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Abstract	
Data quality is an important aspect of an organisation’s strategies for supporting 

decision makers in reaching the best decisions possible and consequently attaining the 

organisation’s objectives. In the case of public organisations, decisions ultimately 

concern the public and hence further diligence is required to make sure that these 

decisions do, for instance, preserve economic resources, maintain public health, and 

provide national security. The decision making process requires a wealth of 

information in order to achieve efficient results. Public organisations typically acquire 

great amounts of data generated by public services. However, the vast amount of data 

stored in public organisations’ databases may be one of the main reasons for inefficient 

decisions made by public organisations. Processing vast amounts of data and 

extracting accurate information are not easy tasks. Although technology helps in this 

respect, for example, the use of decision support systems, it is not sufficient for 

improving decisions to a significant level of assurance. The research proposed using 

data mining to improve results obtained by decision support systems. However, more 

considerations are needed than the mere technological aspects. The research argues 

that a complete data quality framework is needed in order to improve data quality and 

consequently the decision making process in public organisations. A series of surveys 

conducted in seven public organisations in Abu Dhabi Emirate of the United Arab 

Emirates contributed to the design of a data quality framework. The framework 

comprises elements found necessary to attain the quality of data reaching decision 

makers. The framework comprises seven elements ranging from technical to human-

based found important to attain data quality in public organisations taking Abu Dhabi 

public organisations as the case. The interaction and integration of these elements 

contributes to the quality of data reaching decision makers and hence to the efficiency 

of decisions made by public organisations. The framework suggests that public 

organisations may need to adopt a methodological basis to support the decision 

making process. This includes more training courses and supportive bodies of the 

organisational units, such as decision support centres, information security and 

strategic management. The framework also underscores the importance of 

acknowledging human and cultural factors involved in the decision making process. 

Such factors have implications for how training and raising awareness are 

implemented to lead to effective methods of system development. 
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Chapter	1:	Introduction	

1.1. Introduction 

Retaining data is no longer a primary concern of an organisation as it is common that 

a numerous number of transactions are regularly stored in data warehouses. Only a 

few of these transactions hold real relevance to the organisation’s decision making 

process. The amounts of data stored in databases increase daily and go beyond the 

technical skills and human capacity to interpret that into valuable information. 

Database management systems have advanced at a faster rate than the techniques used 

for extracting and utilising information to be used in making decisions (Power, 2007), 

in the strategic sense of using the trend of the past endeavours to anticipate the future 

tendency (Lv & Li, 2009). Obtaining, storing and managing information in larger 

organisations are now ordinary business operations and are usually performed 

automatically by electronic data repositories (Saxena & Rajpoot, 2009). 

Decision support systems (DSSs) are one of the techniques used in the process of 

making decisions. Decision support systems are widely used in organisations around 

the world, including some public organisations, for the main aim of helping executives 

to make more accurate decisions based on advanced levels of data refined and 

presented to them. A decision support system refers to a class of computer-based 

systems that help in the process of decision making (Hardin & Chhieng, 2007). Padhy 

et al. (2012) argue that the value of strategic information systems is easily recognised 

yet efficiency and speed are not the only factors of competitiveness. The vast amounts 

of data have called for new methods to analyse and understand them. Conclusions and 

inferences from these data need special tools and techniques that are able to delve 

deeper than traditional decision support systems can. Public administrations face 

challenges of using the correct analysis of huge amounts of data. These data are used 

for producing statistical analyses and forecasts on economic, social, health and 

education issues, which are very important for government planning in aspects where 

such as development of interest rates and inflation, economic growth, education 

standards, household income, crime trends, and climate change are major inputs. The 

ability to utilise DSS in public organisations usually collides with the difficulty of 

attaining refined and quality data that such systems need. Furthermore, DSS systems 
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incur high costs to maintain and operate due to a large number of variables involved 

in the process whereby educated decisions need as many variables as can be included. 

Artificial intelligence systems such as neural networks, data miming, and fuzzy 

inference algorithms are common techniques used to extract knowledge and hence 

support decision makers. Data mining currently receives a high level of interest in 

different disciplines. This interest is based on the proven ability of data mining 

techniques to contribute to knowledge discovery and consequently make better use of 

the stored data (Han et al., 2006). However, a significant amount of the organisation’s 

information may be in a textual format described in natural languages or does not have 

a structure like the one present in data tables and structured relational databases. This 

type of information, found mainly in the form of paper-based and electronic 

documents and emails, particularly in public organisations, cannot be used with 

traditional data mining tools, and thus minimises their potentials use with data mining 

tools. It is common that data miners prepare the data for mining. This operation, called 

pre-processing, is complex and may take a long time to complete, depending on the 

size of the project, and requires a significant part of the organisational resources. It is 

usually performed only by large enterprises (Calderon et al., 2003). Only a few 

examples of using data mining to support management decisions are found in the 

literature. Mladenic et al. (2003) maintain that until now there has been no systematic 

attempt to integrate data mining in the decision support process. Reasons behind that 

are many but mainly include the nature of data mining processes that combine 

computer science and statistics, which create some confusion about what 

implementation aspects may be suitable for managerial decisions. 

Abu Dhabi Emirate is undergoing a complete overhaul of public organisational 

systems. The overhaul aims at bringing together a range of processes, including the 

human side as well as software and hardware deployment, in order to improve the 

results and quality of the undertaken decisions. For that, the Emirate has already 

established a quality assessment and control department. However, results have not 

been as expected. 

Seven public organisations in Abu Dhabi Emirate were chosen as the study’s focus for 

the aim of providing a data quality framework for the Abu Dhabi’s public sector. The 

study comprised interviews conducted with senior managers at the organisations in 

Abu Dhabi Emirate. The organisations are: the Abu Dhabi Police Organisation 
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(ADPO), Al Ain Hospital, the Department of Economic Development of Abu Dhabi, 

the General Authority of Youth and Sports Welfare, Zayed Foundation, Tawam 

Hospital, and the Department of Municipal Affairs. Two senior managers from each 

organisation were interviewed. Decision making of these organisations is supported 

by quantitative and qualitative quality data sent by different departments and 

organisational bodies countrywide to support decision making. The decision process 

is a little complicated and comprises several factors. The organisations aim to realise 

the full and potential value of the data that they acquire. Hence, challenges associated 

with data formats, content, validity and reliability need to be addressed. Moreover, 

there is a social link too, which is an important aspect to consider regarding the special 

attributes of Arab culture, for example collectivism and high-power distance. Training 

and awareness are also some aspects of development. The choice of the organisations 

was based on several considerations but most importantly the involvement of these 

organisations in different federal bodies of the public sector in the country, such as 

law enforcement, traffic regulations, the healthcare sector, and civil defence, among 

others. Furthermore, public organisations in Abu Dhabi undergo continuous 

development and innovation to pursue best practices in digital information 

management. Therefore, the suggested framework may serve public organisations and 

agencies at different levels, including government bodies, hospitals, police forces, and 

others. 

1.2. Problem Definition 

Strategic decision making in organisations is a complex process that has many aspects 

and involves many variables. In the case of public organisations, the decision making 

process may be even more complex due to the bureaucratic and non-profit nature of 

these organisations. The complexity of the process often results in inefficient 

outcomes in terms of the decisions taken by decision makers in public organisations. 

Inefficient decisions in public organisations may lead to economic loss and social 

deficiencies, and may even be disastrous. Generally speaking, inefficient strategic 

decisions of public organisations result in waste of public resources and squandering. 

The decision making process requires a wealth of information in order to generate 

efficient results. In the same respect, public organisations typically acquire great 

amounts of data generated by public services. However, the vast amounts of data 
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stored in public organisations’ databases may be one of the main reasons for inefficient 

decisions made by public organisations. Processing vast amounts of data and 

extracting accurate information is not an easy task. Although technology helps in this 

respect, it is not sufficient for improving decisions to a significant level of assurance, 

as many experiences have shown. Accordingly, these organisations need “good” 

information to make good decisions. The goodness of the information is controversial 

and is subject to many, subjective and objective, considerations. Generally speaking, 

there are certain measures that can be adopted to assess the quality of the acquired 

information. The loose nature of definitions of standards and measures for the quality 

of information (or data), as well as the fact that most data quality measures are devised 

on an ad hoc basis (Pipino et al., 2002), renders those measures ever more individually 

determined. For example, data accuracy, reliability, timeliness, completeness and 

relevance, among others, are common dimensions in many considerations for data 

quality (Pipino et al., 2002). 

1.3. Aim and Objectives 

The research attempts to understand data quality issues in public organisations in Abu 

Dhabi Emirate and accordingly suggest appropriate ways for overcoming these issues 

up to improving data quality used for strategic decisions of these organisations.  

For the above aim, a framework that incorporates information systems, data quality 

standards, human resources and other elements deemed necessary is proposed.  

Using the framework, data that are highly utilised will eventually improve quality. A 

data quality framework will achieve consistent direction towards optimal decision 

making in an organisation. The improved data quality will then ensure that the 

organisation is more able to make informed and accurate decisions on policies and 

strategies. 

The study will also provide special insights into data mining techniques as part of the 

framework solution to data quality issues. This includes investigating such techniques 

suitable for pre-processing data and hence reducing costs and improving data quality. 

The objectives to be attained are the following: 

 Indicate the areas of improvement for a better decision making process, with 

prioritisation decision tools; 
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 Improve the relationship between data providers and decision makers of and 

closely monitor them; 

 Attain awareness of a data quality culture throughout the organisation; 

 Educate and support data providers; 

 Improve the understanding of the processes of communicating information; 

 Set data quality requirements for different departments; 

 Provide best practice guidelines; 

 Devise a feedback system aimed at improving data quality and rectifying data 

quality errors. 

The aim of the research can be broken down into the following questions that the study 

attempts to answer: 

1. Is data quality an issue in public organisations in general and in Abu Dhabi’s 

public organisations in particular? How is this issue manifested? 

2. What are the main problems facing improving data quality in public 

organisations? 

3. How can data quality contribute to better decision making? 

4. Are there specific methods to be followed for improving data quality in Abu 

Dhabi’s public organisations? If so, what are these methods? How can these 

methods assure better data quality? 

1.4. Thesis Structure 

The thesis is divided into nine chapters: 

Chapter 1: Introduction 

This chapter provides an introductory overview of the thesis, which includes an 

introduction and background, motivation, problem definition, aim and objectives, and 

the research question.  

Chapter 2: Literature Review 

The literature review explores the main themes of the research aim and objectives, 

namely, data quality, information systems, decision support systems and data mining, 

with a main focus on public organisations as opposed to private sector organisations. 

The chapter attempts to provide definitions as well as other relevant details such as 
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uses and applications of the main concepts involved. The review helps acquire 

knowledge of the main themes of the thesis, which is used in later chapters. 

Chapter 3: Methodology 

This chapter describes the research methods used for collecting data used for devising 

the data quality framework for Abu Dhabi public organisations. It provides an insight 

into the choice of the research strategy and the advantages of using it over other ones. 

The chapter highlights the importance of the choice of the adopted research and 

provides details of how it was conducted. 

Chapter 4: Data Mining for Data Quality 

This chapter describes some of the main state-of-the-art data mining techniques and 

their possible uses for knowledge extraction and data quality improvement. The 

chapter also highlights the uses of data mining by public sector organisations in some 

countries. 

Chapter 5: Data Mining based Experiments for Data Quality: Using Classifiers to 

Predict Missing Data Values 

This chapter provides an implementation of data mining methods, namely 

classification, on datasets provided by one of the case study organisations, Abu Dhabi 

Police. The aim is to use classification to predict missing data values in the datasets. 

The experiments show the various success rates attained by using different classifiers. 

Chapter 6: Integration of Decision Support Systems and Data Mining for Improving 

Data Quality  

In this chapter, a data mining decision support integrated (DM-DS) system is 

suggested to improve the performance of DSSs by feeding them quality data. The 

chapter provides an insight into some DM-DS integrated systems found in the 

literature and uses the results of the investigation as a basis for the proposed system. 

Chapter 7: Findings 

This chapter details the findings obtained from the interviews conducted with senior 

managers at seven public organisations in Abu Dhabi Emirate. 

Chapter 8: Discussion 
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This chapter provides a discussion of the findings obtained from the interviews. The 

outcome is a framework aiming at improving data quality for Abu Dhabi public 

organisations. The proposed framework is evaluated and compared with other existing 

data quality frameworks. 

Chapter 9: Conclusion 

This chapter provides a conclusion of the work conducted. It provides details about 

how the aim and objectives were satisfied by the completion of the work and highlights 

the limitations and aspects of future work. It has an allocated section on the work’s 

contribution to knowledge. 
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Chapter	2:	Literature	Review	

2.1. Introduction 

This chapter explores the main themes of the research aim and objectives, namely: 

data quality, information systems, decision support systems and data mining, with a 

main focus of public organisations as opposed to private sector organisations. Data 

quality is a measure used by an organisation of the extent to which the data are 

consistent, comprehensible and relevant to particular situations. Modern information 

systems are complex systems that include several elements other than the data and the 

processing and storing machine. This includes the human element, the organisational 

structure, and the classification criteria of the stored information, among others 

(O’Brien & Marakas, 2010). Decision support systems are computer-based 

information systems designed to aid organisations regarding their decision-making 

activities and are usually used in the mid and upper levels of corporations to aid in 

management functions and planning (March & Hevner, 2007). Data mining currently 

receives a high level of interest in different disciplines. This interest is based on the 

proven ability of data mining techniques to contribute to knowledge discovery and 

consequently make better use of the stored data (Han et al., 2006). Therefore, those 

four concepts are of paramount importance to the research and comprise the core 

means of managing and improving data. Mainly, the chapter attempts to provide 

definitions for the main concepts involved, as well as other relevant details such as 

uses and applications. In essence, the chapter provides aspects of uses in a public 

sector setting, mainly in Abu Dhabi Emirate. The review helps acquire knowledge of 

the main themes of the thesis, which will be used in later chapters to experiment with 

data mining techniques on datasets provided by case study organisations and to 

suggest optimisation of decision support systems by data mining integration. 

2.2. Data Quality: Issues, Processes and Importance 

This section introduces the concept of data quality and discusses several aspects which 

relate to the concept. A number of issues and problems that affect the quality of data 

are discussed. Moreover, different ways in which the issues related to data quality as 

identified in the discussion can be resolved are presented. Particular emphasis is on 
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how solving data-associated problems can help improve the overall quality of data. 

The relevant processes, tools and technologies used to improve the quality of data are 

presented. Lastly, the various ways in which quality data is important to the public 

sector are discussed. The knowledge gained from this section will help understanding 

of the concept of data quality and consequently, suggest methods of overcoming and 

anticipating data quality issues. 

2.2.1. Data quality: inherent characteristics 

Generally speaking, the quality of data that is used by an organisation can be 

understood in terms of the extent to which the data are consistent, comprehensible and 

relevant to particular situations (Singh & Singh, 2010). The extent to which data is of 

quality with regard to particular situations depends on the particular organisation that 

is using the data. For example, educational institutions have different requirements for 

data as compared to organisations operating in other sectors. It is only when data 

adheres to these needs that it can be said to be of high quality. Further, an organisation 

that uses high quality data stands to benefit a lot in terms of the quality of decisions 

made and their overall outcomes (Rhind, n.d.). This implies that the issue of data 

quality is of great importance to organisations. 

2.2.1.1. Accuracy 

There are several issues that are inherent to data quality. The first one is accuracy. For 

data to be of high quality, it must represent the actual values that it stands for (Watson 

et al., 2006). This implies that since data is supposed to represent actual reality, it must 

not fail to do so. There are several ways in which data may fail to be accurate, thus 

losing its overall quality. For example, when data lacks links that allow two or more 

separate systems to access and edit it, it usually fails to reflect reality (Watson et al., 

2006). Furthermore, issues of accuracy of data may arise as a result of large-scale 

errors in the data itself. The result of this is that the overall quality of the data is 

compromised because of lack of accuracy in individual values. 

2.2.1.2. Completeness 

The second issue related to quality of data is its completeness. Generally, 

completeness of data can be understood in terms of whether or not the data represents 

all the available information and covers it. In order for data to be termed as complete, 

all the values must be available and should be in a usable state (Singh & Singh, 2010). 
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The importance of completeness in data cannot be overemphasised. According to 

Chapman (2005), organisations can guarantee the quality of their data by prioritising 

the use of small but complete sets of data over large amounts of data that are not 

complete. Therefore, completeness is an important aspect of data quality. 

2.2.1.3. Consistency 

The third aspect of data quality is consistency. For data to be of high quality, it has to 

be completely consistent. This means that all values that are similar should relate to 

the same kind of information. There are two types of consistency of data: structural 

and semantic (Chapman, 2005). For structural consistency, the entities, attributes and 

types used in the presentation of data should have a uniform format. This is usually 

achieved by ensuring that the database is well-designed and has good attributes 

throughout. On the other hand, data that is said to be semantically consistent is 

presented in such a manner that it is clear and completely unambiguous (Chapman, 

2005). 

2.2.1.4. Validity 

The fourth aspect of quality of data is validity. Typically, data should be correct and 

completely reasonable for it to be regarded as of quality (Singh & Singh, 2010). This 

suggests that the data collected, processed and stored must be able to support the 

analysis that it is meant to facilitate. 

2.2.1.5. Timeliness 

Another issue that is inherent in data quality is the timeliness of the data. Generally, 

data that is of high quality is able to capture the actual and constant changes that 

happen in the real world. This is applicable to different scenarios. For instance, Watson 

et al. (2006) point out that flexibility of data used within the context of a learning 

institution should reflect the rapid changes that take place in the day-to-day operations 

within such an institution. Chapman (2005) argues that timeliness is required even in 

collecting and processing data about scientific phenomena. Therefore, the level to 

which data enjoys timeliness determines its overall quality.  

The issues inherent in data quality can be illustrated as shown in Figure 1.  



24 

 

Figure 1: Issues inherent in data quality 

2.2.2. Potential solutions to data quality issues 

Several solutions have been recommended to tackle the issues of accuracy, 

completeness, consistency, validity and timeliness of data as detailed above. This is 

because the different types of errors that arise from these issues compromise the 

overall quality of the data. It is therefore necessary for organisations and other 

stakeholders to solve these issues as a way of avoiding the consequences of using data 

that is of poor quality. 

First of all, it is important to note that solutions to the issues of data quality are meant 

to be applied to the entire process that data is subjected to between its reception and 

final use. This is due to the point that errors in data can occur at any of the stages of 

the data handling process, including reception, entry, integration, maintenance and 

extraction (Singh & Singh, 2010).Theoretically, organisations seek to eliminate these 

issues by ensuring that the correct processes and procedures are used during all stages 

of the data management process. The data management process that is commonly used 

by organisations is represented in Figure 2.  
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Figure 2: The data management process used by organisations 

In addition to this, there are other specific methods that have been developed to correct 

different forms of error in data. Although all these methods fall under the data 

cleansing process, the generic data handling approach, the methods and the tools that 

they employ to seek to address specific issues. For instance, Cong et al. (2007) 

developed a complicated model for solving the problems of accuracy and consistency 

in data. In this model, it is observed that since the problems of inconsistencies and 

inaccuracy in data result from failure to follow the right procedures in preparing the 

data, the problems can be resolved by three primary methods: repairing individual 

values in the dataset, use of incremental methods on the values and ensuring that the 

repair process is accurately done (Cuong et al., 2007). Such an approach ensures that 

the data cleansing process takes matters of consistency and accuracy into 

consideration. 

According to Rahm and Do (2000), in order for the data cleansing process to be 

effective in removing the errors that arise from issues of consistency, accuracy and 

others, the process must take into consideration several requirements. To begin with, 

it is stated that the cleansing process should be able to detect all manner of errors in 

individuals and integrated sources (Rahm & Do, 2000). This is necessary for all the 

errors to be removed from the data. Secondly, the process should be performed 

together with other specific operations that are meant to improve the overall quality of 

the data. This denotes that data cleansing works best when it is performed in 

conjunction with other procedures that are meant to reduce the level of errors in data.  
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One of the other procedures that should be used with data cleansing is data validation. 

Through data validation procedures, potential errors that may not be detected by the 

data cleansing procedures are pointed out, analysed and resolved. The importance of 

this procedure is that it is completely dependent on how well the data cleansing process 

is carried out. Therefore, by ensuring that data cleansing is carried out in conjunction 

with data validation, all the different types of error that have been identified can be 

resolved. This in turn ensures that the data that is stored and utilised is of the highest 

possible quality. 

2.2.3. Relevant processes and the latest tools and technologies 

There are several processes that are used to ensure that data is of high quality. 

Moreover, there are several tools and technologies that are usually used to ensure that 

data is of the highest quality possible. All the processes, tools and technologies that 

are used are usually based on basic data handling process. This essentially covers all 

the steps that are involved from accessing data to storing it in a form that can be easily 

used by an organisation. According to Rahm and Do (2000), such a process is usually 

divided into three main phases: operational sources of the data, the extraction, 

transformation and loading phase and the last phase is the storage of the data. In all 

these phases, complex processes of extraction, translation, matching and integration 

are applied to transform the data to a form that is ready for use.  

In order to enhance this process and improve the overall quality of the data that is 

obtained from it, organisations use the Total Quality Data Management (TQDM) 

approach. In this approach, a four-stage cycle involving defining, measuring, 

analysing and improving data is applied to the entire data handling process for 

continuous improvement (Wang et al., 2001). With regard to tools and technologies, 

Rahm and Do (2000) identify three areas in data quality for which special tools have 

been developed, as follows: data analysis, cleansing and the phase of extraction, 

transformation and loading. Such tools include Copy Manager, Quality Management 

(QM) Software, QuickAddress and Integrity, among others. The following is a list of 

data management tools that can be used by organisations.  

a) Copy Manager 

b) QM Software 

c) QuickAddress  
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d) Trillium Software  

e) Integrity  

f) Data QUALITY Tool 

g) Dataflux. 

2.2.4. Importance of data quality in the public sector 

There are several ways in which data quality is of high importance in the public sector. 

Generally speaking, quality data increases the productivity of organisations. 

Improvement of the level of productivity of an organisation as a result of availability 

of high quality data occurs in several ways and across different sectors of the economy. 

For example, availability of data of good quality can be used to help organisations 

reallocate resources appropriately (Yiu, 2012). This leads to attention being given to 

areas of great concern in the operations of the organisation.  

Secondly, data that is of good quality can be used to enhance the productivity of 

organisations by being used to make improvements in the way the organisations offer 

their services (Bujak et al., 2012). For example, organisations operating in the public 

health sector can considerably improve their service delivery by relying on more 

accurate and complete data about the health condition of their patients. It is by relying 

on continuous improvements in service delivery, which in turn is dependent on the use 

of quality data, that organisations are able to increase their productivity to the general 

public. The end result is that the performance of the organisation is improved over 

time and the benefits arising from increased productivity are passed down to the 

general public. 

The most obvious way in which data quality is important to the public sector is with 

regard to the role that such data plays in the decision-making processes of 

organisations and the impact of this to the general public. Usually, the decision-

making process plays a very important role in the way organisations carry out their 

responsibilities. For example, organisations rely on well-developed predictions to plan 

for how they can respond to possible future scenarios (Yiu, 2012). By forecasting their 

future operations, organisations are able to respond to changes in policy quite 

effectively. In order for organisations to make such decisions, it is important that they 

have access to high quality data. Therefore, quality data is important for organisations 
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in the public sector in that it helps them make decisions about their future courses of 

action. This is important because by doing so, organisations are able to plan on how 

to provide high quality services to the public (Health Information and Quality 

Authority HIQA, 2011). This is applicable to different public sector organisations in 

that they can use quality data to predict trends in the market and respond by instituting 

the most appropriate risk management strategies. 

Another way in which high quality data is important to the public sector relates to the 

benefits that members of the public and organisations can derive from the process of 

sharing information on the operations of organisations that operate in the sector. In 

general, the public is in support of the practice of organisations sharing important data 

on how they operate (Shakespeare, 2012). For this process to be successful, 

organisations need to share with the general public data that is of the highest possible 

quality. When this happens, individuals are able to understand the way organisations 

conduct their operations. This enhances the accountability of organisations in the 

public sector. This is helpful not only to individuals but also to different organisations. 

For example, when one is accessing specific documents, the input of several public 

organisations is required at different stages of the process. When such organisations 

share high quality data among themselves and the general public, this makes the 

process much easier and more transparent.  

According to SOA & LL Global (2011), poor quality data usually leads to undesirable 

consequences for organisations, which include the risk of losing profitability, the 

manner in which the organisation manages its capital and its overall rating by the 

public. When applied to the public sector, it can be seen that organisations require high 

quality data as a way of avoiding the consequences of using data that is of poor quality. 

For example, an organisation that fails to use accurate data to present its performance 

to the public risks losing its overall rating and profitability over the long-term. 

Data quality is important in the public sector because it helps the public understand 

the way organisations conduct their operations. Further, by using high quality data, 

organisations are able to reallocate their resources and make general improvements to 

the way they conduct their operations. In order to ensure that they have and use high 

quality data, organisations apply the TQDM approach to the data handling process. 

Data quality in public organisations will be investigated later in this chapter, and 
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primary data from seven organisations in Abu Dhabi Emirate are explored in later 

chapters. 

2.3. Information Systems 

This section provides insights into information systems, in particular their applications 

in the public sector. In the general sense, an information system is a systematic 

approach followed to manage, sort, organise, retrieve, access, and modify data or 

information stored in one central place or several places connected in a certain manner. 

This definition may embed any type of information management system, including 

manual and legacy systems. However, modern information systems are based on 

computer processing of information which is stored mainly in digital formats. 

The rapid development of information systems is mainly based on the rapid growth of 

information generation and communication techniques. Modern technology has 

allowed not only better ways of generating and appreciating information, but also 

methods of efficient communication of this information. Information and 

Communication Technologies (ICT) offer a multitude of ways to manipulate and 

communicate information among users and across different systems. Technology has 

a key role in modern information systems. Therefore, continuous and rapid changes 

and updates to these systems occur based on the rapid development of the underlying 

technologies (O’Brien & Marakas, 2010). 

Modern forms of information systems have become a necessity for organisations in 

different fields due to their abilities to manage large amounts of information in 

organisations, nowadays. Public organisations are one type of organisation that usually 

acquire vast amounts of data. Management of these amounts may pose a challenge to 

these organisations given the sensitivity of the information they hold, as well as the 

choice of efficient information management systems. Furthermore, information 

systems can be very involved and complicated, and may require a significant amount 

of skill and knowledge. The vast amount of data handled by information systems may 

be significantly benefited from, given the right choice of tools. 
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2.3.1. Development of information systems (IS) 

This section provides an overview of the development of information systems as they 

are currently utilised. The study focuses on modern views of information systems 

rather that involving legacy concepts.  

2.3.1.1. History of information systems 

The history of information systems can be traced with the history of computer science. 

The four major trends are outlined below (Lucas & Henry, 1994): 

(i) the use of information processing technology as a part of corporate strategy; 

(ii) technology as a pervasive part of the work environment; 

(iii) the use of technology to transform the organisation; and 

(iv) the use of personal computers as managerial workstations in the development 
of Information Technology. 

The historical evolvement of information systems went through major changes up to 

their current state. Some of the major historical focuses of the development of 

Information Systems (IS) are as follows (O’Brien & Marakas, 2010). 

2.3.1.1.1. Data Processing: 1950s - 1960s 

Between the 1950s and 1960s, IS were used for processing electronic data, including 

a range of business transaction processing, digital record keeping, and storing 

accounting data in a classical way.  

2.3.1.1.2. Management Reporting: 1960s - 1970s 

Managers started to employ IS to support their decision-making processes in the 1960s 

to 1970s. The period is also known as the era of Management Information Systems 

(MIS). In this period, IS usually produced various business reports – financial reports 

and information about products and services, which assisted managers in making 

strategic decisions. 

2.3.1.1.3. Decision Support: 1970s - 1980s 

IS started to work as a decision support system in the 1970s to 1980s. In this period, 

information was used to assist managers through interactive management support of 

the managerial decision-making process.  
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2.3.1.1.4. Strategic and End-User Support: 1980s - 1990s 

From the 1980s to the 1990s, IS took a new shape and went through a profound 

development as end-user computing systems, executive information systems (EIS), 

expert systems, and strategic information systems. In this period, end-user computing 

systems facilitated direct computing support for end-user productivity and work group 

collaboration. Executive information systems provided the important documents for 

different groups of people in an organisation to assist in their decision-making 

processes. Expert systems provided the knowledge-based expert instruction for end-

users. Strategic information systems provided knowledge and information about the 

products and services of rivals to help in making strategic decisions to gain 

competitive advantages.  

2.3.1.1.5. Electronic Business and Commerce: 1990s - 2000s 

There was a phenomenal growth of Internet-based e-business and e-commerce with 

the advancement of IS between the 1990s and 2000s. With the advantages of IT and 

IS, there was an emergence of the Internet, intranets, extranets and other networks in 

this period.  

2.3.1.1.6. Enterprise Resource Planning and Business Intelligence: 2000s - 
2010s 

Information Systems became more dynamic and were used for enterprise resource 

planning (ERP), including enterprise-wide common-interface applications, data 

mining and data visualisation, customer relationship management and supply chain 

management.  

