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DEVELOPMENT OF GENETIC ALGORITHM FOR OPTIMISATION OF 


PREDICTED MEMBRANE PROTEIN STRUCTURES 


Noushin Minaji-Moghaddam 

ABSTRACT 

Due to the inherent problems with their structural elucidation in the laboratory, the 

computational prediction of membrane protein structure is an essential step toward 

understanding the function of these leading targets for drug discovery. 

In this work, the development of a genetic algorithm technique is described that is 

able to generate predictive 3D structures of membrane proteins in an ab initio fashion 

that possess high stability and similarity to the native structure. This is accomplished 

through optimisation of the distances between TM regions and the end-on rotation of 

each TM helix. The starting point for the genetic algorithm is from the model of 

general TM region arrangement predicted using the TMRelate program. From these 

approximate starting coordinates, the TMBuilder program is used to generate the 

helical backbone 3D coordinates. The amino acid side chains are constructed using 

the MaxSprout algorithm. The genetic algorithm is designed to represent a TM 

protein structure by encoding each alpha carbon atom starting position, the starting 

atom of the initial residue of each helix, and operates by manipulating these starting 

positions. To evaluate each predicted structure, the SwissPDBViewer software 

(incorporating the GROMOS force field software) is employed to calculate the free 

potential energy. 

For the first time, a GA has been successfully applied to the problem of predicting 

membrane protein structure. Comparison between newly predicted structures (tests) 

and the native structure (control) indicate that the developed GA approach represents 

an efficient and fast method for refinement of predicted TM protein structures. 

Further enhancement of the performance of the GA allows the TMGA system to 

generate predictive structures with comparable energetic stability and reasonable 

structural similarity to the native structure. 
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CHAPTERl 

1 Introduction-Genetic Algorithms and Protein Structure 

A protein is a chain of amino acid residues that folds into a specific tertiary structure 

under certain physiological conditions. One of the most significant problems in 

biology is the protein folding problem and our underlying understanding of the 

biological importance of the infonnation contained in genes. The functional properties 

of a protein depend on the spatial arrangement (tertiary structure) of its primary 

sequence. 

In most genomes, 20-30% of protein-coding genes code for membrane proteins and 

they represent less than 0.3% of currently available structures and comprise a majority 

ofthe targets of currently marketed drugs (Zoonens et aI., 2005). 

These proteins at least partly reside in the membranes of cells and organelles, 

possessing transmembrane regions (TM). 

There are appreciable difficulties in obtaining information relating to the 3D structure 

of membrane proteins from X-ray crystallography and NMR, (Rost, 1997) as both of 

these techniques require isolation, purification and / or crystallisation which may be 

difficult or impossible for membrane proteins due to the hydrophobic nature of the 

membrane lipid bilayer. 

1 
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There are several different methods currently being used for protein structure 

prediction, these include homology modelling based on the existence of similar, 

known structure and ab initio modelling used to predict the structure of individual 

folds and their subsequent folding in tertiary conformation. 

There are a variety of optimisation techniques that may be used to address the 

problem of protein structure prediction. 

Genetic algorithms (GA) represent a highly efficient optimisation and search 

technique, and have proved to be a robust method for solving problems with more 

than one feasible solution (Holland, 1975, Goldberg, 1989). 

In this study, the GA is utilised in a number of ways, in the manipulation of a number 

of parameters. Firstly, the distance matrix that specifies the amino acid proximities 

between TM regions in membrane proteins and associations inferred from inter-amino 

acid distance and secondly, the rotation of each helix and their subsequent association 

through residue side chain pairs. 

This ability to manipUlate and test the orientation of such structures in determined 

membrane proteins is a significant proofing step along the pathway to tertiary 

structure prediction for membrane proteins ofhitherto unknown structure. 

2 
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There are several approaches currently being used for soluble protein structure 

prediction by GA (Patton et al. 1995), but none for membrane proteins. 

In this study, a GA is presented as an optimisation and search technique for 

investigation and prediction of the optimum spatial arrangement and orientation of 

TM regions in membrane proteins. 

In the GA, a population of current solutions is maintained. The solutions evolve by 

mutations and crossovers. Technically, the operation consists of exchanging parts of 

strings between pairs of solutions (here, the spatial positions and angular rotation of 

the TM regions), so as to produce new solutions. 

Through such iterations, good features from one solution can be transferred to the 

others and further explored. The solutions are evaluated by calculating the free energy 

(Gunsteren et at., 1996) of the resultant structures, a measure of their feasibility in 

terms of energetic stability. The results are closely scrutinised by the GA and a 

population is gradually improved by selection. 

3 
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1.1 Applications of genetic algorithm 

The literature to date portrays the development and application of many types of 

genetic algorithm for a wide range of applications. Examples of such GA approaches 

that have been applied to such diverse fields such as Timetable scheduling systems, 

Medical and industry applications, are presented in the following sections. 

1.1.1 Timetable scheduling 

Timetable scheduling is a common problem for all institutions of higher education 

and also for all factories. Genetic algorithms have been used effectively to solve the 

problem of timetable and scheduling. Vorac et al., (2002) used a GA for solving a 

timetable problem. They used special mutation in order to move the GA to more 

promising areas in the search space and generate efficient timetables for big schools 

with a complicated teaching plan. 

Boyd and Savory (2001) applied a GA to scheduling laboratory personnel. The GA 

appears to be useful for scheduling in highly technical work environments that 

employ multi skilled workers. 

4 
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1.1.2 Medical Applications 

Medical applications have used GA to address complex problems. Durant (2002) 

utilised a GA for the fitting ofhearing aids. The author configures the GA to vary six 

parameters that control a frequency-selective dynamic range expansion system. The 

purpose of this system was to provide less gain to unwanted background sounds such 

as motor hum and breathing, while amplifying speech and other desired sounds 

sufficiently. 

Bevilacqua et al. (2004) applied GA, combined with a maximum likelihood method to 

assist a physician in performing a diagnosis of some retina pathologies. They 

implemented an automatic process of matching different images of the same retina to 

study the development of some pathologies. 

Rajapakse et al. (2005) used GA for seeking a motif with higher generalization ability 

that can elucidate rules that govern peptide binding to medically important receptors 

is important for screening targets for drugs and vaccines. 

5 
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1.1.3 Industry applications 

Genetic algorithms have been employed in many industrially based applications. 

Engelhardt et al. (2000) addressed the problem of the water industry in England and 

Wales that has changed dramatically over recent decades, where private companies 

now have responsibility for setting the prices that their customers are charged for their 

water supply, under the auspices ofa regulatory body. 

There were concerns that regulatory-based performance measures are backward 

looking and unable to be translated directly into a pro-active planning strategy. The 

GA was used to address the suitability of these measures in a decision - making 

framework 

Patel et al. (2005) utilised a GA for the problem of scheduling oil production by 

cyclic steaming at an oil field in the San Joaquin Valley. The objective was to 

maximize cumulative production. 

6 
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1.2 Motivation of present work 

The main objective of the work of this thesis is to develop and apply a genetic 

algorithm to the prediction of the 3D structure of the transmembrane portions of 

membrane proteins. The work was primarily motivated by the difficulties encountered 

in attempting to reliably predict membrane protein structure from sequence. 

The development of reliable prediction programs for membrane protein topology, 

such as TMHMM (Krogh et aI., 2001) and HMMTOP (Tusnadt and Simon, 1998), 

that provide information as to the probable amino acid positions of the beginning and 

end of a given TM region and which side of the membrane the N-terminus of the 

protein is located, has allowed the development of reliable approaches for the 

prediction ofTM region arrangement and adjacency. 

The foremost of these is the approach encapsulated in a program developed by other 

members of the group, caned TMRelate (Roberto Togawa, John Antoniw and 

Jonathan Mullins,2003). The TMRelate program is described in the draft manuscript 

that may be found in Appendix C. The output of TMRelate provides a prediction of 

the overall arrangement and relative positioning of the individual TM regions for any 

multi-spanning membrane protein, and allows the generation of approximate 3D 

models of transmembrane domains ofmembrane proteins. 

7 
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However, the energetic stability of the resulting models is not considered in the 

TMRelate algorithm and the resulting structures are therefore not feasible in terms of 

energetic stability. 

The main point of the work of this thesis was to provide an efficient and powerful 

algorithmic framework for the refinement of general model structures of TM regions 

ofmembrane proteins to energetically viable and chemically stable structural models. 

In so doing, the work contributes to the closure of the final predictive gap between 

primary sequence and viable 3D structures for membrane proteins. 

8 
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1.3 Overview of the thesis 

The structure of this thesis is as follows: Chapter 2 introduces optimisation techniques 

for solving non linear problems. Genetic algorithms (GAs) as a stochastic search and 

heuristic and optimisation technique are introduced in the context of the intended 

application, namely the prediction of the 3D structure of the transmembrane regions 

ofmembrane proteins. 

Chapter 3 reviews the rationale for the development of membrane protein structure 

prediction. The specific issues pertaining to membrane protein structure and the 

crucial nature of the prediction of membrane protein structure in biology are 

explained. 

Chapter 4 the design of a GA technique for the prediction of membrane protein 

structure is discussed. The rationale and theories that are used to design candidate 

solutions for the problem will be discussed. The GA operators used for effective 

exploration of the conformation search space and selection policies applied in each 

generation are described. 

Chapter 5 presents details of the development and program implementation of the 

TMGA system in order to address this specific problem, one of the many challenges 

that lie at the interface between computer science and biological systems, in the field 

known as bioinformatics or computational biology. The application of biologically 

oriented concepts such as genetic algorithms into computer science and the reciprocal 

application of adaptive computer algorithms to biological problems are described. 

9 
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Chapter 6 discusses series of experiments conducted to validate the proposed TMGA 

system, and the resulting generation of energetically stable 3D structures. The TMGA 

results for the processed structure derived from the sequence for bacteriorhodopsin 

and comparison of these predicted structures with the experimentally determined 

bacteriorhodopsin structure are presented. 

Chapter 7 is a discussion of the work as a whole, its merits and weaknesses, its 

context in relation to the work of others, and a synopsis of the contribution of this 

work to where we are now in terms of the ultimate goal of being able to derive 

reliable molecular structures for membrane proteins from primary sequence. Future 

improvements to the GA technique for predicting membrane protein structure are also 

discussed. 

Chapter 8 outlines the main conclusions ofthe study. 

10 




'!"""" 


.I.'I..'.•.'~ 
Genetic Algorithms as a search technique 	 Chapter 2 I 

II
. " 

CHAPTER 2 

2 	 Genetic Algorithm as a search technique 

This chapter introduces optimisation techniques for solving non-linear problems. 

Genetic algorithms (GAs) as a stochastic search and heuristic and optimisation 

technique are introduced in the context of the intended application, namely the 

prediction of the 3D structure of the transmembrane regions ofmembrane proteins. In 

this chapter, the following questions are considered: 

• 	 What is a GA? 

• 	 What are the advantages ofusing GA as a search technique? 

• 	 What are the components of a GA? 

• 	 How does a GA work? 

• 	 How have GAs been used to address the prediction of protein folding in other 

work? 

The following sections of this chapter introduce genetic algorithms. Section 2.2 

introduces other optimisation techniques. 

11 
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In section 2.3, the background of the GA is reviewed as part of Evolutionary 

Computation (EC) and other areas of EC are discussed. This is followed by a 

definition of GA and a description of the components of GA structure in section 2.4. 

Section 2.5 discusses how a GA works. In section 2.6, other GA applications for 

prediction of protein structure are reviewed and in section 2.7 the rational for using 

the GA technique for this purpose is explained. In section 2.8, the advantages ofusing 

GA as a search technique are summarised. 

2.1 Optimisation techniques 

In order to build an algorithmic system to solve a particular problem, the problem first 

needs to be examined and then the optimum search technique selected to find the best 

solution for that particular problem. This kind of problem can be regarded as a global 

optimisation problem that contains many local optima in the region of interest. Such 

problems are defined as non-linear problems. 

There are two categories of search methods, namely stochastic and deterministic 

methods. Stochastic methods attempt to efficiently cover the search space and one of 

the local optima will be selected as the global optimum. 

12 
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Deterministic methods attempt to create the points, which belong to a close 

neighbourhood of global optimum. Modern heuristic techniques have been developed 

in order to escape from local optima and they include: 

• 	 Simulated rumealing (SA) sometimes called stochastic searching, which was 

proposed by Kirkpatrick et al. (1983). This is a variation on "hill-climbing" 

where random guesses are introduced. 

• 	 Tabu search (TS), which was developed by Glover (1994), to solve 

combinatorial optimisation problems. The basic idea is to impose restrictions 

on the search process to guide it to investigate difficult regions. This teclmique 

uses a deterministic rather than stochastic search. 

• 	 Genetic algorithms (GAs), which were developed by Holland (1975) use past 

information to direct their search. A GA uses a pool of solutions and 

neighbourhood function is extended to act on pairs of solutions using the so 

called crossover operator (Theodore et aI., 1998). 

These search methods are generic techniques for resolving search and optimisation 

problems with large space searching. They are specific techniques that are very 

efficient when the solution or even the problem is unknown. They use a random 

approach to continue processing where optimal solutions contain the highest 

probability of being found in the search space. They are therefore able to provide 

good working solutions in a reasonable amount of time (Reeves, 1995). 

13 
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2.2 The background of genetic algorithms 

The so-called Genetic Algorithm (GA) (Holland,197S) is a flexible optimisation 

technique that operates efficiently on pieces of information. It is a robust method that 

borrows biological concepts such as natural selection of genes in the course of 

evolution. GAs were made famous by Goldberg (1989) who developed the first 

working GA. 

GAs form a part of the field of evolutionary computation. They are inspired by natural 

selection and evolution in nature by mimicking the processes of Darwinian evolution. 

Evolutionary computation or evolutionary algorithms apply our knowledge about 

evolution in the form of algorithms and computer programs that attempt to solve 

complex problems. 

As Smith (1989) elaborated, upon Darwin's theory and natural evolution, improved 

individuals will gradually develop in successive generations, and Darwin believed that 

the main force driving these evolutionary changes was natural selection. Those 

organisms with characteristics most favourable for survival and reproduction will not 

only have more offspring, but will pass their characteristics on to those offspring. 

The theory of natural selection not only predicts evolutionary change, it also predicts 

the emergence of organisms, which are able to survive and reproduce in the 

environment better than those before. In natural evolution, parents who are able to 

survive best in their environment will be selected for producing children. 

14 
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The children inherit genetic features from their parents. The unit of inheritance is the 

gene and the genes are contained within chromosomes. Genes in new generations of 

individuals, which adapt well, are also selected more often for reproducing. 

Therefore, a new population will adapt better chromosomes containing better genes, 

in order to provide better features to survive in their environment. 

In biological terms, fitness is usually measured in terms of breeding success. Genes 

indirectly contribute to an organism's fitness by providing better features that confer 

some advantage in breeding. 

Using similar principles in computer science evolutionary computation was 

introduced as a part of the field of artificial intelligence, which includes neural 

networks, fuzzy systems and machine learning. 

Evolutionary computation comprises the four main areas as follows: 

1. 	 Evolution strategy (ES), developed in Germany by Rechenberg (1973) and 

further developed by Schwefel (1981). The method was designed for 

parameter optimisation problems in order to generate a number of strategy 

parameters. The strategy parameters are used to control the behaviour of the 

mutation operators. ES is a deterministic search method. 

15 
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2. 	 Evolutionary Programming (EP) this is originally developed by Fogel et al. 

(1966). The difference between this method and the others is that there are no 

recombination operators and it depends on mutation operators. Among the 

evolutionary computation methods EP is better in obtaining global optimum 

which relies on mutation rather than crossover (Gnanadass et al., 2004). 

3. 	 Genetic algorithms (GA) were invented to mechanistically mimic principles of 

natural evolution. The GA is used as a search technique to efficiently optimise 

a set of candidate solutions to a problem in a short time, accurately and with 

good reliability. The GA is particularly well suited to optimising many 

problems which contains many local optima solutions within the search space 

and where more traditional methods fail (Haupt et al.,2003). The GA are able 

to find optimal or near optimal solution by using natural mechanism such as 

selection, crossover and mutation (Tian-Ii et aI., 2005). 

However, predicting the final stable three dimensional structure of the protein is a 

very complex and non-linear problem (Calabretta et al.,1995). The GA is 

attractive for addressing such problems. A genetic algorithm performs a stochastic 

search by randomly choosing solutions and randomly selecting the search 

direction about a solution or between solutions. The GA is able to work with many 

solutions at once which are represented randomly in an initial population. 
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2.3 Definition of GA terms 

The following terms associated with GAs may be defined as follows: 

• 	 Offspring - a candidate solution to a problem is represented as a chromosome 

and it is usually a bit string or some other encoding 

• 	 Encode - to convert a phenotype to the corresponding genotype 

• 	 Phenotype - solution parameters corresponding to a particular offspring 

• 	 Genotype - the representation of an offspring, such as a bit string or list of 

values 

• 	 Population - a collection of a fixed number of offspring 

• 	 Parent - an offspring that is then input to a further GA further operation 

• 	 Generation - replacing the entire population to allow new offsprings to 

reproduce 

• 	 Fitness - a number representing the quality of a particular offspring 

• 	 Fitness function - a method ofdetermining the fitness of a given offspring 

• 	 Selection - a method to produce an intermediate generation 

• 	 Crossover - a type of reproduction operator that exchanges information 

between two offspring to produce two new offspring 

• 	 Mutation - a type of reproduction operator that modifies a single offspring to 

produce a new offspring 
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2.3.1 Encoding 

In building a GA to address a particular problem, the first task is to decide how to 

encode the possible solutions. The technique for encoding solutions may vary from 

problem to problem and depends on the nature of the problem variables 

One of the important design variables for GA is the encoding which determines the 

possible mutation and crossover operators (Butter et aI., 2006). 

In many GA applications, a fixed length bit string is been used to encode the 

offspring. The binary encoding is often unable to represent frequent integer numbers 

as the neighbouring integer numbers differ in several bits values. 

There are other applications that used integer string or other representation to 

encoding the candidate solutions (Davis, 1991). The integer encoding is able to 

change within a small range especially for predicted structures. The predicted 

structure is effectively altered by changing a single variable. 
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2.3.2 Evaluation 

Each solution needs to be evaluated by measurement of a fitness function to reflect 

how good it is as a solution to the problem (Mardle and Pascoe, 1999),. The idea is 

that fitter candidates are in some way more likely to be selected and the GA allows 

the solutions to be sorted from best to worst. 

The GA boosts the overall fitness of the population by keeping the best representation 

at each generation and produce new candidates using the selected population 

(Segonne et aI., 2005) 

2.3.3 Selection 

There are several ways ofpicking which parents will be used to generate offspring in 

the next generation: 

1. 	 "Roulette Wheel" selection or fitness-based selection which is used in this 

work. This is the original and perhaps standard method. In this method, fitness 

values are normalised so that each individual is responsible for a certain 

proportion of the total fitness of the population. These values are converted to 

percentages and used to probabilistically pick parents. The probability that a 

bit string is chosen as a parent is equal to the percentage of the total fitness for 

which that the particular bit string accounts for. This method is refereed to as 

"Roulette Wheel" selection because each bit string can be thought of as a 

wedge on a roulette wheel (whitely, 1993). 
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2. 	 The second method is called steady state selection. This way, a large 

percentage of the population is carried over from generation to generation. All 

individuals have equal probability of being selected as parents. This selection 

helps maintain variety in the population unlike in proportional selection, one 

single individual with a much higher fitness than the rest of the population will 

be chosen much more frequently as a parent and its characteristics will soon 

become dominant in the population (Vail, 2001). 

Natural selection models nature's survival of the fittest mechanism. Fitter solutions 

survive while weaker ones are eliminated. Generally, in the selection step, the search 

focuses on the promising area of the search space (Butter, 2006). 
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2.3.4 Genetic operators 

To produce new individuals (offspring), genetic operators are applied to on the 

individual chosen in the selection step. There are two main kinds of operators: 

Crossover and Mutation. 

2.3.4.1 Crossover 

Crossover enables the algorithm to extract the best genes from different individuals 

and recombine them into potentially superior children. 

