-Carrasco et aI, 

1998). Indeed ammonia is theoretically easier to utilise (its assimilation 

requires less photosynthetically derived energy; water; and metal ions per 

unit yield, than nitrate; Bloom, 1988; Raven, 1985; Atwell 1992, Raven et aI, 

1992), but provides the same function as a nitrogen source. During water 
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deficits when photosynthate and reductant availabilities may become limiting 

due to stomatal closure, 'energy' may theoretically be 'saved' by assimilating 

some ammonia (Raven, 1985; Bloom, 1988; Atwell 1992; Raven et aI, 1992). 

Indeed Cox & Reisenauer, (1973), reported greater growth rates and yields when 

Triticum aestivum was supplied with 'combined nitrogen', as opposed to with 

nitrate or with ammonia nutrition, which may have been attributable to reduced 

energy requirements in plants when supplied with 'combined nitrogen' 

nutrition. Improvements in the quality and quantity of leaf protein (an 

important consideration for a 'green manure' crop; Corak et aI, 1992) have 

also been reported in other plant species when supplied with 'combined 

nitrogen' as opposed to with nitrate or with ammonia nutrition, as nitrate 

applications reportedly result in the exhibition of increased plant methionine 

contents and ammonia applications reportedly result in increased aspartate 

contents (Weissman, 1964; Domska, 1974). 

Furthermore increased organic acid concentrations (which are reportedly 

required to enable maintained nitrate uptake (Davies, 1973), and maintained 

nitrogen assimilation (Bourgeais-Chaillou et aI, 1992); see chapter five) are 

reportedly exhibited in G. max when supplied with 'combined nitrogen' as 

opposed to with nitrate or with ammonia nutrition (Bourgeais-Chaillou et aI, 

1992). Net nitrogen acquisition and translocation to the shoot are also 

reportedly substantially greater in other plant species when supplied with 

'combined nitrogen' as opposed to with nitrate or with ammonia nutrition, 

indicating a potential reduction in root nitrogen assimilation feedback 

inhibition in plants when supplied with 'combined nitrogen' nutrition (Ourry 

et aI, 1995; Kronzucker et aI, 1999). 

'combined nitrogen' applications may be especially 'beneficial' during water 

deficits as 'combined nitrogen' nutrition reportedly results in the eXhibition 
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of greater plant maximum specific growth rates and dry weight gains per unit 

water transpired than nitrate or ammonia nutrition (Delwiche, 1951; Orebamjo & 

Stewart, 1975a; Haynes & Goh, 1978; Raven et aI, 1992). Furthermore water 

deficits often involve warm temperatures which favour ammonia (as opposed to 

nitrate) uptake (Bloom et aI, 1998). An optimum ratio of nitrate to ammonia 

may exist which differs as dependant on plant species, age etc. (Michael et 

al,1970). 

Accordingly nitrate and 'combined nitrogen' were supplied to v. faba at 

increasing concentrations so that the effects of increasingly concentrated 

nitrogen nutrition could be determined on growth; stomatal conductances and 

net photosynthesis; osmotic adjustment; and nitrogen assimilatory enzyme 

activities in v. faba, both when supplied with adequate irrigation, and during 

increasing water deficits (see fig. 2.1). 

The preceding pages detailed earlier contradictory reports regarding the 

effects of varying nitrogen nutrition and of water deficits on plant 

physiology. Chapter two highlights the major aims of this research, and 

details the methodology designed to meet these aims. 
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CHAPTER TWO. 


GENERAL METHODOLOGY & PLANT GROWTH CONDITIONS 


r-

A method is a specific application of a technique to solve an analytical 


problem (Willard et aI, 1988). 


Methodology is the science of method (Concise Oxford Dictionary, 8th Ed). 


t • ~.........---........ --....,.-.
--•. ----"'--~--.--

This chapter details the aims and objectives of the research, and the 

rationale behind the methodology (see fig. 2.1). The specifics of the nitrogen 

regimes (section 2.4) and water deficit regimes (fig. 2.2) are explained; and 

general growth conditions and sample preparation techniques are outlined. 

2.2 AIMS & OBJECTI~ 

The preceding chapter reviewed the contradictory conclusions of earlier 

workers as to the effects of medium nitrogen applications on the 

productivities of leguminous species; the effects of water deficits on the 

activities of various enzymes associated with nitrogen metabolism; and the 

effects of ammonia nutrition on plant growth . 

.2....2...:..l Plies-Balser et aI, 1995 reported that medium 'combined nitrogen' 

applications did not result in increased aerial biomasses, total nitrogen 

concen·trations,or yields in v. taba (cv. 'Alfred') during water deficits. 

This is unexpected, as although V. taba is reportedly an effective nodulator 

(Richards & Soper, 1979; Sau & Ines-Minguez, 1989), earlier workers have 

described greatez- root growth (Giordano & Bowes I 1997) i greater heights 

(Quebedeaux & Osbun, 1973); greater net photosynthesis (de-Benedetti et al, 

1976): greater NR, GDB, and GS activities (Bungard at aI, 1999; Taylor & 

Savill, 1981; Ortega et al, 1999); greater oemotic: adjustment (Bennet at al, 
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1986): and greater growth rates and yields (Cox & Reisenhauer, 1973) in other 

plant species when supplied with increasingly concentrated medium nitrogen. 

Increases in such parameters may increase the water deficit tolerance of a 

plant, for example by increasing substrate availabilities for osmotica 

production. Indeed Purcell & King (1996) reported greater nitrogen and biomass 

accumulation rates and seed yields in G. max when supplied with 'combined 

nitrogen' nutrition (336 kg/ha NH 4N03 ) than when reliant on nitrogen fixation 

during water deficits. A major aim of this research was to determine whether 

medium nitrogen applications (in increasing concentrations, and particularly 

with ammonia additions) would result in the exhibition of increased 

productivities by V. faba during water deficits. 

2.2.2 The introduction highlighted controversies surrounding the water deficit 

tolerance of NR. This research evaluated NR activities during gradually 

imposed water deficits. The potential contribution of primary nitrogen 

assimilation to metabolism maintenance throughout water deficits was thus 

determined. The activities of key transaminases (which influence which amino 

acids accumulate) were also determined during water deficits, and related to 

the metabolic derivation of each amino acid and to the potential 'roles' of 

accumulating amino acids within plant metabolism. 

2.2.3 The introduction detailed contradictory reports of the effects of medium 

ammonia on plant growth (and NR activities). A research aim was to determine 

the effects of medium ammonia additions on the physiology of this leguminous 

species (in the presence and absence of increasing water deficits). 

2.2.4 A G.max cultivar 'Jackson' has heen described as water deficit tolerant 

for nitrogen fixation (Serraj & Sinclair, 1997). Furthermore it has been 
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reported that the growth of V. faba (cv. 'Alfred') is not limited by 

decreasing nitrogenase activities during water deficits (PlieS-Balser et aI, 

1995). Physiological parameters were quantified in nodulated V. faba during 

water deficits, allowing some inference into the water deficit sensitivity of 

nitrogenase in 'Bunyards Exhibition' . 

The potential ability to understand factors which encourage reliable yields 

of high protein V. faba by optimising water and nitrogen metabolism (these 

two parameters being major yield-limitation factors; Sinha & Nicholas, 

1981), justifies research into the physiology of this species. While crop 

breeding is important, protein content is so affected by environment that 

it cannot be selected for as easily as other characters, and more 

physiological information is required to aid selection. 

2.3 SEED TREATMENT 

V. faba (cultivar 'Bunyards Exhibition') were purchased from Unwins 

throughout. Similar sized seeds were randomly allocated to nitrogen and water 

deficit groups. Prior to germination all seeds were soaked in 95% ethanol for 

90 minutes, and then full strength commercial bleach (5.25% sodium 

hypochlorite) for 20 minutes to ensure surface sterilisation (Yang et aI, 

1992). Inoculation with R. leguminosarum (when required) was thus controlled. 

v. faba synchronises the exhaustion of seed nitrogen reserves with the 

availability of fixed nitrogen well; as a hypogeal species V. faba begins 

photosynthesis when nitrogen fixation has already commenced, which is prior to 

cotyledon nitrogen depletion. Indeed cotyledons of V. faba are large enough to 

supply sufficient substrates for seedling production that elevated CO2 has no 

effect on seedling development (Radoglou & Jarvis, 1993). However seed-shed 

was at approximately four weeks, after which the only available nitrogen until 
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harvest was from a specified Long Ashton (LA) source (or potentially from 

nit:togen fixation when V. taba was germinated in Rhizobia-rich media, see 

section 3.4). 

• .faba we~re ell tivated in Town 5. Countxy walk-in controlled environment 

cabin€'t Ilm!d€\ll no • TCOOl ) which allow controlled PAR (photosynthetically 

actiw, ation) I.vell;; l!i humi.dity levels (humidity changes affect stomatal 

Mi,UU;;fi('J & Davies, 19131); and day and night t €;,mperatures, and were 

2.1. 

Light Pui.od (06.00 - Hi. 00) DArk Ptl'riod (18 .00 - 0600) 

TI,'II!I,l<U'ature oC 15 oC 

Relatlv,.' l!mllidHy 60 iii 60 % 

Th\lo; environl!·,.ental nitrog'iiiln source/lllcherr.le; water deficit 

2.1 autlinoiil .. the ntl.cnlJlle behindLhe m!"lthoclology and details three 

groups 

fur:t.her lIub-divided into dx (each aont.:lining th!'ee pl&nte) ,Cl:ach of which 

.7) • 


http:source/lllcherr.le
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nitrogen nutrition (supplied either as nitrate or as 'combined nitrogen') 

may result in improved water deficit tolerance in non-nodulated and in 

nodulated V. faba; 

(b) Comparisons between water deficit associated responses of V. fsba when 

supp ied with c(mcentrated medium nitrogen nutrition as 

opposed to when reliant on nitrogen fixation; 

(c) Bans of water deficit associated responses of V. .taba when 

:H,PP ied with medium nitnlb:? or 'combined nitrogen' nutrition equivalent to 

to when supplied with an additional 4 roM ammonia 

'spike', t.o allow invEI!'Itigatiorl into the hypothesis that medium ammonia 

ions may !G8ult in increased water deficit tolerance (see 

int:r:oductiOl1) . 

four LA s()lutions ( are 

in }, I; pg. , which "~'mt'''.i.ned eq~lal ccmctantrations of allL 

macro-nutrleDnts nitrogeDn ($e~ tableD 2.2). 

SOURCE MITROGEN CONCEWTRATIOW 

'1/2 NITBATI' 

~UPPLIED A! 4 ~ 184103 
i . 

for: 

reDlJilultill :reduced 

deDfined 
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and controllable, eliminating problems of batch variation. 

A 'no nitrate' nitrogen source allowed research into the effects of nitrogen 

deprivation on non-nodulated V. taba (as reviewed by Ghashghaie & Saugier, 

1989), and provided a 'baseline' nitrogen level against which the water 

deficit tolerance adaptations of V. [llba when supplied with increasingly 

concentrated medium nitrogen nutrition could be compared. Although the LA 

solutions were made up 1n distilled water, it is possible that low levels of 

nitrogen might have been pre.ent in the 'no nitrate' solution' (see section 

6,l.I.1; pg. 180,. Nitrogen fixation potentially provided nitrogen to 'no 

nitrate' 8uppUed V. faha within the nodulated scheme (fig. 2.1; scheme b). 

The introduction detailed earlier reports of the effects of increasingly 

concentrated medium nitrate nutrition and of 'combined nitrogen' nutrition on 

plant physiology during water deficits. Accordingly nitrate solutions were 

provided at two concentrations: and a fourth group of v. taba was supplied 

with . combined nitroqen' nutrition (see table 2.2). 

2.A...iL.l...~.~~~~.lU.m~lLJu!i!i~ 

Non-nodulated V. tab. were grown hydroponically in LA mtl'ldia. Hydroponic growth 

results in minimal root damage upon harv.sting, and 1. not conducive to the 

growth of mycorrhi.al fungi (Min et al, 1999), thus this variable on nitrogen 

nutrition wa. iminated. Blackened pot. cc:aplete with blackened lid. (10.5 em 

for qrowth. Lida were pedorated 

allowing plants to .it with th.ir root. in the madia. The madia were aerated 

by lManlll of an air..pump attaohed to a ..r11l. of tube. which bubbled air into 

each pot. 101utlon. weI'. obt&n9ad n.ry tbr_ day. to rGlllt.O'l. 8XUdat•• ; to 

nutrient level., ucI to prevant pi ahange•• pi wa. IIIoOnitored 

throughout betWlMft is. IS aDd '.5. A cUea4vutaga with liquid growth 

ie that it i. Dot mlmio fi.ld growth, for elWIfjIle root 

http:mycorrhi.al
http:iL.l...~.~~~~.lU
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mechanical impedance during water deficits 	is reduced when hydroponic growth 

utilised. However af drying soil are difficult to control, 

standardi,z3e and . As nodulated plants were grown on a (solid) medium 

of mixf<:d venniculit~l~, bark and sand (see 2.3.2), the water deficit responses 

medium and When grown hydroponically were 

companl'ci. 

requil i high vatlllH" contents to maintain their relatively high enzyme 

Ivities 1976 fint in inf are 

tive ,,1' det (:lprent, 1 ) . 	 exceslsiw? numbers of 

R. 	 leguminoaarum (1 ~ cif lI1olution containing i viable calis/rol per seventy

(when 

; f .:;: •• j to a v(;ll:mic~lit.f? I and bark mixture 

( 1 ; 1 : 1 I, I!md itl'} lII.eel. were adequately irrigated with 'no nitrate' LA 

of 

t.he of time lrl.faetion 

of th~ ~~cunt of fixed 

8&velkn, 1976). 

Hodubtif:m 1111 inhibi ted ,itl liql.'tid unlesl i!li fixed nitrogen 

ill llIuppli(!!i F~llt9.t.iIlt # • lIowe'>lerglutilUlline S/uppliee 

nodulau-dli". f.tb.t W::t'l!il th~~ verlllicuU.t61 ~'$l1llru:t,l!Iuppl 

and b,&f,k, lI,inure wlllt&r Ce~ba .t al, 1~9S), tho 

) . 
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Initially all inoculated V. faba plants were supplied with 'no nitrate' 

nutrition, as medium nitrogen nutrition reportedly results in inhibited 

nodulation (Kennedy & Eady, 1979; Caba et aI, 1998). However from day twelve 

onwards nodulated V. faba were sub-divided into four nitrogen groups each of 

which was supplied with one of the four pre-specified LA solutions (table 

2.2). Pots measured 9.5 ern in depth, with a 10.5 ern diameter. Despite reports 

that nitrate absorption may be reduced in nodulated plants (perhaps as root 

growth itself is limited by increased cytokinin levels as produced by both 

bacteria and roots; Rigaud, 1981), nodulation was reduced in inoculated 

V. faba when supplied with medium nitrogen nutrition. 

Table 2.3 Numbers of healthy nodules observed in V. faba when supplied with 
various nitrogen sources during water deficits, (average of three 
exper1ments). 

Average Number of Nodules 

Volume Long Ashton's Nitrogen Treatment 
per pot (% control) 

No Nitrate 1/10 Nitrate 1/2 Nitrate Combined N 

100 >12 9 7 0 

85 11 9 7 0 

70 7 5 5 0 

60 5 3 3 0 

45 4 3 0 0 

30 4 0 0 0 

Table 2.3 records that inoculated 'no nitrate' supplied V. faba were the 

only plants which maintained significant nodulation throughout water 

deficits. 

2.4.3 'SPIKED' V. faba NITROGEN REGIMES 

Some non-nodulated V. faba were allocated to a 'spiked' nitrogen scheme (fig. 

2.1; scheme c). Such plants were initially supplied with the four nitrogen 
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sources outlined in table 2.2. However from day twelve onwards an additional 

ammonia . spik,~' was provided to these v. faba (according to table 2.4), to 

allow investigation into the hypothesis than medium ammonia additions may 

resul t in incn:~ased '.,ater deficit tolerance. 

"'~~~~- --
ADDITIONAL NITROGEN 'XOTAL NITROGEN 

NITROGI!1'I SOURCE lU'l'ROGEN CONCENTRATIONS (FROM DAY 12 ) AVAILABLE 
(U1'l'l'IL OAt 12) (FROM DAY 12)-

(+ 4.0 Wi N SUPPLIED AS .:I :raM 
NO NITP.ATE AleMONIA) NO UITROG1Ul 

(~H4)2S04 ) 

-
{+ 4.0 Wi N SUPPLIED AS 4.3 roM 

1/10 BITRAT! (' A.lil'IONIA) 0.8 IIf.I N SUPPLIED EQUALLY AS 
(NH~)2S04 )

: 11::;(" .. CIlIN03 \ 2 I 
~--- ""' 

I(.. 4.0 mM N SUPPLIED AS 8 mM 
1/2 NITHM'E It. AMl'ION:::AI 4.0 ~ N SUPPLIED EQUALLY 1\S 

(NB4)2S04 )
n03 Ii. CIl.(J03)2 I 

(+ 4.0 mM N SUPPLIED Asl 8 mH 
COMB I N:i'::O NI':RGG::W $. ;\J1EO}llA l ;zlM N SUPPLIED AS NE 'UIO 3 (];lE4 ) 2304 ) t 

'~'''<~" " - ." i
~ 

Plant a.g"~ may reportedly affect water deficit responses (Etherington, 

1962), lI.nd ting V. taba (i:or around 

four 'W.«:~'1u: I unt. the fifth leaf atage was &chieved before water deficits 

were 

Sudden 'WiSltt;r deficit imposition may reportSldly result in altered plant 

than ac1t:iv~l.ol\lte accumUlation reported,l.y becOll'le!5 the dominant cause of 

lowerRU.8~11, 1996; ~lifford at al, 99B). 

in other 

1979; 

such •• 

""-~.~- -~------------------
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and post-watco'l"-deficit recovery rates (Pearson & Stewart, 1987). 

F'urthermore the rate of water deficit development reportedly affects the 

between cell division and cell elongation, and therefore 

stomatal density and carbon acquisition (Heckenberger et £11, 1998). 

Ac;ccrclinql y non-m)dulated, nodulated, and 'spiked' V. [aba were subjected 

top:adual Wil't:e.l:': df~ficit imposition as outlined below. 

6000 (PEG) has a high molecular weight and PEG additions 

to I!HpeOUI!I ~m=,ut:ionl!l eff:<!,:,~tively limit water uptake by stereochernically 

et a1, 1985). LA solutions containing 0 % IEG 

fermed hEi' media of cl;.:mtrol plants. Prior to use a 50% PEG solution was 

dilltillc:d water, and then passed through a Duollte I'lB50 indicator 

llliXf:'d bod ro~dn column to remove aluminium and phosphate contaminants. The 

ic med.i21 e)f non-nodulated v. faba were changed every three days, and 

il,:ed wi th c:()lutions ',,,hieh contained more concentrated PEG (PEG 

c.;)!v::0mttatlol"!!i!l inct"(!u!W\I!!d in 5 I£; increments according to fig. 2.2) when 

:IH~rlit!UHiHl ~'I<i.ter def; cit irnposi tion was required. Thus water deficits were 

in "lod ti!'~ely controlled manner. 

I~1!:'~; addit~i.(;m.s may rtilllult in increased viscosities and hence decreased oxygen 

ilwlIi:abiliti1l!!l'1l in hydroponic media, however hydroponic media were aerated 

ae prl'!viouliily discussed. 

lodul~lte,d phmt~ nre supplied with 100' water (>80 rols LA per pot 

t,,!iX i.ee WI ad~ate ilrainage) throughout the water deficit regime. 

Oli'tllOt:$;:llI aD pte; 6000) reportedly l'eault in decreased ni trogen 

, 1976i CII.b.a at al, 199B), furthermore nodulated v. taba were 

in, '!MI(,Ua plilsti~i2es (beQ~s l~ss gas penneable) with PEG 
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additions. ThuB water deficits were imposed in nodulated V. faba by supplying 

decreasing quantities of water. 

Graipda, (1990), that late water deficits do not affect the yields of 

nodulat!::'cl l,.Ilanta, however water deficits were sustained throughout the 

'J'l"q",t ... t i v... l'4:nd phases of V. [elba using the water deficit 

tion outlined in fig. 2.2. 

rC'l3uIt in root grO¥lth which is more 

:.eO$Il1 ivo to W£tter deLicits than oxygenated PEG (Varslues &. Sharp, 1998), 

:hutab t mechanical imp;"~dance. However the 

nuaponset) reC(nd~ld by v. faba whether exposed to water deficits using 

r k I:llEmcllIill ) or the non-nodulated (LA/PEGI 

6000) !l£)gime, indicate that PEG applications do mimic soil based systems, and 

i./ilble for controlled wat~cr defici t imposition 

by Taylor et al, 1982). 

to watm," deficits are compared 

t.ho 1,u'~1er bHilV(!1ll of adequately irriqated (cont.rol) plants, then the 

bat the:.;,·" iIl!8U(',J which hiiWO diff(crent biochemical s'tocks may differ 

biar; rliluilults as affected by cna.ngelll in biochemical 

chosen. for analyses from411,1998). 

neww.t tully C!xpanded leaves 

, 

1Il)l'6 aud weI'"" 

r~t.D1 5clll nt thll:l root ) •• the hi~b.8t en~ 

1974; Rigaud t 19S1; D\u'zan & 

~reof equivalent 

o..otie adjustment (Aspinall 

s 
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& Paleg, 1981; Wyn Jones & Storey, 1981; Wang et aI, 1995) are reportedly 

exhibited in young tissue. 

Organ fre~h weights (FWs) were recorded following harvest. Dry weight (OW) 

values were obtained by wrapping the organs (of known fresh weight) in 

labelled perforated foil, and then oven drying at BOac for one hour, and then 

at 600C until constant weights were achieved. 

2.6.1 SPECTROPHOTOMETRIC ASSAY SAMPLE PREPARATION 

Dried samples were finely ground using a pestle, mortar, and liquid nitrogen 

(which disrupts the cell membranes, allowing detection of subcellular 

solutes). For spectrophotometric analyses 0.2 - 0.5 9 dried crushed organs 

were placed in boiling tubes containing 10 ml methanol (95 %). Samples were 

stored at 40 C, and agitated three times daily using whirlli-mixers. After 

three days samples were filtered through Whatrnan's No.1 general purpose 

filter paper. Solutions were made up to constant volumes (10 ml), covered and 

stored at 4°C. In the case of starch analyses, the remaining plant material 

was retained for final analysis (see section 5.2.4, pg. 137, for starch 

analysis method). 

2.6.2 GC ANALYSES SAMPLE PREPARATION 

Samples for GC analyses were weighed, dried, and crushed as described in 

section 2.6.1. Crushed samples were suspended in a methanol: methylene 

chloride: water mixture, (12:5:3), refrigerated (at 40C), and agitated three 

times daily. After three days 1 ml methylene chloride was added to each 

sample, followed by small water additions (using a pasteur pipette) until 

phase separation was achieved. Samples were stored overnight at 40 C to ensure 

complete phase extraction. The lower (non-aqueous) layers were discarded. The 
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(a) indicates t.hat differences in the measured parameter were significantly 

af ""cted by t.h • .:: increasin91y concentrated medium nitrogen nutrition and were 

not 1i 'I to be at tr.ibutable to chance. Signif icant 'F calc' values in the 

wdt,r~r. deficit column in appencUx II indicates that the mean values of those 

p,namFte:r:s w(,n" significa.ntly different as affected by water deficits (as 

rror). 

ix II b) contains . F C<11G' and . EO crit' valu€~s fol.lowing ANOVA analysis 

nou-flodl,II,lt 'no nj tdbd whtm 

deriv,p(l f I1Qdu 'no nitrate' ted 

icant . P' Cd. C' value u; the 'nitrog(:Hl trl.'!atment· cclmnn of 

that t 

l'lted the non-::odulated 'no 

e V. {aba, to be 

potent fwdtllation, 

icant. ' c· in th~.! trogen t..l:I.:atm.!ltnt· column clf appendix n (b) was 

tributad to he effecta nitroqen fixation. 

'f' calc 'F cr 

had f ficant 'F 

, 11.1. t.CI :.X I I 

in 'spikiitd' as 

, V. taN, ~o be att~ibutable 

di.lficlt 

to wi t,:' 'Ill.,m
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spiked' nutrition were statistically significant. 

each sQction of appendix II significant 'F calc' values are given in oold. 
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CHAPTER THREE 

GROWTH DISTRIBUTION, GROWTH RATES, STOMATAL CONDUCTANCES & 

NET PHOTOSYNTHESIS IN NON-NODULATED; NODULATED: AND AMMOHIA 


'SPIKED' V. faba, WHEN SUPPLIED WITH VARIOUS FORMS AND 


CONCENTRATIONS OF MEDIUM NITROGEN NUTRITION DURING INCREASING 


WATER DEFICITS 


Photosynthesis is the driving force of plant productivity and the ability to 


maintain the rate of photosynthetic carbon dioxide and nitrate assimilation 


under environmental stresses is fundamental to the maintenance of plant 


growth and production (Lawlor, 1995). 


Stomata have been delegated the task of providing food while preventing 

thirst (Raschke, 1976). 
" 

~------,--.. ....-"........- ....-------' 

3.1 INTRODUCTION 

Growth parameters must be quantified prior to assessing the responses of 

v. faba when supplied with different nitrogen sources during water deficits. 

Diminishing relative water contents (RWCs), organ weights, and growth 

measurements are all reportedly indicative of, correlated with, and 

attributable to water deficits (Esaio et al, 1976), and were therefore 

quantified in V. faba under the nitrogen and water deficit regimes outlined in 

chapter two. 

Nitrogen and water supplies have been highlighted as major limitors of crop 

yield (see introduction). with adequate nitrogen supplies and irrigation crop 

growth is reportedly largely determined by the capacity to intercept solar 

radiation (Sinha & Nicholas, 1981; Bebblethwaite, 1982), as plant dry matter 
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accumulation is a function of the expansion of photosynthetic surfaces, and of 

the intensity of photosynthesis per unit area (Raab & Terry, 1994). Maintained 

high cumulative leaf areas have been strongly correlated with dry matter yield 

and seed matter yield in V. faba (Hebblethwaite, 1982). Large leaf areas are 

desirable, as they represent a large potential capacity for photosynthesis 

(Yoshida, 1972). Optimum cumulative leaf areas (CLAs) exist however, as 

photosynthetic rates per unit leaf area may decrease with increasing leaf size 

(Evans & Dunstone, 1970; Hageman, 1979), due to increased mutual leaf shading, 

and canopy photosynthesis rapidly approaches an asymptote when leaf area 

indices exceed three (Yoshida, 1972). 

R:Ss reportedly increase during water deficits (Etherington, 1962; Sharp & 

Davies, 1979). Increased root growth potentially allows increased water (and 

nitrogen) uptake (McDonald & Davies, 1996), and has previously been associated 

with the postponement of dehydration in V. faba (Sau & Ines-Minguez, 1990). 

Reduced above ground biomasses result in reduced potentials for transpiration, 

which are important for water conservation, particularly as stomatal densities 

are reportedly higher in water deficit treated plants due to the developmental 

pattern of the formation of stomatal complexes (Heckenberger et al, 1998), 

accentuating potential water losses. However CLAs and hence photosynthetic 

potentials and yields may simultaneously be reduced (Yoshida, 1972). Average 

leaf thicknesses are very low compared to the rate at which water may be lost 

by transpiration (Mansfield & Davies, 1981), and therefore little leaf water 

is held in reserve, and while large leaf areas may result in increased 

photosynthetic capacities, potential water losses via transpiration are 

simultaneously increased. Accordingly water deficits reportedly induce 

stomatal closure when leaf RWCs approach eighty per cent (Lawlor, 1995), and 

stomatal closure simultaneously results in decreased CO2 assimilation 
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(Wellburn et aI, 1996). Below eighty per cent leaf RWCs changes in metabolism 

reportedly become marked, with cessation of photosynthesis (Epron, 1997; 

Clifford et aI, 1998), at a time when photosynthates and reductants are 

required not only for growth maintenance, but also for the maintenance of 

nitrogen assimilation and for water deficit tolerance adaptations such as 

osmotic adjustment (which reportedly results in maintained water uptake and 

water contents (Kumar & Singh, 1998), and has previously been positively 

correlated with yield in V. faba (Van der Wall 1981), and in other plant 

species (Rodriguez-Maribona et aI, 1992)). Thus a 'stomatal compromise' must 

be negotiated, whereby stomata close sufficiently to avoid unsurmountable 

water losses during water deficits, but remain sufficiently open that the 

carbon demands of water deficit tolerance adaptations may be met. 

It has previously been reported that severe water deficits result in a near 

complete inhibition of photosynthesis and structural damage to chloroplasts 

(Poljakoff-Mayber, 1981), decreased chlorophyll and chloroplastic enzyme 

levels (Quartacci et aI, 1997; Bussis et aI, 1998; Iturbe-Ormaetxe et aI, 

1998), and increasing conversions of violaxanthin to zeaxanthin, indicating 

photosynthetic apparatus damage (Iturbe-Ormaetxe et aI, 1998) in other 

plant species. In the field the high light intensities associated with 

water deficits may accentuate water deficit effects on photosynthesis, as 

UV-B radiation decreases adaxial stomatal conductance in P. sativum by 

approximately 65%, reducing CO2 uptake by 10-15% (Nogues et aI, 1998). 

RWCS were quantified, as evidence suggests that water deficit tolerance 

adaptations may be evoked over a narrow range of plant RWCs (as opposed to 

water potentials, Sinclair & Ludlow, 1985). 

Relative growth rates (RGRs) were determined throughout water deficits in 



43 

! 

I

1 

V. faba when supplied with the pre-specified forms and concentrations of 

medium nitrogen nutrition. RGRs represent the amount by which a plant has 

grown in proportion to its original weight, and therefore represent an 

approximation of the efficiency of the plant as a producer of new material 

(Blackman, 1919; Hunt, 1978). However RGRs do not account for whether the 

measured plant material is structural or productive (e.g. photosynthetic), 

but instead provide a convenient integration of the growth of combined 

plant parts over time, and are thus useful when comparing treatment 

differences (Hunt, 1978). 

While RGRs imply that all of the weight of a plant is equally productive to 

further weight it is known that larger plants contain proportionally larger 

amounts of structural material (Bunt, 1978). Accordingly plant net 

assimilation rates (NARs) refer to the net gain in weight per unit 

photosynthetic area (Gregory, 1926), and attempt to index growth 

independently of plant size. However NARs may alter as environments change 

(Thorne, 1961), for example as affected by stomatal closure, and are thus 

useful plant growth indicators during water deficits. 

While NARs estimate the carbon-assimilatory capacities of plants per unit 

leaf area, leaf area ratios (LARs) represent the ratio of the total plant 

leaf area to the whole plant dry weight (Briggs et aI, 1920b), and attempt 

to describe plant growth rates in terms of both the efficiency of the 

leaves as producers of new material, and in terms of plant leafiness (Bunt, 

1978). 

3.2 MATERIALS & METHODS 

3.2.1 WEIGHT & GROWTB DATA 

Organ fresh (touch dried), and dry (oven dried @ aooe for 1hr, then 60 0 C until 
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constant weight was achieved) weights were obtained using standard laboratory 

balances. Plant heights and leaf areas were repeatedly measured, using 

standard measuring equipment. 

3.2.2 RELATIVE WATER CONTENT (RWC) (after Kemp, 1960) 


RWC measurements were made on the fourth plant leaf, which reportedly provides 


a good indication of whole plant water status in V. faba (Kassam, 1971). 


Fresh plant sections (lcm X lcm) were weighed (FWl), and then incubated on 


wetted filter paper in petri dishes for 24 hours. They were touch-dried and 


re-weighed (FW2). After drying (as in 3.2.1), sections were re-weighed (OW). 


RWCs were then determined using the following equation: 


FWI OW 

RWC FW2 OW 
 x 100% 

3.2.3 P~LATIVE GROWTH RATE (RGR) (after Thorne, 1960) 

Log e FW2 Log e FWI 

RGR sample time start time 


3.2.4 NET ASSIMILATION RATE (NAR) (after Thorne, 1960) 

NAR w2 wI 	 logeL2 LogeLlx 
t2 - tl 	 L2 - Ll 

Where, 


tl = start time, t2 = sample time, wI = dry weight start, w2 dry weight 


sample, Ll = leaf area start, L2 = leaf area sample. 


3.2.5 	LEAF AREA RATIO (LAR) (after Thorne, 1960) 

LAR = RGR I NAR 
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3.2.6 PHOTOSYNTHETIC & STOMATAL CONDUCTANCE MEASUREMENTS 

Stomatal conductances and net photosynthetic rates were determined using a 

portable Infra Red Gas Analyser (IRGA - ADC LCAZ) on newly fully expanded, 

photosynthetically competent, non-senescing leaves. The IRGA measures CO2 

partial pressures entering and leaving a cuvette (containing the attached 

leaf), cuvette air temperature, relative humidity, and PAR levels, from which 

stomatal conductances and net photosynthetic rates can be calculated (von 

Cammerer & Farquhar, 1981) . 

• 3.3 RESULTS & DISCUSSION 

3.3.1 FRESH AND DRY MATTER ACCUMULATION 

Figs. 3.1 - 3.10 and anova analyses reveal that plant organ biomasses 

increased significantly in non-nodulated V. faba as the concentration of the 

supplied nitrogen source increased, and were maintained in the following order 

with respect to medium nitrogen n~trition: '1/2 nitrate' = 'combined nitrogen' 

> '1/10 nitrate' > 'no nitrate'. Indeed increasing nitrogen applications have 

previously been associated with the production of increased aerial growth in 

v. faba (Sprent & Thomas, 1984), and in other plant species (Breteler & Smit, 

1974; Marschner, 1986; Ines-Minguez & Sau, 1989). 

Nitrate nutrition reportedly results in the greatest biomass production in 

T. aestivum while abnormal foliar symptoms have been observed in T. aestivum 

when supplied solely with ammonia nutrition (Hawkins & Lewis, 1993). Several 

other plant species are reportedly intermediate in growth and appearance when 

supplied with 'combined nitrogen' nutrition (Bennet et aI, 1964; Yin & Raven, 

1997; Giordano & Bowes, 1997). However the data collected illustrates that 

ammonia additions did not result in reduced biomasses in V. faba. Indeed 

'combined nitrogen' nutrition of non-nodulated V. faba resulted in the 

exhibition of total aerial DWs which were greater than those recorded by 
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Fig. 3.1 Leaf FWs of (a) non-nodulated, (b) nodulated, and (e) 'spiked' 
v. taba during water deficits when supplied with various nitrogen sources 
where:. = 'no nitrate'; .6. = '1/10 nitrate';.A. = '1/2 nitrate'; 
• = 'combined nitrogen' 



18~~~==::~~~==------------------------------~ 

__ 

47 

( a) 

16 .-------------------------------------------------------~ 

t;; 14 .t.::::::::--=---';i: 
~ 12 

~ 10 
0'> 

"@ 8 
::: 6 er------I:!.r-__ 

~ 4 ====~----------~----------ir----------l 
~ 2 

0~--------4_--------~--------_+--------~--------~ 

12 r----------------------------------------------------~ 

0:; 10 

o ~--------4_--------~--------~----------~------~ 
100 85 70 60 45 30 

100 85 70 60 45 30 


% PEG 6000 


1
(b) 

I 

, 

Water Supplied (% Control) 

(c) 

~ 16 ~ 


~ 14 

.j.J 12 

~ 

"~ 10

& 8 "lj-------fi 

~ 6 

~ 4~-------·---
~ 2 ---.--------~------~~----==~ 

o +---------~--------_+--------~~--------+_------~ 
100 85 70 60 45 30 


% PEG 6000 

Fig. 3.2 Stem FWs of (a) non-nodulated, (b) nodulated, and (0) 'spiked' 

v. faba during water deficits when supplied with various nitrogen sources 
where; .. = I no nitrate I; i:l. = '1/10 nitrate 'i .. = '1/2 nitrate'; 
• = 'combined nitrogen' 

I 



48 


(a) 

30 

0:; 25 
~~ 

!1! 
'r-! +' 20
I-I.c: 
(!J tl1 
~'r-! 15(JJ 
~:s: 
!1! 10+'.c: o OJ 
8 <lI 

1-1 5 
p,., 

0 
100 85 70 60 45 30 

% PEG 6000 

(b) 

2 5 ......................................................._..............._ ..........._............_ ......................................................................................... 


o ~--------~---------+---------4----------+---------~ 
100 85 70 60 45 30 


Water Supplied (% Control) 


(c) 

35 
I ...............................-...-....-.-....----..····-······-·····-··-----------l i 

I \ 
15 I I 

l~t~~:~~~~~~.~~~~T 1.\ 

100 85 70 60 45 30 I 
% PEG 6000 
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Fig. 3.5 Total FWs of (a) non-nodulated, (b) nodulated, and (c) 'spiked' 
V. faba during water deficits when supplied with various nitrogen sources 
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V. faba when supplied with '1/2 nitrate' nutrition (fig. 3.8); and root and 

total DWs which were comparable with those recorded by V. faba when supplied 

with equirnolar '1/2 nitrate' nutrition (figs. 3.6; 3.7; 3.9 (a graphs». Some 

previous workers have reported greater growth in other plant species when 

supplied with ammonia than with nitrate nutrition (Layzell et aI, 1985; 

Troelstra et aI, 1992), which Raven et aI, (1985 & 1992) attributed to the 

lower associated water and photon costs of ammonia as opposed to nitrate 

assimilation. Previous workers have also reported a preferential uptake of 

ammonia in other plant species when supplied with 'combined nitrogen' 

nutrition, which indicates that ammonia may satisfy plant nitrogen 

requirements in the most energy efficient way (Taylor & Bloom, 1998; Colmer & 

Bloom, 1998). Increased uptake rates and reduced assimilation costs associated 

with ammonia nutrition may have contributed to the greater aerial growth 

recorded in V. faba when supplied with 'combined nitrogen' as opposed to with 

equimolar '1/2 nitrate' nutrition. 

Figs. 3.1 - 3.10 and anova analyses reveal that ammonia 'spike' nutrition 

resulted in the exhibition of significantly greater root FWs and DWs than 

'non-spiked' nutrition in V. faba, both when supplied with adequate irrigation 

and during water deficits. Increased root growth has previously been reported 

in other plant species when supplied with ammonia as opposed to with nitrate 

nutrition (Lewis et aI, 1989; Dighton, 1991; Raven et aI, 1992; Raab & Terry, 

1994). Indeed assuming identical leaf morphology, and identical uptake 

characteristics for ammonia and for nitrate, and equal steady state 

concentrations of ammonium and nitrate in the medium, when the rate of uptake 

is limited by the solute concentration in the bulk phase the rate of ammonium 

uptake is reportedly much lower (ten times) than that of nitrate (Robinson, 

1986). The lower diffusion coefficient for ammonia in soil (Gutschick, 1981) 
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indicates that plants supplied solely with ammonia nutrition may require more 

extensive root/hair/mycorrhiza systems than those supplied with nitrate 

(Dighton 1991; Fitter 1991; Pankow et al, 1991; Read 1991; Raven et a1 1992). 

Additiona~ energy is required to build additional roots, and energy may be at 

a premium during water deficits as 'fuel' is required for water deficit 

tolerance adaptations. However root increases occur independently during water 

deficits (potentially resulting in increased water uptake; Sharp & Davies, 

1985; McDonald & Davies, 1996), thus such costs are not 'additional' when 

ammonia is supplied during water deficits. 

Aerial biomasses were not significantly greater in v. iaba when supplied with 

ammonia 'spiked' as opposed to with 'non-spiked' nutrition. Plants supplied 

with ammonia may have lower requirements for large aerial biomasses than those 

supplied with nitrate, as ammonia applications have previously been reported 

as stimulative for photosynthesis in intact chloroplasts (de-Beneditti et a1, 

1976). Furthermore the quantified 'aerial biomasses' did not discriminate 

between structural and photosynthetic plant material and it is possible that 

medium ammonia additions may have resulted in the exhibition of increased 

photosynthetic growth at the expense of structural aerial growth (see sections 

3.3.5 & 3.3.9). 

Figs. 3.1 - 3.10 and anova analyses reveal that nodulated 'no nitrate' 

supplied v. iaba exhibited significantly greater organ weights than non

nodulated 'no nitrate' supplied V. iaba. This was expected as increasing 

nitrogen supplies have previously been shown to result in increased growth in 

V. iaba (Sprent & Thomas, 1984), and nitrogen fixation potentially provided a 

nitrogen source to the nodulated 'no nitrate' supplied v. iaba (see table 

2.3). Greater organ weights were recorded in nodulated 'no nitrate' supplied 

V. iaba than in ('non spiked') '1/10 nitrate' supplied V. iaba; an indication 

I 
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of the effectiveness of nitrogen fixation in this species (as previously 

reported by Richards & Soper, 1979). Previous workers have reported that 

V. faba exhibits greater biomasses when supplied with medium nitrogen than 

when reliant on nitrogen fixation during periods of adequate irrigation (Ryle 

et al, 1978; Ines-Minguez & Sau, 1989), however these differences are 

reportedly less marked for V. faba than for any other legume grown under a 

controlled environment; a further indication of the effectiveness of nitrogen 

fixation in this species. 

Dry matter accumulation reportedly decreases as water deficits increase, both 

in v. faba (Hebblethwaite, 1982), and in other plant species (Gallacher & 

Sprent, 1978; Nonami & Boyer, 1990) as leaves, flowers and pods may be shed, 

lodging may increase, and ultimately seed yields may decrease (Heatherly & 

Elmore, 1986). Expansive growth loss is reportedly a sensitive indicator of 

'stress' (Hsaio et aI, 1976). Accordingly figs. 3.1 - 3.10 (and anova 

analyses) illustrate that leaf fresh and dry biomasses, and root fresh 

biomasses (and root dry biomasses in v. faba when supplied with nodulated and 

with 'spiked' nutrition) decreased significantly in V. faba (when supplied 

with all nitrogen sources) as water deficits increased. That root dry weights 

were better maintained than aerial weights reflects the R:S ratio increases 

which are reportedly characteristic during water deficits (see 3.3.4). The 

highest organ weights were maintained in non-nodulated V. faba when supplied 

with the most concentrated medium nitrogen nutrition; organ weights were 

maintained in the following order with respect to medium nitrogen nutrition: 

'combined nitrogen' = '1/2 nitrate' > '1/10 nitrate' > 'no nitrate' nutrition, 

throughout water deficits. 

That significantly greater weights were maintained in nodulated than in non

nodulated 'no nitrate' supplied V. taba throughout water deficits, infers that 
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nitrogen fixation may not be as susceptible to water deficits as is 

classically reported (e.g. by Sprent, 1971; Serraj et ai, 1998). It has been 

reported that growth in V. faba is not limited by decreases in nitrogen 

fixation during water deficits (Plies-Balzer et aI, 1995), and a G. max 

cultivar, 'Jackson', has been identified as water deficit tolerant for 

nitrogen fixation (Serraj & Sinclair, 1997), inferring that nitrogenase 

activities may be maintained during water deficits in some plant cultivars. 

Figs. 3.4 & 3.9 and anova analyses reveal that ammonia 'spiked' V. faba 

maintained significantly greater root biomasses than 'non-spiked' V. faba 

throughout water deficits (the preferential stimulation of root growth as 

opposed to shoot growth in plants when supplied with medium ammonia nutrition 

has previously been discussed; pg. 56). Increased root growth is reportedly 

associated with increased water uptake in V. faha (Sau & Ines-Minguez, 1990), 

and is therefore desirable during water deficits. 

It is thus apparent that while water deficits do result in reduced biomass 

accumulation, V. faba maintained significantly greater biomasses throughout 

water deficits when supplied with increasingly concentrated medium nitrogen 

nutrition. 

3.3.2 FW:DW ratios 

Figs. 3.11 - 3.15 and anova analyses reveal that FW:DW ratios were maintained 

at significantly greater levels in non-nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition, and that FW:DW ratios 

were maintained in the following order with respect to medium nitrogen 

nutrition: 'combined nitrogen' > '1/2 nitrate' > '1/10 nitrate' > 'no 

nitrate'. By inference the greatest water contents were maintained in V. faba 
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when supplied with increasingly concentrated medium nitrogen nutrition. 

FW:DW ratios decreased significantly (in all organs) during water deficits 

(as previously reported in other plant species, Ferrario-Mery et aI, 1998), 

and indicate that water contents decreased in all organs as water deficits 

increased. 