2.3.1.2. Types of information system 

Information systems can be categorised on the basis of purpose dimension and scope 

dimension (Gordon & Gordon, 2004). To perform in the purpose dimension, IS should 

have the elements of Automation Systems (AS), Transaction Processing Systems 

(TPS), Management Support Systems (MSS), Decision Support Systems (DSS), 

Groupware, and Executive Information Systems (EIS). To perform IS in the scope 

dimension, the information systems should hold the attributes of serving among 

individuals, be departmental/functional, allow enterprise, and act as inter-

organisational systems. There are different types of Information Systems that are used 

by modern organisations (Rainer & Cegielski, 2013). Some of the IS are Transaction 

Processing Systems (TPS), Management Information Systems (MIS), and Enterprise 
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Resource Planning (ERP) systems, Customer Relationship Management (CRM) 

systems, and Supply Chain Management (SCM) systems. IS may be classified into 

two different categories – operations support systems (OSS) and management 

information systems (MIS) (O’Brien & Marakas, 2010).  

2.3.1.2.1. Operations Support Systems 

Information systems have always processed data produced by, and practised in, 

business operations. Operations support systems generate different types of 

information on products and services to use internally and externally, although the 

information is not focused on a particular group of people (for example, managers) in 

an organisation. Operations systems are used “to process business transactions, 

control industrial processes, support enterprise communications and collaborations, 

and update corporate databases efficiently” (O’Brien & Marakas, 2010). A brief 

discussion of the above process follows. 

2.3.1.2.2. Transactional Processing Systems 

Rainer and Cegielski (2013) and O’Brien and Marakas (2010) define Transactional 

Processing Systems as “inputs for functional area information systems and business 

intelligence systems, as well as being used for business operations such as customer 

relationship management, knowledge management, and e-commerce”. For instance, 

Point of Sale (POS) is a prime example of a transactional process system that is used 

in various retail stores.  

2.3.1.2.3. Process Control Systems 

O’Brien and Marakas (2010), Jessup and Valacich (2003), and Rainer and Cegielski 

(2013) assert that process control systems are operations support systems that are used 

for monitoring and controlling industrial processes. 

2.3.1.2.4. Enterprise Collaboration Systems 

Today’s organisations use enterprise collaboration systems to assist their teams and 

workgroups, and for communication within and outside of the organisation (O’Brien 

& Marakas, 2010). Email, chat rooms and video conferencing are some of the 

examples of enterprise collaboration systems that are used by modern organisations. 
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2.3.1.2.5. Management Support Systems 

O’Brien and Marakas (2010, p.14) stated that “when information system applications 

focus on providing information and support for effective decision making by 

managers, they are called management support systems”. A manager cannot perform 

all tasks independently. Therefore, different information and support systems are 

needed for making decisions within an organisational framework. Categorised 

management support systems include (1) management information systems, (2) 

information systems for supporting decisions, and (3) information systems for 

executives. A brief explanation of the above management support systems are 

discussed as follows. 

2.3.1.2.6. Management Information Systems 

Management Information Systems (MIS) are used for providing information to the 

managers whilst making strategic decisions for the business. Some of the MIS are used 

for sales analysis, analysing performance of the production, and cost trend reporting 

systems.  

2.3.1.2.7. Decision Support Systems 

Decision support systems (DSS) are designed to deliver interactive ad hoc support for 

managers and other business professionals. DSS is used for setting a competitive price 

for products and services, cost-benefit analysis and analysing risks in business.  

2.3.1.2.8. Executive Information Systems 

Executive information systems (EIS) deliver important data and information from MIS 

and DSS and other sources and blend them together to assist executives in making 

decisions. Some of the emerging executive information systems are systems for 

analysing business performance, tracking different strategies and activities of 

competitors, and planning economic growth and development of the business, which 

can assist management in making strategic business decisions.  

2.3.1.2.9. Information Systems for Strategy Making 

Technology has become the de facto strategic tool in the knowledge economy 

(Dwivedi et al., 2012). As a business asset, technology has captured its position in the 

area of business makers and has become a strategic tool as no business can survive 

without technology in this age of information technology. The impacts of IT on any 

organisation, regardless of being public or private, are enormous and no other 
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organisation can escape from its power, especially in the age of IT and globalisation 

(Dwivedi et al., 2012; Pearlson & Saunders, 2009; Clarke, 2001; Remenyi, 1991). 

Managers or decision-makers in private or public organisations must take into account 

the impacts of technological investments in terms of changes in organisational culture, 

work-life balance and employee resistance towards changes in management, besides 

business benefits and return on investment (ROI) from the adoption of IT (Rockart & 

Scott, 1984). In addition, to meet changes and challenges of IT, managers must 

consider how information technology shapes their organisations internally and 

externally with a view to providing competitive advantages (Dwivedi et al. 2012). 

Managers and decision-makers need to address different resource constraints, 

including money, to prioritise investment decisions and to assure stakeholders that 

their decision to adopt IT is to achieve the long-term strategic objectives of the 

business (Collin, 2008). IT is more than just a computer or combination of hardware 

and software as some may assume; it is in fact an effective design and use of 

information systems that the organisation will have to apply in order to give customers 

value for money and deliver value to all stakeholders (McLean & Turban, 2005).  

Using Porter’s model for analysis, the strategic impact of IT can reveal three generic 

tiers (Haag & Cummings, 2013). The three tiers for withstanding the competition in 

any type of organisation are (i) overall cost leadership, (ii) differentiation, and (iii) 

focus (Figure 3). 

 

Figure 3: Porter’s model of generic strategies applied to IT [Source: Haag and Cummings, 2013, 
p.23] 
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Porter defines overall cost leadership as offering the same or better quality products 

or services at lower prices than any of the competitors is able to offer. Differentiation 

is clarified as a business proposition or service that has a unique quality in the market 

place. Focus is predefined by Porter as a strategy which usually concentrates on both 

products and services to (i) a targeted business or businesses or individual or group of 

people, (ii) within a segment of product line, and (iii) to a particular domicile (Haag 

& Cummings, 2013).  

There are three fundamental challenges posed by information technology in 

organisations. Firstly, with the consistent innovation in technology, business models 

are bound to be reshaped; secondly, information technology has increased the 

demands of stakeholders along with customers; finally, adoption of technology 

provides a competitive edge in any business (Dwivedi et al., 2012). One of the prime 

concepts that have brought enormous changes to business through IT is “providing 

value of stakeholders such as customers, investors, employees, supplier and 

environments” (Porter, 2001). The five forces in an IS strategy based on Porter’s five 

forces model and are as follows (Dwivedi et al., 2012):  

1. IT and Buying Power 

2. IT and Entry Barriers 

3. IT and Threats of Substitutes  

4. IT and Industry Rivalry 

5. IT and Selling Power. 

The alignment of business strategies has to be coherent with the IS strategy to meet 

the changes and challenges of the IT. The rationale behind the alignment of corporate 

strategy and IS strategy is that today’s business technology cannot be viewed as being 

different from business (Clarke, 2011). By taking into account the ultimate influence 

of the technology in business, a strategic model that includes all the elements of 

corporate and information systems strategy may be as follows (Clarke, 2011) (Figure 

4).  
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Figure 4: Extended Strategic Alignment Model [Source: Clarke (2001), p.92] 

It is mainly information that drives the process, whilst central to that process is the 

organisation’s corporate strategy, together with the IS map. Information needs are met 

through the business domain and IS domain interacting to support the operations of an 

organisation. Functional focus is an important aspect to consider whilst developing the 

strategy. Functional focus is fundamentally based on the maximising of resources that 

are available to the organisation (Hofer & Schendel, 1978).  

2.3.2. Information systems in the public sector 

In a research study conducted by Heeks (2000), it was shown that information has 

different meanings to different governments of different countries. For example, the 

U.S. government believes that general information should be made public because 

information is collected from everyone and they should have free access to that 

information. However, the European Commission (EC) (2000) has a mixed view on 

information systems and outlines an electronic government model to share the 

information within a transaction service. In further clarification of transaction service, 

the EC (2000) states that, “transaction services, such as electronic forms, are 

perceived as the future of electronic government”. The notion of transactional services 

attempts to help the state’s citizens to submit electronic documents in the form of 

communication with the public authority to obtain the appropriate service. The data 
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received from the citizen is then transmitted to the public authority into the information 

system followed by the business rules.  

 

Figure 5 depicts the method of transactional services in e-governance and how this 

permits users to submit their documents electronically, which fulfils the desire of the 

service provider while customers gain the most satisfactory service from the public 

authority.  

 

Figure 5: Full Processing Cycle for Transaction Services [Source: Vassilakis et al. (2004), p.50] 

Information systems are not mature in the public sector, however. Vassilakis et al. 

(2004) have argued this by providing a number of points about why thorough 

information systems do not exist in the public sector. These are:  

- Limited security  

- Platform diversity 

- Inflexibility of legacy systems 

- Task scheduling complexity 
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- Change management. 

These points and others may require further understanding before a thorough 

information system can be utilised in the public sector as a central hub for information.  

2.3.3. Use of information systems in the public sector of Abu Dhabi 

Most of the services that are found in bricks-and-mortar localities in developed 

countries are also found online. That even extends to government services in those 

countries. The expansion of the Internet has also urged governments to be committed 

to serving their citizens through online facilities. Countries in the developed world 

have strong presence online under the so-called e-governance umbrella. Some of the 

developing countries have started introducing e-governance into their service 

mechanisms. Industrialised countries are taking the zest of e-governance to achieve 

benefits. Such benefits include providing citizens and organisations with more 

convenient access to government information and resources, conducting transactions 

with businesses and with those working in the public sector, and delivering public 

services to citizens (Davidrajuh, 2004). Further to these benefits, the main objective 

of any country from e-governance is to utilise e-governance for the development of 

the nation’s economy and improvement of the quality of life and opportunities of the 

citizens. In Abu Dhabi, this aim is set forth. Following the successful endeavour of the 

neighbouring emirate, Dubai, the government of Abu Dhabi has introduced a policy 

to deliver most of its services to customers electronically and set a vision to build e-

Abu Dhabi. The vision of e-Abu Dhabi is explained and clarified by the Director 

General of the Abu Dhabi Systems and Information Centre (ADSIC), Mr. Rashed 

Lahej Al Mansoori, who asserts that 

“the e-Governance site is designed to provide services to all the 

government departments, authorities and administrations and ensure 

transparency of the services so that most of the officials use it as a vital 

tool of providing quality and effective service to the diverse customers” 

(ADSIC, 2015). 

To acknowledge the fact and advantages of e-governance, ADPO sets a vision in their 

mission statement and strategy. ADPO is, hence, committed to executing the vision of 

central government by implementing and providing most of its services online. 
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According to the official documentation, the vision of e-Abu Dhabi is to develop into 

a “high performance government delivering world class services to the benefits of all 

its customers” (Abu Dhabi e-Government, 2015). The Government of Abu Dhabi 

believes that the vision will benefit them in various ways with their customers and also 

transform the way government works electronically. The Government of Abu Dhabi 

defines the customers as including individuals and every business. The idea behind 

this vision includes four focus and design themes for the e-government strategy. The 

focus concentrates on end-users and increasing the efficiency of the service. The 

design themes are comprehensive and cross-governmental in design. The vision is also 

described in Figure 6. 

 

Figure 6: The Vision of e-Abu Dhabi [Source: e-Abu Dhabi: The Abu Dhabi Government 
Modernization Initiative (abudhabi.ae)] 

2.3.3.1. E-Governance in Abu Dhabi 

2.3.3.1.1. Real Time Video Surveillance 

ADPO introduced a new real-time video surveillance system on 24 February 2009 in 

the process of e-governance. The new technology, called MOTOA4, provides a critical 

portfolio delivering innovation and reliable wireless solutions. The installation of 

MOTOA4 is a part of the accomplishment of the vision, which is to build a safe and 

secure society. This new system improves communication and amalgamates services 

among police personnel, police vehicles and control room operators. MOTOA4 

provides the most comprehensive video services with high-resolution compared to 

other systems. Now, ADPO can record, save and analyse video from the MOTOA4 

system which can also help in further investigation of any crime. This system is used 
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for operating and delivering a high-efficiency real-time streaming of video from police 

vehicles and personnel. The service will enable management and control room 

operators to have real-time knowledge of what is going on in the area and allow them 

to immediately respond on that basis. The vehicles will be shown on a live map. 

MOTOA4 is easy to use alongside other operating systems used by ADPO such as 

automated speed tracking of vehicles, fixed camera installations, facial recognition 

and automatic number plate recognition. In the future, electronic passports, national 

IDs and fingerprint reading capabilities will be added to this system. This integrated 

system has made ADPO the most modernised and sophisticated police force in the 

region. 

2.3.3.1.2. Advanced Radio Communication 

ADPO launched a unique advanced radio communication system called NOKIA 

TETRA to upgrade its communication system. The implementation of the turnkey 

project is part of the five-year plan and one step forward in the execution of the e-Abu 

Dhabi. The main platform of the new communication network, Policom, is based on 

NOKIA TETRA and Policom became the backbone of the ADPO. The Lieutenant 

General Shaikh Saif Bin Zayed Al Nahyan also, Minister of the Interior, confirmed 

that, 

“this advanced radio technology is able to communicate instantly, provide 

reliability and maintain high security of the commutation. Choosing a 

qualified company to carry out such a project was challenging. Selecting 

Nokia to implement the Policom network was the result of lengthy technical 

investigation and field tours conducted by our police communications 

experts. We also conducted a prolonged technical study on Nokia’s 

sophisticated TETRAS system”. 

2.3.3.1.3. State Police Security System 

An agreement was signed between ADPO and EADS Defense and Security (DS) to 

prepare a plan for an integrated security system solution for the ADPO on 23rd 

February 2009. This project included analysis of business needs and security gap 

analysis, comprehensive threat assessment, system design concept and complete 

implementation plan. 
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2.3.3.1.4. E-recruitment 

The ADPO launched a scheme for recruiting employees through an e-recruitment 

system on 26 September 2005 (us.oneworld.net). Now, people can see their dream 

jobs online and download application forms from the ADPO website. For the 

applicant, this e-recruitment provides more flexibility and they can also save their 

valuable time. On the other hand, ADPO can seek the best talent from the job market 

and also save huge recruitment administration costs. The Director of Human 

Resources Management, Colonel Mohammed Al Awadi Al Menhali, stated that there 

will be four phases in the new recruitment system and they include the latest vacancies 

being immediately posted on the ADPO website, collecting applications, evaluation 

of applications and e-appointment.  

2.3.3.1.5. E-services 

In the process of implementation of e-governance, ADPO provides most of the 

services electronically. The people of Abu Dhabi benefit from the e-services in various 

ways. They can pay their bills, fines and get information from the electronic services 

available in most public places and can also use online e-payment and information 

services. Recently, ADPO installed a number of automated machines in shopping 

malls and this network, named Sahel (facile), is a part of implementing the vision of 

e-Abu Dhabi. All machines are sophisticated and have touch screens that make the 

machine more user-friendly. Now, people not only use these services for their 

principal purpose but also for making complaints and proposals or simply for writing 

communication messages. The machines can also produce a receipt for every 

transaction so that people can keep the slip for their records. The Department of Traffic 

and Parking of the ADPO has recently introduced the mParking system so that people 

can pay their parking fees via mobile SMS. This system is easy to use for any 

registered vehicle owners. If any vehicle is not registered the vehicle owner can still 

go to the website mpark.rta.ae and pay their parking fees via mobile SMS. E-services 

also allow people to open a file for the driving licence and book a test.  

2.4. Decision Support Systems 

2.4.1. Definition 

The definition of Decision Support System (DSS) is roughly that it is a computer-

based information system which is designed to aid organisations regarding their 
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decision-making activities (March & Hevner, 2007). Decision support systems are 

used in the mid and upper levels of corporations to aid in management functions and 

planning. These areas usually change rapidly as a result of external factors such as 

competitor innovations or inroads, along with rapidly changing customer tastes 

(Arnott & Pervan, 2008). Understanding of decision support systems is central to this 

study, thus an additional definition shall be used to ensure understanding. Laudon and 

Laudon (2010) define a DSS as a system which supports either one or a group of 

managers working on problem-solving situations to solve problems or issues. This is 

accomplished by providing management with information scenarios arising from 

differing ways to look at or ascertain potential outcomes (Laudon & Laudon, 2010). 

DSS includes varied potential solutions or suggestions which can be analysed (Laudon 

& Laudon, 2010). In terms of a further explanation of DSSs, Shim et al. (2002) explore 

many definitions resulting in synthesising the explanation to one that describes a DSS 

as an interactive computer based decision system that (Figure 8): 

i. Is used to provide support to decision-makers as opposed to replacing them. 

ii. That the process uses models and data in the performance of its varied functions. 

iii. DSS solves problems in varied structure modes. These can include non-

structured and semi-structured. 

iv. The DSS focuses on the effectiveness of outcomes as opposed to the efficiency 

or facilitation of the decision process because it seeks the end result as being the 

purpose. 
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Figure 7: DSS structured, semi structured and unstructured examples (McLeod & Schell, 2007) 

As a means to further understand DDS, the levels in terms of problem-solving support 

from its lowest function to its highest are ranked as Laudon & Laudon (2010) state: 

i. The retrieval of information elements is the lowest-ranked function. 

ii. The next function is the retrieval of information files. 

iii. This is followed by the use of multiple files to create reports. 

iv. The estimation concerning the consequences of decisions ranks fourth. 

v. The prior function provides the means for the DSS process to propose decisions. 

vi. All of the prior areas are aimed at decision-making, which is the top function.  

DSS is a concept that leads to the development of systems to address particular types 

of decision. The use of DSS is not confined or restricted to any one type of application 

(Laudon & Laudon, 2010). Visually, the DSS process in terms of its general approach 

to solving problems or posing solutions looks as in Figure 8. 
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Figure 8: DSS path to solutions (McLeod & Schell, 2007) 

The three main objectives of DSS are to provide assistance in helping to solve semi-

structured issues or problems to support managers, and to contribute to the 

effectiveness of the decision process (McLeod & Schell, 2007). Figure 9 helps to 

visually understand the manner DSS works (McLeod & Schell, 2007): 

 

Figure 9: A Model of the DSS Process (McLeod and Schell, 2007) 
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DSS aids in solving problems by providing improved communications and enhanced 

focus concerning discussions, along with reducing time needed for decisions as it 

allows for the exploration of scenarios prior to actual application. The following 

provides an understanding of how the process (DSS) accomplishes the above (McLeod 

& Schell, 2007): 

 Decision rooms 

- Small groups face-to-face 

- Parallel communication 

- Anonymity 

 Local area decision network 

- Members interact on a LAN 

 Legislative session 

- Large group of interaction 

 Computer-mediated conference 

- Permits large, geographically dispersed group interaction. 

2.4.2. History of development 

As a subset of information and information management systems, DSS evolved in the 

late 1950s and early part of the 1960s starting with work conducted at the Carnegie 

Mellon Institute of Technology (Power, 2002). It evolved out of research undertaken 

to apply quantitative models in computer software to aid in decision-making (Power, 

2002). The first rudimentary example concerning the beginnings of a DSS-type of 

application was run on an IBM 7094 system in the latter part of the 1960s (Power, 

2002). As the power and utility of computer systems improved, the type of software 

applications that could be run was enhanced (Buchanan & Connell, 2006).  

As the capability of computers increased, the theory of DSS also advanced as 

researchers were able to think about broader application possibilities (Buchanan and 

Connell, 2006). The book that is said to have influenced the direction and development 

of DSS was written by Steven Alter in 1980 (Power, 2007). Alter’s work advanced 

and expanded the framework concerning the thinking and approaches to DSS as he 
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explored and provided examples on the process (Power, 2007). Alter’s work resulted 

in classifying DSS into seven types (Power 2002): 

1. File drawer systems. 

These provide users with access to items in the data system. 

2. Data analysis systems 

The systems that support data manipulation using computerised tools are 

tailored to specific tasks and settings. 

3. Analysis information systems 

This area provides access to decision-oriented data and models. 

4. Accounting and financial models 

This fiscal aspect is utilised to determine the monetary consequences of 

various actions and outcomes. 

5. Representational models 

The consequences concerning actions taken are estimated using simulation 

models. 

6. Optimisation models 

These provide the guidelines for the generation of optimal solutions taking 

into account the constraints that accompany them. 

7. Suggestion models 

These are models that perform logic processing that lead to a suggested 

decision for either a task that is understood or one which is structured. 

The building blocks offered by Alter (Power, 2007) provided the framework and 

foundation to be studied and built upon in universities and by organisations. The prior 

developmental inputs concerning DSS provided the identity that guided later areas as 

it was recognised that the system would support decision-makers (Buchanan and 

Connell, 2006). The understanding concerning the direction and purpose of DSS 

provided needed clarity in the development of its approach (Buchanan and Connell, 

2006). The above means researchers looked at the manipulation of quantitative 

models, and the analysis and accessing of large databases as a key input component, 
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along with the support of decision making by groups (Power, 2007). The two main 

categories are model driven (which emphasises individual use) and data driven (which 

is organisational or institutional DSS) (Power, 2007). The following sub-sections 

provide their historical development inside of the broad DSS time structure provided 

between the late 1960s and late 1980s. 

2.4.2.1. Model-driven DSS 

It is broadly recognised that Scott-Morton in 1972 designed the first model-driven 

DSS system (Hedgebeth, 2007). The model-driven version of DSS is based on 

emphasis concerning the access and manipulation of models (Hedgebeth, 2007). The 

above represent optimisation, along with financial and simulation (models) using in 

most instances a quantitative foundation (Hedgebeth, 2007). In terms of development, 

Power (2008) argues that in general, quantitative models offer an elementary base of 

functionality. Model-driven Decision Support Systems utilise the parameters and data 

that are provided to aid in the analysis of situations as generally large databases are 

not needed. The above is the case due to the fact that model-driven DSS scenarios are 

based on specifics as opposed to generalities (Power, 2008). 

Gerald R. Wagner and his students at the University of Texas created the first 

commercial model-driven tool for quantitative financial models, which was termed 

Interactive Financial Planning System(IFPS) (Power, 2007). In 1982, Ernest Forman 

in close collaboration with Thomas Saaty designed Expert Choice (Mahdi & 

Alreshaid, 2005). It represented a DSS generator used in the building of specific 

systems that was based on the Analytic Hierarchy Process (Mahdi & Alreshaid, 2005). 

In the late 1970s, the financial program called VisiCalc was commercialised. This 

program was the first financial software application that could perform multiple 

functions and set the stage for today’s Excel and other financial software. VisiCalc 

was built on a model-oriented personal adaptation of DSS (Grad, 2007).  

2.4.2.2. Data-driven DSS 

Hedgebeth (2007) argues the data-driven category of DSS is based on emphasising 

access and the manipulation of time-based series of data in a company. This can also 

include in some instances real-time and external data (Hedgebeth, 2007). Power and 

Sharda (2007) argue that under data-driven DSS file systems, they are accessed using 

retrieval and query tools. Whilst these provide elementary functionality, data 
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warehouse systems are the base used to supply information (Power & Sharda, 2007). 

This differs from model-driven DSS as the data-driven mode draws on information it 

needs to construct its formulations (Power & Sharda, 2007).  

The first data-driven DSS applications were developed for American Airlines by 

Richard Klaas and Charles Weiss. It was called An Analytical Information 

Management System (AAIMS) and was used to perform what-if simulations (Power, 

2008). The late 1970s and early 1980s saw the development of executive support 

systems (ESS) and executive information systems (EIS) that evolved as a result of 

what are termed as rational database utilisations (Hung, 2003). These systems were 

first used by Lockheed Aircraft and Northwest Industries, and aided these companies 

in the performance of data importation, along with the access to and use of news 

service feeds and user-friendly screen designs (Hung, 2003).  

The relational database approach is a collection of tables as opposed to hierarchies 

which means adding and accessing information is faster. Relational databases do not 

use a hierarchy system, thus the rows of items and columns of fields can easily be 

added to and accessed. This differs from the hierarchy system that organises 

information based on importance, which can change based on the application or end 

use.  

2.4.3. Uses 

The above description and definition of DSSs did not make a distinction in terms of if 

it is more suitable for business or governmental use. From the definition in the above 

section, it is clear that Decision Support Systems are used by management to find 

solutions to a broad range of areas. 

A white paper concerning modernising government in the UK provided an example 

of the uses of Decision Support Systems (UK Government Cabinet Office, 1999). In 

this white paper, the challenges identified concerning the use of DSS were as follows: 

a. Implementing a process and systems where the staffs in the varied bureaucratic 

governmental departments work together to streamline operations and eliminate 

task duplication. 
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b. A focus and commitment to the processes and tasks undertaken by public service 

staffs to improve individual and departmental work quality internally and for the 

public. 

c. To create a culture in governmental service that is more innovative and risk 

aversive. 

d. To develop a management system in civil service that provides the systems and 

processes to accomplish the areas and objectives set forth above. 

As the scope of these undertakings was so broad, a specific case study example 

involving the UK is used. Watson (2001) used the UK’s INFOSHOP programme as 

an example of the application of Decision Support Systems by government. It was 

used to mesh the complex regulations for food safety, health and safety, building 

planning, and building control into a more efficient system. The differences in 

regulations for various councils, boroughs, towns, villages and cities is organised 

under a decision tree framework that uses a specially designed Internet application that 

can be accessed by users. Inquiries over the phone are handled by operators using a 

similar system (Watson, 2001).  

The operational cost savings result from the fact that before the system was 

implemented many questions had to be referred to an expert for handling which 

created inquiry backlogs and costly delays (Watson, 2001). Development of the 

INFOSHOP system represented a collaborative project that meshed complex 

regulations and updated the system regarding new ones across a broad range of areas 

(Watson, 2001). The INFOSHOP example is a form of DSS used in the UK which 

embraced web technologies under the indicated government initiative described in the 

1999 white paper (Gilbert et al., 2004).  

A similar system to the UK’s has also been adopted in the U.S. and other countries 

(Gil-Garcia & Pardo, 2005). France offers another example of Decision Support 

Systems in government under the country’s French Association of Management 

Control in French Local Government (AFIGESE). The system was devised to reduce 

bureaucracy and to lower administrative costs in the collection of data, along with the 

evaluation and implementation of public policies. The process entails meshing a 

highly complex web system of laws, regulations, considerations, and allied areas in 

terms of updating or amending current public policy. The issue entails taking into 
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consideration the potential ramifications, impacts and effects that changes would have, 

and how policy modifications need to be weighed against costs and impacts (Peignot 

et al., 2012).  

In terms of the business arena, the application of Decision Support Systems has an 

extremely broad base of uses as it entails information management, financial and 

administration areas (which are the primary usage modes for government) (Moss & 

Atre, 2003). Other areas include production, procurement, engineering, customer 

information areas, and various combinations of the above (Moss & Atre, 2003). In the 

business arena, Decision Support Systems have moved primarily to web-based 

applications under data-driven, and model-driven approaches (Bhargava et al., 2007) 

(Table 1).  

Table 1: Decision Support Systems in Business Application Modes (Bhargava et al., 2007) 

 

In explaining the functions and uses of DSS in business and government, Shim et al. 

(2002) maintain that it is founded on three areas. These are data quantification, 

information management and model manipulation. Data quantification represents the 

process where large volumes of data are first condensed and then manipulated 

analytically into what are termed as core indicators so that important data can be 

extracted. Information management represents the process used to store, retrieve and 

report information under a structured format. The third area, model manipulation, is 

where varied scenarios constructed under what-if questions are explored. As indicated, 
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the uses and applications of Decision Support Systems in business are broad. Some 

usage examples entail supply chain management, financial forecasting, estimation and 

projection, project management, customer relationship management, resource 

planning and a host of other areas (Yan et al., 2003).  

2.4.4. DSS types 

In terms of the types of DSS application, there are five broad categories (Power, 2007). 

These categories represent Decision Support Systems that are data-driven, 

communications-driven, knowledge-driven, document-driven and model-driven 

(Power, 2007). Alter’s classified 56 DSS areas may be divided into seven distinct 

categories or types (Power, 2007), as follows: 

2.4.4.1. File drawer systems 

These are systems which permit access to data items. In discussing examples, Power 

(2008, p. 1) states these include “real-time equipment monitoring, inventory reorder 

and monitoring systems”. He adds, “Simple query and reporting tools that access 

OLTP or a data mart fall into this category” and that “Examples include budget 

analysis and variance monitoring and analysis of investment opportunities”. 

2.4.4.2. Data analysis systems 

These provide support data manipulation using computerised tools that are tailored to 

varied tasks or purposes. (Power, 2008, p. 1) states that “Examples include budget 

analysis and variance monitoring and analysis of investment opportunities”. 

2.4.4.3. Analysis information systems 

This is used to provide access to various small models and decision-oriented databases. 

Examples concerning this area represent “sales forecasting based on a marketing 

database, competitor analyses, product planning and analysis” (Power, 2008, p. 1). 

2.4.4.4. Accounting and financial model-based DSS 

This model calculates the consequences resulting from possible actions that might be 

undertaken. These include the estimation of the potential profit from the introduction 

of a new product, the analysis of operational areas concerning plans, an analysis of 

break-even costs, along with producing estimates regarding balance sheet projections 

and income statements. The above are termed as “what if …” scenarios that 
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management can use to determine different operational, production and marketing 

scenarios (Power, 2007, p. 1). 

2.4.4.5. Representational model-based DSS 

Management can utilise this model to perform estimates concerning the possible 

consequences arising from various actions they plan to take using simulation models. 

These include causal areas arising from reactions to competitive situations which 

might cause a change in the manner a company operates or needs to respond. Power 

(2008) cites that such areas can consist of models that analyse risk, market response 

models, along with simulations regarding production runs and the use of different 

types of equipment or procedures or processes. 