The idea of using crossover is to recombine useful components of the members of a 

breeding pairs and produce two individuals that inherit traits of both parents. Two 

new offspring will be created that will replace their parents. 

parent A chromosome parent B chromosome .. .. .. .. 

croSSDver point /' 

oefj",OO 0000 
child a chromosome child f3 chromosome 

.rlgure 'L 1 Complementary Crossover 

Single cross-point, "as shown there are two parents (A= dark chromosome and B= light chromosome), 
with a cross point selected randomly between genes 4 and 5. After crossover new children carry the 
parents genes but child A has 4 dark and 2 light and child B has 4 light and 2 dark 

-------,~ 
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There are several different ways of combining genes via crossover. 

• 	 In single point crossover, a point is picked in the chain is randomly picked, 

and, all bits or values before that point are taken from one parent and 

exchanged with those ofother parent. 

• 	 Two point crossover extends this idea and two points are randomly chosen. All 

of the values up to the crossover point are taken from the first parent then the 

subsection of the second parent that begins at the crossover point and 

continues for the random length is copied into the child, and then the 

remaining values are taken from the first parent. 

• 	 In uniform crossover, more than two points are chosen randomly. Each value 

from the first parent has a 0.5 probability of swapping with the corresponding 

gene of the second parent. 

Each type of crossover is controlled by probability of crossover (Pc). This probability 

controls the rate at which solutions are subjected to crossover (Srinivas, 1994). When 

the solutions are not subjected to crossover, they remain unmodified. 
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2.3.4.2 Mutation 

Mutation adds to the diversity of a population and thereby increases the likelihood 

that the algorithm will generate individuals with better fitness values. Without 

mutation, the algorithm can only produce individuals whose genes are a subset of the 

combined genes of the initial population. This genetic operator alters one or more 

components of the solution i.e. the gene in a chromosome. Mutation has the effect of 

ensuring that all possible chromosomes are reachable. This process is carried out 

randomly according to the probability of mutation (Pm) that defines the expected rate 

ofmutation. 

This is useful since crossover may not be able to produce new alleles or feature if they 

do not appear in the initial generation. The mutation operator is able to randomly 

select any bit position in a string and change it. For instance, the bit will 

unconditionally change from 0 to 1 or vice versa (Goldberg, 1989). 

mutated child chromosome 

Figure 2.2 Mutation-one gene has been changed as shown when an offspring is created, one or more 
genes can be randomly changed for instance here, dark gene (No 2) changed to light gene 
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The purpose of crossover is to search globally (between solutions). On the other hand, 

the purpose of crossover is to combine features of different genes. For this reason the 

same offspring are not allowed to be chosen to be both members of the pair. By 

contrast, the purpose ofmutation is to search locally (around a solution). 

2.4 Genetic algorithm theory 

In order to implement a directed search, it is helpful to understand the theory behind 

genetic algorithms. In analysing genetic algorithms each individual is cut and 

manipulated by crossover. Sub-strings define regions of the search space and are 

called schemas. A schema is a template that identifies a subset of strings with 

similarities at certain string positions [Holland, 1975]. A schema matches a particular 

string, for instance consider binary strings of length 6. The schema 1 **0* 1 describes 

the set of all strings of the length 6 with 1 s at positions 1 and 6 and a 0 at position 4. 

The" * " denotes a" do not care" or wild card, which means that positions 2,3 and 5 

can be either a 1 or a O. The order of a schema is defined as the number of fixed 

positions in the template, while the defining length is the distance between the first 

and last fixed positions. For example, the order of 1 **0*1 is 3 and its defining length 

is 5. The fitness of a schema is the average fitness of all strings matching the schema. 

The number of unique schemata in a particular population depends on the number of 

schemata contained in an individual string. The schemata with high fitness values and 

small defining lengths are appropriately called building blocks. 
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This is the essence of the schema theory, which was proposed by Holland (1975) as 

the "fundamental theorem of genetic algorithms". The notion that strings with high 

fitness values can be located by sampling building blocks with high fitness values and 

combining the building blocks effectively is called the building block hypothesis. 

The capacity of GAs to simultaneously process a large number of schemata is called 

implicit parallelism. A search algorithm balances exploration of the search space with 

exploitation of areas of that space. Exploration points out new areas to search in, 

while exploitation concentrates the search in a particular area. 

Genetic algorithms dynamically balance between exploration and exploitation through 

the recombination and selection of operators respectively. With the GA operators, the 

schema theorem proves that relatively short, low order, above average schema are 

expected to yield an exponentially increasing number of trials or copies in subsequent 

generations [Goldberg, 1989]. Expressed mathematically 

m(h,t+l):::: m(h,t)/(h)[I_ P 5(h)_o(h)p ]

It c 1 _ 1 m 


Equation 1. Representation of Schema theorem mathematically. 

Where m(h,t) is the expected number of schema h at generations t, f(h) is the fitness 

of schema hand f(t) is the average fitness at generation 1. .The genotype length is 1 , 

5 (h) is the defining length and 0 (h) the order of schema h. Pc and Pm are the 

probabilities of crossover and mutation respectively. 
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2.5 Applications of GA in protein structure prediction 

Genetic algorithms have been employed as an optimisation technique for many 

applications. The recent developments in their use in predicting protein structure are 

discussed in this section. 

An early application of genetic algorithms to protein structure prediction by Unger 

and Moult (1993) is widely based on a 2D lattice. The GA was implemented by 

generating population of conformation themselves, which were not encoded as binary. 

This conformation is a 2D model of linear sequence of amino acids and evaluated by 

an energy function in order to find lower an energy conformations. 

A standard GA approach to protein structure prediction by Patton et al. (1995) was 

based on the work of Unger and Moult in the area of energy function optimisation but 

instead they used a 3D lattice. Each peptide is represented as a single point in the 

lattice model. 

In this application, each individual is represented by a single relative movement for 

each peptide which contains five possible values (up, down, right, left, forward) and is 

encoded by 7 bits. The objective function is based on adjacent hydrophobes in the 

protein's primary sequence. This evaluation function is different that of Unger and 

Moult (1993). 
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Schulze-Kremer (1996) investigated the prediction of main chain folding patterns of 

small proteins by using a GA. The author configured the GA to operate on numbers, 

not bit strings and represented each individual by torsion angles. A feature of the 

torsion angle representation is the fact that even small changes in the angles can result 

in large changes in the overall conformation. 

The GA in this application used a simple potential energy function to evaluate each 

individual. The total energy is the sum of the expressions for bond length potential, 

bond, torsion and improper torsion angle potential, van der Waals pair interactions, 

electrostatic potential and hydrogen bonds. 

Cui et al. (1998) used a GA for predicting protein structure The initial population, size 

of 500 was generated by randomly selecting the backbone and side chain torsion 

angles (<p and 'V) in constrained regions. Each individual was evaluated by calculating 

a fitness scale as specified in a formula. The probability of crossover was estimated by 

dividing the fitness of an individual by total fitness. 

Mutation was operated by two kinds of mutation, which were used to change the 

conformation dramatically and to make more local searches. The GA process was 

stopped only if the decrease of the lowest energy in the population is less than 1 unit 

. i 

during the last 20 generations. 
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Krasnogor et al. (1999) employed GAs to address the protein structure prediction 

problem in the "HP model",which is an acronym for hydrophobic-hydrophilic model. 

HP models abstract the hydrophobic interaction process in protein folding by reducing 

a protein to a heteropolymer that represents a predetermined pattern ofhydrophobicity 

in the protein. 

The authors used a simple lattice model in order to capture global aspects of protein 

structures. In this work, the embedding of a sequence in a lattice is represented by 

internal coordinates by means of relative moves and also a modified energy potential 

assist the GA search while preserving the ranking ofthe standard HP model. 

Their results supported the use of the relative encoding over the absolute one, 

although the modified energy potential was unable to improve optimisation 

performance. 

Szustakowski and Weng (2000) developed a method for aligning the three 

dimensional structures of two proteins. The basic approach is to determine the protein 

secondary structure element alignment by used of a GA then extend the alignment to 

include any equivalent residues found in loops or turns. Alignments are evaluated 

using intermolecular distance matrices. The structure alignment problem becomes a 

search for regions of similarity shared by the two distance matrices. This search could 

be used for efficient database searching. 
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The authors found the GA to be fast and efficient, capable of generating correct 

alignments from a small number of randomly generated secondary structure elements 

alignments. 

Braden (2002) used a GA to address the prediction of short peptid structure 

prediction. In this application, each offspring is represented as a group of five bits, 

arranged in a string, where each group codes for one residue and describes the 

characteristics ofhydrophobicity, charge and side chain size. 

There are L genes for a protein consisting of L residues. The fitness function is based 

upon non-connected residues that are adjacent in cardinal directions. Characteristics 

of the protein are stored in static arrays and used to evaluate fitness. This method 

improves upon that presented by Unger and Moult(1993) but is unable to work with a 

more complex protein structure. 

Unger (2004) used a GA for protein structure prediction. In his work, each solution 

was represented as a set ofpairs ofvalues for the two dihedral angles (<p, "') along the 

main chain. The free energy for each conformation was evaluated in order to select 

those structures with lower energy values. 
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This approach was unable to ensure that the encoded structure is free of collisions and 

crossover operation is a very risky in the sense that it is likely to lead to 

confonnations with internal collisions. 

Bui and Sundarraj (2005) developed a genetic algorithm for the protein-folding 

problem following the HP model in a 2D square lattice. In the HP model each amino 

acid is classified as an H for hydrophobic and P for hydrophilic. The algorithm 

combines the concept of secondary structure prediction with a genetic algorithm. 

Their results showed that it outperfonns existing evolutionary and Monte Carlo 

algorithms. They intend to advance their algorithm to a 3D HP model. 
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2.6 Advantages of using a Genetic algorithm 

The GA technique has advantages over traditional non-linear solution techniques that 

cannot always achieve an optimal solution. The GA works with its own rules and 

manipulates the population of candidate solutions that ultimately provide a solution to 

the problem. GAs use a selective process to encourage over achieving and discourage 

under achieving solutions in the population. 

The GA procedures require no knowledge of the nature of the problem. This is very 

useful for complex or loosely defined problems or problems, with many local optima. 

This method produces robust searches and performs efficient searches on poorly 

defined spaces (Goldberg, 1989). 

The method is able to find new solutions through a process of natural evolution, 

although this evolution can be inductive in some conditions. The GA is a cooperative 

computational method which has been previously successful in many different 

computational tasks, including protein folding (Unger,2004). 
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2.7 Summary 

This chapter opened by reviewing optimisation techniques for solving non-linear 

problems and then concentrated on introducing the genetic algorithm (GA) technique, 

which forms part of the field of evolutionary computation. The basic structure of a 

GA is defined as being composed of the following processes: 

1. Encoding the candidate solutions 

2. Evaluation 

3. Selection 

4. Operation of GA operators 

To describe how GAs work, the theory behind GA was elaborated. This theory 

introduces schema, which are templates and define regions of search space. These 

templates contain similarities at certain positions and are able to make building 

blocks. This is referred to as the fundamental theorem of genetic algorithms. 

Other applications of GAs are reviewed to illustrate how the GA is highly suited to 

addressing the protein structure prediction problem and to assess the effectiveness and 

suitability of GAs for the specific application of this study. 
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CHAPTER 3 

3 Prediction of membrane Protein Structure 

In this chapter, initially the summary of this study is illustrated in figure 3.1 and a 

number of issues will be discussed in order to explain the rationale for the work 

presented in this thesis. These issues could be addressed by the following questions: 

• What is special about membrane proteins? 

• Why will the prediction ofmembrane protein structure be useful? 

• What will it allow to be done? 

• What are the different approaches to predicting protein structure? 

In the following sections of this chapter, the general principles of membrane protein 

structure are discussed, leading to a discussion of the prediction of membrane protein 

structure. Section 3.2 contains a general introduction to protein structure. In section 

3.3, aspects specific to membrane protein structure are discussed, and this is followed 

by an explanation of membrane protein folding in section 3.4. Section 3.5 discusses 

approaches to the prediction of the 3D structure of proteins. Section 3.6 reviews 

optimisation methods, which are used in this study in order to find the best predictive 

models of protein structure and section 3.7 introduces the electronic structural 

database that is used in this work, from which atomic coordinates of determined 

structures are taken for comparison in this study. In section 3.8, the energy force field 

function is discussed along with the interaction energies between molecules and 

within conformations. 
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3.1 Introduction of protein structure 

Genes contain DNA (Deoxyribonucleic acid), the primary genetic molecule of life, 

which carries information for all biological organisms. DNA contains information in 

its sequence called the genetic code which is translated to a sequence of amino acids, 

the building blocks of proteins (Kendrew,1994). 

There are twenty standard types of amino acid that may be found in a protein. Each 

amino acid contains a central carbon atom (Ca.) to which is attached a hydrogen atom, 

an amino group (NH 2 ), a carboxyl group (COOH) and side chains as shown in figure 

3.lA. The differences between the twenty amino acids lie in the side chains, which are 

small chemical groups that give each amino acid its unique characteristics and 

properties. Together, a group of side chains may confer critical functional properties 

on a protein such as the ability to bind ligands and catalyse biochemical reactions. 

They direct the folding of the developing polypeptide and stabilise its final 

confonnation. Amino acids are linked together end to end via peptide bonds. 

Condensing the carboxyl group of one amino acid with the amino group of the next to 

eliminate water generates the peptide bond (figure 3.1 B). 
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Figure 3.2 (A) Showing the components of an amino acide where R is the side chain. 
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Figure 3.2 (B) Joining two amino acids by generating a peptide bond between them. 
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Amino acids can be divided into three classes as defined by the chemical nature of 

their side chain. The first class comprises those with hydrophobic side chains, that 

amino acids are not able to mix well with water (By contrast, polar amino acids that 

are able to mix with water are called hydrophilic). Hydrophobic amino acids include 

Valine, Alanine Leucine, Isoleucine, Phenylalanine, Proline and Methionine. 

The second class are the charged amino acid residues such as, Aspartate, Glutamate, 

Lysine, Arginine, and the third class comprises those amino acids with polar side 

chains:.Serine, Threonine, Tyrosine, Histidine, Cysteine, Asparagine, Glutan1ine and 

Tryptophan. The amino acid glycine, which has only hydrogen atom as a side chain 

does not fit into the above classification (Branden and Tooze ,1999). 

Proteins are constructed from one or more chains of amino acids. There are two types 

ofprotein as follows: 

• 	 Globular or soluble proteins which contain polar residues on the surface and 

hydrophobic residues on the interior of the protein. 

• 	 Membrane proteins, which contain an external portion that is water soluble at 

each end and a hydrophobic section in the middle. 
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3.2 Aspect of membrane protein structure 

Cells and the organelles within them are enveloped by membranes, which consist 

largely of lipids and protein molecules. The lipids form a bilayered a sheet structure 

that is hydrophilic on its two outer surfaces and hydrophobic in between two surfaces 

(Lodish et al., 2000) as shown in figure 3.2. 

Hydrophilic head groups have maximum contact with water and the hydrophobic tails 

are forced into minimum contact with water within the membrane core. The contact 

between the molecules of the lipid bilayer serves to minimise the free energy of the 

structure and thereby maximising stability (Elliott et aI., 2001). 

In the lipid bilayer, the hydrophobic region layer is almost 30 A thick and provides 

the distinctive enviromnent occupied by the transmembrane regions of membrane 

proteins (Popot and Engelman, 2000). 

3.2.1 Definition of membrane proteins 

The proteins that are embedded in this layer are called membrane proteins. Membrane 

proteins can be associated stably with a lipid bilayer membrane in two general ways 

as shown in figure 3.2: 

• 	 Proteins that bind to the surface of the membrane, and often to the extracellular 

loops ofa transmembrane protein, and are called peripheral membrane proteins 

• 	 Proteins that are covalently bonded to a lipid prosthetic group, are called integral 

membrane proteins. 
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Integral membrane proteins can be divided into two groups: those are embedded 

partially in the lipid bilayer, without crossing the membrane and proteins that contain 

regions that traverse the membrane are called transmembrane proteins (Matthews et 

ai., 1997). TM proteins aggregate and precipitate in water. They require detergents or 

nonpolar solvents for extraction (De Brevern et al., 2005). 

Bacteriorhodopsin is an integral membrane protein usually found in 2D crystalline 

patches known as "purple membrane" which can occupy up to nearly 50% of the 

surface area of the archaeI cell. The repeating element of the hexagonal lattice is 

composed of three identical protein chains each rotated by 20 degrees relative to the 

other. Each chain has seven TM alpha helices and contains one molecule of retinal 

buried deep within (Grisshammer et aI., 2006). 

Bacteriorhodopsin (BR) is particularly abundant in the membrane of the purple 

bacteriun1 Halobacterium halobiom (see appendix C) and belongs to the seven TM 

receptor family of proteins. The polypeptide crosses the membrane seven times, 

forming a cluster of seven a-helices spanning the membrane, connected by 

hydrophilic loops. 

The cluster has a light absorbing pigment at its centre to capture light energy and 

converts it to a proton gradient, which in turn is used by a second membrane protein 

called ATP synthase to generate chemical energy in the form of ATP. The cell uses 

ATP to drive a multitude of vital processes (Elliott et al., 2001). 
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They can be grouped into one of four basic categories depending on whether they 

function in order to carry out: 

e 	 Transport of substrate in and out of the cell 

• 	 Ion transport and nerve impulse conductance 

e 	 Signal transduction (transmission of signals across a membrane from outside 

the cell to the inside) 

• 	 Catalysts (enzymes) for metabolic reaction (Kleinsmith and Kish, 1995) 
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Figure 3.3 Model of the lipid bilayer (cell membrane) with membrane proteins (Kimball, 1994). Taken 
from (http ://users. reno eorn/jkimbal I. rna . ul tranetlBiologyPages/CICe 1I Membranes.html) 
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3.2.2 Primary structure 

The series of amino acids, which are linked together into a polypeptide chain, or 

sequence, are regarded as the primary structure of a protein. The amino acid sequence 

of a protein ultimately determines the higher levels of structure of the molecule. A 

short section of amino acid sequence with recognised function is referred to as a motif 

(Harry et al.,1997). 

The primary structure of a protein contains all the necessary information required for 

detennining three dimensional structure. These types of information relating to 

proteins are stored in databases. As the techniques for sequencing proteins have 

improved and the genetic codes of whole genomes become fully known, and from 

them, the amino acid sequence, and whole proteomes, the amount of information has 

inexorably increased. 

A number of databases have been established (Elliott et al., 2001). The various 

databases contain specific kinds of information such as the Swiss-Prot database that is 

used to obtain information relating to the anlino acid sequences and functions of 

proteins from all sequenced organisms. The last version of the Swiss-Prot database 

(version 48, May 2005) contained over 217,000 protein sequences. 
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3.2.2.1 Secondary structure 

Secondary structure refers to the twisting and turning of a segment of polypeptide 

main chain without regard to the conformation of its side chains. There are three 

classes of secondary structure: 

• The a-helix 

The a-helix was first described in 1951 by Linus Pauling (Branden and Tooze, 

1999). He made this remarkable finding on the basis of accurate geometrical 

parameters that he had derived for the peptide unit from the results of crystallographic 

analyses of the structures of a range of small molecules. 

In the membrane protein structure, the a -helix structure buries the polar amide 

groups inside the helix, surrounding them with hydrophobic side chains, giving a 

cylinder coated with hydrophobic groups. This hydrophobic a helix can immerse 

itself in the hydrophobic lipid bilayer and is then known as a transmembrane helix 

(Harry et aI., 1997). 

Most transmembrane helices are characterised by length of 15 -20 hydrophobic amino 

acids (Engelman and Popot, 2000). The a -helix structure consists of 3.6 amino acid 

units per tum, and the rise along the helix for each amino acid is 1.5A. 
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Helices in the TM region of membrane proteins and helices in soluble proteins have 

differencing amino acid components abundances and distributions, such as Proline 

which has a more diverse pattern of interactions in membrane than in soluble proteins 

(Adamian et aI., 2003). 