Non-nodulated v. faba supplied with 'no nitrate' nutrition recorded 

significantly lower FW:DW ratios than nodulated 'no nitrate' supplied V. faba, 

indicating that water contents were better maintained in nodulated than in 

non-nodulated 'no nitrate' supplied V. faba. Again this may reflect the 

additional nitrogen potentially available to nodulated V. faba via nitrogen 

fixation, which may be utilised in nitrogen dependent water deficit tolerance 

adaptations (e.g. compatible solute production as described in the 

introduction; pg. 16). 

Comparing FW:DW ratios between V. faba when supplied with different nitrogen 

sources reinforces the observation that (DW) biomasses increased as V. faba 

was supplied with increasingly concentrated medium nitrogen nutrition. 

Indeed V. faba supplied with ammonia 'spike' nutrition recorded significantly 

greater FW:DW ratios than 'non-spiked' V. faba, in the roots only. Increased 

root growth is reportedly associated with increased water uptake in V. faba 

(Sau & Ines-Minguez, 1990), and is therefore desirable during water deficits. 

V. faba which exhibited the greatest FW:DWs contained more water, however the 

water contents at full turgor were not considered in the calculation of FW:DW, 

and as such FW:DW data is not as informative as RWC data. 

3.3.3 RELATIVE WATER CONTENTS (RWCs) 

Figs. 3.16 & 3.17, and anova analyses reveal that leaf and root RWCs increased 

significantly in non-nodulated V. taba when supplied with increasingly 
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concentrated medium nitrogen nutrition, and that RWCs were maintained in the 

following order in the leaves and roots of non-nodulated V. faba with respect 

to medium nitrogen nutrition: 'combined nitrogen' = '1/2 nitrate' > '1/10 

nitrate' > 'no nitrate', throughout water deficits. Although ammonia nutrition 

reportedly results in the exhibition of low leaf water potentials (Quebedeaux 

& Osbun, 1973), 'combined nitrogen' nutrition resulted in the maintenance of 

RWCs at similar levels as those recorded in V. faba when supplied with 

equimolar '1/2 nitrate' nutrition. Greater RWCs may reflect the greater root 

biomasses (3.3.1), and increased osmotic adjustment (see section 4.4), which 

were exhibited in V. taba when supplied with increasingly concentrated medium 

nitrogen nutrition, and which have previously been associated with maintained 

water uptake in v. faba (Sau & Ines-Minguez, 1990), and with maintained RWCs 

in other plant species (Singh & Gupta, 1983; Turner & Stewart, 1986). 

Figs. 3.16 & 3.17 and anova analyses reveal that significantly greater leaf 

and root RWCs were maintained in nodulated than in non-nodulated 'no nitrate' 

supplied V. taba. Again the additional nitrogen potentially available to 

nodulated 'no nitrate' supplied V. faba via nitrogen fixation may have 

contributed towards greater root growth and higher levels of osmotic 

adjustment than could be achieved in non-nodulated 'no nitrate' supplied 

V. faba (see section 4.4). 

However figs. 3.16 & 3.17, and anova analyses reveal that ammonia 'spiked' 

V. faba did not exhibit significantly greater RWCs than 'non-spiked' V. faba. 

It has previously been reported that ammonia nutrition may result in reduced 

leaf RWCs (Raab & Terry, 1994), while increasing the amount of dry matter per 

unit area. It is possible that 'spiked' as opposed to 'non spiked' V. faba 

preferentially exhibited increased growth as opposed to increased RWC 
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maintenance as ammonia requires assimilation, as it is toxic and cannot be 

stored (Raven, 1985). 'Spiked' V. faba did not exhibit significantly different 

RWCs than 'non-spiked' V. faba, however ammonia 'spike' nutrition resulted in 

the exhibition of increased root growth in V. faba during water deficits 

(figs. 3.4 & 3.9), and also resulted in the exhibition of significantly 

greater cumulative leaf areas (section 3.3.5; pg. 74) and heights (section 

3.3.10; pg. 94), which indicate increased nitrogen assimilation as opposed to 

nitrogen storage (as further discussed in chapter seven). 

Figs. 3.16 & 3.17 and anova analyses demonstrate that leaf and root RWCs 

decreased significantly during water deficits (as previously reported in other 

plant species, Collinson et aI, 1997), and illustrate that RWCs were 

maintained at increasing levels throughout water deficits in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition. 

Metabolic processes are reportedly more sensitive to turgor and cell volume 

changes than to absolute water potentials, indicating that maintained RWCs (as 

opposed to e.g. maintained leaf water potentials due to increased cell wall 

elasticities, which would simultaneously reduce cell volumes and 

intermolecular distances - which may be critical for continued metabolic 

activities, Clifford et aI, 1998) may represent a prior requirement for the 

maintenance of metabolism during water deficits. Maintained RWCs may result in 

continued expansive growth, greater stomatal conductances and net 

photosynthesis, and hence in continued dry matter accumulation during water 

deficits (Raab & Terry, 1994). The inference here is that as RWCs were 

maintained at increasingly great values in V. faba when supplied with 

increasingly concentrated nitrogen nutrition, net photosynthesis and overall 

metabolism may also~have been maintained at increasingly great values in 

V. faba when supplied with the same increasingly concentrated medium nitrogen 
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nutrition (see section 3.3.7), Sinclair & Ludlow, 1985 . 

. 3.3.4 ROOT: SHOOT RATIOS (R:Ss) 

Some plant species e.g. Phaseolus vulgares reportedly produce new conductive 

roots roughly in proportion to new leaves during periods of adequate 

irrigation (Fiscus & Markhart, 1979). However fig. 3.18 and anova analyses 

reveal that R:Ss in v. faba were significantly affected by the supplied 

nitrogen source, and that R:Ss increased significantly in non-nodulated 

V. faba when supplied with decreasingly concentrated medium nitrogen nutrition 

during periods of adequate irrigation (i.e. with 0% PEG or 100% control water; 

fig. 2.2). This may reflect the fact that total nitrogen uptake is reportedly 

related to root length density (Bodge et aI, 1999), indicating that plants 

growing in nitrogen deficient media may require longer roots for adequate 

nitrogen uptake (McDonald & Davies, 1996). 

Sutherland et aI, (1985), working with V. faba, and Sprent & Thomas, (1984) 

and Vessey et aI, (1990), working with other leguminous species suggested that 

roots grow in response to (transported) nitrogen deficiencies, however the 

growth potential and sink strength for nutrients may decrease in the leaves of 

nitrogen limited plants, indicating that nitrogen deficiencies may not solely 

be responsible for the relatively increased root growth exhibited in plants 

which grow in nitrogen deficient environments (Bocking & Meyer, 1991). A 

greater R:S (OW) has been observed in T. aestivum when grown with elevated 

CO2 , indicating that carbon may potentially limit root growth (Bocking & 

Meyer, 1991). 

Indeed net photosynthesis decreased significantly in V. faba as the 

concentration of the supplied nitrogen source decreased, even during periods 

of adequate irrigation (section 3.3.7), inferring that reduced photosynthate 

availabilities may have contributed to the reduced shoot growth exhibited in 
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V. faba when supplied with decreasingly concentrated medium nitrogen nutrition 

during periods of adequate irrigation. Furthermore decreasing leaf cell 

plasticities (Snir & Neumann, 1997) and increasing root cell plasticities 

(McDonald & Davies, 1996) are reportedly exhibited in other plant species when 

supplied with decreasingly concentrated medium nitrogen nutrition, and may 

contribute to relative shoot growth reductions. 

Earlier research has indicated that water deficits result in proportionally 

similar growth reductions in the stems, leaves, and roots of V. faba, and that 

dry weight organ ratios alter little (Grzesiak et ai, 1989), however fig. 3.18 

and anova analysis reveal that R:Ss increased significantly in V. faba during 

water deficits, allowing a larger potential area for water (and nitrogen) 

uptake (as previously reported in other plant species, Etherington, 1962; 

Rufty et aI, 1984; Winzer et aI, 1992; McDonald & Davies, 1996). 

Anova analyses reveal that significantly greater R:Ss were recorded in non

nodulated as opposed to in nodulated 'no nitrate' supplied V. faba. Nodulated 

'no nitrate' supplied V. faba may have utilised nitrogen produced via nitrogen 

fixation (table 2.3) in order to maintain higher root and shoot biomasses 

(Marschner, 1986), and did not exhibit the proportionally greater root growth 

increases which are reportedly characteristic of plants growing in nitrogen 

deficient environments. 

'Spiked' V. faba did not exhibit statistically different R:Ss than 'non

spiked' v. faba, but rather exhibited relatively increased root (fig. 3.9) and 

aerial (figs. 3.20 & 3.25) growth. 

R:S alterations during water deficits may result in part from a reduced 

capacity to maintain shoot expansive growth (Boyer 1968; McDonald & Davies, 

1996), as shoot cell wall extensibilities (passioura et aI, 1993), and RWCs 
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(Singh & Gupta, 1983) may decrease, and stomatal resistances increase (Sperry 

et aI, 1998) during water deficits, inferring that decreasing photosynthate 

and reductant availabilities may limit shoot growth during water deficits. 

Indeed RWCs (figs. 3.16 & 3.17) and net photosynthesis (fig. 3.22) were 

maintained at decreasing values during water deficits in V. £aba when supplied 

with decreasingly concentrated medium nitrogen nutrition; the same nitrogen 

sources which when supplied to V. £aba resulted in the exhibition of the 

greatest R:S increases during water deficits. 

Masle & Passioura, (1988), rejected the influence of limited carbon and 

nutrient supplies on reduced relative leaf growth rates in favour of a root 

induced hormonal message in soils of high mechanical impedance (see also 

Passioura & Fry, 1992; McDonald & Davies, 1996). While some root growth may be 

inhibited by drying soil during water deficits, other roots may grow in 

moister soil and may have access to increased carbohydrates as aerial sink 

strengths decrease (Hsaio & Jing, 1987, Wardlaw, 1993), which may potentially 

'fuel' root biomass increases during water deficits. However R:S increases 

were similar in V. faba whether grown hydroponically or in solid media (fig. 

3.18; comparing graphs a & b), indicating that increased root:medium 

mechanical impedance may not have solely mediated the R:S increases recorded 

in V. faba during water deficits, and that soil water contents were probably 

significant. 

It is apparent that controversial theories abound as to the extent to which 

nitrogen (Vessey et aI, 1990) or carbohydrate deficiencies (Hocking & Meyer, 

1991) as opposed to altered cell wall extensibilities (Snir & Neuman, 1997) 

result in relatively increased root growth in plants which grow in 

nitrogen depleted environments, and the extent to which decreasing shoot 

growth is attributable to decreasing leaf water potentials (Comstock & 

I·~.·.).~
~ 
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Mencuccini, 1998), to decreasing photosynthate supplies (Sperry et aI, 1998), 

or to mediation by root induced hormonal messages (Masle & Passioura, 1988) 

during water deficits (see McDonald & Davies, 1996). 

3.3.5 LEAF AREA RATIOS (LARs) & CUMULATIVE LEAF AREAS (CLAs) 

Section 3.1 explained that LARs represent ratios of leaf total areas to 

plant total weights, and that they aim to describe plant growth rates in 

terms of both the assimilatory efficiencies of the leaves and in terms of 

plant leaf areas (Hunt, 1978). Fig. 3.19 illustrates that LARs were 

similar in non-nodulated, nodulated and in 'spiked' V. faba, however anova 

analyses reveal that the LARs of V. faba within the 'non-nodulated' and 

'spiked' nitrogen schemes were significantly affected by the form of the 

supplied nitrogen source (from 'no nitrate' through to 'combined nitrogen' 

nutrition). Indeed fig. 3.19c illustrates that greater LARs were exhibited 

in 'spiked' V. faba when supplied with decreasingly concentrated medium 

nitrogen nutrition. This was expected as the equation for LAR (section 

3.2.5) dictates that increasing LARs describe plants which require greater 

leaf areas to maintain equivalent plant biomass increases. As RWCs were 

maintained at lower values in V. faba when supplied with decreasingly 

concentrated medium nitrogen nutrition during water deficits (figs. 3.16 & 

3.17), it is possible that lower stomatal conductances and net 

photosynthesis (as supported by the data; figs. 3.21 & 3.22) may have 

contributed to the greater LARs which were exhibited in non-nodulated and 

'spiked' V. faba when supplied with decreasingly concentrated medium 

nitrogen nutrition. Difference in LARs were not significant within the 

nodulated nitrogen scheme. Nodulated 'no nitrate' supplied V. faba 

potentially acquired nitrogen via nitrogen fixation (table 2.3) and may not 

have been nitrogen deficient (in contrast to non-nodulated 'no nitrate' 
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supplied V. faba). Therefore in addition to exhibiting significantly 

greater RWCs (figs. 3.16 & 3.17), and growth (figs. 3.1 - 3.10), 

significantly greater net photosynthesis may also have been exhibited in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba (fig. 3.22) 

which would result in more efficient leaf assimilatory capacities and hence 

in relatively lower LARs, and in a reduction in the differences between 

LARs in V. faba when supplied with different forms of medium nitrogen 

nutrition within the nodulated scheme. 

Fig. 3.19 illustrates that LARs were maintained in V. faba during water 

deficits (as previously described in other plant species, Martinez-Carrasco et 

aI, 1998). The indication is that overall reductions in growth (fig. 3.24) may 

have been maintained at similar rates to the overall reductions in leaf area 

(fig. 3.20) and in leaf net photosynthetic rates (fig. 3.22) during water 

deficits, resulting in the exhibition of maintained LARs (fig. 3.19) during 

water deficits. 

Fig. 3.20a and anova analyses reveal that significantly greater CLAs were 

exhibited in non-nodulated V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition, and that CLAs were maintained in 

V. faba in the following order with respect to medium nitrogen nutrition: 

'combined nitrogen' = '1/2 nitrate' > '1/10 nitrate' > 'no nitrate'. Indeed 

greater leaf areas and dry weights have previously been reported in V. faba 

(Sutherland et aI, 1985) and in other plant species (Sprent & Thomas 1984; 

Backing & Meyer, 1991) when supplied with increasingly concentrated medium 

nitrogen nutrition, and with ammonia as opposed to with nitrate (or N2) 

nutrition (Hawkins & Lewis, 1993; Martinez-Carrasco et aI, 1998). Ammonia (as 

compared with nitrate) nutrition reportedly results in reductions in the area 

I 
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expansion of individual leaves in other plant species (Pill & Lambeth, 1977; 

and Tolley-Henry & Raper, 1986; Raab & Terry, 1994), however non-nodulated 

V. faha exhibited similar CLAs whether supplied with 'combined nitrogen' 

nutrition or with equirnolar '1/2 nitrate' nutrition, indicating that medium 

ammonia additions were not detrimental to leaf growth in this species. 

Furthermore significantly greater CLAs were exhibited in nodulated than in 

non-nodulated 'no nitrate' supplied V. faha (which potentially fixed 

atmospheric nitrogen); and in 'spiked' than in 'non-spiked' V. faba, further 

indicating increasing CLAs in V. faha when supplied with increasingly 

concentrated medium nitrogen nutrition. 

The cessation of leaf expansion and subsequent reductions in leaf areas are 

reportedly among the most sensitive indices of plant water deficit (Boyer, 

1970; Rufty et aI, 1984; Salama & Sinclair, 1994; Bacon et aI, 1998; Clark et 

aI, 1999; Granier & Tardieu, 1999). Indeed individual leaf areas of Zizipbus 

mauritiana may reportedly decrease during severe water deficits (Clifford et 

aI, 1998), and V. faha reportedly exhibits increased wilting; decreased leaf 

expansion; a decreased period of leaf expansion; premature senescence; and 

lower leaf area indices during increasing water deficits (Hebblethwaite, 

1982). Anova analyses reveal that CLAs decreased in nodulated and in non

nodulated 'non-spiked' V. faha during water deficits, fig. 3.20 and anova 

analyses reveal that significantly greater CLAs were maintained throughout 

water deficits in non-nodulated V. faha when supplied with increasingly 

concentrated medium nitrogen nutrition. Similarly nodulated as opposed to non

nodulated 'no nitrate' supplied V. [aba, and 'spiked' as opposed to 'non

spiked' V. faba maintained significantly greater CLAs throughout water 

deficits. 

Importantly fig. 3.20 illustrates that significantly greater CLAs were 
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maintained than in 'non-spiked' v. faba throughout water deficits (perhaps a 

reflection of the reduced photosynthate, reductant, water and metal ion 

requirements associated with ammonia as opposed to with nitrate assimilation, 

Raven, 1985; Bloom, 1988; Raven et al, 1992). The indication is that medium 

ammonia additions result in the exhibition of greater potentially 

photosynthetic areas (Yoshida, 1972) in V. faba throughout water deficits. The 

maintenance of high CLAs has previously been strongly correlated with 

increasing dry matter yields and seed matter yields in V. faba (Hebblethwaite, 

1982). Furthermore in temperate climates where water is limiting and rain is 

intermittent, large CLAs may limit the evaporation of rain from the substrate 

surface throughout the growth period (passioura, 19B1; Passioura et aI, 1993), 

and large CLAs may therefore contribute towards a postponement of water 

deficits in temperate-adapted species such as V. faba (Sprent 1973; see also 

introduction; pg. 13). Upon water deficit alleviation surviving leaves 

reportedly attain photosynthetic rates which are greater than control leaves 

of the same chronological age, but are comparable with those of leaves of the 

same physiological age (Ludlow & Ng, 1974), inferring that a capacity to 

maintain increasingly great CLAs during water deficits (as was particularly 

apparent in V. faba when supplied with medium ammonia additions) may result in 

increased yields following water deficit alleviation. 

Increasingly concentrated nitrate and ammonia nutrition may potentially result 

in the exhibition of increased osmotic adjustment in V. faba (see section 

4.4), and certainly resulted in the exhibition of greater RWCs during water 

deficits (figs. 3.16 & 3.17). These factors may have contributed towards 

reduced leaf dehydration and senescence (Granier & Tardieu, 1999) and also 

towards increased expansive growth (Bsaio & Jing, 1987) in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition. 
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V. faba has previously been reported as relatively insensitive to wilting, and 

as having the capacity to maintain high CLAs during gradually increasing water 

deficits (Van der Wal, 1981). 

In addition to the described physiological benefits associated with maintained 

CLAs, high photosynthetic areas may be economically desirable in this species 

where high vegetative yields may be utilised as green manure (Corak et aI, 

1992) . 

3.3.6 STOMATAL CONDUCTANCES 

Previous workers have reported that the stomatal conductances of some other 

plant species were not affected by the form of nitrogen nutrition supplied 

during periods of adequate irrigation (Raab & Terry, 1994; Hogh-Jensen at 

aI, 1997). However fig. 3.21 illustrates that even with adequate irrigation 

(0% PEG; 100% Control Water) stomatal conductances were maintained at 

greater values in V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition (as previously reported in other plant species, 

Kuiper, 1993; McDonald & Davies, 1996; Meinzer & Zhu, 1998). Although 20

40% lower stomatal conductances and transpirations rates have been reported 

in T. aestivum when supplied with ammonia as opposed to with nitrate 

nutrition (Hawkins & Lewis, 1993), 'combined nitrogen' nutrition resulted 

in the exhibition of the greatest stomatal conductances in v. faba, 

indicating that medium ammonia additions do not result in stomatal closure 

in this species. Indeed ammonia as opposed to nitrate nutrition has 

previously been reported as resulting in the exhibition of greater plant 

stomatal conductances (Raven, 1985). As such reductions in the reported 

greater water efficiency of ammonia as opposed to nitrate assimilation, but 

increases in potential carbon acquisition may be incurred. Maintained 

stomatal conductances reportedly result in increased rates of transpiration 
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and soil water extraction (Bennet et aI, 1986), which may be beneficial 

during water deficits if accompanied by increased root growth (as was 

exhibited in v. faba; fig. 3.9), and by osmotic adjustment (as was 

exhibited by v. faba; see section 4.4), which reportedly enable RWC 

maintenance (Singh & Gupta, 1983), and further increases in soil water 

extraction (Sau & Ines-Minguez, 1990; Kumar & Singh, 1998). 

Fig 3.21 illustrates that stomatal conductances decreased as water deficits 

increased (as previously reported in other plant species, Collinson et aI, 

1997; Ferrario-Mery et aI, 1998; Pankovic et aI, 1999). This was expected 

as both nitrogen fixing and medium-nitrogen-supplied V. faba reportedly 

initially rely on increased root growth and on stomatal closure to delay 

water deficit effects and to maintain internal water contents(Sau & Ines

Minguez, 1990). Fig. 3.21 illustrates that stomatal conductances were 

maintained in the following order in non-nodulated V. faba with respect to 

medium nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate'> '1/10 

nitrate' > 'no nitrate'. This order may reflect the increased RWC 

maintenance previously recorded in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (figs. 3.17 & 3.18), as maintained 

RWCs have previously been associated with maintained photosynthetic 

capacities in other plant species (Hawkins & Lewis, 1993). 

Greater stomatal conductances in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition may also reflect decreased ABA 

production (McDonald & Davies, 1996). Radin et aI, (1982 & 1985) described 

increasing stomatal conductance in Gossypium birsutum L. when supplied with 

increasingly concentrated medium nitrogen nutrition (early during the 

fruiting season, the points of 50% stomatal closure being separated by 0.5 

MPa). 
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Although stomatal conductances decreased during water deficits, anova 

analyses reveal that such decreases were only significant in nodulated 

v. faba, which reportedly initiate stomatal closure at higher leaf water 

potentials than non-nodulated V. faba (Sau & Ines Minguez, 1990). Similarly 

nitrogen fixing G. max reportedly exhibit a greater reliance on 

physiological and stomatal water deficit tolerance adaptations (as opposed 

to osmotic adjustment) than non-nodulated G. max (Ines-Minguez & Sau, 

1989). Osmotic adjustment is an energy dependent process which could be 

detrimental to nitrogen fixation (Sprent, 1971), and conservative behaviour 

in nodulated V. faba at the onset of water deficits might postpone the need 

to resort to osmotic adjustment. 

Fig. 3.21b illustrates that nodulated 'no nitrate' supplied V. faba 

maintained significantly greater stomatal conductances (throughout water 

deficits) than non-nodulated 'no nitrate' supplied V. faba, again perhaps a 

reflection of the significantly greater RWCs and root growth recorded in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba throughout 

water deficits (3.16; 3.17). 

Stomatal conductances were not significantly greater in 'spiked' than in 'non

spiked' v. faba (figs. 3.16 & 3.17), which may reflect the previously reported 

observation that RWCs were not significantly greater in 'spiked' than in 'non

spiked' V. faba, throughout water deficits (Comstock & Mencuccini, 1998). 

3.3.7 NET PHOTOSYNTHESIS 

Net photosynthesis is reportedly closely related to stomatal conductance 

(Bsaio, 1973), and fig. 3.22 and anova analyses reveal that net 

photosynthesis was maintained at significantly increasing values in non

nodulated V. faha when supplied with increasingly concentrated medium 
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nitrogen nutrition (and particularly with 'combined nitrogen' nutrition). 

Net photosynthesis was maintained in the following order in non-nodulated 

V. faba with respect to medium nitrogen nutrition: 'combined nitrogen' > 

'1/2 nitrate' > '1/10 nitrate' > 'no nitrate'. 

Indeed several previous workers have reported that the leaves of other 

plant species may be able to increase the capacity of the light reactions 

of photosynthesis in response to increasing nitrate supplies, thus 

decreasing the competition between nitrate and carbon dioxide assimilation 

for photochemical energy (Hageman, 1979; Marques et aI, 1983; Tolley-Henry 

& Raper, 1986; Doehlert, 1993; Raven & Sprent, 1993). 

Some workers have described reduced photosynthesis in other plant species 

when supplied with medium ammonia nutrition (Losada et aI, 1973; Rufty et 

aI, 1984; Tolley-Henry & Raper, 1986), however non-nodulated V. faba 

exhibited the greatest net photosynthesis when supplied with 'combined 

nitrogen' nutrition (fig. 3.22), indicating that medium ammonia additions 

do not result in decreases in net photosynthesis in this species. 

Carbohydrate accumulation may reportedly result in the inhibition of 

photosynthesis via long-term mechanisms involving decreases in the amounts 

of Rubisco and other Calvin cycle enzymes (Krapp et aI, 1991; Van Oosten & 

Besford, 1996). Previous experiments which have involved the feeding of 

transported analogues have indicated that the metabolism as opposed to the 

transport of carbohydrates may be required for the maintenance of 

photosynthesis (Krapp et aI, 1993). While nitrate may be stored (section 

6.3.1.2) ammonia is toxic and cannot be stored (Bourgeais-Chai1lou et aI, 

1992; Raven & Sprent, 1993), and ammonia assimilation therefore continually 

utilises carbon skeletons. The inference is that the end-product inhibition 
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of photosynthesis may be alleviated in V. [aba when supplied with medium 

ammonia additions. Indeed some previous workers have reported increased net 

photosynthesis in other plant species when supplied with ammonia as opposed 

to with nitrate nutrition (Krapp et aI, 1993; Giordano & Bowes, 1997), and 

B. vulgaris reportedly exhibits double the chloroplast volume, and a sixty

two per cent greater chlorophyll concentration when supplied with ammonia 

as opposed to with nitrate nutrition (Raab & Terry, 1994). Furthermore at 

concentrations below those required to uncouple photophosphorylation the 

ammonia ion may have a stimulative effect on photosynthesis in intact 

chloroplasts (de-Beneditti et aI, 1976). Such previous observations may 

partly account for the greater net photosynthesis exhibited in non

nodulated v. [aba when supplied with 'combined nitrogen' as opposed to with 

(equimolar) '1/2 nitrate' nutrition. 

Fig. 3.22 and anova analysis reveal that net photosynthesis decreased 

significantly in V. faba as water deficits increased. Reduced 

photosynthetic rates during water deficits, which are fully reversible 

following mild stress alleviation but persist longer following severe water 

deficits have previously been reported in V. faba (Grzesiak et aI, 1989), 

and in other plant species (Salama & Sinclair 1994; Quartacci et aI, 1997; 

Jagtap et aI, 1998; Bussis et aI, 1998; Iturbe-Ormaetxe et aI, 1998). 

That greater levels of net photosynthesis were maintained in non-nodulated 

v. [aba when supplied with increasingly concentrated medium nitrogen 

nutrition (and particularly with 'combined nitrogen' nutrition) throughout 

water deficits may also reflect the fact that stomatal conductances were 

maintained at greater values in V. [aba when supplied with increasingly 

concentrated medium nitrogen nutrition, and particularly with 'combined 

nitrogen' nutrition (fig. 3.21; Baaio, 1973), and the fact that ammonia 
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assimilation reportedly requires less water per unit yield than nitrate 

assimilation (Raven, 1985; Bloom, 1988; Atwell 1992; Raven et aI, 1992). 

Furthermore increased nitrogen supplies may have resulted in increased 

photosynthetic enzyme production (Evans, 1989; McDonald & Davies, 1996). 

RWCs and stomatal conductances reportedly influence net photosynthesis both 

in V. faba (Van der Wal, 1981), and in other plant species (Raab & Terry, 

1984; Hawkins & Lewis, 1993). Indeed RWCs (fig. 3.16) and stomatal 

conductances (3.2l) and accordingly net photosynthesis were maintained at 

significantly greater values in nodulated than in non-nodulated 'no 

nitrate' supplied V. faba (fig. 3.22) throughout water deficits, further 

inferring that nitrogen fixation may not be as sensitive to water deficits 

as is classically supposed. Decreasing net photosynthesis reportedly 

results in decreasing nitrogen fixation in G. max which may be attributable 

to limiting ATP and electron donor supplies, and to the reduced removal of 

nodular ammonia (Walsh et aI, 1998). However fig. 3.22 and anova analyses 

reveal that nodulated as opposed to non-nodulated 'no nitrate' supplied 

V. faba recorded significantly greater levels of net photosynthesis, 

inferring potentially reduced nitrogen fixation inhibition (as mediated by 

photosynthate limitations) in this species. 

Fig. 3.22 illustrates greater net photosynthesis in 'spiked' than in 'non

spiked' 'no nitrate' supplied V. faba. However anova analyses reveal that 

when considering 'spiked' data as a whole (i.e. from V. faba supplied with 

all four of the nitrogen sources within the 'spiked' nitrogen scheme) net 

photosynthesis was not significantly greater in 'spiked' than in 'non

spiked' V. iaba during water deficits. Similarly v. iaba supplied with 

'spiked' nutrition did not exhibit significantly greater RWCs and stomatal 
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conductances (these factors influence photosynthetic rates; Van der Wal, 

1981) than 'non-spiked' V. faba. However significantly greater CLAs (fig. 

3.20) and heights (see section 3.3.10) were exhibited by 'spiked' than by 

'non-spiked' V. faba, inferring a greater potential overall photosynthetic 

capacity in V. faba when supplied with medium ammonia additions during 

water deficits. 

The effects of water deficits and nitrogen nutrition on carbohydrate and 

starch concentrations (the ultimate products of photosynthesis) are 

discussed in chapter five. 

3.3 .8 RELATIVE GROWTH RATES (RGRs) 

Relative growth rates relate to total plant growth over time, and although 

they are not related to whether the measured plant material is structural or 

productive (i.e. associated with increased photosynthesis or with increased 

water uptake) they do provide a convenient integration of the growth of 

combined plant parts over time (Hunt, 1978). Fig. 3.23 and anova analyses 

reveal that increasingly concentrated medium nitrogen nutrition resulted in 

the exhibition of significantly greater RGRs in non-nodulated and in 'spiked' 

V. faba (in agreement with earlier reports which described RGRs in other plant 

species, Kuiper, 1993). This was expected as increasingly concentrated medium 

nitrogen nutrition resulted in the exhibition of increased plant biomasses 

(figs. 3.1-3.10; Marschner, 1986). 

Lower plant growth rates have previously been recorded in Ricinus communis 

when supplied with ammonia as opposed to with nitrate nutrition (Allen & 

Smith, 1986). However fig. 3.23 illustrates that greater RGRs were recorded in 

V. fa.ba when supplied with 'combined nitrogen' nutrition than with equimolar 

'1/2 nitrate' nutrition, indicating that medium ammonia additions do not 
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result in decreased plant growth rates in this species (when medium pH is 

maintained, see section 2.4.1). The greater RGRs exhibited in v. faba when 

supplied with 'combined nitrogen' nutrition may reflect the previously 

reported observations that growth may proceed with a higher photon yield (mol 

carbon assimilated per mol photon absorbed and per unit water), and with 

faster growth rates in given radiation fields in other plant species when 

supplied with medium ammonia as opposed to with medium nitrate nutrition (Van 

Oorschot, 1955; Raven & Smith, 1976; Myers 1980; Raven, 1985; Bloom, 1988; 

Salac et aI, 1987; Raven et aI, 1992). Indeed Troelstra et aI, (1992), 

reported that amrn.onia nutrition, then nitrate nutrition, then nitrogen 

fixation, resulted in the exhibition of increasing RGRs in other plant species 

(when media p8 was controlled; plants which exhibit high specific growth rates 

reportedly often exhibit increased pH drift (Gigon & Rorison, 1972), however 

medium pH drift was not observed during this research (section 2.4.1) under 

the experimental conditions described in chapter two). 

Fig. 3.23 and anova analyses reveal that RGRs were significantly greater in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba, which supports 

the earlier observation that increasing nitrogen availabilities may result in 

the exhibition of increasing RGRs. Pate et a1 (1979), compared non-nodulated 

nitrate supplied L. albus L. with nodulated nitrogen fixing plants. The 

nitrogen regimes promoted closely similar rates of growth. Indeed nodulated 

'no nitrate' supplied V. faba maintained greater growth rates than '1/10 

nitrate' supplied V. faba (fig. 3.23b), a further indication of the 

effectiveness of nodulation in V. faba (Richards & Soper, 1979). However the 

recorded growth rates of nodulated 'no nitrate' supplied V. faba were lower 

than those of V. faba when supplied with the most concentrated nitrogen 

nutrition, i.e. with '1/2 nitrate' or with 'combined nitrogen' nutrition. This 
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observation supports the work of Purcell & King, (1996), who reported that 

growth rates and yields of 'combined nitrogen' supplied G. max were higher 

than those of nitrogen fixing G. max. 

RGRs were not significantly greater in 'spiked' than in 'non-spiked' v. taba , 

indicating that while root growth (fig. 3.9) and CLAs (fig. 3.20) were 

significantly greater in v. faba when supplied with medium ammonia additions, 

overall growth rates were not. The inference is that rates of 'structural' as 

opposed to 'productive' growth may have been lower, or that senescence may 

have been lower in 'spiked' than in 'non-spiked' V. faba. 

Fig. 3.23 and anova analyses reveal that RGRs decreased significantly during 

water deficits. The recorded RWC decreases as water deficits increased (figs. 

3.16 & 3.17) may have contributed to reductions in expansive growth (McDonald 

& Davies, 1996). Furthermore net photosynthesis decreased as water deficits 

increased (fig. 3.22) indicating that reduced photosynthate availabilities may 

have contributed to reduced RGRs as water deficits increased. In summary RGRs 

were maintained at significantly increasing levels in non-nodulated and 

'spiked' V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition throughout water deficits, which may reflect the increased 

maintenance of RWCs and net photosynthesis during water deficits in V. faba 

when supplied with the same increasingly concentrated medium nitrogen. 

3.3.9 NET ASSIMILATION BATES (NARS) 

Differences in crop growth rates in other plant species have previously been 

attributed to differences in NARs, which are related to photosynthetic rates 

(Buttery, 1970), and describe the net weight gains per unit photosynthetic 

area. Increased NARs result in the exhibition of greater biomasses over time, 

however as leaf areas increase NARs may decrease due to increased mutual 
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shading (Buttery, 1970). 

Fig. 3.24 and anova analyses reveal that NARs increased significantly in non

nodulated V. faba as the concentration of the supplied nitrogen source 

increased. NARs were maintained in the following order in non-nodulated 

V. faba with respect to medium nitrogen nutrition: 'combined nitrogen' = '1/2 

nitrate' > '1/10 nitrate' > 'no nitrate', an order which is consistent with 

the effects of nitrogen nutrition on both net photosynthesis (fig. 3.22) and 

CLAs (fig. 3.20), and infers that NARs (per unit leaf area) did not decrease 

due to increased mutual shading in this species under the specified growth 

conditions (v. faba were grown in well-spaced pots; sections 2.4.1 & 2.4.2). 

Fig. 3.24 and anova analyses reveal that significantly greater NARs were 

exhibited in nodulated than in non-nodulated 'no nitrate' supplied v. faba, 

which may have been attributable to the significantly greater net 

photosynthesis per unit leaf area which was exhibited in nodulated than in 

non-nodulated 'no nitrate' supplied V. faba. 

However fig. 3.24 and anova analysis indicate that ammonia 'spiked' V. faba 

did not exhibit significantly greater NARs than non-nodulated 'non-spiked' 

V. faba. It is thus apparent that additional medium ammonia nutrition resulted 

in the exhibition of proportionally greater CLAs (fig. 3.20) and root 

biomasses (3.9) in v. faba, but not in significantly greater overall biomasses 

(fig. 3.10), net photosynthesis per unit leaf area (fig. 3.22), or NARs (fig. 

3.24). Increased armnonia nutrition has previously been shown to result in the 

exhibition of increased individual organ weights, but not in increasing NARs 

in other plant species (Hocking & Meyer, 1991). Indeed results infer that the 

effects of medium ammonia 'spiking' on biomass maintenance (e.g. root growth; 

fig. 3.9) in v. faba may primarily have been due to the stimulating action of 

nitrogen on leaf growth, which was significantly greater in 'spiked' than in 
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'non-spiked' V. faba (fig. 3.20), enabling greater total assimilation without 

changes in net assimilation rates per unit leaf area. 

It has been shown that net photosynthesis decreased in V. faba during water 

deficits (fig. 3.22). Similarly anova analyses reveal that NARs decreased 

significantly during water deficits (as previously reported in other plant 

species, Clifford et aI, 1998), and fig. 3.24 reveals that NARs were 

maintained at increasing values during water deficits in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition, an order which 

reflects the maintenance of net photosynthesis during water deficits. 

3.3.10 PLANT HEIGHTS 

Optimum crop heights reportedly exist as affected by lodging; shading; 

proportions of 'non-productive growth' (Yoshida, 1972; Hocking & Meyer, 1991). 

Fig. 3.25 and anova analyses reveal that significantly greater heights were 

recorded in V. faba as the nitrogen concentration of the supplied medium 

increased. Greater heights were recorded in nodulated than in non-nodulated 

'no nitrate' supplied V. fabai and significantly greater heights were recorded 

in 'spiked' than in 'non-spiked' V. faha, supporting the earlier observation 

that increasing nitrogen supplies result in increased plant growth (Marschner, 

1986), and increased growth maintenance during water deficits (figs. 3.1 

3.10). Indeed increased heights have previously been recorded by other plant 

species when supplied with increasingly concentrated medium nitrogen nutrition 

(Quebedeaux & Osbun, 1973). 

Allova analyses confirm that plant heights decreased significantly during water 

deficits, a phenomenon previously reported in v. taba (Gallacher & Sprent, 

1978; Hebb1ethwaite, 1982; Plies-Balzer et aI, 1995), and in other plant 

species (for example in G. max, Salama & Sinclair, 1994; and in Pinus 
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balepinsus, Wellburn et aI, 1996). 

Reduced aerial growth has briefly been discussed and may have been accentuated 

by water deficit associated RWC decreases, stomatal conductance decreases, and 

net photosynthesis decreases (figs. 3.16; 3.17; 3.21; 3.22), which may have 

resulted in reductions in aerial expansive growth, and in photoassimilate and 

reductant availabilities (see sections 3.3.1 & 3.3.4; McDonald & Davies, 

1996). The significantly greater heights maintained in 'spiked' than in 'non

spiked' v. faba throughout water deficits may reflect increased assimilation 

of (as opposed to storage of) ammonia as compared with nitrate nutrition, and 

infer potentially increased capacities to intercept solar radiation, and hence 

potentially increased plant productivities in v. faba when supplied with 

medium ammonia additions (Yoshida, 1972). That heights were greater (yet 

aerial biomasses similar) in 'spiked' than in 'non-spiked' v. faba may infer 

less branching in 'spiked' V. faba. 

3 • 4 CONCLUSION" 

Organ fresh and dry weights; plant heights; NARs; CLAs, and leaf and root RWCs 

decreased significantly during increasing water deficits, and were maintained 

at significantly greater values in V. taba when supplied with increasingly 

concentrated medium nitrogen nutrition. 

R:Ss increased significantly during water deficits, and were maintained at 

significantly greater values in v. taba when supplied with decreasingly 

concentrated medium nitrogen nutrition, reflecting the previously reported 

observation that plants growing in nitrogen deficient media may require longer 

roots to enable adequate nitrogen uptake (Hodge et aI, 1999). 

RGRs were significantly greater in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition in all but nodulated plants (possibly 

as LARs and RGRs were significantly greater in nodulated than in non-nodulated 

I 
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'no nitrate' supplied V. faba, thus the gap between the growth rates of I 
V. faba when supplied with 'no nitrate' and '1/10 nitrate' nutrition may have 

been bridged by nitrogen fixation in V. faba within the nodulated scheme). I 
~ 

It has been reported that V. faba (cultivars 'Alfred', 'Diana', 'piccolo' and 

'Troy') does not exhibit greater aerial growth when supplied with 'combined 

nitrogen' nutrition as opposed to when reliant on nitrogen fixation, both when 

supplied with adequate irrigation and during water deficits (PlieS-Balzer et 

aI, 1995). However fig. 3.8 illustrates that V. faba (cultivar 'Bunyards 

Exhibition') supplied with either 'combined nitrogen' or with '1/2 nitrate' 

nutrition exhibited significantly greater aerial biomasses than non-nodulated 

'no nitrate' supplied (i.e. nitrogen fixing) V. faba, both when supplied with 

adequate irrigation, and during water deficits. 

Comparing fig. 3.23 graphs a & c illustrates that RGRs increased in 

V. faba when an ammonia 'spi~e' was included in the medium, however anova 

analyses reveal that the greater RGRs in 'spiked' than in 'non-spiked' V. faba 

were not statistically significant. This is of interest as it has been 

demonstrated that heights (fig. 3.25), CLAs (fig. 3.20) and root biomasses 

(fig. 3.9) were significantly greater in 'spiked' than in 'non-spiked' V. faba 

throughout water deficits. It is therefore indicated that medium ammonia 

additions result in proportionally greater root and leaf growth in V. faba 

during water deficits, as opposed to significantly greater overall growth, as 

supported by the statistically similar total dry weights exhibited in 'spiked' 

and in 'non-spiked' V. faba throughout water deficits (fig. 3.10). 

This may be physiologically significant as greater root growth potentially 

results in deeper substrate penetration, and has been correlated with 

maintained water uptake in V. faba during water defioits (Sau & Ines-Minguez, 
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1990), while greater heights and CLAs reportedly represent potentially 

increased overall photosynthetic capacities in V. faba (Van der Wal, 1981), 

and in other plant species (Yoshida, 1972; Clark et al, 1999). Accordingly 

increased capacities for water uptake and photosynthesis are inferred in 

V. faba when supplied with medium ammonia additions (i.e. in 'spiked' 

V. faba) throughout water deficits. 

That stomatal conductances and net photosynthesis were maintained at lower 

external water potentials in non-nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (and with 'combined 

nitrogen' as opposed to with equimolar '1/2 nitrate' nutrition) may reflect 

the increased RWCs recorded in non-nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition, as low leaf RWCs are 

reportedly associated with stomatal closure during water deficits in V. faba 

(Van der Wal, 1981), and in other plant species (Comstock & Mencuccini, 1998), 

and stomatal conductances reportedly influence net photosynthesis, 

particularly during slight to moderate water deficits (McDonald & Davies, 

1996) . 

RWCs of eighty to ninety per cent have previously been reported to correspond 

with altered relative rates of photosynthesis and respiration (Lawlor, 1995). 

RWCs were maintained above eighty per cent in V. faba (when supplied with all 

forms of medium nitrogen nutrition) when slight water deficits were imposed 

(Le. 5% PEG; 85% contol water; see figs. 3.16 & 3.17), and accordingly fig. 

3.22 illustrates that net photosynthesis was maintained in all V. faba during 

slight water deficits. Insensitivities to slight water deficits have 

previously been described in other plant species (Hsiao, 1973), however 

changes in metabolism reportedly become marked if RWCs fall below eighty per 

I 



99 


cent, and photosynthesis may cease (Hsiao, 1976; Lawlor, 1995). Fig. 3.16 

illustrates that leaf RWCs were maintained above eighty per cent until 

moderate water deficits were experienced by V. faba when supplied with 'no 

nitrate' and with '1/10 nitrate' nutrition; and until severe water deficits 

were experienced by V. faba when supplied with '1/2 nitrate' and with 

'combined nitrogen' nutrition. Accordingly fig. 3.22 illustrates that while 

photosynthetic declines were initiated during moderate water deficits in 

V. faba when supplied with each nitrogen source, net photosynthesis was 

maintained in the following order in non-nodulated V. faba with respect to 

medium nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate' > '1/10 

nitrate' > 'no nitrate' nutrition throughout water deficits, indicating that 

medium ammonia additions (as compared against equimolar nitrate nutrition) 

resulted in the exhibition of an increased capacity for maintained net 

photosynthesis during water deficits in this species. 

However leaf and root RWCs (and accordingly stomatal conductances and net 

photosynthetic rates) were maintained at similar values in 'spiked' and in 

'non-spiked' V. taba. This may be explained as ammonia requires rapid 

assimilation (as opposed to nitrate which may be stored as an osmotically 

active solute during water deficits, and thus may contribute directly to RWC 

maintenance) and the assimilation of medium ammonia additions may therefore 

primarily result not in fUrther RWC increases, but rather in increased growth 

(as reflected in the significantly greater root growth (fig. 3.9), CLAs ( fig. 

3.20), and heights (fig. 3.25) exhibited in •spiked' than in 'non-spiked' 

V. taba), which indicate increased nitrogen and carbon assimilation (as 

opposed to nitrogen and carbon storage). Although similar (RWCs and 

accordingly) net photosynthesis was recorded in 'spiked' and in 'non-spiked' 

V. twa, the significantly greater CLAs and heights recorded in spiked •t 

I 
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V. faba infer an increased overall photosynthetic capacity in V. faba when 

supplied with medium ammonia additions. Indeed V. faba which exhibit increased 

CLAs reportedly exhibit proportional increases in dry matter and seed matter 

yield during water deficits (Hebblethwaite, 1982), and increased CLAs may 

therefore represent increased economic benefits both during water deficits and 

following water deficit alleviation, particularly as the vegetative yield of 

V. faba is often utilised as green manure (Corak et aI, 1992). 

Fig. 3.16 (pg. 67) illustrates that RWCs fell below eighty per cent during 

severe water deficits (25% PEG; fig. 2.2; pg. 34), however complete stomatal 

closure was not recorded by V. faba (fig. 3.21; pg. 81). A degree of cuticular 

transpiration may have contributed towards the recorded stomataL conductance 

in V. faba, particularly as the leaves of this temperate adapted species are 

not waxy. 