2.4.4.6. Optimisation model-based DSS 

Under this usage mode management can look at varied optimal solutions for 

operations, production, processes and other areas by introducing varied constraints to 

assess which approach provides flexibility. In the fast-changing environment of 

business, having systems that are able to adapt to differing conditions is important in 

terms of meeting unforeseen situations and circumstances. Examples concerning the 

use of this area include functions such as the allocation of resources, scheduling 

systems and the optimisation of material use. 

2.4.4.7. Suggestion DSS Based on logic models 

This function represents a means to undertake what is termed as logical processing 

that leads to specific decision suggestions for different tasks. As can be seen from the 

above, DSS types can use external and internal information. These areas use differing 

approaches in their application (Arnott & Pervan, 2005). They generally are comprised 

of analytical models used in complex decision processes, and the extraction of useful 

information from large data sources. In many instances the use of DSS calls for the 

combination of the above. In today’s knowledge-driven business arena and society 

(government mode) the experience factors gained from human actions and outcomes 

has become an increasing source of valuable information. These are termed as expert 

systems that capture human expertise in applicable knowledge domains. The capture 

of the expertise that resides in employees is transferred to systems that correlate and 

allow for this to be shared and used by others and is an important aspect in the use of 

DSS. 
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2.4.5. Importance and need 

The highly competitive nature of today’s business environment calls for increased 

government efficiencies and service to its populace that has created the need for 

increased efficiencies (Srivardhana & Pawlowski, 2007; Carter & Belanger, 2005). 

The vast repositories of information and complexities that are a part of operating huge 

governmental systems and business operations means the use of past experience 

factors, information databases, tendencies, and associated facets are needed to aid in 

decision-making and planning (Srivardhana & Pawlowski, 2007). The above summary 

analysis has been used to provide an understanding of the complex environment that 

government and business operate in. It is a part of a broad range of information 

management and analytical tools that have become an integral part of the knowledge 

management aspect of society. These represent the services and administration 

provided by government along with the broad range of business uses.  

The complexities that accompany today’s competitive business arena and the broad 

range of services, regulations and governance means information needs to be 

processed effectively (Heeks, 2002; Edmunds & Morris, 2000). These two arenas need 

to be able to harness the power of databases and information for solutions that can be 

accessed for varied uses. In discussing governmental needs Heeks (2002) states that 

one of the more important functions is defining and meeting specific areas concerning 

the populace. Therefore, by understanding the differing needs of constituents, 

governments can craft policies and services. Moreover, the problem of information 

overload requires insights. Information overload represents the volumes of 

information businesses and managers receive, generate, gather, use, and need in order 

to conduct operations, deal with competitors and the expectations of consumers 

(Edmunds & Morris, 2000).  

An important revelation at the core of the need equation is the fact individuals have 

what is known as human information behaviour. This is described “as the totality of 

behaviours (active or passive) that people engage in to gain access to, organise and 

use, information” (Huotari & Wilson, 2001, p. 23). “Thus, it will include not only pro-

active steps to gain access but also the passive reception of information, which then, 

or later, turns out to be of use”. The above provides the basis for understanding where 

and how organisational informational behaviour evolved. The need for information is 
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not new, but rather represents a human and organisational trait that has always been 

the case. Hence, 

“organisational (or corporate) information behaviour embraces not only 

the formal systems set up to manage internal information flows, but also 

the systems, including libraries and information centres designed to 

access external information as well as the organisational and personal 

communication systems through which information reaches the 

organisation and is disseminated” (Huotari & Wilson, 2001, p. 23). 

The above areas have brought to light that information is a critical driver of the 

decision-making process in companies. Decision-making in companies is the basis for 

success or failure as it is dependent on the quality and quantity of information used 

(Saaty, 2004). Information overload in business can be just as damaging to a company 

as too little information (Edmunds & Morris, 2000). In terms of understanding the 

importance and need of a decision support system, it is necessary to recognise it as a 

function of leadership, management and organisation (Saaty, 2004). Leadership is 

significant in this process as it is management that makes decisions and is responsible 

for establishing systems to gather, correlate and put information to use. The decisions 

made by management impact the success of the enterprise. This includes employee 

morale, performance, competitive decisions, marketing, financial and other areas. The 

above means the fates of all organisations (in business or government) are determined 

by the quality of their decision-making capabilities.  

2.4.6. Advantages and drawbacks 

The above section provided an understanding of the need and importance of the use 

of information by management. Some of the benefits a DSS provides are as follows 

(Delone, 2003): 

a. It improves personal efficiencies. 

b. The process of decision-making is improved. 

c. Organisational control is increased. 

d. Decision-makers are encouraged to explore options. 

e. Problem-solving in organisations is enhanced. 

f. Interpersonal communications are facilitated. 
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g. Learning and training is promoted. 

h. New information is generated to aid in decision-making. 

i. Through enhanced decision-making capabilities a company can gain a 

competitive advantage. 

j. New approaches can be uncovered concerning ways to think about problems 

and challenges. 

k. DSS provides a way to automate management processes. 

l. It helps to develop innovative approaches and ideas to increase performance. 

In order to understand how DSS aids in causing or facilitating the above points, the 

points can be divided as follows (Lam & Schaubroeck, 2000): 

a. DSS solves unstructured and semi-structured problems. 

b. The DSS process provides support for managers in the different levels of an 

organisation 

c. The use of DSS supports groups and individuals. 

d. Its use also aids in understanding the interdependence and the sequencing 

processes of decisions. 

e. DSS supports the improvement of intelligence, design functions and choices. 

f. Its use (DSS) provides organisations with flexibility and adaptability. 

g. DSS is an interactive process that results in ease of use for management and 

staff 

h. The process (DSS) enhances efficiencies. 

i. DSS also provides for increased user (human) control over processes. 

j. Some of the functions of DSS, depending on its application, use modelling. 

k. The purpose of DSS seeks to increase use by management and staff. 

l. It provides enhanced data access. 

m. DSS can be utilised as a standalone application or in a web-based mode. 

n. The use of DSS aids in supporting a variety of decision processes. 
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o. It also supports various decision tree approaches. 

The above understandings provide insight into the advantages, capabilities and 

characteristics of DSSs. As is the case with almost any process, there are drawbacks 

that have to be considered. The following represent the different areas of possible 

drawbacks of DSSs (Filip, 2008; Aguilar-Saven, 2004; Wen et al., 2005): 

2.4.6.1. Cost 

In order to implement a Decision Support System, management needs to make a 

monetary commitment that, depending upon the size of the undertaking, can be 

considerable. The process (implementing DSS) means a company needs to invest in 

the research processes needed to understand what is required. Inherent in the above is 

determining what data is needed, from what and how many sources and the manner in 

which they are to be analysed. The pre-system set-up areas which determine what is 

needed are based on the specifications, and require specialists in most cases (Aguilar-

Saven, 2004). Management needs to weigh the end use of the process versus its costs 

to ascertain its payback potentials and time horizon (Wen et al., 2005). 

2.4.6.2. Decision making facets can be over-emphasised 

The use and implementation of management and organisations concerning reliance on 

computerised decision-making can be over-emphasised in many cases. The 

implementation of DSS may reinforce a rationale or perspective overemphasising the 

decision process. Before implementing a DSS, process managers need to be educated 

concerning the broader implications and context. The political, social and emotional 

aspects are important in helping to determine the success of an organisation (Filip, 

2008).  

Prior to utilising DSS, a company needs to undergo continuous examination 

concerning the circumstances in which a DSS should be used and designed (Aguilar-

Saven, 2004). In addition, the question as to whether the situation being considered is 

appropriate to the use of DSS and what type would be appropriate also needs to be 

ascertained (Aguilar-Saven, 2004). 

2.4.6.3. Relevance 

A DSS needs to be designed to deal with relevant areas (Wen et al., 2005). This means 

that unless a proper and though analysis of ramifications, end use and application are 
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conducted beforehand, the system’s relevance after the fact may be limited. One of 

the key drawbacks is that in some cases after a DSS has been installed in an 

organisation managers use it in an inappropriate manner (Wen et al., 2005). Training 

may provide a suitable approach to avoid this (Filip, 2008). 

2.4.6.4. Power transfer 

A misconception that occurs in some situations is that when a DSS system is built the 

perception is that the authority for decision-making is vested in the computer or 

software (Aguilar-Saven, 2004). The purpose of a DSS is to improve the decision-

making process as opposed to making decisions (Aguilar-Saven, 2004). The human 

element is still the key in the process using DSS (Wen et al., 2005).  

2.4.6.5. Unanticipated effects 

Another drawback that sometimes accompanies the implementation of a Decision 

Support System is the consequences that are not anticipated (Poley et al., 2008). In 

explaining this, Poley et al. maintain it is possible for a DSS system to actually 

overload managers with information thereby potentially inhibiting their effectiveness 

in making decisions. This is associated with the forward planning, thinking and 

expertise used to devise the system which needs to be carefully planned and 

understood in terms of end use (Poley et al., 2008). 

2.4.6.6. Obscured responsibility 

In terms of understanding the use of DSS, managers and people using the system need 

to be aware of its end use. Computers and systems do not make bad decisions; it is 

rather people who provide bad or insufficient information to the system (Poley et al., 

2008). This represents a key drawback in using a DSS system as management needs 

to understand and ensure the data input is current and relevant to the situation at hand 

(Harrisonet al., 2007). In using a DSS system, management and those using the system 

sometimes forget that it (DSS) represents an intermediary between those who build 

the system and those using it (Filip, 2008).  

2.4.6.7. Objectivity 

Another factor that can be a drawback in the use or implementation of a DSS system 

is what is termed as a false belief in objectivity (Poley et al., 2008). This is explained 

as the people using the system need to be trained and educated in terms of 
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understanding the nuances and philosophical aspects of objectivity (Harrisonet al., 

2007). Whilst software can provide managers with encouragement to take or engage 

in more rational action, managers can mistakenly use the system to rationalise their 

actions, which is a mistake (Harrisonet al., 2007).  

2.4.7. Presence in companies 

In terms of equating the use of DSS in companies, the two categories described in the 

above section (History of development) are used. These represent model-driven and 

data-driven examples. Under the model-driven approach. some of the main approaches 

used under DSS entail decision analysis, intelligence management, predictive 

modelling and decision management (Kopackova & Skrobackova, 2003). In a report 

by Oracle (2014), it is shown that in excess of 85% of U.S.-based Fortune 500 

companies use what are termed as Crystal Ball products. This is one of the leading 

spreadsheet applications used for forecasting, predictive modelling, optimisation and 

simulation. It is a DSS software type that provides businesses with insight concerning 

varied factors that affect risk that permit management to make tactical decisions 

important to achieving objectives (Oracle, 2014). Another DSS application was 

developed by Frontline Systems that uses a system of solvers and optimisers used in 

Quattro Pro, Excel and Lotus 1-2-3 which are used by consumers, accounting 

professionals and companies internationally. 

Another type of model-driven DSS software is MeetingWorks. It is a software 

application that aids company managers in organising and conducting meetings that 

are more productive and streamlined (Antunes & Carrio, 2003).  
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Figure 10: Organisational systems application diagram (Antunes & Carrio, 2003) 

The list of users of MeetingWare is too extensive to be listed here as the application 

is broadly distributed in various types of applications (Antunes & Carrio, 2003).  

Data-driven DSS applications are used in companies and large corporations as 

(Hedgebeth, 2007). One of the largest vendors of data-driven DSS systems is Cognos 

(Power, 2008). The company’s BI/OLAP (Online Analytical Processing) application 

is a business intelligence (BI) software tied to OLAP, which is a technology used to 

conduct queries in statistical databases (Jovanovic et al., 2012). The success of OLAP 

is dependent on the design of multidimensional databases (Jovanovic et al., 2012). 

Cognos’ BI/OLAP application serves over 22,000 corporate customers in virtually all 

countries (Power, 2008). The business solutions offered by Cognos aid businesses in 

understanding, managing and monitoring their performance. The software also 

includes business analysis and reporting, the measurement of profitability, 

optimisation of forecasting and cost management. Cognos provides an efficient means 

to aid in the delivery of intelligence data for business. It uses data warehouse 

information to construct replies to data queries.  
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Another DSS software application is Brio BI that is distributed by Applix. It has an 

excess of 2,600 customers (Power, 2008). In elaborating on various data-driven DSS 

systems, Power (2008) adds: 

“ESRI is a leading developer of GIS software with more than 300,000 

clients worldwide. Hyperion products are used by more than 6,000 

customers around the world to enable financial, organisational, customer 

relationship, supply chain and channel performance management. 

Information Builders has more than 11,000 customers, including most of 

the Fortune 100 and U.S. federal government agencies”. 

The above examples of DSS model-driven and data-driven applications used in the 

consumer and business arenas provide extensive proof concerning its broad use.  

2.4.8. Presence in public organisations 

The examples concerning the use of Decision Support System applications in public 

organisations is widespread (National Forum for Educational Statistics, 2006). In an 

extensive report on the use of DSS in public organisations, the National Forum for 

Educational Statistics (2006) states that various forms are being used in the United 

States’ educational system. The uses range from the administration of personnel, 

accounting functions, course curriculum design to teacher performance comparisons 

in districts, states and regions (National Forum for Educational Statistics, 2006). In 

another report, it is argued that the use of DSS in the public sector aids organisations 

to utilise data along with models to uncover and identify problems as well as solving 

them (Bencina, 2006).  

The typical use in public organisations entails aiding administrators to use and 

manipulate data, use checklists, along with building and using models. The application 

of DSS in the public sector entails cooperative measures to build and form a consensus 

as opposed to the authority driven approach used in the private sector (Bencina, 2006). 

This is accomplished by the following steps and stages (Bencina, 2006): 

2.4.8.1. First order effects 

These aspects entail the following: 

1. Social Capital - This represents the building of trust and relationships. 
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2. Intellectual Capital - The consensus environment of the public sector means 

arriving at mutual understandings, agreed upon approaches, along with 

problem frameworks that are shared. 

3. Political Capital - This entails forming alliances to work together to arrive at 

or reach ends mutually agreed upon. 

4. High-quality agreements. 

5. The use of innovative strategies. 

2.4.8.2. Second order effects 

These aspects represent the following: 

1. Building of new partnerships. 

2. Joint action and coordination. 

3. The implementation of agreements. 

4. Undergoing changes in practice. 

5. Understanding that changes in perceptions will be needed. 

2.4.8.3. Third order effects 

1. New collaborations. 

2. Co-evolution represents a core operative aspect as opposed to conflict. 

3. New institutions. 

4. New norms. 

The above building blocks are critical aspects concerning making changes in the 

public sector (Bencina, 2006). DSS in the public sector can be found in all segments. 

Whilst the terminology will differ for various countries, the general parameters are the 

same in terms of application. 

2.4.8.4. Departmental digital boards 

This represents the use of DSS applications by executive boards to handle transactions 

under various agencies (finance, health, procurement, etc.). 
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2.4.8.5. Civil service applications 

In the instance of Australia, this represents a government-wide initiative to ensure that 

all civil service departments have the needed levels of DSS software capabilities. 

2.4.8.6. DSS applications in government departments 

The following represent the specific Australian government departments or agencies 

DSS is operational in: 

1. HM Revenue and Customs 

2. Department for Transport 

3. Department for Work and Pensions  

4. Ministry of Justice 

5. Department for Business Innovation and Skills 

6. Department for Environment Food and Rural Affairs  

7. Home Office. 

The above represents the use of DSS in the Australian government whose use 

examples are similar to those of France, the United States, the UK and other countries. 

In order to understand the differences in the application of DSS in private and public 

organisations, the following points are relevant (Bencina, 2006). 

2.4.8.7. Decision making 

1. Private Sector 

Decisions in this sector are made either by an individual or management teams under 

the authority of the organisational structure. 

2. Public Sector 

Interestingly, decisions in the public sector happen due to a series of complex 

interactions that occur between trade unions, administrators, pressure groups or other 

inputs. 

2.4.8.8. Decision interests 

1. Private Sector 

In the private sector, decisions are usually dominated by a singular interest that in 

general is represented by the position of the company competitively. 
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2. Public Sector 

As governmental agencies exist to serve the needs of the public, the interests of society 

represent the factor. 

2.4.8.9. Decision alternatives 

1. Private Sector 

These are approaches that are evaluated based on sets of quantitative criteria 

(economic) represented by aspects such as bottom line performance, profits, market 

share and allied considerations. 

2. Public Sector 

The evaluative process differs in the public sector as the considerations are broad and 

comprised of quantitative and qualitative criteria. The values concerning the above are 

considered as being difficult to establish. 

2.4.8.10. Decision horizons 

1. Private Sector 

The typical planning horizon tends to be months to a number of years. The differences 

are based on the area, such as marketing decisions (which change rapidly) and new 

product introductions or entering new markets (which can extend to years). 

2. Public Sector 

The factors representing changes in the public sector are very slow to evolve. The 

typical planning horizons are years and typically can represent decades. 

The above aspects have been included to offer insights on the use of DSS in the public 

sector. 

2.4.9. Presence in the United Arab Emirates public sector 

In terms of identifying the use of DSS in the public sector of the United Arab Emirates 

(UAE), e-government may be the place to uncover such a use. The UAE e-government 

represents “… activities that take place over electronic communications among all 

levels of government, citizens, and the business community, including: acquiring and 

providing products and services; placing and receiving orders; providing and 

obtaining information; and completing financial transactions” (Riad et al., 2011, p. 

124). The key element in the above definition is that e-government utilises DSS as its 
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structural foundations. E-government offers the most cost-effective and efficient use 

of computer aided systems as it drastically reduces installation, communication and 

information exchange costs. Whilst Western developed countries were able to convert 

long-standing computer systems to e-government platforms, countries in the Middle 

East lacked the infrastructures for e-government and have embraced it as the means to 

introduce the efficiencies and cost saving measures of computer aided systems 

employing DSS. In the Middle East, most governments are using the installation of 

DSS service-oriented architecture as the platform to link and integrate services along 

with applications between different agencies and ministries (Riad et al., 2010).  

The use of DSS provides Middle East countries with support for unstructured and 

semi-structured uses (Riad et al., 2011). This includes the combination of 

computerised information outputs and human judgment factors where DSS provides 

support for varied governmental levels (Figure 11). 

 

Figure 11: Figure 8 - DSS Government Support (Riad et al., 2011) 

DSS components used in the Middle East usually consist of “…(i) database 

management subsystem (DBMS), (ii) model base management subsystem (MBMS), 

(iii) knowledge-based (Management) Subsystem, and (iv) User interface subsystem 

(Dialogue) …” (Riad et al., 2011, p. 126).  

The above understanding is critical in understanding the use of DSS in the United Arab 

Emirates. A recent study conducted by the United Nations (2010) ranked the United 

Arab Emirates as 49th internationally concerning its use and sophistication in e-

government development (Riad et al., 2011, p. 126). Despite this, the country was 

rated as 86th in terms of e-participation and 99th in its use of online services (Westland 
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& Al-Khouri, 2010). In providing a base to correlate the standing and development of 

e-government in the United Arab Emirates, Westland and Al-Khouri (2010) used the 

developed system in the United Kingdom to illustrate the potential benefits: 

Table 2: E-Government Benefits / UK Example (Westland & Al-Khouri, 2010 p.3) 

 

The UAE has implemented a card system under its Identity Management 

Infrastructure (IMI) to aid in access and control of the system (Westland and Al-

Khouri, 2010) (Figure 12).  
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Figure 12: The UAE Identity Card System (Westland & Al-Khoruri, 2010) 

Citizens use the government system to enable tracing user interests, inquiries and 

allied aspects that are aided by DSS applications (Figure 13): 

 

Figure 13: The UAE e-Government System (Westland & Al-Khouri, 2010) 

In terms of services under e-government in the UAE, they mainly consist of a broad 

range of services for citizens, and businesses across varied federal and local 

governments. These include the following (Al-Hujran, 2012). 
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2.4.9.1. eServices 

The services offered through the UAE government portal are available for businesses, 

citizens and visitors.  

2.4.9.2. mServices 

This represents services available through mobile devices. 

2.4.9.3. eParticipation 

In order to make government services interactive, users can participate in various 

forums such as chats, blogs, social media and polls. 

2.4.9.4. Open data 

This provides information on economic areas, various statistics and other information. 

As shown above, the UAE has a sophisticated and developed public sector e-

government service range that is still improving. 

2.4.10. Examples of uses of DSS by organisations worldwide 

The examples of DSS usage in the private sector are many. In a case study of DSS use 

by the East of England Observatory, a website is maintained by its Policy Unit which 

is available for organisations to use that are in partnership with the agency 

(Databeacon Staff, 2004). The DSS solution used in this instance represents 

Databeacon which was developed by Matraxis Ltd (Databeacon Staff, 2004). The 

application provides the East of England Observatory with a consultation, support and 

training solution for regional economic indicators (Databeacon Staff, 2004). It offers 

government agencies and businesses a data architecture that provides analysis and 

reporting tools that can be used online (Databeacon Staff, 2004). The system has in 

excess of 1,000 users and provides information to conduct business activities, secure 

data on the latest regulations, planning and other information to aid in decision making 

(Databeacon Staff, 2004). 

The California Department of Motor Vehicles uses a DSS application that 

consolidated and streamlined its fee collection and registration system (Fair Isaac, 

2006). The DSS application used is a legacy system that is aligned with the state’s e-

government solution which operates over the Internet (Fair Isaac, 2006). The use of a 

Business Rules Management Software (BRMS) enabled the Bureau to devise a vehicle 

registration fee system that updates vehicle fee rates and penalties, along with 
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corresponding rules “… for autos, commercial vehicles, trailers, motorcycles and off-

highway vehicles” (Fair Isaac, 2006, p. 1). The system has provided the Bureau with 

precision in implementing new policies and legislation along with the appropriate fees 

across the wide range of vehicle types (Fair Isaac, 2006). More importantly, the system 

is highly cost effective as the DSS architecture delivers solutions to all offices and 

branches (Fair Isaac, 2006). 

In examining a business use of DSS, the General Electric (GE) Real Estate division 

employed it to aid in driving global growth across the division’s offices in twenty 

countries (Power, 2007). The DSS solution was used to enable risk, sales and property 

management divisions to assess loan profitability, and the likelihood of loan approval 

(Power, 2007). The property management division uses the system to understand the 

risks on outstanding loans (Power, 2007). 

In another example, Schwartz (2005) discusses the use of a DSS application for the 

Coca-Cola West Japan Company. The firm uses a key business indicator approach that 

measures vending machine operational performance (Schwartz, 2005). Other areas 

and aspects it uses include the replenishment rate, the planning of replenishment visits, 

and out-of-stock incidences (Schwartz, 2005). These indicators are utilised to analyse 

data for the headquarters staff at the Coca-Cola West Japan Company concerning 

vending machines along all of the company’s routes (Schwartz, 2005). By being able 

to analyse vending machine route data, along with increased or declining usage the 

Coca-Cola West Japan Company was able to optimise route placement concerning its 

vending machines and reduce operational costs (Schwartz, 2005). 

These examples represent a few of the multitude of business and government uses for 

DSS. As indicated under the section ‘Presence in companies’, there were 22,000 

corporate applications of BI/OLAP used in virtually all countries and over 6,000 uses 

of GIS (Geographical Information System) software (Power, 2007). These represented 

a small number of software examples in use, and provide an indication of the extent 

and exposure of various DSS applications. 

2.4.11. Examples of success and failure of DSS 

The 1986 space shuttle disaster is a drastic example of a failure of a DSS application. 

The space shuttle Challenger exploded shortly after it was launched; the investigation 

uncovered a failure in the use of NASA’s Group Decision Support System (GDSS) 
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(Forest, 2005). The above was traced to a flawed GDSS database that was mismanaged 

(Forest, 2005). Whilst it was known that there was a flawed ‘O’ ring in the solid state 

booster of the shuttle, the decision to launch was a human decision based on inaccurate 

information. The operational decision to launch was based on a default system that 

ignored the known fact that the ‘O’ rings were indicated to have issues operating in 

cold temperatures. This environmental input was not considered in the launch decision 

that used the GDSS which did not seek or require a complete engineering sector input 

approval (Forest, 2005). As a result, the decision to launch was attributed to human 

error that failed to take into account all variables (Forest, 2005). 

A subsequent investigation, that took years, indicated the space shuttle program 

suffered from budget cutbacks that affected the development and implementation of 

an effective GDSS mechanism. As indicated in prior segments of this study, the 

effectiveness of any DSS application is dependent on effective planning and 

understanding of the contributing variables along with end-use purposes. The failure 

to adequately account for all of the needed inputs and outcomes along with their 

consequences was not a part of the abbreviated NASA budget for developing its GDSS 

software (Forest, 2005). 

In an example of the successful uses of DSS, the prior section discussed examples in 

the private and public sectors. Other success examples include the University of 

Alberta that used a document-driven version of DSS to post its policies and procedures 

online (Stellent, 2004). The benefits of this approach enabled real-time information to 

be posted without the delays of the printed versions used in the past (Stellent, 2004). 

In another business example, Briggs and Stratton used an SAS version of a DSS 

application to increase operational efficiencies across its varied departments. The 

changeover to a DSS-based system significantly reduced the company’s global 

reporting costs and increased the speed of data availability and use (Nelson & Wright, 

2005). 

Another example of a failed DSS application is the case study of the use of a DSS in 

the University of Pittsburgh Medical Centre. The system was developed to become a 

clinical decision support system (CDSS) model designed to ensure compliance with 

Congestive Heart Failure Core Measures. The system developed what are termed as 

identifying rules and triggers for treatment measures (Wadhwa et al., 2008) (Table 3): 
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Table 3: Congestive Heart Failure Core Measures – Rules and Triggers (Wadhwa et al., 2008) 

 

The problems encountered in the use of the clinical decision support system (CDSS) 

model were as follows (Wadhwa et al., 2008). 

2.4.11.1. False negatives 

There were instances where patients were not entered into the clinical decision support 

system (CDSS) model, thus the rules or triggers that were used could not be identified. 

2.4.11.2. Excessive alerts 

One of the issues with the clinical decision support system (CDSS) model that 

physicians identified is that it generated too many alerts. This caused some staffers to 

stop using the system. 

2.4.11.3. Incomplete physician alert responses 

An examination uncovered that in some instances the Congestive Heart Failure Core 

Measures forms generated as a result of alerts were completed, but the corresponding 

order sets were not. 

The failure in researching and planning the system using test runs and result 

correlations to work out issues and problems was the reason the system failed 

(Wadhwa et al., 2008). 

The use of DSSs in organisations in general and in public organisations in particular 

is further investigated in later chapters. In particular, later chapters look into ways for 

improving decision support systems learning from the success and failure aspects 

introduced in this section. 
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2.5. Data Mining 

2.5.1. Data mining 

Data is the raw form of information. They are numbers, figures, texts, etc. that do not 

usually hold meaning. Data attributes are the description values of data. They are also 

known as dimensions, features or variables, e.g., name, address, phone number, etc. 

The different types of data attributes are as follows: 

- Nominal: categories, states, e.g., hair colour: {blond, red, black, white, 

brown} 

- Ordinals: the order matters, but the value that represents each category is not 

known, e.g., Height: {short, medium, tall, very tall} 

- Numerical, e.g., salary, temperature 

- Discrete (finite number of states) versus continuous (usually represented by 

a real number). 

Data mining, also known as Knowledge Discovery in Databases (KDD), involves the 

extraction of interesting patterns or knowledge, usually from large volumes of data. 

An interesting pattern is non-trivial, which is an implied relationship or association 

between variables or data items previously unknown. Data mining is also defined as 

the process of selection, exploration, and modelling of large quantities of data to 

discover regularities or relations that are at first unknown, with the aim of obtaining 

clear and useful results for the owner of the database. Data mining provides an 

increasing potential to support business decisions, end users, business analysts, 

decision-making, and data presentation techniques. 

Data mining currently receives a topical interest not only from computer professionals 

but also from academics and business managers. Storage media can store more data, 

and therefore volumes of stored data, whether useful or not, are constantly increasing. 

For instance, chain stores save large amounts of data about their customers in 

databases. Among these amounts are usually large volumes of interesting marketing 

information, such as data available about items purchased, the time of purchase, the 

customer’s age, etc. Digitisation of analogue phone networks has made it possible to 

store phone calls for future improvements and quality results, as well as anticipating 

future incidents based on trends. This can be of great help for police emergency call 

centres, fire brigades, and other related departments. The sizes of databases for 
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banking transactions are enormous, especially after introducing smart cards and online 

wallets. This huge amount of data needs to continuously maintained and filtered. 

These are just a few examples from practice of the increasing volumes of stored data. 

Rich sources of information for decision-makers are usually dormant and hidden under 

an avalanche of data. A company would be managed more effectively, if they knew 

their customers’ buying habits, their preferences, their ages, their contact details, and 

much more information. Therefore, there is a missing link that can connect the 

existence of large amounts of data and the relevant information that exists in this data. 

Data mining is precisely the coupling element, which allows users to filter their huge 

amounts of data. The purpose of data mining is to discover and display certain patterns 

in data that can be used to solve the problem (Han etal., 2006). In this respect, showing 

only the results of computer analysis of large amounts of data is just something like 

the tip of an iceberg. Analytical data extraction combined with powerful visualisation 

techniques generally leads to different views of management of the business problem. 

Examples can be discovering a new correlation between attributes, predicting the 

future of the data collected in the past, and conducting binary operations on the 

differentiated datasets. 

Organisational Data Mining (ODM) is another type of data mining. Nemati and Barko 

(2003) define ODM as being “used to leverage data mining tools and technologies to 

enhance the decision- making process by transforming data into valuable and 

actionable knowledge to gain a strategic competitive advantage.” ODM covers a wide 

array of technologies, including but not limited to e-business intelligence, data 

analysis, SQL, customer relationship management (CRM), eCRM, EIS, digital 

dashboards, information portals among others. 