The regularity of a -helix structure depends on the specific bond lengths and bond 

angles between amino acid units. The bond lengths considered are those for the 

peptide bond and hydrogen bond. The bond angles relate to the angle of rotation 

around the N - C a bond which is termed Phi( <I> ) and is -60°, and the angle of rotation 

around the C a -C' bond which is termed psi (If/ ) and is characteristically ­

500 (Branden and Tooze, 1999). The final angle to be considered is the omega angle 

(ro) between N- C', which is very close to 1800 
• 

• 	 The ~-sheet 

In 1951, the same year Pauling proposed the a -helix, Pauling and Corey postulated 

the existence of a different polypeptide secondary structure, the ~-sheet. In the 

secondary structure extended polypeptide backbones are side by side, and use the full 

hydrogen bonding between neighbouring polypeptide chains rather than within a 

chain as in an a -helix. Sheets come in two varieties: The anti parallel ~-sheet and the 

parallel ~-sheet. 

• 	 Connecting loops a -helices and sections of ~-sheet are connected together by 

unstructured polypeptides called connecting loops (Elliott. et aI., 2001). 
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3.2.2.2 Tertiary structure 

The arrangement of the various secondary structures into the compact structure of a 

globular or membrane protein is referred to as the 3D or tertiary polypeptide structure. 

The polypeptide chain becomes folded into its proper tertiary structure by a number of 

bonds and interaction between amino acids side chains. These bonds and interactions 

include: 

• 	 Hydrogen Bonds are non-covalent bond and form between an amino group of 

one residue (n) and a carboxyl group three residues away (n+3). The a-helix is 

characterised by hydrogen bonds forming along the chain. The hydrogen 

bonds make a positive contribution to protein stabilisation only when there is 

an absence of accessible competing water. In the unfolded state, all potential 

hydrogen bonding partners in the extended polypeptide chain are satisfied by 

hydrogen bonds to water although in the protein fold these protein-to-water 

hydrogen bonds are broken and only some are replaced by intra-protein 

hydrogen bonds. (Lesk, 2004). 
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• 	 Van der Waals Forces occur when atoms are very close together. These forces 

involve both attraction and repulsion. The nuclei of atoms or molecules attract 

the electrons of other atoms or molecules. Vander Waals forces are much 

weaker than hydrogen bond and also have a repulsive component when two 

nuclei are squeezed together, the electrons in their orbital repel each other. 

This repulsion increases as the closer the atoms are together. Van der Waals 

forces become accumulatively significant when many atoms within a 

biological membrane permits the formation of a large number of these weak 

interactions (Harton et aI., 2002). 

• 	 Ionic bonds are most likely to be formed by atoms that tend to lose their 

outermost electron, and by atoms that tend to acquire electrons to complete 

their outmost shells. These atoms can generally attain a completely filled outer 

electron shell most easily by giving electrons to or accepting electron from 

another atom rather than by sharing them. When an electron jumps from an 

atom to another, both atoms become electrically charged ions because of their 

opposite charges, are attracted to each other and are thereby held together by 

ionic bonding (Alberts et aI., 2004). This is a non-covalent bond and occur 

between basic amino acids with positive charge and acidic amino acids with 

negative charge. This interaction is potentially the strongest non-covalent 

forces and playa role in the recognition ofone molecule by another (Harton et 

aI., 2002) 
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• 	 Disulphide bonds are covalent bonds and are found in secreted proteins only. 

The reducing environment inside cells readily disrupts these bonds. The 

disulphide bonds form between the side chains of two cysteine residues. Two 

SH groups from cystein residues, which may be in different parts of the amino 

acid sequence but adjacent in the three dimensional structure, are oxidized to 

form one S-S (disulphide) group according to the following reaction scheme: 

1 2-CH 2 SH + 1/2 O 2 <=> -CH 2 -S-S-CH 2 +H 2 0 

Equation 2 Chemical structure of disulphide bond 

(Branden and Tooze, 1999). 

Hydrophobic interaction is the association of nonpolar molecules with other nonpolar 

molecules rather than with water. This interaction can have a significant cumulative 

effect on the stability of a macromolecule and in determining the three dimensional 

structure ofmost membrane proteins (Harton et aI., 2002). 

• 	 The helix-helix, lipid-lipid and lipid-helix interactions have specific energy 

terms associated with each of them, with particular consequences for the 

overall stability of the membrane proteins. 
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3.2.2.3 Quaternary structure 

Some proteins have a quaternary structure; that is, they are comprised of two or more 

polypeptide chains. Each polypeptide chain in such a protein is called a subunit. 

The forces that hold the subunits together are of the same general types, which are 

encountered, in tertiary structure. These interactions occur between amino acid side 

chains located in different polypeptide subunits (Kleinsmith and Kish, 1995) 

The quaternary structure of bacteriorhodopsin consists of three bacteriorhodopsin 

molecules that associate to a trimmer configuration, which is organised into a two­

dimensional crystalline array, named purple membrane (Muller et aI., 1999). 

Cytochrom oxidase is an integral membrane protein and is a magnificent enzyme that 

is composed of three core subunits (Hofacker and Schulten, 1998). 
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3.3 Membrane protein folding problem 

Folding of membrane proteins is thought to be similar to soluble proteins in that the 

secondary structural elements first form and then these elements come together to 

form the final tertiary structure. The functional property of a membrane protein 

depends on the tertiary structure of its primary sequence. 

However, since the membrane enviromnent imposes constraints on the peptide chain, 

secondary and tertiary structural features are quite different from those imposed by an 

aqueous enviromnent and the folding and features of amino acids in membrane 

proteins differs much from that of soluble proteins (Edman, 2001). 

Several theoretical studies (Orlandini et al., 2000) have suggested that folding of 

membrane proteins occurs in four steps, partitioning, folding, insertion and 

association. They are based on structural and thermodynamic measurements of the 

partitioning of small hydrophobic peptides and proteins between aqueous and 

membrane phases. 

The bilayer interface provides a free energy for initial binding and folding of 

hydrophobic peptides. The fonned helices are inserted across the membrane and then 

associated with other transmembrane helices. 

49 




Prediction of membrane Protein Structure Chapter 3 

The four-step model is a process along an interfacial path, a water path, or a 

combination of the two. Detennination of the free energies for each of these steps 

along a path allows thermodynamic stabilities to be computed. Since most membrane 

proteins are helical, this may be a general pathway (Wimley and White,1999). 

Solving the protein folding problem has been accepted as a significant step in 

understanding the importance of the information contained in genes and is a difficult 

problem due to the size and complexity of the search space. 

There are two main laboratory methods for detennining the three-dimensional 

structure ofproteins: 

3.3.1 X-ray 

X-ray diffraction of protein crystals that has determined most of the known protein 

structures. In this method, it is essential to purify a protein and this often proves to be 

an extremely difficult process, particularly for membrane proteins. 
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3.3.2 Nuclear magnetic resonance (NMR) 

Nuclear magnetic resonance (NMR) provides structural information on proteins in 

concentrated solutions and therefore investigates the protein in an environment more 

closely resembling that of the cell, permitting certain conformational changes to be 

observed (Elliott et al., 2001). 

NMR spectroscopy is now a major tool for solving protein structure. The introduction 

of NMR spectroscopy as an alternative method for protein structure determination at 

atomic resolution has led to a significant increase in the number of known protein 

structures. Although it has limitations in terms of the size ofproteins whose structures 

can be analysed it has the great advantage ofpermitting structural determination in the 

lipid environment. It is therefore better suited to studying membrane proteins than x­

ray crystallography (Opella, 1997). However, to date it has only been possible to 

subject a few integral membrane proteins to NMR analysis. Very few membrane 

proteins can be studied by high-resolution NMR, partly because of their size and 

complexity (Schwaiger et al., 1998). 

Recently, Gao et al. (2006) applied solution NMR spectroscopy to the structural 

determination of small and medium sized a helical membrane proteins. 
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In most genomes, 20-30% of protein-coding genes code are available for membrane 

proteins (Arkin et aI., 1997). These proteins reside at least partly in the membranes of 

cells and organelles, possessing transmembrane regions (TM). 

Despite their significance in the genomes of all organisms and their functionality, 

progress in determining their 3D structures has been much slower compared to the 

soluble proteins. There are appreciable difficulties in obtaining information relating to 

the 3D structure of membrane proteins from X-ray crystallography and NMR, (Rost, 

1997) as both of these techniques require isolation, purification and crystallisation 

which may be difficult or impossible for membrane proteins because they dissolve 

only in fat not water. 

However, recent years have been particularly fruitful for the structural biology of 

membrane proteins. Tamm et al. developed a technique in 2003 to determine 

structures of small membrane proteins, which are all ~-barrels in the molecular mass 

range of about 20 kDa, by solution nuclear magnetic resonance (NMR). 
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3.4 Tertiary structure prediction methods 

The biological role of a protein is determined by its chemical function, which depends 

on its structure. Although more structures are determined experimentally, it is 

impossible to determine all the protein structures from experiment. There are three 

major theoretical methods for predicting the structure ofproteins as follows: 

3.4.1 Homology Modelling 

The most reliable method of determining the shape of a protein is to search for a close 

homologue in the database of solved protein structures. This method has been highly 

successful with soluble proteins. 

In order to identify structures similar to the target protein, homology modelling 

involves a variety of sequence comparison techniques and requires the existence of 

homologous proteins, for which a structure has been solved. For this reason, 

homology modelling has been most useful for the few TM protein families, for which 

at least one member has been crystallized (Fleishman and Ben-Tal, 2006). 

However, because at present only few representative atomic-resolution structures of 

TM protein families are available, homology modelling cannot serve as a general 

purpose approach for structural modelling ofmembrane proteins. 
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3.4.2 Threading or fold recognition 

When homology modelling is unable to recognise the correct fold for the target 

sequence, the next method that is frequently attempted is fold recognition or 

threading. In fold recognition, a target sequence is aligned with all structures in a fold 

library. 

Modelling by threading is independent of sequence comparison. Therefore, it can be 

used to identify the relationships among proteins even if sequence similarity is 

extremely low or non-existent (Domingues et aI., 2000). 

Threading methods are limited by the high computational cost, since each entry in the 

whole library of thousands of possible folds needs to be aligned in all possible ways 

on each occasion to select the folds (Zhang, 2003) and this will be even more 

problematic for membrane proteins because these proteins are large in comparison 

with soluble proteins. 

54 




Prediction ofmembrane Protein Structure 
Chapter3 

3.4.3 Ab Initio prediction 

Most ab initio prediction methods use reduced representations of the protein to limit 

the conformational space and use empirical energy functions that capture the most 

important interactions that drive the folding of the protein sequence toward its native 

structure (Hardin et aI., 2002). 

It could therefore be expected that ab initio structure prediction, whereby the protein 

structure is predicted without resorting to homology with other proteins or to 

experimental data, should be a more feasible goal for membrane proteins than for 

soluble proteins (Fleishman and Ben-Tal, 2006). 

Ab initio prediction is often divided into two components: devising a score function 

that can distinguish between native structures and non-native ones and the subsequent 

method of searching the conformational space. There are numerous approaches for 

evaluating ab initio predictions, including Simulated Annealing (SA), Molecular 

Dynamics (MD), Monte Carlo Simulations (Me) and Genetic Algorithms (GA). 

Molecular Dynamics (MD) simulations of proteins and protein-substrate complexes 

provide a detailed and dynamic picture of the nature of inter-atomic interactions with 

regards to protein structure and function. The MD approach is computationally 

expensive and needs improvement in ~. strand and loop matching (Crivellie et aI., 

2002). 
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Monte Carlo (MC) simulations do not use forces but rather compare energies, via the 

use of Boltzmann probabilities and based on random walks, ignoring the information 

obtained in previous steps (Brunette and Brock, 2005). 

Simulated Annealing (SA) usually considers solutions, their cost, neighbours, and 

moves, and can only have one popUlation size one and make just one mutation per 

cycle, and so the key difference between SA and GA is that the SA creates a new 

solution by modifYing only one solution at a time with a local move. 

Genetic Algorithms attempt to improve on the sampling and the convergence of Me 

approaches and possess the following advantages: 

The GA considers individuals, their fitness, selection, crossover and mutation. 

The GA creates solutions by combining two different solutions and 

undertaking crossover, which is the key element that distinguishes the GA 

from hill climbing and simulated annealing. 

Easy implementation, requiring minimum mathematical effort. 

Ability to manipulate many parameters simultaneously. 

They can search a solution space for which the fitness landscape is complex or 

has many local optima. 
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The GA is parallel and explores the solution to a problem in many directions 

at a time. 

This parallelism allows them to implicitly evaluate many schema at once and 

so they are suited to where the space of all potential solutions is truly 

extensive. 

If a GA is unable to deliver a perfect solution, it can at least deliver a good 

working solution. 

The disadvantages of genetic algorithms include the following: 

The GA lacks a sound mathematical description that allows designers to 

calculate (and subsequently apply) the best optimisation parameters. 

The GA has the limitation of defining the representation of a problem which 

must be robust, and the appropriate fitness function, size of population, the 

rate of crossover or mutation must all be chosen with care. 

Premature convergence - if an individual that is more fit than most of its 

competitors emerges early on in the course of the run it may reproduce so 

abundantly that it drives down the popUlation diversity too soon. 

The fitness function may prove to be deceptive, where the locations of 

improved points give misleading information about where the global optimum 

is likely to be found (Marczy~ 2004). 
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3.5 Electronic Database 

There are two protein structure databases that are used extensively in this study in 

order to obtain information about protein sequence and structure. 

3.5.1 Swiss-Prot 

There are huge numbers of protein sequences, which need to be stored in an electronic 

database in order to extract different information for different users. SWISS-PROT is 

a manually curated protein sequence database, which is distributed with a large 

number of documentation files and contains over 200,000 entries from all organisms 

containing information such as sequence information, references, the biological 

source of the protein, function of the protein, secondary structure of the protein, 

transmembrane regions and similarity to other proteins. 

It also provides for ready incorporation and integration with other databases (Bairoch 

et aI., 2000). SWISS-PROT is free for academic users and available from 

http://www.expasy.chi. and is becoming the standard protein sequence database of the 

bioinformatics field. 
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3.5.2 The Protein Data Bank 

The Protein Data Bank (PDB) is a repository for the processing and distribution of 3D 

macromolecular structure data primarily determined experimentally by X-ray 

crystallography and NMR, and contains over 20,000 protein structures. A PDB file 

contains an organism name (header) with a brief description (title), equivalence 

between the PDB file and protein sequence databases and the conversion between 

these databases, stored in the DBREF line. It also includes details of regions of a­

helix and ~ turns and sheets defined experimentally by X-ray crystallography and 

NMR (Helix and Sheet tags) information about each residue in the structure in three­

letter code, the residue number, and the atom number and element, and xyz co­

ordinates (ATOM) (Berman et al., 2000). 
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3.6 Force field 

A force field is a set of mathematical functions designed to reproduce intermolecular 

interaction energies and intermolecular conformational energies, as accurately as 

possible, in order to discriminate between plausible and implausible conformations in 

a search space. In chemistry, a force field is defined as a potential function and in the 

context of molecular mechanics refers to the functional form and sets of parameters 

used to describe the potential energy of a system ofparticles. 

Different force fields are designed for different purposes, for molecular dynamics of 

macromolecules and also for energy minimisation, such as in the case of GROMOS 

(GROningen Molecular Simulation Software). 

GROMOS is a computer program (Gunsteren van et al., 1996), which has been 

developed for the dynamic modelling of molecules in the study of bimolecular 

systems. It has the following basic capabilities: the simulation of proteins or arbitrary 

molecules using the molecular dynamic or stochastic dynamic, energy minimisation 

of these molecules and analysis of molecular confonnations obtained by experiment 

(X-ray, NMR) , by model building or by other methods of computer simulation 

(Gunsteren van et aI., 1996). 
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3.7 Summary 

This chapter reviewed the three levels ofprotein structure. The (l-helix as a secondary 

protein structure was described as the main unit of transmembrane protein structure. 

In order to find out how transmembrane protein structures are folded in the 

membrane, a number of interactions and forces, which exist between amino acids 

molecules in tertiary structure are defined. 

The bacteriorhodopsin protein is introduced as a known transmembrane protein of 

well-determined structure and function. The importance of the biological functionality 

of membrane proteins and the imperative for the prediction of membrane protein 

structure for science and medicine is discussed. 

Approaches used to predict 3D structure of protein from sequence are reviewed in 

order to compare and contrast the different methods. The evaluation of predicted 

conformations by calculation of free energy using force fields is described in its role 

as the foremost fonn of evaluation applied to molecular structures minimising the 

force field. Finally the different optimisation techniques that have been used for 

protein prediction are outlined. 
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CHAPTER 4 

4 Design of a GA for predicting membrane protein structure 

In this chapter, the design of a GA technique for the prediction of membrane protein 

structure is discussed. The rationale and theories that are used to design the candidate 

solutions in this will be discussed. The GA operators used for the effective 

exploration of the conformation search space and the selection policies applied in 

each generation will be described. 

4.1 The design of candidate solutions 

This system was developed to automatically predict the spatial arrangement of TM 

regions in membrane protein structures by utilising genetic algorithms (GA) as an 

optimisation technique. 

The candidate solution is designed as a template of conformation for a given 

membrane protein, the focus of this study being the well characterised 

bacteriorhodopsin protein. The GA has been designed to work with membrane protein 

structures that contain alpha helical TM regions but not proteins that have any 

significant degree of beta-stranded structure such as the porin family. A given 

structure is specified by the position {x, y, z} of the atoms in the protein, defined by 

their Protein Data Bank (PDB) file. 
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In this work, Bacteriorhodopsin (BR) is selected as the native known structure to be 

tested, because high resolution electron crystallography has been extensively used to 

determine the 3D structure of the protein. Bacteriorhodopsin structures are imported 

as PDB files such as IAP9, IAT9, IBRR or IF88, etc. 

The PDB file 1AT9 was selected in this study as it that contains Cartesian coordinates 

for a 7 helix bundle without any breakage in the helices. The interconnecting loops 

between the TM regions from the Bacteriorhodopsin PDB file are ignored (as 

demonstrated in figure 4.1) and removed for the purpose of free energy comparisons. 
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A) 

B) 

Figure 4.1 The bacteriorhodopsin structure without interconnecting loops, A) side-on B) end-on 
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In order to create a template, which is an approximation of the native structure, the 

average distance between pairs of TM regions was estimated and also their rotational 

orientation in relation to one another was approximated, along with an approximation 

of their general arrangement with respect to one another obtained by using the 

TMRelate program. In building this 3D template, the Psi (\jf) angle and Phi(<p) angle 

for the alpha helix are applied as the general angles. Each angle by rotation about two 

single bonds can adjust the structure of each amino acid in a polypeptide (figure 4.2) 

(A) (6) (C) 

~l H ~ H! 
.. .. .,C )( I \ c.. ..C r 

' ··rr······T/ l'c/~ ·····N/ ····· r .... 
10H 4 'PH I o H R 0 

Figure 4.2 Molecular and Atom structure of Amino Acid (A) Phi (~) is the angle of rotation about the 
bond between the nitrogen and the a-carbon atoms, whereas psi (1jI) is the angle of rotation about the 
bond between the a-carbon and the carbonyl carbon atoms. (B) A view down the bond between the 
nitrogen and the a-carbon atoms, showing how ~ is measured. (C) A view down the bond between the 
a-carbon and the carbonyl carbon atoms, showing how IjI is measured (Berg et al., 2002). 
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The template consists of an arrangement of 7 alpha carbon atom starting positions, the 

starting atom of the initial residue of each helix (figure 4.3). Each en atom is 

represented by three axis coordinates (x, y and z) that the value of y is based on the 

membrane depth and the rise of approximately 1.5 Aper amino acid along the vertical 

axis of helix in order to generate each helix running straight through the membrane 

from one face to the other. This y value is calculated in the TM-Builder program and 

inherited by the TMGA program, which is involved in manipulating the other two 

axis coordinates (x,z) and the rotation angle (r) as input data for TM-Builder. 

The starting location of en atoms in the template is based on the average distance 

between helices in the bacteriorhodopsin structure. The position of each en atom can 

be varied within a certain range in different directions, but in a way that maintains the 

distance between TM regions within the defined range thereby avoiding unravelled 

structures, or the problem of side chain conflicts, where side chains on adjacent 

transmembrane regions are predicted to occupy the same space. 
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Figure 4.3 A created template for TMGA system that contains a segment of cell membrane with an 
approximate arrangement of 7 TM helices (the external loops between TM region are not considered). 
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~ ~ 

A) B) C) 

HeUx(n) starting atom ---+. The position of ea 

Figure 4.4 TM region structure A) Representation of the structure of the helix B) End-on considering 
the starting atom of the initial residue C) Representation of the end on position of a starting en atom 
within a certain range along two axes (x,z) as y value is constant with a rotation angle value(r). 