Photosynthesis may be reduced during water deficits via feedback caused by 

reductions in 'sink size' (Krapp et aI, 1991; Krapp et aI, 1993). However 

maintained growth (figs. 3.1 - 3.10; 3.20; 3.25), nitrogen assimilation and 

osmotic adjustment (which increased in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition, and particularly with medium ammonia 

additions; sections 4.4 & 6.4) may have provided sinks for photosynthates and 

reductants during water deficits, and may have resulted in an alleviation of 

the feedback inhibition of photosynthesis, and hence may have contributed 

towards the recorded maintenance of net photosynthesis at greater values in 

V. faba when supplied with increasingly concentrated medium nitrogen nutrition 

(and with 'combined nitrogen' as opposed to with equimolar '1/2 nitrate' 

nutrition; and as inferred in V. faba when supplied with 'spiked' as opposed 

to with 'non-spiked' nutrition). 

Net photosynthesis data may also reflect the previously reported observation 

that the ammonia ion rnay have stimulative effect on photosynthesis in intact 

I 
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chloroplasts (de-Beneditti et aI, 1976). 

Increasingly concentrated medium nitrogen nutrition may also have enabled 

increased plant photosynthetic enzyme production, which may have alleviated 

problems of enzyme damage during increasingly severe water deficits 

(Poljakoff-Mayber, 1981). Furthermore sections 5.4 & 6.4 will demonstrate that 

compatible solutes were produced at increasing concentrations in v. faba when 

supplied with increasingly concentrated medium nitrogen nutrition, and 

increased compatible solute concentrations may have contributed to the 

recorded maintenance of net photosynthesis at increasing values in V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition. 

Expansive growth may reportedly decrease during water deficits before 

photosynthesis is inhibited, and accumulating carbohydrates may therefore 

reportedly 'fuel' osmotic adjustment (Esaio, 1973; Wardlaw, 1993), as the 

metabolic cost of storing photosynthate and using it for osmotic adjustment is 

reportedly less than the cost of converting it into new biomass (McCree, 

1986). However figs. 3.8 & 3.25 illustrate that aerial growth reductions and 

decreasing net photosynthesis coincided during water deficits in this species. 

Thus if osmotic adjustment is shown to occur in V. faba during water deficits 

the inference is that excess photosynthate accumUlation prior to growth 

reductions is not the sale (or primary) source of substrates for osmotic 

adjustment. However substrates for osmotic adjustment may have been provided 

via starch degradation (see sections 5.3.1.3 & 4) and via medium nitrogen 

assimilation (see section 6.4). 

In summary the collected data illustrates that growth, stomatal conductances 

and net photosynthesis were maintained at greater values during water deficits 

in V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition. 
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CHAPTER FOUR 


OSMOTIC ADJUSTMENT IN NON-NODULATED, NODULATED. AND AMMONIA 


'SPIKED' V. faba WHEN SUPPLIED WITH VARIOUS FORMS AND 

CONCENTRATIONS OF MEDIUM NITROGEN NUTRITION DURING 

INCREASING WATER DEFICITS 

As water is being removed from the cell, osmotic potential is reduced due to 


the simple effect of solute concentration. However, if during the course of 


cellular water loss solutes are actively accumulated, 


osmotic potential would be reduced beyond the rate dictated by the mere 


effects of concentration. Such accumulation of solutes during the de7eloprnent 


of water deficit is termed 'osmotic adjustment' or 'osmoregulation' 


(Blum, 1983; Rhodes & Samaras, 1994). 


4.1 INTRODUCTION 

It is imperative for growth that plants maintain (a threshold level of) turgor 

during water deficits (Brownlee et al, 1999). Plants which accumulate greater 

concentrations of osmotic solutes reportedly maintain greater RWCs (Singh & 

Gupta, 1983); greater stomatal conductances and extract more water during 

water deficits (Kumar & Singh, 1998; Collinson et al, 1997), and exhibit 

increased yields (Van der Wal, 1981; Rodriguez-Maribona et al, 1992); than 

those which accumUlate lower concentrations of osmotic solutes. 

Osmotic adjustment has been observed during water deficits in V. faba (Van der 

wal, 1981; Sharma & Rai, 1989), and in other plant species (Hanson & Ritz, 

1982; Morgan, 1984 & 1986; Bussis & Beineke, 1998; Cellier et al, 1998; 

Clifford et al, 1998; Zhang et al, 1999). 

Most accumulating osmotica are not components of major metabolic pathways, 
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but are synthesized at the end of off-shoots of major pathways (Borowitzka, 

1981), in order that sudden solute requirements may be met and that rapid 

removal may be achieved upon water deficit alleviation. Osmotic solutes 

must be soluble and uncharged at physiological pH, so that osmotic 

adjustment does not result in cellular ionic and pH perturbations. 

Carbohydrates (sucrose; glucose; fructose; starch; and sugar alcohols) are 

reportedly the most abundant osmotica during water deficits (Foyer et aI, 

1998; Clifford et aI, 1998; Li et aI, 1998; Ferrario-Mery et aI, 1998), 

representing up to eighty per cent of the total osmotica pool (Ferrario

Mery et aI, 1998), and 40 roM sucrose reportedly accounts for approximately 

0.1 MPa (Nobel, 1991). Sugars reportedly accumulate prior to other osmotica 

in a wide range of plant species (Hanson & Hitz, 1982; Morgan, 1984; Morgan 

& Condon, 1986; Bussis & Heinke, 1998). 

Infrared spectroscopy has revealed that sucrose may act as a compatible 

solute during water deficits (Ingram & Bartels, 1996). Hydrogen bonds 

reportedly form between the hydroxyl groups of sucrose and the polar 

residues in proteins to produce 'glass', which fills space preventing 

cellular collapse, and restricts the molecular diffusion required by 

chemical reactions providing a quiescent state, which is associated with 

viability (Ingram & Bartels, 1996). Sucrose, maltose, and trehalose 

reportedly stabilize the activity of phosphofructokinase in vivo, which 

otherwise may dissociate irreversibly during dehydration (Ingram & Bartels, 

1996). Furthermore hexose sugars (and proline) reportedly stabilize DNA and 

membranes and ameliorate the deleterious effects of free radicals which may 

occur during water deficits (Clifford et aI, 1998). 

Carbohydrates may also form substrates for organic acid synthesis in the 

TCA cycle and (eventually) for compatible solute (e.g. proline) production 
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(Lawlor, 1995). Furthermore accumulated carbohydrates reportedly remain 

beyond the time of water deficit relief, and may be consumed by 

respiration, both during water deficits and following water deficit 

alleviation (Clifford et aI, 1998). Thus carbohydrates may fulfil many 

'roles' both during and following water deficits, and as such may represent 

particularly 'useful' solutes. 

Amino acids also reportedly contribute significantly to osmotic adjustment 

(particularly the imino acid proline; and glutamate and glutamine; 

asparagine and aspartate) accumulating during more severe water deficits 

than are required for carbohydrate accumulation in many plant species 

(Singh et aI, 1973b; Jones et aI, 1980; Foyer et aI, 1998). 

Proline is reportedly rapidly metabolized in irrigated plants (Aspinall & 

Paleg, 1981), but may represent over eighty per cent of the total amino 

acid pool during water deficits (Samaras et aI, 1995; wood, 1998; Clifford 

et aI, 199B). 

Proline reportedly exhibits compatible solute 'behaviour', diminishing the 

PEG induced precipitation of GS in a concentration dependant manner (while 

some amino acids; alanine; serine; glycine; and threonine reportedly have 

additive effects; Nash et aI, 1981; Paleg et aI, 1985). Proline also 

reportedly protects albumin from denaturation by ethanol, ureal or ammonium 

sulphate (Aspinall & paleg, 1981). 

Glycine betaine concentrations may also reportedly increase (up to twenty

six-fold) during water deficits (Banson & Nelsen, 1978; Wood, 1998), and 

glycine betaine may also exhibit compatible solute 'behaviour', reportedly 

protecting enzyme integrity during 'saline stress' (Borowitzka, 1981). 

proline and glycine betaine contain charged nitrogen, which is indicative 
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of protein stabilising properties (Clifford et ai, 1998). The hydrophilic 

carboxyl groups in proline and glycine betaine may bind with cytosolic 

water, and the hydrophobic ring may attract proteins, resulting in an 

alleviation of protein dehydration (Borowitzka, 1981; Samaras et aI, 1985). 

CH3 CHZ 0 CHZ-- CH2 
I I"+/\ / CHZ 0 

N C "'-+/
CH 

,,/
N Cj\ \ 

CH3 CH3 0- H/ "'-H '\. 
0

Glycine Betaine Proline 

Fig. 4.1 Chemical structures of Glycine Betaine and Proline 

Inorganic ions may also accumulate during water deficits (Bougeais-Chaillou et 

proline reportedly accumulates in 
chloroplasts and in the cytoplasm 

up to 90 % of the glycine betaine 
pool accumulates in the cytoplasm, 
(Glycine betaine also reportedly 
accumulates in chloroplasts) 

during water deficits amino acids reportedly 
accumulate primarily in chloroplasts and in the 
cytosol, with smaller storage concentrations, 
(the storage concentration of alanine decreases 
from 5096 to 20% during water deficits 
(Rhodes et ai, 1986)). 

Fig. 4.2 Compartmentation of osmotic solutes (Data from Waldren" 'rreare, 
1974; Wyn Jones. 1983; Deemig « Winter, 1985; Rhodes et .1. 1986; By,si... 
Heinke. 1U8). 

Decreasing amino acid storage pools were exhibited in suspended Lycopersicon 

esculentum cells when PEG was applied, inferring increasing cytoplasmic pools 

(Rhodes et aI, 1986). Indeed there is much evidence for a marked degree of 
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compartmentation of osmotic solutes in other plant species during water 

deficits (Wyn Jones & Storey, 1981; Leigh et aI, 1981; Jeschke 1992), with 

compatible solutes accumulating to proportionally greater concentrations in 

the cytoplasm during water deficits than during periods of adequate irrigation 

(see fig. 4.2), consistent with enzyme stabilization 'roles' (Wyn Jones, 1983; 

Jeschke, 1992). 

4.2 MATERIALS & METHODS 

4.2.1 TOTAL SOLUBLE CARBOHYDRATES (after Plummer, 1978; Jermyn, 1975) 

100 ~l plant extract (see section 2.6.1) was added to 4 ml anthrone (2% 

anthrone in concentrated H2 S04)' and 900 ~l water. The resultant solution was 

boiled for 10 minutes then rapidly cooled. 00 was determined at 720nrn, and 

concentrations determined using a (glucose) standard curve. 

4.2.2 TOTAL AMINO ACIDS (after Pearson & Stewart, 1987) 


100 ~l plant extract (section 2.6.1) was added to 1.4 ml citrate buffer and 


1.2 ml ninhydrin (Citrate buffer: 429 citric acid & 16g NaOS in 250 ml water; 


Ninhydrin: 1 g ninhydrin/100 ml methoxyethanol & 40 mg ascorbic acid in 40 ml 


water). The solution was boiled for 20 minutes, and then rapidly cooled, and 


then diluted with 3m! 60% ethanol. 00 was determined at 570nm, and 


concentrations determined using a (leucine) standard curve. 


4.2.3 PROLINE (after Singh et aI, 1973) 


1 m! plant extract (section 2.6.1) was added to 1 ml acid ninhydrin (400 mg 


ninhydrin per 10 ml glacial acetic acid). The solution was boiled for 45 


minutes with 0.5 ml 6 M orthophosphoric acid. The solution was extracted in 


Sml toluene. 00 was determined at 515nm using glass cuvettes, and 


concentrations determined using a (proline) standard ourve. 
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4.2.4 GLYCINE BETAINE ANALYSIS (after stumpf, 1984) 

1 ml plant extract (section 2.6.1) was pipetted into a 1.5 ml eppendorf along 

with 100 ~l modified dragondorff reagent, (equal volumes 0.35M Bi(N03)3 in 20% 

acetic acid and 2.45M KI in distilled water). After centrifugation (3000 g for 

10 minutes), the pellet was re-dissolved in 1 ml 2.45M KI. 10 ~l re-dissolved 

pellet was added to 1 ~l 0.49M KI. 00 was determined at 467 nm, and 

concentrations determined using a standard curve. 

4.2.5 TOTAL OSMOLARITIES 

When calibrated with the standards provided, the Herman Roebling (Type 5B) 

micro-osmometer provides direct readings of osmotic concentrations 

(osmolarities) in mOsm, working on the principle that the temperatures at 

which solutions freeze relate to the osmotic pressures of the solutions. 0.25 

ml plant samples (section 2.6.1) were analysed in the micro-osmometer 

according to the manufacturers instructions. 

4.3 RESULTS & DISCUSSION 

4.3.1 TOTAL SOLUBLE CARBOHYDRATES 

Figs. 4.3 & 4.4 and anova analyses reveal that total soluble carbohydrates 

accumulated to significantly greater concentrations in the leaves and roots 

of non-nodulated V. taba when supplied with increasingly concentrated 

medium nitrogen nutrition; and accumulated in the following order with 

respect to medium nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate' > 

'1/10 nitrate' > 'no nitrate'. 

Figs. 4.3 & 4.4 and anova analyses reveal that nodulated as opposed to non

nodulated 'no nitrate' supplied v. tsba accumulated significantly greater 

concentrations of total soluble carbohydrates. Indeed nodulated 'no 

nitrate' supplied V. taba accumulated greater concentrations of total 
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soluble carbohydrates than non-nodulated '1/10 nitrate' supplied v. faba; 

an indication of the effectiveness of nitrogen fixation in v. faba (as 

previously reported, Richards & Soper, 1979). 

Furthermore figs. 4.3 & 4.4 and anova analysis reveal that total soluble 

carbohydrate concentrations were significantly greater in V. faba when 

supplied with 'spiked' as opposed to with 'non-spiked' nutrition. 

Increasing concentrations of osmotica have previously been reported in 

other plant species when supplied with increasingly concentrated medium 

nitrogen nutrition (Bennet et aI, 1986). 

Figs. 4.3 & 4.4 and anova analyses reveal that total soluble carbohydrate 

concentrations increased significantly during water deficits (as previously 

reported in other plant species, Foyer et aI, 1998; Clifford et aI, 1998; 

Li et aI, 1998; Ferrario-mery et aI, 1998), and were maintained in the 

following order in the leaves and roots of non-nodulated V. faba with 

respect to medium nitrogen nutrition: 'combined nitrogen> '1/2 nitrate' > 

'1/10 nitrate' > 'no nitrate' nutrition, throughout water deficits. 

Furthermore significantly greater carbohydrate concentrations were 

exhibited in the leaves and roots of nodulated than of non-nodulated 'no 

nitrate' supplied v. faba; and of 'spiked' than of 'non-spiked' V. faba, 

throughout water deficits. 

Specific carbohydrates reportedly exhibit compatible solute 'behaviour' 

during water deficits (Ingram & Bartels, 1996; Clifford et aI, 1998), 

indicating that both osmotic and protein stabilization 'benefits' may be 

incurred in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition, and particularly with medium ammonia additions, during 

water deficits (see section 4.1, pg. 103). 

I 
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4.3.2 TOTAL AMINO ACIDS 

Leaf total amino acid concentrations are reportedly similar irrespective of 

the form of nitrogen supplied to G. max under 'control' conditions 

(Bougeais-Chaillou et aI, 1992). However figs. 4.5 & 4.6 and anova analyses 

reveal that total amino acid concentrations were exhibited in the following 

order with respect to medium nitrogen nutrition: 'combined nitrogen' > '1/2 

nitrate' > '1/10 nitrate' > 'no nitrate' in the leaves and roots of non

nodulated v. faba, both when supplied with adequate irrigation (i.e. 0% PEG 

/ 100% control water; fig. 2.2), and during water deficits. 

Furthermore significantly greater amino acid concentrations were exhibited 

in nodulated than in non-nodulated 'no nitrate' supplied v. faba; and in 

'spiked' than in 'non-spiked' v. faba both when supplied with adequate 

irrigation and during water deficits, (in agreement with the data of 

Chaillou et aI, 1991). 

It is thus apparent that amino acid concentrations increased in V. faba as 

nitrogen availabilities increased. This was expected as nitrogen is a 

component of the enzymes which catalyse amino acid (and other osmotica) 

production, and is a component of amino acids (see introduction). 

Furthermore increased net photosynthesis (fig. 3.22) and total soluble 

carbohydrate concentrations (figs. 4.3 & 4.4), inferring increased 

carbohydrate and reductant availabilities for nitrogen assimilation, were 

recorded by V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition. NR (Shaner & Boyer, 1976 a&bi CUrry et aI, 1995); GDH 

(Taylor & Havill, 1981); and GS (Ortega et aI, 1999) activities reportedly 

increase in other plant species in response to increasingly concentrated 

medium nitrogen nutrition, indicating that increased nitrogen assimilatory 

enzyme activities may also have contributed to the increased total amino 

I 
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acid concentrations recorded in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (see section 6.4). 

Foliar NR activities and accordingly total foliar amino acid concentrations 

may reportedly decrease rapidly during water deficits (Mattas & Pauli, 

1965; Rajagopal et aI, 1977; Banson & Hitz, 1982; Wellburn et aI, 1996; 

Ferrario-Mery et aI, 1998; Foyer et aI, 1998). Bowever figs. 4.5 & 4.6 and 

anova analyses reveal that total amino acids accumulated significantly in 

the leaves and roots of V. faba during water deficits (as previously 

reported in other plant species, Singh, 1973b; Jones et aI, 1980; Foyer et 

aI, 1998). Significantly greater total amino acid concentrations were 

maintained in V. faba when supplied with increasingly concentrated medium 

nitrate nutrition; inferring that nitrate reductase activities may have 

been maintained in v. faba during water deficits (see 4.1, pg. 104). 

Specific amino acids reportedly exhibit compatible solute effects during 

water deficits (Nash et aI, 1981; Paleg et aI, 1985; see pgs. 104 & 246) 

further inferring that osmotic and protein stabilization 'benefits' may be 

incurred in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition, and particularly with medium ammonia additions during 

water deficits. 

4.3.3 PROLINE 

Figs 4.7 & 4.8 and anova analyses reveal that proline concentrations were 

significantly greater in the leaves and roots of non-nodulated v. faba when 

supplied with 'combined nitrogen' as opposed to with nitrate nutrition, and 

that proline accumulated in the following order with respect to medium 

nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate' > '1/10 nitrate' > 
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'no nitrate' . 

Furthermore leaf and root proline concentrations were significantly greater 

in nodulated than in non-nodulated 'no nitrate' supplied V. faba. Evidence 

has emerged that some nodular bacteroids (infected with Bradyrhizobium 

japonicum) may catabolize proline as an energy source (Straub et aI, 1997), 

which reportedly results in increased yield maintenance during moderate 

water deficits, inferring that proline accumulation in nodulated roots (as 

recorded in V. faba; fig. 4.8) may incur metabolic 'benefits' in addition 

to osmotic 'benefits'. 

Proline may be produced from the arginine-ornithine pathway (Barnett & 

Naylor, 1966), however this pathway is reportedly primarily catabolic (Kueh 

et aI, 1984; Gilbert et aI, 1998), and proline is reportedly primarily 

produced from glutamate (Boggess 1970; Kato, 1980; Stewart, 1981; Rhodes et 

aI, 1986; Samaras et aI, 1995; see fig. 6.1). Proline may thus represent an 

ammonia de-toxification product (Shobert, 1977), and a carbon and nitrogen 

storage compound (Barnett & Naylor, 1966; Aspinall & paleg, 1981), as 

reflected in the significantly greater concentrations of proline which 

accumulated in v. faba when supplied with increasingly concentrated medium 

nitrogen nutrition (see section 6.4). 

'Spiked' and 'non-spiked' V. faba accumulated similar concentrations of 

proline, however chapter six will demonstrate that several other amino 

acids accumulated to significantly greater concentrations in V. faba when 

supplied with 'spiked' as opposed to with 'non spiked' nutrition. 

Anova analyses reveal that proline accumulated significantly during water 

deficits, as previously reported in V. faha (Aspinall & Paleg, 1981), and 

in other plant species (Barnett & Naylor, 1966; Stewart & Larher, 1980; 
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Bray, 1997). Proline is an efficient osmotic solute, the reported slow 


turnover of which results in proline accumulation at a minimal cost of 


synthesis (Rhodes et aI, 1986). Proline accumulation is reportedly 


positively correlated with leaf tissue survival and water deficit tolerance 


(Singh et aI, 1973a), and also with post water deficit growth (Aspinall & 


Paleg, 1981) in other plant species. Proline may also reportedly fulfil 


compatible solute 'roles' in other plant species (Paleg & Aspinall, 1981; 


Nash et aI, 1981; Paleg et aI, 1985). 


The inference is that when V. faba is supplied with increasingly 


concentrated medium nitrogen nutrition (and particularly with 'combined 


nitrogen' as opposed to with equimolar nitrate nutrition) greater pro~ine 

concentrations may contribute towards greater protein stabilization (enzyme 

activity data is summarised in sections 5.4 & 6.4), and increased growth 

and leaf tissue survival (as previously described in section 3.4). 

4.3.4 GLYCINE BETAINE 

Figs. 4.9 & 4.10 and anova analyses reveal that glycine betaine 

concentrations were significantly greater in the leaves and roots of 

V. faba when supplied with 'combined nitrogen' as opposed to with equimolar 

nitrate nutrition, and that glycine betaine concentrations were exhibited 

in the following order with respect to medium nitrogen nutrition: 'combined 

nitrogen' > '1/2 nitrate' > '1/10 nitrate' > 'no nitrate' nutrition. 

Furthermore nodulated as opposed to non-nodulated 'no nitrate' supplied 

v. faba; and 'spiked' as opposed to 'non-spiked' V. faba accumulated 

significantly greater concentrations of glycine betaine throughout water 

deficits. 

Greater (actual and inferred) net photosynthesis was exhibited in V. faba 

when supplied with medium ammonia additions, and may have resulted in 
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greater photosynthate and reductant availabilities (fig. 3.22). Furthermore 

increased nitrogen assimilatory enzyme activities have been reported in 

other plant species when supplied with increasingly concentrated medium 

nitrogen nutrition (Shaner & Boyer, 1976 a&b; Taylor & Havill, 1981; Ortega 

et aI, 1997; see section 6.4). These two factors may have resulted in 

increasing substrate and energy availabilities which may have been partly 

utilised in the increased synthesis of glycine betaine in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition, and 

particularly with medium ammonia additions. 

Figs. 4.9 & 4.10 and anova analyses reveal that glycine betaine accumulated 

significantly in V. faba during water deficits (particularly when supplied 

with medium ammonia additions). However while glycine betaine accumulation 

was statistically significant, the actual concentrations of glycine betaine 

which were recorded contributed small concentrations to the total amino 

acid pools (figs. 4.5 & 4.6), and therefore may not have been 

physiologically significant during water deficits. 

However glycine betaine reportedly exhibits compatible solute 'behaviour' 

during water deficits (Borowitzka, 1981; Clifford et aI, 1998), inferring 

the potential exhibition of an increased capacity for metabolism 

maintenance in V. faba when supplied with medium ammonia •spike , additions 

during water deficits. 

4.3.5 TOTAL OSMOLARITIES 

Figs. 4.11 & 4.12 and anova analyses reveal that total osmolarities were 

maintained in the leaves and roots of V. faba in the following order as 

significantly affected by medium nitrogen nutrition: 'combined nitrogen' > 

'1/2 nitrate' > '1/10 nitrate' > 'no nitrate'. Significantly greater total 
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osmolarities were recorded in the leaves and roots of nodulated as opposed to 

non-nodulated 'no nitrate' supplied V. faba; and in 'spiked' as opposed to 

'non-spiked' V. faba. Total osmolarity data supports earlier data which 

demonstrated that increasingly great concentrations of specific osmotica were 

exhibited in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition, and particularly with medium ammonia additions (figs. 4.3 

- 4.10). 

Figs. 4.11 & 4.12 and anova analyses reveal that total osmolarities increased 

significantly in the leaves and roots of V. faba during increasing water 

deficits, which may reflect the significant increases in total sQluble 

carbohydrates; total amino acids; proline; and glycine betaine which were 

recorded during increasing water deficits (figs. 4.3 - 4.10). 

4.3.6 ROOT OSMOTIC ADJUSTMENT 

Anova analyses reveal that total soluble carbohydrate concentrations; total 

amino acid concentrations; proline concentrations; glycine betaine 

concentrations; and total osmolarities increased significantly in the roots 

of V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition (and particularly with 'combined nitrogen'; and with ammonia 

'spike' nutrition), and that root osmotic adjustment also increased 

significantly during water deficits. 

Root osmotic adjustment has previously been reported. Choline mono-oxidase 

(which synthesizes glycine betaine) is reportedly induced in the roots 

during water deficits (Russell et al, 1998), and proline is reportedly 

transported to plants roots (Verslues & Sharp, 1999), where it accumulates 

during water deficits in other plant species (albeit less extensively than 

in the leaves; Aspinall & Paleg, 1981). 
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Earlier work has indicated that root osmotic adjustment might result from 

reductions in radial expansion (Wilson et aI, 1977). However root dry 

weights were maintained in non-nodulated V. iaba during water deficits 

(fig. 3.9), and root RWCs decreased during moderate water deficits (10% PEG 

70% control water supplied; fig. 3.18), by which time substantial root 

carbohydrate accumulation was exhibited. RWCs were maintained at 

increasingly great concentrations in V. faba which exhibited the greatest 

osmotic adjustment (i.e. in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition). Furthermore root FWs (fig. 3.4) 

and root osmotic adjustment (figs. 4.4; 4.6; 4.8; 4.10 & 4.12) were both 

significantly greater in 'spiked' than in 'non-spiked' V. faba. The 

inference from these two observations is that actual osmotic adjustment as 

opposed to cell volume decreases occurred in the roots (and in the leaves) 

of V. faba during water deficits. 

Furthermore root osmotic solutes accumulated to significant concentrations; 

root total soluble carbohydrate concentrations doubled, root total amino 

acid concentrations almost doubled, and root proline concentrations 

increased twenty-fold in non-nodulated V. faba during water deficits (when 

supplied with medium 'combined nitrogen' nutrition). The indication is that 

medium ammonia additions may result in the greatest exhibition of root (and 

leaf) osmotic adjustment in V. faba, and the inference is that as the 

increases in actual concentrations (per gramme dry weight) of the 

quantified root solutes were SUbstantial during water deficits they may not 

have been solely attributable to root cell volume decreases. Indeed glycine 

betaine concentrations increased from zero to over 700 nrnoles/g DW during 

water deficits in the roots of V. faba when supplied with ammonia 'spike' 

nutrition (fig. 4.10); fifty-fOld greater glYcine betaine concentrations 

I 
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were exhibited in the roots of 'spiked' than of 'non-spiked' V. faba, and 

while the glycine betaine concentration increases represented a small 

fraction of the overall quantified osmotica pool, glycine betaine 

reportedly exhibits compatible solute 'behaviour' (Wood, 1999). The 

inference is that medium ammonia additions may result in an increased 

capacity for metabolism maintenance in the roots (and leaves) of V. faba 

during water deficits. 

The inter-cellular space apoplast of roots reportedly often contains 

solutions with high ion concentrations, as water can leave the symplast 

faster than some solutes which may then accumulate (Canny, 1995), and with 

low transpiration (as inferred by the stomatal conductance decreases 

recorded in V. faba during water deficits; fig. 3.21) xylem tensions may 

disappear, and xylem osmotic potential (generated by root solute 

concentrations, with possible root positive pressure), may be the sole 

cause of root water uptake (Boyer, 1985). The inference is that v. faba 

which accumulated the greatest concentrations of root osmotica (i.e. 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition; and particularly when supplied with an additional ammonia 

'spike') may have maintained greater capacities for water uptake during 

water deficits than v. faba which accumulated lower concentrations of root 

osmotica. Indeed plants which accumulate greater concentrations of osmotic 

solutes reportedly extract more water during water deficits (Kumar & Singh, 

1998; Collinson et aI, 1997), as supported by the significantly greater 

osmotic adjustment and RWCs exhibited in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (figs. 4.3 - 4.10; 

3.16; 3.17). 
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4.4 CONCLUSION 

Total soluble carbohydrates accumulated significantly during water 

deficits, and to significantly greater concentrations in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition; with 

'combined nitrogen' as opposed to with equimolar nitrate nutrition; with 

'spiked' as opposed to with 'non-spiked' nutrition; and with nodulated as 

opposed to with non-nodulated 'no nitrate' nutrition. Carbohydrates 

accumulated earlier during water deficits than other osmotica (as 

previously described by Bussis & Heinke, 1998). Indeed sucrose accumulation 

may be a prior requirement for proline accumulation, as sucrose reportedly 

inhibits proline oxidation (Boggess et aI, 1975; Stewart, 1981), and the 

collected data illustrates that sucrose accumulation was initiated prior to 

proline accumulation in V. faba (figs. 4.7; 4.8; 5.2; 5.3). Increased total 

soluble carbohydrate accumulation in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition was expected, as 

nitrogen is a component of the enzymes which catalyse metabolic reactions, 

including photosynthesis. Total soluble carbohydrate data reflects the data 

described in chapter three which demonstrated that RWCSi stomatal 

conductances; and hence net photosynthesis (and by inference carbon 

acquisition; see section 3.4) were maintained at significantly greater 

levels in non-nodulated V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition; in nodulated than in non-nodulated 

'no nitrate' supplied V. faba; and in 'spiked' than in 'non-spiked' 

V. faba. 

Total amino acids also accumulated significantly during water deficits, and 

to significantly increasing concentrations in v. faba when supplied with 

increasingly concentrated medium nitrogen nutrition. 
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This was expected as in other plant species NR (Shaner & Boyer, 1976 a&b; 

Ourry et aI, 1995); GDH (Taylor & Havill, 1981); and GS (Ortega et aI, 

1997) activities reportedly increase in response to increasingly 

concentrated medium nitrogen nutrition (as occurred in v. faba; see section 

6.4). The reported enhancement of amino acid synthesis relative to sucrose 

synthesis in other plant species when supplied with concentrated medium 

nitrogen nutrition (Foyer et aI, 1991), the reported protein concentration 

decreases in other plant species during water deficits (Riccardi et aI, 

1998), and alterations in transaminase activities during water deficits 

(Thompson et aI, 1966) may also have contributed towards the accumulation 

of individual amino acids (as discussed in section 6.4). 

Proline and glycine betaine concentrations, and total osmolarities also 

increased significantly in V. faba during water deficits; again to 

increasingly great concentrations in v. faba when supplied with 

increasingly concentrated medium nitrogen nutrition. 

Specific carbohydrates and amino acids (as discussed in sections 4.1; pgs. 

103 & 104), and proline and glycine betaine may reportedly act as 

compatible solutes during water deficits (Paleg et aI, 1985; Ingram & 

Bartels, 1996; Clifford et al, 1998). The significant accumulation of these 

solutes infers an increased capacity for metabolism maintenance in V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition (and 

particularly with 'combined nitrogen' as opposed to with equimolar nitrate 

nutrition; and with medium ammonia 'spike' additions) during water 

deficits. Furthermore specific amino acids, proline, and glycine betaine 

may represent ammonia de-toxification products in V. faba (as previously 

suggested for other plant species, Barnett & Naylor, 1966; Shobert, 1977; 

Aspinall & Paleg, 1981; Pulich, 1986), as discussed in section 6.4. Proline 
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has previously been described as a nitrogen storage compound, as it is 

reportedly found in relatively large concentrations in storage organs (e.g. 

seeds; Miflin & Lea, 1977). 

Furthermore greater total amino acid and total soluble carbohydrate 

concentrations were exhibited in V. faba when supplied with medium ammonia 

additions, even when supplied with adequate water (0 % PEG I 100 % Control 

water; figs. 4.3 - 4.6). The inference is that V. faba may exhibit 

increased water deficit tolerance when supplied with medium ammonia 

additions, both prior to and during water deficits, as amino acids and 

soluble carbohydrates represent potential substrates for osmotic adjustment 

and for growth maintenance. 

Osmotic adjustment increased significantly in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (and particularly 

with ammonia 'spike' additions) during water deficits, which may infer an 

increased capacity for water uptake in V. faba when medium ammonia 

additions are included (Boyer, 1985), particularly as significantly greater 

root biomasses were also exhibited in 'spiked' than in 'non-spiked' 

V. faba, and root growth is reportedly correlated with water uptake in 

this species (Sau & Ines-Minguez, 1990). 

Other leguminous species reportedly exhibit lower concentrations of 

osmotica during water deficits when reliant on nitrogen fixation than when 

supplied with medium nitrogen nutrition (Sprent, 1971). Previous authors 

have attributed this to the high ATP and photosynthate demands of nitrogen 

fixation (Sprent, 1971; Pate et aI, 1979; Dekhuijzen et aI, 1981; 

Schilling, 1983; Caba et aI, 1998). However significantly greater total 
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soluble carbohydrate; total amino acid; proline; and glycine betaine 

concentrations; and leaf and root total osmolarities were maintained in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba throughout 

water deficits. This may reflect the previous observation that 

significantly greater stomatal conductances and net photosynthesis (and 

hence potentially photosynthate, reductant, and carbon skeleton 

concentrations) were maintained in nodulated than in non-nodulated 'no 

nitrate' supplied V. faba (figs. 3.21 & 3.22), and that nitrogen fixation 

potentially provided nitrogen to nodulated 'no nitrate' supplied V. iaba 

(table 2.3). Thus the carbon and nitrogen substrates which are required for 

osmotic adjustment were potentially available in greater concentrations in 

nodulated than in non-nodulated 'no nitrate' supplied V. iaba. The 

maintenance of greater osmotic adjustment in nodulated than in non

nodulated 'no nitrate' supplied V. iaba throughout water deficits infers 

that nitrogenase activities may have been maintained in v. taba during 

water deficits (which supports the work of Serraj & Sinclair, 1997, who 

highlighted that nitrogen fixation may be water deficit tolerant in some 

G. max cultivars; see introduction). 

It has previously been reported that during the early stages of water 

deficits nodulated G. max (var. 'Williams') predominantly rely on increased 

root growth and on stomatal closure to delay water deficit effects, and 

that osmotic adjustment is initiated later during water deficits in 

nodulated than in non-nodulated G. max, again perhaps as nitrogen fixation 

is reportedly an energy intensive process (see introduction, pg. 8), to 

which osmotic adjustment may be detrimental (Ines-M.inguez & Sau, 1989). 

Ines-Minguez & Sau (1989) concluded that the different water deficit 

tolerance 'strategies' (delayed osmotic adjustment in nodulated as opposed 
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to in non-nodulated G. max) nevertheless resulted in the exhibition of 

similar leaf areas and inferred turgor maintenance during water deficits. 

Bowever osmotic adjustment was initiated at similar levels of water deficit 

imposition in both nodulated and non-nodulated V. faba (var. 'Bunyards 

Exhibition'), perhaps as significantly greater net photosynthesis (fig. 

3.22), starch concentrations and amylase activities (section 5.4), and 

significantly greater nitrogen assimilatory enzyme activities (section 6.4) 

were exhibited in nodulated than in non-nodulated 'no nitrate' supplied 

V. faba throughout water deficits, which may have contributed substrates 

towards osmotic adjustment in this cultivar. 

Increased turgor during early water deficits has been described as 

resulting from both osmotic and elastic components (Grossnickle & Russell, 

1996). Increased cell wall elasticities (as reported in V. faba during 

water deficits, Elston et a1, 1976) may facilitate osmotic adjustment via 

cell volume reductions (Meier et al, 1992; Clifford et a1, 1998). However 

reduced inter-molecular space during water deficits is reportedly 

correlated with reduced enzyme activities, inferring that turgor and volume 

maintenance may be more important than maintained water potentials during 

water deficits (Meier et al, 1992). Solutes accumulated to such significant 

concentrations in V. faba that it was unlikely that they were solely 

attributable to cell volume decreases (figs 4.3 - 4.10), particularly as 

growth (figs. 3.1 - 3.10) and RWCs (figs. 3.16 & 3.17) were also maintained 

at significantly greater levels in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (see section 3.4), the same nitrogen 

nutrition which resulted in the exhibition of the greatest concentrations 

of osmotica when supplied to V. faba. 
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Furthermore V. faba exhibited significantly greater concentrations of root 

osrnotica when supplied with increasingly concentrated medium nitrogen 

nutrition, and with 'spiked' than with 'non-spiked' nutrition. It has been 

inferred that plants which accumulate root osmotic solutes may exhibit 

increased capacities for water uptake during water deficits than non-root

accumulators (Boyer, 1985). Thus increased water uptake capacities are 

inferred for V. faba when supplied with medium ammonia additions, 

particularly as 'spiked' V. faba also exhibited significantly greater root 

biornasses than 'non-spiked' V. faba, and root growth is also reportedly 

correlated with water uptake in V. faba (Sau & Ines-Minguez, 1990). Greater 

water uptake in 'spiked' than in 'non-spiked' V. faba is also inferred by 

the significantly greater heights and cumulative leaf areas (figs. 3.20 & 

3.25) which were exhibited in 'spiked' than in 'non-spiked' V. faba, and 

which infer greater (threshold water content dependant) expansive growth 

(McDonald & Davies, 1996). 

The significantly greater RWCs (figs. 3.16 & 3.16) and vegetative yields 

(figs. 3.1 - 3.10; 3.20; 3.25) exhibited in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (and with medium 

ammonia additions) may reflect the increased osmotic adjustment exhibited 

in v. faba when supplied with such nutrition, as greater RWCs (Singh & 

Gupta, 1983), increased medium water extraction (Kumar & Singh, 1998), and 

greater yields (Rodriguez-Maribona et aI, 1992) have previously been 

reported in other plant species which have exhibited increasing 

concentrations of osmotica during water deficits. Indeed V. faba exhibited 

sufficient osmotic adjustment during water deficits to allow the 

maintenance of RWCs until severe water deficits were ~posed (figs. 3.16 & 

3.17). A positive correlation between osmotica concentration and yield has 
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previously been reported in V. faba (Van der Wal, 1981). 

Osmotic adjustment may reportedly provide an alternative sink for 

photosynthates and energy during growth reductions in some plant species 

(wardlaw, 1993), and may thus reduce the likelihood of photoinhibition 

(Smirnoff & Stewart, 1985). However it is unlikely that excess 

photosynthates accumulated prior to growth reductions in V. faba, as growth 

and photosynthetic declines coincided during water deficits in this species 

(see section 3.4). The inference is that substrates for osmotic adjustment 

in V. faba were not solely derived from accumulating photosynthates, and 

may potentially have resulted from alterations in carbon metabolism (as 

described in chapter five), or from alterations in nitrogen metabolism (as 

described in chapter six), during water deficits. 

In summary the data presented in this chapter illustrates that total 

solUble carbohydrate concentrations, total amino acid concentrations, 

proline concentrations, glycine betaine concentrations and total 

osmolarities all increased significantly in the leaves and roots of V. faba 

during water deficits. 

Increasing osmotic adjustment was exhibited by the leaves and roots of 

V. faba when supplied with increasingly concentrated medium nitrogen. 

Furthermore significantly greater total osmolarities, and significantly 

greater total soluble carbohydrate, total amino acid and glycine betaine 

concentrations were exhibited by V. faba when supplied with medium ammonia 

additions, inferring an increased capacity for metabolism maintenance in 

V. faba when supplied with some medium ammonia, due to increased compatible 

solute accumulation. 
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CHAPTER FIVE 


ASPECTS OF CARBON METABOLISM IN NON-NODULATED. NODULATED, AND 


AMMONIA 'SPIKED' V. faba WREN SUPPLIED WITH VARIOUS FORMS AND 


CONCENTRATIONS OF MEDIUM NITROGEN NUTRITION DURING INCREASING 


WATER DEFICITS 


-_._---! 
i 

Carbohydrates serve as energy stores, fuels, and metabolic intermediates 

I (Stryer, 1988). 
I...~=.~,----~--..--..~-~~~-------. 

5.1 INTRODUCTION 

This chapter examines aspects of carbon metabolism which may influence 

nitrogen assimilation and water deficit responses in V. faba. 

Net photosynthesis is maintained at greater levels in V. faba (fig. 3.22; 

and reportedly in other plant species, Hageman, 1979; Marques et aI, 1983; 

Tolley-Henry & Raper, 1986; Doehlert, 1993; Raven & Sprent, 1993) when 

supplied with increasingly concentrated medium nitrogen nutrition, 

inferring potentially increased capacities for the production of 

carbohydrates as osmotica, and therefore potentially greater plant 

productivities during and following water deficits in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition (Van der Wal, 

1981; Sau & Ines-Minguez, 1990). 

Decreasing starch concentrations may be correlated with carbohydrate 

accumulation (Stewart, 1972aj Clifford et aI, 1998), and reportedly 

coincide with increasing osmotic adjustment during water deficits (Bussis & 

Heinke, 1998), inferring that starch degradation and / or a decreased 

conversion of photosynthates into starch may also contribute substrates 

towards osmotic adjustment during water deficits. 

Decreased respiration may potentially result in increased carbohydrate 

accumulation during water deficits, however respiration rates reportedly 
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only decrease during severe water deficits (Nogues et aI, 1998, working 

with P. sativum) by which stage carbohydrate accumulation is maximal, 

inferring that reduced respiration may not contribute significantly towards 

osmotic adjustment. 

Nitrate reduction results in the production of OB- ions, which (in the 

shoots) are biochemically converted via a 'pH stat' into organic 

(malic/oxalic) acids utilising sugars, starch, and CO2 (Davies, 1973). The 

organic acids produced are osmotically active and may be stored in the 

vacuole, or may be phloem translocated to the roots (as K+ salts) and then 

decarboxylated to pyruvate and BC03 • OH- is root excreted, while K+ is 

recirculated with N0 3- and other anions back to the shoots via the xylem 

(Raven & Smith, 1976). The inference is that decreasing carbohydrate and 

hence organic acid concentrations during water deficits (potentially 

attributable to decreasing net photosynthesis, fig. 3.22) may represent a 

decreased capacity for 'pH stat' maintenance, and hence for shoot nitrate 

reduction. 

K+ SHOOTPEP+ MAL
CO2 ..-:JlII'" 


KEY K+MAL- NH3 ~N03-

mal = malate 
pyr = pyruvate STEM 
PEP :: 
phosphoenol 
pyruvate 

L ROOT~:-
HC03
~ N03 K+ 

N03- K+ __---I 

Fig. 5.1 Role of ~he pitrat.-r.dueta,e-dependapt .a1at, ,buttl. on 
potassiu••pd nitr.te trapsP9rt syst••, (.ft'E Lips. 1979). 
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The carbon skeletons of organic acids are also utilised during ammonia 

assimilation (Harada et aI, 1968; Dijkshoorn 1973; Ikeda et aI, 1974; 

Bourgeais-Chaillou et aI, 1992; Raab & Terry, 1994), inferring that 

decreasing organic acid concentrations would result in decreased capacities 

for both nitrate and ammonia assimilation in plants. Indeed poor plant 

performance was reported when G. max which exhibited low organic acid 

concentrations was supplied with medium ammonia nutrition (Bourgeais

Chaillou et aI, 1992). 

5.2 MATERIALS & METHODS 

5.2.1 TRINDER'S GLUCOSE OXIDASE: PEROXIDASE METHOD (G.O.D.P.O.D.) 

5 mg glucose oxidase was added to 100 ml 0.5 M phosphate buffer (pH 7.0) along 

with 5 mg peroxidase; 100 mg sodium azide; and 35 mg 4-aminophenazone. 1.5 ml 

of this reagent was added to 1 ml plant extract (see section 2.6.1), along 

with 0.5 ml phenol (0.1%). Samples were incubated at 370 C for 20 minutes. 00 

was determined at 515nm, and concentrations calculated using a (glucose) 

standard curve. 

5.2.2 INVERTASE ASSAY 

0.5 ml methanoic extract (section 2.6.1) was incubated at 37 0 C (20 minutes) 

with 0.5 ml invertase (3000Eu/ml), which hydrolyses sucrose. Additional 

glucose was determined using a G.O.D.P.O.D. assay (5.2.1). 