In conventional database queries OLAP, a relationship between data elements must be 

specified. Data mining can discover relationships that the user does not see or did not 

even suspect existed (Tan et al., 2005). Sometimes the user knows about a relationship 

yet cannot properly formulate a query and consequently look for an answer, such as 

searching the Internet by knowing only two keywords among hundreds of thousands 

of pages. 
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2.5.2. Types of data mining problems and associated techniques 

In general, the triggers of a data mining project involve a combination of different 

types of problem, which their solutions together solve a certain business problem. 

Different techniques of data mining exist; each has different applications. It is often 

the case, however, that more than one technique is used in combination on a dataset. 

The following is an overview of the common techniques used for data mining, 

addressing different problems. 

2.5.2.1. Visualisation 

Data warehouses and tools to use them exist at different levels. Data mining can be 

done from a simple query on a database through the creation of tables from the stored 

data to the visual analysis of data from several databases. The first stage starts by 

setting simple questions, short statements, small tables and conducting analysis (Keim, 

2002).In a simple form, a typical computer can display a table or 3D chart with simple 

analysis. The highest degree is a 2D or 3D visualisation of stored data. Visualisation 

is important because the graphic design of data is intuitive, more acceptable, faster 

understood and better remembered by humans. Human senses perceive similarities 

and anomalies much faster in data that is displayed in a graphical form than in a tabular 

form, for example, it is easier to remember the faces of people than their names. 

Visualisation does not mean fancy views of what is written in a table. Generally, it is 

a reflection of a multi-dimensional problem space into three-dimensional space with 

computationally intensive data analysis, which provides a view from another angle. In 

a 3D model, it is naturally easier to efficiently analyse a very complex relationship. 

To facilitate analysis of trends in a three-dimensional space, it is can be extended by a 

fourth dimension to the possibilities of animating objects over time (Kohavi, 2000).  

Visualisation methods are used because people need to make decisions quickly and 

efficiently. Here, just one user conducting advanced computing and visualisation 

operations using high-quality programs for extracting data could find very interesting 

and effective business results. 

2.5.2.2. Data description and summary 

The description and summary of data usually point to the concise description of its 

characteristics, typically in a basic and aggregate form. This provides a description of 

the data structure. Sometimes, a description and summary of the data is the only target 
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of a data mining project. For example, a retailer might be interested in the sales volume 

of all outputs split into categories. The differences and changes occurring in the past 

would be highlighted and summarised. This type of problem would be a low-scale data 

mining problem. 

In almost all data mining projects, however, the description and summary of the data 

is a minor goal in the process, usually at an early stage. When the data mining process 

has started, users are not usually well aware of the precise purpose of analysis or exact 

nature of the data. Initial insights into of data analysis may help users to understand 

the nature of the data and assume possible hidden information. Simple descriptive 

statistics and visualisation techniques provide the first ideas about the data. For 

example, the distribution of clients by age and geographical region suggests that parts 

of a group of player need to be addressed for future marketing strategies (Hand et. al., 

2001). 

The description and summary of data typically occur in combination with other data 

mining problems. For example, the description of data can indicate the nomination 

(presumption) of important data segments throughout. When these segments are 

identified and specified, a summarised description of them will be useful for later 

analysis. It is desirable to conduct a summary and description of data prior to 

specifying any data mining problem. This is due to the fact that data summary and 

description is a task in the pre-phase of data compression (Han et al., 2006;Chapman, 

et al., 2000). 

Summary also plays a key role in displaying the final results. Other data mining 

problem results (for example prediction models or descriptions of concepts) may also 

be considered, but at a higher conceptual level. 

Many statistical packages and reporting systems, such as the online analytical 

processing (OLAP) system, may cover summary and description of data, but often do 

not provide methods for advanced modelling. Such tools may be appropriate to carry 

out data mining if summary and description of data is considered as a separate type of 

problem and future modelling is needed (Chapman et al., 2000). 

2.5.2.3. Segmentation 

This technique of data mining mainly aims to split the data into significant classes or 

subgroups. The members of the same subgroup share common characteristics. An 
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example of segmentation is defining segments of shopping baskets based on the items 

in these baskets. Segmentation may be performed semi-automatically or manually. 

The data mining specialist may consider certain subgroups relevant to the business 

problem based on prior knowledge or experience or according to the results of the 

summary and description operations on data. Automatic segmentation, known as 

clustering, can discover hidden and unsuspected structures in data that allow 

segmentation (Tan et al., 2005). 

Segmentation may be a target of data mining sometimes. In this case, segment 

detection is the main aim of the data mining project. An example of this is when all 

addresses in certain areas of elderly people and average income would be selected to 

send advertisement for home care. However, segmentation is often a step to solutions 

to other problems. Hence, the main aim is to maintain a manageable data size or find 

homogeneous data subsets that are relatively easy to analyse. In large datasets, the 

scope of each interesting pattern varies. Choosing the most suitable segmentation 

hence facilitates the task. For instance, analysing the dependencies among items in 

millions of shopping carts is an extremely difficult task. However, the task becomes 

easier if instead, dependencies and interesting segments of shopping carts are 

identified, such as baskets containing assets of comfort, high-value baskets or baskets 

of a particular period (Chapman et al., 2000). 

Example of automatic segmentation or clustering 

A property agency regularly collects information about its customers regarding 

socioeconomic status, such as income, occupation, sex, age, and others. By cluster 

analysis, the agency may divide its customer group into more understandable 

subgroups and analyse the structure of each subgroup. Hence, controls of marketing 

strategies can be developed separately according to each studied subgroup (Chapman 

et al., 2000). 

2.5.2.4. Description concept 

The description concept relates to understandable description of classes or concepts. 

The aim is to attain high accuracy of the development of prediction models and gain 

new ideas. For instance, a company may want to know its customer loyalty and 

disloyalty. A description concept based on these attributes, loyal and disloyal, will 
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help the company establish how to transform disloyal customers into loyal ones (Lin 

et al., 2008). 

A description concept is closely related to both classification and segmentation. 

Concept descriptions may be used as classification. Furthermore, some classification 

techniques generate understandable classification models, which may be considered 

as descriptions of the concept. The main difference, however, is that classification 

aims to be complete. Classification has to be applied to all cases in the target 

population. However, the concept description model does not necessarily have to be 

complete. It is enough to describe only important parts of the concepts or classes. In 

the above example, it may be sufficient to get the descriptions of clearly loyal 

customers.  

Segmentation on the other hand can lead to a list of objects belonging to a class or 

concept without providing any understandable description. Typically, segmentation is 

conducted before description is made. Some techniques, for example, conceptual 

clustering, may run concept descriptions and segmentation at the same time. 

2.5.2.5. Classification 

The classification technique considers a group of objects characterised by certain 

characteristics as belonging to the same class. Each object has a class label of discrete 

value. The aim of is to construct a classification model (also known as a classifier) 

which assigns to each object a correct class label (Fayyad et al., 1996). The class labels 

may be previously defined by the analyst or may have arisen from segmentation. 

Classification is one of the most significant types of data mining techniques used in 

many applications. In fact, many data mining problems may be transformed into 

classification problems. For example, the problem of evaluating the credit risk of a 

new customer can be transformed into a classification problem of two classes: good 

and bad credit customers. The classification model can be generated based on credit 

risk data of existing customers. The generated model can then be used to allocate new 

customers to the two classes and accordingly reject or accept them. 

Classification is connected to almost all other types of data mining technique. For 

example, a prediction problem can be transformed into a classification problem by 

discretisation of continuous class labels. Discretisation transforms continuous 

intervals into discrete values. Discrete intervals produce approximate numerical values 
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and can be used as class labels, hence leading to a classification problem. Description 

may be also transformed in a classification problem by producing an understandable 

class or concept. Classification also relates to the dependency analysis by clarifying 

the dependencies among attributes. Segmentation may also produce class labels or 

restrict datasets to classification models. It is also beneficial to analyse deviations with 

classification. Deviations can clarify patterns which would allow a good classification 

model. Conversely, a classification model can also be used to identify deviations. 

Example of classification 

A bank can evaluate credit risk of a new customer by classifying two classes: good 

and bad credit customers. The classification model can be generated based on credit 

risk data of existing customers. The generated model can then be used to allocate new 

customers to the two classes and accordingly reject or accept them (Chapman et al., 

2000). 

2.5.2.6. Prediction 

Prediction is an important technique that occurs in a many data mining applications. 

Prediction is similar to classification with the only difference that the target attribute 

of prediction is continuous not discrete (Witten, 1999). 

The aim of prediction is to find the numerical value of unseen objects with the target 

attribute. This type of problem is sometimes referred to as regression. It is also called 

forecasting if it is associated with time series data. 

Example of prediction 

The annual income of a company is correlated with other attributes such as exchange 

rate, promotion, inflation rate, and others. Having these values (or accurate estimates), 

the company can predict its expected revenue for the next year. 

2.5.2.7. Dependency analysis 

Dependency analysis is used to find a model which describes significant dependencies 

(or associations) among data items. Associations or dependencies may be used to 

predict the value of one data item based on information on other data items. 

Associations describe the affinities of data items (i.e., data items that often occur 

together). Although units can be used for dependency analysis, units are mostly for 

understanding only. A typical application scenario of dependency analysis or 
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association is the analysis of shopping baskets. A rule like “in 25% of purchases, 

peanuts and beer have been bought together” is a typical example for association. 

There are relatively efficient algorithms for detecting different associations in a set of 

data. However, selecting the most interesting association is the real challenge. 

(Shannon, 2002). 

Dependency analysis has a close relationship to classification and prediction, as 

associations are implicitly used to formulate classification and prediction models. 

Dependency analysis is also linked to concept descriptions, which often highlight 

dependencies. In applications, dependency analysis often co-occurs with 

segmentation. In large datasets, results of dependency analysis may not be significant 

because much noise occurs among the data items. In such cases, it is desirable to 

perform dependency analysis after segmentation has taken place. 

The sequential dependency model is a special type of dependency where the order of 

events is relevant. For instance, in the shopping basket example, the associations 

describe dependencies between items at a given point of time, whereas in the 

sequential pattern model, the purchase of a particular customer or a group of customers 

is described over a period of time. 

2.5.2.8. Clustering 

Clustering is an advanced data mining technique that is used to separate objects or 

observations into groups, where objects in one group are similar to one another and 

different from objects in different groups. 

Many data mining applications require partitioning data into homogeneous groups (or 

clusters) in order to discover interesting information from which to produce policy, 

for example, partitioning the customers of a bank into a fixed number of clusters. 

However, there are at least two reasons why it is not possible to extend the traditional 

methods of cluster analysis to data mining applications (Kerby, 2009): 

1. Traditional methods of cluster analysis are not efficient when databases have 

huge dimensions of terabytes size characterised by thousands of records and 

tens or hundreds of attributes. 

2. Traditional methods of cluster analysis do not require the presence of 

categorical variables with the subsequent special treatment of them and 

therefore the traditional way of dealing with categorical variables as numeric 
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variables does not always produce significant results, including the fact that 

the modes of categorical variables are not ordered. 

Even a method that allows the solution of one of the above problems may not suggest 

the possibility to extend to the other. For example, methods based on the concept of 

k–means are efficient for large datasets but have the disadvantage of being limited to 

numeric data. They, in fact, consist of algorithms that aim to identify homogeneous 

clusters by minimising a particular cost function defined by the average Euclidean 

distance between points in the dataset, where k are the points in a k–dimensional space. 

There are clear limits to the possibility of using these algorithms for categorical 

variables. However, the algorithms based on the k–means concept are a good starting 

point for building algorithms that also handle categorical data, while maintaining 

efficiency. In this context, an algorithm can be developed based on the k–medians 

algorithm, capable of handling common categorical variables in data mining, which 

leads to the algorithm of k–means when considering numeric variables only. 

Example: Data mining clustering with categorical variables 

Let X = {X1, X2, …, Xn} be a set of n objects and xi = {xi1, xi2,…, xim} represent the 

attributes of object Xi. 

A clustering operation denoted by a positive integer k is to find a partition that divides 

the objects in X into k disjoint groups. One possible way to achieve this is to analyse 

all possible partitions in order to find the one best suited for a classification problem. 

This will result in a very large number of possible options. If n objects have to be 

divided into k groups with n1 objects in the first group, n2 objects in the second group, 

and so on, up to nk objects in the kth group, where n1 + n2 + ……+ nk = n, then there 

are 
1 2

!

! ! ...... !k

n

n n n
ways to do that. 

However, the common solution in these cases is the choice of a grouping criterion to 

guide the user in searching in the set and then the groups that stem from it. The 

grouping criterion used to define a cost function, for example, can be as follows 

(Huang, 1997):  
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measure of similarity, often defined as the Euclidean distance, in this case, m-

dimensional space. d is defined as:    
2
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partition matrix Y has the following properties: 

i. 0 ≤ yil ≤ 1 

ii. 1

1
k

il
l

y
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The matrix Y of size n × k and any element yil is the matrix of partition, since each 

matrix is defined as single partition of n objects into k groups. 

Clustering high-dimensional data, encountered in many applications such as mining 

textual data resulting dictionary-size dimensions, is believed to be a computationally 

hard problem (Zeng & Cheung, 2008). In spite of the existence of a large number of 

proposed solutions to clustering high-dimensional data, most of these solutions 

compare a new proposition with one or two competitors, or even with a so-called 

“naïve” ad hoc solution, but fail to clarify the exact problem definition. As a result of 

that, it is often unclear whether the compared solutions tackle the same problem 

(Kriegel et al., 2009). 

A major challenge in the clustering area is dealing with high dimensional data. 

Dimensionality reduction is one of the widely used techniques for dealing with high 

dimensional data. It avoids the curse of dimensionality: The more data we have, the 

sparser the database is and consequently it is more difficult to cluster. Dimensionality 

reduction helps reduce the number of attributes, remove noise, reduce the time 

required for mining and facilitate data visualisation. Among the used dimensionality 

reduction techniques are: Wavelet Transform – PCA (Principal Component Analysis), 

Attribute Selection, Greedy Selection, Greedy Elimination, Breadth-based Selection 

and Evolutionary Algorithms. 
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Dimensionality reduction comprises the possibility of information loss. 

Dimensionality reduction can discard useful instead of irrelevant information (Law, 

2006). Sometimes as little as less than 1% of features are used to discriminate data 

with high dimensionality (De Oliveira & Pedrycz, 2007). Dimensionality reduction is 

not the only approach to handling high dimensional data. The naïve Bayes classifier 

has found empirical success in classifying high dimensional datasets (Law, 2006). 

However, the naïve Bayes classifier may result in skewed probability estimates due to 

the class conditional assumption. Moreover, dependencies among variables cannot be 

modelled with the naïve Bayes classifier (Neville, 2010). 

2.5.3. Features innovative programs for data mining 

Modern operating programs include parallel algorithms for data mining, which 

significantly accelerate the computationally demanding process. Other components 

are analytical tools such as regression, clustering (data division into similar groups, 

such as identifying customer segments for targeted marketing for quick understanding 

of the different segments and hence mediating visualisation tools) and decision tables 

for intuitive analysis of data. The modern element is the so-called boosting, which is 

to increase the accuracy of the model by repeated adjustment, to compensate for errors. 

Another useful function is to support the prediction of continuous (indiscreet) 

attributes, such as profit, turnover or market share, which enables suggesting business 

and marketing strategies.  

A very popular feature of Return-On-Investment (ROI) is their curves. They illustrate 

the costs associated with recommended actions and decisions. They are now a very 

important piece of information (SPSS, 2006).  

The tools also include faster error correction and more accurate business decisions for 

major progress. The quality tools may be integrated in the decision tables for 

customers with technical and business focus, which allows qualified managers to 

manage the operations of OLAP using a visual environment for displaying critical 

factors and their mutual relationships.  

Other interesting elements of a simplistic decision-making process are given in Table 

4. 



82 

Table 4: Elements of a simplistic decision-making process 

1. Navigating through the 3D objects 
2. Zooming in and out of data objects 
3. Graphic querying of databases 
4. Visual grading of data 
5. Repeated playback and animation 
6. Trend analysis using animation of more than two independent variables 
7. Visual filtering of data and information 
8. The possibility of global perspectives for details 
9. Custom steering angle on the data 

2.5.4. Hardware requirements 

For the purposes of data mining, it is necessary to deploy computers with high-

throughput, and high performance with a large volume of data. An important feature, 

too, is potential parallelism in data processing to speed up calculations. The 

requirement is, necessarily, good visualisation graphics hardware. Overall, it is 

necessary for visual processing of large amounts of data to use powerful hardware 

with a stable operating system and, if possible, with guaranteed throughput of the 

system.  

Consistent and effective use of data mining techniques for the management of a 

company gives an obvious advantage to companies that are or anticipate that they will 

be, for example, under great competitive pressure. Data mining has already found its 

place in industrial markets, commerce, telecommunications, government and the 

financial sector, being a powerful tool to support decision-making processes. It will 

be interesting to monitor developments in this field and practical applications. 

2.6. Data Mining in the Public Sector 

2.6.1. Overview 

Data mining is a deductive query processing – expert systems or small Machine 

Learning (ML)or statistical programs. O’Brien and Marakas (2010) mentioned that 

“data mining is a major use of data warehouse databases and the static data they 

contain”. Witten et al. (2011) stated that data mining is about providing solutions to 

problems by analysing data that already exists in database (data warehouse). Managers 

usually employ data mining in making their strategic decisions with a view to 

achieving competitive advantages. The decisions include those about the target 

market, customer relations management, market basket analysis, cross-selling and 
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market segmentation. By data mining, managers can also analyse budget forecasting, 

analyse risk in the business and monitor and control quality. There is no doubt that 

data mining can reveal new correlations, patterns, and trends in vast amounts of 

business data stored in a data warehouse. Figure X shows how data mining drives 

business knowledge from the data warehouse.  

 

Figure 14: How Data Mining Extracts Business Knowledge from a Data Warehouse [Source: 
O’Brien & Marakas (2010: p. 192)] 

2.6.2. Data mining process 

Du (2010) outlined three fundamental steps in the data mining process: (i) preparation 

of input data, (ii) mining of data, and (iii) post processing of output patterns. A brief 

discussion of the above follows ahead. 

2.6.3. Data preparation 

In this first step, data preparation needs to select appropriate data and collect them 

efficiently. This stage also involves pre-processing and formatting of the data and 

information. Figure X shows how data preparation works in the data mining process.  

 

Figure 15: Data Preparation in the Data Mining Process [Source: datapreparatior.com] 
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2.6.4. The mining process 

The second stage, mining of data, involves deriving real data from the input data to 

find patterns. In this process, a practical data mining task is required to comply with 

the objectives of the investigation. Figure X depicts how data mining selects from the 

input to find patterns in a business organisation.  

 

Figure 16: Mining of Data [Source: http://www.wi.hs-wismar.de] 

2.6.5. Post-processing of output patterns 

This stage covers any further processing of the discovered patterns after mining. The 

post-processing of output patterns includes pattern evaluation, pattern selection and 

pattern interpretation.  

2.6.6. Use of data mining in the public sector 

It has been found from research conducted by Pan and Li (2007) that data mining has 

been used by the governments of different countries for the last two decades. The 

authors further mentioned that the then president of the USA, Bill Clinton, introduced 

the technology of e-government in 1993, and it was approved by the National 

Performance Review Committee (NPRC). The aim of adopting technology in the 

government was to reduce the malpractice that existed in U.S. government 

management and services.  

According to Junhua (2002), China employed data mining for implementing e-

government in April 1998 under the government online project. The aim of 

introducing data mining was to improve services within the government departments 

and divisions.  

Malaysia introduced e-government in mid-1996 to implement the policy forthe 

Multimedia Super Corridor (MSC). 
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According to Balutis (2001), public organisations perform three different types of 

activities: Government-to-Customer (G2C), Government-to-Business (G2B), and 

Government-to-Government (G2G) through information systems. In G2C government 

usually provides information about different products and services including tourism 

and recreation, research and education, and also different downloadable forms. G2B 

provides the services including e-procurement, tax submission and management to 

different businesses and business professionals. G2G provides services within 

different departments and divisions of the government and is also used for 

communicating with different governments for different bilateral and multilateral 

issues. 

2.7. Chapter Summary 

This chapter provided a literature review of the main themes of the research. The 

chapter conducted an insight into the four main concepts of data, including data 

handling and improvement at the strategic level, namely, data quality, information 

systems, decision support systems and data mining. Section 2.2.4 showed data quality 

is important in the public sector, particularly because it helps the public understand 

the way organisations conduct their operations. Furthermore, it was shown in Section 

2.3 that the development of information systems has increased their complexity and 

added several extra elements other than data, hardware and software. This includes 

among others the human element, the organisational structure, and the classification 

criteria of the stored information. Modern forms of information systems have become 

a necessity for organisations in different fields due to their abilities to manage large 

amounts of information in organisations, nowadays. Public organisations are one type 

of organisation that usually acquire vast amounts of data. Management of these 

amounts may pose a challenge to these organisations given the sensitivity of the 

information they hold, as well as the choice of efficient information management 

systems. Furthermore, information systems can be very involved and complicated, and 

may require a significant amount of skill and knowledge. The vast amount of data 

handled by information systems may be significantly benefited from, given the right 

choice of tools. The chapter also provided details of the development of information 

systems, some of their main uses and applications, and aspects of utilisation in the 
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public sector. It also included an overview of the uses of information systems in Abu 

Dhabi in general and the Abu Dhabi Police Organisation in particular. 

It was also shown in section 2.4 that although decision support systems are important 

for improving data quality for decision-making in different aspects, they may be 

insufficient for the sole purpose. On the other hand, data mining techniques provide 

promising results when deployed on large amounts of data in extracting knowledge 

and hence helping decision-making. However, the choice of the data mining tools and 

techniques for a certain deployment is decisive for attaining good results. The chapter 

also highlighted the use of each of the explored concepts in the public and private 

sectors. It was shown in Section 2.6 that although there are common points of 

deployment of both concepts in each sector, there are distinguishing factors between 

the two sectors that should be highly regarded when deploying any solution. The 

chapter also provided aspects of established or potential uses of data mining and 

decision support systems in the public sector of the United Arab Emirates. 
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Chapter	3:	Methodology	

3.1. Introduction 

This research used the case study research strategy. This strategy is advocated in the 

literature when the research questions seek to explain how and why a certain social 

phenomenon works (Yin, 2013).  As per the questions set by this research, the case 

study strategy was used. The data from the case study organisations were collected by 

the means of interviews. This approach has several advantages over others. For 

example, the case study strategy is important to allow a rich understanding of the 

context of the research and the processes being enacted, and is mostly used in 

exploratory and explanatory research. The case study strategy also allows 

triangulation, which is a method of cross-referencing and validation of data collected 

from different sources (Saunders et al., 2009). 

Seven public (i.e. state) organisations from Abu Dhabi Emirate were chosen to 

represent the Abu Dhabi’s public sector. The choice of the organisations was based on 

several considerations but most importantly the involvement of these organisations in 

different federal bodies of the public sector in the country, such as law enforcement, 

traffic regulations, healthcare, and civil defence, among others. Furthermore, these 

organisations undergo continuous development and innovation to pursue best 

practices in digital information management. The organisations are: Abu Dhabi Police 

Organisation (ADPO), Al Ain Hospital, the Department of Economic Development of 

Abu Dhabi, the General Authority of Youth and Sports Welfare, Zayed Foundation, 

Tawam Hospital, and the Department of Municipal Affairs. ADPO is a major public 

organisation in the United Arab Emirates. 

Considering ADPO as one of the case study organisation has a significant outcome on 

the research. Particularly, it allows better generalisability of the attained results to 

other public organisations in Abu Dhabi Emirate and even the UAE. This is because 

ADPO is as a hub for many other government bodies and services in the entire country. 

Furthermore, research showed that ADPO is well-known for adopting best practices 

and international standards for information management, including decision support 

and strategic information systems. 
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This work argues that the quality of the data reaching decision makers is not sufficient 

relative to the impact of the decisions on the general public. Research shows that there 

is a positive relationship between data quality and efficiency of decisions: higher data 

quality promotes better decisions (Raghunathan, 1999). Therefore, in order to improve 

the decision making process, it is necessary to provide decision makers with quality 

data. 

A series of interviews and questionnaires were conducted at various levels in the 

chosen organisations in order to understand the decision making process undertaken 

in public organisations in Abu Dhabi, and hence identify data quality issues in the 

process. The study aimed not only to identify potential issues related to data quality in 

these organisations, but also to understand these issues and know their causes in order 

to suggest suitable remedies. 

The research question put forward by the study is: “What are the main challenges to 

effective decisions in public organisations in Abu Dhabi Emirate?” Based on this 

question, the study’s aim was to identify how much data quality is an issue in the 

decision making process in public organisations in Abu Dhabi by analysing the 

challenges to effective decisions in these organisations, and thus to explore solutions 

to data quality issues. The solutions would be organised in a normative framework that 

would allow a systematic approach to addressing these issues. The framework would 

provide quality measures for data flowing in the various channels in an organisation, 

which could be used to sift data according to criteria established by the framework and 

eventually improve data quality. The data quality framework would provide a data 

quality solution to the public sector based on an extensive study into data quality 

requirements and data problems encountered in the abovementioned public 

organisations in Abu Dhabi Emirate. The framework would also benefit from research 

on established solutions suggested by studies in the literature or adopted by relevant 

bodies worldwide. 

3.2. Data Collection 

Data collection started by observations while working closely with officials at ADPO. 

The observations were substantiated by informal meetings with managers at the 

Information and Systems department, and questionnaires with to 30 staff members at 

the department. The researcher spoke to staff members, senior officials and decision 
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makers over the phone and personally prior to conducting the formal interviews. It 

was noticed the data reaching decision makers underwent a series of processes and 

across a number of departments, which might affect its quality and relevance for the 

intended purpose. For example, ADPO has called for continuous data quality audits 

as per the large databases maintained by the organisation, yet these audits have not 

been undertaken. Furthermore, the central systems witness frequent lags and failures. 

The IT department reported that the information systems require extensive inspection 

and rework. An IT manager met face to face referred the systems’ issues to redundant 

databases and data inconsistency. Manager of Information and Systems at ADPO 

maintained that the issues are related to inability to implement appropriate data 

handling strategies, which cause issues with data quality and data suppliers, thereby 

affecting the IT systems. 

The above-cited issues induced from the empirical observations were all indicators of 

data quality problems, which led to the study’s hypothesis. Given at the time of the 

study that the data reaching decision makers went through a number of processes and 

across various organisational levels (i.e. transactional, managerial and strategic), the 

hypothesis put forward was that: the quality of the data is not sufficient for effective 

decisions in ADPO. In order to move forward to test this hypothesis, semi-structured 

interviews were conducted in ADPO with two senior managers in the period between 

26th May and 10th June 2013. 

The initial analysis of the results obtained from interviews, combined with the results 

from the observations, informal meetings and questionnaires, revealed that the 

decision making process was negatively influenced mainly by the poor quality of data 

reaching decision makers from the various sources. In order to answer the research 

question set earlier, the issue had to be investigated further by considering other public 

organisations in Abu Dhabi. The organisations considered were: Abu Dhabi Police 

Organisation (ADPO), Al Ain Hospital, the Department of Economic Development of 

Abu Dhabi, the General Authority of Youth and Sports Welfare, Zayed Foundation, 

Tawam Hospital, and Abu Dhabi’s Department of Municipal Affairs. The main 

interest the study scrutinised the decision making process in these organisations in 

order to learn of any data quality issues associated with the process. 

The theoretical sampling approach, that is, collecting data in order to build a theory, 

was used and data was collected in the form of interviews with decision makers. That 
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helped focus on issues with the quality of data reaching decision makers. All 

interviews were recorded, transcribed and coded. Grounded Theory was used as the 

theoretical framework to analyse and identify categories in the collected data. 

3.2.1. Overview of the case study organisations 

The information in this section was collected directly from the seven organisations 

through informal interviews with officials, supplied by the organisations upon request, 

and based on information publically available. The results were verified by 

documentary analysis from the literature review. 

3.2.1.1. Abu Dhabi Police Organisation (ADPO) 

ADPO operates with other UAE police departments through the Ministry of Interior 

to achieve a safer society. ADPO serves four major UAE districts: Abu Dhabi, Al-Ain 

City, the External Region, and the Western Region. ADPO has several units which 

include police patrol, emergency response, crime investigation, and traffic control. 

The primary objective of the organisation is to become an intelligence-led, proactive 

police force that reacts to the needs of society with the highest level of integrity and 

training. For this aim, ADPO has constantly undergone development of its information 

systems in order to integrate a range of processes that include the human side along 

with the software and hardware deployment with the ultimate goal of improving the 

accuracy and quality of their undertaken decisions. ADPO has established the 

“Decision-Making Support Centre” to help the organisation explore future challenges 

rather than just conduct research on current phenomena. The centre also helps in 

quality assessment and control. In 2011, ADPO implemented a Geographic 

Information System (GIS) in order to integrate people and processes for making better 

decisions (source: Direct contact with ADPO officials and published documentation 

by ADPO). 