As figure 4.4 shows, the position of each en atom is based on three axis coordinates. 

The y value will be constant for all starting en atoms and the subsequent y values are 

estimated in the TM-Builder program. The GA method is based on manipulating the 

distances petween TM regions in the membrane by manipulating the x and z value 

and also performing a rotation of each helix by choosing the r value for each en atom 

in order to bring about different spatial associations and stabilising interactions 

between helices. 
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4.2 Choice of random method 

The TMGA system is based on the GA technique. One of the qualities of GAs is that 

they can be applied to unknown problems and the generation of solutions do not rely 

on prior knowledge. In this work, the GA randomly generated two axis coordinates 

(x,z) and rotation value (r) for each alpha carbon atom and created a string of integer 

numbers for each candidate solution. The x and z axis coordinates provide the 

location of each TM region in a template and they need to be specified in a certain 

range in order to maintain the average distance between helices. 

The range of each variable (x and z) is based on the average distance between helices 

in the bacteriorhodopsin protein. The range ofthe r coordinate is based on the rotation 

of each amino acid in a helix and varied from 0 to 359°. 

Therefore a function was designed in the TMGA system that randomly generates an 

integer number within a specified range. All the integer numbers in the specified 

range have equal probability ofbeing generated. 

The GA is able to manipulate the position of each helix as well as the rotation of the 

helices by making random changes to the variables and by using the fitness function 

to determine if there is an improvement in the new conformation. 
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4.3 Encoding method 

The approach of encoding the GA was based on using a bit string to encode each 

particular solution of the problem domain. This is inefficient in domains described by 

several parameters that might each require a range of values. In this study, predicting 

the 3D structure of membrane proteins is described by calculating coordinate values 

for each residue. These values have to be set in a specific range for each residue in 

order to generate realistic distances between adjacent helices. In this application, the 

genetic algorithm is configured to operate on numbers, not bit strings as in the original 

genetic algorithm, and the so-called hybrid approach is taken. 

A hybrid representation is usually easier to implement and also facilitates the use of 

domain specific operators. However, there are some disadvantages, such as: 

• 	 The mathematical foundation ofGA holds only for binary representations 

• 	 Binary representations also run faster in many applications 

• 	 An additional encoding / decoding process may be required to map numbers 

on to the bit strings. 

The program used the "black box" technique (Goldberg, 1989) and set a bank of 21 

input switches, three switches to be considered for each helix, as in this work, a 

membrane protein structure with seven TM regions was selected. 
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For every setting of 21 switches, there is an output of predicted transmembrane region 

structure. In theoretical terms, the spatial arrangement of seven TM regions as helix 

wheels is considered as a TM protein structure template. Each template defines an 

individual in the population. 

The objective of the problem is to set switches to obtain the r value and the x and z 

coordinates for each helix wheel in order to predict an energetically feasible 

membrane protein structure, which is approximate to the native structure. The black 

box in the TMGA system is designed with 21 switches, which will be altered within a 

certain range for each TM region (figure 4.5). 

A simple code is generated by considering a string of21 integer values, where each of 

the 21 switches is represented by one integer value. This method uses blind selection 

in order to generate possible solutions for the search space. As the problem is 

specified in the black box, this technique avoids generating unwanted solutions and 

which can be time consuming. 
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TM ~""~~~u.~~.11 
Structure 
Template 

Figure 4.5 A black box optimisation problem with 21 switches illustrates the idea of generating a 
structure template for the transmembrane region of a 7 helix membrane protein. 
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4.4 GA data structure 

The data structure of the TMGA system consists of a population of individuals or 

solutions, which are represented as a prediction of the 3D structure of a membrane 

protein. Each individual has a set of characteristics. The device that encodes the 

characteristics ofthat individual is represented as a genotype. 

Each chromosome consists of a number of genes and the value of the gene is known 

as an allele that represents an integer value. All the genotypes within the population 

have the same number of chromosomes, the same number of genes in each 

chromosome and the same number of alleles in each gene (figure 4.6). 

The functions performed namely selection, evaluation, crossover and mutation 

operators are part of the genetic data structure. The parent selection is perfonned on 

the population of individuals, and crossover and mutation operators are performed at 

the chromosome level. 

As shown in figure 4.6, the TMGA system generates a population of offspring. Each 

offspring represents a 3D structure of a membrane protein. The genetic algorithm 

operates on the two dimensional coordinates of the starting atom of each TM region 

(as the y axis value will be constant) and also rotation angle value. There are several 

advantages to working in a space defined by Cartesian coordinates. 

73 




Design of a GA for predicting membrane protein structure Chapter 4 

Population 
Chromosome 

TMI TM2 

Gene 

allel 

Figure 4.6 Representation of the population of solutions, considering an individual as a chromosome 
that consists of number ofgenes and each gene consisting of three alle1es. 

The first is that the initial distance between two TM regions can be set up in terms of 

considering the average inter-helical distances from determined structures, and then 

applied to the TM protein structure template in the system. The second is that the GA 

is able to optimise the rotation of each helix as well as the distance between adjacent 

helices. The third advantage lies within the simplicity of constructing the TM protein 

itself. 
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4.5 Fitness function 

In order to test and visualise the predicted transmembrane protein structure, the 

SwissPDBViewer software was used. This software calculates the free energy, and 

perfonns energy minimisation between the atoms of the amino acid side chains of the 

protein loaded as a PDB file, through using an external program, the GROMOS force 

field (Gunsteren and Berendsen, 1987). These force fields or potential energy 

functions allow the energy of a structure to be evaluated as well as repairing distorted 

geometries. The energy functions contain the bond, angle, torsion and non-bonded 

pairs or external terms that include the electrostatic and van der Waals tenns 

(MacKereU, 1998). There are many parameters considered in the energy functions that 

even individually can greatly affect the calculated energy. 

The aim of this evaluation is to manipulate the conformation of a protein in order to 

find the minimum free energy function for the predicted 3D structure of a membrane 

protein, which is a measure of the stability of the protein structure. 

In this work, the calculated energy of the native bacteriorhodopsin structure (lAT9) 

with the extramembrane loops removed is estimated and is compared with the energy 

of the predicted membrane protein structure, in order to eventually find the 3D 

structure of the transmembrane portion that is the nearest to the native structure. 
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4.6 Choice of reproduction method 

The genetic algorithm focuses on the most promising parts of a solution space in order 

to direct the combination of strings containing good partial solutions. This process is 

introduced as a reproductive method. The reproduction contains three processes: 

selection, crossover and mutation. 

4.6.1 Selection 

The selection operator is based on the Roulette Wheel technique. The roulette wheel 

selection technique involves a random selection, as of a number slot from a roulette 

wheel. Fitter individuals of a population are represented by a higher number of slots 

compared to other individuals with lower fitness. Hence the process of selection is 

random, but there is greater probability that fitter individuals will be selected more 

often. After the first parent is selected using the roulette wheel selection, a second one 

is selected, but making sure that it is a different individual to the first one so that 

processing time is not wasted on reproducing from identical parents. 

In our system, the process for selecting a different second parent makes sure that 

parents with the same energy value are not selected together. The selection operator is 

designed to discard those solutions with higher energy value from the population so 

those solutions with lower energy values will have more chance to be selected for the 

next generation. 
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4.6.2 Crossover 

The crossover operator used in this work is the basic crossover. Past work by Konig 

and Dandekar suggests that use of two point crossover leads to lower energy 

structures (Konig & Dandekar, 1999). The crossover in this system operates at two 

points along the chain of two axis coordinates, and the rotation value starting points 

for each TM region. As shown in figure 4.7 the arrangement of TM regions is varied 

by manipulating the three values. The crossover operator is employed to randomly 

place each cross point along the chain where a TM region is ended and the next TM 

region is started. 

Figure 4.7 Crossover with two cross points. 
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4.6.3 Mutation 

The mutation operator used is the basic mutation but there are differences in the way 

the mutation operator is applied in different experiments. In this application, three 

point mutation is used. As shown in figure 4.8, the arrangement of the two axis 

coordinates and the rotation value for each offspring can be modified by the mutation 

operator. The system is able to change the arrangement of the three values for each 

offspring selected for mutation. This allows the distance between TM regions to be 

randomly altered by mutating x and z and by also changing the rotation for different 

helices. 

x X X X X X X R R R R R R R Z Z Z Z Z Z Z 

12345 6 712345671234567 


Mutated 
Offspring 

X X R R R Z Z Z Z Zx X X X R R 
4 5 6' 7 1 21 2 567 1 2 3 4 5 

Figure 4.8 Mutation with three points. 
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4.7 Stopping criteria 

There are a variety of criteria that may be used to decide when a GA is temlinated that 

are situational and set according to individual perfOlmance. The criteria are as 

follows: 

1. 	 The aim of a given genetic algorithm is to find a solution for a given 

problem. So when such a solution is found, the genetic algorithm stops. 

2. 	 When the best genotype (solution) has been reached or the target solution 

fitness has been surpassed (smaller than that fitness for minimising fitness 

function and larger for maximising fitness function), the GA terminates. 

3. 	 The GA is stopped when the difference between the best and worst 

genotypes in the population becomes smaller than a specified percentage 

of that same difference in the initial population. 

4. 	 The termination may occur after the maximum number of generations or 

the maximum time, which are specified by the algorithm. 

5. 	 The GA is stopped if there is no improvement in the best fitness function 

value 

The difference between the average energy in each population becomes smaller than 

between the early generations and gradually diminishes until there is no further 

change. 
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In the algorithm used in this study, the process is stopped when there is no significant 

improvement in the calculated energy force fields over a given number of generations. 

In this experiment, the given number of generations was five and the system been 

determined after that. 

Summary 

The design of the proposed TMGA system has been presented as a series of functions 

and operators. The rational concepts that are used to apply the GA teclmique in this 

system have also been discussed. Enhancements were made to the basic GA method 

in terms of the design of candidate solutions to the problem of the prediction of 

membrane protein structures. 

The candidate solution is designed to represent the arrangement of TM regions in 

membrane. The loops between helices are ignored in order to manipulate the position 

of each TM region in the membrane and concentrate upon improving the 

computational efficiency of the system. 

The energy force field is utilised for the evaluation of each candidate solution. The 

GROMOS force field is applied to calculate the free energy. The application of GA 

operators for effective exploration of the conformation search space is described that 

includes the selection of solutions for the next generation. The selection method is 

based on the Roulette Wheel technique. The process of selection is designed in a way 

as to provide a greater chance for fitter individuals to be further subjected to the GA 

operators. The GA operators used to generate new solutions include crossover and 

mutation. 

80 




Implementation ofTMGA system 
Chapter 5 

CHAPTERS 

5 Im.plementation ofTMGA system 

The TMGA system was developed in order to address a specific problem that it is at 

the interface between computer science and biological systems, known as 

bioinformatics or computational biology. This area projects biologically oriented 

concepts such as genetic algoritInns into computer science and adapts computer 

science algorithms like pattern matching and computational geometry to addressing 

real hiological problems. 

The TMGA system is intended to predict the 3D structure of membrane proteins and 

also provide a framework for the improved application of the genetic algorithm 

technique to structural biology problems. This is accomplished through consideration 

and manipulation of the distances between TM regions in membrane proteins, and 

their orientations in relation to one another, which were varied and constrained within 

the conformation search process. This ability to manipulate and test the resultant 

orientation of such structures in predicted membrane protein structures is a significant 

step along the pathway to tertiary structure prediction for membrane proteins of 

unknown structure. 
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The following sections of this chapter introduce the software development in the 

TMGA system. Section 5.3 describes the acquisition of data and section 5.4 will 

present an overview of the TMGA system representative units and subunits and 

specific PDB software, which work with the TMGA system. In section 5.5, the output 

is explained and a summary is given in section 5.6. 

5.1 Software development 

Outlined below are the steps taken in this research in developing the software to its 

current level. The experimental genetic algorithm is implemented using a PC, which 

is easy to use, and a common computer system. The TMGA (Trans Membrane Protein 

Genetic Algorithm) system is implemented using Visual Basic (as part of the 

Microsoft visual studio development environment). 

This enables the system to utilise the benefits of the Windows 95/98 operating system 

with features such as 32 bit variable addressing, continuous memory model 

architecture, colour depth desktop management, event driven processing, industrial 

standard user interface and the facilities for multi-threading and multi-tasking. It is a 

complete development environment for building Internet applications. 
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Visual Basic 6.0 is a powerful tool for developing applications in the Basic 

programming language with the ability to control the most powerful databases such as 

Microsoft Access 97, part of the MS office suite, which is a Windows, based database 

system (Microsoft Access is used to provide a knowledge based software for the 

TMGA system). 

Object oriented design was chosen for development of the software tools as opposed 

to a functional approach, because it is considered to produce more maintainable and 

more easily understood system architecture and code. 

5.2 Overview of the TMGA system 

The major goal was to predict 3D structure of TM proteins by using a genetic 

algorithm. The TMGA system is based on the GA technique that is a good method for 

solving problems where the range of combinations of parameters is so large that it is 

impossible to search comprehensively. 

One of the features of a GA is in the way data are manipulated. The structure of data 

takes the form of a population of membrane protein structures. The amount of data 

that needs to be processed by a GA should be kept to a minimum, so that the 

behavioural complexity ofthe system can be managed effectively. 
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The TMGA systen1 needed specific items of data in order to implement the GA. The 

following inputs are selected for each experiment: 

• Offspring; the representation ofTM protein structure 

• Length of offspring; representing the number ofTM regions 

• Population size; generating the number ofoffspring 

• Phenotype; defining a solution for the specified problem in each experiment 

• Fitness Function; providing a method to evaluate the quality of each offspring 

• Fitness; representing a value for the quality of an offspring 

• Selection; estimating the quality of each offspring 

• GA operators; indicating the type ofcrossover and mutation and specifying the 

probability of each operator in different experiments. 

The data selected are varied in order to provide different results (possible solution) for 

each experime;nt. Also, TMGA is able to change the behaviour of the GA by altering 

the parameters listed above for optimisation ofresults. 
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5.2.1 Acquisition of data 

An important aspect in describing this study is to specify the methods used to acquire 

data. In chapter 4, the predicted template was described. Each helix is assumed to run 

straight through the membrane from one face to the other and the location of TM 

regions in a template can be changed within the specified range in order to keep the 

distance between TM regions at a realistic value and avoid unfeasible models of 3D 

structure ofTM proteins being generated during the ofrunning the GA program. 

This value has been calculated by considering the average distance between TM 

regions in a dataset of25 TM proteins of determined structures, using the TMDistance 

program as described below. In the TMGA system, the distance between helices is set 

I, by using the atomic coordinates for the alpha carbon of the starting residue in each 

Ii 
. helix.I 

I' 
I The TMDistance program (Togawa et al., 2006) reads the spatial co-ordinates from 

PDB file for the atom in each TM region and was used to calculate the distance 

between residues located on adjacent TM regions in 25 different membrane proteins. 

With each residue pair in different TM regions, if the distances between the side 

chains of two residues is less than a user-selected distance (3.oA, 3.5A 4.oA, 4.5A or 

I 5.oA), the relevant residue-pair is added to the internal bi-dimensional array (matrix 

• 
counter). 
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After all the PDB file(s) are read, TMDistance creates the 20x20 association matrix 

output with the average distances represented in the internal bi-dimensional array. The 

distances between the alpha carbon backbone atoms of the proximal residue pairs 

were then calculated and recorded, resulting in the working average of 8 Angstroms. 

The allowable synthesised 3D coordinate values are then stored in a database and 

allow the GA program to select values from particular ranges which are illustrated in 

table 5.1. This approach ensures that the entire structural template can be predicted by 

the GA program. These 3D coordinate values are used to create a population of 

"chromosomes" upon which the GA technique is run. 
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Axis X R Z 

helix 

TMa -3<x<3 O<r<359 -3<z<3 

TMb -14<x<-8 O<r<359 -3<z<3 

TMc -20<x<-14 O<r<359 4<z<10 

TMd -27<x<-21 O<r<359 12<z<18 

TMe -24<x<-18 O<y<359 25<z<31 

TMf -9<x<-3 O<r<359 20<z<26 

TMg -4<x<2 O<r<359 11 <z<17 

Table 5.1 TM region parameters employed in TMBuilder, demonstrates the range of X and Z 
coordinates values (R is fixed) starting for each TM region for helical transmembrane protein such as 
bacteriorhodopsin. The R value relates to the range of starting rotation angles available for each helix. 

5.3 Design of the TMGA system 

The TMGA system is comprised of two units that fulfil specific tasks. Figure 5.1, 

shows the flow of information between the different units. The main unit is 

represented as the TMGA engine that contains three subunits, these are GA data 

structure, data storage and GA tools, whereas the second unit is the PDB software. 

The complete TMGA system enables the TMGA engine and PDB software to 

cooperate with each other. 
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TMGAEngine 

GA tools 

GA data structure 

PDB Software 

Figure 5.1 Design of the TMGA system. 
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5.3.1 TMGA engine 

The TMGA engine is the main component of the TMGA system and is based on a 

standard GA method and varies GA parameters in order to achieve the best result. It is 

composed of three elements: data storage, GA data structure and GA tools. Before the 

TMGA is started all its parameters need to be set and validated so that the genetic 

algorithm executes correctly without causing any errors. 

The data storage unit is responsible for storing the data acquired from the user and the 

data generated by the TMGA system. In this system the data storage unit utilises 

Microsoft Access to manipulate the data. The GA data structure subunit contains two 

processes. The first process carried out by the initial population generator which is 

responsible for the generation of an initial population. 

In this process, a random function is used in order to select x, z and r values 

coordinate from the data storage for each helix and then these values are stored. The 

second process is carried out by the new population generator and creates a new 

population for the next generation. The output of these two processes is a text file that 

represents the popUlation of predicted templates. The GA data structure subunit is 

responsible for making the connection between the data storage subunit and PDB 

software unit. The GA tools unit utilises GA operators in order to evaluate and select 

individuals. with the best fitness and to perform crossover and mutation and also is 

able to execute other software to generate PDB file which is carried out by the next 

unit. The PDB software unjt contains three software elements, which cooperate with 

the TMGA engine unit in order to calculate the potential energy and generate a PDB 

file for the predicted membrane protein structure. 
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5.3.2 The processing algorithms 

The TMGA system utilises a modified version of a standard GA as a method of 

predicting new TM protein structures applying the following stages ofoperations: 

• 	 Initialise the random population 

• 	 Evaluate the potential energy ofeach new TM protein structure 

• 	 Convert the energy to an evaluation of fitness 

• 	 Select the individual with energy less than 10000. This value was selected as 

cut-off because The calculated free energy cut-off of 10,000 kl!mol was 

applied in Order to impose a degree of selective pressure by eliminating 

outlying individuals that possess free energies that are more than two orders of 

magnitude (2 x loglO) away from being energetically feasible in life. 

Elimination of these individuals with extremely high energy values resulted in 

earlier successful termination of the GA and improved free energy values at 

termination. 

• 	 Perform reproduction! crossover! mutation 

• 	 Generate a new population 

• 	 Repeat from second step until a new structure is no longer generated 
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The initialising operation in the system that benefited from a pre-processing stage 

included the generation of a range of x and z axis coordinates and rotation values for 

fixing the starting atomic coordinates of each helix. A degree of pre-processing needs 

to be performed in order to reduce the CPU time required to process the data and 

hence reduce the overall computational cost. The x and z coordinates values were pre­

processed and the range of 3D coordinate values for each starting atom of the helix 

were stored in a database. The database was connected to the program for using these 

data and storing each population of predicted membrane protein structures. A given 

predicted membrane protein structure is represented in the GA program as a string of 

3D coordinate values for each TM region. Finally, the MaxSprout program (Holm and 

Sander, 1991) was applied to the carbon backbone structures. MaxSprout constructs 

residue side chains in the appropriate positions according to a database of structures. 