5.2.3 REDUCING SUGARS (Benedict's test) 

17.3 g CUS04 was dissolved in 150 m1 distilled water forming solution A. 173 g 

sodium citrate and 90 g anhydrous sodium carbonate were dissolved in 850 ml 

distilled water, which was then filtered (Whatrnan's No.1 paper), forming 

solution B. Solution A was added to solution B slowly, with constant 
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agitation. This mixture formed the Benedict's reagent. 100 ~l plant sample 

(section 2.6.1) was added to 2 ml Benedict's reagent. This mixture was boiled 

for 10 minutes. 00 was determined at SlSnm. Concentrations were determined 

using a (fructose) standard curve. 

5.2.4 STARCH ANALYSIS (after McCready et ai, 19S0) 

The extracted tissue from a methanoic extraction was re-washed twice (or until 

no soluble carbohydrates were detected using the anthrone detection technique; 

section 4.2.1) with the methanoic mix (see section 2.6.1), and then washed 

with 80% ethyl alcohol, then water, and then placed in a solution of 2.5 ml 

water and 3.2 ml 52% perchloric acid at DOC for 20 minutes. This liquid was 

stored and the plant material was again placed in 2.S rnl water and 3.2 rnl 

perch10ric acid for a further 20 minutes at OOC. The liquid from this second 

extraction was combined with that from the first, and this solution was 

diluted 1:10, filtered, then further diluted 1:50. 5 ml of this final dilution 

was added to 10 m1 cold anthrone (0.2g anthrone in 100 ml 9S% H2S04 ), and then 

heated in a boiling water bath for lS minutes, and then rapidly cooled. 00 was 

determined at 630nm, and glucose equivalents were calculated for starch using 

a (glucose) standard curve. 

5.2.5 AMYLASE ASSAY (after Chrispeels & Varner, 1967) 

A starch solution was prepared from the spun down supernatant (8000 g for 25 

minutes) of a 250 ml solution which contained 375 g soluble potato starch; 1.5 

g KH 2P04 ; 200 ~M CaC12 and had been boiled for 1 minute and then cooled. 5 g 

plant samples were pulverised in liquid nitrogen in 15 ml 10 roM calcium 

chloride with a mortar and pestle. Extracts were centrifuged at 8000 g for 25 

minutes at 2 oc. 0.2 ml plant extract was added to 0.08 rnl distilled water 
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with 1 ml starch solution. After 10 minutes 1 ml KI (6 g of KI with 600 mg 

iodine; diluted 1:100 with 0.05M HCl) was added. 00 was determined at 620nm. 

5.2.6 L-MALATE DETERMINATION (after Mollering, 1985a) 

0.1 ml plant extract (prepared as in section 2.6.1) was added to a volume of 

1.89 ml (containing 153 ~M glycine, 100 ~M L-glutamate, 4 ~M Beta-MAD, and 61 

~g glutamic-oxalacetic transaminase). Optical density, (00), was determined, 

(340nm). 30 ~g malic dehydrogenase (MOB) was added to start the reaction, 

creating a final volume of 2 mI. The rise in 00 was followed at 340nm until a 

plateau was reached. The change in 00 was used to determine the extract malate 

concentration. 

5.2.7 CITRATE (after Mollering, 1985b). 

0.1 ml plant extract was added to a volume of 1.89 ml (containing 352 ~M tris 

buffer, (pH 7.6), 3.0 ~g MOB, 74 ~g lactic dehydrogenase, (LDH), and 1 ~M 

beta-NADH). 00 (340nm) was determined. 2.0 mg of citrate lyase was added to 

the solution to start the reaction. The change in 00 was used to determined 

the extract citrate concentration. 

5.2.8 2-0XOGLUTERATE (after Burlina, 1985) 

0.1 ml plant extract was added to a volume of 1.89ml (containing 370 ~M Tris

CI buffer (pH 7.6) and 0.4 ~M beta-NADH). The 00 was determined (340nm), then 

L-glutamic dehydrogenase (GDH) was added to start the reaction, creating a 

final volume of 2.0 mI. The change in 00 was used to determine the extract 2

oxogluterate concentration. 

5.2.9 PYRUVATE (after Lamprecht & Heinz, 1984) 

0.1 ml plant extract was added to a volume of 1.89 ml (containing 370 ~M Tris
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Cl buffer (pH 7.6), and 0.4 ~M beta-NADB). The aD (340 rum) was determined, and 

then 124 ~M LDB was added to start the reaction creating a final volume of 2.0 

ml. The change in 00 was used to determine the extract pyruvate concentration. 

5.3 RESULTS & DISCUSSION 

5.3.1.1 SUCROSE, GLUCOSE AND REDUCING SUGARS 

Figs. 5.2 to 5.7 and anova analyses reveal that sucrose; glucose; and 

reducing sugars accumulated to significantly increasing concentrations in 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition, and accumulated in the following order with respect to medium 

nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate' > 'lila nitrate' > 

'no nitrate'. 

Significantly greater concentrations of sucrose; glucose; and reducing 

sugars accumulated in nodulated than in non-nodulated 'no nitrate' supplied 

V. faba; and in V. faba when supplied with 'spiked' as opposed to with 

'non-spiked' nutrition. 

Earlier work has indicated that sucrose; glucose; and fructose 

concentrations may decrease during water deficits in other plant species 

(Sanchez-Rodriguez et aI, 1999). However figs. 5.2 - 5.7 and anova analyses 

reveal that sucrose; glucose; and reducing sugars accumulated significantly 

in the leaves and roots of V. faba during water deficits (as previously 

reported in other plant species, Wilson et aI, 1980; Hanson & Hitz, 1982), 

and were maintained in the following order with respect to medium nitrogen 

nutrition: 'combined nitrogen' > '1/2 nitrate' > '1/10 nitrate' > 'no 

nitrate' nutrition, throughout water deficits. 

Sucrose contributed the greatest concentration to the total quantified 
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soluble carbohydrate pool in the leaves and roots of V. faba (as previously 

reported in other plant species, Stewart, 1971; Wilson et aI, 1980; Ford & 

Wilson, 1981; Munns & Weir, 1981), while slightly lower and approximately 

equal concentrations of glucose and reducing sugars accumulated. As osmotic 

potential is related to particle number increased osmotic adjustment would 

be expected if sucrose was hydrolysed into fructose and glucose during 

water deficits (Munns & Weir, 1981; Ladley, 1990), however this did not 

appear to occur within V. faba. 

Section 4.1 (pg. 103) highlighted the reported compatible solute 'role' of 

sucrose during water deficits (Ingram & Bartels, 1996: Clifford et aI, 

1998). Accordingly the significantly greater sucrose concentrations 

exhibited in V. faba when supplied with increasingly concentrated nitrogen 

nutrition may infer an increased capacity for metabolism maintenance during 

water deficits. 

5.3.1.2 CARBOHYDRATE ACCUMULATION AND NET PBOTOSYNTHESIS 


Carbohydrate accumulation commenced prior to net photosynthesis decreases 


(figs. 3.22; 4.3; 4.4) inferring that net photosynthesis may have 


contributed substrates towards osmotic adjustment during slight to moderate 


water deficits (up to 10% PEG I 70% control water). 


That significantly greater concentrations of sucrose; glucose; and reducing 


sugars accumulated in the leaves and roots of V. faba when supplied with 


increasingly concentrated medium nitrogen nutrition may reflect the 


significantly greater levels of net photosynthesis which were exhibited in 


V. faba when supplied with increasingly concentrated medium nitrogen 


nutrition (fig. 3.22; and as inferred in 'spiked' as opposed to 'non


spiked' V. faba). 


Indeed although nitrogen fixation is reportedly carbon intensive (Vance et 
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aI, 1984; Hardy et aI, 1968; Pate et aI, 1979; Sprent, 1971; Minchin & 

Pate, 1973) nodulated as opposed to non-nodulated 'no nitrate' supplied 

v. faba exhibited significantly greater net photosynthesis (fig. 3.22), 

which may have contributed to the significantly greater carbohydrate 

concentrations recorded in nodulated as opposed to in non-nodulated 'no 

nitrate' supplied V. faba, (figs. 5.2 - 5.7). 

5.3.1.3 STARCH 

starch concentrations are reportedly similar in G. max whatever the form of 

the supplied nitrogen nutrition when adequate irrigation is supplied 

(Chaillou et aI, 1991), however figs. 5.8 & 5.9 and anova analyses reveal 

that starch concentrations were significantly greater in the leaves and 

roots of non-nodulated V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition, and with adequate irrigation (i.e. with 0% PEG 

or with 100% control water). Furthermore significantly greater starch 

concentrations were recorded in the leaves and roots of nodulated than of 

non-nodulated 'no nitrate' supplied V. faba (which again may reflect the 

significantly increased net photosynthesis recorded in v. faba when 

supplied with increasingly concentrated medium nitrogen nutrition, fig. 

3.22). 

Figs. 5.8 & 5.9 and anova analyses reveal that V. faba did not exhibit 

significantly greater starch concentrations when supplied with 'spiked' as 

opposed to with 'non-spiked' nutrition, despite the greater inferred net 

photosynthesis in V. faba when supplied with an additional medium ammonia 

'spike' (section 3.4). Ammonia cannot be stored and requires rapid 

assimilation (Raven, 1985); as such ammonia nutrition has a greater (or 

rather a more immediate) carbon skeleton requirement than nitrate nutrition 

(Bourgeais-Chaillou et aI, 1991). The inference is that v. faba supplied 
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with increasing medium ammonia additions might exhibit greater growth as 

opposed to greater starch concentrations (as compared with V. faba when 

supplied with less concentrated nitrate nutrition, as previously reported 

in other plant species, Macduff & Jackson, 1991; Raven et aI, 1992; Purcell 

& King, 1996; Giordano & Bowes, 1997), in reflection of the continued 

utilisation of carbon skeletons in the continued assimilation of ammonia. 

Indeed while figs. 5.8 & 5.9 reveal that similar starch concentrations were 

exhibited in 'spiked' and 'non-spiked' V. faba despite the exhibition of 

greater inferred total photosynthesis in V. faba when supplied with the 

former nutrition throughout water deficits, section 3.4 highlighted 

significantly greater heights, CLAs and root biomasses in 'spiked' than in 

'non-spiked' V. faba, inferring an increased assimilation of, as opposed to 

a storage of additional medium ammonia in V. faba. In contrast figs. 6.4 & 

6.5 illustrate that increasing nitrate concentrations are exhibited in 

V. faba when supplied with increasingly concentrated medium nitrate 

nutrition (which may represent some nitrate storage as opposed to 

assimilation; see section 6.3.1.2). Increased growth and therefore 

metabolism (as opposed to storage) of nitrogen in v. faba when supplied 

with medium ammonia additions rather than solely with nitrate nutrition (as 

inferred by the greater growth exhibited in V. faba when supplied with the 

former nitrogen nutrition; see section 3.4) may have contributed to an 

alleviation of 'sink size' feedback inhibition of photosynthesis (Krapp et 

aI, 1993; see section 3.4), and nitrogen assimilation (Imsande & Touraine, 

1994; see section 6.4), which may have contributed to the greater levels of 

net photosynthesis (and nitrogen assimilation) and yet the exhibition of 

maintained as opposed to increased starch concentrations in 

v. faba when supplied with increasingly concentrated medium nitrogen 
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nutrition, and particularly with medium ammonia additions, throughout water 

deficits. 

Earlier work has indicated that starch concentrations may increase during 

water deficits in other plant species (Foyer et ai, 1998; Sanchez-Rodriguez et 

ai, 1999). However figs. 5.8 & 5.9 and anova analyses reveal that starch 

concentrations decreased significantly during water deficits in both the 

leaves and roots of V. faba (when supplied with all utilised forms of nitrogen 

nutrition), inferring that some carbon skeletons for osmotic adjustment may 

have been made available from starch degradation (in agreement with earlier 

work; on different plant species, Stewart, 1972a; Bussis & Heinke, 1998; 

Clifford et ai, 1998), or from decreased conversion of photosynthate into 

starch. 

Significantly greater starch concentrations were maintained throughout water 

deficits in non-nodulated V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition, which may reflect the significantly increased net 

photosynthesis exhibited in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (fig. 3.22), and infers that less 

starch degradation may have been required for carbon skeleton production in 

V. faba when supplied with increasingly concentrated nitrogen availabilities, 

as net photosynthesis (and therefore potentially carbon acquisition) was 

maintained during increasingly severe water deficits in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition (fig. 3.22). 

5.3.1.4 AMYLASE ACTIVITIES 

Figs. 5.10 & 5.11 and anova analyses reveal that amylase activities were 

not significantly affected by the form or the concentration of the supplied 

nitrogen source in either the leaves or the roots of non-nodulated V. [aba, 
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and did not differ significantly in the leaves or roots of nodulated as 

opposed to non-nodulated 'no nitrate' supplied V. faba; or of 'spiked' as 

opposed to 'non-spiked' V. faba. 

Amylase activities may reportedly increase in some plant species during 

water deficits (Jones et aI, 1980), indeed figs. 5.10 & 5.11 and anova 

analyses reveal that amylase activities increased significantly in V. faba 

during water deficits. However amylase activities reached a plateau level 

during moderate water deficits (10% PEG / 70% control water) in V. faba 

within all of the pre-specified nitrogen regimes, and amylase activities 

were maintained at this plateau level throughout severe water deficits. 

Starch degradation may have accounted for the production of some carbon 

skeletons for osmotic adjustment, however sufficient carbon skeletons may 

have been provided for osmotic adjustment at this level of amylase 

activity, as net photosynthesis was maintained into increasingly severe 

water deficits in 

V. faba when supplied with increasingly c0ucentrated medium nitrogen 

nutrition, and a potential role for the production of substrates via a 

reduced incorporation of photosynthates into starch is also inferred (as 

previously reported in Lemna minor, Stewart, 1972a). 

5.3.2 ORGANIC ACIDS 

It has previously been reported that G. max exhibits greater organic acid 

concentrations when supplied with 'combined nitrogen' nutrition than with 

nitrate or with ammonia nutrition (Bourgeais-Challou et aI, 1992), however 

figs. 5.12 & 5.13 and anova analyses reveal that the leaves and roots of 

non-nodulated V. faba exhibited similar organic acid concentrations 

irrespective of the form or concentration of the supplied nitrogen source. 
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Ammonia cannot be stored and the plant assimilation of ammonia reportedly 


utilises organic acids as a source of carbon skeletons (Michael et aI, 


1970; Bourgeais-Challou et aI, 1992), while nitrate assimilation also 


utilises organic acids in the 'pH stat' (Kirkby, 1969), and increasing 


organic acid concentrations reportedly induce increased nitrate uptake 


(Imsande & Touraine, 1994). 


Tables 5.1 - 5.6 and anova analyses reveal that statistically significantly 


greater malate and pyruvate concentrations were exhibited in the leaves and 


roots of nodulated than in non-nodulated 'no nitrate' supplied v. faba, 


which may reflect the significantly greater net photosynthesis exhibited in 


nodulated than in non-nodulated 'no nitrate' supplied v. faba (figs. 3.22; 


6.1). Furthermore statistically significantly lower 2-oxogluterate 


concentrations were exhibited in nodulated than in non-nodulated 'no 


nitrate' supplied v. faba (perhaps attributable to increased organic 


nitrogen production or to increased root respiration). It is possible that 


more organic acid skeletons were utilised in amino acid production in 


nodulated than in non-nodulated 'no nitrate' supplied V. faba. However 


differences in actual concentrations of organic acids between nodulated and 


non-nodulated 'no nitrate' supplied V. faba were small, and while such 


differences were statistically significant it is unlikely that they were 


physiologically significant. 


Indeed total organic acid concentrations were maintained in V. faba during 


water deficits ("figs. 5.12 & 5.13), inferring that 'control' organic acid 


concentrations may have been above a threshold concentration required for 


the maintenance of nitrogen uptake and assimilation (via a maintained 'pH 


stat' and via carbon skeleton donation), and that nitrogen assimilation was 


unlikely to have decreased due to limitations in organic acids during water 
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Table 5.1 Organic acid concentrations (~M gDW-1 ) in the leaves of non
nodulated V. faba when sugglied with various forms and concentrations of 
medium nitrogen nutrition during increasing water deficits. 

0\ PEG 5\ PEG 10\ PEG 15% PEG 20\ PEG 25\ PEG 

(i) 'NO NITRATE' 

CITRATE 0.57 0.30 0.27 0.54 0.30 0.81 
PYRUVATE 1.46 1.63 1.84 1.56 1.23 1.34 
MALATE 2.60 3.40 6.20 2.90 2.60 3.20 
2-0XOGLUTERATE 15.90 17.20 11.60 19.20 14.90 16.70 
TOTAL 20.53 22.53 19.91 24.20 19.03 22.05 

(ii) '1/10 NITRATE' 

CITRATE 0.36 0.49 0.23 0.77 0.80 0.29 
PYRUVATE 1.85 1.90 1.82 2.70 2.40 1.25 
MALATE 2.90 3.30 4.90 4.10 2.40 4.40 
2-0XOGLUTERATE 16.40 16.90 15.90 10.20 14.90 16.50 
TOTAL 21.51 22.59 22.85 17.77 20.50 22.44 

(iii) '1/2 NITRA:E' 

CITRATE 0.31 0.39 0.65 0.84 0.60 0.64 
PYRUVATE 1.20 2.50 1.32 1.27 1.91 1.26 
MALATE 2.60 3.40 2.30 2.70 2.90 3.90 
2-0XOGLUTERATE 12.90 13.80 13.40 12.30 15.60 11.80 
TOTAL 17.01 20.09 17.67 37.84 21.01 17.60 

(iv) • COMBINED NITROGEN' 

CITRATE 
PYRUVATE 
MALATE 
2-0XOGLUTERATE 
TOTAL 

0.78 
2.01 
3.80 

14.10 
20.69 

0.84 
1.47 
3.50 
15.90 
21.71 

0.79 
1.57 
3.90 
11.90 
18.16 

0.84 
1.24 
2.50 
16.40 
20.98 

0.56 
1.29 
3.60 

15.60 
21.05 

0.68 
2.60 
2.1G 
12.00 
17.38 
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Table 5.2 Orqanic acid concentrations tUM gDw-1 ) in the roots of non
nodulated v. taba when supplied with various forms and concentrations of 
medium nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

(i) 'NO NITRATE' 

CITRATE 0.37 0.56 0.41 0.56 0.68 0.54 
PYRUVATE 1.40 1.23 1.49 1.41 1.47 1.26 
MALATE 0.46 0.26 0.56 0.71 0.51 0.34 
2-0XOGLUTERATE 1.60 1.50 1.30 1.70 1.80 1.60 
TOTAL 3.83 3.55 3.76 4.38 4.46 3.74 

(H) '1/10 NITRATE' 

CITRATE 0.50 0.62 0.72 0.64 0.77 0.85 
PYRUVATE 1.27 0.60 1.36 3.10 2.10 1.24 
MALATE 0.58 0.47 0.34 0.46 0.23 0.44 
2-0XOGLUTERATE 1.80 1.80 1.80 1.80 1.70 2.10 
TOTAL 4.15 3.49 4.22 6.00 4.80 4.63 

(iii) '1/2 NITRATE' 

CITRATE 0.33 0.45 0.10 0.61 0.96 0.26 
PYRUVATE 1.40 3.40 1.272.50 2.40 1.27 
MALATE 0.45 0.61 0.610.19 0.39 0.47 
2-0XOGLUTERATE 1.20 1.601.40 1.50 1.50 2.90 
TOTAL 3.38 4.54 5.71 4.90 4.34 4.90 

(iv) 'COMBINED NITROGEN' 

CITRATE 0.49 0.81 1.69 0.43 0.50 0.54 
PYRUVATE 1.42 1.82 1.72 1.12 1.83 1.47 
MALATE 0.21 0.42 0.25 0.23 0.12 0.29 
2-0XOGLUTERATE 1.60 1.30 1.20 2.50 1.40 1.60
TOTAL 3.72 4.35 4.86 3.854.28 3.90 
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Table 5.3 Organic acid concentrations (uM gDW- 1 ) in the leaves of nodulated 
V. faba when supplied with various forms and concentrations of medium 

nitrogen nutrition during increasing water deficits. 


0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

( i) 'NO NITRATE' 

CITRATE 0.67 0.94 0.68 1.94 0.78 0.23 

PYRUVATE 0.90 0.46 0.68 2.63 2.90 3.08 

MALATE 2.30 2.10 2.90 4.10 2.70 2.70 

2-0XOGLUTERATE 12.50 16.90 17.00 16.70 17.90 12.00 

TOTAL 16.37 20.40 21.26 25.37 24.28 18.01 

(El '1/10 NITRATE' 

CITRATE 0.35 0.55 1.09 0.55 0.62 0.45 

PYRUVATE 1.31 2.69 2.57 2.75 2.57 2.57 
MALATE 4.10 2.80 3.80 3.70 2.60 3.50 
2-0XOGLUTERATE 11.00 12.50 13.60 13.10 13.50 16.40 
TOTAL 16.76 18.54 21.06 20.10 19.29 22.92 

(iii) '1/2 NITRATE' 

CITRATE 0.98 0.94 0.43 0.46 0.67 0.45 
PYRUVATE 1.77 0.53 0.70 3.01 3.04 3.45 
MALATE 3.60 3.50 2.70 2.60 3.10 3.20 
2-0XOGLUTERATE 16.50 14.30 15.70 19.10 16.70 15.80 
TOTAL 22.85 19.27 19.53 25.17 23.51 22.90 

(iv) 'COMBINED NITROGEN' 

CITRATE 0.85 0.64 0.251.01 0.77 0.26 
PYRUVATE 0.73 1.43 1.53 3.42 2.96 3.47 
MALATE 3.10 3.60 2.90 3.40 2.90 2.60 
2-0XOGLUTERATE 13.20 15.40 16.20 14.90 17.20 13.40 
TOTAL 17.88 21.27 23.3121.44 22.49 19.73 
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;as 

Table 5.4 Organic acid concentrations (!!M gDW-1 ) in the roots of nodulated 
V. faba when sUQQlied with various forms and concentrations of medium 
nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% pEG 

(i) 'NO NITRATE' 

CITRATE 
PYRUVATE 
MALATE 
2-0XOGLUTERATE 
TOTAL 

0.55 
0.65 
0.98 
0.23 
2.41 

0.62 
0.69 
0.27 
0.60 
2.18 

0.60 
1.11 
0.48 
0.26 
2.45 

0.33 
1.49 
0.34 
0.42 
2.58 

0.45 
1.56 
0.33 
0.24 
2.58 

0.90 
1.42 
0.64 
0.37 
3.33 

(ii) '1/10 NITRATE' 

CITRATE 
PYRUVATE 
MALATE 
2-0XOGLUTERATE 
TOTAL 

0.62 
2.75 
0.26 
0.25 
3.88 

0.64 
2.57 
0.46 
0.12 
3.79 

0.68 
0.82 
0.56 
0.56 
2.62 

0.82 
0.89 
0.61 
0.21 
2.53 

0.66 
0.90 
0.56 
0.23 
2.35 

0.65 
0.91 
0.45 
0.23 
2.24 

(iii) '1/2 NITRATE' 

CITRATE 
PYRUVATE 
MALATE 
2 -OXOGLUTERA TE 
TOTAL 

0.63 
3.01 
0.54 
0.36 
4.54 

0.61 
3.04 
0.33 
0.23 
4.21 

0.76 
0.55 
0.27 
0.23 
1.81 

0.95 
1.27 
0.51 
0.34 
3.07 

0.97 
1.31 
0.38 
0.46 
3.12 

0.74 
1.53 
0.67 
0.61 
3.55 

(iv) 'COMBINED NITROGEN' 

CITRATE 0.72 
PYRUVATE 3.42 
MALATE 0.68 
2-0XOGLUTERATE 0.48 
TOTAL 5.30 

0.45 
2.96 
0.26 
0.45 
4.12 

0.74 
1.00 
0.35 
0.14 
2.23 

0.33 
1.59 
0.27 
0.22 
2.41 

0.91 
1.77 
0.65 
0.39 
3.72 

0.21 
1.57 
0.22 
0.24 
2.24 
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Table 5.5 Organic acid concentrations (IlM gDW-1 ) in the leaves of 'sniked ' 
V. faba when supplied with various forms and concentrations of medium 
nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

(i) 'NO NITRATE' 


CITRATE 0.44 0.62 0.42 0.27 0.54 0.65 

2.12PYRUVATE 1.20 2.75 2.57 1.80 2.40 

3.80 2.40 4.60MALATE 4.10 2.40 3.90 
16.40 15.402-0XOGLUTERATE 17.50 15.70 19.40 14.30 

TOTAL 23.24 21.47 26.19 22.37 19.64 22.77 

(ii) '1/10 NITRATE' 
0.77 0.21 0.54CITRATE 0.62 0.34 1.10 
2.70 1.60 2.73PYRUVATE 1.50 2.70 2.10 

5.40 3.40 2.50 3.90MALATE 4.60 3.70 
16.70 15.70 12.70 12.302-0XOGLUTERATE 11.30 15.60 

; 9.47 TOTAL 18.02 25.14 22.50 22.57 17.01 

(iii) '1./2 NITRATE' 
0.21 0.29 0.48CITRATE 0.54 0.36 0.55 

1.60 3.00 2.10 0.90PYRUVATE 1.40 1.50 

MALATE 2.80 3.90 3.90 3.40 3.80 2.50 

2-0XOGLUTERATE 12.50 16.90 16.40 13.90 17.80 15.10 
23.99 18.98TOTAL 17.24 22.76 22.35 20.51 

(iv) 'COMBINED NITROGEN' 
0.89 0.54 0.61CITRATE 0.78 0.32 0.56 

1.40 1.50PYRUVATE 1.80 1.60 1.80 1.90 
2.50 2.90MALATE 3.40 3.40 6.10 2.70 

18.402-0XOGLUTERATE 16.10 19.40 13.80 14.50 16.10 
19.10 20.54 23.41TOTAL 22.08 24.72 22.26 
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Table 5.6 Organic acid concentrations (UM gDW- 1 ) in the roots of 's12iked ' 
V. faba when sU12Qlied with various forms and concentrations of medium 
nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

(i) •NO NITRATE' 

CITRATE 0.47 0.89 0.39 0.63 0.50 0.64 

PYRUVATE 2.70 2.10 1.41 1.42 1.38 1.45 

MALATE 0.80 0.25 0.26 0.22 0.35 0.32 

2-0XOGLUTERATE 1.40 1.40 1.70 1.70 2.70 1.80 

TOTAL 5.37 4.64 3.76 3.97 4.93 4.21 

(El '1/10 NITRATE' 

CITRATE 0.63 0.45 0.69 0.43 0.46 0.32 

PYRUVATE 1.60 1.50 3.40 2.40 1.27 1.43 

MALATE 0.46 0.39 0.45 0.51 0.25 0.30 

2-0XOGLUTERATE 1.20 1.60 1.40 1.50 2.40 1.00 
TOTAL 3.89 3.94 5.94 4.84 4.38 305 

( iii) '1/2 NITRATE' 

CITRATE 0.43 0.46 0.56 0.35 0.45 0.24 

PYRUVATE 1.50 1.27 1.72 1.12 1.83 1.45 
MALATE 0.59 0.28 0.38 0.56 0.45 0.88 

2-0XOGLUTERATE 1.80 2.10 1.60 1.90 1.30 1.10 
TOTAL 4.32 4.11 4.26 3.93 4.03 3.67 

(iv) 'COMBINED NITROGEN' 

CITRATE 0.48 0.49 3.66 0.98 0.61 0.69 
PYRUVATE 1.50 1.37 1.80 1.60 1.50 1.47 
MALATE 0.27 0.56 0.48 0.44 0.21 0.60 
2-0XOGLUTERATE 1.80 1.40 1.80 2.40 1.20 1.40 
TOTAL 4.05 3.82 7.74 5.42 3.52 4.16 
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deficits. That nitrogen assimilation was maintained during water deficits 

in V. faba is also inferred by the nitrogenous osmotica concentrations 

which were found to increase significantly during water deficits (section 

4.4), and by the maintenance of nitrogen assimilatiofrwhich was observed in 

V. faba during water deficits (see section 6.4). 

In addition to their requirement in nitrogen assimilation, organic acids 

are also osmotic solutes (Raven & Smith, 1976), and organic acid 

accumulation is reportedly correlated with plant water deficit tolerance in 

Gossypium hirsutum L. (Tompa et aI, 1986). 

However figs. 5.12 & 5.13 and anova analyses reveal that organic acid 

concentrations did not alter significantly during water deficits in either 

non-nodulated or in 'spiked' V. faba when supplied with any of the pre

specified forms of medium nitrogen nutrition. While total organic acids 

increased significantly in the leaves of nodulated V. faba during water 

deficits, and decreased significantly in the roots (malate was the organic 

acid which was most significantly affected by water deficits in nodulated 

V. faba; tables 6.3 & 6.4) the changes exhibited were low in terms of 

actual concentrations (particularly when compared with the concentrations 

of total soluble carbohydrates and total amino acids which accumulated 

during water deficits; figs. 4.3 - 4.6), inferring that although such 

changes were statistically significant it is unlikely that they were 

physiologically significant in terms of osmotic adjustment. Alterations in 

organic acid concentrations in nodulated V. taba during water deficits may 

reflect the reported dependence of nitrogenase activities on maintained 

carbohydrate availabilities (Pate et aI, 1979; Dekhuijzen et aI, 1981; 

Schilling, 1983; Gonzalez et aI, 1995; Caba et aI, 1998), rather than water 

deficit tolerance adaptations per se. 
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That organic acid concentrations were maintained in nodulated and in non

nodulated V. faba during water deficits may reflect the fact that net 

photosynthesis was maintained until moderate water deficits were imposed 

and may have provided substrates for osmotic adjustment, and that starch 

concentrations also decreased and may also have provided substrates for 

osmotic adjustment (figs. 5.8 & 5.9). 

In summary V. faba does not rely on organic acid accumulation to facilitate 

nitrogen assimilation or osmotic adjustment during water deficits. 

5.4 CONCLUSION 


Figs. 5.2 to 5.7 and anova analyses reveal that glucose; sucros~; and 


reducing sugars accumulated to significantly increasing concentrations in 


V. faba when supplied with increasingly concentrated medium nitrogen 


nutrition, and that sucrose; glucose; and reducing sugars accumulated 


significantly during water deficits (as previously reported in other plant 


species, Wilson et aI, 1980; Hanson & Hitz, 1982). 


Carbohydrate accumulation cowmenced prior to net photosynthesis decreases, 


inferring that net photosynthesis may have contributed some substrates 


towards osmotic adjustment during moderate water deficits (Miflin, 1974; 


Munns & Weir, 1981; figs. 3.21 & 3.22). 


Figs. 5.8 & 5.9 and anova analyses reveal that starch concentrations 

decreased significantly during water deficits, and figs. 5.10 & 5.11 and 

anova analyses reveal that amylase activities increased significantly 

during water deficits in both the leaves and roots of V. faba (when 

supplied with all forms of medium nitrogen nutrition), inferring that some 

carbon skeletons for osmotic adjustment may have been produced via starch 

degradation (as reported in other species: Jones et ai, 1980; Bussis & 
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Heinke, 1998; Clifford et al, 1998) particularly as net photosynthesis 

decreased during water deficits (fig. 3.22). That some carbon skeletons for 

osmotic adjustment may have been provided via a reduction in the 

incorporation of photosynthates into starch is also inferred by the data 

(as previously reported in L. minor Stewart, 1972a). 

That carbohydrate and starch concentrations were maintained at 

significantly greater concentrations in nodulated than in non-nodulated 

v. faba throughout water deficits infers that nitrogen fixation may not be 

as susceptible to water deficits as is classically supposed (see 

introduction, Pl. 19; Plies-Balzer et al, 1995; Serraj & Sinclair, 1997). 

Significantly greater net photosynthesis (fig. 3.22), and significantly 

greater concentrations of total soluble ~arbohydrates; starchi sucrose; 

fructose; and glucose were maintained in nodulated than in non-nodulated 

'no nitrate' supplied v. faba throughout water deficits, inferring that 

carbohydrate metabolism may have been maintained in nodulated V. faba 

during water deficits. This may have contributed to the inferred 

maintenance of nitrogenase activity throughout water deficits, as 

decreasing photosynthate and reductant availabilities have previously been 

implicated as potential causes of nitrogen fixation decreases during water 

deficits (Schilling, 1983; Walsh, 1995; Epron, 1997; Clifford et al, 

199B), see introduction, pg. 17. 

Figs. 5.12 & 5.13 and anova analyses reveal that leaf and root organic acid 

concentrations were not significantly affected by either the form or the 

concentration of the supplied nitrogen source, and that organic acid 

concentrations did not alter significantly in nodulated or in non-nodulated 

V. faba during water deficits. Section 4.4 concluded that V. faba exhibited 

sufficient osmotic adjustment during water deficits to allow the 
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maintenance of RWCs until severe water deficits were imposed (figs. 3.16 & 

3.17), indicating that V. faba did not rely upon the accumulation of 

organic acids during water deficits to act as osmotic solutes. Indeed it 

has previously been reported that organic acids accumulate during water 

deficits in some but not in all plant species (Ford & Wilson, 1981). 

Furthermore intrinsic organic acid concentrations may have been above a 

threshold concentration required for the maintenance of nitrogen uptake and 

assimilation in V. faba. Increases in pyruvate during water deficits (as a 

substrate for alanine production) in suspended Lycopersicon esculentum 

cells have previously been inferred (Rhodes et aI, 1986), however the 

demand for carbon skeletons for the maintenance of nitrogen assimilation 

and osmotica production may have been too great to result in the exhibition 

of organic acid accumulation in V. faba. The inference is that any 

potential increases in organic acid concentrations which may have been 

expected in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition (due to increased net photosynthesis, fig. 3.22) may 

have been utilised in increased nitrogen assimilation and osmotic solute 

production (fig. 6.1; as discussed in chapter six) and in increased growth 

(as exhibited in V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition, and particularly with medium ammonia additions; 

section 3.4). The continued utilization as opposed to storage of organic 

acids may partly explain the exhibition of maintained organic acid 

concentrations in v. faba during water deficits (figs. 5.12 & 5.13). 

In summary the data presented in this chapter illustrates that sucrose, 

glucose and reducing sugar concentrations increased significantly in the 

leaves and roots of V. faba during water deficits. Significantly greater 
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individual sugar concentrations accumulated in the leaves and roots of 

v. faba when supplied with increasingly concentrated medium nitrogen 

(particularly when ammonia additions were included in the medium). Starch 

concentrations decreased in the leaves and roots of V. faba during water 

deficits. Amylase activities increased in the leaves and roots of V. faba 

during water deficits, inferring that starch degradation may have 

contributed some substrates towards carbohydrate accumulation during water 

deficits. However carbohydrate accumulation preceded starch degradation, 

inferring a role for the direct incorporation of photosynthates into 

osmotica during water deficits. Furthermore amylase activities plateaued 

during water deficits, and carbohydrate accumulation continued during 

severe water deficits, during which low starch concentrations were 

exhibited by V. faba, further inferring the direct accumulation of 

photosynthates as osmotica. 

Leaf and root organic acid concentrations were not significantly affected 

by increasing water deficits, or by the form or concentration of the 

supplied nitrogen source. 
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CHAPTER SIX 


ASPECTS OF NITROGEN METABOLISM IN NON-NODULATED; NODULATED; AND 


AMMONIA 'SPIKED' V. faba WHEN SUPPLIED WITH VARIOUS FORMS AND 


CONCENTRATIONS OF MEDIUM NITROGEN NUTRITION, DURING INCREASING 


WATER DEFICITS. 

Loss of nitrate reductase activity from leaves is considered to be one of 

the more sensitive of physiological responses to water deficits, more so 

than for example stomatal response (Hsiao et al, 1976). 
"'---~-------,___~_.___> ~'__ "~' c.__ ~__ ... _.~_"__ ..____ .~_,, ._e_ ." ___•... _._~._~...,,_.,,_.__,,_.."___ .... _...... _ 

6.1 INTRODUCTION 

This chapter is concerned with aspects of nitrogen metabolism in V. faba 

when supplied with various forms and concentrations of medium nitrogen 

nutrition during water deficits. 

It has been reported that the largest variation in the flow of 

photosynthetically fixed carbon is that incorporated into amino acids, 

inferring that the controlling factor in amino acid synthesis may be the 

availability of reduced nitrogen (steer, 1973; Bassham et ai, 1981), and 

therefore that maintained nitrogen assimilation during water deficits may 

potentially result in the production of increased concentrations of 

nitrogenous osmotica. Further potential benefits are associated with 

maintained nitrate reduction during water deficits, as NR activities are 

reportedly correlated with growth, grain yield and protein production in other 

plant species (Bageman, 1979; Srivastava, 1980; Muller & Janiesch, 1993). 

Bowever while the (shoot) activities of the nitrogen assimilatory enzymes GS 

and GDB may not decrease during water deficits (Taylor et aI, 1982), it is 

classically considered that NR activities decrease significantly during 
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even moderate) water deficits (Mattas & Pauli, 1965; Hsiao, 1973; Hsiao et aI, 

1976; Rajagopal et aI, 1977; Wellburn et aI, 1996; Foyer et aI, 1998). Indeed 

NR activities reportedly halve in Nicotania plumbaginifolia within four days 

of water deficit imposition (Ferrario-Mery et aI, 1998). 

However a small number of workers have described NR as a relatively stable 

enzyme, the activity of which is reportedly more affected by disruption to 

nitrate transporters (e.g. Aslam & Huffaker, 1984) than to enzyme denaturation 

per se. A small metabolic pool of nitrate is accessible to NR, while a large 

vacuolar storage pool (containing up to fifty eight per cent of the total 

cellular nitrate, Grandstadt & Huffaker, 1982) is separate from metabolic 

sites (Shaner & Boyer, 1976), and influences anion/cation balances, and 

osmotic adjustment (Martinoia et aI, 1981). NR activities are reportedly 

positively correlated with 'nitrate flux', which may have a greater regulatory 

influence on NR activities than substrate or NADH availabilities (Shaner & 

Boyer, 1976). Decreased nitrate fluxes (caused by e.g. cooled roots) 

reportedly result in reduced NR activities despite maintained organ nitrate 

concentrations (Shaner & Boyer, 1976; Smirnoff et aI, 1984), while increased 

nitrate fluxes reportedly result in increased NR activities even during water 

deficits (Smirnoff et aI, 1985; Ladley, 1990). A constitutive NR, expressed in 

the absence of nitrate has also been identified (Clement et aI, 1978; Remmler 

& Campbell, 1986; Rufty et aI, 1989; Andrews et aI, 1990). 

Glutamate dehydrogenase (GDH) has been detected in V. faba seeds and seedlings 

(Stewart & Rhodes, 1977), however the high kM of GDH for ammonia, plus 

evidence from labelling experiments indicate a deaminating role for GDB, and 

the glutamine synthetase / glutamate synthase (GS GOGAT) system is considered 

the primary route of plant ammonia assimilation (Lea & Joy, 1995; stewart et 
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al, 1995). GDH is loosely membrane associated and is localised in the leaves 

(evidence indicates low levels of chloroplastic GDH, Miflin, 1974), and 

particularly in root mitochondria, which may represent a compartment where GDB 

can successfully compete for ammonia (Emes & Fowler, 1979; Sadunishvili et al, 

1996), inferring a potential nitrogen assimilatory role for (particularly 

root) GDH when ammonia concentrations are high (Durzan & Steward, 1967; Rhodes 

et al, 1976). 

GS isoenzyrnes may be (i) cytosolic - GS1, or (ii) chloroplastic/plastidic 

GS2 (Lee & Stewart, 1978; Forde & Woodall, 1995). Root-specific and nodular 

GS isoforms have also been described (Forde & Woodall, 1995). Genetic 

evidence indicates that GS isoenzymes are spatially separated in many 

species, inferring non-overlapping 'roles' (Kamachi et al, 1991; see table 

6.1, pg. 172). The activities of GS isoenzymes may alter throughout the 

life-cycles of plants, as determined by nitrogen assimilatory requirements 

(Kamachi et al, 1991; Pearson & Ji, 1994; see table 6.1, pg. 172). 

However only GS2 was qualified in v. faba (see appendix III, pg. 298, for 

an example GS profile). Thus in V. faba GS2 was solely responsible for 

ammonia assimilation throughout water deficits. GS2 has previously been 

reported to be the dominant GS isoenzyme in other C3 leguminous species 

(MCNally et al, 1983; McNally & Hirel, 1983), and may assimilate 

photorespiratory ammonia and the ammonia which is produced via nitrate 

reduction (Pearson & Ji, 1994). 

Previous work has described reductions in amino acid incorporation into 

protein (Mattas & Pauli, 1965; Dhindsa & Bewley, 1976b), and increases in 

protein degradation (Hsaio, 1976; Paleg & Aspinall, 1981; Riccardi et al, 

1998), in other plant species during water deficits, which may contribute 
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GSl - CYTOSOLIC GS 
(McNally et aI, 1983) 

Reportedly thermally stable; (Guiz 

et aI, 1979; McNally et aI, 1983b; 
Chandler et aI, 1985). 

GS2 -CHLOROPLASTIC/PLASTIDIC 
(& GOGAT) (Forde & Woodall, 1995) 
Reportedly thermally unstable 

above 450 C, and inactive above 
60 0 C (Guiz et aI, 1979; MCNally 
et aI, 1983b; Chandler et aI, 
1985) . 

However Chandler et aI, (1985), reported that the chloroplastic GS2 
isoform from Panicum maximum and Panicum miliaceum was more heat stable 
than the cytosolicisoform; and the chloroplastic GS2 isoform from 
Nicotiana tabacum is also relatively heat stable (perhaps as it is 
glycosylated), Nato et aI, (1984) 

Subcellular location in the cytosol 
indicates a potential role for GS1 
in photorespiratory nitrogen 
assimilation (Keys et aI, 1978; 
McNally & Hirel, 1983) 

Wallsgrove et aI, (1983), suggest that 
GS1 would access a high ATP:ADP ratio 
and may have an important role in 
photorespiratory ammonia assimilation 

When photorespiration is 
suppressed in P.sativum & 
P. vulgares grown at elevated CO2 
concentrations, GS2 (but not GS1 
mRNA decreases (Cock et aI, 1991) 
inferring a role for GS2 in 
photorespiratory ammonia 
assimilation (however this is 
not a short-term response) 

McNally et aI, (1983) & Pearson & 
Ji, (1994) suggested that GS2 may 
be primarily responsible for 
photorespiratory ammonia 
assimilation, and probably in the 
assimilation of ammonia produced 
during nitrate reduction (indeed 
many C3 species exhibit very low 
GS1 activities 

Woo & Osmond, (1982), suggest that both GS1 and GS2 may assimilate 
photorespiratory ammonia 

GSl activity remains constant during 
senescence whereas GS2 decreases, 
inferring an important role for GSI 
in the synthesis of glutamine for 
export (in rice; Kamachi et aI, 1991) 

GS2 predominates early in the season 
while GS1 becomes more active towards 
senescence, inferring a storage/ 
tanslocation role for GS1 (in 
temperate deciduous trees; Pearson 
& Ji, 1994) 

Chloroplastic GS activity is 
three to four fold higher in C3 
than in C4 species (and often 
predominates in C3 legumes 
McNally et aI, 1983) 

Two GS isoenzymes have previously been isolated in v. faba (Barratt, 
19801 
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substrates towards the production of nitrogenous osmotica. Indeed earlier 

quantification of polyribosome levels indicated that proline synthesis into 

proteins may be inhibited during water deficits (Stewart, 1981; Rhodes et 

aI, 1986), particularly in rapidly growing tissues (Bewley, 1981), possibly 

as growing tissues contain more membrane-associated polyribosomes which may 

exhibit increased water deficit sensitivity than non-bound polyribosomes 

(stewart, 1981). 

The concentrations of the nitrogen assimilation products (individual amino 

acids and allantoin) were also quantified and are discussed in this 

chapter. Transaminases shuttle amino groups between appropriate acceptors 

allowing the production of the approximately twenty amino acids required 

for protein synthesis (Stryer, 1988). Th8 activities of key transaminases 

(which influence which amino acids accumulate) are discussed, as related to 

the metabolic derivation of each amino acid and to the potential 'roles' of 

individual amino acids in plant metabolism. 