3.2.1.2. Al Ain Hospital 

Al Ain Hospital is a highly specialised government hospital in health care and 

emergency. The hospital is one of the two main hospitals in the Al Ain area of Abu 

Dhabi Emirate. The hospital provides a wide range of general and specialised clinical 

services. Al Ain Hospital is also the base for medical education and training for two 

teaching institutes from Europe and the UAE. Al Ain Hospital is aiming at improving 
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its performance, expanding its services, enhancing the skills of workers and raising 

the efficiency of its existing medical facilities to provide an ideal medical care model 

in the region (source: The hospital’s vision and objectives available on its website). 

Al Ain Hospital gives great importance to interdisciplinary cooperation and team 

work, and seeks the highest standards of professional training and qualifications of all 

its advisers and staff. As such, the hospital deploys medical knowledge and 

entrepreneurial technology as a basis for the decision making process (source: direct 

contact with the hospital’s official. Details are provided in the discussion.). 

3.2.1.3. Department of Economic Development of Abu Dhabi 

The department aims to achieve economic development of Abu Dhabi, regulate its 

economic and business affairs, prepare economic studies of the overall social and 

economic issues, and analyse the elements that affect these variables. The relevant 

decisions taken by the department include the following endeavours: 

 Propose economic policies for the Emirate 

 Seek optimum utilisation of available resources 

 Design policies and procedures that contribute to increasing rates of economic 

growth, and to identifying trends, priorities and actions that enhance the 

competitiveness of Abu Dhabi Emirate 

 Identify areas of activities and services that make Abu Dhabi Emirate a 

distinguished local, regional and global centre. 

(Source: the above information is available on the department’s website). 

For the decision making process, the department collects and analyses statistics and 

figures, conducts studies, and prepares feasibility studies of different projects (source: 

direct contact with the department’s official. Details are provided in the discussion.). 

3.2.1.4. General Authority of Youth and Sports Welfare (GAYSW) 

GAYSW is the supreme governmental authority responsible for the welfare of youth 

and sport sector in the UAE. GAYSW plays a leading role in providing a positive 

attractive environment that enables youth (including the gifted and talented) to 

develop physical and mental abilities, utilise free time, improve creative skills, deepen 

national identity principles, and promote loyalty, belonging and voluntary work sense 

(source: the GAYSW website). 
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GAYSW uses a set of statistical and decision support tools in its decision process, 

which range from human insights based on experience and knowledge, to scientific 

and statistical methods to make decisions. The aim is to provide competitive edge and 

improve results at the national and international levels (source: direct contact with the 

GAYSW officials. Details are provided in the discussion). 

3.2.1.5. Zayed Foundation 

Zayed Foundation is a charitable organisation that aims to contribute to society and 

support cultural and humanitarian centres and scientific research institutions involved 

in raising awareness of national traditions, customs, and scientific efforts for the 

development of human civilisation (source: the Foundation website). 

The foundation believes that the main aspect of achieving efficient decision making is 

developing the skills of staff. For that, the foundation participates in national and 

international training projects and programmes and coordinates with the competent 

authorities in national initiatives for best practices. It also establishes and promotes 

corporate values and applies the system of governance for the sole aim of achieving 

the best return possible on investment (source: direct contact with the Foundation 

officials. Details are provided in the discussion). 

3.2.1.6. Tawam Hospital 

Tawam Hospital is a semi government hospital that provides healthcare services to the 

community of Al Ain and referral services to the UAE and surrounding GCC 

countries. One of the largest hospitals in the UAE, Tawam Hospital aims to provide 

quality health care services that meet the needs and expectations of the UAE 

population and the surrounding GCC countries (source: the hospital’s website). 

The decision making process at the hospital is undertaken by a team of managerial and 

medical experts. They make use of the wealth of information provided by the 

hospital’s database and decision making systems. Decision makers at the hospital also 

liaise and cooperate in some cases with Ministry of Health officials and state policy 

makers to ensure that the hospital’s decisions align with the country’s overall 

healthcare policies (source: direct contact with the hospital’s officials. Details are 

provided in the discussion.). 
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3.2.1.7. Department of Municipal Affairs (DMA) 

The Department of Municipal Affairs (DMA) acts as a focal point of all municipal 

planning and oversees public projects in Abu Dhabi Emirate. DMA aims to produce 

efficiencies and higher customer satisfaction in accordance with the national policy 

agenda, which represents a new era in municipal services to the general public. 

As a regulatory body, DMA supervises three regional municipal councils and 

municipal administrations: Abu Dhabi Municipality, Al Ain Municipality and Western 

Region Municipality. 

The decision making process in DMA is based on its organisational structure: 

 Local Governance: responsible for the municipal regulations, strategic support, 

municipal council management and customer complaints 

 Municipal Support: responsible for municipal operations support, inter-

department coordination, and training 

 Property Registrar: responsible for handling complex property requests and 

transactions, and managing the Property Registrar database 

 DMA Support Services: responsible for providing administrative and legal support 

to the DMA. 

(Source: the department’s website and direct contact with officials). 

3.2.2. Interview procedure 

At this stage, the study aimed to particularly scrutinise the data at the decision makers’ 

side. The interviews were set to assess how data arrived and how was used in decision 

making. The hypothesis proposed after the earlier surveys/observations detailed above 

was that the quality of the data reaching decision makers is not sufficient for effective 

decisions. In order to test the hypothesis, semi-structured interviews were conducted 

face to face with two senior staff members in each organisation (between 1st and 10th 

June 2013 in ADPO and in October 2014 and November 2014 in the other 

organisations). The theoretical sampling approach was used to obtain data from the 

interviews. The theoretical sampling approach enables comprehensive comparisons 

across the conducted interviews and arriving at insights that are well-established in the 

data (Laperrouze et al., 2010). Furthermore, according to Charmaz (1990, cited in 
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Calman, 2012), theoretical sampling is used to generate further data to confirm or 

refute original categories. 

Two senior managers from each organisation were interviewed as shown in Table 5.  

Table 5: The interviewees’ posts in the organisations 

Organisation Interviewee Post 

Abu Dhabi Police Organisation 
(ADPO) 

Interviewee 1: Director of Strategy and 
Performance Development 

Interviewee 2: Head of IT and Systems 

Al Ain Hospital 
Interviewee 3: Operations Director 
Interviewee 4: Quality Assurance Manager 

Department of Economic 
Development of Abu Dhabi 

Interviewee 5: Strategic Planning & 
Performance Management 
Director 

Interviewee 6: Project Manager 
General Authority of Youth 
and Sports Welfare 

Interviewee 7: Quality Control Manager 
Interviewee 8: Policy Control Director 

Zayed Foundation 
Interviewee 9: Director General of the Strategic 

Planning Department 
Interviewee 10: Assistant Manager of Finance 

Tawam Hospital 
Interviewee 11: Senior Operations Officer 
Interviewee 12: Cost Control Manager 

Department of Municipal 
Affairs 

Interviewee 13: Strategic Planning Director 
Interviewee 14: Human Resources Manager 

 

3.3. The Analysis Approach 

All interviews were recorded, transcribed and coded. The theoretical framework used 

to analyse the collected identified categories in accordance with Grounded Theory 

(Glaser & Strauss, 1967). Grounded Theory is one of the main analytic methods used 

to understand a certain phenomenon and to develop a research hypothesis. Urquhart 

and Fernandez (2006) maintain that the use of Grounded Theory as a research method 

has gradually increased in information systems over the past few years. This is based 

on the fact that the qualitative approach has widely spread in most management 

disciplines (Urquhart & Fernandez, 2006). The grounded analysis was used as the 

main theoretical framework for data analysis. This type of analysis is a form of 

inductive qualitative analysis. Grounded analysis is ‘grounded’ in the way that it 

implicates listening to the collected data. It is based on key aspects of Grounded 

Theory, but deviates from Grounded Theory in some important respects, which all aim 
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to provide a more practical approach to attaining the goal of understanding data in 

hand. 

3.4. Summary 

This chapter described the methods used by the research. The research used the case 

study strategy for collecting primary data using semi-structured interviews. Case 

studies of seven public organisations in Abu Dhabi Emirate were considered. The case 

studies provided a rich understanding of the context of the research and the processes 

being enacted. Later chapters in this thesis provide the details of the findings from the 

collected data and a discussion of their relevance. The discussion chapter shows how 

the data led to a data quality framework intended to identify areas of improvement for 

of quality data flowing in the different channels in Abu Dhabi’s public organisations. 
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Chapter	4:	Data	Mining	for	Data	
Quality	

4.1. Introduction 

It is not an exaggeration to claim that the current age is overwhelmingly characterised 

by an unprecedented flow of information, which is largely boosted by the 

advancements in digital technologies and smart devices. There are enormous amounts 

of data that are generated and communicated on a daily basis worldwide. These data 

need to be stored, maintained, and highly possibly retrieved in the future. “Big Data” 

is the term which essentially refers to the large datasets that pose extreme challenges 

in data processing using traditional methods. Big Data have incited scientists in 

different areas into studying and understanding particular relevance and interests in 

them (Boyd & Crawford, 2011). 

Due to the high need for storage and maintenance of large amounts of data, special 

processes have been proposed and implemented to perform efficient data handling. 

Data mining is a process in which an individual or an organisation employs certain 

methodologies that use various techniques to explore the large datasets and from them 

extract information of interest. Such information could lead to knowledge or 

significant information that may identify certain patterns and trends from the database. 

The obtained patterns or trends can further be used by the organisation in its decision 

making process (Larose, 2014).  

There are several tools and techniques used in the field of data mining. Figure 17 gives 

a broad classification of data mining techniques into two classes: Classical techniques 

and Modern techniques. A few examples of data mining techniques in both the classes 

are also illustrated. 
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Figure 17: Classification of data mining techniques 

In the following sections, some of the most commonly employed tools and techniques 

of data mining by organisations are introduced and their efficiency is analysed. 

4.2. Tools for Storage, Retrieval, and Management of Data 

An important and essential feature of database management systems is the storage and 

retrieval of data. Depending on the field of application, data are stored for different 

reasons and for different lengths of time. With increasing adoption of real-time 

systems where data need to be stored and retrieved at extremely short intervals, and 

when the amounts of data stored are huge, it is important that appropriate tools be 

used. Some of the common tools are described below. 

4.2.1. Hadoop systems 

One of the most popular tools for the storage and batch processing of large datasets is 

the Hadoop Distributed File System. Hadoop is an open-source software application 

which is widely used. Functionality-wise, Hadoop breaks the data and distributes it 

across various clusters of servers. When particular data is to be retrieved, it uses the 

MapReduce framework which maps the query to the appropriate data cluster. The 

MapReduce framework was originally developed by Google and adapted in the 

Hadoop systems.  
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Despite its remarkable performance, open-source availability and wide adoption, some 

of the issues associated with Hadoop are: it cannot be implemented in real-time 

systems, a lack of expertise on Hadoop systems, and other related challenges. 

Nevertheless, it is a powerful tool and organisations can adopt it depending on their 

requirements. Large organisations such as Google, IBM, and Yahoo are using Hadoop 

systems for their search engines and advertising (Rouse, 2012). 

4.2.2. NoSQL tools 

Traditional databases were not designed or equipped with technologies to meet the 

demands of recent database-driven devices. NoSQL databases are recent types of 

databases which are designed to handle faster query speeds for large volumes of data. 

One of the popular tools for managing NoSQL database is the Apache Hbase. It, again, 

is an open-source framework with wide support from governmental and research 

communities. Organisations requiring to meet real-time demands could adopt such a 

tool for their database handling. For instance, Facebook adopted Apache Hbase over 

MySQL in order to better manage their email, chat, and text messaging systems. It is 

also used to store, manage and retrieve the incredible amounts of data and metadata it 

generates (Metz, 2010). 

4.3. Data Mining Techniques 

4.3.1. Genetic algorithms 

Genetic Algorithms (GAs) are based on the theory of natural evolution. This technique 

uses stochastic methods for exploring large databases, which simulates the 

evolutionary processes such as inheritance, mutation, selection and crossover. To 

briefly explain the GA process, the entities which can be a potential solution are 

iteratively evolved towards better solutions. During this evolution process, an entity 

can be mixed with other entities (simulating mutation) and eventually converges to a 

solution which is considered as optimal (Gordini, 2014). Figure 18 illustrates the GA 

technique. 
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Figure 18: Illustration of the Genetic Algorithm technique (Kar, 2011). 

A significant feature of GAs is that they provide a solution from a host of potential 

solutions. The GA process initiates potential solutions and chooses the best from them 

over several iterations. This makes the obtained solution optimal and more robust. 

GAs can also be easily implemented without a pre-requisite of high mathematical 

knowledge and are easily portable. In scenarios where it is not possible to define 

gradient or derivatives, GAs can potentially offer solutions. 

Despite some of the above advantages, a drawback of GAs is that the solutions 

provided by them are optimal for a local scenario, i.e., a local optimum. The same 

solution cannot be emulated as a global solution. Therefore, in situations where the 

data is continuously changing or highly dynamic, especially in real time, the 

implementation of GA might not give efficient solutions. Furthermore, defining the 

entities of the GA process (referred to as chromosomes) might be a difficult process 

in some scenarios (Sivanandam, 2008). 

Today, GA-based data mining is used in various applications, one being the stock 

markets. Several companies have implemented GA-based data mining techniques in 

stock market analysis and financial market predictions. Companies such as Ultragem 

have specialised in providing data mining technologies based on genetic algorithms 

(Lapointe & Desieno, 2003). 
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4.3.2. Artificial neural networks 

Artificial Neural Networks (ANNs) are a set of models that can be used for data 

mining. As the name suggests, ANNs are based on neural networks of the brain. 

Essentially, ANN methodologies detect pattern in the dataset and based on those 

patterns, prediction models are built. An important aspect of ANNs is that they require 

training sets which are used further for pattern detection and prediction. With this type 

of working process, ANNs are perceived to be highly efficient data mining solutions 

with the ability to provide high accuracy for different types of problems (Berson, 

2004). 

A challenge of using ANNs for data mining is that they require an adequate training 

set to train the prediction model. Quite often, deciding the nature and scope of the 

training set may turn out to be an issue. The training process must be stopped at the 

right time in order to avoid overtraining or over fitting of the prediction model. 

Further, a neural network once trained cannot be retrained with a new training set. 

Therefore, in dynamic datasets using neural networks, this might pose challenges in 

efficiency. However, current research in ANNs is developing efficient algorithms 

towards addressing these issues. 

4.3.3. Decision trees 

Decision trees are one of the oldest and most widely used data mining approaches for 

various applications. Essentially, a decision tree is a predictive model in the shape of 

a tree where each leaf or branch represents a classification of the data. Different types 

of algorithms are used for data classification for making the decision tree. Figure 19 

depicts the decision tree process. 



101 

 

Figure 19: Illustration of the decision tree process 

Effectively, decision trees put the data into different segments by predicting the 

segments form the entire dataset. The most attractive feature of the decision tree is that 

it represents the data in an easy to understand and interpretable manner. Because of 

this simplistic way of representing the data, decision trees are widely preferred in 

business and government organisations. Also, decision tree approaches do not 

necessarily require pre-processing of the data and thus work on raw data (Maimon & 

Rokach, 2005). However, decision trees are also instable in terms of the precision of 

the data used. Minor changes in the data can sometimes potentially lead to major 

changes in the associated decision tree. Therefore, in contexts where the data changes 

dynamically or in case of presence of noisy data, decision trees may not perform 

adequately. Furthermore, for very large datasets, the decision trees can become too 

complex to understand (Nayab, 2011). Therefore, application of decision trees must 

be done in line with the nature of the datasets being analysed. For instance, decision 

trees can be efficient for pre-defined data or for managing relatively small amounts of 

data of an organisation. 

4.3.4. Big data analytics 

In the past few years, the term “Big Data” has drawn considerable attention in different 

avenues, such as industry, media and research community. Essentially, Big Data is the 

process of analysing extremely large amounts of data to identify hidden patterns, 

correlations within the dataset, and other relevant information which could shed light 

on new types of information. Popularly, Big Data is associated with the so-called 
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“petabyte” size data, which is equal to 1015 bytes of digital information (Srinivasa & 

Bhatnagar, 2012). 

The Big Data phenomenon gained momentum when researchers from Google were 

able to demonstrate that their data analytics were able to identify more accurately than 

the government the spread of influenza. It is also believed that Big Data analysis was 

used in the presidential elections of President Obama in order to understand individual 

voters and hence target them individually (Issenberg, 2012). Today, large companies 

such as IBM are developing advanced tools for Big Data analysis for various 

applications. 

There is some scepticism about the term Big Data, especially in the research 

community. Scholars consider the term to be a more “glamorous” way of expressing 

existing data mining and processing technologies. Even though Big Data is essentially 

data mining and processing, it aims further at merging several disciplines of predictive 

analysis, data analytics and others for analysing huge amounts of data which are 

believed not explored to their maximum potential by existing business intelligence 

programmes (Rouse, 2012). Business organisations are increasingly accepting the 

belief that Big Data analytics is essential to businesses and can potentially redefine 

their market competencies. There has been an increasing adoption of Big Data 

analytics and it has gained interest from different business fields and government 

organisations. Big Data analytics is hence expected to play an important role in the 

near future in different respects (Columbus, 2014). 

4.3.5. Social media data mining 

The ubiquity of social media is so obvious that the need to emphasise its presence in 

our daily lives is minimal. Huge amounts of text (as well as other multimedia formats) 

are generated on an hourly basis on social media across the globe, rendering data 

mining in social media as an enormous interest for governmental and business 

organisations. For instance, Asur, and Huberman (2010) show that discussions on 

Twitter could be used to predict box office performance of a movie using their 

prediction model. Furthermore, their prediction model could also be adapted to predict 

the business prospects of various other businesses. Some other social media websites 

such as LinkedIn are used by organisations to identify potential employees for their 

businesses. Furthermore, social media is today an effective tool for marketing. For 
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instance, the largest social network, Facebook, can be used in a variety of ways to 

target individuals for marketing. Several Facebook-related tools such as “Like 

Button”, “Booshaka” and “Social Graph” provide data visualisation and analysis 

which can be used to target individual users for marketing purposes. For instance, the 

“like button” tool can be an indicator of what people “like” on Facebook (Odden, 

2010).  

Generally speaking, social medial can be a mine of data for understanding the general 

public disposition about certain events, better understand human interaction, and 

reshape business models, among other things (Tang & Liu, 2010). 

Different types of data mining approach are tested on social medial platforms. For 

instance, Cugliari and Guille (2014) use Event Detection with Clustering of Wavelet-

based signals (EdCoW) to analyse the temporal dynamics of word frequency on 

Twitter. A graph-based structure mining methodology was used by Corley et al. (2010) 

to develop a disease surveillance model for diseases such as influenza from the web 

and social media. The report showed that social media could be used to identify a 

public disease outbreak and hence used for targeted public health communications.  

Social media data mining is an emerging field and is currently a subject of keen 

research interest. Nevertheless, the nature of social media poses several challenges. A 

major one is that social media is very big, unstructured and messy. Therefore, to 

identify the data of interest is a major challenge. Further, social media can give rise to 

questions of authenticity, reliability, consistency, and are inherently noisy. Also, in 

many data mining techniques, training data is required, which in many cases might not 

be possible to obtain from social media. Therefore, it can be said that social media 

data mining is an emerging field which requires its own computational approaches for 

data mining (Zafarani et al., 2014). 

4.4. Data Mining Tools 

In order to cater to the demands of the data mining (DM) requirements of various 

organisations, different types of data mining tools are being introduced onto the 

market. Today, there are several commercial and open-source data mining tools 

available. 
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Table 6 lists some of the popular data mining tools widely used and also lists the DM 

techniques they support. 

Table 6: Some of the commonly used data mining tools and the techniques they support 

Tools DM techniques supported 
IBM SPSS Modeller Statistics, Clustering, Neural Networks, Data modelling 

SAS data mining Predictive and descriptive data modelling, data 
visualisation 

Orange Decision trees, machine learning, data visualisation 

Viscovery  Predictive data analytics 

Statistica Statistical data mining techniques 

WEKA Classification, clustering, statistics, data visualisation 

Apache Mahout Machine learning, clustering and classification 

R Machine learning, support vector machine, statistical 
analysis 

NetMiner Social media data analysis 

 

Some of the most popularly used data mining tools are classified in the following 

sections. 

4.4.1. Open-source data mining tools 

There are several open-source data mining tools available which are largely used by 

researchers and academicians. The types of data mining support provided by the open-

source tools varies depending on the developers, however, the open-source tools are 

quicker to update with the latest data mining algorithms. Some of the most popular 

ones are RapidMiner, Python, Orange, R, QDA Miner, among several others. The R 

software is the most common and is described below. 

4.4.1.1. R 

The R open-source software is one of the most popular data mining tools currently in 

use by individuals. According to a survey of 700 respondents conducted by 

KDNuggets.com in 2013, 61% of the participants use the R environment. 

Interestingly, R environment is not offered as a data mining tool yet is widely used as 

one. 
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The R environment is open-source software which is strongly supported by an active 

group of developers. It supports a variety of software packages and is also highly 

flexible for integration of different modules, graphical user interfaces, and libraries. 

There are over 2,000 libraries available for the R environment. Therefore, it is more 

likely that the R software would include the latest data mining algorithms faster than 

the commercial ones (Team, 2014).  

Despite the above benefits, some limitations with the R environment may arise. It is 

mainly a command line based tool, therefore does not offer the convenience of user 

interfaces. However, other tools such as “Rattle” provide user interfaces to R. Further, 

since it is an open-source tool, it might pose challenges or limitations and security 

vulnerability for applications in large organisations, and also there might be 

inadequate technical support available from the developers (Cortez, 2010). 

Nevertheless, the R environment is still widely popular and can be used by the research 

community and small and medium-sized enterprises for their general data mining 

purposes. 

4.4.1.2. WEKA 

WEKA is a software application that provides implementations of learning algorithms 

to datasets. WEKA stands for the Waikato Environment for Knowledge Analysis. The 

original aim of WEKA when it was introduced in 1992 was to attain a unified work-

bench to allow researchers easy access to modern techniques in data mining and 

machine learning. At that time, learning algorithms were used on different platforms, 

available in various languages, and operated on various data formats (Hall et al., 2009). 

WEKA provides not only a toolbox of learning algorithms, but also a framework 

inside which researchers can implement new algorithms without having to be 

concerned with supporting infrastructure for data manipulation and scheme 

evaluation. Currently, WEKA is recognised as a pioneer software application in data 

mining and machine learning. It has attained widespread acceptance within academia 

and business circles, and has become a widely used tool for data mining research.  

WEKA gives users free access to the source code, which has improved its 

development and facilitated the creation of many projects that incorporate or extend 

WEKA (Hall et al., 2009). 
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4.4.2. Proprietary data mining tools 

The wider use of data mining is concentrated in the business environment and 

specifically under what is known as Customer Relationship Management (CRM). 

CRM focuses on building a long-term profitable relationship by the business with its 

customers and is an important approach in almost all businesses. Data mining tools 

can be used for developing CRM in a business. Data mining can be used to identify 

customer interests and target them for marketing products accordingly. It can also be 

used to maintain retention of the customer base. In CRM, data mining tools can aim 

to perform one or several types of data modelling, such as: classification, clustering, 

forecasting, regression and visualisation. These tools can help identify the customer 

relation patterns, optimise business processes according to changing customer needs 

in order to maximise profit, and get a better understanding of customer behaviour and 

preference. These tools are especially relevant in retail industries (Bhate & Patil, 

2014). 

There are numerous commercial software applications and tools which do data mining 

for commercial use. Some of the most popular ones are Oracle, SAS, SPSS, Insightful 

Miner, and others. Each application caters to different demands and mostly offers 

customisation to suit the organisation needs. The most common targeted aspects of 

data mining for business applications are (Ranjan & Bhatnagar, 2008): 

 Customer profiling 

 Targeted marketing 

 Market basket analysis 

 Managing relationship with the customer 

 Fraud detection 

 Avoid customer attrition 

 Mine unstructured data. 

4.4.3. Social network analysis tools 

The increasing importance of data mining in social networks is described in the 

previous section. Despite data mining being a relatively new phenomenon in the 

context of social media, there are several tools available in particular for social 

network analysis. According to Combe et al. (2010), a social network analysis 
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software application is expected to have basic functionalities such as: data 

representation where the data can be represented in graphs and nodes, visualisation 

where the graph can be represented with different approaches, characterisation using 

indicators where indicators can be used to represent the network at various levels, and 

community detection where a set of points having strong connections can be 

represented as a community of data.  

There are several open-source and commercial tools for social network analysis. Some 

of these are InfiniteGraph, GraphStream, Gephi, Netminer and AllegroGraph. The 

NetMiner tool is very common and is briefly described below. 

4.4.3.1. NetMiner 

NetMiner is a social network analysis tool which facilitates network data exploration 

and visualisation interactively. It performs various types of statistical analysis on the 

networks and visualisation of its data. It also uses the Python scripting language which 

is an open-source programming language. NetMiner is also available in a non-licensed 

academic version (NetMiner, 2014). 

4.5. Data Mining as a Tool in Public Sectors 

Data collection, storage, maintenance, and retrieval processes by government agencies 

have always been executed with different approaches in accordance to the times and 

technologies. Like other organisations, government agencies nowadays are widely 

adopting digital approaches for data handling. The emergence of recent allegations of 

breach of privacy, for example, by Edward Snowden in the U.S. government, poses a 

complex question of legitimacy of data collection and mining by the public sector. 

Nevertheless, government agencies have been implementing data mining tools for 

various applications. 

The U.S. government uses data mining tools for identifying patterns related to criminal 

activities. This was adopted more intensively after the 9/11 attacks. The U.S. 

government applies various surveillance programmes that use data mining tools. Some 

of the programmes are the domestic surveillance programme, total information 

awareness, terrorist surveillance programme, among others. All of these programmes 

focus on identifying detectable patterns related to criminal activities (Cate, 2008). The 

U.S. government has defined its principles for data mining in its report “Principles for 
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Government Data Mining: Preserving Civil Liberties in the Information Age” as part 

of “The Constitution Project” (Sloan & Sharon, 2010). The United Kingdom 

government uses data mining tools for not just detection of patterns of criminal 

activities but also for assistance in providing social benefits to individual groups, 

identification of people who are at risk of harm, or who pose risk to others (Parliament, 

2009). The government of Ireland has used data mining tools to better target selection 

for auditing purposes. The Irish government used data mining techniques to identify 

targets who are potentially non-compliant or tax-evading. They used SAS Enterprise 

Miner and SAS Enterprise Guide to identify potential targets (Cleary, 2011). The 

research finds no indications that data mining is currently in use by any public 

organisations in the UAE. 

4.6. Summary 

Despite the spectacular accomplishments of current data mining methodologies, there 

still exists an enormous challenge in data management that needs to be addressed. As 

the Internet and digital communication have become widespread over the past two 

decades, it is important that more efficient data handling solutions be developed.  

The applications of data mining technologies are varied. The major applications of 

data mining are still in the retail industry. The majority of the data collected are 

required by business organisations to target specific groups of customers. However, 

data mining can also play a significant role in the public sector where data patterns 

could be used to identify crime, diseases, etc., at earlier stages. Furthermore, public 

sector agencies can also use data mining techniques to plan and provide appropriate 

social services to individuals, groups or communities. 

The risks to data privacy and security have also increased with the increasing 

transformation to digital platform. The data mining tools and technologies should also 

focus on minimising these risks. There is a need to develop a generic framework 

wherein public organisations and government agencies could ethically share and 

manage data. 
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Chapter	5:	Data	Mining	based	
Experiments	for	Data	Quality	
Enhancement:	Using	Classifiers	
to	Predict	Missing	Data	Values	

5.1. Introduction 

This chapter provides an implementation of data mining classification on datasets 

provided by one of the Abu Dhabi public organisations studied, namely, ADPO. The 

aim is to use classification to predict missing data values in the datasets. The 

experiments reveal that different success rates are attained by using various classifiers. 

Related Publication: 

Al-Ketbi, O., & Conrad, M. (2013). Supervised ANN vs. Unsupervised SOM to 
Classify EEG Data for BCI: Why can GMDH do better?. International Journal of 
Computer Applications, 74. 

5.2. Implementing Data Mining: Classification of ADPO 

Traffic Data 

5.2.1. Applying data mining on traffic data: Choice of classification 

A data mining classification method is implemented in this section based on real data 

obtained from ADPO. The choice of classification was based on the insight into the 

data problems the organisation faces gained from an interview with the manager of 

Information and Systems. The datasets obtained from the department embedded a 

number of quality issues in terms of completeness, consistency and accuracy. These 

issues may be addressed by classification, given that robust pre-processing data 

cleansing and preparation are conducted (Blake & Mangiameli, 2011). 

In the interview conducted with the manager of Information and Systems at ADPO, 

he stated that “electronic formats of data are the most dynamic and vital information 

the organisation possesses since we are working towards minimising our paper use to 
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minimal.” The manager added that “we are looking for ways to deploy and benefit 

from our data yet currently the uses of the data are limited to storage and retrieval.” 

The data and information held in the organisations are described in Table 7. 

Table 7: Types of data held in ADPO 

How are data 
stored? 

What are the 
data types? 

How are data handled? What operations do 
data undergo? 

Databases Numeric, 
textual 

Database management 
systems. Electronically 
stored and backed up. 

Basic data entries, 
retrieval, and queries 

Spreadsheets Numeric, 
textual 

MS Excel. Electronically 
stored and backed up. 

Basic data entries, 
retrieval, searches and 
sorts 

Documents Textual Word processors, PDF. 
Electronically stored and 
backed up. 

Word processing, 
operating system 
searches and retrieval 

Hard copies Textual, 
numeric 

Physically stored. Basic archiving 
techniques. 