The MaxSprout algorithm is described more fully on page 97.The integration ofthese 

data in the database is shown in appendix A. The following is a summary of the 

algorithm illustrating the processes carried out by the TMGA engine unit in being 

used to apply a GA technique in the prediction ofmembrane protein structure. 

Step 1 Initialise the population ofpredicted membrane protein structures 

Step 2 end ofloop 

Step 3 Generate PDB text file 

Step 4 Execute TM-Builder software 

Step 5 Execute MaxSprout software 
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The results of this stage are transferred to the SwissPDBViewer software in order to 

calculate the potential energy of each predicted membrane protein structure. 

The next operation provided the fitness evaluation that benefited from pre-processing 

and included a method of inverting the calculated energy and storing the result for 

each individual in a database. The following approach illustrates the method used to 

invert the energy value for each individual; 

1) 	 Load force field value for all individuals in database 

2) 	 Organise by ascending force field values and select highest value in order 

to invert the highest number to become the lowest and vice ·versa, by 

subtraction of a given value from the highest energy value attained. 

3) 	 Calculate the final energy value for each individual 

4) 	 End ofprocess 

This inverted energy value is used to evaluate the fitness of an individual, and guides 

selection for the next generation in the GA program. 
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Two further processes, namely crossover and mutation are perfonned in the operation 

of the GA. The following algorithm summary illustrates the GA tools unit developed 

in the software: 

Stepl randomly Select two individuals from the solutions (read from data storage) 

Step2 Operate two point crossover 

Step3 Select an individual of solutions (read from data storage) 

Step4 Operate three points mutation 

StepS End of loop 

Step6 Generate PDB text file 

Step7 Execute TM-Builder software 

Step8 Execute MaxSprout software 
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The experimental parameters are summarised in table 5.2. The parameters described 

were adapted especially for addressing the problem ofmembrane protein structure. 

Table 5.2 GA parameters employed in the experiment runs. 

Representation Integer number string of Cartesian 

coordinates 

Population size It is set at either 50 or 100 

Fitness 	 Evaluation based upon the potential energy 

of each TM protein structure 

Selection 	 Roulette wheel technique 

And choose all individuals with energy 

values<lOOOO and others will be discarded 

Crossover Two points cross over and 

crossover rate =0.8 

Mutation It is varied from two points to three points 

mutation with mutation rate = 0.02 

Termination 	 When the lowest energy is successively 

observed without change over several 

generations 

A valid range for energy is set in order to select the predicted membrane protein 

structures that are nearest to native structure. 

In this .study, the system is instructed to check the energy of all individuals in each 

. population. If the minimum energy observed does not improve after three generations, 

the GA will be terminated. 
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5.3.3 PDB software 

To develop an automated approach suitable for the prediction of membrane proteins, 

the GA approach is finally executed through 3 component pieces of software that 

together convert the starting coordinates and orientations generated by the GA into 3D 

TM helical structures. These are the as TMBuilder program (Togawa, et al., 2002), 

MaxSprout (Holm and. Sander, 1991) and the energy calculation protocol of the 

Swiss-PDB Viewer (Guex and Peitsch, 1997). Here, each package is described briefly 

as follows: 

TM-Builder 

The TM-Builder program is used to generate a PDB file for each predicted TM 

protein structure, by generating 3D structures for each individual helix in turn, when 

taken together provide the structure of the whole TM domain of the protein. The 

atomic coordinates of the alpha carbon for the starting residue of each helix are used 

in the placing of each helix. The output ofthe TM-Building software is a PDB format 

data file that contains Cartesian coordinates for the alpha carbons of all the helical 

residues. At this stage, this PDB file will represent a new predicted TM protein 

structure but without considering the side chains of residues. The approach assumes 

complete helical structure for all TM regions, which was a necessary simplification at 

this stage. Using this information an atomic co-ordinate for the alpha carbon of each 

residue is calculated, according to the mathematic representation of an alpha helix, 

described below. 
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The program builds each alpha carbon in the corresponding angular position as it 

would be illustrated in a helix wheel representation. 

For the calculation of a-helix co-ordinates, the following parameters are considered: 

Value ofY: The y axis is taken to run essentially straight through the membrane from 

one face to the other. The value of y is based on the membrane depth, and the rise of 

approximately 1.5 Aper amino acid along the vertical axis of the helix. This value has 

been refined following sampling of a series of unbroken TM a-helices. Based on the 

average distance covered by 5 full turns of the helix (3.6 amino acids per turn), it has 

been calculated at 27.14/18 = 1.5. An average of a sample of alpha helices from 20 

membrane proteins in the PDB database where the distance was measured over 18 

amino acids in continuous alpha helices. 

The value of X and Z: The X and Z coordinates for each helix describe the rotation 

around the central axis (or spindle) of the helix, but of course, are 900 out of phase 

with each other. The alpha carbon (CA) of each residue is assumed to be placed in a 

circle around the central spindle (y axis), with a 1000 increment in the rotation angle 

(RA) for each residue, corresponding to the known periodicity of 3.6 residues per 

helix 
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F or the x co-ordinate: 

x = r*SIN(RA*1t/180» 

Equation 3. Formula for X coordinate 

Where RA is decreased by 100 for each consecutive residue, and: 

r = radius of the helix = (3.817719/3.6478)*«(3.817719*3.6»/ 7t)/2 

Equation 4. Formula for Radius ofthe helix 

again obtained from sampling helical structures. In the event that the helix has a 

starting end on rotation (R) which is manipulated by the GA, then the equation is: 

x = r*SIN«R+RA)* 1t /180) 

Equation 5. Formula for X coordinate with end on rotation 

Similarly, for z 

z = r*SIN«R+RA-90)* 1t /180) 

Equation 6. Formula for Z coordinate 

The only difference between the x and z equations being the prior subtraction of 90° 

from the rotation angle. The starting coordinates for each helix are generated by the 

GA. The program generates pdb files as an output. 

The pdb file consists of a list of CA atom. The atom records present the atomic 

coordinates for standard residues. They also present the occupancy and temperature 

factor for each atom. 
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MaxSprout 

The second package involves building on the side chains to the alpha carbon 

backbone for each predicted TM region. The MaxSprout software is available through 

the Internet (http://www.ebi.ac.uklmaxsprout/) and uses the PDB coordinates of the 

alpha carbon backbone as input data and generates a PDB file for the predicted 

membrane protein helices with side chains added (see Appendix A). 

MaxSprout is a fast database algoritlnn for generating side chain coordinates from a C 

(alpha) trace where there are gaps in the backbone (though this is not applicable here). 

When gaps are present, the backbone is assembled from fragments taken from known 

structures. Side chain conformations are optimised using a rough potential energy 

function to avoid clashes (http://www.ebi.ac.uk/maxsprout). The input must be in 

PDB format and the program generates a PDB :file with side chain coordinates. 

SwissPDBViewer 

The third package is used to calculate the free energy for each predicted structure. The 

Swiss-PDB viewer program takes the PDB :file with the side chain coordinates as 

input (see Appendix A). The software automatically implements a script, which is 

written to calculate the potential energy ofeach predicted membrane protein structure. 
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Deep View (formerly called Swiss-PdbViewer) is a user friendly but powerful 

molecular graphics program. It is designed for use with computing tools available 

from the expert protein analysis system, or ExP ASy (http://www.expasy.orglspdbv/). 

DeepView is simple to use for viewing structures and it can detect hydrogen bonds 

within proteins and between proteins and ligands and also examine electron-density 

maps from crystallographic structure determination, to judge the quality of maps and 

models, and to identify many common types of problems in protein models. It allows 

the user to view several proteins simultaneously and superimpose them to compare 

their structures and sequences. It computes electrostatic potentials and molecular 

surfaces, and carries out energy calculations and energy minimisation 

DeepView or Swiss-PdbViewer is not in itself a force field calculating program but a 

tool that is most commonly used to apply a protein primary sequence onto a 3D 

template and obtain immediate feedback of how well the threaded protein will be 

accepted by the reference structure before submitting a request to build missing loops 

and refine side chain packing. 

The program was written and tested by the Swiss group of Nicolas Guex, Alexandre 

Diemand Torsten Schwede and Manuel C. Peitsch (Guex and Peitsch, 1997). , 

Swiss-PdbViewer includes a version of the GROMOS 43Bl force field calculation 

(Gunsteren et aI., 1996). This force field allows the evaluation of the energy of a 

structure as well as repairing distorted geometries through energy minimization. In 

this implementation, all computations are done in vacuo, without reaction field. 
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5.4 Output 

The output of the TMGA system is divided into three parts: starting coordinates file, 

PDB file without side chain and PDB file with side chain. 

All the files are stored in a directory to allow the user to compare the results of 

different generation of the predicted membrane protein structures. 

The starting coordinates file contains a list of x, y and z coordinates for each starting 

alpha carbon atom for each TM region in the predicted membrane protein structures. 

The text file is generated with a specified format, to be read by the TM-Bt,rilder 

software. 

The output of the TM-Builder software represents a new predicted membrane protein 

structure in PDB file format. This output consists of predicted coordinates for the 

alpha carbon backbone of the TM helices. 

The PDB file with side chains is an output of the MaxSprout software, and consists of 

the same structure as generated by TM -Builder but with the side chains constructed on 

the backbone, and is utilised by SwissPDBViewer software in order to calculate the 

energy of each predicted membrane protein structure. 
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5.5 Summary 

This chapter has addressed many of the technical Issues associated with the 

implementation of the TMGA system. 

Firstly, the methods used to acquire data in order to generate the entire template for 

the GA program were discussed. The components of the TMGA system were defined. 

This provided a description of all the processes that are used to implement the GA 

technique in order to predict 3D structures ofTM proteins. 

To improve the genetic algorithm technique for the specific problem of prediction of 

membrane protein structure, a number of enhancements were developed. These 

included the design of the selection method, calculating the potential energy and the 

performance of modified GA operators for generating populations of predicted 

structures. The incorporation within the TMGA system of other programs enables the 

system to generate PDB files for each predicted TM protein structure and calculate the 

free energy in order to evaluate the new predicted structure, in comparison with the 

native structure. The output of the TMGA system allows the user to compare the 

results in various experiments in order to make appropriate modifications to improve 

the solutions to the specified problem. 
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CHAPTER 6 

6 Results of experiments 

In this chapter, the TMGA results and newly generated structures (in effect, predicted 

models) ofbacteriorhodopsin are presented. Bacteriorhodopsin (see Appendix B) is a 

transmembrane protein that contains 7 TM helices and its 3D structure is perhaps the 

best characterised structure of any membrane protein. In these experiments, 

bacteriorhodopsin is used as an appropriate test case in order to compute the I 
I difference between the predicted structure obtained by utilising a GA as an 

I 
optimisation technique, and the known structure. This approach, however, could be 

I , 
applied to any membrane protein, as the starting helix arrangements and end-onI 
orientations are inherited from the TMRelate program (Roberto Togawa, John 

Antoniw and Jonathan Mullins, 2002) predicted from amino acid sequence. 
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6.1 GA parameters 

In the first set of experiments, the construction of TM proteins is based on the 2 

positional variables (x and z) associated with each helix. The value of R is based on 

the rotation ofeach helix so in these experiments is assumed to be constant. 

The distance between helices is manipUlated and in this experiment the extent of 

interaction between helices is based on their distance apart. In the first instance, the 

GA was designed to randomly generate 50 TM protein structures per generation, 

selected as the population size for a small range of input. Each helix is assumed to run 

straight through the membrane from one face to the other, which is a necessary 

approximation for the methodical application of the OA. 

Figure 6.1 shows the average energy for each generation. The first 10 generations of 

the OA are associated with random testing and in this run, after 18 generations the GA 

was tenninated. These results indicate that the GA is unable to generate structures 

with sufficiently low (i.e. negative) energy as the average energy for each generation 

remained high. This also indicates that manipulating the distances between helices is 

unable on its own to generate feasible interactions between helices in order to 

generate structures with high stability that is near to native structure. 

Using two input variables generally requires a larger population size as large. 

populations in the GA allow the search space to be sampled more (Jones et al., 1998) 

and generate more possible solutions for the specific problem. 
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Figure 6.1 Average energy for each generation of 50 structures, varying only x and z 
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In the next set of experiments, the GA was designed to randomly generate 50 TM 

protein structures per generation and increase the data input to three variables, as the 

construction of TM helices was based on the 3 positional variables (x, z and R) 

associated with each helix. 

As figure 6.2 shows, the average energy values were reduced after 10 generations and 

the GA was tenninated after 22 generations. This experiment indicates that increasing 

the number of input variables that are manipulated generates a higher proportion of 

new structures with low energy. 

The average energy is decreased compared with the first set of experiments but the 

GA is unable to significantly improve the quality of the better structures as using the 

same population size kept the search space small. However, the effectiveness of a GA 

can be improved by utilising a larger search space. 

105 




~,,"~' ~~'m:c ~"''!!'I'''''''''I!I''''''""' "'"' 
Chapter 6 


90000 

80000 

" 
70000 

60000 

50000 

J 40000 

30000 

20000 

10000 

0 

Average Energy(population of 50 and variables x,z,r) 

0 5 10 15 20 


number of generations 

Figure 6.2 Average energy for each generation of50 individuals, with GA manipulation of three variables 
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In order to compare the effectiveness of the GA for predicting 3D structures of 

membrane proteins, with different population sizes, a run with a population of 100 

was made with the three input variables (x,z and r). 

The results indicate that introducing a larger popUlation of 100 increases the search 

space and the possible combinations in the generation ofnew TM protein structures. 

As figure 6.3 shows, the GA was terminated after 56 generations and the average 

energy was markedly reduced after 11 generations. This experiment generated 

structures with high stability and low free energy. 

This low (negative) energy indicates that manipulating the rotation of each helix as 

well as the distances between helices results in the generation of new structures that 

are more similar to the native structure. 
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6.2 	 Comparison of individual structures obtaining the lowest 

energies in the different experiments 

Figure 6.4 shows the lowest energy obtained in each generation in the three main sets 

of experiments. As individuals in the first 10 generations in each run are based on 

random selection, the energy values are high. 

In the first set of experiments with a population size of 50 and exploiting two 

variables (x and z), the energy values are elevated and the similarity between the 

energies ofthe predicted and native structure is low. 

In the second set of experiments with a population size of 50 and three variables (x, z 

and r) the calculated energy is decreased more quickly, but the GA is unable to predict 

structures any closer to that of the native structure in terms of greater structural 

similarity and higher stability as the lowest energy obtained is still relatively high. 

The pro gram was terminated after 20 generations. 

In the final set of experiments with a population size of 100 and manipulating three 

variables (x, z and r), by increasing the population size, the GA was able to introduce 

more new solution structures into the search space in order to predict a conformation 

which is near to the native structure. 
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As the results show, though the stability of the new structures is lower than the native 

structures (as their energies are still higher than the native structure), this experiment 

does show that the TMGA system is able to generate 3D structures of membrane 

proteins with feasible molecular stability in that they possess negative values of free 

energy. 

The comparison between the lowest energy in each generation with the average 

energy of each generation indicates that the average energy illustrates the general 

evolutionary improvement in the TMGA system as the selection technique in each 

generation is not based on the individual with the lowest energy on its own. 

The results of the lowest energy of each generation represent the ultimate efficiency 

of the GA in the TMGA system. 
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6.3 Evaluation of generated structures 

In order to evaluate more closely the effectiveness of genetic algorithms for this 

application, the PDB files corresponding to the best result (that with the lowest free 

energy) of each generation were selected. In this analysis, all the predicted structures 

were compared with the lAT9 structure ofbacteriorhodopsin (Kimura et al., 1997). 

The free energy was calculated by the GROMOS algorithm within the 

SwissPDBViewer software, and the Z value and RMSD (Root Mean Square 

Deviation) were calculated by the Dali structure comparison program (Wood and 

Pearson, 1999). The Dali program is a fully automated structure comparison algorithm 

that uses the three-dimensional co-ordinates of each protein in order to calculate 

residue-residue (Ca-ea;) distance matrices. The similar contact patterns in the two 

matrices are paired and combined into larger consistent sets ofpairs. In Dali, a Monte 

Carlo procedure is used to optimize a similarity score defined in terms of equivalent 

intramolecular distances and Z scores (Holm and Sander, 1993). In addition, the 

similarity of each predicted structure to the native structure was assessed using the 

TMEvaluation program (Roberto Togawa, John Antoniw and Jonathan Mullins, 

2003). The results for lAT9 are presented in table 6.l.and the results of the generated 

PDB files are shown in table 6.2 and table 6.2( continued 1, 2). 

Native structure Energy KJ/mol Z RMSD 


lAT9 -1583.924 29.7 0 


Table 6.1 Free energy, Z and RMSD values for the "standard" native structure 
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Percentage correctly Percentage correctly Percentage correctly 
Generations Lowest Enerln' Z RMSD Predicted at-SA Predicted at-SA Predicted at loA 
0 2190 3.2 3.2 12.68 23.49 33.65 
1 1169 2 12.2 6.34 18.06 22.99 
2 1961 1.8 1.9 2.11 8.95 17.37 
3 1594 5.8 4.5 0.7 18.83 32 
4 1594 5.8 4.5 0.7 18.83 32 
5 1273 3.9 3.6 3.52 13.43 25.55 
6 -1l0 6.2 3.6 3.52 17.28 28.69 
7 -110 6.2 3.6 3.52 17.28 28.69 
8 -110 6.2 3.6 3.52 17.28 28.69 
9 359 6.1 3 4.23 16.67 29.09 
10 255 5.3 4.2 4.93 17.75 31.45 
11 255 5.3 4.2 4.93 17.75 31.45 
12 255 5.3 4.2 4.93 17.75 31.45 
13 785 4.5 4.4 1.41 12.96 23.51 
14 578 3 3.2 0 10.83 21.62 
15 1605 5.3 4.3 5.63 15.12 26.89 
16 1353 4.8 ILl 6.34 16.36 26.42 
17 1074 4.5 8.6 1041 14.35 23.58 
18 406 5.5 10 0 16.05 30.27 
19 510 4.5 4.4 1.41 12.96 22.48 
20 521 4.1 9.4 1.41 14.66 25.47 
21 1085 4.2 3.7 2.82 13.43 23.98 
22 1085 4.2 3.7 2.82 13.43 23.98 
23 1605 5.3 4.3 5.63 15.12 26.89 
24 1165 6.2 4 4.23 18.21 29.48 
25 315 3.3 

-­
10.7 _0_____
---- ­ ---- ­

10.65 21.31 

Table 6.2 Analysis of the structures with the lowest free energy in each generation, RMSD and Z value and also percentage similarity by residue pairs of each predicted 
structure to the native structure. 
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Percentage correctly Percentage correctly Percentage correctly 
Generations Lowest Ener2Y Z RMSD Predicted at-SA Predicted at-SA Predicted at loA 
26 890 5.1 2.5 4.23 20.22 33.96 
27 890 5.1 2.5 4.23 20.22 33.96 

28 51 
 5 2.7 2.11 16.36 27.75 

29 51 
 5 2.7 2.11 16.36 27.75 

30 -582 
 5.4 4 3.52 16.2 28.62 

31 -582 
 5.4 4 3.52 16.2 28.62 

32 -621 
 5.4 3.8 3.52 16.05 28.93 

33 -621 
 5.4 3.8 3.52 16.05 28.93 
34 -717 5.8 5.4 4.93 17.44 23.17 

35 -621 
 5.4 3.8 3.52 16.05 28.93 

36 -634 
 5.1 3.7 4.23 19.14 32.39 
37 -621 5.4 3.8 3.52 16.05 28.93 

38 -621 
 5.4 3.8 3.52 16.05 28.93 

39 -817 5.8 4.6 5.63 20.68 33.33 

40 -591 5.1 2.7 3.52 15.74 29.87 

41 -607 5.4 4.5 2.11 16.82 30.97 

42 -591 5.1 2.7 3.52 15.74 29.87 

43 -665 5 5.4 4.23 17.9 30.27 

44 -684 5.4 4 6.34 19.75 32.55 

45 -607 5.4 4.5 2.11 16.82 30.97 


_._­

Table 6.2 (continued _1) Analysis of the structures with the lowest free energy in each generation, RMSD and Z value and also percentage similarity by residue pairs of each 
predicted structure to the native structure. 
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Percentage correctly Percentage correctly Percentage correctly 
Generations Lowest Energy Z RMSD Predicted at-SA Predicted at-SA Predicted at loA 

,46 -802 5.1 3.6 1.41 16.98 31.6 
147 -752 5.2 2.6 3.52 16.82 29.72 

48 -752 5.2 2.6 3.52 16.82 29.72 

49 -752 
 5.2 2.6 3.52 16.82 29.72 

50 -752 
 5.2 2.6 3.52 16.82 29.72 

51 -752 
 5.2 2.6 3.52 16.82 29.72 

52 -752 
 5.2 2.6 3.52 16.82 29.72 
53 -655 5 4.4 4 16.54 29.32 

54 -655 
 5 4.4 4 16.54 29.32 

55 -752 
 S.2 2.6 3.52 16.82 29.72 

56 -655 
 5 4.4 4 16.54 29.32 

Table 6.2( continued _ 2) Analysis of the structures with the lowest free energy in each generation, RMSD and Z value and also percentage similarity by residue pairs of each 
predicted structure to the native structure. 
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The results of the analysis of the structural similarity of the transmembrane regions of 

bacteriorhodopsin as detennined using the Dali structure comparison program are 

displayed in figures 6.5 and 6.6. 