6.2 MATERIALS & METHODS 


6.2.1 NITRATE ASSAY (after Sloan & Sublett, 1966) 


Cadmium was prepared by placing zinc rods in 20% CdS04 • 1 m1 of plant sample 


(see section 2.6.1) was added to 2 ml buffer (22.25 ml 35% N8 3 & 21.68 g NB4CI 

per litre) with 1 ml 1M MgClz (which removes phosphate). 1 g of cadmium was 

added. Solutions stood at room temperature for 3 hours (with agitation every 

thirty minutes). 1 ml was then removed and added to 1 ml sulphanilic acid (1% 

sulphanilic acid in 3M HCI) with 1 ml N-(Naphyl) ethylene diamide dichloride 

(0.02%). After 20 minutes OD was read at 540nm, and concentrations were 

determined using a KN03 standard curve. 



174 


& 

6.2.2 NITRATE REDUCTASE ASSAY (after Havill et aI, 1974; Stewart & Orebamjo, 

1979) 

NR activities were quantified in the leaves, roots, and nodules of V. faba at 

the end of the water deficit regime. Approximately 1 g of tissue was cut into 

fine strips and was placed in a thunberg tube which contained 5 ml of assay 

mixture (assay mixture; O.5M KN03 dissolved in 1 1 O.lM KH 2P04 (pH 7.5) with 

1 ml propanol added). Air was dislodged by vacuum infiltration to prevent an 

under-estimation of NR activities (Canvin & Woo, 1979; Yoneyarna, 1981), and 

root samples were maintained in a vacuum. The samples were incubated in the 

assay mix in the dark at 25 °C for 1 hour. 1 ml of assay solutio, was then 

added to 1 ml sulphanilic acid (1% sulphanilic acid in 3M HCI) and Iml NED 

(0.02% alpha-naphthyl ethylene diamine dihydrochloride in water). After 35 

minutes 00 was determined at 540nm. 

6.2.3 GS & GDH ENZYME EXTRACTIONS 

Extractions were performed on i~e using cooled laboratory hardware. 0.5 - 1 g 

fresh plant material was finely crushed using liquid nitrogen and a pestle and 

mortar. 5 ml extraction buffer was added, which contained 10 roM Mg S04; 5 roM 

glutamic acid; 1 rnM EDTA disodium salti 1 roM dithiothreitol; 1 roM glutathione; 

2 roM mercaptoethanol; and 2% soluble polyvinylpyrrolidinei in 25 roM Tris-Hel 

at pH 8.0. 1 ~g Tween 90 was added. The mixture was then agitated and passed 

into a centrifuge tube (through double muslin) and spun down at 30000 g for 10 

minutes (5 OC). Final liquid volumes were recorded. 

6.2.4 GLUTAMINE SYNTHETASE TRANSFERASE ASSAY (after Rhodes et aI, 1975). 

A GS assay mix was prepared which contained: 6.05 g Trizrna basei 5.7 g 

Glutamine; 0.695 g hydroxyl amine; 0.2775 g MnC12; and 0.07 g ADP mixed in 
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SOml distilled water (pH 6.4). A sodium arsenate solutl'on was prepared which 

contained: 8 g sodium arsenate; 1.2 g Tris-Cl buffer; 100 ml distilled water 

(pH 6.4). 


Enzyme extracts were used in part to perform crude assays. A second portion of 


each extract was loaded onto a DEAE-sephace1 column for GS isoform separation. 


GS CRUDE ASSAY PROCEDURE 


Four test tubes, each containing 0.8 rol assay mix and 0.1 ml sodium arsenate 


solution were pre-incubated at 30oc. 0.1 ml of enzyme extract was added to 

each tube. Reactants were incubated for 5; 10; 15; or 30 minutes, after which 

time reactions were stopped using 1 ml FeCl3 additions (80 g Trichloroacetic 

acid; 52 g FeCl3; and 160 ~l 3M HCl in 2 1 with distilled water; filtered 

through Whatroan's No.1 general purpose filter paper). 00 was determined at 

SOOrum, and GS activities determined using a GS standard. 

SEPARATION OF GS ISOFORMS 

1.5 X 15 em DEAE-Sephacel columns were prepared and equilibrated with 25 roM 

Tris-Cl buffer prior to use. Extraction buffer was pumped through the columns 

for 30 minutes prior to loading. The enzyme extract was loaded onto the column 

at a flow rate of 18 rol hour-1 . Once loaded, the flow rate was reduced to 9 ml 

hour-1 and the column was flushed for 5 minutes with extraction buffer. A 0.7S 

M KCl solution (dissolved in 25 roM Tris-Cl buffer) was dripped into the buffer 

which flowed through the column in order to separate the isoforms, which were 

eluted in discreet fractions into sixty tubes using a fraction collector. The 

fractions were individually assayed for GS activities, the reactions being 

stopped after five minutes. Comparisons with a GS standard allowed profiles to 

be produced (see appendix III), which highlighted the activities of the GS 

----------........... 
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isoforms within the nitrogen and water deficit regimes. 

Differences in the thermostability of GS1 & GS2 isoenzyrnes are useful in their 

identification (Guiz et aI, 1979,' McNally t 1 1983b he a, ; Candler et aI, 1985; 

see table 6.1, pg. 172). Accordingly GS isoforrn extracts were assayed at 

increasing temperatures, and were thus identified. 

6.2.5 GLUTAMATE DEHYDROGENASE ASSAY (after Taylor & Havill, 1981) 

950 ~l lOOmM tris-acetate buffer; 100 ~l 1.5M ammonium chloride; 100 ~l 

10mM calcium chloride; 100 ~l 4mM NADE; and 50 ~l enzyme extract (extracted as 

for GS analysis; section 6.2.4) were placed in a cuvette. 100 ~l 150mM a

ketogluterate was added to start the reaction. Disappearance of NADPH was 

followed at 340nm. 

6.2.6 TOTAL AMMONIA ASSAY (after MCCullough, 1967) 

Solution 1 contained 109 phenol; 50mg sodiwn nitroprusside 1-1 distilled 

water; solution 2 contained 5 g NaOE; 10 m1 Sodium Hypochlorite; 53.7 g 

Na2HP04 1-1 distilled water. 2.5 ml of each solution was added to 0.5 ml plant 

extract (see section 2.6.1). Following incubation at 37°C for 35 minutes, OD 

was measured at 625nM, and concentrations determined using a standard curve. 

6.2.7 PROTEIN ASSAY (after Lowry et aI, 1951; Taylor & Havill, 1981) 

1 ml alkaline copper solution (50 ml 2% Na 2C03 in O.lM NaOE, mixed with 50 m1 

0.5% CuS04 .5H2 0 in 1% Na/K tartrate), was added to 0.2 ml fresh plant extract 

(in potassium phosphate buffer pH 7.4). The samples were whirrli-mixed and 

then left to stand for 15 minutes. 0.1 ml Folin-Ciocalteu reagent (diluted 

1:10) was added, with rapid mixing. OD was determined at 750nm after 45 

minutes, and concentrations determined using a standard curve. 

----------.......... 
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6.2.8 GC AMINO ACID ANALYSIS 


Plant extracts were prepared according to section 2.6.2. k~ino acids were 


separated from other solutes on Dowex 50+ acidic ion exchange resin (50 X 8 


400 mesh on 0.5 X 5 cm) columns, and then eluted with 6 M NH4 OH. Samples were 

rotary evaporated and then re-suspended in 1ml double distilled water. 

Neutral/basic amino acids were then separated from acidic amino acids on Dowex 

1 acetate strongly basic ion exchange resin columns (1 X 8 400 mesh on 0.5 X 5 

em), neutral and basic amino acids being eluted with 7.5 ml distilled water; 

acidic amino acids were eluted with 7.5 ml 2M acetic acid. The eluents were 

¢rotary evaporated and then re-suspended in 1 ml distilled water, all fractions 

being stored at -20°C until required. 

The relative instability of the GC derivatives dictated that derivatisation 

and analysis occurred on the same day. Amino acids were transformed into N (O

S), heptafluorobutyl isobutyl esters (n-EFBI esters). 0.25 ml amino acid 

extract was placed in a 1 ml reacti-vial and dried at room temperature under a 

steady stream of nitrogen (g). 0.2 ml dichloromethane was then added, and the 

mixture re-dried under nitrogen. This process was repeated. The residues were 

then re-suspended in an acetylchloride : 2 methyl I-propanol mixture (3:10 

v/v). The vials were sealed and then heated to 2000C for 30 minutes. After 

cooling, and a further evaporation to dryness under nitrogen (g), 0.05 ml 

heptafluorobutyric anhydride was added. The vials were re-sealed, and heated 

at 2500C for 10 minutes. After cooling and evaporating to dryness under 

nitrogen (g), the final residue was re-suspended in 0.5 ml ethyl 

acetate/acetic anhydride, (1:1 v/v). 

An SGE 25QC2/BPX 5, 25 m long column was utilised for amino acid analysis, 

with a 0.25 micron. film thickness; an I.D. of 0.22 rnm; and an D.D. of 0.33 

mm; with a non-polar bonded phase with 5 % phenyl equivalent modified 
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siloxane. 

1 ~l of derivatised amino acid sample was injected into a Perkin Elmer B420 

capillary gas chromatograph. Injector temperature was 3S0OC. The initial 

column temperature (BOOC) was maintained for 4 minutes and then raised to 

2S0OC at a rate of Boe min- 1 for neutral/basic amino acids, and 160 C min-1 for 

acidic amino acids. The carrier gas was air / nitrogen / hydrogen throughout. 

Pressure was maintained at 10 Pa/min. Detection involved flame ionisation at 

3S0OC. 

6.2.9 ALLANTOIN ASSAY (after Fujihara et aI, 1987; Resines et aI, 1993) 

0.5 ml NaOS (SM) was mixed with 1 ml plant sample (prepared as described in 

section 2.6.1), and boiled vigorously for 7 minutes. Samples were then 

incubated at 200 e for 30 minutes, and then 5 ml SM Hel was added, followed by 

two extra drops. 5 ml phenylhydrazine solution (0.33%) was added and the 

samples were then boiled for 2 minutes, before being placed in an ice slurry 

bath for a further 3 minutes. 1.5 ml 3M Hel was added to the samples, followed 

by 0.5 ml potassium ferricyanide (1.67%). Sample volumes were made up to 15 ml 

with distilled water. 00 was recorded at SOOrum, after 20 minutes, and 

concentrations were determined using a standard curve. 

6.2.10 ALANINE AMINOTRANSFERASE (after Hedley & Stoddart, 1971) 

0.2M DL-alanine was prepared in 0.1 M tris buffer (pH 7.4). A 0.002M a

ketogluterate; 50 ml lactate dehydrogenase; 100 ~l NADH solution was prepared 

in O.lM tris buffer pB 7.4. 1 ml of each of the above was pipetted into 1 ml 

plant sample (fresh pulverised plant material in potassium phosphate buffer pH 



179 


7.4 (with 1 roM EDTA)). aD was determined at 546nrn, (after blanks had been run 

omitting the alanine substrate). Changing ODs were measured (representing the 

disappearance of NADE). 

6.2.11 ASPARTATE AMINOTRANSFERASE (after Hedley & Stoddart, 1971) 

O.lM I-aspartate was prepared in O.lM tris buffer (pH 7.4). A 0.002M a

oxogluterate; 50 ~l malate dehydrogenase; 100 ~l MADH solution was prepared in 

O.lM tris-buffer (pH 7.4). 1 ml of each of the above was pipetted into 1 m1 

fresh plant extract (fresh pulverised plant material in potassium phosphate 

buffer pH 7.4 (with 1 rnM EDTA)). aD was deter.mined at 546nrn (after blanks had 

been run omitting the aspartate substrate). Changing ODs were measured 

(representing the disappearance of NADH) . 

6.2.12 ASPARAGINE SYNTHETASE (after Rogenes, 1975; Scott & Farnden, 1976; Joy 

& Ireland, 1990) 

0.5 ml distilled water and 0.1 ml plant extract (fresh pulverised plant 

material in potassium phosphate buffer pH 7.4 (with 1 roM EDTA)) were added to 

0.5ml assay mix, which contained: 50 roM Tris-BCl buffer (pH 7.8); 10rnM 

glutamine; 5rnM ATP; 100 roM aspartate; lOroM magnesium sulphate; 2roM DDT; and 

O.lmM EDTA. OD was determined at 340nm, (after blanks had been run omitting 

the glutamine and aspartate substrates), and changing ODs were measured. 

6.2.13 HOMOSERINE DEHYDROGENASE 

0.1 rnl 4mM NADP; 0.1 ml 100roM homoserine; 0.2 ml 50roM Tris buffer (pH 8.4 with 

5rnM EDTA); and 0.5 ml distilled water were pipetted into a cuvette. 0.1 ml 

plant extract (fresh pulverised plant material in potassium phosphate buffer 

pH 7.4 (with 1 rnM EDTA)), was added, and the rate of disappearance of NADP 

followed at 340nm (after blanks had been run omitting the homoserine 

• 
tr 
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substrate). 

6.3 RESULTS & DISCUSSION 

6.3.1 PRIMARY NITROGEN ASSIMILATION 

6.3.1.1 NITRATE REDUCTASE ACTIVITIES 

Low nodular NR activities were recorded (as previously reported, Raven & 

Sprent, 1993), and therefore nodular NR activities are not presented. 

Figs. 6.2 & 6.3 and anoVa analyses reveal that significantly lower leaf and 

root NR activities were recorded in 'no nitrate' supplied as compared with 

medium nitrogen supplied non-nodulated V. faba, which may have been 

attributable to constitutive NR activities (Clement et aI, 1978; Remmler & 

Campbell, 1986; Rufty et aI, 1989). However it is possible that trace 

medium nitrogen concentrations may have resulted in NR induction in 'no 

nitrate' supplied V. faba (pg. 30), particularly as some earlier workers 

have been unable to detect constitutive NR activities in v. faba (Andrews 

et aI, 1990). 

NR activities increased sig~ificantly in the leaves and roots of V. faba as 

the concentration of the supplied nitrogen source increased. This is in 

agreement with earlier reports that nitrate net uptake rates (Ourry et aI, 

1995), and the concentration and activity of NR reportedly increase in 

v. faba (Andrews et aI, 1984; sutherland et aI, 1985), and in other plant 

species (Bennet et aI, 1964; Alfredi & Hewitt, 1964; Beevers & Hageman, 

1969; Nicholas et aI, 1976; Stewart & Orebamjo, 1979; Smirnoff et aI, 1984; 

Somers et aI, 1983; Sprent & Thomas 1984; Remmler & Campbell, 1986; 

Andrews, 1986; Rhoden et aI, 1987; Martinez & Cerda, 1989; Campbell, 1988; 

Galangau et aI, 1988; solomonsen & Barber, 1990; Redinbaugh & campbell, 

1991; Pelsey & Caboche, 1992; Min et all 1998), within a few hours of 

nitrate application (Oaks et aI, 1972). 
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Fig. 6.2 NR activities in the leaves of (a) non-nodulated, (b) nodulated, 
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Figs. 6.2 & 6.3 illustrate that non-nodulated' rnb' d ' co lne nltrogen' supplied 

V. faba maintained NR activities at values Whl'ch blwere compara e with those 

exhibited by '1/2 nitrate' supplied V. faba; and anova analyses reveal that 

significantly greater NR activities were exhibited in the leaves and roots 

of 'spiked' than of 'non-spiked' V. faba. Indeed while some earlier workers 

have reported decreasing nitrate uptake in other plant species in the 

presence of (even low concentrations of) medium ammonia (Minotti et ai, 

1969b; Smith & Thompson 1971; Stewart 1972; Breteler & Smit, 1974: Mif1in 

et al, 1980), and during pH and cation concentration increases (Townsend, 

1969; Schrader, 1978), contrasting earlier literature describes maintained 

nitrate uptake in other plant species when supplied with a medium ammonia 

source (Orebarnjo & Stewart, 1975a; Smirnoff et al, 1984). 

Furthermore while ammonia nutrition has previously been reported as 

inhibitory for NR activities in some plant species (Orebamjo & Stewart, 

1975a; Clement et al, 1978; Srivastava, 1980; Schrader & Thomas, 1981; 

Yandow & Klein, 1986; Lee & Drew, 1989; Raper et al, 1991; Muller & 

Janiesch, 1993), and may reportedly result in the production of greater 

concentrations of a NR inhibiting protein (Stewart et al, 1974; Schrader & 

Thomas, 1981), contrasting earlier literature describes increases in NR 

protein, and in NR and NiR activities in some other plant species when 

supplied with 'combined nitrogen' as opposed to with nitrate or with 

ammonia nutrition (Oaks et al, 1977; Rigano et ai, 1979; Somers et ai, 

1983; Lillo & Henriksen, 1984; Guerrier, 1991). Indeed figs. 6.2 & 6.3 and 

anova analyses reveal that leaf N.R activities were significantly greater in 

•spiked' than in 'non-spiked' V. faba, a further indication that medium 

ammonia additions do not result in inhibited NR activities in this species. 

Three-fold greater shoot NR activities have previously been recorded in 

----------.......... 
I 
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Clematis vi taIba when supplied with ammonia as opposed to with nitrate 

nutrition (Bungard et a1, 1999). 

Anova analyses reveal that NR activities were significantly greater in 

nodulated than in non-nodulated 'no nitrate' supplied V. faba. Although 

nitrogen fixation (and medium ammonia additions) do not result in increased 

root nitrate concentrations (Sprent, 1980), correlations have previously 

been reported between NR and GS activities in nitrogen exporting plant 

parts (Hofstra et al, 1985). The inference is that NR activities may have 

increased concurrently with the quantified GS activity increases which were 

exhibited in nodulated as opposed to non-nodulated 'no nitrate' supplied 

tt. faba, and in . spiked' as opposed to . non-spiked' V. faba (figs. 6.6 & 

6.7), see also Bungard et a1, (1999). 

The significantly greater NR activities exhibited in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition may reflect the 

greater levels of net photosynthesis (fig. 3.22) and the significantly 

greater carbohydrate concentrations (figs. 4.3 & 4.4) which were also 

exhibited in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition. Phloem sap carbohydrate supplies are reportedly 

regulatory for nitrate uptake (Imsande & Touraine, 1994), and may therefore 

influence nitrate 'flux', which as discussed is reportedly regulatory for 

NR activities (Shaner & Boyer, 1976). NR is reportedly continuously 

synthesized and degraded as affected by nitrate availabilities (Somers et 

aI, 1983). Correlations have previously been reported between NR activities 

and both ambient photosynthesis (Ferrario-Mery et aI, 1998; Foyer et aI, 

dd 't' 11 to being
1998) and sucrose concentrations (Cheng et aI, 1992). A ~ ~ona Y 


a requirement for nitrate uptake, carbon skeletons and reductants are 


, " d for amino acid production
required for the maintenance of NR act~v~t~es an 
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(Stryer, 1988), and may be supplied directly via photosynthesis (Miflin, 

1974) . 

NR activities reportedly decrease rapidly during water deficits (Mattas & 

Pauli, 1965; Hsiao, 1973; Hsaio et aI, 1976; Rajagopal et aI, 1977; Banson & 

Hitz, 1982; Wellburn et aI, 1996; Ferrario-Mery et aI, 1998; Foyer et aI, 

1998). However figs. 6.2 & 6.3 illustrate that NR activities were maintained 

in V. faba until water deficits became severe, inferring that decreasing NR 

activities may not have been attributable to the effects of water deficits per 

5e. Indeed maintained NR activities during water deficits have previously been 

reported in a small number of studies involving other plant species (Smirnoff 

et aI, 1985; Ladley, 1990). 

Nitrate is xylem translocated utilising the transpiration stream (Ziegler, 

1975), and although xylem tensions may reportedly be independent of 

transpiration (Wei et aI, 1999; using direct pressure probe measurements), 

nitrate uptake is reportedly dependant on water flow during low water 

fluxes (Shaner & Boyer, 1976; Boyer, 1985). stomatal conductances, and by 

inference possibly transpiration and nitrate fluxes were maintained at 

increasingly great values in v. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (fig. 3.21); the same concentrated 

nitrogen nutrition which resulted in the exhibition of the greatest NR 

activities. However significant stomatal closure occurred during severe 

water deficits, even in v. faba which were supplied with concentrated 

nitrogen nutrition (fig. 3.21). The inference is that decreasing NR 

activities during severe water deficits may not have been attributable to 


water deficit effects per se, but to decreased stomatal conductances and by 


. . h & B yer 1976' Smirnoff et aI,

~nference decreased n~trate fluxes (5 aner 0, , 
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1985), and due to limitations in photosynthate availabilities (Foyer et al, 

1998) which would only became apparent in V. faba during moderate to severe 

water deficits (fig. 3.22), and would therefore coincide with decreasing NR 

activitios. Decreased nitrate fluxes during water deficits may have 

effectively limited NR activities in V. faba, as leguminous NR is 

reportedly characterised as high activity-low affinity (Stewart & Orebamjo, 

1979). 

Indeed some of the earlier literature which has reported that NR activities 

decrease during slight to moderate water deficits cited methodology which 

involved rapid water deficit imposition (e.g. Ferrario-Mery et aI, 1998, 

imposed water deficits in five days). Rapid water deficit imposition 

reportedly results in decreased stomatal conductances and photosynthetic 

activities (Jones & Rawson, 1979; Richardson & McCree, 1985), and therefore 

potentially in decreased nitrate fluxes; carbohydrate levels; and reductant 

levels which as previously discussed are considered regulatory for NR 

activities (Shaner & Boyer, 1976; Somers et aI, 1983; Foyer et al, 1998). 

Decreasing NR activities have previously been reported in T. durum when severe 

water deficit imposition was employed, whereas gradual water deficit 

imposition resulted in the exhibition of maintained NR activities (Smirnoff et 

aI, 1985). Therefore earlier researchers may have attributed the effects of 

nitrate flux and photosynthate limitations on NR activities to water deficits. 

While all of the tissues of V. faba are able to synthesise the enzyme 

complement for nitrate assimilation (Smirnoff & stewart, 1985), v. faba 

reportedly predominantly root assimilates nitrate (DurZan & Stewart, 1983; 

Sprent & Thomas, 1984; Andrews et aI, 1984; sutherland et aI, 1985), 

reducing only excess nitrate in the shoots (Andrews, 1986). Figs. 6.2 & 6.3 

confirm that greater NR activities were recorded in the roots than in the 
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leaves of V. faba irrespective of the nitrogen regime, and that nitrate 

above a threshold value (around 6 ~M nitrite /gFW/hr; figs. 6.4 & 6.5) was 

reduced in the leaves. Greater relative proportions of nitrate were shoot 

reduced in V. faba which were supplied with increasingly concentrated 

medium nitrate nutrition, with implications for internal energy balance, 

and hence for water deficit tolerance adaptations (Sutherland et aI, 1985). 

Indeed earlier work has indicated that less energy may be required for leaf 

than for root nitrate assimilation (Sprent & Thomas, 1984), as leaf 

assimilation has lower associated sucrose transport costs (Gutschick, 

1981). Furthermore excess photosynthates, reductants, and ATP may occur in 

the leaves (Sprent, 1980), and carbohydrate and reductant availabilities 

may reportedly limit nitrogen assimilation (Hanish ten Cate & Brete1er, 

1981; Ferrario-Mery et aI, 1998). 

However organic acid synthesis costs may complicate energy calculations as 

root NR allows easier disposal of excess OH- ions (Raven & Smith, 1976; see 

section 5.1, pg. 135; section 5.3.2, pg. 154). 

Shoot NR is reportedly more water economical than root NR, as shoot NR 

utilises photoreduction rather than root respiratory driven reduction 

(Sprent & Thomas, 1984; Smirnoff & Stewart, 1985). However nitrate uptake 

reportedly results in respiration enhancement (Redinbaugh & Campbell, 1991; 

Bowsher et aI, 1991), and hence in increased electron donor concentrations 

(Dry et aI, 1981), which are required both for nitrate and for ammonia 

assimilation, inferring that reductant availabilities may be increased in 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition. Furthermore, as protein concentrations (and therefore possibly 

synthesis) decreased during increasing water deficits (figs. 6.24 & 6.25), 

NADH availabilities may have increased, resulting in a partial alleviation 
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of root reductant shortages during water deficits. 

Photosynthesis was maintained in v. faba until water deficits became 

moderate to severe (particularly in V. faba when supplied with '1/2 

nitrate' and with 'combined nitrogen' nutrition; figs. 3.22). Reductants 

would therefore be required for CO 2 fixation in the leaves of V. faba (even 

during moderate water deficits) reducing the advantages associated with 

shoot nitrate reduction (Canvin & Atkins 1974; Smirnoff et aI, 1984; Hogh-

Jensen et ai, 1997) in this species. Shoot reduction may incur advantages 

in plants adapted to receive high photo flux densities, however V. faba is 

adapted to temperate regions and is therefore less likely to exhibit 

excessive leaf photosynthate and reductant availabilities (Dean~-Drurnmond 

et ai, 1980). 

It has been reported that the location of nitrate reduction does not 

significantly affect growth or nitrogen concentrations and appears to be a 

purely species-specific phenomenon (Lexa & Cheeseman, 1997). Capital costs 

may favour root nitrate assimilation in plants which frequently utilise 

ammonia or N2 as principle nitrogen sources (such as V. faba) , and may 

accordingly predominantly utilise root primary nitrogen assimilatory 

enzymes, and may 'expect' organic nitrogen delivery to the shoots. Such 

species may be metabolically and biochemically biased towards root nitrogen 

assimilation (see introduction; pg. 10). However figs. 6.2 & 6.3 illustrate 

that in non-nodulated V. faba root NR activities decreased during less 

severe water deficits than leaf NR activities. This may denote a more 

sensitive response of root NR to gradually decreasing photosynthate and 

reductant availabilities (fig. 3.22), inferring that the leaf assimilation 

of excess nitrate may result in the maintenance of nitrate reduction during 

more severe water deficits than would occur if nitrate was solely reduced 
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in the roots of V. faba, for reasons outlined on pg. 188. 

6 .3 . 1. 2 NITRATE 

Nitrate may be stored in vacuoles in the non-reduced form, thereby 

conserving energy (Cram, 1974; Pate, 1983; Monson et aI, 1994). Figs. 6.4 & 

6.5 and anova analyses reveal that nitrate concentrations were maintained 

in the following order in non-nodulated V. faba with respect to medium 

nitrogen nutrition: 'combined nitrogen' = '1/2 nitrate' > '1/10 nitrate' > 

'no nitrate'. Earlier reports have related that 'combined nitrogen' 

nutrition may result in decreased nitrate uptake (Minotti et aI, 1969b; 

Smith & Thompson 1971; Stewart 1972; Brete1er & Smit, 1974). However figs. 

6.18 & 6.19 illustrate that medium ammonia additions did not result in the 

exhibition of lower nitrate concentrations than those which were exhibited 

in V. faba which were supplied solely with (equimo1ar) nitrate nutrition 

(in agreement with earlier work on Lerona minor (Orebamjo & Stewart, 1975a), 

and on G. max (Bourgeais-Chaillou et aI, 1992)). 

Figs. 6.4 & 6.5 and anova analyses reveal that nitrate accumulated 

significantly in the leaves and roots of V. faba during water deficits. The 

tonoplast is not highly permeable to nitrate, making it an ideal osmotic 

solute (Shaner & Boyer, 1976). Plant tissue nitrate concentrations are 

generally in the range of 0-140 ~M/gDW and account for 0-10% of total plant 

nitrogen concentrations (Lorenz, 1973). High nitrate concentrations were 

exhibited in V. faba (figs. 6.4 & 6.5). Nitrate concentrations increased 

significantly in V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition. A potential for maintained nitrate 'fluxes' and 

hence NR activities is thus inferred in V. faba, particularly when supplied 

with concentrated medium nitrogen nutrition, as nitrate may reportedly be 
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mobilized from storage to metabolic pools during water deficits resulting 

in maintained NR activities (Shaner & Boyer, 1976 a&b; Chapin et al, 1988). 

Figs. 6.4 & 6.5 and anova analyses reveal that the nitrate concentrations 

recorded in nodulated and in non-nodulated 'no nitrate' supplied V. taba 

were not significantly different. Similarly ammonia 'spiked' and 'non

spiked' V. faba accumulated similar nitrate concentrations. Nitrogen 

fixation and ammonia assimilation do not result in nitrate production , (Sprent 1980; fig. 6.1), and figs. 6.6 - 6.9 illustrate that nodulated as 

opposed to non-nodulated 'no nitrate' supplied V. taba, and 'spiked' as 

opposed to 'non-spiked' v. taba exhibited greater GS and GDB activities; a 

reflection of the resultant increased ammonia assimilation. 

An inverse relationship between foliar NR activities and leaf nitrate 

concentrations has previously been reported in G. max (Tolley-Henry & 

Raper, 1991). Bowever fig. 6.4 illustrates that the highest leaf nitrate 

concentrations were exhibited in non-nodulated v. taba when supplied with 

'combined 	nitrogen' and with '1/2 nitrate' nutrition, the same nitrogen 

) 	 nutrition which resulted in the maintenance of the greatest NR activities 

throughout water deficits (figs. 6.2 & 6.3), indicating that nitrate 

accumulation during water deficits was not attributable to decreasing NR 

activities in this species. Furthermore nitrate accumulation commenced 

prior to NR activity decreases (which occurred only during severe water 

deficits; figs. 6.2 & 6.3), and may represent storage of excess nitrate, 

and osmotic adjustment. 

For high-nitrate plants such as v. faba a logic exists for relating reduced 

nitrogen to dry matter, and nitrate to the tissue water in which it is 

o 1 d 	 d et al, 1998),· as re;nforced by the concurrentd ~sso ve (Car enas-Navarro 	 ~ 
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maintenance of increasing RWCs (figs. 3.16 & 3.17) and increasing nitrate 

concentrations (figs. 6.4 & 6.5) in V. faba when supplied with increasingly 

concentrated medium nitrate nutrition during water deficits. 

6.3.1.3 GLUTAMINE SYNTHETASE (GS) ACTIVITIES 

Figs. 6.6 & 6.7 and anova analyses reveal that significantly greater GS 

activities were exhibited in the leaves and roots of non-nodulated V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition. GS 

activities were exhibited in the following order with respect to medium 

nitrogen nutrition: 'combined nitrogen' = '1/2 nitrate' > '1/10 nitrate' > 

'no nitrate' nutrition (in agreement with earlier work on P. sativum and 

G. max; Emes & Fowler, 1979; Ortega et aI, 1999). Indeed root GS is 

reportedly induced co-ordinate1y with NR induction (within thirty minutes 

of nitrate treatment in z. mays, Redinbaugh & Campbell, 1993), and may thus 

represent a primary response to environmental nitrogen (Hofstra et aI, 

1985; Redinbaugh & Campbell, 1991; Redinbaugh & Campbell 1993). 

Figs. 6.6 & 6.7 and anova analyses reveal that significantly greater root 

GS activities were exhibited in 'spiked' than in 'non-spiked' V. faba. 

Ammonia nutrition has previously been reported to result in greater GS 

activities than nitrate nutrition in other plant species (Arnozis et aI, 

1988). GS2 activities may be directly induced by nitrogen, and they may 

also reflect the increased sucrose concentrations which were exhibited in 

V. faba when supplied with increasingly concentrated nitrogen nutrition 

(figs. 5.2 & 5.3), and which also reportedly result in increased GS2 

induction (Oliveira & Coruzzi, 1999). Indeed GS activities reportedly 

increase as light levels increase (Edwards & Corruzzi, 1989: Elrnlinger & 

Mohr, 1992), and this effect is apparently not caused by increases in 

photorespiration (Cock et aI, 1991), but may be partly attributable to 
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increased carbon skeleton availabilities and ATP concentrations (Ortega et 

aI, 1999; see section 6.3.1.4). 

However GS activities were not significantly greater in the leaves of 

'spiked' as opposed to 'non spiked' V. faba when '1/2 nitrate' and 

'combined nitrogen' formed the basic nutrition, perhaps as such V. faba 

exhibited such high intrinsic root GS activities that primary nitrogen 

assimilation did not re~~ire increased leaf GS activities. Although fig. 

6.7 illustrates that root GS activities were not significantly greater in 

'spiked' than in 'non spiked' '1/2 nitrate' supplied V. faba, fig. 6.9 

illustrates that root GOB activities were significantly greater in 'spiked' 

than in 'non-spiked' '1/2 nitrate' supplied V. faba (see 6.3.1.4). 

Increased root GS activities in v. faba when supplied with increasingly 

concentrated medium nitrogen (and particularly with ammonia) nutrition may 

reflect increased ammonia assimilation (and de-toxification); roots being 

the predominant site of primary ammonia assimilation. Very little ammonia 

is shoot translocated (Min et aI, 1998), inferring that the greater leaf GS 

activities exhibited in 'spiked' than in 'non-spiked' 'no nitrate' and 

'1/10 nitrate' supplied V. faba may also reflect increased 

photorespiration, which may have been greater in 'spiked' V. taba (as net 

photosynthesis increased in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition; fig. 3.22). During water deficits 

actual rates of photorespiration reportedly decrease (Boyer, 1971), however 

relative rates of photorespiration to photosynthesis reportedly increase 

(Lawlor & Fock, 1975), an adaptation which may result in reduced 

photoinhibition. 

Abundant GS2 encoding polypeptides have previously been recorded in 

developing nodules (Bennet et aI, 1986; Cock et aI, 1991), however root as 
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opposed to nodular GS is reportedly primarily responsible for the 

assimilation of ammonia in nodulated plants (Scott & Farnden, 1976; 

Cullimore et aI, 1983). Figs. 6.6 & 6.7 and anova analyses reveal that 

significantly greater GS activities were exhibited in the leaves and roots 

of nodulated as opposed to non-nodulated 'no nitrate' supplied V. faba, 

which may reflect the assimilation of fixed nitrogen. 

(Particularly shoot) GS activities are reportedly relatively insensitive to 

water deficits (Taylor et aI, 1982). Accordingly figs. 6.6 & 6.7 and anova 

analyses reveal that GS activities were maintained in the leaves and roots 

of V. faba during water deficits (in agreement with work on other plant 

species, Taylor et aI, 1982). 

6.3.1.4 GLUTAl~TE DEHYDROGENASE (GOB) ACTIVITIES 

Figs. 6.8 & 6.9 and anova analyses reveal that GDB activities increased 

significantly in the leaves and roots of non-nodulated V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition. GOB 

activities were exhibited in the following order with respect to medium 

nitrogen nutrition: 'combined nitrogen' > '1/2 nitrate' > '1/10 nitrate' > 

'no nitrate' nutrition (in agreement with earlier reports which indicate 

that GOB activities may increase in other plant species when supplied with 

increasing ammonia availabilities; Durzan & Steward, 1967; Barash et aI, 

1975; Rhodes et aI, 1976; Taylor & Havill, 1981). Furthermore figs. 6.8 & 

6.9 and anova analyses reveal that significantly greater leaf and root GDB 

activities were exhibited in nodulated than in non-nodulated 'no nitrate' 

supplied V. faba, inferring a potential 'role' for GDB in the assimilation 

of the ammonia produced via nitrogen fixation. Figs. 6.8 & 6.9 and anova 

S ';gn';f'cantly greater GOB act'v'ties were recorded inanalyses reV ea1 that ... ... ..L..L..L 
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the roots and leaves of 'spiked' than of 'non-spiked' V. faba. 

While root GS activities were merely maintained at similar values in 

'spiked' as compared with 'non-spiked' '1/2 nitrate' supplied V. faba (fig. 

6.7), GDH activities were significantly greater in the leaves and roots of 

'spiked' than of 'non-spiked' '1/2 nitrate' supplied V. faba (figs. 6.8 & 

6.9), indicating GDH activities increased in order to assimilate the 

additional a~onia 'spike'. Indeed increasing exogenous ammonilli~ 

concentrations have previously been reported to result in the exhibition of 

increasing root and shoot GDH activities (Barash et aI, 1975; Taylor & 

Havill, 1981; Arnozis et aI, 1988), as interpreted as adaptive responses to 

avoid ammonia toxicity (Rhodes et aI, 1976; Taylor & Havill, 1981). High 

medium ammonia concentrations may also reportedly result in the exhibition 

of reduced root GS & GOGAT activities (Rhodes et aI, 1976; Taylor & Havill, 

1981, in other plant species). 

Figs. 6.8 & 6.9 and anova analyses reveal that GDH activities were 

maintained in the leaves and roots of non-nodulated and nodulated V. faba 

throughout water deficits. Water deficits did not result in significantly 

increased glutamine concentrations (tables 6.2 - 6.7). However greater 

glutamine concentrations were exhibited in 'spiked' than in 'non-spiked' 

V. faba, and greater glutamine concentrations may have contributed to the 

relatively greater increases in GDH as opposed to GS activities which were 

exhibited in 'spiked' V. faba, as high glutamine concentrations may 

reportedly inhibit GS and exert positive control on GDB activities (Rhodes 

etal,1976). 

Furthermore GDB is reportedly inhibited by high concentrations of ATP while 

GS has an ATP requirement, and is reportedly stabilised by ATP (Stewart & 
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Rhodes, 1977; Rhodes et aI, 1979; Stryer, 1988; Lam et aI, 1996; Ortega et 

aI, 1999). The inference is that as ATP concentrations may decrease during 

water deficits (due to decreasing photosynthesis, fig. 3.22, and the 

continuing maintenance of plant water deficit tolerance adaptations e.g. 

osmotic adjustment - see section 4.4), the assimilation of ammonia via the 

GOB pathway may increase. 

Indeed GOB activities increased during water deficits in the leaves and 

roots of 'spiked' V. faba. Increasing GOB activities were strongly 

correlated with increasing water deficits in 'no nitrate' and '1/10 

nitrate' supplied 'spiked' V. faba (see appendix II a). 10-20% of total 

ammonia assimilation has previously been attributed to assimilation by GOB 

in other plant species during water deficits (Rhodes et aI, 1986), and GOB 

activities have previously been reported to increase (three-fold) during 

severe water deficits (Kaur et al, 1985). 

Increasing GOB activities in 'spiked' V. faba may enable increased nitrogen 

assimilation during S2vere water deficits, during which slight decreases in 

NR activities were apparent (figs. 6.2 & 6.3), inferring that potential 

benefits in terms of maintained nitrogen assimilation may be incurred in 

V. faba when supplied with medium ammonia additions during water deficits. 

It has been reported that GOB may operate primarily in the direction of 

glutamate oxidation, and may thus provide skeletons for the TeA cycle 

during periods of carbohydrate limitation. Indeed proteolysis and GDB 

activities reportedly increase with the concurrent release of ammonia and 

metabolically active amino acids during periods of sucrose depletion in 

Daucus carota cells (Robinson et aI, 1992), and GOB activities reportedly 

decrease when sucrose is supplied to such sucrose-deficient cells. Bowever 

while figs. 6.10 & 6.11 illustrate that significantly greater ammonia 
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concentrations were recorded in 'spiked' than in 'non-spiked' V. faba, and 

in 'combined nitrogen' supplied than in '1/2 nitrate' supplied V. faba, 

sucrose deficiencies were not exhibited by v. faba, and the employed GDH 

assay (se~tion 6.2.10) quantifies the GDH reaction in the direction of 

ammonia assimilation. Amino acid accumulation continued until water 

deficits were severe (20-25% PEG; 45-30% Control Water; figs. 4.5 & 4.6), 

by which stage protein concentrations had more than halved (figs. 6.12 & 

6.13), inferring that maintained nitrogen assimilation may have contributed 

substrates towards osmotic adjus~~ent. While GS activities were merely 

maintained during water deficits (figs. 6.6 & 6.7; albeit at greater 

activities in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition, and in 'spiked' than in 'non-spiked' V. faba) , root and 

leaf GDH activities increased in 'spiked' V. taba during water deficits, 

inferring a 'role' for the GDH mediated assimilation of ammonia in V. faba 

during water deficits. 

6.3.2 TOTAL AMMONIA 

Figs. 6.10 & 6.11 and anova analyses reveal that total ammonia 

concentrations were significantly greater in non-nodulated V. faba when 

supplied with medium ammonia additions (i.e. with 'combined nitrogen', as 

opposed to with 'no nitrate', '1/10 nitrate', or '1/2 nitrate' nutrition); 

in 'spiked' as opposed to 'non-spiked' V. faba (and in nodulated as opposed 

to non-nodulated 'no nitrate' supplied V. taba). 

Figs 6.10 & 6.11 and anova analyses reveal that total ammonia 

concentrations were maintained the leaves and roots of non-nodulated 

V. faba during water deficits, and that total ammonia concentrations 

increased significantly in the leaves of 'spiked' V. faha during water 



204 


( a) 

-

45 ........................................................................................................................................................... . 


40 

35 

~ 30 
~ 25 
..... 20 

~ 15 

1~~~~~~~~~~~==~~~~~~~~~~ 
o +---------_+_ 

o 5 10 25 

% PEG 6000 

(b) 

~~r 
I 

~ 30';' 

~ 25i ..... 
20 

::0: 
~ 15 

10 


5 


0 

100 85 70 60 45 30 

Water Supplied (% Control) 

(c) 

90 f·····················································........................................................................................................~ 
80 

70 

~ 
~ 
..... 
~ 

I 

60 t 
50 + 
401 
30 ! 

Z'<---::,.£----~-
20 

. 

: 

o 5 10 15 20 25 

% PEG 6000 

Fig. 6.10 Total ammonia concentrations in the leaves of (a) non-nodulated, 
(b) nodulated, and (c) 'spiked' V. faba during water deficits when supplied 
with various nitrogen sources where;. = 'no nitrate'; 6 = '1/10 
nitrate'; .A = '1/2 nitrate'; • = 'combined nitrogen' 



205 

T 

10 
J<.-""_______ 

5 

o _~___+I-------------~--------
···z'5- 5 0-·····-.·····················-5· .. -.. --.... -.. ············1-0···········- ... -.. ········1-5···························,2-G-··············· 

% PEG 6000 

(b) 

40 .,.. 

35 

o +-1--
100 85 70 60 45 30 

Water Supplied (% contol) 

(C) 

90 ................................................................................................................................................................ . 

I 

80 + 

30 

3: 25 
Q 

~ 20 

~ 15 

10 

5 +

70 

3: 60 . 
o 50 T
O"t 

....... 40 ,..-----_1 
~ 30 

~~lt~--~-=~~~~----~r-------~.---------~------~~ 

o 5 10 15 20 2S 

% PEG 6000 

Fig. 6.11 Total ammonia concentrations in the roots of (a) non-nodulated, 
(b) nodulated, and (c) 'spiked' V. faba during water deficits when supplied 
with various nitrogen sources where;. = 'no nitrate'; ~ = '1/10 
nitrate'; .. = '1/2 nitrate' i • = 'combined nitrogen' 



206 


deficits. 

It is thus apparent that increasing ammonia concentrations were exhibited 

in V. faba when supplied with increasingly concentrated medium ammonia 

additions. However ammonia toxicity symptoms (e.g. growth rate 

restrictions; wilting; leaf expansion and photosynthetic rate decreases; 

inhibited water uptake; and decreased leaf water potentials; pill & 

Lambeth, 1977; Tolley-Henry & Raper, 1986) were not exhibited in V. faba. 

Greater net photosynthesis was maintained during water deficits in V. faba 

when supplied with 'combined nitrogen' as opposed to with nitrate nutrition 

(and potentially in 'spiked' than in 'non-spiked' V. faba, due to 

significantly increased CLAsi fig. 3.20), and therefore potentially more 

photosynthates and reductants were available to V. faba when supplied with 

medium ammonia additions, which may have resulted in the maintenance of 

sufficiently low ammonia concentrations that ammonia toxicity symptoms did 

not develop. 

6.3.3 PROTEIN 

Figs. 6.12 & 6.13 and anova analyses reveal that protein concentrations 

were significantly greater in the leaves and roots of non-nodulated V. faba 

when supplied with 'combined nitrogen' as opposed to with (equimolar) '1/2 

nitrate' nutrition. Protein concentrations were exhibited in the following 

order with respect to medium nitrogen nutrition: 'combined nitrogen' > '1/2 

nitrate' > '1/10 nitrate' > 'no nitrate'. Indeed increased protein 

concentrations have previously been reported in z. mays when supplied with 

'combined nitrogen' as opposed to with nitrate or with ammonia nutrition 

(Domska, 1974). Furthermore ammonia nutrition has previously been reported 

to result in the exhibition of 4.3-fold higher soluble plant protein 
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concentrations than nitrate nutrition in B. vUlgaris (Raab & Terry, 1994), 

and in greater nitrogen concentrations per percentage plant dry weight in 

Casuarina equisetifolia (Martinez-Carrasco et aI, 1998). Greater protein 

concentrations in V. faba when supplied with medium ammonia additions may 

reflect the greater nitrogen assimilatory enzyme activities which were 

recorded in V. faba when supplied with medium ammonia additions (figs. 6.2; 

6.3; 6.6 - 6.9), and the fact that ammonia is toxic (Raven, 1985) and 

requires rapid assimilation. Accordingly significantly greater protein 

concentrations were exhibited in the roots of 'spiked' than of 'non-spiked' 

V. faba, roots being the primary site of nitrogen assimilation in V. faba. 

Furthermore nodulated as opposed to non-nodulated 'no nitrate' supplied 

V. faba maintained significantly greater leaf and root protein concentrations, 

perhaps a reflection of the assimilation of fixed nitrogen (table 2.3). 