A typical example of datasets that ADPO obtains and processes on a daily basis is 

traffic data. Huge amounts of data are received in a continuous manner. These data 

include details of traffic offences, such as type of offence, date, time and place of 

offence, nationality of the offender, age of the offender, profession of the offender, 

among others. These data are stored in spreadsheets and processed by basic operations, 

such as editing, sorting, searching, and some other similar operations. Currently, these 

data are not saved in databases nor managed with a database management system. 

The Information and Systems department in ADPO, upon the researcher’s request, 

provided three spreadsheet files. Each file contains up to 5,000 records as detailed 

above. The department manager maintained that these data come to the department 

incomplete and missing certain details due to several factors, essentially suffering the 

above highlighted data quality issues. The reasons vary by issue, but can be 

summarised in three major aspects: simply unavailability of the missing details, 

misinterpretation by the law enforcement officer of the received information, human 

errors at the collection and/or entry levels. 

A number of traffic datasets were obtained from ADPO in MS Excel format. The 

datasets contained a relatively large amount of records with several quality issues as 
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detailed above. The datasets underwent pre-processing and cleansing in order to 

generate suitable training sets to generate classification models. 

The experiments were conducted on WEKA software and five classifiers were used to 

generate models that aimed to classify the data fed and hence use the models for 

prediction. The generated models were tested with test datasets extracted from the 

original dataset received from ADPO. Running the model with the test data revealed 

the accuracy of the model generated by the specific classifier. Figure 20 depicts the 

process. 

 

 

 

 

Figure 20: Classification was conducted using different classifiers. Each generated model was 
tested with the same test dataset in order to evaluate the model’s accuracy 

5.2.2. Classification in WEKA 

WEKA provides a large number of classifiers for different purposes, ranging from 

simple to complex. The classifiers are divided into categories and each category has a 

number of classifiers (e.g., as in Figure 21). 
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Figure 21: WEKA provides a considerable number of classifiers for different purposes 

WEKA provides not only a toolbox of learning algorithms, but also a framework 

inside which researchers can implement new algorithms without having to be 

concerned with supporting infrastructure for data manipulation and scheme 

evaluation. This approach is particularly used in this experiment for the Support 

Vector Machine (SVM) classifier. 

Currently, WEKA is recognised as a pioneer software application in data mining and 

machine learning. It has attained widespread acceptance within academia and business 

circles, and has become a widely used tool for data mining research.  

WEKA is free and gives users free access to the source code, which has improved its 

development and facilitated the creation of many projects that incorporate or extend 

WEKA (Hall et al., 2009). 
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The following is a brief description of some of the WEKA classifiers that are made 

available to users. One is introduced in each category apart from the miscellaneous 

category which has 3 classifiers. It is not the purpose of this section to provide a full 

account of the WEKA classifiers. It rather aims to provide some examples of these 

classifiers in order to introduce the reader to these classifiers and their uses. For a 

detailed description of each classifier available for WEKA along with references to 

publications, the interested reader may want to consult Theofilis (2013). 

1. Bayes: Let U= {x1,x2, … ,xn} be a set of n variables. A Bayesian network 

structure BS over U is a Directed Acyclic Graph (DAG) along with a set of 

probability tables BP = {p(u | pa(u)) | u	∈	U} where pa(u) is the set of parents 

of u in BS (Bouckaert, 2008). 

- Example: NaiveBayes: This classifier uses the Naive Bayes classifier with 

estimator classes. Training data are used to choose the values of the 

numeric estimator precision. Therefore, the classifier is not an Updateable 

Classifier, whereby data are initialised with zero training instances. 

2. Functions: As the name indicates, the function classifiers in WEKA are those 

classifiers that model data inputs using certain functions. One of the popular 

classifier in this category is the multilayer artificial neural network given in the 

example here.  

- Example: MultilayerPerceptron: This classifier uses backpropagation to 

classify data instances. The network can be manually built or created by an 

algorithm or both. The network can also be supervised and altered during 

training time. The nodes in the network are all sigmoid: S t =
1

1+e-t. 

However, if the class is numeric, the output nodes become unthresholded 

linear units. 

3. Trees: Decision trees form a simple and straightforward way to classify data. 

A decision tree classifier bases its classification decision on a series of 

questions about the attributes of the data. Each time an answer is received, a 

follow-up question is posed until a conclusion about a class label is reached. 

- Example: J48: The J48 algorithm is used for generating a pruned or 

unpruned C4.5 decision tree. J48 builds decision trees from a set of labelled 

training data using the information entropy concept based on the fact that 
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each data attribute can be used to make a decision by splitting the data into 

smaller subsets. 

4. Lazy: The lazy classifiers differ from other classifiers. Lazy classifiers store 

all training samples instead of building a classifier until a new sample needs to 

be classified. They differ from eager classifiers, such as decision trees, which 

build a general model before receiving new samples. 

- Example: The IB1 Nearest-neighbour classifier: This classifier uses the 

normalised Euclidean distance	
√

 , where de is the Euclidean distance, 

to find the training instance closest to the given test instance, and predicts 

the same class as the training instance. When multiple instances have the 

same smallest distance to the test instance, the first one found is the one 

used. 

5. Rules: Classification based on rules is attained when data undergo a number 

of previously set and progressively established rules until a classification 

decision is made.  

- Example: ZeroR: This classifier determines the median (in the case of 

numeric values) or the most common class (in the case of numeric values). 

It essentially tests how well a class can be predicted without considering 

other attributes. It is mainly suitable as a lower bound on performance. 

6. Meta: Meta classifiers evaluate the correctness of base classifiers. A Meta 

classifier is trained to predict the correctness of each classification of the base 

classifier and assesses whether the classification is reliable (Kaptein, 2005). 

- Example: Classification viaRegression: Using this classifier allows the 

user to do classification using regression methods. The class is converted 

to binary format and one regression model is created for each class value. 

7. Multi-instance: Multi-instance classification is a supervised learning 

technique, but differs from normal supervised learning by allowing training of 

a classifier from ambiguously labelled data (Babenko, 2008). 

- Example: TLD Two-Level Distribution: Using this classifier requires 

changing the starting value of the searching algorithm, supplementing the 

cut-off modification and checking missing values. 

8. Miscellaneous: The Miscellaneous category includes three classifiers (Witten 

et al., 2011): 
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- HyperPipes: This classifier records the range of values observed in the 

training data for each attribute working out which ranges have the attribute 

values of a test instance. It then chooses the category with the largest 

number of correct ranges. 

- Serialised Classifier: This classifier loads a model that has been serialised 

to a file and uses it for prediction.  

- VFI (Voting Feature Intervals): With this classifier, intervals are 

constructed around each class by discretising each numeric attribute or 

using point intervals for nominal ones. It then records class counts for each 

interval on each attribute, and classifies test instances by voting. 

5.2.3. Classification procedure 

5.2.3.1. Training and model generation 

Since building a classification model requires that the dataset be as accurate as 

possible, a pre-step of data mining is to prepare an accurate dataset by cleansing and 

refining records. The dataset provided as spreadsheets by ADPO was cleansed and 

records with missing information were discarded. The final dataset used consisted of 

2,028 records of traffic offences with five fields, namely, Date of the traffic offence, 

and Country, Age, Profession and Gender of the offender. After the dataset was 

cleansed and prepared for classification, it needed to be converted to .arff format to be 

analysed by WEKA. .arff files are specially formatted files understood by WEKA. 

Figure 22 depicts the structure of the .arff file. 
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Figure 22: An extract of an .arff file showing the attribute and data structures 

Once that was done, the classification process was ready to start. Based on research 

(for example, Wu et al., 2008; Miller & Han, 2009) and among the available classifiers 

in WEKA, the following were chosen for classification of the traffic data: 

1. Bayesian Networks: Bayesian networks provide a robust probabilistic 

representation, and their use in classification has received considerable 

attention by scholars (Miller & Han, 2009). Bayesian networks learn the 

conditional probability of each attribute from the training data. The result of 

running the algorithm on the traffic data is shown below. 

=== Run information === 
Scheme:weka.classifiers.bayes.BayesNet -D -Q 
weka.classifiers.bayes.net.search.local.K2 -- -P 1 -S BAYES -E 
weka.classifiers.bayes.net.estimate.SimpleEstimator -- -A 0.5 
Relation:     datatraffic 
Instances:    2028 
Attributes:   5 
              Date 
              Country 
              Age 
              Profession 
              Gender 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
Bayes Network Classifier 
not using ADTree 
#attributes=5 #classindex=4 
Network structure (nodes followed by parents) 
Date(353): Gender  
Country(49): Gender  
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Age(3): Gender  
Profession(123): Gender  
Gender(2):  
LogScore Bayes: -25320.283616688437 
LogScore BDeu: -33111.94596826987 
LogScore MDL: -31285.227054287414 
LogScore ENTROPY: -27291.261640496457 
LogScore AIC: -28340.261640496457 
Time taken to build model: 0.05 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances        1957               96.499  
% 
Incorrectly Classified Instances        71                3.501  
% 
Kappa statistic                          0.8968 
Mean absolute error                      0.0638 
Root mean squared error                  0.1701 
Relative absolute error                 18.0802 % 
Root relative squared error             40.4833 % 
Total Number of Instances             2028      
=== Detailed Accuracy By Class === 
               TP Rate   FP Rate   Precision   Recall  F-Measure   
ROC Area  Class 
                 0.994     0.131      0.962     0.994     0.978      
0.979    Male 
                 0.869     0.006      0.976     0.869     0.919      
0.979    Female 
Weighted Avg.    0.965     0.103      0.965     0.965     0.964      
0.979 
=== Confusion Matrix === 
    a    b   <-- classified as 
 1554   10 |    a = Male 
   61  403 |    b = Female 

2. Support Vector Machines: Support vector machines (SVM) are a must-try 

classifier regardless of the data structure (Wu et al., 2008). They can provide 

the most accurate and robust methods among all well-known classification 

algorithms. They require a relatively small number of training records and are 

generally insensitive to the number of dimensions. The result of running the 

classifier on the traffic data is shown below. 

=== Run information === 
Scheme:weka.classifiers.functions.LibSVM -S 0 -K 2 -D 3 -G 0.0 
-R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -seed 1 
Relation:     datatraffic 
Instances:    2028 
Attributes:   5 
              Date 
              Country 
              Age 
              Profession 
              Gender 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
LibSVM wrapper, original code by Yasser EL-Manzalawy (= WLSVM) 
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Time taken to build model: 0.31 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances        1662               81.9527 
% 
Incorrectly Classified Instances       366               18.0473 
% 
Kappa statistic                          0.2923 
Mean absolute error                      0.1805 
Root mean squared error                  0.4248 
Relative absolute error                 51.1194 % 
Root relative squared error            101.134  % 
Total Number of Instances             2028      
=== Detailed Accuracy By Class === 
               TP Rate   FP Rate   Precision   Recall  F-Measure   
ROC Area  Class 
                 1         0.789      0.81      1         0.895      
0.606    Male 
                 0.211     0          1         0.211     0.349      
0.606    Female 
Weighted Avg.    0.82      0.608      0.854     0.82      0.77       
0.606 
=== Confusion Matrix === 
    a    b   <-- classified as 
 1564    0 |    a = Male 
  366   98 |    b = Female 

3. C4.5 Decision Tree based on the J48 algorithm: as details in the classifier 

description above, this classifier builds decision trees from a set of labelled 

training data using the information entropy concept based on data attributes. 

The result of running the classifier is shown below. 

=== Run information === 
Scheme:weka.classifiers.trees.J48 -C 0.25 -M 2 
Relation:     datatraffic 
Instances:    2028 
Attributes:   5 
              Date 
              Country 
              Age 
              Profession 
              Gender 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
J48 pruned tree 
Number of Leaves  :  123 
Size of the tree :  124 
 
Time taken to build model: 0.08 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances        1960               96.6469 
% 
Incorrectly Classified Instances        68                3.3531 
% 
Kappa statistic                          0.9    
Mean absolute error                      0.06   
Root mean squared error                  0.1733 
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Relative absolute error                 17.0057 % 
Root relative squared error             41.2464 % 
Total Number of Instances             2028      
=== Detailed Accuracy By Class === 
               TP Rate   FP Rate   Precision   Recall  F-Measure   
ROC Area  Class 
                 0.999     0.144      0.959     0.999     0.979      
0.976    Male 
                 0.856     0.001      0.997     0.856     0.921      
0.976    Female 
Weighted Avg.    0.966     0.112      0.968     0.966     0.966      
0.976 
=== Confusion Matrix === 
    a    b   <-- classified as 
 1563    1 |    a = Male 
   67  397 |    b = Female 

4. Conjunctive rule: The conjunctive rule consists of antecedents combined with 

logic AND’s together to obtain the consequent of the classification. The result 

of running the classifier is shown below.  

=== Run information === 
Scheme:weka.classifiers.rules.ConjunctiveRule -N 3 -M 2.0 -P -
1 -S 1 
Relation:     datatraffic 
Instances:    2028 
Attributes:   5 
              Date 
              Country 
              Age 
              Profession 
              Gender 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
Single conjunctive rule learner: 
-------------------------------- 
(Profession = Housewife) => Gender = Female 
Class distributions: 
Covered by the rule: 
Male Female  
0 1  
Not covered by the rule: 
Male Female  
0.894511 0.105489  
Time taken to build model: 0.02 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances        1845               90.9763 
% 
Incorrectly Classified Instances       183                9.0237 
% 
Kappa statistic                          0.7031 
Mean absolute error                      0.1621 
Root mean squared error                  0.2842 
Relative absolute error                 45.9069 % 
Root relative squared error             67.6636 % 
Total Number of Instances             2028      
=== Detailed Accuracy By Class === 
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               TP Rate   FP Rate   Precision   Recall  F-Measure   
ROC Area  Class 
                 1         0.394      0.895     1         0.945      
0.803    Male 
                 0.606     0          1         0.606     0.754      
0.803    Female 
Weighted Avg.    0.91      0.304      0.919     0.91      0.901      
0.803 
=== Confusion Matrix === 
    a    b   <-- classified as 
 1564    0 |    a = Male 
  183  281 |    b = Female 

5. Classification via regression: This classifier uses regression methods 

whereby the class is binarised and for each class value one regression model is 

built. The result of running the classifier is shown below. 

=== Run information === 
Scheme:weka.classifiers.meta.ClassificationViaRegression -W 
weka.classifiers.trees.M5P -- -M 4.0 
Relation:     datatraffic 
Instances:    2028 
Attributes:   5 
              Date 
              Country 
              Age 
              Profession 
              Gender 
Test mode:evaluate on training data 
=== Classifier model (full training set) === 
Classification via Regression 
Time taken to build model: 4.41 seconds 
=== Evaluation on training set === 
=== Summary === 
Correctly Classified Instances        1995               98.3728 
% 
Incorrectly Classified Instances        33                1.6272 
% 
Kappa statistic                          0.9529 
Mean absolute error                      0.0333 
Root mean squared error                  0.1111 
Relative absolute error                  9.4382 % 
Root relative squared error             26.4573 % 
Total Number of Instances             2028      
=== Detailed Accuracy By Class === 
               TP Rate   FP Rate   Precision   Recall  F-Measure   
ROC Area  Class 
                 0.999     0.067      0.981     0.999     0.99       
0.999    Male 
                 0.933     0.001      0.995     0.933     0.963      
0.999    Female 
Weighted Avg.    0.984     0.052      0.984     0.984     0.984      
0.999 
=== Confusion Matrix === 
    a    b   <-- classified as 
 1562    2 |    a = Male 
   31  433 |    b = Female 



121 

The results of the above classifications are summarised in Table 8. 

Table 8: Using different classifiers on the same dataset. The best result in terms of accuracy was 
obtained with classification via regression classifier with a rate of 98.4% executed in 4.41 seconds. 
The best execution time was achieved with Bayesian Networks and Conjunctive Rule classifiers 
with 0.02 second. However, both classifiers achieved around 96.5% accuracy. 

Classifier 
Bayesian 
Networks 

SVM 
C4.5 based 

on J48 
Conjunctive 

Rule 
Classification 
via regression 

Number of instances 2,028 2,028 2,028 2,028 2,028 

Classifier type  Bayes Function Tree Rule Meta 

Learning type Training Training Training Training Training 

Basis variable Gender Gender Gender Gender Gender 

Execution Time 
(seconds) 

0.02 0.31 0.08 0.02 4.41 

Error rate (%) 3.501 18.0473 3.3531 9.0237 1.6272 

Accuracy (%) 96.499 81.9527 96.6469 90.9763 98.3728 

The dataset had 2,028 instances and the chosen basis variable was the binary variable 

Gender. This means that data are classified based on Gender and hence may be able 

to predict gender in a new dataset with the same data structure. All the classifiers used 

the dataset as a training set for learning. As Table 7 shows, when using various 

classifiers on the same dataset, different results were obtained. The best result in terms 

of accuracy was obtained with the classification via regression classifier with an 

accuracy rate of 98.4% and execution time of 4.41 seconds, being the slowest among 

all the tested classifiers. The best execution time was achieved with Bayesian 

Networks and Conjunctive Rule classifiers with 0.02 seconds each. However, both 

classifiers achieved around 96.5% accuracy. The worst classifier in terms of accuracy 

for the particular data set and basis variable was the support vector machines (SVM) 

classifier with an accuracy rate of 82.0% only. Neural network was run on the dataset 

on the same machine for around one hour but no results were obtained. 

5.2.3.2. Model verification 

The generated models were saved and used to verify the recorded accuracies of the 

classifiers with a test dataset. The test dataset consisted on 22 records with the same 

structure as the training set but with entries that were never fed to the classifiers. The 

model verification results attained are summarised in Table 9. 
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Table 9: Model verification results: As can be seen in the table, all classifiers apart from Bayesian 
Networks successfully classified 19 instances out of a total of 22 based on Gender. The Bayesian 
Networks successfully classified 18 instances out of a total of 22. 

Classifier 
Bayesian 
Networks 

SVM 
C4.5 based 

on J48 
Conjunctive 

Rule 
Classification 
via regression 

Number of instances 22 22 22 22 22 

Classifier type  Bayes Function Tree Rule Meta 

Verification type Test dataset Test dataset Test dataset Test dataset Test dataset 

Basis variable Gender Gender Gender Gender Gender 

Correctly classified 
instances 

18 19 19 19 19 

Incorrectly classified 
instances 

4 3 3 3 3 

Error rate (%) 18.1818 13.6364 13.6364 13.6364 13.6364 

Accuracy (%) 81.8182 86.3636 86.3636 86.3636 86.3636 

Table 9 shows that all classifiers had similar results in classifying the test data, 

although at model generation the classifiers had different error and accuracy rates. 

Several reasons may be the cause of this, including the number of instances supplied 

in the test dataset and the percentage of data considered in the training datasets, among 

many others. 

The significance of the results however lies specifically in the misleading conclusion 

that might be arrived at from considering the classification accuracy rates obtained 

without applying actual datasets. For example, the Bayesian Networks classifier 

achieved 96.5% classification accuracy rate at the model generation. However, when 

fed with the test dataset, the model achieved only 81.8% accuracy rate. Table 10 shows 

the differences in accuracy rates between the models generated when training the data 

and the models when were verified with the test data.  

Table 10: The difference between model generation and model verification accuracy rates for 
each classifier 

 Bayesian 
Networks 

SVM 
C4.5 based 

on J48 
Conjunctive 

Rule 
Classification 
via regression 

Model Generation 

Accuracy (%) 

96.499 81.9527 96.6469 90.9763 98.3728 

Model Verification 

Accuracy (%) 

81.8182 86.3636 86.3636 86.3636 86.3636 
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As the above results show, ADPO or other public organisations, may be able to predict 

values of missing records based on saved models of their datasets. This can contribute 

greatly to data quality of the data used later on for decision making. It is important, 

however, to note that although a certain rate of classification accuracy is attained with 

a classifier, this rate might be misleading. It is important, therefore, to test the attained 

models using real datasets in order to verify the obtained accuracy. As could be seen 

above, this was proven crucial in the traffic data from ADPO, and accordingly, better 

insights will be attained into the datasets. 

The choice of the data mining method can be decisive for analysing certain data. As 

this chapter illustrated, certain techniques may not produce adequate results, which 

may lead to the false belief that the data analysed hold no useful information. Given 

the variety of processes and their interconnection in public organisations, such 

organisations would not be able to afford the “trial and error” mode of data mining as 

these organisations usually operate in “right first time” mode. Therefore, data mining 

as a choice for a public organisation such as ADPO must be integrated in other 

processes that the organisation undertakes in order to attain results. This necessitated 

that this research study be oriented towards suggesting a more comprehensive model 

of data analysis. This model is described in the following chapters.  
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Chapter	6:	Integration	of	
Decision	Support	Systems	and	
Data	Mining	for	Improving	Data	
Quality	for	Decision	Making	

6.1. Introduction 

Decision Support Systems (DSSs) comprise different aspects of software, hardware, 

and data, as well as human inputs in order to help decision makers improve and 

enhance their decisions based on analytical processing of the available information. 

DSSs have found uses in different types of organisation and wherever strategic 

decisions are to be made with high uncertainty involved. On the other hand, Data 

Mining (DM) allows robust analysis of huge amounts of data in order to discover 

useful relationships or patterns based on advanced statistical methods. Integration of 

these two paradigms is believed to improve data quality for decision makers as they 

both apply data refinement processes. 

In this chapter, a data mining decision support (DM-DS) integrated system is 

suggested to improve data quality and a perception of the system is provided. The 

chapter looks into existing DM-DS integrated systems in the literature and conduct a 

comparative analysis to propose a system that is tailored against the particularity of 

Abu Dhabi public organisations to assist decision makers in the decision making 

process based on better knowledge of the stored data. The solution could be 

implemented by integrating a set of DM techniques in the already established DSS in 

the organisation. The new system is expected to increase the efficiency sought from 

the DSS by acquiring knowledge of the data fed to the system, thereby improving data 

quality. As seen in Chapters 4 and 5, that DM processes are demanding in terms of 

time and other resources. Hence, it is suggested that the process be reduced in order to 

accommodate to the particularity of public organisations in terms of size and current 

system performance. The system is perceived on this basis. 
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6.2. Background and Related Work 

Public organisations face real challenges of using the correct analysis of huge amounts 

of data. These data are used for producing statistical analyses and forecasts on, for 

instance, economic, social, education and health issues, which are highly related to 

government planning in aspects where development of interest rates and inflation, 

economic growth, household income, crime trends, education standards, and climate 

change are a major input. Whereas business providers may be interested essentially in 

extensibility and automation and aim at obtaining fast results via combining simple 

analysis with human expertise, public organisations would have to be more 

scrutinising in their data analysis approaches (Ganguly & Gupta, 2004). 

Decision support systems (DSSs) are rooted in business. They have been in wide used 

in businesses around the world for the main aim of helping executives to make better 

decisions based on advanced levels of data refinement and presentation. 

Traditionally, DSSs belong to a class of computer-based systems that help in the 

process of decision making (Hardin & Chhieng, 2007). DSSs are commonly defined 

in the literature as interactive computer information systems designed to support 

solutions to problems with taking decisions (Liu et al., 2009). 

Padhy et al. (2012) argue that the value of strategic information systems is easily 

recognised, but the efficiency and speed are not the only factors of competitiveness, 

rather the quality of the data that such systems can attain. Essentially, the large 

amounts of data have called for new methods to analyse and understand the 

relationships in these data. Conclusions and inferences from these data need special 

tools and techniques that are able to delve deeper than traditional decision support 

systems can. Moreover, the rapid development in data digitisation generated large 

amounts of data stored in organisations’ data warehouses, which require efficient 

exploitation and knowledge extraction. Consequently, traditional problem solving 

DSSs became less efficient and started to decline in the late 1990s (Liu et al., 2009). 

Liu et al. (2009) classify the main challenges facing DSSs in supporting decision 

making. These challenges include: 

 Changes in technology from database to data warehouse and on-line 

analysis processing (OLAP), from single user model to World Wide Web 

access, and from mainframe to client/server architecture; 
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 Increasing business interconnections in a more dynamic business 

environment and intelligence. For this, a variety of other information 

systems have been proposed, such as supply chain management (SCM), 

enterprise resource planning (ERP), and customer relationship management 

(CRM); 

 The continuous increase in complexity in decision making which requires 

executives to consider a vast number of inputs and a considerable amount 

of knowledge. 

Han and Kamber (2006) argue that organisations are usually data rich but information 

poor. Extracting information from data is not only important but also necessary to use 

these data for decision making. Data mining techniques help to analyse data and 

uncover important data patterns, which may contribute to better, knowledge-based 

strategies. In doing so, data mining helps to bridge the gap between data and 

information, which usually prevents realising knowledge. 

Given the uses and nature of solutions based on data mining and those based on 

decision support systems, there is no doubt that such solutions can be integrated in 

order to offer optimal solutions to improve the quality of data reaching decision 

makers. However, only a few attempts of using data mining to support management 

decisions are found in the literature. For example, Abu-Naser et al. (2011) suggest a 

DSS based on data mining techniques for optimising e-learning in educational 

institutions (Figure 23). The suggested system was not implemented, but according to 

the authors, integrating data mining functionality into a single DSS will be promising. 

The authors believe that such a system will enable educational institutions to realise 

the importance of the DSS-produced information in optimising their adopted learning 

strategies. 
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Figure 23: DM-based DSS for optimising e-learning suggested by Abu-Naser et al. (2011) 

El Seddawy et al. (2012) propose a DM-based DSS to support top-level management 

to make a good decision at any time (Figure 24). According to the authors, the 

proposed system can help decision makers in the banking sector to address decisions 

related to new investments by providing refined data. 

 

Figure 24: DM-based DSS suggested by (El Seddawy et al., 2012) to help decision makers make 
decisions regarding new investments 
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In the application area of health services, Kumar et al. (2011) suggest the use of DM 

based on decision tree algorithms to classify certain diseases and compare the 

effectiveness and correction rate among them in order to support decisions on the 

diagnostic process. According to Kumar et al. (2011), traditional decision support 

systems developed to assist doctors in the diagnostic process are usually based on 

static data which may be dated. Therefore, a decision support system which can learn 

the relationships among certain parameters would be very useful to doctors and 

hospitals. 

Mohemad et al. (2010) argue that traditional support systems that are widely used in 

the construction industry are not optimal. In spite of the efforts to integrate and 

transform the whole construction tendering processes into electronic or digital forms, 

the use of unstructured documents either in hard copy or digital are still widely present. 

The authors stress the need to extract and represent information in machine-readable 

formats, attained by integrating data mining in DSS model, which they believe to be a 

promising approach. 

Liu et al. (2010) have conducted research into integrated decision support systems 

(IDSS) including DM agent-enhanced integrated DSS to improve decision support 

performance. The researchers conclude that the main challenges in developing an 

integrated DSS are the trade-off between tight and loose integration strategies within 

the integration frameworks and the seamless integration across data, models and 

processes within the integration frameworks (Figure 25). 

 

Figure 25: DM agent-enhanced integrated DSS to improve decision support performance (Liu et 
al., 2010) 
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Srinivasan et al. (2011) also suggest using DM intelligent agents in DSS for achieving 

higher work efficiency. They suggest that such a system can provide mobility, 

autonomy and collaboration of different agents in order to provide a simple and fast 

solution. Srinivasan et al. (2011) maintain that using agents as data mining techniques, 

can help decision makers by providing a more robust and quick DSS in resolving 

issues in any complex situation. 

Mladenić et al. (2003) maintain that there has been no systematic attempt to integrate 

DM and DSS. Reasons behind that are many but mainly include the nature of data 

mining processes that combine computer science and statistics, which create some 

confusion on what implementation aspects may be suitable for managerial decisions. 

In an initiative to address the drawbacks of decision support systems the EU sponsored 

the SolEuNet project from 1999 over a 39-month period, which comprised a network 

of expert teams from business and academia to meet client’s Data Mining and Decision 

Support needs (Mladenić, 2001). The outcomes of the project were promising. The 

project identified the main objectives to improve collaboration and communication, 

promote awareness of organisational resources and achievements, and enable 

organisational learning and dissemination of such knowledge. However, certain 

difficulties were encountered as detailed below. 

According to the final report at the project closure, the project team maintained that 

collecting and managing knowledge is a very hard task that can never be fully 

accomplished. The project team considered that the set of knowledge management 

tools to support e-collaboration in data mining and decision support can be 

considerably extended, improved and further integrated. The team suggested including 

in the near future, a data mining advisor that, given a dataset, suggests data mining 

algorithms, and a central model evaluation service, automatically built activity logs 

for data mining and decision support, and database and data transformation services. 

The team also suggest adopting a standardised description of the knowledge produced 

in all phases, which would significantly simplify communication among distributed 

cooperating groups. 

Table 10 summarises the different approaches to linking DM to DSS. 
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Table 11: Approaches to DM-DS systems found in the literature 

Author Context Approach 
El Seddawy et al. 
(2012) 

The banking sector DM-based DSS to support top level 
management to make decisions in any 
time 

Abu-Naser et al. 
(2011) 

E-Learning in 
educational 
institutions 

DM-based DSS for optimised results 

Kumar et al. 
(2011) 

Disease classification DSS that can learn the relationships 
between certain parameters 

Srinivasan et al. 
(2011) 

Higher work 
efficiency 

DM intelligent agents in DSS 

Liu et al. (2010) Research on different 
DSS’s 

Integrated Decision Support Systems 
(IDSS) and DM agent-enhanced 
IDSS to improve decision support 
performance 

Mohemad et al. 
(2010) 

Construction industry Optimising DSS in the construction 
industry through DM 

Mladenić (2001) SolEuNet Enabling organisational learning and 
dissemination of knowledge 

 

Related Publication: 

Al-Ketbi, O., & Conrad, M. (2013). Integration of Decision Support Systems and 
Data Mining for Improved Decision Making. ICEIS 2013, 503. 