When the predicted protein structures share significant similarity, the Z values are 

increased and vice versa. Z values can provide reliable information about similarity in 

the same way as RMSD (the root-mean-square deviation)(Zhang and Skolnick, 2005), 

but with the difference that Z values are based on a Monte Carlo simulation technique 

and the overall Z score is the comparison of actual alignment score with the scores 

obtained on a set ofrandom sequences (Aude and Comet, 1996) 

Figure 6.5 shows that the Z values are higher in the new structures with low energy 

and as the energy increases the Z value decreases. 

, ~ 
" 

! 

W 

1 

Figure 6.5 Z scores reported by the Dati program for the most stable structure of each generation 
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sUMMARY OlITPUT 

Regression Statistics 
Multiple R 0.445925 
RSquare 0.198849 
Adjusted R 0.184283 
Square 
Standard Error 0.815268 
Observations 57 

ANOVA 

Regression 
Residual 
Total 

df 

1 
55 
56 

SS 

9.07345 
36.55637 
45.62982 

MS 

9.07345 
0.664661 

F 

13.65124 

Significance 
F 
0.000508 

Intercept 
XVariable 1 

Coefficients 

5.052207 
-0.00045 

Standard 
Error 
0.108845 
0.000123 

tStat 

46.41661 
-3.69476 

P-value 

8.45E-46 
0.000508 

Lower 95% 

4.834077 
-0.0007 

Upper 
95% 
5.270337 
-0.00021 

Lower 
95.0% 
4.834077 
-0.0007 

Upper 
95.0% 
5.270337 
-0.00021 

~. 

Table 6.3 Summary of regression analysis, On regression analysis, the relationship between Z scores 
and free energy gave an 'r 'value of 0.45 and a significance (F) of 0.0005, showing that there is a 
statistically significant relationship between higher Z scores and lower values of free energy for the 
most stable structures of each generation. This relationship supports the use of free energy as an 
evaluation function in the GA. 

Table 6.3 shows that there is a relation between Z scores and free energy and the GA 

is able to predict new structures with high similarity (higher Z scores) and high 

stability (lower energy). 
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The most frequently used measure of structural similarity is the RMSD, and lower 

values of RMSD indicate higher similarity (Carugo, 2003). The RMSD calculated 

between equivalent atoms in two structures is defined as: 

.L,dl
-


R 

Equation 7. Formula for RMSD 

Where d is the distance between each of the n pairs of equivalent atoms in two 

optimally superimposed structures (Carogo and Pongor, 2001). The RMSD is based 

on the total number of atoms included in the structural alignment. 

As figure 6.6 shows, the GA is able to generate structures that are similar to the native 

structure with reasonably low RMSD values and low energy and also generate some 

new structures with rather higher energies but with low RMSD. 

'0' ~oa 11l0'Q: 1500 2500 

.r::,...tg, 

Figure 6.6 RMSD values reported by the Dali program for the most stable structure of each generation 
with the lowest free energy. 
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Figure 6.7 The similarity to native structure (RMSD values) compared with the lowest energies of generated structures. 
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The figure 6.7 shows the most stable predicted structures (with the lowest energy) in 

each generation against the RMSD value. These results indicate that although the 

most stable predicted structure in each generation is not correlated with lower RMSD 

values (high similarity with the native structure), the most consistently low RMSD 

values are observed with the series of lowest energies. 

The graph demonstrates that for the GA to generate a predicted structure with low 

energy and high similarity requires running a higher number of generations. As the 

number of generations is increased the number of predicted structures with low free 

energy and also low RMSD values will be increased. 

This indicates that random selection initially drives the efficiency of the GA, then 

after 30 generations the GA effectively selects those structures that are nearest to 

native structure for the next generation. This will drive the system to predict structures 

with low energy and high similarity. 

i 
f
1 

I 
I 
I 
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Figure 6.8 shows the comparison between the two measures of similarity for the most 

stable newly generated TM protein structures. 

As the TMGA system is based on evaluation by the free energy of generated 

structures and with the observation that the GA successfully generates predicted 3D 

structures with stability near to that of the native structure, this analysis addresses the 

effectiveness of the evolutionary process in the TMGA system in terms of selection of 

structures ofviable structural similarity to the native structure. This consideration is of 

great importance with respect to the capacity of GA approaches to generate model 

structures that are of genuine relevance to the study of the structure / function 

relationships of a given protein. 

As the results show, the system generated several structures with low stability and 

high similarity to the native structure. This indicates that despite being fonnulated 

primarily to select by free energy, the GA operators are able to drive the system 

significantly well to generate a range of new TM protein structures that attain varying 

levels of similarity or stability (some with comparable stability but low similarity to 

the native structure, others with inferior stability but reasonable similarity to the 

native structure, and a notable proportion with comparable stability and reasonable 

similarity to native strocture). 

.. 
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Figure 6.8 The distribution of the Z value and RMSD for the predicted structure compared with the lowest energy in each generation. 
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The accuracy of the TMGA system was also tested by use of a program called 

TMEvaluation that was developed by other members of the group (Togawa, 

unpublished). The program lists pairs of residues that are calculated to be within a 

given distance of each other, and compares the list obtained for the native structure 

against the generated structures. This comparison was performed at three different 

distances, for the structure in each generation with the best energy calculation. 

As figure 6.9 shows, at sA distance, the percentage of coincident pairs of residues 

between predicted and native structures remains at a similar level throughout the 

generations, but variability between consecutive generations decreases as the run 

progresses i.e. with increased number of generations, the results become tighter. In 

general, the accuracy of predicted structures after 30 generations is increased, 

indicated by the average number of coincident residue pairs at close range between 

different helices being increased. 

The distance range of 5 A is a rather unforgiving criterion, and was selected as this is 

close to the mid range of normal side chain / side chain proximities in determined 

membrane protein structures. For a residue pair to be listed at this range, the 

transmembrane regions would have to be arranged with highly accurate adjacency and 

rotational orientation, with the residue pairs also appearing at the correct 

transmembrane helix depth on adjacent helices. In this regard, scores of 5% represent 

surprisingly reasonable model structures. 
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Figure 6.9 Percentage of coincident residue pairs within 5A in the test and native structures. 
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In figure 6.9, the percentage of coincident residue pairs is presented for the structures 

with the lowest energy score in the 56 generations, but this time within a greater 

distance range of 8 A. As the graph shows, by increasing the allowable distance limit 

the percentage of coincident residue pairs is generally increased and the variability 

between consecutive generations is less than 5 A. Again, by the later generations, 

there is very little variability. 

The distance range of 8 A was selected as this is close to the average distance between 

the alpha carbon backbones of tightly packed transmembrane regions in determined 

membrane protein structures. 

For a residue pair to be listed at this range, the transmembrane regions would have to 

be placed at comparable distance apart to those of the native structure and with the 

correct end-on rotation and relative helix depth. Scores in the region of 20% are very 

promising. 
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Figure 6.10 Percentage of coincident residue pairs within 8A in the test and native structures. 
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The percentage of coincident residues within a 10 A distance in each new structure 

and the native structure is shown in figure 6.11. The loA range is a somewhat more 

generous criterion, based on the upper limit of inter-helical distances between alpha 

carbon backbones found in determined membrane protein structures, and allows for 

all residue pairs that are found in both structures with comparable TM region 

adjacency, comparable end-on rotation and at comparable membrane depth. 

These results, showing that approximately one third of the amino acid side chains 

involved in side chain / side chain residue pairs possess comparable positioning in 

three dimensions indicate that the GA generated plausible 3D structures for membrane 

proteins of energetically stable structure and that were sufficiently similar to the 

native structure to allow comparable helix packing. 

However, it is clear that the GA could be further improved, perhaps by the 

incorporation of other evaluation methods such as consideration of weighted scores 

for specific residue-residue associations and the fonnation of recognised 3D structural 

motifs and packing patterns. 
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Figure 6.11 Percentage of coincident residue pairs witWn loA in the test and native structures. 
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In theory, as the free energy decreases the accuracy of predicted structures by all 

measures should increase. However, as shown in figure 6.12, the results achieved 

show that high percentages of coincident residue pairs can be attributed to structures 

with both high and low energy. 

The GA is able to generate plausible 3D structures for the transmembrane regions of 

membrane proteins with high speed and efficiency on the basis of selecting those with 

the lowest energies for the next generation. In general, the TMGA system proved 

successful in using an evolutionary approach to generate candidate protein structures, 

which bear good resemblance to the native structure in tenns of stability and packing 

ofTM helical regions. 

This work confirms that the consideration of individual model solutions by their free 

energy for selection in the next generation is an appropriate strategy, suggesting that 

there is a broad relationship between theoretical energetic stability and actual 3D 

structure, but that further improvements can be made to the application of the genetic 

algorithm, involving greater consideration of the intricate structural and functional 

characteristics ofmembrane proteins. 
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Figure 6. 12 The percentage of correctly predicted side chain pairs for the structure attaining the lowest free energy in each generation. 
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6.4 Summary 

A number of experiments have been conducted in the work of this thesis to predict the 

3D structure of TM proteins by using a genetic algorithm. Experiments to derive the 

optimum population size and GA operators were conducted for the purpose of 

improving the performance ofGA in the TMGA system. 

For example, the population size was increased to improve the predicted structures 

and generate more new structures with new features. These experiments have 

demonstrated that the GA technique can capably predict the 3D structure of a TM 

protein, taken from prior knowledge of only the sequence, to a level that approaches 

the native structure in terms of free energy and structural similarity. 

In the future, further improvements to the TMGA system will generate better 

predicted structures, which are more similar to the native structure. 
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CHAPTER 7 

7 Discussion 

"Artificial life" is an attempt at understanding all biological phenomena through their 

reproduction in artificial systems, such as in computer simulations. Computational 

approaches to the protein folding problem are often addressed by alternative 

techniques for predicting the tertiary structure of proteins given their amino acid 

sequence. Predicting the three dimensional structure of a protein from its amino acids 

is one ofthe most important problems ofmodern biology. 

Integral membrane proteins play important roles in living cells. Among the 30,000+ 

solved protein structures in the Protein Data Bank (PDB), less than 2% are membrane 

proteins while on average, 20-30% of the genes in a genome encode membrane 

proteins. Thus, computational approaches for the prediction of membrane protein 

structures have become an attractive alternative (Chen and Xu, 2006). 

GAs are efficient general search algorithms and as such are appropriate for any 

optimization problem, including problems related to protein folding. Many studies 

show that GAs are superior to Monte Carlo and other search methods for protein 

structure prediction (Unger, 2004). 
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7.1 Comparison of TMGA system with others 

The GA is appropriate for any Optimization problem, including problems related to 

protein folding (Unger, 2004). 

As the confonnation space for possible membrane protein structure is challengingly 

large, this is a suitable problem for the application of a GA. In this work, for the first 

time, a GA has been applied to predicting membrane protein structure and it has been 

shown that it is possible to optimise the prediction ofTM protein structure. 

Faulon et al (2003) present a computational technique for the assembly of helix 

bundle of membrane protein matching a predefined set of distance constraints. They 

take a set of helices in pdb fonnat and a set of distances between pairs of atoms on 

those helices. The output of this method is all the possible helix arrangements that 

match the provided distances. They did not, however, undertake energetic calculations 

on each confonnation and compare each solution with the others by a predefined 

RMSD. They used the structure of Rhodopsin as model. 

In this study, the arrangement of TM regions is optimised in order to arrive at a 

reliable distance between helices that generate a new structure with high stability 

which possess low free energy and more similarity to the native structure (lAT9). 
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There are different approaches available for predicting soluble protein structures by 

using GA. Braden (2002) used a GA to develop a protein structure prediction 

technique by modelling proteins in three dimensional integer space and residues with 

characteristics of hydrophobicity, charge and side chain size. Each residue consists of 

a group of five bits and each group is decoded to an integer number. 

The group represents a potential location at which a residue can be found. In the 

TMGA system, the TM protein is initially modelled from an arrangement of 7 alpha 

carbon atom starting positions, the starting atom of the initial residue of each helix in 

three dimensional spaces. Each initial residue of each helix consists of a group of 

three integers that represent the location of a TM region in space with respect to the 

other helices. 

Bui et at. (2005) investigated the protein folding problem in the HP model in which 

each amino acid is classified, based on its hydrophobicity, as H (Hydrophobic or non­

polar) or a P (Hydrophilic or polar) in a 2D square lattice by finding a lowest energy 

confOlmation. Their GA method used secondary structures as individuals of the 

population and one point crossover and uniform mutation. The secondary structure is 

mutated by replacing it with another structure selected at random. 

In the TMGA system, the conformation of the TM protein structure is based on the 

arrangement of 7 TM regions placed in a limiting 2D grid and the h~lix breakage and 

kinking in TM regions are ignored in each template. 
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The GA operator in this system was modified by using two points crossover and three 

points mutation. The structure is mutated by selecting values (x or y or z) randomly 

from the initial residue of helices. 

The candidate solution in this GA method is designed as a template of the 

conformation for a given membrane protein that contains alpha helical TM regions. 

Each helix is specified by the position {x, y, and z} of the atoms in protein that is 

identified by their Protein Data Bank (PDB) file. The template consists of an 

arrangement of 7 alpha carbon atom starting positions, the starting atom of the initial 

residue of each helix. The coordinate of the starting atom of the initial residue ofeach 

helix defines the distance between two helices and this distance can be changed by 

varying the coordinate. 

In this work, the GA is able to optimise the distance between helices as well as the 

rotation of each helix in order to arrive at the most reliable distance that results in the 

highest stability. This method assumes the optimal value for all bond angles for 

residues within the carbon backbone, and the side chains are constructed using the 

MaxSprout algorithm based on a database of structures. The method considers all 

helices as passing straight from one side of the membrane to the other without 

breakage or kinking. The focus of this work is therefore to investigate the optimal 

arrangement and fine positioning of transmembrane regions in membrane protein 

structures 

, ,I 
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The significance of this work is that the GA predicted new structures near to the 

native structure (lAT9) in terms of low free energy and high stability as well as high 

similarity. New structures could be generated in the same way for proteins of 

undetermined structure, to serve as approximate molecular models. 

As shown in the results presented in figure 6.7, the lowest energy obtained (-817 

KJ/mol) belongs to a new predicted structure that is less similar in structural terms, as 

its RMSD value is higher than certain other predicted structures with energy -752 

KJ/mol and RMSD 2.6A. This indicates that although the structure with the lowest 

energy is more stable than the other structures, it does not resemble the native 

structure as closely as some other less stable structures. This is likely to be due to 

"over-fitting" of the optimised structures to the evaluation function of free energy, at 

the expense of accuracy of structural prediction compared to native structures, which 

must allow for conformational stresses and change. 

There is another generated structure with a substantially higher free energy (890 

KJ/mol) but more similar (RMSD 2.5 A) to the native structure (IAT9). The 

comparison between TM regions in these structures indicated that subtle differences 

in the distance, between helices containing the same amino acids, significantly 

affected the free energy or stability of each structure. The comparison between the 

positioning and end-on orientation of TM regions in the generated structures with 

those of the native structure (lAT9) is shown in the following figures and also are 

provided as PDB files with Rasmol software on CD (see appendix D). 

136 




7 Discussion 

Figure 7, J The comparison between TM 1, TM3 and TM4 (-7S2KJ/moJ) with the same TM 
in lAT9 

Figure 7.2 The between TI\1 ,'1M7 TM6 :mcl '11\15 (-752Kj1mol) with the same TM regions 
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Figure 7.t and 7.2 shows TM regions of a generated structure (-752 Kllmot). TM5 

and TM7 compare very well in terms of end on rotation but TMI and TM6 do not 

compare so well. It appears that the residues of TMI do not map on to similar helical 

structure in the predicted helix compared to the native TMI. 

TMI and TM 2 would need only minor adjustment to resemble the native structure 

and TM4 compares extremely well but TM3 is lightly different in predicted structure. 

This due to helix breaks on native in TM3 ofthe native structure, as in this application 

we ignored any breaks in TM regions. 

The comparison of TM regions in terms of distance is favourable, as well as the free 

energy being low, but further refinement would be needed to attain a perfect match 

with the native structure such as the distance between TM 2 and TM 3 although this is 

partly due to the angling ofthe helices affecting the distance. 

These results are promising in terms of predicting membrane protein structure and 

indicate the potential application for this approach in further work. 
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Figures 7.3 and 7.4 show the TM regions of the predicted structure (-817 Kllmol), 

although the similarity between the predicted structure (-817 Kllmol) and the 

experimentally determined structure is reduced (RMSD increased) but the stability of 

the new predicted structure is higher than other predicted structure. 

This indicated that distances between amino acids on adjacent helices are similar to 

the native structure, suggesting that in this predicted structure, the amino acids make 

interactions with each other as in the native structure, but the structure is not 

sufficiently similar for this to be reflected in a lower RMSD value. 

This result indicates that the interactions between helices closely depend on the 

distances and angles between TM regions, and the stability of TM protein structure 

might be disproportionately increased by virtue of the arrangement of helices in this 

template, where they are all assumed to pass straight through the membrane with 

constant angle. 
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pdb lAT9pdb 
-817-predictd 

Figure 7.5 Comparison between predicted structure and known structure. 

Figure 7.5 shows the arrangement of the 7 TM regions in the predicted structure with 

lowest free energy (-817 Kl/mol) and that of the native structure (lAT9). The 

approach produced different distances between the alpha carbon backbones of packed 

transmembrane regions in the predicted structure. This allowed the generation of a 

structure with high stability and low free energy, but the distan.ces between ™ 
regions are a poor match to those ofthe native structure. 
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This indicated that the GA method generated a viable structure with varying distances 

but comparable stability. This st:ucture is a mismatch with the native structure but its 

new features could be used in genetic engineering. 

This companson suggests that the performance of the GA technique could be 

improved even further by considering the helix tilt for each specified TM region in 

order to optimise the predicted 3D structure ofTM protein. 

.I 
i I 

I 
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i 
.1 

890-predicted pdb lAT9-pdb 

Figure 7.6 Comparison between predicted structure and known structure. 

The comparison between another predicted structure and the known structure is 

shown in the figure 7.6. This result indicated that the GA is also able to predict a new 

structure with high similarity RMSD 2.sA but relatively low stability with potential 

energy 890 Kllmol. This result suggests that the perfotn1ance of the GA tech:rique in 

TMGA system was quite impressive, but that it requires refinement in order to 

generate structures of both high structural reliability and high stability. This 

improvement could be perfonned by evaluating the interaction between all residue 

pairs in their envirolUnent for each structure in order to find more accurate structure in 

terms of TM region adjacency and end-on rotation also for residues appearing at the 

correct transmembrane helix depth on adjacent helices. 
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Figure 7.7 and 7.8 show the arrangement of TM regions ill the native 

bacteriorhodopsin structure (lAT9) and a predicted structure with energy 890 Kllmol. 

The distance between TM2 and TM3 and also TMl and TM7 are reduced compared 

with a predicted structure with energy -817 KJ/mol. The distance could have an effect 

on the interaction between amino acids on adjacent helices and cause a less stable 

structure although its similarity is increased. 