Figs. 6.12 & 6.13 and anova analyses reveal that protein concentrations 

decreased significantly in the leaves and roots of non-nodulated V. faba 

during water deficits (in agreement with work on other plant species; Taylor 

et aI, 1982; Wellburn et al, 1996). Decreasing protein concentrations may have 

contributed towards the production of nitrogenous osmotica in V. faba during 

water deficits (figs. 4.5 - 4.10; tables 6.2 - 6.7; Stewart, 1981). Decreasing 

protein concentrations may result in part from reduced protein requirements 

attributable to growth decreases during water deficits (see section 3.4). 

However earlier research involving nitrogen labelling has demonstrated that 

only fifty-four per cent of free amino acids and only five to fifteen per cent 

of proline are produced via proteolysis (Fukutuku & Yamada, 1984). Furthermore 

amino acid increases preceded protein decreases in V. faba, and continued when 

protein concentrations had decreased significantly (figs. 4.5; 4.6; 6.12; 
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6.13), indicating that reduced protein synthesis and/or enhanced protein 

degradation may not have solely accounted for nitrogenous osmotica production, 

inferring a 'role' for maintained primary nitrogen assimilation in nitrogenous 

osmotica production during water deficits in this species (figs. 6.2; 6.3; 

6.6; 6.7; 6.8; 6.9). 

6.3.4 TRANSAMINATION 


Fig. 6.1 highlights four aminotransferasesi (1) alanine aminotransferase; 


(2) aspartate aminotransferase; (3), asparagine synthetase; and (4) 


homoserine dehydrogenase; quantification of the activities of which provide 


information regarding which biochemical pathways are predominantly utilised 


in V. faba when subjected to the pre-specified nitrogen and water deficit 


regimes (tables 2.3 & 2.6; fig. 2.2). 


6.3.4.1 ALANINE AMINOTRANSFERASE 

glutamate + pyruvate a-ketogluterate + alanine 

glutamate + pyruvate ------..,..,... alanine + 2-oxogluterate 

(Rhodes et ai, 1986) 

Figs. 6.14 & 6.15 and anova analyses reveal that significantly greater 

alanine aminotransferase activities were exhibited in the leaves and roots 

of non-nodulated V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition. Furthermore nodulated 'no nitrate' supplied 

V. faba exhibited significantly greater leaf and root alanine 

aminotransferase activities than non-nodulated 'no nitrate' supplied 

V. faba; and 'spiked' V. faba exhibited significantly greater leaf and root 

activities than 'non-spiked' V. faba. This is consistent with the 

significantly greater alanine concentrations which were exhibited in the 
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leaves and roots of v. faba when supplied with increasingly concentrated 

medium nitrogen nutrition (tables 6.2; 6.3; 6.6 & 6.7). 

Alanine aminotransferase reportedly lacks in vitro amino acid substrate 

specificity (Bryan, 1976), however organic acids are compartmentalized 

(Oaks & Bidwell, 1970), inferring that pyruvate availability may regulate 

alanine aminotransferase activities. Fig. 3.22 illustrated increased net 

photosynthesis in V. faba when supplied with increasingly concentrated 

mediQ~ nitrogen nutrition, inferring an increased capacity for pyruvate 

production in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition. Furthermore it has been highlighted that pyruvate and 

pyruvate kinase concentrations may increase in other plant species when 

supplied with increasingly concentrated medium nitrogen nutrition (Platt et 

ai, 1977; Champigny & Foyer 1992), further inferring an increased potential 

for pyruvate utilization and therefore for alanine aminotransferase 

activities in plants when supplied with increasingly concentrated medium 

nitrogen nutrition. While significantly greater pyruvate concentrations 

were not exhibited in V. faba when supplied with increasingly concentrated 

nitrogen nutrition (tables 5.1 - 5.6), this may reflect an increased 

incorporation of the carbon skeletons of pyruvate into amino acids in 

V. faba when supplied with concentrated medium nitrogen nutrition (as 

supported by the data illustrated in figs. 4.5 & 4.6), as opposed to 

increasing pyruvate accumulation. 

Figs. 6.14 & 6.15 and anova analyses reveal that alanine aminotransferase 

activities decreased significantly in the leaves and roots of V. faba 

during water deficits. This contrasts with the increasing alanine 

concentrations exhibited in the leaves and roots of non-nodulated and 

nodulated V. faba during increasing water deficits (tables 6.2 - 6.7). 
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However the actual concentrations of alanine which were exhibited accounted 

for very small fractions of the overall amino/imino acid pool during water 

deficits. Down-regulation of alanine aminotransferase may have been a 

regulatory response, as alanine accumulation may reportedly inhibit GS 

activities and hence ammonia assimilation (Miflin et a1, 1980), and 

maintained nitrogen assimilation is required for the production of 

nitrogenous osmotica during water deficits (and was exhibited in V. faba 

during water deficits; figs. 6.2; 6.3; 6.7 - 6.9). Furthermore alanine 

accumulation may reportedly result in the exhibition of increased stomatal 

closure in V. faba and thereby result in decreased carbon acquisition 

(Sharma & Rai, 1989), and photoassirnilates and reductants are also required 

for the maintenance of water deficit tolerance adaptations and nitrogen 

assimilation. It has previously been reported that alanine decreases may 

correspond with aspartate increases in some plant species (Bryan, 1976). 

Indeed alanine concentrations decreased as asparagine concentrations 

increased in V. faba (tables 6.2 - 6.7; see also fig. 6.1), and the data 

infers that glutamate may have been primarily converted to asparagine via 

aspartate during water deficits (fig. 6.1), particularly in V. faba which 

were supplied with concentrated medium ammonia nutrition. 

6.3.4.2 ASPARTATE AMINOTRANSFERASE 

Glutamate + Oxaloacetate ----------,... ketogluterate + aspartate 

Figs. 6.16 & 6.17 and anova analyses reveal that aspartate aminotransferase 

activities were significantly greater in the leaves of non-nodulated V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition; and 

that significantly greater aspartate aminotransferase activities were 
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exhibited in the roots (the site of primary ammonia assimilation) of non

nodulated V. faba when supplied with 'combined nitrogen', as opposed to with 

nitrate or with 'no nitrate' nutrition. Furthermore aspartate aminotransferase 

activities were significantly greater in the leaves and roots of nodulated as 

opposed to non-nodulated 'no nitrate' supplied V. faba; and in 'spiked' as 

opposed to 'non-spiked' V. faba. Aspartate has a high N:C ratio, and is a 

substrate in the production of asparagine, which has an even greater N:C ratio 

(carbon economy may be important during the water deficit mediated decreases 

in net photosynthesis; fig. 3.22). Aspartate accumulated to the greatest 

concentrations in 'spiked' (as opposed to 'non-spiked') v. taba, consistent 

with an ammonia de-toxification 'role' (Bryan, 1976). 

Aspartate aminotransferase activities may reportedly decrease during water 

deficits (Kaur et ai, 1985). However figs. 6.16 & 6.17 and anova analyses 

reveal that aspartate dehydrogenase activities increased significantly during 

water deficits in all but the roots of nodulated v. taba, where intrinsic 

activities were already high, and increases may not have been necessary to 

ensure the assimilation of glutamate into aspartate for the production of 

nitrogenous osmotica. Increased aspartate aminotransferase activities 

corresponded with aspartate (and asparagine) increases during water deficits 

(tables 6.2 _ 6.7). However while aspartate concentrations increased in 

V. faba when supplied with increasingly concentrated medium nitrogen nutrition 

and during water deficits, it is apparent that these increases were not 

consistent within every nitrogen regime (tables 6.2 - 6.7; appendix II b). 

Aspartate increases were most apparent when ammonia was included in the 

medium. Furthermore the concentrations of aspartate accumulated were less than 

those of asparagine, inferring that the increased production of aspartate in 

v. faba both when supplied with increasingly concentrated nitrogen nutrition 
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and during water deficits may have represented a 'step' towards asparagine 

accumulation. This hypothesis is reinforced by the observation that asparagine 

accumulation occurred consistently in V. faba, and to greater concentrations 

than aspartate accumulation, and particularly in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (and with medium ammonia 

additions) and during water deficits (tables 6.2 - 6.7). 

6.3.4.3 ASPARAGINE SYNTHETASE 


The glutamine dependant asparagine synthetase enzyme is generally accepted 


as the major plant route for asparagine synthesis (Lam et aI, 1996; see 


fig. 6.1). 

Glutamine + aspartate (+ ammonia) ---..... glutamate + asparagine 

Figs. 6.18 & 6.19 and anova analyses reveal that asparagine synthetase 

activities were significantly greater in the leaves and roots of non-nodulated 

V. faba when supplied with 'combined nitrogen' as opposed to with (equimolar) 

nitrate nutrition. Furthermore asparagine synthetase activities were 

significantly greater in the leaves and roots of nodulated as opposed to non

nodulated V. faba; and in the leaves and roots of 'spiked' as opposed to of 

'non spiked' V. faba, throughout water deficits. Indeed fig. 6.1 illustrates 

that asparagine synthesis requires aspartate and glutamine (the synthesis of 

which involves direct ammonia assimilation), or potentially ammonia as 

substrates, and that asparagine synthesis therefore represents a useful 

ammonia de-toxification process within plants, particularly when supplied with 

concentrated nitrogen (and particularly with ammonia) nutrition. 

Asparagine synthetase activities have previously been reported to decrease in 

Vigna radiata nodules during water deficits (Kaur et a1, 1985); however this 
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is unexpected in the leaves and roots of V. faba which exhibited increased 

asparagine concentrations during water deficits (tables 6.2 - 6.7), 

particularly when supplied with medium ammonia additions. Accordingly figs. 

6.18 & 6.19 illustrate increasing asparagine synthetase activities during 

water deficits, which were significant in all but the roots of nodulated V. 

faba and the leaves of 'spiked' V. faba, where high intrinsic asparagine 

synthetase activities may have adequately catalysed the assimilation of 

ammonia into asparagine throughout water deficits. 

6.3.4.4 EOMOSERINE DEHYDROGENASE (HOH) 

BOB is a regulatory enzyme (partly located in the chloroplasts) which is 

associated with the synthesis of several essential amino acids from 

aspartic acid (Bryan, 1976; see also fig. 6.1). HDH is sensitive to 

feedback inhibition by L-threonine in young plant tissue, whereas EDH 

within the older tissues of most plant species exhibits reduced inhibition 

(Bryan et al, 1979). That the feedback inhibition of HOH is not 

desensitized during growth in V. faba (Bryan et al, 1979) may account for 

the observation that when threonine concentrations did increase (i.e. in 

non-nodulated V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition; and in the roots of 'spiked' as opposed to 'non-spiked' 

V. faba (indicative of increasing nitrogen availabilities); and during 

water deficits (tables 6.2 - 6.7)), the actual concentrations of threonine 

which accumulated were relatively small, indicative of feedback inhibition 

of BDH. 

Figs. 6.20 & 6.21 and anova analyses reveal that BDH decreased 

significantly during water deficits in the leaves and roots of nodulated; 

non-nodulated; and 'spiked' V. faba. It is apparent that homoserine; 

_____________~d 



222 

(a) 

0 5 10 15 20 25 


% PEG 6000 


(b) 

100 85 70 60 45 30 


Water Supplied (% Control) 


(c) 

0 5 10 15 20 25 


% PEG 6000 


Fig. 6.20 Eomoserine dehydrogenase activities in the leaves of (a) non
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threonine; isoleucine; leucine and valine syntheses decreased, and 

asparagine synthesis increased during water deficits. The associated 

benefits of asparagine accumulation during water deficits are discussed in 

section 6.3.5, pgs. 233 - 235. 

6.3.5 INDIVIDUAL AMINO ACIDS 

Tables 6.2 & 6.3 and anova analyses reveal that significantly greater 

concentrations of proline; glutamate; glutamine; and asparagine were 

exhibited in the leaves and roots of non-nodulated V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition. 

Glutamate; glutamine; aspartate; asparagine; and alanine accumulated to 

significantly greater concentrations in the leaves and roots of 'spiked' 

than of 'non-spiked' v. faba; and threonine accumulated to significantly 

greater concentrations in the roots only of 'spiked' than of 'non-spiked' 

V. faba (tables 6.6 & 6.7). Greater total amino acid concentrations have 

previously been recorded in G. max when supplied with ammonia than with 

nitrate nutrition (Chaillou et aI, 1991). A potential ammonia de

toxification 'role' is inferred for the increased production of these amino 

acids, as the production of the amides of glutamate (and therefore of 

aspartate) involves the direct assimilation of ammonia into organic 

compounds, and the widespread availability of aminotransferases in plant 

cells reportedly enables ammonia to move rapidly into many products (Bryan, 

1976; see also fig. 6.1). Furthermore fig. 6.1 illustrates that ammonia may 

be directly utilised in the production of asparagine. Although asparagine 

synthetase has a low kID for glutamine and a high kID for ammonia (Scott & 

Farnden, 1976; Miflin & Lea, 1977), asparagine production may be effective 

in the de-toxification of increasing ammonia concentrations. Greater amino 
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Table 6.2 Amino Acid Concentrations (roM gDW-1j in the Leaves of non
nodulated V. [aba when supplied with various forms and concentrations of 
medium nitrogen nutrition during increasing water deficits. 

25% PEG0\ PEG 5\ PEG 10% PEG 15% PEG 20\ PEG 

(i) 'NO NITRATE' 
2.670.54 1.28PROLINE 0.57 0.30 0.27 
0.340.38ALANINE 0.46 0.41 0.36 0.54 
1.101.32THREONINE 0.93 1.04 1.34 1.29 
1.931.90 2.07ASPARTATE 2.13 1. 69 1.83 
4.734.70 4.73ASPARAGINE 5.03 4.90 4.55 
1.801.50 1.50GLUTAMINE 1. 80 1. 60 1. 90 
0.500.900.70 0.30GLUTAMATE o . 60 0.90 

13 .0710.77 12.18TOTAL 11.52 10.84 10.95 

(ii) '1/10 NITRATE' 
14.5614.33PROLINE 0.36 0.49 2.89 7.88 

2.52 2.84ALANINE 0.85 1. 69 2.54 2.41 
6.15THREONINE 0.70 2.36 6.32 6.46 5.76 

2.773.40ASPARTATE 3.33 2.87 2.87 2.77 

26.13 23.45ASPARAGINE 11.06 12.44 12.21 24.85 

2.50 3.60 3.00GLUTAMINE 2.50 3.40 2.60 

1.30 1. 70 2.00GLUTAMATE 1.50 1.90 1.40 
54.77TOTAL 20.30 25.15 30.83 48.17 57.44 

(iii) '1/2 NITRATE' 
39.78PROLINE 0.31 0.39 4.59 15.78 27.33 

ALANINE 0.48 0.53 0.53 2.74 2.84 2.94 

THREONINE 0.48 3.35 4.31 6.48 8.04 8.16 

ASPARTATE 11.97 12.10 10.87 11.33 9.67 10.00 

26.09ASPARAGINE 12.37 11.84 12 . .39 27.05 26.33 

GLUTAMINE 8.70 7.50 6.20 8.10 8.60 11.00 

GLUTAMATE 6.80 6.90 6.60 5.40 5.30 6.90 

TOTAL 40.81 42.61 45.49 76.88 88.11 104.87 

(iv) 'COMBINED NITROGEN' 
PROLINE 0.78 0.84 3.42 28.00 39.67 47.22 

ALANINE 0.54 1.47 1.57 3.52 :2 .99 3.24 

THREONINE 0 .04 1. 75 2.51 6.06 8.09 8.25 

ASPARTATE 10.37 11.10 11.47 11.87 12.43 12.20 

ASPARAGINE 20.33 20.00 19.67 24.67 24.93 25.60 

GLUTAMINE 7.90 7.20 8.90 9.10 6.80 10.10 

GLUTAMATE 7.30 6.50 5.50 7.60 5.90 5.89 

53.04 90.82 100.81 112.50!QTh& 47.59 48.86 

The concentrations of the amino acids which are listed in bold were 
significantly affected by increasing water deficits. The concentrations of 
the amino acids which are listed underlined were significantly affected by 
the supplied nitrogen source (Anova a= 0.05). 

~~--------------...." \ 
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Table 6.3 Amino Acid Concentrations (roM gDW-1) in the Roots of non
nodulated V. faba when supplied with various forms and concentrations of 
medium nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

(1) 'NO NITRATE' 
PROLINE 0.37 0.56 0.41 0.56 1.41 0.62 

ALANINE 0.67 0.23 0.49 0.41 1.47 1.26 

THREONINE 0.60 0.50 0.54 0.60 0.89 0.49 

ASPARTATE 0.90 1.10 1.20 1.20 1. 07 1.17 

ASPARAGINE 1.16 1.55 1.43 2.13 1. 73 1.40 

GLUTAMINE 0.50 0.30 0.60 0.40 0.80 0.20 

GLUTAMATE 0.20 0.30 0.15 0.26 0.25 0.19 

~ 4.40 4.54 4.82 5.56 7.62 5.34 

(ii) "1/10 NITRATE' 
PROLINE 0.50 0.62 0.72 2.50 7.21 3.50 
ALANINE 0.35 0.29 0.36 1.47 1.56 1.24 
THREONINE 0.59 0.69 0.54 4.45 4.27 4.35 
ASPARTATE 2.50 3.90 2.20 3.60 3.90 3.10 
ASPARAGINE 6.64 5.34 6.29 12.07 12.18 :'1. 74 
GLUTAMINE 1. 30 1. 70 1.50 :'.20 1. 3 0 1. 50 
GLUTAMATE 0.80 0.60 0.90 0.40 0.50 0.60 

~ 12.68 13 .14 12.51 25.69 30.92 26.03 

(iii) '1/2 NITRATE' 
PROLINE 0.33 0.45 2.58 4.43 8.40 7.77 
ALANINE 0.48 0.52 0.51 1. 07 1.27 1.27 
THREONINE 0.43 0.47 0.66 4.25 4.08 4.72 
ASPARTATE 4.25 4.40 5.50 4.90 4.30 5.90 
ASPARAGINE 8.20 9.62 9.99 12.27 13.90 13.83 
GLUTAMINE 5.60 4.20 4.30 4.90 6.40 5.80 
GLUTAMATE 2.70 3.10 3.00 2.60 2.90 2.50 
TOTAL 21.99 22.76 26.54 34.42 41.28 41. 79 

(iv) 'COMBINED NITROGEN' 
PROLINE 0.49 0.81 1. 69 4.99 13.13 17.21 
ALANINE 0.73 0.82 0.72 2.12 1.83 1.47 
THREONINE 0.48 0.60 0.50 3.43 4.77 4.60 
ASPARTATE 4.67 5.67 5.33 4.33 5.33 4.67 
ASPARAGINE 12.00 14.00 13 .50 16.00 18.00 19.00 
GLUTAMINE 5.90 5.80 5.70 6.90 7.70 5.60 
GLUTAMATE 3.10 3.60 3.50 3.20 3.40 3.00 
TIIT& 27.37 31. 30 30.94 40.97 54.16 55.55 

The concentrations of the amino acids which are listed in bold were 
significantly affected by increasing water deficits. The concentrations of 
the amino acids which are listed underlined were significantly affected by 
the supplied nitrogen source (Anova a= 0.05). 
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Table 6.4 Amino Acid Concentrations (rnM gDW- 1 ) in the Leaves of nodulated 
V. faba when supplied with various forms and concentrations of medium 

nitrogen nutrition during increasing water deficits. 


0\ PEG 5% PEG 10\ PEG 15\ PEG 20% PEG 25% PEG 

(i) 'NO NITRATE' 
18.41PROLINE 0.67 0.94 0.68 1. 94 11.23 

ALANINE 0.63 0.46 0.68 2.63 2.90 3.08 

THREONINE 0.54 0.74 0.47 4.11 3.91 4.39 

ASPARTATE 4.67 3.67 4.50 4.20 5.50 5.90 

ASPARAGINE 14.40 12.10 12.60 24.70 28.90 26.40 
19.20GLUTAMINE 15.90 12.50 16.50 16.40 17.60 
5.80GLUTAMATE 3.90 4.20 4.40 5.70 6.10 

TOTAL 10.71 34.58 39.83 59.68 76.14 83.18 

(ii) '1/10 NITRATE' 
PROLINE 0.35 0.55 1. 01 7.l3 8.41 6.00 

ALANINE 0.64 0.69 2.57 2.63 2.90 3.08 

THREONINE 0.49 0.51 0.45 4.22 4.40 4.88 

ASPARTATE 4.20 5.10 4. 90 4.60 5.10 5.00 

ASPARAGINE 11. 06 12.44 12.21 24.85 26.13 23.45 

GLUTAMINE 15.10 12.30 14.20 12.90 14.70 14.20 

GLUTAMATE 2.40 3.80 3.70 4.10 3.80 2.90 
TOTAL 34.24 35.39 39.01 60.55 65.11 58.96 

(iii) '1/2 NITRATE' 
PROLINE 0.98 0.94 0.43 8.67 12.77 28.14 
ALANINE 0.62 0.53 0.70 3.01 3.04 3.45 
THREONINE 0.61 0.46 0.62 3.95 3.28 5.12 
ASPARTATE 4.90 4.30 4.20 5.70 4.90 5.80 
ASPARAGINE 12.37 11.84 12.39 27.05 26.33 26.09 
GLUTAMINE 18.00 19.30 16.90 18.00 18.40 16.80 
GLUTAMATE 5.80 6.10 5.40 5.00 5.80 4.90 
~ 43.28 43.47 40.64 71.38 74.52 90.30 

(iv) 'COMBINED NITROGEN' 
PROLINE 0.85 1. 01 0.64 14.90 22.14 25.71 
ALANINE 0 . 73 1. 43 1. 53 3.42 2.96 3.47 
THREONINE 0.35 0.60 0.65 3.33 4.97 4.87 
ASPARTATE 4.80 4.70 5.30 5.50 4.90 4.30 
ASPARAGINE 10.33 20.00 19.67 24.67 24.93 25.60 
GLUTAMINE 12.50 17.20 15.40 16.30 17.80 15.10 
GLUTAMATE 6.50 6.30 5.80 5.90 4.70 6.10 
TOTAL 36.06 51.24 48.99 74.98 82.40 85.15' 

The concentrations of the amino acids which are listed in bold were 
significantly affected by increasing water deficits. The concentrations of 
the amino acids which are listed underlined were significantly affected by 
the supplied nitrogen source (Anova a= O.OS). 
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Table 6.5 Amino Acid Concentrations (roM gDW-1 \ in the Roots of nodulated 
V. faba when supplied with various forms and concentrations of medium 
nitrogen 	nutrition during increasing water deficits. 


25% PEG
20% PEG 
0% PEG 5% PEG 15% PEG10% PEG 

(i) 'NO NITRATE' 	 7.91438.471.110.600.62PROLINE 0.55 	 l.421.561.490.67ALANINE 0.65 0.69 	 5.074.374.101.40THREONINE 0.55 0.57 	
3.60 2.4

3.102.40ASPARTATE 2.60 2.50 	 17.218.9018.507.40 6.10ASPARAGINE 6.40 	 7.67.209.606.709.10GLUTAMINE 8.70 	 2.82.102.102.802.40GLUTAMATE 2.60 	 44.446.2040.0023.28 20.67TOTAL 	 22.05 

(ii) '1/10 NITRATE' 	 3.043.970.68PROLINE 0.62 0.64 0.B2 	
0.910.90 

ALANINE 0.37 0.50 0.52 0.B9 
4.74.804.101.27THREONINE 0.60 0.93 2.92.60 

ASPARTATE 3.20 3.50 2.90 2.BO 	
12.613 .2010.405.60ASPARAGINE 6.40 6.50 32.902.70

GLUTAMINE 3.60 3.90 3.80 
2.11.502.001.60 1. 90GLUTAMATE 1. 70 29.2529.8723.71TOTAL 	 16.49 17.57 16.67 

(iii) '1/2 NITRATE' 5.796.493.090.76PROLINE 0.63 0.61 
l. 53l.310.55 l.27ALANINE 0.55 0.42 
5.033.50l.40 4.80THREONINE 0.61 0.52 

3.53.703.80ASPARTATE 3.50 2.40 2.90 
13 .614.8012.10ASPARAGINE 9.40 10.20 8.60 

6.14.60 5.30 
GLUTAMINE 6.70 8.40 5.80 

2.5
3.80 2.90 2.70 

GLUTAMATE 2.20 2.10 
38.0537.8023.81 32.56TOTAL 	 23.59 24.65 

(iv) • COMBINED NITROGEN' 14.2869.140.74 5.33PROLINE 0.72 0.45 
l.59 l. 77 l. 57

0.82 1. 00ALANINE 0.87 5.175.201.42 2.93THREONINE 0.60 0.80 
3.12.20 2.50

ASPARTATE 3.70 3.40 3.50 
12.00 17.50 18.40 17.3 

ASPARAGINE 14 .20 1l.90 
6.87.90 7.10 6.70 

GLUTAMINE 8.10 5.70 
3.50 3.40 3.00 2.9 

GLUTAMATE 3.60 2.90 
5l.1346.7130.06 40.05TOTAL 	 31.79 25.97 

The concentrations of the amino acids which are listed in bold were 

significantly affected by increasing water deficits. The concentrations of 

the amino acids which are listed underlined were significantly affected by 

the supplied nitrogen source (Anova a= 0.05). 
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Table 6.6 Amino Acid Concentrations (roM gDW-1j in the Leaves of 'Spiked' 
v. faba when supplied with various forms and concentrations of medium 
nitrogen nutrition during increasing water deficits. 

0% PEG 5% PEG 10% PEG 15% PEG 20% PEG 25% PEG 

(i) 'NO 
PROLINE 

NITRATE' 
0.44 0.62 0.42 3.72 12.60 19.50 

ALANINE 2.51 2.75 2.57 3.02 2.40 2.12 

THREONINE 1.38 2.18 3.07 6.43 6.17 6.39 

ASPARTATE 12.05 13 .62 12.79 16.00 13.70 12.27 

ASPARAGINE 13 .72 12.62 12.12 15.00 12.37 13.93 

GLUTAMINE 11 . 40 10.60 11.80 9.70 12.10 11.40 

GLUTAMATE 5.80 5.70 6.90 4.80 4.70 4.90 

TOTAL 47.30 48.09 49.67 58.67 64.04 70.81 

(ii) '1/10 NITRATE' 
23.74PROLINE 0.62 0.34 2.40 10.40 23.80 

ALANINE 2.83 2.67 2.50 2.70 2.27 2.73 

6.39 6.27THREONINE 1. 55 1.60 1. 52 7.10 
12.67ASPARTATE 11.33 11. 67 13 .67 13.33 12.33 

ASPARAGINE 24.67 26.33 24.67 25.33 23. 1 3 22.67 

GLUTAMINE 19.30 17.60 15.40 18.40 16.70 17.10 

GLUTAMATE 8.30 8.90 7.50 7.10 8.90 8.70 
93.88TOTAL 68.60 69.11 67.66 84.36 93.72 

(iii) '1/2 NITRATE' 
PROLINE 0.54 0.36 4.78 20.60 41.20 43.80 

ALANINE 2.67 2.67 2.50 2.53 2.43 2.43 
THREONINE 1. 43 2.57 2.43 6.30 6.33 6.03 
ASPARTATE 12.00 12.00 13.00 13 .67 12.00 11.67 
ASPARAGINE 22.33 23.67 25.00 24.67 24.00 23.00 
GLUTAMINE 17.60 18.40 15.60 17.10 16.30 15.40 
GLUTAMATE 9.10 7.80 6.90 8.10 S.20 10.00 
TOTAL 65.67 67.47 70.21 92.97 110.46 112.33 

(iv) 'COMBINED NITROGEN' 
PROLINE 0.78 0.32 3.28 30.20 41.50 41. 90 
ALANINE 2.83 2.67 2.57 2.90 2.73 2.70 
THREONINE 1. 95 2.23 2.40 5.27 6.20 6.40 
ASPARTATE 12.67 12.67 11.33 13 .33 14.00 11.00 
ASPARAGINE 34.33 35.00 34.67 32.33 33.33 33.33 
GLUTAMINE 18.90 22.40 17.90 16.90 lS.S0 17.60 
GLUTAMATE 10.70 11.10 9.60 8.70 10.10 8.10 
TOTAL 82.16 86.39 81.75 109.63 126.36 121. 03 

The concentrations of the amino acids which are listed in bold were 
significantly affected by increasing water deficits. The concentrations of 
the amino acids which are listed underlined were significantly affected by 
the supplied nitrogen source (Anova a= 0.05). 
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Table 6.7 Amino Acid Concentrations (roM gDW-1 ) in the Roots of 'Spiked' 
V. faba when supplied with various forms and concentrations of medium 

nitrogen nutrition during increasing water deficits. 


15% PEG 20% PEG 25% PEG0% PEG 5% PEG 10% PEG 

(i) 'NO NITR.ATE' 

PROLINE 0.47 o.89 0.39 3.44 6.84 10.66 

ALANINE 1.47 1.51 1. 41 1.42 1.38 1.45 

THREONINE 1. 38 1.25 1.03 4.90 4.86 5.45 

ASPARTATE 11. 00 11. 00 10.33 14.33 12.33 12.33 

ASPARAGINE 21. 00 19.83 20.33 20.00 22.00 23.00 

GLUTAMINE 2.50 2.40 3.90 5.80 4.20 4.90 

GLUTAMATE 5.00 5.20 3.40 4.80 4.50 3.90 

TOTAL 43.82 42.08 40.79 54.69 56.11 61. 69 

(ii) '1/10 NITRATE' 
PROLINE 0.63 0.45 0.69 6.28 7.62 7.16 
ALANINE 1. 6 0 1. 57 1.53 1. 70 1.67 1. 43 
THREONINE 1. 37 1.47 1.23 4.70 5.63 5.67 
ASPARTATE 14. 00 13 .00 11.67 12.00 12.67 11.33 
ASPARAGINE 19.33 18.67 19.00 28.33 26.33 28.00 
GLUTJI_i"UNE 12.60 9.80 11.20 12.40 14 .10 9.80 
GLUTAMATE 3.90 4.70 4.60 4.50 6.10 4.80 
TOTAL 53.43 68.1949.66 49.92 69.91 74.12 

(iii) '1/2 NITRATE' 
PROLINE 0.43 0.46 0.56 4.82 9.46 16.18 
ALANINE 1. 50 1.27 1. 63 1. 70 1.67 1. 45 
THREONINE 1.40 1. 67 3.401.40 6.00 5.37 
ASPARTATE 7.60 8.90 7.40 8.70 6.40 5.80 
ASPARAGINE 15.67 13.20 14.90 19.90 20.67 21. 33 
GLUTAMINE 11. 00 11. 80 8.90 12.50 11.20 12.40 
GLUTAMATE 4.10 4.70 4.80 4.60 4.00 4.70 
TOTAL 41.70 42.00 39.59 55.64 59.40 67.23 

(iv) 'COMBINED NITROGEN' 
PROLINE 0.48 0.49 3.66 5.16 7.26 12.10 
ALANINE 1.50 1. 37 1. 80 1. 63 1.67 1.47 
THREONINE 2.00 2.07 1. 93 3.30 5.50 6.23 
ASPARTATE 7.60 9.10 8.30 6.90 7.20 6.30 
ASPARAGINE 18.33 17.33 18.67 26.67 28.67 25.67 
GLUTAMINE 12.60 15.10 10.90 11.60 13 .40 10.70 
GLUTAMATE 5.20 5.80 4.50 4.90 5.00 4.70 
TOTAL 47.71 51.26 49.76 60.16 68.70 67.17 

The concentrations of the amino acids which are listed in bold were 
significantly affected by increasing water deficits. The concentrations of 
the amino acids which are listed underlined were significantly affected by 
the supplied nitrogen source (Anova a= 0.05). 
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acid concentrations (particularly asparagine, Yoneyarna & Kumazawa, 1975) 

have previously been reported in other plant species when supplied with 

medium ammonia as opposed to with medium nitrate nutrition (Durzan & 

Stewart 1967; Harada et ai, 1968; Lorenz, 1973; Ikeda et ai, 1974; Chaillou 

et al, 1991). Similarly glutamine; glutamate; aspartate; and asparagine 

accumulated to significantly greater concentrations in the leaves and roots 

of nodulated than of non-nodulated 'no nitrate' supplied v. faba (tables 

6.2 - 6.5), which may reflect fixed nitrogen assimilation (table 2.3) in 

the former plant group. 

Glutamate; glutamine; proline; aspartate; and asparagine are derived 

utilising a-ketoglutarate from the Kreb's cycle (Bryan, 1976; fig. 6.1), 

inferring that the production of these amino acids may prevent feed-back 

inhibition of glycolysis and the Kreb's cycle, particularly as amino acid 

utilization in protein synthesis may be reduced during water deficits 

(figs. 6.12 & 6.13). Indeed carbon flow may reportedly be distributed away 

from sucrose biosynthesis towards amino acid synthesis in plants when 

supplied with increasingly concentrated nitrate nutrition (McDonald & 

Davies, 1996). Amino acids are often synthesised in the chloroplasts 

(Wallsgrove et ai, 1983), and when plants are supplied with increasingly 

concentrated medium nitrogen nutrition, relatively smaller fractions of the 

products of the light reactions and electron transport are consumed in CO2 

assimilation than in amino acid production, and the relative production of 

amino acids to carbohydrates is increased (McDOnald & Davies, 1996). 

Sucrose phosphate synthase is reportedly de-activated, and 

phosphoenolpyruvate carboxylase activated in other plant species when 

supplied with increasingly concentrated medium nitrogen nutrition 

(Champigny & Foyer, 1992). Increased pyruvate and decreased 
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phosphoenolpyruvate have been reported in other plant species when supplied 

with medium ammonia (following labelling experiments) with an activation of 

pyruvate kinase by ammonia resulting in an increased transfer of 

photosynthetically incorporated carbon to amino acid synthesis at the 

expense of sucrose synthesis (Platt et aI, 1977). The inference is that 

v. faba which are supplied with increasingly concentrated medium nitrogen 

(and particularly with ammonia 'spike') nutrition may possess a mechanism 

by which feedback inhibition of the Kreb's cycle is alleviated in favour of 

increased amino acid production. Such relatively increased amino acid 

production may have contributed towards the increasing compatible 30lute 

concentrations (proline (Samaras et aI, 1995), and alanine and threonine 

(which reportedly have additive effects with proline, Samaras et aI, 1995; 

Paleg et aI, 1995), and glutamate (which together with ATP may protect GS 

from oxidative damage, Ortega et aI, 1999); tables 6.2 - 6.7) which were 

exhibited in V. faba when supplied with increasingly concentrated medium 

nitrogen, and particularly with ammonia 'spike' nutrition. As GS, NR and 

GOGAT may be located in the chloroplasts, it has been suggested that GS 

regulation may integrate carbon and nitrogen assimilation, and that GS 

activities may also regulate GOB activities (Rhodes et aI, 1979). 

That significantly greater amino acid concentrations were exhibited in 

v. faba when supplied with increasingly concentrated medium nitrogen 

nutrition may also reflect the increased nitrogen assimilatory enzyme 

activities which were exhibited in v. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (figs. 6.2 - 6.9). 

Figs. 4.5 & 4.6 illustrate that total amino acid concentrations increased 

significantly during water deficits, and tables 6.2 & 6.3 and anova 
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analyses reveal that asparagine; proline; alanine; and threonine 

concentrations increased significantly in the leaves and roots of non

nodulated V. faba during water deficits. Asparagine and proline contributed 

the greatest concentrations to the quantified amino/imino acid pool in the 

leaves and roots of non-nodulated and nodulated V. iaba during water 

deficits, with smaller contributions from aspartate and threonine. 

Increases in alanine; threonine; proline; and asparagine concentrations 

during water deficits have previously been reported in other plant species 

(Rajagopal & Sprent, 1977; Ranieri et aI, 1989; Sharma & Rai, 1989; Bray, 

1997). 

Allantoin (see section 6.3.6; Miflin et aI, 1980), asparagine and alanine 

are carbon economic (i.e. they have a high N:C ratio, Sprent, 1971; Lam et 

al, 1996). As such they may contribute to the carbon economy of V. faba 

during water deficits, as decreasing net photosynthesis and alanine and 

asparagine accumulation coincide during water deficits. Fig. 3.22 

illustrates that net photosynthesis decreased during moderate water 

deficits (around 10% PEG), and tables 6.2 & 3 illustrate that (in 

non-nodulated V. faba which are supplied with '1/2 nitrate' or with 

'combined nitrogen' nutrition) alanine accumulation commenced in the leaves 

during slight water deficits (5% PEG) and in the roots during moderate 

water deficits (10% PEG); while asparagine accumulation (which accounts for 

a large concentration of the total quantified amino acid pool) also 

commenced during slight to moderate water deficits in the leaves (5-10% 

PEG) and during moderate water deficits in the roots (15% PEG). 

Furthermore asparagine is closely related to glutamine and to aspartate, 

and the carbon skeleton of asparagine may be derived from or give rise to 

oxo-acids associated with the tricarboxylic acid cycle inferring that 

t. 
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metabolic flexibility may be maintained during asparagine accumulation 

(fig. 6.1; Bryan, 1976). Indeed earlier work involving protein fraction 

analyses revealed that asparagine may donate nitrogen to a wide range of 

amino acids, particularly glutamine and homoserine (Bryan, 1976; Miflin & 

Lea, 1975). 

Asparagine reportedly functions in nitrogen storage and transport (Lees et 

ai, 1968; Sprent, 1980), and is often exhibited in the xylem and storage 

organs of other leguminous species (Scott & Farnden, 1976; Miflin & Lea, 

1977), accumulating for example when protein synthesis is limited (Pate & 

Gunning, 1972; figs. 6.12 & 6.13). 

The 'roles' of asparagine contrast with those of glutamine, which is 

primarily involved in active metabolism. As such glutamine requires 

adequate photosynthate and water availabilities, and the ratio of glutamine 

: asparagine may reflect whether the metabolism of a plant is in 'storage' 

or 'active metabolic' mode (Lam et aI, 1996). If excess carbohydrates are 

available within a plant, and therefore 2-oxogluterate is plentiful, the 

activities of GS and GOGAT reportedly increase, and asparagine synthesis 

decreases (Miflin & Lea, 1977), as asparagine synthetase is reportedly 

inhibited by ATP and 2-oxogluterate. However if ATP is limiting (e.g. 

potentially during the net photosynthesis decreases which occurred in 

v. faba during water deficits; fig. 3.22) and metabolism is slowed 

asparagine synthesis is stimulated, consistent with a storage 'role' for 

asparagine within plant physiology. Tables 6.2 - 6.7 and anova analyses 

reveal that while asparagine accumulated significantly in V. faba during 

water deficits, glutamine did not. This is important as glutamine is 

reportedly involved with the end product inhibition of GS (Rhodes et aI, 

1976), and thus a maintained potential for ammonia assimilation via the GS 
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GOGAT system is inferred in v. faba during water deficits (as illustrated 

in figs. 6.6 & 6.7). Indeed decreasing glutamine concentrations have 

previously been observed in other plant species which accumulate proline 

(another nitrogen storage compound; see section 4.4, pg. 129) during water 

deficits (Rhodes et aI, 1986; see fig. 6.1). 

As asparagine accumulation may reportedly enable the maintenance of greater 

stomatal conductances (Sharma & Rai, 1989), and hence increased carbon 

acquisition (provided that RWCs are maintained; figs. 3.16 & 3.17 reveal 

that RWCs were maintained during increasingly severe water deficits in 

v. faba when supplied with increasingly concentrated medium nitrogen 

nutrition), asparagine accumulation may enable increased photosynthate and 

reductant availabilities for maintained nitrogen assimilation and for 

increased osmotic adjustment during water deficits, and may result in an 

alleviation of metabolic perturbations during water deficits. 

Glutamate concentrations increased significantly in the roots only of non

nodulated V. faba during water deficits (table 6.3), roots being the 

primary site of nitrogen assimilation in v. faba (Sutherland et aI, 1985; 

see also figs. 6.3, 6.7 & 6.9), inferring that glutamate may have been 

transaminated in the leaves of non-nodulated V. faba. Glutamate 

accumulation has previously been reported as preventative against 

decreasing GS activities (Ortega et aI, 1999), further inferring a capacity 

for maintained root GS activities in V. faba during water deficits (as were 

exhibited; fig. 6.7). 

When 'total quantified' amino acid concentrations quantified utilising GC 

methodology (tables 6.2 - 6.7) are compared against total amino acid 

concentrations determined using spectrophotometric analyses (figs. 4.5 & 

4.6) a shortfall is highlighted in the GC values, the contribution of which 

-----____I~., 
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to the total amino acid pool increases proportionally (up to four-fold) as 

water deficits increase. This shortfall is illustrated as 'non specified 

amino compounds' in figs. 6.22 & 6.23. The spectrophotometric assay detects 

amino compounds which may not be detected using the 'cleaned-up' samples 

analysed specifically via GC. 'Non specified amino compounds' may comprise 

non-quantified amino acids, short peptides, amines, and polyamines (Tabor & 

Tabor, 1976). Furthermore Vicia species reportedly contain non-protein 

amino acids which exhibit insecticidal properties (Bennet & Wallsgrove, 

1994). Further work would allow qualification of these amino compounds and 

of their potential 'roles' during water deficits. 

6 • 3 • 6 ALLANTOIN 

Allantoin may reportedly be synthesized by nodules and by roots in other 

plant species (Pate, 1973), and is reportedly a major nitrogen transport 

compound (Pate, 1973; Twary & Heikel 1991). Figs. 6.24 & 6.25 reveal that 

allantoin accumulated to significantly greater concentrations in non

nodulated V. faba when supplied with 'combined nitrogen' as opposed to with 

nitrate or with 'no nitrate' nutrition; and with 'spiked' as opposed to 

with 'non-spiked' nutrition, consistent with the previously reported 'role' 

of allantoin in ammonia de-toxification, as allantoin is also carbon 

economic (has a high N:C ratio, Acer-Mothes, 1961; Thomas & Schrader, 

1981) . 

The reported sensitivity of nitrogen fixation to water deficits has been 

associated with high shoot ureide accumulation which may reportedly limit 

nitrogen fixation via a concentration dependant feedback mechanism (Serraj 

& Sinclair, 1996; Furcall et aI, 1998b). However figs. 6.24 & 6.25 reveal 

that allantoin was maintained at lower concentrations in nodulated 'no 
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nitrate' supplied V. faba than in 'spiked' V. faba throughout water 

deficits, and may not have resulted in the inhibition of Nase in this 

species (as inferred by the significantly greater growth and osmotic 

responses which were maintained in nodulated than in non-nodulated 'no 

nitrate' supplied V. faba throughout water deficits; see sections 3.4 & 

4.4, and general discussion pg. 255). Indeed there is evidence to suggest 

that a metabolite of allantoin, as opposed to allantoin per se may be 

responsible for feedback inhibition of nitrogen fixation (Serraj et aI, 

1999) . 

Allantoin accumulation during water deficits has previously been reported 

in other plant species (Pate et aI, 1969; Serraj et aI, 1998). Following 

transport glutamine and asparagine may be readily utilised, however 

allantoin requires breakdown to CO2 and ammonia (via urea) and glyoxylate, 

and therefore represents a circuitous way of transporting nitrogen. 

Furthermore almost three-times the amount of water is required to transport 

an equivalent amount of nitrogen as allantoin rather than as asparagine, 

which may limit allantoin transport during water deficits (Pate, 1973). 

However the relative insolubility of allantoin indicates a potential 'role' 

for allantoin as a nitrogen storage compound (Twary & Beikel, 1991). 