6.3. Relevance of the Integration to Data Quality 

As previously stared, the aim of retaining data is no longer a significant concern of an 

organisation as it is common that large amounts of data are regularly stored in its 

warehouses, with only a few of real relevance to the organisation’s decision making 

process. The amount of data stored in databases increases daily and goes beyond the 

technical skills and human capacity to interpret these data. 

Database management systems have advanced at a faster rate than the techniques used 

for extracting and utilising data to be used in making decisions (Power, 2007) in the 

sense of extracting useful information (Lv & Li, 2009). Obtaining, storing and 

managing information in larger organisations are now ordinary operations and usually 

performed automatically by electronic data repositories (Saxena & Rajpoot, 2009). 

One of the efficient techniques used for this aim (i.e., extracting useful information) 

is data mining. Some of the organisation’s data may be in a textual format described 
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in natural languages or does not have a structure as opposed to data present in data 

tables and structured relational databases. This type of data, found mainly in the form 

of electronic documents and emails for instance particularly in organisations with 

limited affordability (technical and financial), cannot be used directly with traditional 

DSSs, and thus minimises their potential. A particular data mining set f techniques, 

known as Artificial Intelligence (AI), such as Neural Networks and Fuzzy Inference 

algorithms, would be appropriate for finding a solution to this problem by extracting 

information from data of various formats. 

The integration of DM and DSS are particularly interesting for public organisations. 

Public organisations can benefit greatly from a DM-DS integrated system because of 

the vast and loosely related information these organisations deal with. According to 

McCue (2003) one of the most significant challenges in using decision support 

systems in law enforcement is that most, if not all, data are not intended for the 

decision making process. This issue applies as well to public organisations in Abu 

Dhabi Emirate. Despite the state-of-the-art DSS implemented in some of the public 

organisations in the Emirate, little success has been seen in improving decisions. Some 

of the challenges faced are related to data formats, content, validity and reliability. 

Hence, the biggest advantage data mining would provide is preparing data for this 

undertaking. For example, law enforcement organisations can use computer 

technologies that support criminal investigations, which include clustering and link 

analysis algorithms, geographical information systems displays, and the more 

complex use of data mining technology for profiling crimes or offenders and matching 

and predicting crimes (Oatley et al., 2006). Oatley et al. (2006) also argue that 

knowledge from disciplines such as forensic psychology, criminology and statistics 

are essential to the efficient design of operationally valid systems, thereby providing 

organisations’ decision support systems with refined data quality that would improve 

the decision making potential. 

 

6.4. Possible Data Mining Techniques to Use 

As detailed in Chapter 2 (Section 2.5), 4 and 5, data mining can be used to improved 

data quality. As argued in previous sections of this chapter, when combined with 

DSSs, data mining can help decision makers obtain better data that help them make 
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more effective decisions. Recent developments of information systems as well as the 

availability of extensive business data repositories and database management systems, 

accompanied by the advances in computer systems and algorithms, have provided a 

gateway to effective use of data mining (Hand et al., 2001). 

Data mining consists of a set of techniques inferred from statistics and Artificial 

Intelligence (AI) with the specific aim of discovering new, useful, relevant and non-

trivial knowledge that may be hidden in a large mass of data (Markov & Larose, 2007). 

There have been numerous examples of its uses in areas such as marketing, economics, 

engineering, medicine, among others.  

Several techniques of data mining such as classification, neural network, genetic 

algorithm and others have long been known (Segall & Zhang 2006). What 

distinguishes recent perception of data mining is the development of techniques for 

data mining applications on a large scale databases. In addition, several techniques 

have emerged from the field of database management and are now an integral part of 

the process of data mining. 

Depending on the application domain and user interest, various types of techniques 

can be identified and applied. Some of these techniques are briefly identified below in 

order of relevance to the DSS of public organisations in Abu Dhabi. For example, 

dimensionality reduction is useful when the number of involved variables exceeds the 

capacity of the DSS to perform better, whereas modelling helps improve the DSS 

operations by feeding it with a stripped-down, quality version of a collection of data 

which models the entire collection. 

6.4.1. Dimensionality Reduction 

Dimensionality reduction is a mathematical technique used to reduce the number of 

random variables involved in a dataset. It uses projection from one vector space onto 

another one of lower dimension. 

6.4.2. Correlation 

Correlation is a statistical method used to depict relationships between random 

variables through analysing potential links and inferring the degree of connectivity. 

Given the large number of loose data available for the DSS, correlation helps establish 

useful relationships among seemingly unrelated variable. 
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6.4.3. Modelling 

Modelling or mathematical modelling is a description of observed behaviour, 

simplified by ignoring certain details to simulate the behaviour of a phenomenon. 

Modelling allows complex systems to be understood and their behaviour to be 

predicted within the scope of the generated model. 

6.4.4. Association 

Finding association is a data mining technique that allows searching for 

simultaneously occurring items that occur in the transactions database. Algorithms 

such as DHP (Dual Heuristic Programming), GSP (Generalised Sequential Pattern) 

and Apriori (Han et al., 2006) among others are examples of tools that implement the 

task of discovery of association. 

6.4.5. Classification 

Classification is a method that consists of defining a mathematical function that maps 

a set of records to one another in a predefined set of categorical labels, called classes. 

This function is applied to predict the class new records fall under. Some classification 

methods were experimented on collected data from one of the case study organisations 

in Abu Dhabi in Chapter 5. 

6.4.6. Regression 

Regression includes a search for a function that maps the records from a database to 

actual values. This method is similar to classification, but being restricted only to 

numeric values.  

6.4.7. Clustering 

Clustering is used to separate records in a database into subsets or clusters, such that 

the elements of a cluster share common distinguishing characteristics from other 

clusters. The objective of this task is to maximise intra-cluster similarity and minimise 

inter-cluster similarity. Unlike a classification task, which has predefined labels, 

clustering needs to automatically identify the data groups to which the user must assign 

labels. Some algorithms used for implementing this method are K-Modes, K-means, 

K -Prototypes, K-Medoids, among others. (Han et al., 2006).  
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6.4.8. Summarisation 

This task, very common in KDD (Knowledge Discovery in Databases), is to seek, 

identify and indicate common features among data sets. Inductive logic and genetic 

algorithms are some examples of technologies that can be applied in summarisation. 

6.4.9. Detection of Deviations 

This technique helps to identify records in the database whose characteristics do not 

meet the normal standards. Statistics is the main resource provider used by this 

technique. 

6.4.10. Discovery Sequence 

It is an extension of the technique of finding associations that are sought frequently by 

considering several transactions occurring over a period. The technique of association 

can be adjusted to engage the generalised mining association rules. The post-

processing step includes processing the knowledge gained in data mining. Among the 

main tasks of the post-processing step are preparation and organisation, and may 

include the simplification of charts, diagrams or reports demonstrating, in addition to 

the conversion of the representation of knowledge gained. 

6.5. Data Mining-Based DSS Solution 

Lessons learnt from science and business applications of data mining identified in this 

chapter can be transferred to a certain degree to the situation of public organisations 

in Abu Dhabi. Practitioners have devised methods for obtaining relevant and quality 

data from a large set of data and feed them to the organisation’s DSSs. 

Optimising the decision making process requires targeting different stages of the 

process in order to improve the quality of the supplied data. This study suggests a DM-

DS integrated system to improve the decisions made in public organisations in Abu 

Dhabi. For the operations of public organisations in Abu Dhabi, the process needs to 

be tweaked in order to accommodate the particularity of these organisations in terms 

of size and current system performance. Data mining and DSS techniques can be used 

to design and implement custom applications that help improve data quality, for 

example by pattern recognition, predictive model design and human-error reduction 

(Ripley, 2008). 
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What is proposed is improved implementation of DS system based on utilisation of 

data mining techniques to attain optimal results gained from improved data quality fed 

to the DS system. The proposed DSS system will benefit from data mining processes 

prior to having to deal with huge amounts of data acquired from the different 

departments involved. The techniques involved will be selectively deployed on the 

different sets of data acquired. The system will require a set of techniques to be able 

to deliver the desired outcomes. Those techniques consist of the database system, the 

business logic (the integrated DM-DS system) and a user interface model. Several 

components will make up the system. The collected data will selectively undergo 

several processes prior to be sent to the DSS. These processes range from data 

preparation into classification and cluster analysis. Once done, the data enter into an 

anomaly-detection process where anomalies in the processed data will be detected and 

flagged up for further investigation. The system will contribute to the development 

and enhancement of data acquisition and analysis processes through defining a 

development approach and setting up all the needed variables, resulting in improved 

data quality at the hands of decision makers.  

6.6. Chapter Summary 

To study an integrated solution of data analysis in public organisations rather than rely 

on data analysis techniques for reasons described in this chapter, the chapter looked at 

the integration of DM-DSS (Data Mining-Decision Support System). It was shown 

that the integration of DM and DSS, given the particular case of Abu Dhabi public 

organisations, could improve the effectiveness of decisions by improving the quality 

of the data fed to DSSs. The suggested system uses DM as a pre-process to the DSS 

implementation. The suggested system could improve the quality of data when fed to 

the DSSs used.  
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Chapter	7:	Findings	
This chapter describes the findings obtained from the interviews conducted with senior 

managers at seven public (i.e., state) organisations in the Abu Dhabi Emirate. The 

organisations are: the Abu Dhabi Police Organisation (ADPO), Al Ain Hospital, the 

Department of Economic Development of Abu Dhabi, the General Authority of Youth 

and Sports Welfare, Zayed Foundation, Tawam Hospital, and the Department of 

Municipal Affairs. The choice was based on several considerations but most 

importantly the involvement of the organisations in different federal bodies of the 

public sector in the country, such as law enforcement, traffic regulations, the 

healthcare sector, and civil defence, among others.  

Two senior managers from each organisation were interviewed. Posts of the managers 

in each organisation were detailed in the methodology chapter.  

The interviews asked senior managers at the studied organisations questions as to how 

the decision making process is carried out in the organisation, who the staff involved 

are, and what barriers there are to effectively carry out the process. The interviews 

provided a wealth of information on how decision making takes place. This provided 

insights into the process and the senior managers’ beliefs about the decision making 

process. The key findings are provided below. The results aggregate common issues 

identified in the studied organisations. These issues are organised into main themes. 

Using grounded analysis as described in the methodology chapter, the findings were 

categorised in themes in order to identify designate groups of instances with common 

characteristics (such as processes, events and occurrences, see for example Charmaz, 

2003). It is important to notice that category identification in grounded analysis is 

different from content analysis, which this research was careful not to confuse them. 

Content analysis makes use of categories defined prior to starting data analysis, which 

are designed to be mutually exclusive. Therefore, the same data cannot be assigned to 

more than one category. Conversely, categories in grounded analysis emerge from the 

data, they are not mutually exclusive and they evolve throughout the research process. 

With a low level of abstraction for categories, Table 12 summarises the findings in the 

organisations. 
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Table 12: Summary of the findings in the 7 organisations. The column on the left defines a 
specific aspect of the findings and the other column details this aspect 

Finding Details 

1. Known 
challenges to 
decision making 

1. Decisions come from headquarters without close 
attention to the specific needs of the organisation 

2. The organisation’s decisions need to comply with 
headquarters’ decisions 

3. Unavailability of information in a timely and 
appropriate manner and format 

4. Lack of efficient data storage and retrieval 
procedures 

5. Lack of regulation and standardisation of 
information storage and format 

6. Lack of information and data integration with 
various organisations, whether federal or local 

7. Lack of accurate data for decision-making 
8. Inadequate spread of strategic thinking and long-

term planning 
9. Lack of commitment to carry out plans due to 

insufficient funds allocated to the implementation of 
the plans 

10. Lack of ability to verify quality of information 
received 

11. Lack of creditability and proficiency of staff 
12. Different perspectives on priorities 
13. Lack of power/authority coverage of some of the 

decision-making levels 
14. Inadequate time available to make efficient decisions 

2. Potential 
reasons for 
known data 
quality issues 

1. Lack of data validation and cross-referencing 
2. Decision makers do not have the resources to make 

sure of the quality of information they receive 
3. Anomalies in values are settled in the headquarters’ 

favour 
4. Remedies to poor quality are based on the experience 

of the decision maker 
5. Incompetence of staff in data handling and data 

quality 
6. Lack of staff training on data handling and data 

quality 
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Finding Details 

3. Data generation, 
handling and 
storage 

1. Data come from various loosely coupled systems 
2. System data are validated against data from 

questionnaires, e-mail correspondence, field visits, 
forums, and polls 

3. Storage is done in central systems 
4. Reports are limited to certain staff to ensure 

confidentiality of information 
5. Strategic data creation and dissemination is done by 

one department 
6. Some data are stored in the internal servers and do 

not reach decision makers 
7. Use of other company’s services to store and assess 

information 
8. Significant amounts of data is still being stored in a 

paper format 

4. Realising the 
importance of 
data quality 

1. Recognise that poor data can lead to many problems 
from inefficient performance to poor services to 
citizens 

2. Understand the multitude of sources of poor data 
3. Smarter investments benefits from quality data 
4. Some sources of poor data quality include: Human 

errors at the entry levels, system failure, and 
misinterpretation at the strategic level 

5. Associated poor data quality to increased costs 
6. Recognise that preparation of strategic plans, 

processes and methodologies such as the ISO 
standard require significant and reliable data 

7. Recognise that improvement of data quality from the 
technical and human sides is required 
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Finding Details 

5. Data quality 
assessment 

1. Decision makers rely on the feedback from affected 
organisations, which is not a regular or specific 
mechanism 

2. Data received from central authorities are usually 
considered valid 

3. Statistical data is reviewed by specialists and 
reviewed by officials to match consistency with 
mainstream data of the organisation 

4. Central authorities may allow organisations to give 
counter proposals to their data reports based on 
evidence 

5. Departmental managers are responsible for 
validating their data 

6. Managers refer to procedures and policies provided 
by higher authorities in their validation 

7. Decision makers are advised to follow best practices 
and refer to international standards whenever 
possible 

8. There are no specific internal criteria of acceptance 
of data 

9. Random sampling, checking of the sources and 
providing evidence upon request are used 

10. Evaluation is also by specialists, analysts and 
strategic planners 

6. The decision-
making process 

1. Central authorities set strategic planning for adopt 
and implement the organisational strategy 

2. Decisions are usually taken by senior leaders 
3. The strategic committee discuss and analyse data 

provided by the strategic planning department and 
make strategic decisions 

4. Strategic analysis is conducted annually, which 
includes analyses of many sources of internal and 
external information 

5. The analysis aims for the development or 
amendment of existing strategic objectives 

6. Results are discussed with the various sectors of the 
organisation 

7. Results may be moderated by the executive 
committee 

8. Periodical reviews of the decisions are conducted by 
the executive committee 
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Finding Details 

7. Sources and 
nature of data 
used in decision 
making 

1. Information systems are also accessible by internal 
or external decision makers 

2. Two types of data sources: internal external 
3. Internal data are mainly performance indicators 
4. External data such as government policies, 

international standards and environmental criteria 
5. Decisions are mainly based on the strategic 

orientations of the government and its strategic 
vision 

6. Decisions rely on financial statements, operational 
data and customer related feedback. 

7. Data are subject to studies (including analysis of 
economic indicators) and other references such as 
customer satisfaction questionnaires, strategic plans 
of the organisations, the annual and quarterly 
performance reports and annual economic policies 

8. There has been an initiative Emirate-wide to 
establish a knowledge base to be used by decision-
makers 

8. Quality of data 
used in decision 
making 

1. It is not known how often decisions are made based 
on quality data due to the complexity of the decisions

2. Decisions are taken by the central authorities and 
their effects are circulated to the relevant 
organisations 

3. Decisions are either based on the data provided, or 
they are subsequent implementation of the 
authorities’ mandates 

4. Decisions are often made based on the strategic 
vision of the authorities 

5. After implementation organisation work on 
anticipating and rectifying any negative outcomes of 
the decision 

6. Decisions frequently rely on VIP opinion or view of 
certain influential people 

7. Not all decision makers rely on data and figures to 
the same degree 

8. It is common that the organisations use the quality of 
the outcomes of a certain decision as criteria for such 
assessment 
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Finding Details 

9. Data handling 
policies 

1. External policies from the governing bodies or high 
authorities are usually referred to locally in the 
organisations 

2. Local data handling policies of the organisations are 
mainly concerned with data security 

3. The knowledge management strategy by central 
authorities attends to some aspects of data handling 
yet with some issues with the implementation of the 
strategy 

4. The need for internal development of the information 
systems and electronic archiving, and improved 
skills in dealing with data and documents is evident 

5. Paper forms of data still prevail  
6. Department managers are responsible for validating 

their departments’ data with sufficient information 
available 

7. The management of each of the organisations restrict 
the vital role of data quality to the first stage data 
entry clerks and their direct managers 

10. Reporting 

1. Certain reports run periodically and are provided to 
key individuals and/or groups 

2. Emails circulated among staff are a typical method 
of reporting in the organisation 

3. Some of these emails contain effective decisions and 
even submissions of complaints and suggestions 

4. It is common also that various reports are collected 
from the different department and sent to those 
concerned by e-mail or in print 

5. The underway Emirate-wide knowledge base is 
believed to improve the reporting process inside and 
outside the organisations 

6. Occasional and regular meetings are a reporting 
method, whereby vertical and horizontal 
communication takes place. 

7. The authorities have access to electronic systems, 
where they can collect and audit data for their reports

 

As can be seen in Table 12, 10 categories were identified by the study’s findings. The 

categories highlighted key aspects of data handling and potential causes of data quality 

issues in the organisations. The interviewees described known challenges to decision 

making in their organisations, potential reasons for known data quality issues, how 

data are generated, handled and stored, their organisations’ perspectives to data 

quality, assessment used for data quality, the decision-making process that takes place 
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in their organisations, the sources and nature of data used in decision making, the 

quality of data used in decision making, the policies and procedures for data handling 

imposed by the organisations,  and the reporting adopted by the organisations. 

The elements of the above categories are discussed in the next chapter in relation the 

relevant literature and well-established work on data quality.  
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Chapter	8:	Discussion	

8.1. Analysis of the Findings 

The literature review conducted revealed that public organisations, in general, store 

vast amounts of data in different formats that are acquired on a daily basis. Stored raw 

data however may provide little benefit for example for the purpose of developing 

strategies and devising and implementing long term plans. Moreover, information is 

not often “right the first time”, which necessitates further refinement and presentation 

when provided to decision makers. Such information is used for producing statistical 

analyses and forecasts on economic, social, health and education issues, which are 

highly related to government planning in aspects such as development of interest rates 

and inflation, economic growth, household income, crime trends, education standards, 

and climate change are all major inputs. This is also significantly related to the 

measurable and non-measurable aspects that public organisations aim to attain, in 

terms of efficiency, effectiveness and responsiveness (for example, Andrews & Van 

de Walle, 2012; Fountain, 2001). These organisations need “good” information to 

make good decisions on the above aspects. The goodness of the information is 

controversial and is subject to many, subjective and objective, considerations. 

Generally speaking, there are certain measures that can be adopted to assess the quality 

of the acquired information. The loose nature of definitions of standards and measures 

for the quality of information (or data), as well as the fact that most data quality 

measures are devised on an ad hoc basis (Pipino et al., 2002), renders those measures 

ever more individually determined. For example, data accuracy, reliability, timeliness, 

completeness and relevance, among others, are common dimensions in many 

considerations for data quality (Pipino et al., 2002). 

Further development of the subject of data quality and several attempts to synthesise 

global metrics for it have been undertaken by scholars and researchers in the literature. 

For example, Pipino et al. (2002) use the above dimensions to develop subjective and 

objective assessments, simple ratio, min/max operators, and weighted average for data 

quality. However, the authors maintain that such an attempt to unify data quality 

metrics is limited as “one size fits all” cannot be a solution. Dedeke (2000) argues, 

however, that although data may be evaluated based on quality categories such as 
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accessibility, context and representation, these data quality measures cannot be 

developed in isolation from the data generation processes and the data utilisation 

contexts. 

Based on the above, empirical studies were conducted to contextualise data quality in 

a specific context. The findings from seven public organisations in Abu Dhabi 

Emirate, which were investigated for the aim of understanding potential issues with 

data quality and hence improving it. The findings were obtained from surveys and 

meetings held in the organisations and from interviews conducted with senior 

members in the organisations. The findings are discussed in this chapter in relation to 

existing work. The aim of the discussion is to identify aspects of improving data 

quality in the studied organisations and organise these aspects in a normative 

framework. The term “organisation” is used throughout to represent a public-sector 

structure and can be replaced by the commonly used term when needed (for example, 

public body, department, etc.). 

8.1.1. Data management and systems 

Each of the organisations studied acquires a large amount of information from various 

internal and external sources. The vast amount of information is stored and processed 

in several information systems. The organisations have a number of electronic systems 

for data storage, processing, and retrieval. Common systems mentioned by the 

interviewees are, a directorate system, penal system, congestion system, port security 

system, human resources system, financial resources system, and a civil defence 

system. These systems are all functional and used to support decision makers and help 

in several processes along their main functions, such as provide statistics, detect 

anomalies, and indicate trends, among others. 

According to the interviewees, usually one department is responsible for strategic data 

creation and dissemination. Almost all data are generated by the business intelligence 

department; then reports are created and distributed to those who should receive them. 

Reports are also generated by other departments, such as information management, 

business performance, and quality departments. A few other departments run their 

own data from their own systems such as IT and HR. Data usually come from multiple 

systems. For example, Interviewee 3 said that Al Ain Hospital uses three different 

information systems: Oracle for HR-related data, Malaffi for health service related 
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data, such as the number of visits, type of service, patient financials, etc., and risk 

assessment systems. At the creation of any new report, a validation process is 

conducted to ensure that the report is pulling correct and accurate data. Some reports 

are sent to different departments for validation. For example, Interviewee 3 stated that: 

“one report at Al Ain Hospital is created to show the number of cases that had a DVT 

(deep vein thrombosis) after going through a surgery. At the hospital, we validate by 

cross-referencing the report for a short timeframe and checking the cases to see if they 

really meet the report criteria and if the results are consistent. However, data entries 

are usually not validated. So, although some HQ reports are validated by the hospital, 

entry level values that may have human errors are not usually validated.” 

Generating reports is limited to certain staff within those departments to ensure 

confidentiality of information, and limit the load on reporting tools. Questionnaires, 

e-mail correspondence, field visits, forums, and polls compared with normative data 

after auditing are other ways mentioned by interviewees for validating data. 

Storage of electronic data is done on enterprise servers where all data are hosted 

centrally, even applications and organisation-wide licensed software. Generated 

reports are stored, if needed to be stored, at the generating department in protected 

shared folders. Otherwise they can be regenerated whenever needed. Only authorised 

personnel may store data in the central servers. It was noted by interviewees that a 

significant amount of data is still being stored in a paper format. Paper-based data are 

stored locally for some time and later may be moved to secondary storage areas. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “People and 

Systems” element of the framework as shown in Figure 30: 

Management of information determines data quality policies and directs their 

implementation. This function should provide systematic and planned actions needed 

to attain adequate confidence that data meet a predefined set of quality requirements. 

In this respect, integration of the organisation’s information system is a first step into 

data integrity which is a main factor of data quality. Each organisation should integrate 

its information systems in order to manage and compile a range of processes. The 

integration should consider staff, software and hardware deployment with the ultimate 

goal of improving the accuracy and quality of decisions. Moreover, data and 
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information processing and interpretation techniques can be used according to their 

feasibility. Decision Support Systems (DSSs) may be used by decision makers to 

improve their decision making insights. New and emerging techniques of data quality 

enhancement and knowledge extraction may also be of significant importance for the 

organisation as shown in the experiments conducted, and should be considered as key 

aspects of improving data quality. In this sense, data mining techniques and their 

integration with decision support systems as detailed in previous Chapters 4, 5 and 6 

will help improve data quality and provide decision makers with valuable information. 

8.1.2. The decision making process and data quality 

The interviews indicated that it is common in the studied organisations that decisions 

are usually taken by the senior leaders after reviewing all the required inputs, including 

data and views of expected outputs. The strategic committee – which consists of a 

working group of senior managers headed by the enterprise leader in the presence of 

members of the council, who are executives and directors of departments – discusses 

and analyses data provided by the strategic planning department and make strategic 

decisions. The data flow upwards from departments to the governing bodies up to the 

senior management. The central authorities hold a strategic planning session on how 

to adopt and implement the organisational strategy. Data from the organisations 

reaching the authorities are used to support the decision making process, and to ensure 

that initiatives and decisions serve the priorities and strategic objectives of the 

organisations. 

The studied organisations face frequent difficulties in attaining data quality. The 

challenges start from data entry up to data extraction and analysis. The interviews 

revealed that unnecessary bureaucracy takes place in some cases. For example, 

Interviewee 3 maintained that most decisions at the strategic level come directly from 

the headquarters, and one of the challenges encountered is that those decisions 

sometimes have no consideration for the organisation’s available resources. 

Interviewee 4 stressed the same point and asserted that when the headquarters decides 

that the budget will be reduced to a certain amount, the organisation has to face the 

challenge of finding places to make cuts or cost reduction with the minimum impact 

possible. Interviewees 2 and 3 both maintained that consequences of headquarters’ 

decisions on the organisation require tweaking the organisation’s own decision. They 

hence use their data to mitigate the influence of the decisions, such as data related to 
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service size and staffing to see if cutting some positions would do. They mostly try to 

cut vacant positions or reduce the size of the service. 

The interviewees also referred the challenges to decision making to the data available 

to decision making, their storage and retrieval procedures, and their quality. For 

example, Interviewee 4 said that unavailability of information in a timely and 

appropriate manner and format is one of the main problems facing the organisation. 

Interviewee 5 asserted that the lack of regulation and standardisation of information 

storage and format across public organisations is another problem facing an efficient 

decision making process. Interviewee 4 revealed that the Capability Maturity Model 

Integration (CMMI) Methodology has been initiated in their organisation. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “Leadership” 

element of the framework as shown in Figure 30: 

It is evident in several data quality studies (for example, Lin et al., 2007; Reid & 

Catterall, 2005) that data quality considerations and data quality awareness should be 

attained at an early stage, i.e., data entry. Data entry clerks should understand the data 

that they deal with and their importance for the organisation. The staff awareness of 

the importance of having minimal errors in the data entering the electronic systems is 

crucial. For example, they may need to pay attention to the appropriate fields and 

question any anomalies they may notice. What may help in this regard are data 

validation rules imposed by the electronic systems. Furthermore, database 

management systems should be configured with more queries. This would help better 

attain the information extraction and integration process, as well as the construction 

of statistical figures. This would eventually promote the organisation’s capability for 

analysing different indicators in a fine-grained way leading to a more appropriate 

decision making process. Although these problems are still common in the 

organisations studied, the senior management recognise these as existing challenges 

and aim to deal with them. 

The first step into improving data quality is recognising its importance at different 

levels of the organisation. According to the interviewees, importance of data quality 

is recognised in their organisations. They believe that poor data can lead to many 

problems, from inefficient performance to poor services to citizens. The sources of 
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poor data quality are many, and can range from human errors at the entry levels, to 

system failure, up to misinterpretation at the strategic level. Interviewees also 

associated poor data quality with increased costs. This was illustrated by Interviewee 

3 who maintained that, “poor quality data can increase our cost and make the service 

not cover its costs. Also, the data we send to the insurance providers, if quality is not 

assured they can simply reject our claims and not pay us.” Another interviewee 

claimed that the integrated strategy for knowledge management in the organisation 

promotes data quality. Furthermore, the organisations understand the importance of 

data quality during the preparation of strategic plans, processes and methodologies 

such as the ISO standard, all of which require significant and reliable data. Some 

interviewees also stated that their organisations started data quality programmes in the 

past few years and are seeking continuous development to improve data quality from 

the technical and human sides. Interviewee 13 said that, “The municipality is aware of 

the importance of data quality and understands the challenges faced, and therefore 

seeks cooperation with the Municipal System institutions through a common 

information gateway. Also, the municipality through the establishment of competent 

management and technical planning oversees the application of information system 

standards in Abu Dhabi Emirate, which aims at data governance in the organisation 

and ensures their quality and relevance when reaching the decision makers”. 

Interviewee 1 maintained that, “if you want to invest in the right way, you have to have 

accurate data and to conduct accurate analysis.”  

Given the above, recognition of the importance of data quality should be also 

expanded vertically in the organisation. For that, leadership is an important factor in 

the decision making process and is consequently an aspect of the assessment of data 

quality. The findings indicated that leaders are well-perceived by employees, 

particularly in Arab culture, as an exemplar to fellow staff and subordinates. The 

UAE’s power-distance index is very high (90%), which explains the importance of 

leadership in the Emirate (Hofstede, 2015). 

Leadership is required at all levels and is not exclusive to a certain level. Furthermore, 

research has shown that leadership is the number one talent issue facing organisations 

around the world. However, there is a significant gap in developing leaders at all 

levels, according to a study by Deloitte (Trapp, 2014). According to Betts (2004), 

leadership involves not only people but also the initiation and continuation of 
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processes and proper decision making procedures. Billy et al. (2012) maintain that 

leadership serves as a stronger factor in affecting process approach in decision making. 