The comparison between the arrangement and orientation of TM regions in two 

predicted structures (with free energy of 890 KJ/mol and -817 Kllmol respectively) 

suggested that reliable distances between adjacent TM regions and reliable end-on 

rotation could bring about correct interaction between the residue pairs and their 

environment which leads to increased stability of predicted structures. 

As the results indicate, the TMGA system is able to solve the problem ofprediction of 

TM region proximity and orientation by application of the GA technique that is 

evidently an effective and fast approach for problems where an optimal solution must 

be found in an enormous conformational search space. 
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7.2 Improving GA Technique in this application 

The first set of experiments reported in chapter 6 show the effectiveness of GA as a 

search technique for predicting TM protein structure. The results show that in order to 

use the GA in this application some modifications are required. 

As the conformation space for membrane protein is large (Faulon et ai., 2003) this 

approach proved that with using a population of 100, it is possible to optimise the 

prediction of the 3D structure of a TM protein. Figure 6.3 shows the improved results 

obtained by using three input variables (x,z, and r) and selecting a population of 100. 

Jones et aI. (1998) suggested that small populations may find a solution quickly but 

large populations allow the search space to be sampled more thoroughly as shown in 

figure 6.4, where using a population of 50 with two input variables was shown to be 

unable to generate a structure with low energy. These results show that the selection 

of input variables in the GA technique is crucial, as well as population size, in the 

prediction of membrane protein structure. 

As shown, when using a population of 50 with three input variables the GA is able to 

generate structures with low energy but the use of a small population limits the search 

space to modify the new structure. These experiments proved that a population of 100 

for three input variables is able to successfully modify the new structures, resulting in 

predicted structures that are near to native structure. 
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In this study, the selection operator is based on the Roulette Wheel technique in order 

to invoke a random selection, as for a number slot from a roulette wheel. Fitter 

individuals of a population are represented by a higher number of slots compared to 

other individuals with lower fitness. 

The GA process has been designed to make sure that in each generation parents with 

the same energy value are not selected together and also to discard those solutions 

with higher energy value from the population. By improving the selection process, the 

chance of finding solutions with lower energy values will be increased for the next 

subsequent generation. 

The GA operators are improved in this approach in order to develop the confonnation 

space for membrane protein structure and be able to optimise the 3D structure. Three 

point mutation is implemented randomly on three different variables (x,y, and r) 

which could be from the same alpha carbon atom starting positions, the starting atom 

of the initial residue of each helix. or selected from different atoms. Bach point 

mutation was considered for one of the variables that is able to change in a fixed 

range in order to prevent generating unexpected structure. The mutation probability is 

very low to prevent convergence to a local optimum (Jones et aZ.,1998). In the TMGA 

system, 0.02 is selected for the mutation rate. 
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Khimasia et al. (1997) designed a GA for prediction of protein structure by using the 

using HP model. They found that simple genetic algorithms (SGA) are not promising 

in themselves and for improving SOA they suggested multi-points crossovers. 

In order to predict new membrane protein structures, the TMGA system has been 

designed to implement two point crossovers, with each point located on each of two 

TM regions. The crossover probability controls the rate at which solutions are 

subjected to crossover. In this approach, it is 0.8 as higher values for crossover 

probability can introduce new solutions to the population but can also be disrupted 

faster (Srinivas and Patnaik, 1994). 

Won et al. (2005) used a GA for prediction of protein secondary structure. They 

utilised crossover by choosing two parent strings at random. Each parent is 

represented as a sequence ofblock structure on HMM topology. Some of the numbers 

of each block are swapped randomly to create two children. The position of the block 

does not carry any meaning so there is no constraint imposed on which block is 

swapped. 

In this work, each parent was represented as a sequence of the alpha helical ™ 
regions and is specified by the position {x, y and z} of the atoms in a protein that is 

defined by a Protein Data Bank (PDB) file. Each position holds a specific meaning 

that allows the crossover operator to swap those positio~s of axis coordinates that 

belong to certain TM regions. 
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The evaluation function in this project is based on free energy which is calculated by 

SwissPDBViewer. Swiss-PdbViewer includes a version of the GROMOS 43Bl force 

field (Gunsteren et aI., 1996). This force field allows the evaluation ofthe energy of a 

structure as well as repairing distorted geometries through energy minimization. 

The TMGA system has been designed to cooperate with the SwissPDBViewer in 

order to calculate the energy of each predicted structure. 'This cooperation is effective 

and less time consuming in use, and allows faster generation ofresults. 
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Figure 7.9 The performance of GA after each 10 generations against average energy 
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Figure 7.9 illustrates the performance of the GA in this application. The average 

energy has been calculated for each ten generations in order to show the general 

improvement of results with successive generations using the GA technique. This 

graph indicates that the average energy is reduced gradually after 50 generations after 

which there is no significant change in the next 10 generations and this is taken as the 

termination point of the GA. 

7.3 Accuracy of the TMGA system 

The TMGA system was tested in order to compare the 1istofresidue pairs on adjacent 

helices found within a given distance, obtained for the native structure against the 

generated structures. This comparison was performed at three different distances. 

namely: sA, 8A, and loA. cOtmting the number of coincident pairs of residues found 

comparable distances apart in the predicted and native structures. 

As figure 6.9 shows, at sA. distance the per~~tage of coincident pairs of residues 

between predicted and native structures remains at a similar level throughout the 

generations. but variability between consecutive generations decreases as the run 

progresses i.e. with increased number ofgenerations, the results bt."COme less variable. 
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In general, the accuracy of predicted structures indicated the perfonnance of the GA 

after 30 generations in being able to effectively explore the search space of a 

membrane protein structure to generate structures with high similarity in which the 

average number of coincident residue pairs at close range between different helices is 

increased. 

In figure 6.10, the percentage of coincident residue pairs within a greater distance 

range is shown. By increasing the distance limit to 8A, generally the percentage 

accuracy is increased and the variation between consecutive generations is less than at 

sA. 

"i 

J 

At this distance, the comparison is perfonned for a long list obtained for the native 

structure against the generated structures and indicates higher accuracy, especially 

after 28 generations. 

The distance range of 8 Awas selected as this is close to the average distance between 

the alpha carbon backbones of tightly packed transmembrane regions in determined 

membrane protein structures. The results in the region of 20% are indicative of 

predicted structures that consist of transmembrane regions which are placed at 

feasible distances apart, as well as possessing residues clearly subjected to accurate 

end-on helical rotation and fixing ofmembrane depth. 

I , 
I , 
I 
I 
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The last comparison was performed at loA distance and this produced the largest set 

of comparable residue pairs. As figure 6.11 shows, the percentage of coincident 

residues for each new structure and the native structure are high as well as the 

accuracy of the GA. The 10 Arange is a more generous limit, based on the upper limit 

of interhelical distances between alpha carbon backbones found in determined 

membrane protein structures, and allows for all residue pairs that are found in both 

structures with comparable TM region adjacency, comparable end-on rotation and at 

comparable membrane depth. 

These results show that the GA is a promising technique for the prediction of the 3D 

structure of membrane protein with high stability and reasonable similarity and could 

obtain better accuracy in tenns of similarity by further improvement such as adding 

extra feature for each TM region in order to estimate the angles between TM regions 

as well as distances and end-on rotation. The second improvement will be considered 

the interaction between TM regions with each other and its environment in order to 

use as an evaluation function instead of calculating the free energy. 

Generally, the TMGA system proved successful in utilising an evolutionary a.pproach 

by utilising a GA in order to predict a membrane protein structure which is near to 

native structure. In this research, the effectiveness of evolutionary algorithms to 

predicting membrane protein structure is demonstrated. 
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Figure 6.12 shows the percentage of correctly predicted residue pairs for the predicted 

structure file with the lowest energy in each generation. The results indicate that there 

are certain predicted structures with less stability and high percentages of coincident 

residue pairs, and as shown in the figure, the highest percentage accuracy is associated 

with the relatively high free energy of 890 Kllmol. 

The GA proved that it is able to create these predicted structures after 27 generations 

by selecting the fittest structures with comparable TM region adjacency, comparable 

end-on rotation and at comparable membrane depth. This structure contains the 
It, 
j 

combination of its parents features that caused to be more similar to the native 

structure but possess less stability. 

This indicates the advantage of the GA in exploring the search space of the predicted 

structures and is able to terminate the process after 56 generations by selecting the 

more fit structure and eliminating lll1fit structures. 
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7.4 Summary 

A number of approaches are described in this chapter, and the outcomes suggest that a . 

GA has been successfully applied to predicting membrane protein structure for the 

first time. In this application, the GA is able to optimise the distance between helices 

as well as the rotation of each helix in order to generate solution structures with 

reasonable interhelical distances and high stability. 

j!
Comparison between newly predicted structures and the native structure indicate that 

the developed GA technique represents an efficient and fast method for prediction of 

TM protein structure. 

A number of modifications have been made to the GA method in the TMGA system 

for prediction of TM protein structure. These enhancements allow the prediction of 

new structures of reasonable similarity to native structure and of acceptable energetic 

stability. 

The performance of the GA technique could be improved even further if more 

features of each TM region are added to further refine structural predictions 

I 

I 
I 

I 
I 
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CHAPTER 8 

8 Conclusion and further work 

This chapter details the main conclusions that may be drawn from the experiments 

perfonned using the TMGA system. The future work intended to further enhance the 

design and application of the genetic algorithm for the prediction of membrane 

protein structure is discussed. 

8.1 Conclusion 

This thesis investigates a new approach for prediction of transmembrane protein 

structure by using the TMGA system. The developed TMGA system applies a 

modified genetic algoritlun technique to generating new structures that are near to 

native structure in terms of energetic stability. 

The main findings in this research is the impact of the choice of what would compose 

an individual, upon which operations and selections are made and how the solutions 

were represented as an approximate 3D template ofTM protein structure. The results 

I show that the selection of input variables in the GA technique is crucial, as well as the 

I popUlation size. 
I
j
i
J Likewise, the method of predicting the 3D structure of TM proteins by using a GA 

I 
! 
I
I.·.... 

technique to manipulate the distance between helices, and the rotation of each TM 

region, and using an energy function to evaluate each new structure is novel. 
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The wide search space was explored efficiently by means of manipulating the wide 

range of possible distances between TM helices and also the rotation of each TM 

region, since comparative results were found to change drastically for different 

distance and rotation values. 

The successful generation of feasible TM protein structures illustrates the potential of 

the GA method for solving the membrane protein structure prediction problem. This 

approach is simple, fast and efficient and is able to cooperate with other software to 
} 

reduce computational time. In addition, the generation of new TM protein structures 
! 

with new features prove the effectiveness of evolutionary approaches in this work. 

The approach has potential application to the field ofmembrane protein engineering. 

As a result of these experiments, it can be concluded that using a genetic algorithm 

method proved to be reliable and robust approach. It is evident that the power of 

genetic algorithms is greatly enhanced by automated combination with structural 

bioinfonnatics applications. 

These approaches should prove most valuable to the field of membrane protein 

structural bioinfonnatics, where fewer than 1 % ofprotein structures are known, as the 

vast majority of proteins, the structure of which have not been determined, will now 

be open to improved and evolving prediction. 'This technique can be used to predict 

the unknown membrane protein . structure based on the energetic stability and 

transmembrane region arrangement and orientation. 
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8.2 Further work 

Following the successful prediction of a TM protein structure near to native structure, 

the next step is to be to enhance the TMGA system to predict structures with 

consistently high similarity and stability. 

The most fundamental improvement to be made is to consider and manipulate the 

angles of helix tilt as in these experiments each template contains of 7 helices that are 

assumed to pass in parallel, straight through the membrane. 

The next step would be to increase the search space by adding the variable of helix 

breaks and kinks. The possibility of helix breakage and kinking in TM regions are 

ignored in the current template. In the future, these variables will be investigated for 

each helix in order to generate protein structures with higher potential accuracy. 

Additionally, the TMGA system may require modification to allow a wider evaluation 

of candidate structures, such as the incorporation of weighted scores for favoured 

structural motifs and arrangements, rather than being based solely on evaluation by 

calculation of free energy. 
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Similarly, it may be worthwhile to account for known stabilising interactions with the 

lipid environment of the membrane, rather than relying solely on the stability of 

peptide / peptide interactions. The current work is based on the determined protein 

structure of bacteriorhodopsin, which was chosen in order to evaluate the approach. 

The future application of this work will be to proteins of hitherto undetermined 3D 

structure. 

In the longer term, these approaches may find valuable application in the fields of 

protein engineering and medicine. 
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Appendix (A) 


TMGA System Screens Shot 


This section contains a number of screen -captures to demonstrate the operation ofthe 

developed'TMGA system. 

I' 

; i 
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Figure A.l TMGA system interface 

Figure A.I shows the main interface of the TMGA system. This interface includes 

system menus which contains the different operations used during the implementation 

of GA method. 
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Figure A.2 Population of predicted structures in a table from Microsoft access 

Figure A. 2 illustrates a popUlation of predicted structures in Microsoft access, Each 

row represents an arrangement of7 alpha carbon atom starting positions {x, y, z} . The 

free energy of each predicted structure is added to the table when is calculated. 
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FigureA.3 The representation of predicted structure in SwissPDBViewer 

This interface represents the predicted structure in SwissPDBViewer software that has 

been generated by TMGA system to be evaluated. 
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Figure AA Interface for calculated free energy by SwissPDBViewer for the predicted structure 

The Figure AA shows the results of the predicted structure after calculating the 

minimum free energy, 
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Figure A. 5 Interface for MaxSprout submission form 

Figure AS shows MaxSprout web site for submitting PDB file which is generated in 

TMGA system. The MaxSprout program generates the side-chain for predicted PDB 

file. 
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Figure A.6 Interace for MaxSprout results 

Figure A6 shows the interface is the result file that contains the PDB file with the 

side-chain. The TMGA system uses this result in order to evaluate it and calculate its 

free energy. 
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Appendix (B) 

Bacteriorhodopsin structure 

Structure of bacteriorhodopsin at 3.0A resolution is represented in figure Cl. These 

crystals have been analysed by electron cryo-microscopy. 

Figure B.1 Structure ofBacteriorhodopsin 
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Appendix (C) 

Predicting 3D structure of membrane protein from its 

primary sequence 

R.e. Togawa 1, J.F. Antoniw 2 and J.G.L. Mullins 3,* 

IBioinfonnatics Laboratory, Embrapa Genetic Resources and Biotechnology. Parque esta9ao Biol6gico Final W5 

norte. Caixa Postal: 02372 CEP: 70770-900 Brasflia-DF, Brazil.. 2Plant Pathogen Interactions Division, 

Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK and 3Membrane Protein Group - Swansea Clinical 

School, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, UK. 

1 Abstract 

We have developed a knowledge based ab initio method for predicting the 3D 

structure ofmembrane proteins directly from the primary sequence. Based on analysis 

of existing membrane protein structures, the software creates an association matrix 

based on the associations between the amino acids that compose the alpha helices of 

the membrane protein. 

• To whom cottespondence should be addresSed. 
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Using this matrix and a propensity scale called the "kPROT scale1f (Pilpel et a!., 1999) 

the software predicts the 3D structure of a given protein, based on the amino acid 

sequence composition ofits' transmembrane regions. 

Several programs were developed to analyse determined structures, predict 

associations between transmembrane regions, and generate low-resolution 3D 

structural prediction. The programs were integrated as a single module at the end. 

This approach gives the opportunity to evaluate each component individually, while at 

the same time, allowing fast prediction of structure from sequence using a single tooL 

The results achieved provide strong motivation to continue to improve the developed 

algorithm to obtain better structural predictions, and to this end, structural predictions 

are currently being refined using evolutionary computing approaches. 

Keywords: membrane proteins, 3D structure prediction, bioinformatics. 
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2 Introduction 

Due to the known difficulties of obtaining the 3D structures of membrane 

proteins from experimental data, many different computational methods of predicting 

the 3D structure from primary sequence have been instigated in the last decade. Many 

efficient methods are available to predict general topology from the primary sequence 

such as: DAS (Cserzo et al., 1997), HMMTOP (TusnMy & Simon, 1998), PSIPRED 

(McGuffin et al., 2000), PHDhtm (Rost et al., 1996), SOSUI (Hirokawa et al., 1998), 

TMHMM (Sonnhamnler et ai., 1998), TMPred (Hofmann & Stoffel, 1993), TopPred 

(Claros & von Heijne, 1994). These methods are used to predict the transmembrane 

(TM) regions. 

From the increasing mnnber of completed and ongoing genome projects, more 

and more sequences from different organisms are elucidated and catalogued every 

day. Using the predictive tools cited above the TM regions are easily predicted. 

Laboratory methods are also used to define TM regions and the resulting TM region 

annotations are deposited in the protein sequence repository for public scientific use. 
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Following the prediction of general topology of TM regions, prediction of their 

general positions with respect to each other in tenns of an end on configuration is the 

next problem to be solved. In solving this problem, the possible helix packing 

involved in assembly of the membrane protein 3D structure must be considered. 

Helix-helix packing plays a critical role in maintaining the tertiary structures of 

helical membrane proteins (Adami an & Liang, 2001). Studying helix-helix packing is 

essential in defining the final structure ofan a.-helical membrane protein. 

Using the association matrix derived from known 3D structures of membrane 

proteins and a propensity scale called the "kPROT scale" (Pilpel et al., 1999), an ab 

initio method for prediction of the associations between TM regions is presented here. 

This method results in a prediction of the general configuration and helix packing 

directly from the primary sequence. Also, is described the rotational method to predict 

the most likely angular position for each TM region and its 3D structure. 
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3 Materials and Methods 

Databases 

The primary sequence used as an input for the predictive tool are the Swiss-

Prot (Bairoch & Apweiler, 2000) files. The important annotations for the development 

I 
are the 'FT TRANSMEM' that contains the transmembrane regions and the 'SQ'

I 

, J that contains the protein sequence. 

PDB (Berman et al., 2000) files are used for the preparation of the association 

matrix and for the evaluation process. The important annotations are: \DFREF ' 

(Contains an equivalence between the PDB file and protein sequence databases ­

cross-reference between SwissProt and PDB files), \HELIX' (Contains an a-helix 

region defined experimentally by X-ray crystallography or NMR.) and \ ATOM' 

(Contains information about each residue in the structure in three-letter code, and 

contains the atom name, residue number, and XYZ co-ordinates.). 

The association matrix 
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For the prediction of neighbouring TM regions, the predictive tool uses a 

20x20 association matrix. This matrix was built testing all the distances between 

residues on different TM regions of the examined integral membrane proteins, based 

on the infonnation available from known 3D protein structures contained in the PDB 

databank repository. The association matrix was created by a module called 

TMDistance (see description in TMDistance algorithm section), which reads the PDB 

file entries ( atomic co-ordinates) and calculates the distance between residues located 

in different TM regions. Distances less than or equal to a distance selected by the user 
'If 
i 

one are displayed on the matrix counter, so that pairs of residues within the set limit 

Iare available for later analysis. 

For the evaluation process, a 20x20 association matrix ~as created based on 

the following membrane protein PDB files: 

..i 
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Table 1 -

PDBcode 

IAP9 

I ARt 

lE12 

lEUL 

IF88 

IFX8 

IH2S 

IH68 

poe files used to create the 20x20 association matrix 

4 

Correspondent SwissProt code 

5 Description 

Photoreceptor - structure of bacteriorhodopsin from P0294S (7) 

microcrystals grown in lipidic cubic phases. 

Complex (oxidoreductase/antibody) - structure of the paracoccus 

denitrificans two-subunit cytochrome c oxidase complexed with 

an ant11>ody fv fragment. P98002 (12), P08306 (2) 

Ion pump - halorhodopsin, a light-driven chloride pump CAB37866 (7) 

Hydrolase - crystal structure of calcium atpase with two bound Pl1719(IO) 

calcium ions. 

P02699 

Signaling protein - crystal structure ofbovine rllodopsin. (CbainA 1) 

ChainB 1) 

E. Coli glycerol facilitator (gJpf) with substrate glycerol. PI 1244 (8) 

Moleeublr basis of transmenbrane signalling by sensotY P421%(7) 

. rhodopsin ii-tnmsducer complex. 