Figs. 6.24 & 6.25 and anova analysis reveal that allantoin concentrations 

were not significantly affected by water deficits in the leaves and roots 

of non-nodulated V. faba. Nodulated V. faba primarily exports asparagine as 

opposed to allantoin, and the metabolism of V. faba may be predisposed 

towards the synthesis of asparagine rather than allantoin. Furthermore the 

high proline and asparagine concentrations exhibited during water deficits 

may have negated a reliance on allantoin accumulation in non-nodulated 

'non-spiked' V. faba. 
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Allantoin concentrations increased in the leaves and decreased in the roots 

of 'spiked' V. faba. Allantoin concentrations were significantly greater in 

'spiked' than in 'non-spiked' V. faba and as such may have represented 

ammonia de-toxification, nitrogen storage and nitrogen transport products 

(Pate, 1973; Twary & Heikel, 1991) in V. faba, particularly when supplied 

with concentrated nitrogen nutrition, and particularly as allantoin is 

carbon economic (Sprent, 1980). 

6.4 CONCLUSION 


Proline; glutamine; glutamate; and asparagine concentrations were 


significantly greater in non-nodulated V. faba when supplied with 


increasingly concentrated medium nitrogen nutrition; and glutamine; 


glutamate; asparagine; and alanine concentrations were significantly 


greater in 'spiked' than in 'non-spiked' V. faba, inferring ammonia de


toxification 'roles' for these carbon economic ('glutamate family') amino 


acids. 


Asparagine; proline; alanine; and threonine accumulated significantly 

during water deficits. The reported 'roles' of asparagine (and allantoin, 

which was also exhibited at significantly greater concentrations in 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition) as potential ammonia de-toxification, transport and storage 

compounds have been discussed. 

'Roles' for asparagine in metabolic flexibility, in the maintenance of 

stomatal opening, and in the prevention of feedback inhibition of the TeA 

cycle, and for asparagine and allantoin in the carbon-economic transport of 

nitrogen were also hypothesized. Proline and asparagine contributed the 

greatest concentrations to the quantified amino acid pool during water 
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deficits, with smaller contributions (in terms of concentration) from 

threonine, alanine and aspartate. Accordingly while greater 

aminotransferase activities were exhibited in V. taba when supplied with 

increasingly concentrated medium nitrogen nutrition (supporting the greater 

nitrogen assimilation which was exhibited in V. taba when supplied with 

increasingly concentrated medium nitrogen nutrition; figs. 6.2; 6.3; 6.6; 

6.7; 6.8; 6.9), aspartate and asparagine synthetase activities increased 

during water deficits, while homoserine dehydrogenase and alanine 

aminotransferase activities decreased (see fig. 6.1). Amino acid and 

aminotransferase data contrasts with the earlier work of Rhodes et aI, 

(1986) who noted that proline, alanine, valine, leucine and y-aminobutyrate 

contributed the greatest concentrations to the amino acid pool when 

suspended cells of Lycopersicon escu1entum were treated with 25% PEG. 

Indeed Rhodes et a1 (1986) concluded that there was little influx of 

glutamate into the aspartate pathways during water deficits, and although 

threonine, asparagine and lycine concentrations were slightly increased 

during water deficits, the rates of synthesis of these amino acids were 

lower in L. esculentum suspended cells when treated with 25% PEG than when 

treated with 0% PEG. Proline did accumulate significantly in V. taba during 

water deficits, however the lack of aspartate family amino acid 

accumulation in L. escu1entum cells may be explained in part as legumes 

reportedly exhibit greater asparagine and allantoin concentrations than 

non-legumes (Scott & Farnden, 1976; Sprent, 1980). Furthermore the 

suspended L. esculentum cells had unrestricted nitrogen and carbon supplies 

(Rhodes et aI, 1986), whereas V. taba exhibited decreasing net 

photosynthesis during water deficits (fig. 3.22), which may have 

necessitated an accumulation of the carbon economic osmotic solutes such as 
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asparagine, alanine, and allantoin. 


Further work would allow qualification 0: 'non-specified' amino compounds 


and of their 'roles' during water deficits. 


Significantly greater protein concentrations were exhibited in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition, and 

particularly with 'corr~ined nitrogen' and with ammonia 'spike' nutrition, 

an important nutritional and economic consideration for a leguminous crop 

(Snoad, 1981). However protein concentrations decreased significantly 

during water deficits (being maintained at significantly greater 

concentrations in non-nodulated V. faba when supplied with 'combined 

nitrogen' as opposed to with equimolar nitrate nutrition; and in the roots 

of 'spiked' as opposed to 'non-spiked' V. faba) , and may have provided 

substrates towards the production of nitrogenous osmotica. However amino 

acid accumulation preceded protein decreases, and continued when protein 

concentrations had decreased significantly, inferring a 'role' for primary 

nitrogen assimilation in the production of nitrogenous substrates. 

Increased nitrogen uptake is inferred in V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition, as such V. faba 

exhibited significantly greater stomatal conductances, and therefore 

potentially increased transpiration and nitrate fluxes, which as discussed 

are reportedly regulatory for nitrate reductase activities (Shaner & Boyer, 

1976), and increased nitrogen assimilation may result in increased nitrate 

uptake (Irnsande & Touraine, 1994). The significantly greater NR activities 

exhibited in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition may also have been attributable to NR induction (Somers 

et aI, 1983; Andrews et aI, 1984; Sutherland et aI, 1985), and may have 



245 

reflected the increased levels of net photosynthesis (fig. 3.22) and 

carbohydrate accumulation (4.3 & 4.4) which were exhibited in v. faba when 

supplied with increasingly concentrated medium nitrogen nutrition, and 

which are reportedly required for nitrate uptake (Imsande & Touraine, 

1994), and are reportedly correlated with NR activities (Cheng et aI, 1992; 

Foyer et ai, 1998). Additionally v. faba supplied with increasingly 

concentrated medium nitrogen nutrition may have experienced alleviated 

feedback inhibition of nitrogen assimilation due to an abundance of carbon 

skeletons, which are required for amino acid production (Miflin, 1974), and 

for nitrate uptake (Imsande & Touraine, 1994). 

NR activities were maintained until water deficits became severe, perhaps 

decreasing then in response to increasing stomatal closure (fig. 3.21, 

which may have resulted in decreased nitrate fluxes, Shaner & Boyer, 1976), 

and to decreases in net photosynthesis (fig. 3.22). That decreasing 

stomatal conductances and net photosynthesis as opposed to water deficits 

per se may have been responsible for the observed decreases in NR 

activities is supported by the following factors: (i) maintained NR 

activities during (gradually imposed) water deficits have previously been 

reported in a small number of studies involving other plant species 

(Smirnoff et aI, 1985; Ladley, 1990); (ii) stomatal conductances; net 

photosynthesis; and NR activities were all maintained at the greatest 

values in V. faba when supplied with the most concentrated medium nitrogen 

nutrition (figs. 3.21; 3.22; 6.2 & 6.3), and decreases in NR activities 

were only exhibited during severe water deficits, and as such coincided 

with decreases in stomatal conductance and net photosynthesis, which as 

discussed are reportedly regulatory for nitrate uptake (Shaner & Boyer, 

1976; Imsande & Touraine, 1994), and for maintained NR activities (Foyer et 

al, 1998); and (iii) NR activities were maintained in V. faba during 
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moderate water deficits ind;cat;ng that NR 

deficits per see 

•• was not sensitive to water 

V. faba exhibited high leaf and root nitrate concentrations throughout 

water deficits (figs. 6.4 & 6.5), which may have contributed to the 

maintenance of high NR activities, as nitrate may reportedly be mobilized 

from storage to metabolic pools during water deficits resulting in 

maintained nitrate fluxes, and hence NR activities (Shaner & Boyer, 1976 

a&b; Chapin et aI, 1988). 

The accumulation of compatible solutes (proline; alanine; and threonine; 

Nash et aI, 1981; Paleg et aI, 1985; ortega et aI, 1999; see pg 232), 

which accumulated to increasing concentrations in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition may have afforded 

some protection towards NR (and other enzymes, and may have enabled 

maintained NR turnover) during water deficits, particularly in V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition; and with 

nodulated as opposed to with non-nodulated 'no nitrate' nutrition; and with 

'spiked' as opposed to with 'non-spiked' nutrition. The protective effects 

of compatible solute accumulation have previously been discussed (pgs. 16; 

103; 104; 232). 

GS activities increased significantly in V. faba as the concentration of 

the supplied nitrogen source increased; while GDH activities were exhibited 

in the following order in the leaves and roots of non-nodulated V. faba 

with respect to medium nitrogen nutrition: 'combined nitrogen' > '1/2 

nitrate' > '1110 nitrate' > 'no nitrate', inferring an ammonia de

toxification 'role' for GDB. Greater NR activities have previously been 

recorded in C. vitaIba when supplied with ammonia as opposed to with 

nitrate (Bungard et aI, 1999) and NR and GS activities have previously 

_ 
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been shown to be correlated in Urdica dioca (Hofstra et aI, 1985). Indeed 

greater GS; GOH; and NR activities were exhibited in the leaves and roots 

of nodulated than of non-nodulated 'no nitrate' supplied V. faba; and in 

the leaves of 'spiked' as opposed to 'non-spiked' V. faba, perhaps 

attributable to increased ammonia assimilation. 

Furthermore GS activities were maintained, while GOH activities were either 

maintained or increased during water deficits (figs. 6.6- 6.9). It is 

apparent that V. faba exhibited significantly greater nitrogen assimilatory 

enzyme activities when supplied with increasingly concentrated medium 

nitrogen nutriti.on. That greater concentrations of the products of primary 

nitrogen assimilation (glutamate; asparagine; glutamine; and allantoin) 

were exhibited in non-nodulated V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition; in nodulated than in non-nodulated 

'no nitrate' supplied V. faba; and in 'spiked' than in 'non-spiked' V. faba 

supports the observation that increasingly concentrated medium nitrogen 

nutrition (particularly with medium ammonia additions) results in the 

exhibition of greater nitrogen assimilatory enzyme activities. Continued 

nitrogen assimilation during water deficits may result in an alleviation of 

photoinhibition (Smirnoff & Stewart, 1985). 

GOGAT is reportedly unaffected by feedback mechanisms (Miflin & Lea, 1977). 

However the accumulation of nitrate and amino acids (particularly 

glutamine; arginine; alanine; asparagine; and aspartic acid) in root phloem 

cells may reportedly result in reduced nitrate NURs (Gojon et al, 1998; 

Gessler et aI, 1998); reduced ammonia absorption (Lee et aI, 1992); and 

reduced Nase, NR, and GS activities (steer, 1973; Rhodes et aI, 1975; 

Rhodes et aI, 1976; Stewart & Rhodes, 1977b; Oeng et aI, 1991; Parson et 

aI, 1993; Garcia-Fernandez et aI, 1995; Min et aI, 1998; serraj et aI, 

http:nutriti.on
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1998; Oliveira & Coruzzi, 1999), via a 'satiety' model (Imsande & Touraine, 

1994). Increasing carbohydrate metabolite concentrations reportedly result 

in the exhibition of increasing GS activities, while increasing amino acid 

concentrations reportedly antagonise GS induction and activities and 

therefore GS activities appear to be regulated by the C:N ratio (Oliveira & 

Coruzzi, 1999). 

However total amino acid concentrations, and NR; GS; and GDH activities all 

increased significantly in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition. 

Maintained NR activities concurrent with amino acid accumulation have 

previously been reported in other plant species (Beevers & Hageman, 1969), 

and some workers have concluded that the availability of ammonia rather 

than amino acids may regulate GS activities (Kanamori & Matsumoto, 1974; 

Wallsgrove et aI, 1977; Miflin et aI, 1980), as appears to be the case for 

V. faba. 

Furthermore it is glutamine which is primarily attributed as being 

inhibitory for GS activities (Rhodes et aI, 1975; Rhodes et aI, 1976), and 

glutamine concentrations did not increase in V. faba during water deficits. 

Previously reported inhibitory effects of amino acid accumulation on 

nitrogen assimilation appear to have been overridden by continued nitrogen 

supplies in V. faba, possibly as excess amino acids may be 

compartmentalized in vacuoles during water deficits (Rhodes et aI, 1986). 

Asparagine did accumulate significantly during water deficits. However 

asparagine is primarily considered inhibitory for Nase rather than for 

medium nitrogen assimilatory enzyme activities (Serraj et aI, 1999), and 

significantly greater growth; stomatal conductances and net photosynthesis; 

osmotic adjustment; amino acid concentrations; aminotransferase activities; 

protein concentrations; NR activities; GS activities; GDB activities; and 
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total ammonia concentrations were maintained in nodulated than in non

nodulated 'no nitrate' supplied v. faba throughout water deficits, 

inferring that increasing asparagine concentrations may not have resulted 

in the inhibition of Nase activities during water deficits in this species. 

Asparagine may reportedly have a small inhibitory effect on GS2 in Oryza 

sativa (Hirel & Gadal, 1980b), however GS activities did not decrease as 

asparagine activities increased in v. faba. Although high asparagine 

concentrations were recorded, amino acids may reportedly concentrate in the 

cytoplasm and vacuoles during water deficits (Rhodes et al, 1986), 

indicating that phloem amino acid concentrations may have remained low. 

Indeed the fact that asparagine accumulation may inhibit further asparagine 

synthesis in vitro, but not in vivo infers that asparagine may be stored 

away from the site of synthesis (for example in vacuoles, Miflin & Lea, 

1977), and further infers that asparagine may represent an effective 

ammonia de-toxification product as it does not appear to be end-product 

inhibited. If asparagine is stored in the vacuoles rather than phloem 

translocated during water deficits, then its effect on nitrate uptake would 

be minimised (Imsande & Touraine, 1994). Proline is also produced via 

glutamate (fig. 6.1) and therefore may also represent an 

ammonia de-toxification product (Barnett & Naylor, 1966~ Shobert, 1977; 

Aspinall & Paleg, 1981; Pulich, 1986; see section 4.4). 

h ' h h low concentrations of ammonia are
GS activities are reportedly ~g w en 

available, and may reportedly decrease as ammonia concentrations increase, 

whereas GOB activities reportedly increase as ammonia availabilities 

increase (Rhodes et al, 1976). Indeed figs. 6.6 - 6.9 illustrate that 

'k d' '1/2 n;trate' and 'combined nitrogen'
'spiked' as opposed to 'non-sp~ e ~ 

supplied v. faba exhibited significantly greater increases in GDH 

activities than in GS activities. It has been proposed that as ammonia is 

__________............~~I 
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toxic and plants have little control over ammonia uptake it is unlikely 

that a mechanism which unilaterally shuts off ammonia assimilation at the 

GS level would evolve, but rather that carbon may limit GS activities in 

plants which are supplied with concentrated medium ammonia nutrition 

(Miflin et al, 1980). However greater net photosynthesis and carbohydrate 

concentrations were exhibited in V. faba when supplied with increasingly 

concentrated medium ammonia additions (section 3.4). Accordingly GS 

activities were maintained or increased in V. faba when supplied with the 

most concentrated medium ammonia additions (by around 11% in the roots and 

0% in the leaves of 'spiked' as compared with 'non-spiked' 'combined 

nitrogen' supplied V. faba), but not to the extent that GOB activities 

increased (by 50% in the roots and by >40% in the leaves of 'spiked' as 

compared with 'non-spiked' 'combined nitrogen' supplied V. faba). Thus an 

ammonia assimilatory 'role' is inferred for GDB in V. faba when supplied 

with increasingly concentrated medium ammonia additions. GOH activities 

also increased in 'spiked' V. faba during water deficits, inferring that 

medium ammonia additions may be especially beneficial during severe water 

deficits, when slight decreases in NR activities were recorded (figs. 6.2 & 

6.3). That increasing GOB activities during water deficits may have been 

mediated via ATP decreases (Stewart & Rhodes, 1977; Rhodes at al, 1979; 

Stryer, 1988; Lam et al, 1996) was hypothesized. Increasing GDB activities 

in V. faba when supplied with medium ammonia additions (and during water 

deficits; figs. 6.8 & 6.9), may have contributed towards the increased 

amino acid (particularly proline and asparagine) concentrations which were 

exhibited in V. faba when supplied with medium ammonia additions (and 

during water deficits; tables 6.2 - 6.7), as previously reported in other 

plant species (Venekamp, 1989). 

Amino acid accumulation continued until severe water deficits were imposed 
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(20-25% PEG; 45-30% Control Water; figs. 4.5 & 4.6), by which stage protein 

concentrations had more than halved (figs. 6.12 & 6.13). While GS 

activities were merely maintained during water deficits (figs. 6.6 & 6.7; 

albeit at increasing activities in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition, and in 'spiked' than in 'non

spiked' V. faba), root and leaf GDH activities increased in 'spiked' 

V. faba during water deficits, further inferring a 'role' for the GDB 

mediated assimilation of ammonia in nitrogenous osmotica production in 

v. faba during water deficits. 

In summary, significantly increasing proline, glutamine, asparagine, 

alanine and protein concentrations were exhibited by V. faba as the 

concentration of the supplied nitrogen source increased. Asparagine, 

proline, alanine and threonine concentrations increased significantly in 

v. faba as water deficits increased. Although plant protein concentrations 

decreased as water deficits increased, amino acid accumulation preceded 

protein decreases and continued during severe water deficits when protein 

concentrations were low, inferring a role for primary nitrogen assimilation 

in the production of nitrogenous osmotica during water deficits (as 

supported by enzymic data). Indeed GS and GDB activities were either 

maintained or else increased in the leaves and roots of v. faba throughout 

water deficits, and NR activities were maintained until water deficits 

became severe. 

FUrthermore the activities of the enzymes of primary nitrogen assimilation 

increased as the concentration of the supplied nitrogen source increased. 

Significantly greater leaf NR and leaf and root GS and GDB activities were 

exhibited by 'spiked' than by 'non-spiked' V. faba, and ammonia de

toxification 'roles' were inferred for GS, and particularly for GDB. 
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CHAPTER SEVEN 


GENERAL DISCUSSION 


I.----~----·------··--------·-'.."··--···-····--.. 

Much research can be done on stress characteristics and phenomena in plants 

1 
and crops, but it must be related to principles of crop/soil management if it 


is to be useful to agriculture in drought-susceptible areas 
 I 
(Swindale & Bidinger l 1981). 1 

V. faba infected with Rhizobia is an effective nodulator, and nitrogen 

fixation reportedly accounts for over eighty per cent of the total nitrogen 

content of V. faba When supplied with adequate irrigation (Richards & 

Soper, 1979; Ines-Minguez & Saul 1989). However nitrogen fixation is 

reportedly more sensitive to water deficits than medium nitrogen 

assimilation; carbon assimilation; plant growth; and grain yields (Serraj 

et al, 1999). Decreasing nitrogen fixation has previously been reported 

in V. faba (Sprent 1972; Guerin et al, 1990), and in other plant species 

(Sprent, 1973; Streeter, 1998; Serraj et al, 1998; Soussi et al, 199B) 

during water deficits. Furthermore legumes reportedly sever symbiotic 

associations with rhizobia when medium nitrogen is available, as nitrogen 

fixation is reportedly energetically expensive (Schilling, 1983; see 

introduction, pg. B), and water intensive (Sprent, 1981; see introduction 

pg. 17). Table 2.3 illustrates that v. faba exhibited fewer nodules 

when supplied with (even low concentrations of) medium nitrogen nutrition, 

than when supplied with 'no nitrate' nutrition. Approximately equal 

productivities have previously been recorded by V. faba whether reliant on 

nitrogen fixation or supplied with medium nitrogen nutrition during periods 

of adequate irrigation (Richards & Soper, 1979, Simon & Skrdleta, 1983). 

The inference is that the nitrogen fertilisation of adequately irrigated 
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v. iaba might be wasteful in terms of human and economic resources, and 

could potentially result in environmental damage (due to the nitrate 

leaching, Raven, 1985). 

A major research proposal in this study was that medium nitrate, 'combined 

nitrogen', and ammonia additions prior to and during water deficit 

imposition would provide alternative nitrogen sources to nitrogen fixation. 

As such methodology was designed to determine whether increasingly 

concentrated medium nitrogen applications would result in increasing 

productivities in V. faba (as previously described in other plant species 

(see fig. 7.1*»), particularly during water deficits. 

However Plies-Balzer et al, (1995), reported that although nitrogenase 

activities decreased in V. iaba when water deficits were imposed either 

continuously or during flowering, water deficits during pod-filling 

resulted in maintained nitrogenase activities and biomass production, 

inferring that nitrogenase activities per se may not be as susceptible to 

water deficits as is classically supposed. Furthermore a G. max cultivar 

('Jackson'), has been identified as water deficit tolerant for nitrogen 

fixation (Serraj & Sinclair, 1997), further inferring that nitrogen 

fixation may not be as sensitive to water deficits in all plant species and 

cultivars as is classically supposed. It has been reported that growth and 

yield in V. faba (cv. 'Alfred') may not be limited by symbiotic nitrogen 

fixation during water deficits, as although nitrogenase activities 

reportedly decreased during continuous water deficits, total nitrogen 

contents remained unaffected (Plies-Balzer et al, 1995). Indeed medium 

'combined nitrogen' applications (1.2g N I two plants as NH 4N03 i BOOmg N / 

two plants as starter N, and 400 mg N I two plants later) reportedly cannot 

__________"\\i. I 
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* It was hypothesized that medium ammonia additions
Ammonia assimilation is 

might result in the exhibition of greater root 
theoretically 'cheaper' and more growth (Giordano & Bowes, 1997) ; greater heights
'water economic' than nitrate (Quebedeaux & Osbun, 1973); greater net 
assimilation (Bloom, 1988; Raven; photosynthesis (de-Benetti et aI, 1976); greater Ammonia is relatively
1985 & 1992); inferring NR; GDH; & GS activities (Bungard et aI, 1999; cheaply available in 
potentially greater plant Taylor & Havill, 1981; Shen, 1991) ; greater osmotic the form of bird 
productivities in V. faba when adjustment (Bennet et aI, 1986); & greater growth droppings
supplied with medium ammonia rates and yields (Cox & Reisenauer, 1973) than 
additions would be exhibited in V. faba when supplied solely 

with medium nitrate nutrition (or with less...... 
concentrated nitrogen nutrition, as previously 
reported in other plant species), 

/.•• resulted in the exhibition of MEDIUM AMMONIA ADDITIONSsignificantly greater ROOT , tv~ (Le. 'spiked' as opposed to 'non-spiked' nutrition)GROWTH in V. faha and hence U\ 

potentially in significantly "'" ~ greater NI'J'SOGBN Ur'J'AKE 
..• resulted in the exhibition of(McDonald & Davies, 1996 ) and ... resulted in the exhibition of significantly greater NR; GS; (o,

WaTBR UrTA~B (Sau & Ines significantly greater HEIGHTS and particularly) GDH activities in~Minguez, 1990), which might ........ 
 CUMULATIVE LEAF AREAS in V. raba, v. raba, inferring significantlyresult in maintained RWC. and hence potentially in significantly greater NITROGEN ACQUISI~;!;ONand GROWTH (McDonald & Davies, greater NET PHOTOSYNTHESIS 
1996) and therefore in increased (Yoshida, 1972) and hence greater 
carbon and nitroqen acquisition CARBON ACQUISITION ., 
That water, carbon and nitrogen acquisition were maintained at greater values in V. faba when supplied with medium 
ammonia additions was supported by the significantly greater total and individual soluble carbohydrate and total 
individual amino acid concentrations which were exhibited in ammonia 'spiked' than in 'non-spiked' v. faba, i. e. v. faba 
which were supplied with medium ammonia additions exhibited significantly greater OSMOTIC ADJUSTMENT and 
COMPATIBLE SOLUTE concentrations than 'non-spiked' v. faba. This in turn would contribute to the maintenance of 
awcs; STOMATAL CONDUCTANCBS and hence NBT PHOTOSYNTHESIS; NITROGEN ASSIMILATION and GROWTH. Increased 
osmotic ad;ustment has previous Iv been associated with increased Y I BLDB in V. faba IVan der Wal 19811 

VI 
Significantly greater ROOT SOLUBLB PROTEIN CONCENTRATIONS were exhibited in 'spiked' than in 'non-spiked' v. raba. 
U1timately LEAF SOLUBLE PROTEIN CONCENTRATIONS were comparable in V. raba ~hether supplied with 'combined nitrogen' 

or with 'ammonia spike' nutrition. However significantly greater cumulative leaf areas were exhibited in 'spiked' than in 

'non-spiked' V. faba (an important consideration for a green manure/silage crop; Corak et aI, 1992) inferring greater 

TOTAL VBGETATIVE YIBLDS and TOTAL PROTEIN CONCENTRATIONS in V. faba when supplied with medium ammonia additions 
during water deficits. 

rig. 7.1 Summary of the effects of medium ammonia additions on the physiology of V. faba 

during water deficits 
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compensate for the negative effects of water deficits on V. faba (cv. 

'Alfred'), and reportedly do not result in improved plant aerial growth or 

total nitrogen concentrations (Plies-Balzer et aI, 1995). 

Thus earlier literature indicates that nitrogen applications may not result 

in improved productivities in V. faba, particularly during periods of 

adequate irrigation, but also during water deficits, particularly as mediQ~ 

nitrogen applications suppressed nodulation in V. faba (see table 2.3). 

Indeed significantly greater aerial fresh and dry organ biomassesi leaf and 

root RWCs; R:S increases; RGRsi NARsi CLAsi stomatal conductances; net 

photosynthesis; total and individual carbohydrate concentrations; starch 

concentrations; total and individual amino acid concentrations; allantoin 

concentrations; proline concentrations; glycine betaine concentrations; 

aminotransferase activities; ammonia concentrations; nitrogen assimilatory 

enzyme activities; and protein concentrations were maintained in nodulated 

than in non-nodulated 'no nitrate' supplied V. faba throughout water 

deficits. Thus the collective data infers that nitrogen fixation may not be 

as water deficit sensitive as is classically supposed (at least in 

'Bunyards Exhibition'), and particularly during periods of vegetative 

growth. 

Furthermore growth, stomatal conductances and net photosynthesis were 

'nomaintained at greater values in nitrogen fixing V. faba (i.e. in nodulated 

nitrate' supplied V. faba) than in '1/10 nitrate' (0.8 mM N) supplied V. faba 

' 3 1 3 22) throughout water deficits. Accordingly figs.(f ].gs • . - 3. 10; 3. 21 ; . , 

4.3; 4.4; & 5.2 _ 5.7 illustrate that significantly greater total soluble 

t t ' n were exhibited in
carbohydrate and individual carbohydrate concen ra ~o s 

nitrogen fixing V. faba than in '1/10 nitrate' supplied V. faba. Lower NR 

- ("i-----------;: 
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activities and nitrate concentrations were exhibited in the leaves and roots 

of nitrogen fixing than of '1/10 nitrate' supplied v. faba (figs. 6.2 - 6.5). 

This was expected as nitrogen fixation does not result in increased nitrate 

availabilities. However greater GS activities were exhibited in the roots of 

nodulated 'no nitrate' than of '1/10 nitrate' supplied v. faba (fig. 6.7), 

inferring greater ammonia assimilation in nitrogen fixing V. faba than in 

V. faba which were supplied with low concentrations (0.8 roM N) of medium 

nitrogen nutrition. The greater net photosynthesis and carbohydrate 

concentrations which were exhibited in nitrogen fixing as opposed to in '1/10 

nitrate' supplied V. faba may have contributed towards the exhibited greater 

root GS activities, as photosynthates and carbohydrates are required for 

nitrogen assimilation (Miflin et aI, 1980). The greater GS activities 

exhibited in nitrogen fixing than in '1/10 nitrate' supplied v. faba may have 

contributed substrates towards the greater total and individual amino acid 

concentrations (figs. 4.5 & 4.6; tables 6.3 & 6.4); greater leaf and root 

'non-specified amino' concentrations (figs. 6.22 & 6.23); greater leaf and 

root total osmolarities (figs. 4.11 & 4.12), greater plant growth (figs. 3.1 

3.10); and greater leaf and root soluble protein concentrations (figs. 6.12 & 

6.13) which were exhibited in nitrogen fixing (i.e. in nodulated 'no nitrate' 

supplied) V. faba than in '1/10 nitrate' supplied V. faba. 

The indication is that < 0.8 roM medium nitrogen applications resulted in 

nitrogen fixation inhibition (see table 2.3), and ultimately in the 

exhibition of lower yields than would be exhibited by nitrogen fixing 

V. faba, even during water deficits. Previous workers have reported that 

V. faba exhibits greater biomasses when supplied with medium nitrogen than 

when reliant on nitrogen fixation during periods of adequate irrigation 

(IneS-Minguez & Sau, 1989 - 15.7 mol m-3 nitrate), however these 
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differences are reportedly less marked for V. faba than for any other 

legume grown under a controlled environment (Ryle et aI, 1983); a further 

indication of the effectiveness of nitrogen fixation in v. faba (Richards & 

Soper, 1979). In summary greater growth or protein concentrations were not 

exhibited in V. faba when supplied with low medium nitrate concentrations 

(0.8 roM N) as opposed to when reliant on nitrogen fixing V. faba (figs. 3.1 

- 3.10, 6.12; 6.13). Indeed environmental damage may result from 

superfluous applications of medium nitrate, as nitrate is prone to leaching 

(Raven, 1985). 

However G. max ~eportedly exhibits increased nitrogen and biomass 


accumulation rates when supplied with more concentrated medium 'combined 


nitrogen', nitrate, or ammonia nutrition (336 kg/ha NH4 N0 3 ; 10 mM KN03 ; or 


10 roM NH 4Cl) as opposed to when reliant on nitrogen fixation, both when 


supplied with adequate irrigation and during water deficits (Purcell & 


King, 1996). 


Furthermore while increased seed yields ('seed number X average seed mass') 


were reportedly not exhibited in 'combined nitrogen' supplied as opposed to 


nitrogen 	fixing G. max during periods of adequate irrigation, an eighteen 


per cent 	seed yield increase was exhibited by G. max when supplied with 


medium 'combined nitrogen' nutrition, as opposed to when reliant on 


nitrogen 	fixation during water deficits (Purcell & King, 1996). Indeed 


I 	 G. max reportedly exhibits greater seed yields (2.5 per cent seed yield, 
I 	 increases) when supplied with 'combined nitrogen' nutrition during water 

deficits, than when reliant upon nitrogen fixation and supplied withI 
adequate irrigation (Purcell & King, 1996). 


Similarly greater growth, stomatal conductances and net photosynthesis, 
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osmotic adjustment, and nitrogen assimilatory enzyme activities were 


exhibited in V. faba when supplied with (> 0.8 roM) medium nitrogen 


nutrition (i.e. with '1/2 nitrate'; 'combined nitrogen'; or with ammonia 


'spike' nutrition; section 2.4), than when reliant on nitrogen fixation, 


both during water deficits and during periods of adequate irrigation. 

Accordingly although organ fresh and dry weights; plant heights; NARs; leaf 

and root Rwes; and RGRs all decreased significantly during water deficits, all 

growth parameters were maintained at significantly increasing values in non

nodulated and nodulated V. faba when supplied with increasingly concentrated 

medium nitrogen nutrition (> 0.8 mM N). It has been reported that V. faba does 

not exhibit greater aerial growth when supplied with 'combined nitrogen' 

nutrition, as opposed to when reliant on nitrogen fixation, both when supplied 

with adequate irrigation and during water deficits (Plies-Balzer et aI, 1995). 

However fig. 3.8 illustrates significantly greater aerial biomasses in V. faba 

when supplied with> 0.8 mM medium nitrogen (i.e. with either 'combined 

nitrogen' or with '1/2 nitrate' nutrition) as upposed to when reliant on 

nitrogen fixation, both when supplied with adequate irrigation and during 


water deficits. 


R:Ss increased significantly during water deficits inferring an increased 

capacity for water and nitrogen uptake (Sharp & Davies, 1979; McDonald & 

Davies, 1996), and were maintained at significantly increasing values in 

V. faba when supplied with decreasing medium nitrogen concentrations, 

reflecting the previously reported observation that plants growing in nitrogen 

deficient media may require increased root growth to enable adequate nitrogen 

uptake (McDonald & Davies, 1996; Hodge et al, 1999). However significantly 

greater root biomasses, heJ."ghts and cumulative leaf areas were exhibited in 
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'spiked' than in 'non-spiked' v. faba (figs. 3.9; 3.20; 3.25)( accordingly 

statistically similar R:Ss were exhibited in 'spiked' and in 'non-spiked' 

V. faba throughout water deficits. 

RWCs were maintained at greater values in non-nodulated and nodulated V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition (>0.8 

roM N) during water deficits, perhaps attributable to the increased osmotic 

adjustment which was exhibited in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition, as osmotic adjustment is reportedly 

correlated with RWC maintenance during water deficits (Singh & Gupta, 1983).I 

I 
However similar RWCs were exhibited in 'spiked' and in 'non-spiked' V. faba ,I 

• (figs. 3.16 & 3.17). This may be attributable to the fact that V. faba which 

were supplied with increasingly concentrated medium nitrate nutrition 

exhibited increasing nitrate concentrations, inferring that some additional 

nitrate was stored rather than assimilated. Nitrate may act as an effective 

vacuolar osmotic solute (Shaner & Boyer, 1976), and as such nitrate 

accumula.tion may have contributed towards the increasing RWCs which were 

exhibited in V. faba when supplied with increasingly concentrated medium 

nitrate nutrition (figs. 3.16 & 3.17), as otherwise 'spiked' V. faba exhibited 

greater osmotic adjustment than 'non-spiked' V. faba. Conversely ammonia is 

toxic (Raven, 1985) and cannot be stored, and as such significantly greater 

plant heights, root biomasses, and CLAs were exhibited in 'spiked' than in 

'non-spiked' V. faba, inferring that medium ammonia additions were 

metabolized. Accordingly similar RWCs were exhibited in 'spiked' and in 'non

spiked' V. faba. However the significantly greater plant heights, root 

biomasses, and cumulative leaf areas which were exhibited in V. faba when 

supplied with medium ammonia 'spikes' may have important physiological (and 

economic) implications, as summarized in fig. 7.1 (pg. 254) and discussed 
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below. Increased root growth (as was exhibited in 'spiked' as compared with 

'non-spiked' v. faba) potentially results in increased substrate penetration 

and therefore potentially in increased water and nitrogen uptake (McDonald & 

Davies, 1996), and has been correlated with maintained water uptake in V. faba 

during water deficits (Sau & Ines-Minguez, 1990). Increased root biomasses may 

be particularly 'beneficial' to V. faba, as the roots of this temperate 

adapted species predominate in the top 30 cm of the medium (Hebblethwaite, 

1982; see introduction pg 13; fig. 3.9). Accordingly V. faba may be inherently 

more susceptible to root dehydration than cereals, which reportedly exhibit 

deeper root growth (Sprent, 1973). 

Although CLAS decreased significantly in 'non-spiked' v. faba during water 

deficits (fig. 3.20), anova analyses reveal that CLAs were significantly 

greater in 'spiked' than in 'non-spiked' V. faba throughout water deficits. 

The maintenance of high CLAs is reportedly associated with increasing overall 

photosynthetic capacities in V. faba (Van der Wal, 1981), and in other plant 

species (Yoshida, 1972), and has previously been strongly correlated with 

increasing dry matter yields and seed matter yields in V. faba (Hebblethwaite, 

1984). Furthermore in climates which are characterised by limited intermittent 

rainfall, large CLAs may limit the evaporation of rain from the substrate 

surface throughout the growth period (Passioura, 1981), and may thus postpone 

water deficits. Maintained CLAs and heights infer increased capacities to 

intercept solar radiation, and therefore increased overall net photosynthetic 

capacities, and increased survival prospects upon water deficit alleviation 

(Yoshida, 1972), for V. faba when supplied with medium ammonia additions. 

While greater leaf areas were exhibited in 'spiked' than in 'non-spiked' V. 

faba, similar leaf biomasses were recorded by V. faba within both nitrogen 

schemes. Leaf thickness has previously been reported as variable in 

__________.....1 
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Vigna 5ubterranea L. (Collinson et aI, 1997). It is also possible that 

'spiked' v. faba may have contained less storage Rubisco than 'non-spiked' 

V. faba (Rubisco has been described as a nitrogen storage compound, Evans, 


1975). Such a hypothesis is in agreement with the greater growth that was 


exhibited in 'spiked' than in 'non-spiked' V. faba. 


Anova analyses reveal that similar relative growth rates, leaf area ratios, 


and net assimilation rates were exhibited in 'spiked' and in 'non-spiked' 


v. faba. It is thus apparent that medium ammonia additions did not result in 


the exhibition of increasing growth rat~s in V. faba. Furthermore figs. 3.7; 


3.8 & 3.10 and dnova analyses reveal that similar stem dry weights; aerial dry 

weights; and total dry weights were exhibited in 'spiked' and in 'non-spiked' 

V. faba throughout water deficits. However the growth which was significantly 

greater in 'spiked' than in 'non-spiked' V. faba was that of 'productive' 

rather than 'structural' tissue, i.e. significantly greater root biomasses, 

(heights) and CLAs were exhibited in 'spiked' than in 'non-spiked' V. faba. As 

such the potential for water, carbon, and nitrogen acquisition may be greater 

in V. faba when supplied with medium ammonia additions (see fig. 7.1), even 

during water deficits. This may have contributed towards the production of 

greater substrate concentrations for the production and maintenance of 

productive tissue biomasses, for greater osmotic adjustment and for greater 

nitrogen assimilation throughout water deficits than were exhibited in V. faba 

which were grown without medium ammonia additions. 

Stomatal conductances were maintained at lower external water potentials in 

non-nodulated and nodulated V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (> 0.8 roM N), and with 'combined 

nitrogen' as opposed to with equirnolar '1/2 nitrate' nutrition. This may in 
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part reflect the increased RWCs which were exhibited in V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition, as low leaf RWCs 

reportedly contribute to stomatal closure during water deficits in V. faba 

(Van der Wal, 1981), and in other plant species (Comstock & Mencuccini, 1998), 

and net photosynthesis often reflects stomatal conductance, particularly 

during slight to moderate water deficits (McDonald & Davies, 1996). Decreasing 

stomatal conductances infer decreasing transpiration and therefore decreasing 

water losses during water deficits, however figs. 3.22, 4.3 & 4.4 illustrate 

that net photosynthesis and therefore potentially carbon acquisition are 

simultaneously decreased. A compromise must be met within the physiology of 

the plant which results in the maintenance of RWCs (which may be achieved via 

partial stomatal closure), and simultaneously enables sufficient carbon 

acquisition for the maintenance of growth and of substrate provision for 

osmotic adjustment, and for maintained nitrogen uptake and assimilation during 

water deficits. Osmotic adjustment, RWCs and therefore stomatal conductances 

and net photosynthesis were maintained at increasing values in non-nodulated 

and nodulated V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition (> 0.8 roM N). Lower transpiratory water losses have 

previously been reported in nitrogen supplied as opposed to nitrogen fixing 

v. faba (Sau & Ines-Minguez, 1990). However greater stomatal conductances were 

maintained in nodulated v. faba when supplied with 'combined nitrogen' 

nutrition than when reliant on nitrogen-fixation (i.e. in nodulated 'no 

nitrate' supplied V. faba), during moderate water deficits (fig. 3.21). Such 

greater stomatal conductance maintenance may reflect the greater RWCs which 

were exhibited in 'combined nitrogen' supplied V. faba than in V. faba which 

were reliant on nitrogen fixation (figs. 3.16 & 3.17; Comstock & Mencuccini, 

1998). The increased root growth exhibited in V. faba when supplied with 

-----------;:I 
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medium ammonia additions may have resulted in increased water (and nitrogen) 

uptake (McDonald & Davies, 1996), and therefore may also have contributed 

towards RWC maintenance (figs. 3.16 & 3.17). An increased potential for 

stomatal 

conductance and therefore for carbon and nitrogen acquisition is therefore 

inferred in non-nodulated and nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (> 0.8 roM N as indicated 

by the data, 3.21; 4.3; 4.4; 6.2; 6.3; 6.6 - 6.9). Increased net 

photosynthesis in V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition may also reflect the fact that nitrogen is required for the 

production of (photosynthetic) enzymes. 

Water deficit tolerance adaptations such as osmotic adjustment rely upon an 

optimum balance being achieved between water conservation and carbon (and 

nitrogen) uptake within the plant throughout water deficits. Fig. 7.1 (pg. 

254) illustrates that V. faba which are supplied with medium ammonia additions 

may optimise carbon, nitrogen, and water uptake. 

While 'spiked' and 'non-spiked' V. faba recorded similar rates of net 

photosynthesis per unit leaf area (fig. 3.22), the exhibition of significantly 

greater heights and CLAS by 'spiked' than by 'non-spiked' V. faba infer that 

greater total net photosynthesis (and hence carbon acquisition) may be 

exhibited by V. faba when supplied with medium ammonia additions (Yoshida, 

1972; Clark et aI, 1999). This was reflected in the significantly greater 

total soluble carbohydrate; sucrose; glucose; and reducing sugar 

concentrations which were exhibited in 'spiked' than in 'non-spiked' V. faba 

(figs. 4.3; 4.4; 5.2 - 4.7), throughout water deficits. Thus greater carbon 

acquisition was exhibited throughout water deficits in V. faba which were 

I··r ~ 
j supplied with medium ammonia additions (as opposed to solely with nitrate); 

I 
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and also in non-nodulated and nodulated V. faba which were supplied with 

increasingly concentrated medium nitroge~ nutrition (> 0.8 rnM N; see figs. 

4.3; 4.4; 5.2 - 5.7). 

Decreases in net photosynthesis coincided with growth decreases during water 

deficits, and hence photosynthate accumulation during water-deficit associated 

growth reductions would be minimal. The importance of decreasing starch 

concentrations (as occurred in v. faba during water deficits, figs. 5.8 - 5.11 

(pgs. 148 & 149); and as previously reported in other plant species during 

water deficits, Jones et aI, 1980, Bussis & Heinke, 1998; Clifford et aI, 

1998), (and of maintained nitrogen assimilation, see section 6.4) in the 

production of osmotica in V. faba during water deficits is thus highlighted. 

However carbohydrate accumulation was initiated prior to net photosynthesis 

decreases, and amylase activities plateaued, inferring that net photosynthesis 

may have contributed some substrates towards osmotic adjustment during slight 

to moderate water deficits (as previously reported in other plant species, 

Miflin, 1974; Munns & Weir, 1981). 

It is interesting to note that although greater total potential net 

photosynthetic capacities (figs. 3.20; 3.22; 3.25) and greater total soluble 

carbohydrate concentrations (figs. 4.3 & 4.4) were exhibited in 'spiked' than 

in 'non-spiked' V. faba, statistically similar total organic acid and starch 

concentrations were exhibited in 'spiked' and in 'non-spiked' V. faba (figs. 

5.8; 5.9; 5.12; 5.13). Such similar starch and organic acid concentrations may 

reflect a greater utilisation as opposed to storage of carbon skeletons in 

v. faba when supplied with medium ammonia additions . .Ammonia cannot be stored, 

and as a toxin requires rapid assimilation (Raven, 1985), as reflected in the 

significantly greater growth maintenance (figs. 3.9; 3.20; 3.25) which was 
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exhibited in V. £aba when supplied with 'combined nitrogen' as opposed to with 

equimolar '1/2 nitrate' nutrition; and with 'spiked' as opposed to with 'non

spiked' nutrition. Greater dry matter (and leaf area) production have 

previously been reported in Casuarina equisetifolia when supplied with a~onia 

as opposed to with nitrate (or with N2 ) nutrition (Martinez-Carrasco et aI, 

1998), and in T. aestivum during saline 'stress' when supplied with ammonia as 


opposed to with nitrate nutrition (Hawkins & Lewis, 1993). 


As such the metabolism as opposed to the storage of nitrogen and carbon 


compounds may have increased in V. £aba when supplied with medium ammonia 


additions. Inde~d whereas V. £aba which were supplied with increasingly 

concentrated medium nitrate nutrition exhibited significantly increasing 

nitrate concentrations (which may have contributed towards the increasing Rwes 

which were exhibited in V. £aba when supplied with increasingly concentrated 

medium nitrate nutrition, as nitrate is an effective osmotic solute, Shaner & 

Boyer, 1976 (particularly as potassium, an osmotic solute, is the counterion 

for nitrate», V. £aba which were supplied with additional medium ammonia did 

not exhibit significantly greater RWCs, but rather exhibited significantly 

greater growth of 'productive' plant organs, consistent with the assimilation 

of, as opposed to the storage of the additional medium ammonia 'spike'. That 

productive growth, nitrogen assimilatory enzyme activities and osmotic 

adjustment were maintained at significantly increasing values in non-nodulated 

and nodulated V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition (and particularly with medium ammonia additions) may have 

resulted in an alleviation of 'sink size' feedback inhibition of 

photosynthesis (Krapp et aI, 1993) and nitrogen assimilation (Imsande & 

Touraine, 1994), and may have contributed to the greater levels of net 

photosynthesis, nitrogen assimilation and productive growth which were 

------______............t~' 
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exhibited in non-nodulated and nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (> 0.8 roM N), and 

particularly with medium ammonia additions, throughout water deficits. 

The organic acid concentrations of the leaves and roots of non-nodulated 

V. faba were unaffected by either the form or the concentration of the 

supplied medium nitrogen nutrition, or by water deficits. The inference is 

that organic acid concentrations may have been above a threshold level 

required to operate the 'pH stat', to stimulate nitrate uptake, and to provide 

carbon skeletons for nitrogen assimilation, and that V. faba accumulated 

sufficiently high concentrations of carbohydrates and amino/imino acids during 

water deficits to render organic acid accumulation superfluous as an osmotic 

adaptation. Maintained organic acid concentrations may denote the maintained 

utilization of carbon skeletons in nitrogen metabolism during water deficits. 

Increasingly concentrated medium nitrogen nutrition may reportedly result 

in the exhibition of increased NR activities (Guerrier, 1991; Bungard et 

al, 1999); GS activities (Ortega et aI, 1999); and GDH activities (Taylor & 

Havill, 1984) in other plant species. Indeed significantly greater NR; GSi 

and GD8 activities were exhibited in non-nodulated and in nodulated V. faba 

when supplied with increasingly concentrated medium nitrogen nutrition (> 

0.8 roM N). Furthermore significantly greater GDS activities were exhibited 

in V. faba when supplied with 'combined nitrogen' than with equimolar '1/2 

nitrate' nutrition (inferring an ammonia de-toxification 'role' for GOB), 

indicating greater nitrogen assimilation in v. faba when supplied with 

medium ammonia additions. Indeed significantly greater NR; GS; and GD8 

activities were exhibited in 'spiked' than in 'non-spiked' V. faba. NR 

activities may reportedly increase concurrently with ammonia assimilatory 

enzyme activities (Hofstra et aI, 1985), and may be stimulated by medium 
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ammonia (Bungard et aI, 1999). 


In contrast to the bulk of previous l't t 

~ era ure, NR activities were 

maintained in the leaves and roots of V. faba until water deficits became 

moderate to severe (until RWCs dropped to below eighty per-cent, figs. 6.2; 

6.3; 3.16; 3.17). Maintained NR activities during water deficits have 

previously been reported in a small number of studies involving other plant 

species (Smirnoff et aI, 1985; Ladley, 1990). Maintained NR activities 

during (moderate to severe) water deficits may have resulted in the 

continued production of substrates for osmotic adjustment, and components 

for growth and yield (with which NR activities are reportedly positively 

correlated, Srivastava, 1980). 

The increasing nitrate concentrations which were exhibited in non-nodulated 

and nodulated V. faba when supplied with increasingly concentrated medium 

nitrate nutrition may have contributed towards maintained nitrate 'fluxes' 

and hence the increasing NR activities which were exhibited in V. faba when 

supplied with increasingly concentrated medium nitrate nutrition, even 

during water deficits, during which nitrate may reportedly be mobilized 

from storage to metabolic pools (Shaner & Boyer, 1976 a&b; Chapin et aI, 

1988). NR is an inducible enzyme which is reportedly continuously 

synthesized and degraded, and reportedly is synthesized at increasing rates 

as nitrate availabilities increase (Somers et aI, 1983). 

The decreasing NR activities exhibited in V. faba during severe water 

deficits may have been attributable to the exhibited decreases in net 

photosynthesis and stomatal conductance (figs. 3.21 & 3.22), as 

t I 1998) and nitrate fluxes (whichphotosynthate availabilities (Foyer e a, 

d h stomatal conductances duringmay be affected by transpiration an ence 

severe water deficits, Shaner & Boyer, 1976) are reportedly regulatory for 
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NR activities (Shaner & Boyer, 1976). Decreasing photosynthate 

availabilities may have become apparent in v. taba during severe water 

deficits (fig. 3.22), and as such would coincide with the exhibited NR 

activity decreases (figs. 4.3; 4.4). Indeed NR activities were maintained 

during moderate water deficits inferring that they were not sensitively 

affected by water deficits per se. 

GS activities were maintained (figs. 6.6 & 6.7), while GDB activities were 

either maintained or else increased in 'spiked' v. faba during water 

deficits (figs. 6.8 & 6.9). That GDH activities increased in V. faba during 

water deficits infers that medium ammonia additions may incur benefits 

during severe water deficits, when slight NR activity decreases were 

exhibited in v. taba (figs. 6.2 & 6.3). 

Increasing GDH activities during water deficits (as were exhibited in 

'spiked' 'no nitrate' and '1/10 nitrate' supplied v. faba) may have been 

mediated via ATP decreases during water deficits (Stewart & Rhodes, 1977; 

Stryer, 1988; Lam et aI, 1996; as discussed in section 6.3.1.4, pg. 201). 

Furthermore the significantly greater glutamine concentrations which were 

exhibited in the leaves and roots of 'spiked' than in 'non-spiked' V. faba 

may have contributed to the relatively greater GDB as opposed to GS 

activity increases which were exhibited in 'spiked' V. faba, as high 

glutamine concentrations may reportedly inhibit GS activities and exert 

positive control over GDB activities (Rhodes et aI, 1976). Increased GDH 

activities may reportedly result in increased mitochondrial glutamate 

and/or a-ketogluterate production, and therefore potentially in increased 

amino acid (primarily proline and asparagine) synthesis (Venekamp, 1989), 

as supported by the data (figs. 6.8; 6.9; 4.5; 4.6; tables 6.2- 6.7). Thus 

J 
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; 

the increasing GOB activities which were exhibited in V. faha when supplied 

with medium ammonia additions (as exemplified by the greater GDB activities 

which were exhibited in V. faba when supplied with 'combined nitrogen' as 

opposed to with equimolar '1/2 nitrate' nutrition) may have contributed 

towards the significantly greater amino acid concentrations and hence 

osmotic adjustment which were exhibited in 'spiked' than in 'non-spiked' 

V. faba (section 4.4). Negative water potentials may reportedly decrease 

the kM (ammonia) of GOB and asparagine synthetase, resulting in increased 

GOB activities and asparagine production (Venekamp, 1989), as supported by 

the data. Photosynthetic decreases during water deficits may necessitate 

protein respiration and subsequent ammonia release, increasing the need for 

ammonia assimilation and proline / asparagine accumulation, the synthesis 

of which also results in 8+ removal during water deficits (Venekamp, 1989). 

That v. faba supplied with increasingly concentrated medium nitrogen 

nutrition exhibited significantly greater primary nitrogen assimilatory 

enzyme activities was reflected in the significantly greater concentrations 

of the products of primary nitrogen assimilation (glutamate; asparagine; 

glutamine; allantoin) which were exhibited in non-nodulated and nodulated 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition, and particularly with medium ammonia additions. Indeed 

asparagine; proline; alanine; and threonine accumulated significantly 

during water deficits, and were exhibited at significantly increasing 

concentrations in non-nodulated and nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition (> 0.8 roM N), and 

particularly with medium ammonia additions (i.e. in 'spiked' V. faba). Some 

amino acids which accumulated significantly during water deficits were 

carbon economic (i.e. had high N:C ratios, for example asparagine and 

------------....................~~ 
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allantoin, Sprent, 1980). Proline also accumulated significantly in V. faba 

during water deficits. The slow turnover of proline results in proline 

accumulation at a minimal cost of synthesis (Rhodes at ai, 1986), and 

proline accumulation has previously been positively correlated with leaf 

tissue survival and with water deficit tolerance (Singh et aI, 1973a), and 

also with post water deficit growth (Aspinall & Paleg, 1981) in other plant 

species. 'Roles' were hypothesized for individual accumulating amino acids 

in ammonia de-toxification; in nitrogen storage; in carbon economy; in 

metabolic flexibility; and in the prevention of feedback inhibition of the 

TeA cycle during water deficits (see section 6.3.5, pgs. 231 - 232). 

Significantly greater aminotransferase activities were also exhibited in 

non-nodulated and nodulated V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition, and particularly with ammonia 

'spike' nutrition; a further reflection of the increased nitrogen 

metabolism which was exhibited in V. faba when supplied with medium ammonia 

additions. 

It is thus apparent that nitrogen acquisition was greater in 'spiked' than in 

'non-spiked' V. faba. Increased nitrogen assimilation is associated with yield 

increases (Hageman, 1979; Srivastava, 1980; Marschner, 1986; Muller & 

Janiesch, 1993), and with a reduced dependence on nitrogen fixation (Caba et 

aI, 1998) in other plant species. Continued nitrogen assimilation may 

reportedly also result in an alleviation of photoinhibition during water 

deficits (Smirnoff & Stewart, 1985), which may contribute towards increased 

plant productivities and plant survival prospects upon re-hydration. 

As water, carbon and nitrogen acquisition were greater in 'spiked' than in 

'non-spiked' V. faba, more substrates were potentially available for 

------_____.t~1 
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osmotic adjustment. Indeed significantly greater total soluble 

carbohydrates, amino acids and glycine betaine accumulated in 'spiked' than 

in 'non-spiked' v. iaba during water deficits (see section 4.4). 

Significantly greater proline accumulated in non-nodulated and nodulated 

V. iaba which were supplied with 'combined nitrogen' as opposed to with 

equimolar '1/2 nitrate' (or with less concentrated nitrogen) nutrition 

(figs. 4.7 & 4.8), and significantly greater total osmolarities were 

recorded in 'spiked' than in 'non-spiked' V. iaba (figs. 4.11 & 4.12). 

Furthermore greater total soluble carbohydrate; total amino acid; proline; 

and glycine betaine concentrations were exhibited in the roots of non

nodulated and nodulated V. faba when supplied with 'combined nitrogen' as 

opposed to with equimolar '1/2 nitrate' (or with less concentrated nitrate) 

nutrition; and in 'spiked' than in 'non-spiked' V. faba. Increased root 

osmotic adjustment, as was exhibited in V. iaba when medium ammonia 

additions were included during water deficits, further infers an increased 

capacity for water uptake (Boyer, 1985). Plants which accumulate greater 

concentrations of osmotic solutes reportedly extract more water during 

water deficits (Kumar & Singh, 1998; Collinson et ai, 1997). Increased 

water uptake may have been particularly apparent in V. faba when supplied 

with medium ammonia additions as significantly greater root biomasses were 

exhibited in 'spiked' than in 'non-spiked' V. iaba, and root growth is also 

reportedly correlated with water uptake in V. iaba (Sau & Ines-Minguez, 

1990). 

The significantly greater concentrations of compatible solutes (sucrose; 

glycine betaine; proline; glutamate; alanine; and threonine; Nash et ai, 

1981; Paleg et aI, 1985; Ingram & Bartels, 1996; Clifford et ai, 1998; 

Ortega et aI, 1999; see introduction, pg. 16 & section 6.3.5, pg. 232), 
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which were exhibited in non-nodulated (and nodulated) V. faba when supplied 

with increasingly concentrated medium nitrogen nutrition, and particularly 

with medium ammonia additions, may have afforded some protection towards NR 

(and other enzymes, e.g. photosynthetic enzymes as compatible solutes may 

accumulate in the cytoplasm and in chloroplasts, Bussis & Heinke, 1998; 

Rhodes et a1 1986; proline and glycine betaine may increase the heat 

stability of GS, Smirnoff & Stewart, 1985), and may therefore have 

contributed towards the maintenance of metabolism during increasingly 

severe water deficits in V. faba when supplied with increasingly 

concentrated medium nitrogen nutrition (and particularly with medium 

ammonia additions). 

It is imperative for growth that plants maintain a threshold turgor during 

water deficits (Brownlee et aI, 1999). That substantial osmotic solute 

concentrations; growth; and RWCs were all maintained at significantly 

increasing levels in non-nodulated and nodulated V. faba when supplied with 

increasingly concentrated medium nitrogen nutrition during water deficits 

infers that solute accumulation as opposed to cellular volume decreases may 

have been responsible for the exhibited osmotic adjustment. Increasing 

osmotic adjustment (as was exhibited in non-nodulated and in nodulated 

V. faba when supplied with increasingly concentrated medium nitrogen 

nutrition, and particularly with medium ammonia additions) during water 

deficits is reportedly correlated with increasing RWCs (Singh & Gupta, 

1983); increasing stomatal conductances (and by inference carbon 

acquisition); increasing medium-water extraction (Kumar & Singh, 1998); and 

with the exhibition of increasing yields (Van der Wal, 1981; Rodriguez

Maribona et aI, 1992) in other plant species. 



273 


Significantly greater cumulative leaf areas, plant heights, plant root growth, 

nitrogen assimilatory enzyme activities and total carbohydrate and amino acid 

concentrations were exhibited in V. faba when supplied with medium ammonia 

additions, even during periods of adequate irrigation, inferring that medium 

ammonia additions prior to water deficit imposition may pre-dispose V. faba to 

an increased tolerance to water deficits. 

That greater GOB activities; osmotic adjustment; and inferred net 

photosynthesis were maintained in non-nodulated and nodulated V. faba when 

supplied with 'combined nitrogen' as opposed to with equimolar '1/2 nitrate' 

nutrition, and with 'spiked' as opposed to with 'non-spiked' nutrition during 

water deficits may also reflect the previously reported observation that 

ammonium assimilation may be more economical in terms of photons; water; and 

metal ions (Mg; Fe) per unit carbon assimilated per unit time than nitrate or 

N2 assimilation, both in v. faba (Bebblethwaite et al, 1984; Sutherland et al, 

1985), and in other plant species (Ines-Minguez & Sau, 1989; Raven & Sprent, 

1993; Martinez-Carrasco et a1, 1998). The inference is that V. faba supplied 

with medium ammonia additions may incur fewer metabolic perturbations during 

water deficits, due to a more efficient 'water economy', which would in turn 

result in increased nitrogen and carbon assimilation capabilities, and hence 

in an increased capacity for osmotic adjustment during water deficits (see 

fig. 7.1). The total energy expenditure of a plant which assimilates nitrate 

(which requires more assimilation steps than ammonia assimilation) is 

reportedly around fifteen per cent of the plant's total energy production, 

while ammonia assimilation reportedly expands between two and five per cent of 

the total energy production of a plant (Bloom, 1988), inferring that more 

'energy' may be available to plants when supplied with some medium ammonia 

additions. Increasing medium ammonia additions may result in increased ammonia 

, 
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and nitrate uptake (Ourry et al, 1997). 

The introduction highlighted previous reports which concluded that medium 

ammonia nutrition may result in the exhibition of plant toxicity problems 

(Tolley-Henry & Raper, 1986; see pg. 6). However as a legume V. faba is 

adapted to receive nitrogen from the roots via nitrogen fixation, via nitrate 

reduction (which is also predominantly a root phenomenon in V. faba, 

Sutherland et aI, 1985; figs. 6.6 & 6.7), or via ammonia assimilation (which 

is also a root phenomenon). Indeed similarities are noted when nitrogen 

fixation and ammonia assimilation are compared, for example xylem sap 

compositions are similar in ammonia supplied and in nitrogen fixing legumes 

(Baker et al, 1997), and ammonia assimilation and nitrogen fixation both 

result in the production of H+ ions (Raven, 1985). The entire physiology of 

V. faba may be predisposed towards root assimilation, and ammonia toxicity 

symptoms were not exhibited in 'spiked' V. faba (which were supplied with 

ammonia additionally to nitrate). Indeed Troelstra et al, (1992) working with 

Myrica gale, a species which predominantly assimilates nitrate in the roots 

and is also capable of nitrogen fixation, reported that RGRs were exhibited in 

the following order with respect to medium nitrogen nutrition; 'ammonia'> 

'combined nitrogen' > 'nitrate' = 'atmospheric nitrogen'. 

However the collected data contrasts with that of Raab & Terry (1994) who 

reported that less (root and particularly) shoot growth, and lower leaf areas 

were exhibited in Beta vulgaris when supplied with anunonia as opposed to with 

nitrate nutrition, as attributed to the reported exhibition of lower osmolyte 

concentrations in B. vulgaris when supplied with ammonia than with nitrate 

nutrition. 

Ammonia does not accumulate in many soils (with the possible exception of 

acidic soils), as ammonia may quickly be nitrified into nitrite and then 

- ----_________•••11-.;;<11.' 
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nitrate (by e.g. Nitrosomonas and Nitrobacter; Sprent & Thomas, 1984), 

indicating that even when medium ammonia additions are supplied, plants may 

predominantly utilise nitrate (Lewis, 1986). Nitrification of ammonia may have 

contributed towards the observed lack of ammonia-associated toxicity symptoms 

in V. faba, and towards the maintained NR activities exhibited by V. faba when 

supplied with medium ammonia additions (see also Bungard et aI, 1999). 

The collected data indicates improved productivities in non-nodulated and 

nodulated V. faba when supplied with medium nitrogen nutrition (> 0.8 roM N, 

and particularly with medium ammonia additions) during water deficits, as 

opposed to when reliant on nitrogen fixation, as attributable to increased 

capacities to maintain plant RWCs, carbon acquisition, nitrogen 

assimilation, and osmotic adjustment (fig. 7.1). Thus plant metabolism and 

growth were maintained at lower external water potentials in non-nodulated 

and nodulated V. faba when supplied with increasingly concentrated medium 

nitrogen nutrition (> 0.8 mM N), and particularly with medium ammonia 

additions. Indeed turgor maintenance in V. subterranea during water 

deficits reportedly required growth reductions, the regulation of 

transpiration via stomatal control, and osmotic adjustment (Collinson et 

aI, 1997; see fig. 7.1). 

Ultimately figs. 6.12 & 6.13 illustrate that V. faba exhibited greater leaf 

and root protein concentrations when supplied with 'combined nitrogen' as 

opposed to with equimolar nitrate nutrition; and greater root protein 

concentrations (and CLAs) when supplied with ammonia 'spiked' as opposed to 

with 'non-spiked' nutrition. Increasing protein concentrations (and CLAs) 

represent important nutritional and economic considerations for this 

leguminous crop (Pirie, 1979; Snoad, 1981), particularly as the vegetative 
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yield of v. taba may be utilised as silage and green manure (Lawes, 1980; 

Corak et aI, 1992). Protein concentrations decreased significantly during 

water deficits, however amino acid accumulation preceded protein 

decreases suggesting a 'role' for primary nitrogen assimilation in the 

production of nitrogenous osmotica, and protein concentrations were 

maintained at increasing values in non-nodulated and nodulated V. faba when 

supplied with increasingly concentrated medium nitrogen nutrition (> 0.8 roM 

N), and particularly with medium ammonia additions (figs. 6.12 & 6.13). 

The collected data contrasts with the work of PlieS-Balzer et aI, (1995), 

who concluded that mineral nitrogen fertilization could not compensate for 

the negative effects of water deficits on the yields of nodulated V. faba 

(cv. 'Alfred'), and that it was necessary to establish optimal growth 

conditions for the exhibition of high dry matter and seed yields in 

V. taba. However increased dry matter yields were exhibited in V. faba (cv. 

'Bunyards Exhibition') when supplied with medium nitrogen nutrition (> 0.8 

roM N), as opposed to when reliant on nitrogen fixation, throughout water 

deficits. 
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v. faba is an effective nodulator, and <0.8 roM nitrogen resulted in 
nitrogen fixation inhibition, and in the exhibition of lower 
(vegetative) yields than were exhibited by nitrogen fixing v. faba 

The collective data inferred that nitrogen fixation may not be water 
deficit sensitive in V. faba (cv. 'Bunyards Exhibition') 

Significantly greater growth was exhibited by v. faba when supplied 
with increasingly concentrated medium nitrogen (> D.S roM N), as 
opposed to when reliant on nitrogen fixation 

Ammonia 'spiked' as opposed to 'non-spiked' V. faba exhibited 
significantly greater root biomasses, heights, and cumulative leaf 
areas, and hence potential net photosynthesis and water uptake 
capacities were greater in nitrogen supplied (particularly ammonia 
. spiked') V. faba than in nitrogen fixing V. faba 

Ammonia 'spiked' as opposed to 'non-spiked' V. faba exhibited 
significantly greater (leaf and root) osmotic adjustment, and hence 
potential water deficit tolerance was greater in nitrogen supplied 
(particularly ammonia 'spiked' ) V. faba than in nitrogen fixing 
V. faba 

Significantly greater nitrogen assimilatory enzyme activities (NR~ 

GS; GDB) were exhibited by ammonia 'spiked' than by 'non-spiked' 
V. faba, and hence greater nitrogen assimilation was exhibited by 
medium nitrogen supplied (particularly ammonia 'spiked' ) V. faba as 
opposed to by nitrogen fixing V. faba 

Nitrate reductase activities were not sensitive to gradually imposed 
water deficits 

Significantly greater root protein concentrations, and cumulative 
leaf areas were exhibited by ammonia 'spiked' than by 'non-spiked' 
V. faba, both when supplied with adequate irrigation and during water 
deficits, inferring that economic advantages may be incurred by the 
provision of medium nitrogen (particlarly with medium ammonia 
additions) to V. faba 

Table 7.1 Key Research outcomes 

Field trials would establish the applicability of the reported conclusions 

in agricultural scenarios, as controlled conditions do not fully mimic 

field conditions. In the field plants experience multiple biotic and 

abiotic influences, particularly in the radiant energy field, which 

influence the development of photoprotective systems (Wise et al, 1994), 



278 


and in potential medium nitrification (Sprent & Thomas, 1984). UVB 

radiation (as experienced in the field) results in increased stomatal 

closure (Nogues et al, 1998). Furthermore the inferred effects of medium 

ammonia additions on total carbon, nitrogen and water acquisition may 

decrease in the field due to planting density factors, competition from 

weeds etc. 

However the yield benefits described for V. faba when supplied with medium 

ammonia additions are of interest as nitrate is susceptible to leaching in 

the field (Raven, 1985), rendering concentrated field nitrate applications 

environmentally undesirable. Furthermore if ammonia proves a beneficial 

medium supplicant in the field economic benefits may incur, as ammonia is 

cheaply available in the form of bird droppings. 

Further work would also allow qualification of 'non-specified amino' 

compounds and of their 'roles' during water deficits. Water deficits induce 

an array of late embryogenesis abundant proteins (LEAs) in plants (e.g. 

dehydrin, Bray, 1997), which act like compatible solutes (Ingram & Bartels, 

1996), sequestering ions which would otherwise be damaging when water 

contents are low (Close, 1996). 'Non specified amino' compounds may 

comprise LEAs; short peptides; non-quantified amino acids; amines; non

protein amino acids (Bennet &, Wallsgrove, 1994); polyamines etc. 

Water deficit tolerance adaptations may be significant considering predictions 

that global temperatures are rising. with expected increases in CO2 concurrent 

with water deficits, stomatal resistance to CO2 may result (Van Oosten & 

Besford, 1996), and plant growth and therefore sink strength may be reduced. 

80wever species which exhibit increased osmotic adjustment during water 

deficits may maintain stomatal opening (and therefore potentially carbon 
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acquisition, McDonald & Davies, 1996) during more severe water deficits if 

additional nitrogen (and specifically ammonia in V. faba) is supplied to 

maintain sink strength and to enable the production of osmotica (Sims et al, 

1998), and to enable increased plant growth and increased potential plant 

yields. 

------------____I1111_.____
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'NO NITRATE' 

MACRONUTRIENTS: 
KHP04 , 4.0 roM; 
MgS04 , 1.5 roM; 

CaC12 , 4.0roM; 
FeNa EDTA, 0.1 roM 

MICRONUTRIENTS: 
MnS041 0.01 roM; 
znso4, 0.001 roM; 

CUS04 , 0.001 roM; 
BB03, 0.05 roM; 
NaMo04 , 0.0005 roM; 
NaCl, 0.1 roM 

, 111 0 NITRATE' 

MACRONUTRIENTS: 
KN03' 0.4 roM; 

Ca(No3 )2' 0.4 roM; 
KHP04 , 4.0 roM; 
MgS04 , 1. 5 roM; 
CaC12 , 4.0mMi 
FeNa EDTA, 0.1 mM 

MICRONUTRIENTS: 
MnS04 , 0.01 roM; 
znso4, 0.001 mM; 
CUS04 , 0.001 roM; 
HB03 , 0.05 roM; 
NaMo04, 0.0005 roM; 
NaCl, 0.1 roM 
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APPENDIX I 


LONG ASHTON MEDIA RECIPES 


'1/2 NITRATE' 

MACRONUTRIENTS: 
KN03, 2.0 roM; 

Ca(N03 }2' 2.0 roM; 
KBP04 , 4.0 roM; 
MgS04 , 1.5 roM; 

caC12 • 4.0roMj 
FeNa EDTA, 0.1 roM 


MICRONUTRIENTS: 

MnS04, 0.01 roM; 

znS04 , 0.001 roM; 

CUS04 , 0.001 roM; 

HB03 , 0.05 roM; 

NaMo04 , 0.0005 roM; 

NaCl, 0.1 roM 


'COMBINED NITROGEN' 


MACRONUTRIENTS: 

KHP04 , 4.0 roM; 

NH 4N03 , 4.0 roM; 

MgS04 , 1.5 roM; 

CaCl2 , 4.0roMi 

FeNa EDTA, 0.1 roM 


MICRONUTRIENTS: 

MnS04 , 0.01 roM; 

znS04 , 0.001 roM; 

CUS04 , 0.001 roM; 


HB03 , 0.05 roM; 

NaMo04 , 0.0005 roM; 

NaCl, 0.1 roM 


----------_.',"' 
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APPENDIX II 

ANALYSIS OF VARIANCE (ANOVA) 

Research involved comparisons of the effects of (a) four nitrogen sources, 
and (b) six levels of water deficit imposition on various parameters of 
plant metabolism (e.g. osmotic adjustment, enzyme activities etc.) within 
three overall nitrogen schemes (see fig. 2.1). Anova is a technique which 
partitions the variance in a set of data into several components in such a 
way that the contribution of each component to the overall data set may be 
assessed. 

MAIN ASSUMPTIONS of ANOVA (after Kvanli et aI, 1992) 

1. Replicates must be independent and random from each population - the 
value of one observation must not influence any other value. Error variance 
was minimized by the employment of random sampling techniques, as discussed 
in section 2.7. For example one cultivar was used, one seed supplier was 
used, and similar sized seeds were selected. Furthermore all plants 
received identical treatment with the exception of the analysed factors 
i.e. water defi~it regime and nitrogen regime (and medium physical state). 

Treatments were distributed in random blocks, and pots were well spaced to 

minimise mutual shading. 


2. The observations I replicates from each population must follow 
(approximately) a normal distribution. Lack of normality is not critical 
and providing departure is not extreme, and replicates are taken (as in 
this research), and sample sizes are equal, the F test used in ANOVA is 
only slightly affected. Anderson-Darling calculations showed normality 
within samples, especially considering the large sample numbers. 

3. The measured variable is continuous. 

ANOVA determined whether variations in each data set were attributable to 
the nitrogen treatment, water deficit treatment, or were attributable to 
error variance (i.e. within-group variance, due to e.g. genetic differences 
between individuals). 

between groups (treatment/s) variance 

error variance 

is the F distribution. 

If a treatment had no effect, virtually all of the variance in the data 
would be attributable to error variance, and the variance ratio would be 
very low. Ho was rejected if 'F crit' < 'F calc'. 
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As two factors were of interest, (i) water deficits and (ii) nitrogen 
treatments, two-way ANOVA was employed, which tested: 

( i) H - the insignificance of water deficit for each measuredoa 

parameter, 


(ii) Hob - the insignificance of nitrogen treatment for each measured 

parameter, and 


(iii) Ho ab - that there was no interaction between nitrogen source and 

water deficit for each measured parameter. 


Calculations were performed using statworks and minitab software, which 
calculated 'F calc' values for factors (i), (ii), and (iii) above. These 
values were compared against tables of 'F crit' values for the various 
degrees of freedom (Fisher & Yates, 1963), with a set at 0.01, i.e. one in 
one-hundred sample means could be attributable to error for all data 
(except for individual amino acids data, where n was smaller l and a was 
accordingly set at 0.05 - i.e. one in twenty sample means could be 
attributable to error). 

APPENDIX II (a) was constructed by comparing the data for each parameter 
within each nitrogen scheme (a-c fig 2.1; (a) non-nodulated V. taba, (b) 
nodulated V. faba, and (c) 'spiked' V. faba) separately. within each 
nitrogen scheme the effects of all four nitrogen sources ('no nitrate', 
'1/10 nitrate', '1/2 nitrate', and 'combined nitrogen'), along with the 
effects of increasing water deficits were tested for the significance of 
effect on the measured parameter. The interactive effects of nitrogen 
source and water deficits were also evaluated. As such Appendix II (a) 
records the significance of the effects of different medium nitrogen 
sources, and of the effects of increasing water deficits on each parameter 
(within all three nitrogen schemes). 

APPENDIX II (bl was constructed by comparing the effects of only two 
nitrogen sources. For each parameter data obtained from non-nodulated 'no 
nitrate' V. faba were compared against data obtained from nodulated 'no 
nitrate' V. faba during water deficits. It has been explained that any 
Significantly different responses between V. faba from these two groups may 
be attributed to N-fixation. Thus, Appendix II (b) examines whether 
parameters differed significantly in N-fixing 'no nitrate' supplied 
V. faba as compared against non N-fixing 'no nitrate' supplied V. faba 
during water deficits. 

APPENDIX II (c) was constructed by comparing all of the data for a 
specified parameter from non-nodulated 'non-spiked' v. faba against all of 
the data for that parameter from non-nodulated 'spiked' V. faba, during 
increasing water deficits. Thus appendix II (c) examines whether 'ammonia 
spike' nutrition resulted in significant differences in each parameter as 
compared against 'non spike' nutrition during increasing water deficits. 

The following tables consist of 'F calc' and 'F crit' values following 
anova analyses. Appendix II (a) also gives correlation values for GOB 
activities with increasing water deficits. 

Where the nitrogen source, water deficits, or interactions between the two 
are deemed to have significantly affected the measured parameter F values 
are given in bold. 
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APPENDIX II (a) 

N TREATMENT WATER DEFICITS INTERACllON 

Fcalc Fcrit Fcalc Fcrit F calc F crit 


! 469.31 4.2 168.65 3.4 14.3 2.4 


13.04 4.2 43.6 3.4 0.97 2..4 

208.28 4.2 85.1 3.4 7.43 2..4 

395.92 4.2 51.75 3.4 2.91 2.4 

29.42 4.2 32.35 3.4 1.28 2.4 

246.94 4.2 37.95 3.4 2.84 2.4 

776.92 4.2 169.87 3.4 11.66 2.4 

24.72 4.2 46.57 3.4 1.12 2.4 
I

321.95 4.2 79.96 3.4 6.25 2.4 I 

197.25 4.2 46.59 3.4 1.3 2.4 

42.55 4.2 36.86 3.4 0.46 2.4 
I241.85 4.2 55.98 3.4 2.07 2.4 

175.06 4.2 35.35 3.4 2.1 2.4 

38.49 4.2 44.47 3.4 0.058 2.4 

336.16 4.2 81.26 3.4 4.34 2.4 

363.43 4.2 68.57 3.4 8.01 I 2.4 

15.79 4.2 38.48 3.4 I 1.27 2.4 1 
I 

199.82 4.2 45.76 3.4 5.41 I 2.4 I 

343.31 4.2 11.83 3.4 1.49 2.4 

22.6 4.2 12.76 3.4 0.99 2.4 

152.58 4.2 8.99 3.4 1.23 2.4 I 

565.4 4.2 50.59 3.4 5.54 2.4 

22.9 4.2 27.78 3.4 0.92 2.4I 
269.67 4.2 32.41 3.4 4.06 2.4 

92.68 4.2 1.98 3.4 1.33 2.4 I 

41.78 4.2 13.62 3.4 0.44 2.4 
I 

178.41 4.2 6.12 3.4 1.84 2.4 I 

I317.1 4.2 19.69 3.4 3.09 2.4 

35.13 4.2 20.09 3.4 0.54 2.4 

208.51 4.2 19.98 3,4 2.34 2.4 

27.81 4.2 110.62 3.4 3.97 2.4 

5.92 4.2 62.9 3.4 1.57 2.4 

16.08 4.2 117.12 3.4 3.69 2.4 j 
'I 

~_____________'\h . 
-

11,_-~1 
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APPENDIX II (a) 


NTREATMENT WATER DEFIOTS INTERACTlON 

Fcalc Fcrit Fcalc Fcrit F calc F crit 

STEM Non-nodulated 18.29 4.2 43.32 3.4 1.08 2.4 

FW : DW Nodulated 13.01 4.2 55.34 3.4 1.6 I 2.4 I 
Spiked 0.96 4.2 1.22 3.4 1.01 2.4 

ABOVE-MEDIUM Non nodulated 54.31 4.2 222.3 3.4 6.72 2.4 

P'W : DW Nodulated 14.21 4.2 95.83 3.4 2.19 2.4 

Spiked 27.88 4.2 201.53 3.4 4.94 2.4 

ROO'l' Non-nodulated 82.94 4.2 347.4 3.4 11.71 2.4 I 

l"W : DW Nodulated , 3.59 4.2 , 00.37 3.4 1.26 2.4 

Spiked 28.71 4.2 183.77 3.4 4.76 2.4 

I 
:rOTAL Non-nodulated 7.68 4.2 f 32.04 3.4 9.71 2.4 

FW : DW Nodulated 7.59 4.2 57.86 3.4 1.26 2.4 I 

Spiked 1 5.9 4.2 I 41.49 
I 
I 3.4 3.76 2.4 

1 I I 
R : S Non-nodulated 11041.99 4.2 165.61 3.4 9.95 1 2.4 

Nodulated 6.11 4.2 24.19 3.4 1.97 2.4 

Spiked 175.29 4.2 40.33 3.4 1.47 2.4 I 
f 

I 

LEAP' RWC Non-nodulated 81.48 4.2 341.94 3.4 I 10.05 2.4 I 
Nodulated I 21.36 4.2 182.18 3.4 2.48 I 2.4 I 

Spiked I 57.4 4.2 335.09 3.4 7.29 I 2.4 I 
I 

ROOT awe Non-nodulated 212.59 4.2 1015.1 3.4 27.7 2.4 

Nodulated 26.34 I 4.2 209.29 3.4 2.19 2.4 
I 

spiked I 4.5 4.2 9.23 3.4 0.64 I 2.4 

I I 
RELA!I':IW 

GROW'I'B RA:rE 

I Non-nodulated 

Nodulated 

1654.57 

1 

4.2 

4.2 

65.4 

1 

3.4 

3.4 

6.35 

1 

I
-I 

2.4 

2.4 I 

Spiked I 294.83 4.2 66.2 3.4 4.43 2.4 I 
I 

I 

I 
EBIG~ Non-Nodulated 42.08 4.2 14.81 3.4 8.45 1 2.4 

Nodulated 37.64 I 4.2 27.05 3.4 4.89 2.4 

Spiked 18.15 I 4.2 I 15.49 3.4 5.77 2.4 

LBJUP Non-nodulated 8.56 4.2 1.92 3.4 0.99 2.4 

AlI.BA Nodulated 2.62 4.2 2.4 3.4 0.23 I 2.4 

llAno Spiked 
I 

18.33 4.2 3.96 3.4 I 0.74 2.4 

CUl«J'LA!I'J:VI!: Non-nodulated 41.36 4.2 4.73 3.4 1.22 2.4 

I..ZAP ARElI. Nodulated 12.3 4.2 44.58 3.4 1.15 2.4 

Spiked 41.86 4.2 21.58 3.4 1.8 2.4 I 
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APPENDIX II (al 


p 

N TREATMENT WATER DEFICITS INTERACTlON 

Fcalc Fcrit Fcalc Fcrit F calc F critt- 
Sl'OMA'l'AL Non-nodulated 1.07 4.2 1.06 3.4 1 2.4 

cONDUC'l'JUlCE INodulated 63.47 4.2 366.05 3.4 3.46 2.4 

Spiked 1.01 4.2 1 3.4 1 2.4 

PHOTOSYN'J:'HESIS Non-nodulated 305.67 4.2. 2.52.01 3.4 5.48 2.4 

Nodulated 83.14 4.2 360.51 3.4 3.47 I 2.4 

spiked 119.1 4.2 196.54 3.4 2.64 2.4 

NET Non-nodulated 344.45 4.2 15.15 3.4 2.05 2.4 

AssrMI~IO!l' Nodulated 41.05 4.2 11.5 3.4 0.6 2.4 

RA'l'E Spiked 32.7.55 4.2 I 8.72 3.4 1.57 2.4 , 

SOLUBLE leaves non-nodulated 612.54 4.2 31.66 3.4 10.76 2.4 

CARBOHYDRATE leaves nodulated 62.46 4.2 34.19 3.4 15.73 2.4 

leaves spiked 409.64 4.2 132.28 3.4 21.01 2.4 

roots non-nodulated 131.19 4.2 11.26 3.4 3.34 2.4 

roots nodulated 19.17 4.2 23.74 3.4 2.68 2.4 

roots spiked 86.96 4.2 26.01 3.4 7.15 2.4 

I 
TOnI. leaves non-nodulated 136.76 4.2 25.61 3.4 6.92 2.4 

AMJ:1lI0 leaves nodulated 51.44 4.2 116.8 3.4 7.52 2.4 

Acrns leaves spiked 17.25 4.2 89.02 3.4 3.55 2.4 

roots non-nodulated 153.92 4.2 31.51 3.4 4.59 2.4 

I roots nodulated 40.02 4.2 51.88 3.4 1.72 2.4 

roots spiked 103.94 4.2 49.38 3.4 7.47 2.4 

l?ROLIW leaves non-nodulated 148.98 4.2 157.22 3.4 31.08 2.4 

leaves nodulated 13.95 4.2 I 63.58 3.4 5.37 2.4 t 

leaves spiked 60.57 4.2 218.86 3.4 11.78 2.4 

roots non-nodulated 54.43 4.2 
, 

67.75 3.4 14.13 2.4 

roots nodulated 27.36 4.2 118.49 3.4 15.55 2..4 

roots spiked 20.61 4.2 392.18 3.4 15.35 2.4 

GLYCrn leaves non-nodulated 23.73 4.2 46.14 3.4 4.33 2.4 

BB~In leaves nodulated 20.13 4.2 509.84 3.4 10,47 2.4 

leaves spiked 516.14 4.2 611.23 3.4 225.2 2.4 

roots non-nodulated 38.22 4.2 45.59 3.4 8.16 2.4 

roots 	nodulated 118.41 4.2 243.85 3.4 36.66 2.4 

roots spiked 2720.62 4.2 3274.2 3.4 1545 2.4 

:=

t, 
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APPENDIX II (a) 


N TREATMENT WATER DEFICITS INTERAcnON 

Fcalc Fcrit Fcalc Fcrit F calc F crit 

35.16 2.4~O'rAL leaves non-nodulated 525.19 4.2 263.9 3.4 

OSMOLARITY leaves nodulated 92.53 4.2 680.78 3.4 9.5 2.4 

leaves spiked 480.34 4.2 623.17 3.4 46.04 2.4 

2.4roots non-nodulated 1152.95 4.2 692.28 3.4 89.91 

2.4roots nodulated 119.73 4.2 786.56 3.4 19.96 

roots spiked 745.03 4.2 639.91 3.4 59.3 2.4 

SUCROSB leaves non-nodulated 322.49 4.2 171.46 3.4 34.62 2.4 

leaves nodulated 61.6 4.2 195.74- 3.4 13.91 2.4 

leaves spiked 324.58 4.2 341.3 3.4 56.55 2.4 

roots non-nodulated 126.31 4.2 74.03 3.4 6.96 2.4 

roots nodulated 156.62 4.2 150.11 3.4 15.64 2.4 

,roots spiked 97.28 4.2. 41.97 3.4 5.65 2.4 

GLUCOSE leaves non-nodulated 420.27 4.2. 105.33 3.4 46.23 2.4 

leaves nodulated 157.82 4.2. 131.15 3.4 20.09 2.4 

leaves spiked 899.97 4.2 215.95 3.4 53.59 2.4 

roots non-nodulated 187.27 4.2. 186.7 3.4 2.6.94 2.4 

roots nodulated 83.61 4.2 229.41 3.4 14.97 2.4 

roots spiked 376.02 4.2 155.5 3.4 26.55 2.4 

REDUCING SUGARS leaves non-nodulated 244.54- 4.2 78.15 3.4 37.44 2.4 

leaves nodulated 5.27 4.2 142.14 3.4 2.18 2.4 

leaves spiked 388.55 4.2 131.86 3.4 29.71 2.4 I 
roots non-nodulated 100.91 4.2 104.06 3.4 10.44 2.4 

roots nodulated 7.25 4.2 I 37.13 3.4 1.66 2.4 i 
I roots spiked 128.54 4.2 91.02 3.4 13.77 I 2.4 

I : 
STARCH leaves non-nodulated 631.01 4.2 191.29 3.4 20.52 2.4 

leaves nodulated 116.27 4.2 208.74 3.4 7.29 2.4 

leaves spiked 41.91 4.2 16.06 3.4 1.04 2.4 

roots non-nodulated 378.71 4.2 109.99 3.4 13.2 2.4 I 
roots nodulated 26.57 4.2 165.98 3.4 4.62 2.4 

roots spiked 316.26 4.2 150.44 3.4 16.36 2.4 I 

AKnASB leaves non-nodulated 3.91 4.2 89.43 3.4 1.14 2.4 

leaves nodulated 0.25 4.2 81.09 3.4 0.39 2.4 

leaves spiked 0.25 4.2 137.5 3.4 0.98 2.4 

roots non-nodulated 1.31 4.2 110.31 3A 1.86 2.4 

roots nodulated 54.69 4.2 141.4 3A 45.45 2.4 

roots spiked 1.04 4.2 66.38 3.4 1.96 2.4 
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APPENDIX II (a) 


N TREATMENT WATER DEFIQTS iNTERACTION I 
Feale Fcrit Fealc Fcrit F calc F erit I 

TOTJU., leaves non-nodulated 0.21 3.03 0.97 2.64 


MEASURED leaves nodulated 1.3 3.03 2.73 2.64 


ORGAliIrc leaves spiked 0.84 3.03 1.62 2.64 


AcrDS roots non-nodulated 1.94 3.03 2.13 2.64 


roots nodulated 1.64 3.03 3.14 2.64 


roots spiked 0.63 3.03 1.42 2.64 


2-0XOGLl.!'rERATE leaves non-nodulated 1.5 3.03 0.69 2.64 

leaves nodulated 2.99 3.03 1.58 2.64 

leaves spiked 1.76 3.03 0.93 2.64 

roots non-nodulated 0.58 3.03 1.66 2.64 

roots nodulated 0.47 3.03 0.11 2.64 

roots spiked 0.36 3.03 0.91 2.64 

I 
MALATE leaves non-nodulated 0.65 3.03 1.32 2.64 .leaves nodulated 0.7 3.03 1.41 2.64 

leaves spiked 0.34 3.03 1.14 2.64 I 
roots non-nodulated 2.71 3.03 0.36 2.64 I 

roots nodulated 1.03 3.03 1 2.64 I 
roots spiked 0.88 3.03 0.93 2.64 

I 
PYRUVATli: leaves non-nodulated 0.99 3.03 0.14 2.64 I 

leaves nodulated 1.12 3.03 8.95 2.64 

leaves spiked 1.63 3.03 1.29 2.64 I I 
roots non-nodulated I 1.14 3.03 0.87 2.64 I 

roots nodulated 2.14 3.03 3.49 2.64 I 
roots spiked 0.92 3.03 0.83 2.64 

! 
Cl:'I'ltAT:e: leaves non-nodulated 2.56 3.03 1 2.64 I 

leaves nodulated 0.79 3.03 1.41 2.64 I 
leaves spiked 1.28 3.03 0.96 2.64 

roots non-nodulated 1.8 3.03 1.39 2.64 I I 
roots nodulated 1.48 3.03 0.37 2.64 1 1 

roots spiked 1.71 3.03 1.1 2.64 I I 
I I 

T!IltBOIllI:lm leaves non-nodulated 7.18 2.33 6.69 2.64 


leaves nodulated 0.22 2.33 111.32 2.64 


leaves spiked 0.23 2.33 91.88 2.64 


roots non-nodulated 4.91 2.33 9.42 2.64 


roots nodulated 0.03 2.33 66.94 2.64 
 I 
roots spiked 0.59 2.33 63.71 2.64 I 
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