, 
P42259 (2) 

' Photoreceptor - sensory rhodopsin ii. P421%{1) 

174 

Number of 

usedTM 

regions for 

the 

calculation 

7 

14 

1 

10 

14 

8 

9 

7 
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lIH5 

lIWG 

IIWO 

IJBO 

UG1 

IKQF 

IKZU 


Crystal structure of aquaporin-l. 

Crystal structure ofbacterial multidrug efflux transporter acrb. 

Hydrolase - crystal structure of the sr ca2+-atpase in the absence 

ofca2+. 

Photosynthesis - crystal structure of photosystem i: a 

photosynthetic - reaction center and core antenna system from 

cyanobacteria 

Signaling protein - crystal structure of sensory rhodopsin ii. 

Insights into color tuning and transducer interaction. 

Oxidoreductase - formate dehydrogenase n from e. Coli 

Light-harvesting protein - integral membrane peripheral light 

harvesting complex from rhodopseudomonas acidopbila strain. 

Appendix (C) 

P29972 (8) 8 

P31224 (12) 12 

P04191 

(Chain A 10) 20 

(Chain B 10) 

P25896 (11) 

P25897 (11) 

P25900 (1) 28 

P25901 (I) 

P20453 (2) 

P25902 (2) 

7 

P42196 (7) 

P24184 (I) 5 

P24185 (4) 

6P26789 (3) 

P26790 (3) 
.. 
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P03S0S 

Oxidoreductase - quinol-fumarate reductase with menaquinol
lLOV 

molecules. 

Transport protein!hydrolase - bacterial abc transporter involved 

in bI2 uptake. 

lL7V 

Oxidoreductase (cytochrome(c}-oxygen) - stIUcture of bovine 
IOCC 

heart cytochrome c oxidase at the fully oxidized state. 

(ChainC 3) 

(Chain 0 3) 

P0l806 12 

(ChainD3) 

(Chain P 3) 

P06609 20 

""f 

(Chain A 10) 

(ChainB 10) 

PO0396 (Chain A 12) (Chain N 12) 

PQ0404 (Chain B 2)(Cbain 0 2) 

POO41S (Chain C 7XChain P 7) 

POO423 (Chain D 1) (Chain Q1) 

P07471 (Chain G IXChain T 1) 56 

P04038 (Chain II) (Chain VI) 

P07470(Cbain 11) (Chain WI) 

PI3lS3 (Chain K 1) (Chain X 1) 

POO430 (Chain L 1) (OJain Y 1) 

PlO17S (ChainM 1) (ChainZ 1) 

,I 
" 

f 

I 
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lOKC 

Carrier protein - structure of mitochondrial adp/atp carrier in 

complex with carnoxyatractyloside 

P02722(6) 6 

lQ90 

Photosynthesis - structure of the cytochrome 

(plastohydroquinone : plastocyanin oxidoreductase) 

chlamydomonas reinhardtii. 

b6f 

from 

P23577 (Chain AI), 

QOO471 ( Chain B4), 

Q08362 (Chain G 1), 8 

P50369 (Chain L 1), 

lQLA 

lRC2 

lRHZ 

Oxidoreductase - respiratOly complex ii-like fumarate reductase 

from wolinella succinogenes. 

Structure of aquaporin z. 

Protein transport - the structure ofa protein conducting channel. 

. Photosynthesis -Cl)'staI structure of spinach major light­

harvesting .complex 

Q42496(ChainM 1) 

P17413 

(ChainC 5) 10 

(Chain F 5) 

P48838 

(Chain A 6) 12 

(Chain B 6) 

Q60175 (Chain A ll) 12 

Q57817 (ChainB 1) 

P12333 

(Chain A 3) (Chain B 3) 

(Chain C 3)(Chain D 3) 
lRWT 

rn 
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(Chain E 3) (Chain F 3) 

(Chain G 3) (Chain H 3) 

(Chain I 3) (Chain J 3) 

Transport protein - structure of the rnultidrug resistance efflux P23895 

transporter - EMRE from escherichia coli. 

(Chain A 3) (Chain B 3) 

(Chain C 3) (Chain D 3)
IS7B 

(Chain E 3) (Chain F 3) 

(Chain G 3) (Chain H 3) 

The kPROT scale: 

The kPROT scale (Pilpel et al., 1999) was used in the TMRelate_K development. The 

kPROT scale available at http://bioinformatics.weizmann.ac.iJ.lkPROTIkPROTScales 

uses the knowledge-based propensities for residue orientation in TM segments, 

showing the value for each amino acid. The kPROT value < 0 indicates that the 

residue is more prevalent in the TM segments of multiple span proteins and thus 

assigned a higher propensity to be buried in the TM bundle. On the other hand, 

residues with positive kPROT values are assigned with a higher tendency to be 

exposed to the lipid. In the table 2 is shown the general kPROT scale for each amino 

acid that was used in the development. 
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Table 2 • The used kPROT scale 

• 

A 0.OB3 M -0.3120 

c 0.2672 N -0.6757 

D -0.8658 p -0.5092 

E -0.8551 Q -0.5367 

.F -0.1126 R 0.1782 

G -0.1247 s -0.2141 

H -0.3423 T -0.0162 

I 0.1248 v 0.2281 

K 0.2451 w -0.1157 

L 0.1908 y -0.1175 
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TMDistance algorithm 

The input of the TMDistance program is the PDB file. The user can load more than 

one PDB file for the processing. 

For each PDB file, the algorithm searches for the "DBREF" tag entry. Once the tag is 

found, it searches for "SWS II string to find the appropriate Swiss-Prot accession 

number. If it is necessary the program downloads and saves the corresponding Swiss-

Prot file in the working directory. If it is necessary TMDistance converts the amino 

acid sequence numbers between PDB and Swiss-Prot files using the information 

contained in the DBREF tag (this procedure set the correct TM region based on the 

\ TRANSMEM I annotation for the PDB file). Then program reads the spatial co­

ordinates for the atom in each TM region. With each residue pair in different TM 

regions, if the distance between the two residues is less than a user-selected distance 

(3.oA, 3.sA 4.oA, 4.sA or s.oA), the relevant residue-pair is added to the internal bi­

dimensional array (matrix counter). After all the PDB fiJe(s) are read, TMDistance 

creates the 20x20 association matrix output with the average distances represented in 

the internal bi-dimensional array. 
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By developing the association matrix module, the understanding of associations and 

possible interactions between residues in different TM regions becomes clearer. It is 

possible to look for patterns of data, facilitating the statistical study of the associations 

between large and small residues (ridge/groove arrangements) like the branched chain 

amino acids (isoleucine, leucine and valine) or aromatic residues (phenylalanine, 

thryptophan, thyrosine and histidine) on one hand, and glycine on the other. Many 

studies involving the interactions between large and small residues in different TM 

regions in membrane proteins have been undertaken (Senes et a!., 2000; Russ & 

Engelman, 2000) giving a strong motivation for the new development involving 

pattems of associations. 

Using the generated association matrix and the graphics of statistical data obtained in 

the matrix it became possible to infer which amino acid is more likely to be associated 

with another. 
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3.1 TMRelate algorithm development 

The inputs for the TMRelate software are the created 20x20 association matrix 

and the membrane protein sequence in the SwissProt format. 

To calculate the association scores for each pair of TM regions, TMRelate 

considers the intra-membrane amino acid depth. For each pair of amino acids in 

different TM regions, if the designated depth values for the amino acids are less than 

1.5 A, the program will take the appropriate value from the 20x20 matrix. Then an 

accumulative score will be calculated for the predicted association between each pair 

of TM regions. The higher this score the more likely the TM regions are to be 

compatible for association. 

The algorithm uses a pennutation concept, calculating all possible scores for 

each TM region in each position. The pennutation combines the scores between pairs 

of adjacent TM regions. A 10-digit string list is used to generate the permutations that 

repre~ent the position in "end on view" of the predicted membrane protein. 
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TMRelate creates a helix wheel representation using the chosen configuration. 

For this step the algorithm simulates the rotation of each of the TM regions by 60° at 

a time, and for each rotation a score is calculated. The rotation works like an 

odometer, in which each TM region performs a complete rotation. After this rotation, 

the next TM region is rotated in turn by 60° until all the TM regions have completed 

one whole rotation. For each rotational position, the aggregate association scores for 

all the TM Regions are calculated. Again the score calculation is based on the 20x20 

association matrix. In the calculation of the score for each pair of TM regions, 2 

parameters are considered for inclusion of a matrix score toward the aggregate score. 

Firstly the depth of the 2 residues in question needs to be less than 1.5 A apart; and 

secondly the angle range between the 2 residues to be computed needs to be equal or 

less than 60°. If the 2 conditions above are satisfied, then a score for these two 

residues is added to the cumulative score. At the end of all rotations, a helix wheel 

representation ofthe arrangement with the highest score is shown (figure 2). 
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This figure shows the predicted model in the form of a helix wheel representation ~) . The yellow dot of 

each wheel represents the first residue of each TM region. The rotational orientation is anti-clockwise, 

rotating 60° each time. @) Shows the created 3D structure based on the helix wheel representation "end­

on" view. (9 Shows the lateral view of the same predicted 3D structure. 

For the creation of a 3D structure based on the helix wheel representation, the optimal 

angle obtained from the helix wheel rotation is used. Using this information an atomic 

co-ordinate for the alpha carbon of each residue is calculated. The algorithm builds 

each a-helix in the corresponding position to that illustrated in the helix wheel 

representation. A database of the average distances between TM regions for specific 

protein families is in development and will provide more accurate structural 

predictions than that generated with the current algorithm. 

184 




Appendix Appendix (C) 

A complementary development aimed at improving the quality of resulting 

predictions in terms of which TM region should be buried or facing out was made. 

This development resulted in the TMRelate_K version. This version differs in tenns of 

the indices used to determine the predicted packing of TM regions and the angular 

orientations of TM regions with respect of the other TM regions. To this end, a 

knowledge-based scale called kPROT (Pilpel, et al., 1999) was used (see materials 

and methods). This scale gives the propensities for residue orientation in 

transmembrane segments. It was derived from more than 5,000 non-redundant Swiss­

Prot membrane protein sequences. The kPROT value for each residue is defined as 

the logarithm of the ratio of its proportions in single and multiple TM spans. 

Using this scale, TMReldte_K calculates and predicts which TM regions are 

buried and which ones are facing out toward the lipid bilayer. Adding the amino acid 

score for each residue (Table 2) that composes the TM region, a final value is 

calculated for the TM region, and an overall score for each possible configuration of 

the whole protein is calculated. With the kPROT scale, the lower the score, the more 

buried the TM region is. 

For the helix wheel rotation after the optimal configuration has been obtained, 

TMRelateJ( also uses the 2OO0-association matrix. The algorithm is the same as in 

the original TMRelate that scores all possible rotations and stores the arrangements 

with the highest values. 
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TMRelate K algorithm 

To define the helix packing for the predicted membrane protein using kPROT scale, 

the algorithm identifies how many TM regions are buried (TM region that is in the 

interior of the membrane protein) and exposed (TM region that is exposed to the lipid) 

depending on the number of TM regions in the protein. For example, for the 

Bacteriorhodopsin precursor, protein with seven TM regions, the algorithm considers 

two TM regions buried and five exposed. Table 3 shows the numbers (buried andj 

j exposed) used by the algorithm. 

I 
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Variation in the overall number of buried and exposed TM regions, 


depending on the numbers of TM regions in the protein. 


To predict the helix packing the algoritlnn calculates a score using the kPROT scale 

and gives a weighting based on the number of associations for each TM region. Each 

association between TM regions contributes 60° to the extent of "buriedness". 

Looking at figure 3, the TM region 6 has one association with TM 5, and the 

algorithm considers it as 60° buried. The TM region 1 has 2 associations, and 120° 

buried and so on. 
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Figure 3 - buried angle 
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(A) An example of an end on configuration. (8) Detail for the association between TM 6 and TM 5: the buried 
angle is 60° for TM 6. (C) Detail for the association between TM 1,2 and 7: the buried angle is 1200 for TM 1. 

The following table shows the buried angle for each number ofTM regionJTM region 

associations: 

Table 4 - The buried - ---_ . - - - - - -- _.. - -- - - -­~-

Number of TM Buried angle 
Iregion(s) 

associations 

0 0° 

60 01 

2 120 0 

3 180 0 

4 240 0 

5 300° 

6 360 0 

The buried angle depending on the number 
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The angles shown in the table 4 would be used for the score calculation. The rationale 

is to use a buried angle range depending on the number of possible associations each 

TM region can have. The buried angle provides a higher weighting for TM regions 

that have more associations, leading to a higher weighted contribution from the 

kPROT aggregate scores. The buried angle is used as in the formula below. 

kPROTHelixScore := (Buried angle/360) * kPROT Score For This TM region 

j 6 Results 

I 

The "end on" model evaluation 

An evaluation ofthe accuracy of the developed piece of software has been made using 

a set of 12 (twelve) different membrane proteins with a differing number of TM 

regions, as assigned in their Swiss-Prot files. To obtain the percentage of correctly 

predicted associations, the corresponding known high-resolution 3D structures were 

used (corresponding PDB files with the best resolution) for comparison. For this 

process, an additional program called 'TMEvaluation" was created, while the 

modules TMCompare (Togawa et al., 2001) and TMDistance (unpublished) were also 

used in order to prepare the data set. 
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TMCompare was used to select the PDB files with corresponding Swiss-Prot files. It 

is important to note that for the purpose of evaluating the data set it was not only: 

necessary to match the files (PDB and Swiss-Prot), but also to find the correct 

arrangement associations between TM regions. In addition, TMCompare was used to 

visualize and analyse the TM regions in the real structure, which was essential in the 

analysis of structures like Cytochome C oxidase (PDB code lARl) with 12 TM 

regions. Analysis of such structures using a molecular rendering program like Rasmol 

(Sayle & Milner-White,1995) and CHIME (MDLI reference) is a difficult task due to 

the nature of the structure i.e., 4 different sub-units and no visual infonnation as to 

where the TM region starts and where it ends. TMCompare facilitates this analysis by 

reading the TM regions from Swiss-Prot file and applying it to those amino acids in 

the structure, selecting and showing only the TM regions. 

Using the association matrix, TMRelate was executed loading the membrane protein 

sequence in Swiss-Prot format, and the results were compared with the corresponding 

known structure. This process resulted in a percentage ofcorrect associations between 

TM regions, calculated in an automated way by TMEvaluation. 

TMEvaluation reads the output arrangement from TMRelate, counts the number of 

associations between each TM region and compares it with the correspondent native 

structure (known 3D structure), calculating the percentage of correctly predicted 

associations between TM regions. The results after running TMRelate and the 

TMRelate_Kprogram are listed in the summary shown in table 5: 
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Table 5­

Protein 

precursor (BR) 

After analysing the results from TMReZate, an average of higher than 69% of correct 

predicted associations between TM regions was observed, giving very promising 

indications for the developed piece of software. Furfuermore, the execution of the 

version of TMRelate that uses the kPROT scale (TMReZate_K) resulted in an even 

better average of 81 % correctly predicted associations. The use of the kPROT scale 

made the software more accurate in terms of predicting the correct associations 

between TM regions. 
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It predicts the buried and exposed sides of each TM region with better accuracy, 

which is fundamental to the algoritlun that identifies the most associated (normally 

the most buried) TM region, making the prediction more precise than using the 

association matrix. 

Considering the obtained results, TMRelate can be developed further before it 

becomes available. The findings from using its two different versions suggest that the 

final version has to be based on that uses the kPROT scale in order to find the 

associations between TM regions. The association matrix is useful in the predicting 

the optimum rotational arrangement i.e. angle, for each TM region. 

Assessing the DALI (http://www.ebLac.uk/dalil) (Holm & Sander, 1998) 

evaluation for the models structures of Bacteriorhodopsin refined by the genetic 

algorithm (pDB-817.pdb and PDB-40.pdb), the Z score is higher for the refined 

models. This indicates a way that the system may be improved in the near future by 

this approach. The expectation is that, after aggregating the helix tilt and helix kink 

database into the predictive algorithm, the obtained models will be even better. 
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7 Discussion 

There are two important aspects to the developed piece of software: the use of a 

knowledge-based approach, based on real information to predict the best associations 

between TM regions in order to build the 3D structure; and the strategy of testing all 

the possible arrangements and associations by permutation. 

TMRelate uses statistical information based on the associations between TM regions 

from known membrane protein structures (the created association matrix). 

Statistically, the more structures of membrane proteins that become available, the 

better the prediction will become, since the created matrix will be more popUlated 

giving better basis to the ab initio prediction. 

TMRelate_K uses another knowledge-based scale, the kPROT scale (Pilpel et al., 

1999) that is derived from more than 5000 known membrane protein sequences 

deposited in the Swiss-Prot databank (Bairoch & Apweiler, 2000). The use of this 

scale in addition to the developed algorithm provides a useful approach for identifying 

TM regions, which are buried, and those that are likely to be exposed, making the 

prediction more accurate. This algorithm is unique in terms of combining knowledge­

based approaches with statistics and lllathematics for the prediction of membrane 

protein associations and the 3D structure a-carbon backbone. 
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Furthermore, the use of a pennutation approach gives confidence in testing for 

optimum arrangements and that all TM regions have been placed in all possible 

positions for a chosen configuration. However, with this approach, there is a 

disadvantage in terms of processing time, particularly when the number of TM 

regions is higher than 12. This is due to the fact that the permutation is based on a 

factorial and one more the TM region, requires a manifold increase in the number of 

calculations needed. 

The use of the kPROT scale combined with the algorithm using the buried angle table 

(table 4) is an advantage of the program, giving a very accurate result in terms of 

prediction of the most buried TM region. For example, visual analysis of the 3D 

structure with PDB code IQLA (chain C) (Fumarate reductase cytochrome) using 

TMCompare program shows that the most buried TM region is TM 4. Running 

TMRelate_1(, it is observed that TM 4 is predicted to be the most buried (TMRelate_K 

gives 95.23% of correctly predicted associations against 80.95% using TMRelate). 

The same is observed with the PDB file lAP9 (Bacteriorhodopsin precursor (BR), 

where TM 3 is the most buried and predicted correctly by TMRelate_K (TMRelate _K 

gives 93.94% of correctly predicted associations against 65.66%). 

The helix wheel representation created by TMRelate gIves a graphical output, 

showing the rotational angle and a position for each amino acid that facilitates 

structural analysis. 
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The only similar output is found in SOSUI (Hirokawa et. at., 1998) a secondary 

structure prediction tool available on the Internet 

(http://sosui.proteome.bio.tuat.ac.jp/sosuiframeOE.html) .. 

This tool gives the predicted TM region in a helix wheel representation, but without 

any relational associations between the predicted TM segments, showing only a 

picture of the helix wheels side by side. 

The optimal rotational angle is another feature advanced in the developed piece of 

software. The method developed by Pilpel and colleagues (1999) for automatic helix 

orientation prediction using the kPROT scale (http://bioinfo.weizmann.ac.il/k:PROT), 

gives a predicted angle for each TM region. In their study, it was observed that using 

the kPROT scale to predict the angular orientation of each TM segment is better than 

hydrophobic moments (Eisenberg et ai., 1982, 1984; Rees et aI., 1989) and methods 

based on the statistics of known high-resolution structures of integral membrane 

proteins to derive lipid exposure propensities of the different residues (Cronet et at., 

I 
! 

1993; Donnelly et ai., 1993). 
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However, the kPROT system does not predict the associations between TM regions; it 

just builds the rotational angle for each TM region considering the known 

configuration like Bacteriorhodopsin and glycophorin family. By contrast, TMRelate 

uses 2 stages to obtain a full structural prediction; the optimal (highest scoring) 

configuration based on the association score between TM regions, and the optimal 

rotational angle for each TM region in relation to all other TM regions, building 3D 

structure a-carbon backbone for each TM region. 
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Appendix (D) 

PDB files and Rasmol Software 

The predicted PDB files with different free energy (-817KJ/mol, -752 Kllmol and 890 

KJ/mol) and PDB file for IAT9 with Rasmol software in order to allow the user to 

display each PDB file as the 3D structure are available on CD which has been 

attached to this thesis. There is a ReadMe file to instruct the user to open each PDB 

file in Rasmol and compare each predicted structure with Native structure (lAT9). 
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