They also emphasise that more attention should be given to leadership in decision 

making. Furthermore, leadership has more important influence in tribal, collectivist 

and high power-distance cultures, which are features characterising Arab culture of 

the UAE. Therefore, corporate leadership of data quality is an essential factor. 

Organisations need to develop leadership pipelines at every level and accordingly data 

will be sieved in intermediate stages up to reaching senior management. Thus, senior 

management will act as a final judge on the information received after passing the 

different-level quality controlled leaderships (Figure 26). The intermediate stages 

should define the roles and responsibilities of staff for data handling. Performance, 

risk management, reward and recognition are all important leadership-considered 

measures when advancing data to a higher stage. Leaders must maintain clear insights 

about the purpose of certain data in order to make better judgements. The definition 

should be in line with the business objectives and strategies of the organisation. 

Leaders are also encouraged to liaise with international partners in this respect to add 

an extra and independent dimension to data quality. 

 

Figure 26: Leadership pipelines at every level within a given cultural context to maintain that 
data are sieved in intermediate stages up to reaching senior management 



150 

8.1.3. Data quality assessment 

Organisations use several methods for assessing the quality of the data acquired, such 

as internal comparisons with the previous periods, cross-referencing of reports from 

various sources, periodic reviews of figures and analysis of figures. All these steps are 

used to make sure whether certain data is somewhat accurate. In the studied 

organisations, there is no specific way to evaluate the decisions taken, but decision 

makers rely on the feedback from affiliated organisations, which is not a regular or 

specific mechanism. 

Interviewees maintained the difficulty of assessing the quality of the data obtained. 

They also referred to the presence of the data in different systems and formats, which 

requires the evaluation of these data in different ways by each department. For 

example, Interviewee 14 stated that, “the statistical data is collected annually and 

reviewed by specialists and studied by municipal officials to match consistency with 

mainstream data of the organisation and with the current situation of the municipality 

policy.” The interviewees highlighted a rather important aspect of data quality. The 

interviewees maintained that data received from the central authorities are usually 

considered valid unless severe anomalies are spotted, if there are corresponding data 

internally, then an investigation request would be sent to the central authorities. The 

central authorities may allow organisations to give counter proposals to their data 

reports if the organisations think their data are wrong. If the organisations can provide 

evidence to their argument then the data from the central authorities would be set to 

change. However, this is quite an involved procedure and managers try to avoid doing 

it. 

The common aspect of assessment and validation of data in the organisations is done 

by the departmental managers who also coordinate training of representatives from 

their department to double check the quality of the data. In these undertakings, they 

refer to procedures and policies provided by higher authorities. There is a certain 

autonomy given to local decision makers depending on the nature and influence of the 

decisions. These decision makers are advised to follow best practices and refer to 

international standards whenever possible.  

There have also been several projects to review the statistical and various electronic 

systems in some of the organisations, aimed at auditing data stored in the databanks, 

as well as to test the robustness of storage media. This was noted by ADPO officials: 
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ADPO is not the only organisation in the Emirate that issues the annual road death rate 

statement countrywide; it is actually issued by other government and non-government 

bodies in the countries, such as the Federal Health Organisation. ADPO compares and 

contrasts these reports for any anomalies internally and with the issuing bodies. In this 

respect, Interviewee 2 maintained that, “trends of periodically acquired data are 

studied for any abnormal leaps as such leaps are usually indicators of potential 

inaccuracies.” 

It is worth noting however that there are no specific internal criteria of acceptance of 

data. For example, Interviewee 12 maintained that, “for the data on organisational 

and operational performance, validation is done through random sampling, checking 

of the sources and providing evidence upon request. As for the data that is extracted 

from electronic systems, it is evaluated by specialists, analysts and strategic planners 

before being utilised.” 

 

 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “Organisation” 

element of the framework as shown in Figure 30: 

Organisational performance may act as an indicator for data quality as they (i.e. 

organisational performance and data quality) are logically in a positive relationship. 

Better performance significantly indicates higher quality of data used by decision 

makers. Improving data quality on the other hand will also yield improved 

organisational performance. Organisational performance can be identified by results 

of efforts undertaken to attain citizen-oriented service delivery. Accountability, 

transparency, responsiveness, efficiency, and effectiveness are common indicators of 

performance. These indicators can be compared and contrasted with previous values 

in order to evaluate improvement. At the same time, data quality should be evaluated 

based on previous values and compared to evaluation of performance. This can help 

understand the relationship and allow further tweaking of improvement parameters. 

Trend analysis is an important tool for performance evaluation. This will help strategic 

decision making in the organisation to estimate future trends and make such decisions 
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in light of this analysis. Other criteria can also be used such as feedback from service-

targeted citizens based on established evaluation methods. 

8.1.4. Suppliers of data used in decision making 

There are many types of data used for strategic decision making in organisations 

depending on the nature of the decision. For example, for human resource related 

decisions, the main source of information is the human resources department, and the 

data obtained are therefore of this nature. Financial decisions on the other hand are 

made based on extensive information received from relevant departments. Sometimes, 

and perhaps quite often, decisions require joint and cross-referenced information from 

several sources. For example, pure crime-fighting related decisions use information 

from crime-fighting authorities, prison authorities, traffic management, and so on. 

Generally speaking, decisions are based on the strategic orientations of the 

government and its strategic vision. However, decisions rely on data provided from 

different sources. For example, data related to staffing plans, financial statements, and 

decisions related to capital expenditures provided by the organisations to decision 

makers require justification in terms of organisational performance and expected 

outcomes. These data are subject to studies (including analysis of economic indicators) 

and other references such as customer satisfaction questionnaires, strategic plans for 

the organisations, the annual and quarterly performance reports and annual economic 

policies. Financial statements make an important input in the decision making process 

as well as the impact of the decision on the public. In addition to relying strategic 

plans, views of the stakeholders both inside and outside the organisation are also 

considered. Interviewees 8, 9, 12 and 14 maintained that the data that they are required 

to provide to decision makers are financial statements, operational data and customer 

related feedback. 

The organisations’ information systems are also accessible by internal or external 

decision makers. Even if they do not have direct access, they can request the data and 

they will be provided to them. Moreover, decision makers have two types of data 

sources: internal to the organisation and external. Internal data are mainly performance 

indicators that are provided by the relevant departments, and external data are 

collected by various government agencies, such as government policies, international 

standards and environmental criteria, and are provided to decision makers whenever 
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officially requested. Interviewee 5 noted that there has been an initiative emirate-wide 

to establish a knowledge base to be used by decision makers. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “People and 

Systems” and “Culture” elements of the framework as shown in Figure 30: 

Regardless of the source of the information, validity and quality are the main concerns 

of the studied organisations. One of the aspects of validation of information and 

understanding it is contextualising and drawing particular predictions of future trends 

by comparison and cross-referencing. Some parameters and figures obtained may be 

compared to those of other countries and relevant international reports, so that these 

organisations may evaluate certain aspects of their performance, although to a limited 

extent, based on international values. Strategic decision making in organisations is 

based on different types of information and relies extensively on trend analysis in order 

to estimate future trends and make such decisions accordingly. Decision makers 

attempt always to make strategic decisions by using a pool of information required to 

draw a clearer picture of the situation in hand. This is partly implemented in some of 

the studied organisations. For example, Interviewee 1 from ADPO pointed out that 

trend analysis is used for performance evaluation and hence information quality in 

ADPO. The same interviewee noted that the total number of deaths on the roads in a 

particular place would not reflect much unless compared with previous figures, and 

consequently, can provide estimates for the near future in this respect. 

Therefore, it is crucial that data suppliers recognise the importance of data quality and 

be able to handle data accordingly. It is essential that an organisation should 

continuously develop its human resources. In particular, it is crucial to develop staff 

acquired with the adequate skills, competencies and knowledge necessary to fulfil 

their roles and responsibilities in relation to data quality. The skills should also include 

data capture, analysis and presentation. Training programmes must focus on data 

handling but also maintain a wider scope related to data quality, for example, cultural 

aspects regarding data handling and security aspects of data quality. This is 

particularly important in high-context cultures such as Arab culture (Alkaabi & Maple, 

2013). According to Hofstede (2001), Arab culture is characterised by collectivism 

and high-power distance. Collectivism and high-power distance are two dimensions 
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set by Hofstede in his attempt to establish quantifiable aspects of culture. Collectivism 

refers to a higher extent to which the group is prioritised over the self-interest as 

opposed to individualism. Hofstede asserts that cultures with high power distance, 

such as Arab culture, tend to be more collectivist. 

This has implications into how training and raising awareness are implemented to lead 

to effective methods of system development. Accordingly, indicators of awareness, 

commitment and improvement of staff should be inputs in data quality. Furthermore, 

staff are to be encouraged to contribute to data quality by adding their inputs such as 

suggestions and ideas, and their innovations and contributions should be supported 

and possibly implemented. Training programmes should be conducted on a regular 

basis and be evaluated, whereby the organisation has to determine training and 

development needs and to response to change. The roles and responsibilities should 

hence be well-defined and incorporated in the job descriptions. This aspect also 

includes development of a human resource plan that aims to meet the objectives set 

by the organisation in relation to data quality. The plan must contain assessment 

criteria for staff regarding data quality and include measures for commitment to 

achieving its aims and objectives. Therefore, there should be methods established for 

staff selection and recruitment, and consequently for managing staff performance. 

There, hence, must be certain procedures defined to contain potential detrimental 

effects of restructuring. 

 

Figure 27: Training and cultural awareness of employees as an aspect of data quality attainment. 
Furthermore, staff feedback is a key input in improving data quality 

Furthermore, data quality projects aimed at identifying data and system problems and 

defining certain processes that help mitigate the encountered problems usually 

consider data quality starting at the entry level and impose preventive and corrective 
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measures (Eppler & Helfert, 2004). Accordingly, a data quality project should set 

certain mechanisms for data verification whereby these mechanisms must be tested 

against expected results to conclude the optimal mechanism to be used. The project is 

to enable the management to begin to know where their problems lie in order for it to 

deal with them. The project, however, must be unique to each organisation. 

Furthermore, the models obtained by individual projects may not be comparable with 

those of similar organisations worldwide. The particularity of the models to the 

organisations might thwart any efforts to compare and contrast them. Even some of 

the quantitative values obtained are incomparable due to other particularities 

considered when computing such values. This poses a real problem to the 

organisations as worldwide standards cannot be regarded with adequate significance 

to be used for local measures. Therefore, decision makers do not enjoy the use of 

global estimates that would perhaps give a clearer vision but have to stick mostly to 

local measures. Therefore, the outcomes of the data quality projects need to overcome 

the challenges of accuracy and the global perspective of quality. 

8.1.5. Measures of effective decisions based on quality data  

As was noted in the answers, interviewees considered the poor quality or unavailability 

of information as an important and major influential factor in making all decisions, 

including strategic ones. The interviewees could establish a direct link between data 

quality and decision quality/efficiency. Some of the interviewees referred data quality 

issues as mainly related to lack of validation and cross-referencing. For example, 

Interviewee 3 maintained that “…some of the problems are due to data quality, but 

not because it’s insufficient, but the problem is the validation. A lot of data are 

collected at the organisation’s level but some are also at the enterprise level, which 

the organisation is part of. The process of collecting data from two different sources 

creates inconsistency.” 

This issue of receiving data from the headquarters is rather common in the studied 

organisations. Interviewees supported the claim that a lot of figures reported by the 

headquarters do not align with internal reports of the organisations. To illustrate the 

issue, Interviewee 4 from Al Ain Hospital provided the following example: “‘patient 

days’ is a data field that we calculate based on the number of admission days, length 

of stay, and other inputs. The HQ calculates the same field as well. We both use the 

same calculation methodology that the HQ provided, however, most of the time the 



156 

figure for the same time frame that we calculate comes out different than the one 

provided by the HQ. It takes about one to two weeks every quarter just to try and liaise 

with the HQ what the reason could be behind the difference. Sometimes we find it’s 

the cut off dates on time frames and sometimes other reasons and sometimes we just 

cannot pinpoint the reason because everything seems in alignment. At the end of the 

day, if we cannot align to the HQ figure we have to accept it as it is. Consequently, 

even though it is one figure that has the problem, many areas are affected. The ‘patient 

days’ figure is used for the calculation of many financial and non-financial Key 

Performance Indicators (KPIs), we may fail to meet some of our KPIs due to such 

issues when we know that in reality we compromised the figures.” 

As could be seen in the above example, quality issues could be inevitable and decision 

makers have to consider figures for which they suspect their validity as invalid. The 

same point is stressed by Interviewee 14 who asserted that decision makers do not 

have the resources to ensure of the quality of information they receive, so the challenge 

is essentially the difficult access to quality information by decision makers. In this 

respect, Interviewee 5 noted that remedies are based on the experience of the decision 

maker. Interviewee 8 considered, however, that the movement of low-quality 

information between branches greatly affects the outcomes of strategic decisions, and 

maintained that staff training based on citizen/customer satisfaction and the overall 

welfare of the organisation will eventually improve strategic decision-making. 

There are no metrics available or devisable to accurately measure how many of the 

decisions made (over a certain period of time, for example) are built on quality data. 

This is based on the difficulty of the calculation process of such measures. The 

decision makers of the organisations studied take on different responsibilities, and 

decisions are made on a daily basis. Furthermore, decisions are taken continuously in 

sprawling branches over the Emirate. The decentralisation aspect of the organisations, 

for example ADPO, allows decisions to be made by other subsidiary organisations 

with different specialties and services countrywide. 

Personal opinion may influence the decision making process in any organisation. In 

fact, the Delphi method relies on expert opinions in critical decision making. However, 

decisions generally require solid data in order to constitute educated opinion on certain 

matters. 
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For the case of the studied organisations, decisions frequently rely on VIP opinion or 

views of certain influential people. Consequently, not all decision makers rely on data 

and figures to the same degree. Even when provided with precise information, the 

individual decision maker may have their own interpretation and evaluation of this 

information. Therefore, the personal side has a significant influence on interpretation 

of data and hence decision-making. This aspect of decision making may render the 

process extremely complicated. Accordingly, the provision of accurate or quality 

information may not be sufficient to generate robust decisions. The matter of personal 

judgment regardless of presence of information is a real phenomenon in Arab culture 

and similar cultures characterised by collectivism and high power-distance (Hofstede, 

2001). The common belief in the organisations studied is that leaders retain their 

abilities, experience and education to the best of making the right decision. This aligns 

with Hofstede’s (2001) cultural dimensions, whereby Arab culture is characterised by 

collectivism and high power-distance. Collectivism and high power-distance are two 

dimensions set by Hofstede in an attempt to establish quantifiable aspects of culture. 

Collectivism refers to a higher extent to which the group is prioritised over self-

interest, as opposed to individualism. Hofstede asserts that cultures with high power-

distance, such as Arab culture, tend to be more collectivist. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “Service Quality” 

element of the framework as shown in Figure 30: 

Decisions differ in their importance and requirements for data, and vary in their nature, 

for example, some decisions are related to traffic, others to security, others to public 

health, others are mainly financial, and so on. Decisions based on quality data and 

highly accurate figures may not be mainstream, however, no statistics have been 

gathered in relation to the estimation of such decisions. In this regard, Interviewee 2 

of ADPO asserted that, “knowing what decisions have been made based on quality 

data is a complex process that would consider a huge number of variables, given no 

tools are available to our organisation at this stage.” 

Decisions are taken by the headquarters or central authorities and their effects are 

circulated to the relevant organisations. Decisions are either taken based on the data 

provided as above, or they are subsequent implementation of the authorities’ 
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decisions. Interviewee 3 provided the following example of decisions’ effects on their 

organisation: “The hospital’s outpatient clinics are currently opened at the evening. 

There was a data review to make a decision on whether or not it is worth to continue 

having them open. The statistics show that some of the clinics are not as active as they 

should be; therefore, the facility is now in the process of finalising a decision to close 

them. On the other hand, there was a mandate from the headquarters to see only 

certain insurance holder outpatients in certain hours within the day, this project had 

to be implemented as mandated even though our current stats show that we will suffer 

a drop on volume due to this decision but there was nothing much to do about it. This 

decision was not made based on our data, but rather on the strategic vision of the 

authorities. After implementation, we are now monitoring the data to make decisions 

on resources allocation and service quality to anticipate any negative outcomes of the 

decision.”  

However, it is not known how often decisions are made based on quality data due to 

the complexity of the decisions. For example, one interviewee mentioned that about 

80% of decisions are based on quality data. When asked to elaborate more about how 

that number was calculated, the interviewee claimed that it was a personal estimate 

based on the criteria cited in the “Quality of data used in decision making” section 

above. It is common that these organisations use the quality of the outcomes of a 

certain decision as criteria for such assessment. 

A key aspect of examining data quality based decisions is linking service quality to 

data quality thereby transcending the importance of data quality to the proposed level 

of decision making. Generally speaking, it is important for a public organisation to be 

oriented towards the segment of citizens it serves, as well as to strive to improve its 

services to them. A first step for improving the service is to define the service 

stakeholders. Data quality will hence act as part of service quality and each can be a 

positive indicator of the other. Future and growing needs of stakeholders can 

anticipate, and be anticipated by, the quality of data in hand, and hence consensus in 

the organisation on the importance of attaining stakeholder satisfaction and therefore 

data quality standards. Accordingly, the organisation should have defined methods of 

acquiring and using stakeholder inputs as a means of attaining quality. Public feedback 

should be captured, analysed, and used as an input to quality assurance in the 

organisation. There should also be tools for measuring stakeholder satisfaction with 
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the service given and comparing it with previous records. Ultimately, the organisation 

should aim at continuously improving this satisfaction as well as its approach to citizen 

orientation. Figure 28 depicts the relationship between service quality and data quality. 

 

Figure 28: Service quality linked to data quality and hence the importance of data quality 
transcends to the decision making level 

8.1.6. Policies and procedures for data handling 

Organisations strive to achieve standards for data quality and to assure that 

information received by decision makers is accurate and precise. For that, members of 

staff with direct involvement with relevant data must be emphatically informed about 

the value of the information they deal with. Accordingly, every employee must have 

a certain role fully described which he or she is held responsible for. Training courses 

should be conducted regularly either inside or outside the organisation, aiming at 

updating and improving skills in information security and the value of information in 

different units of the organisation. Leaders and managers must always emphasise roles 

and responsibilities to staff. Managers and leaders can also contribute to the accuracy 

of information by using methods of strategic management. 

It must be emphasised that the organisations studied retain large amounts of data and 

some of them are of high importance and sensitivity. These data are acquired 
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continuously, and are related to different affairs such as traffic, crime, human 

resources, patients, citizens, and infrastructure, among many others. Data entries are a 

constant operation in almost all of the organisations’ systems. Some of the systems are 

in service around the clock seven days a week to receive instant and live data, while 

others are fed with data at later times. Being service-oriented organisations, they have 

some of the systems alert 24/7 to retrieve and process information. For example, the 

information security department of ADPO stores and deals with information according 

to a specific methodology for storing information permanently and continuously. 

No explicit policies adopted or devised by the organisations for data handling have 

been noted. By data handling, it is meant the policies of handling of data in different 

forms, which includes security, storage, processing, archiving, and destruction, among 

other aspects, of data. The officials’ opinions about data handling policies vary in the 

organisations: some see them as bureaucratic overheads whereas others consider them 

as necessities missing in the organisations. The local data handling policies of the 

organisations are mainly concerned with data security. For example, there is a data 

integrity and confidentiality policy present in the studied organisations. However, 

Interviewee 3 noted that the way reporting and accessibility to reports is done, there 

are no policies currently involved in data handling. Interviewees noted that the 

knowledge management strategy attends to some aspects of data handling with some 

issues with the implementation of the strategy. The interviewees raised some issues in 

this regard, such as the need for internal development of the information systems and 

electronic archiving, and improved skills in dealing with data and documents. They 

also noted that electronic forms of data should prevail over the paper form, which will 

improve accessibility and quality of data. Interviewee 7 noted that there is a corporate 

performance and governance policy that deals with institutional performance data 

handling. External policies from the governing bodies or high authorities are usually 

referred to locally in the organisations, such as the information technology policies of 

the Abu Dhabi Centre for Systems and Electronic Information, policies of the 

executive board regarding human resources data, and policies of the department of 

finance on the financial statements, financial planning and financial reporting. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “Policies and 

Procedures” element of the framework as shown in Figure 30: 
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The roles and responsibilities in information and information management may not be 

significantly recognised in the studied organisations. It is observed that department 

managers are responsible for validating their departments’ data although sufficient 

information about the data might not be available. The management of each of the 

organisations restricts the vital role of data quality to the first stage data entry clerks 

and their direct managers, with the help of the information security department. 

Policies and procedures set must embed the overall direction and culture of the 

organisation in relation to data quality. Accordingly, the organisation should set 

policies and procedures for data handling that clearly describe how data are dealt with 

in different units of the organisation. The policies must be accessible by all staff and 

able to provide guidance on data collection, storage, analysis and reporting for the aim 

of attaining data quality. Policies should be formally expressed by senior management, 

whereby relevant country laws and best practices can be incorporated if necessary. 

The policies should be reviewed and updated regularly and promptly in response to 

change. The policies and procedures may also be supported whenever possible by the 

organisation’s information systems, such as user restricted access based on credentials, 

demilitarised zones, and virtualisation. 

8.1.7. Reporting 

Canonical reporting is common in information communicated within the studied 

organisations. It is typically reported the usual ways: weekly meetings in departments, 

monthly meetings in districts, and quarterly meetings at the level of general 

administrations. It is observed that other meetings are held whenever necessary such 

as for conducting a specific study or dealing with emerging issues. 

There are certain reports run periodically and provided to certain key individuals 

and/or groups in the organisations, for example, the KPI reports that run on a monthly 

or quarterly basis. There are other reports created based on request and provided to the 

requester. An example is reports related to specific studies, research or projects 

requested by the authorities. Emails circulated among staff are also a typical method 

of reporting in the organisation. Some of these emails contain effective decisions and 

even submissions of complaints and suggestions. The interviewees noted that the 

emirate-wide knowledge base which is under development will help improve the 

reporting process inside and outside the organisations. Occasional and regular 
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meetings are another way used by the organisations as a reporting method, whereby 

vertical and horizontal communication takes place. It is common also that various 

reports are collected from different departments and sent to those concerned by e-mail 

or in print. The authorities have access to electronic systems, where they can collect 

and audit data for their reports, and then post them on several levels, inside and outside 

the organisation. 

Proposed enhancement: 

The following is suggested to address the issue and is reflected the “Reporting” 

element of the framework as shown in Figure 30: 

Reporting is of paramount importance in data quality. Different units of the 

organisation must be able to prepare robust reports aimed at internal and external 

communication. The data supporting reported information will play a significant role 

in decision making and can thus be considered by decision makers for refinement of 

their decisions. Financial and non-financial reporting should also consider data 

validation and control, which are prerequisites for data quality. Reports may include 

importance, accuracy levels and timeliness. There also should be a formal, well-

defined process for report preparation for more accuracy and consistency. The report 

should highlight how much data quality expectations and requirements were met based 

on assessment criteria provided and when possible indicate how reliable information 

can be attained based on such data. In this respect, the organisation can benefit from 

the International Auditing and Assurance Standards Board’s work on reporting, such 

as the International Standard on Assurance Engagements (ISAE). Furthermore, 

organisations are encouraged to follow an integrated reporting approach as suggested 

by the Committee of Sponsoring Organizations of the Treadway Commission (COSO) 

(Accountant Magazine, 2013) (Figure 29). Clarity and conciseness are generally rules 

of thumb, but the main importance lies in the accuracy of information extracted. 
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Figure 29: The integrated reporting framework suggested by COSO (Accountant Magazine, 
2013) 

8.2. Suggestion of a Data Quality Framework for Abu 

Dhabi Public Organisations 

Based on the findings and discussion, a data quality framework for the public sector 

is suggested based on the data problems encountered in the target public organisations 

in Abu Dhabi and substantiated with extensive research into data quality requirements. 

Data quality issues in a public organisation may be exhibited, among others, in 

unsatisfactory results, declined revenues or/and squandering of public funds. The 

direct causes of such problems are inefficient strategic decisions made in the 

organisation and incompetency of the decision makers. The problems have direct and 

indirect effects on citizens and the economy of the country given decisions made by 

public organisations are related to different aspects of economic, social and political 

issues in any country. The underlying roots of the problem are often related to the 

quality of data reaching decision makers. Poor data quality results in inefficient 
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decisions and consequently affects the performance of the entire organisation. 

Enhancing the quality of data will ultimately improve decisions and hence contribute 

to solving these problems. The data quality framework should introduce the necessary 

elements needed to achieve data quality enhancement by identifying and resolving the 

root causes. 

Based on the discussion of the findings as details above, seven aspects of data quality 

were identified on which data received by decision makers can be rated in terms of 

their quality. These aspects are: developing all-level leadership within the cultural 

context, mapping data quality to service quality, initiating and enhancing staff training 

and development programmes (cultural and technical), establishing robust internal 

reporting, enacting effective policies and procedures for data handling, adopting 

information management and data refinement techniques, and continuously measuring 

and evaluating organisational performance. The framework is depicted in Figure 30. 

 

Figure 30: The proposed data quality framework for Abu Dhabi Emirate (ADDQF). The 
framework comprises 8 levels up to effective decision making 

The results obtained emphasise the integrity of the framework and the intertwining 

nature of its processes, with further attention to data refinement methods to data 

quality such as data mining. These factors have been overlooked by other frameworks 

aimed at addressing the same aspects. This is further discussed in the next section 

where the framework is compared to other similar frameworks. 
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8.3. Framework Comparison 

In this section, the developed framework is compared to existing data quality 

framework in order to show the aspects of similarity and difference with other well-

established frameworks. 

8.3.1. Comparison with the Zachman-based information quality 
framework 

The first framework considered is the Framework for Information Quality (FIQ) based 

on the Zachman Framework for Enterprise Architecture (McGilvray, 2010) shown in 

Figure 31. 

 

 

Figure 31: The Framework for Information Quality is a conceptual framework for data quality 
diagnosis, planning and design. The framework is suggested by McGilvray (2010) independently 
of the Zachman Framework for Enterprise Architecture although both frameworks comprise the 
same interrogatives 

In order to compare FIQ with the proposed ADDQF, FIQ’s main elements are first 

discussed: 
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1. Business Goals/Strategy: FIQ maintains the organisation’s strategy should be 

the main drive of actions and decisions. 

2. The information lifecycle: which comprises the stages information undergoes 

in its management process.  

3. Key components affecting information lifecycle: these are: the data being 

processed, the processes being undertaken, the organisation of people involved 

in the processes, and the technology required for information processing. 

4. The interaction between Element 2 and Element 3: The interaction between 

the information lifecycle and the key components. 

5. Location and Time: Indicating where the information is at a given point of time 

and when it is available. 

6. Broad-impact components: these include other factors that affect information 

quality, namely: information requirements and constraints, responsibility, 

improvement and prevention, structure and meaning, communication, and 

change. 

7. Culture and environment: the organisational culture of the company and the 

environment it operates in. 

The above elements of FIQ can be mapped onto ADDQF as follows: 

- Element 1 of FIQ is mapped to leadership in ADDQF as leaders must have a 

clear definition of the purpose of certain data in order to make better 

judgements. The definition should be in line with the business objectives and 

strategies of the organisation. 

- Element 2 of FIQ is mapped to People & Systems in ADDQF as information 

lifecycle as defined in FIQ is mainly concerned with people and systems. 

- Element 3 of FIQ is mapped to People & Systems and Policies & Procedures 

in ADDQF as data, processes, people and technology are defined in those two 

levels of ADDQF. 

- Element 4 in FIQ is mapped to Reporting in ADDQF as the interaction between 

the information lifecycle and the key components occurs via reporting in 

ADDQF. 

- Element 5 in FIQ is mapped to Organisation in ADDQF, which defines data 

location and time. 
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- Element 6 in FIQ is mapped to Service Quality in ADDQF as those broad-

impact components are defined under the comprehension of linking Service 

Quality to Data Quality in ADDQF. 

- Element 7 in FIQ is clearly mapped to Culture in ADDQF. 

 

 

Figure 32: Mapping FIQ elements to ADDQF elements 

8.3.2. Comparison with the UK’s public sector data quality 
framework 

The Audit Commission of the UK was “an independent body responsible for ensuring 

that public money is spent economically, efficiently and effectively, to achieve high-

quality local services for the public” (Audit Commission, 2007). The body’s remit 

extended to over 11,000 public organisations in England, with a total expenditure of 

over £180 billion of public money each year. The Commission’s work covered local 

government, health, community safety, fire and rescue services and housing. The 

Commission closed on 31 March 2015 and its work is now carried out by several 

bodies as part of the then government’s cost-cutting measures. 

The Audit Commission of the UK developed a data quality framework to be used by 

the UK’s public sector. The framework covers management arrangements for public 

organisations in the UK to put in place to ensure the quality of the data they use to 

manage and report on their activities. The framework distils the principles and 
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practices identified in existing guidance, advice and good practice. The framework 

comprises the following standards: 

1. Governance and leadership: Accountability of data quality with a commitment 

to secure a culture of data quality throughout the organisation. 

2. Policies: Appropriate policies and procedures to secure the quality of data. 

3. Systems and processes: Systems and processes to secure the quality of data as 

part of the normal business activity of the organisation. 

4. People and skills: Ensuring that staff have the appropriate knowledge, 

competencies and capacity for their roles in relation to data quality. 

5. Data use and reporting: Ensuring that data supporting reported information is 

actively used in the decision-making process, and is subject to a system of 

internal control and validation. 

The above dimensions of the UK’s public sector data quality framework are closely 

related to the elements of ADDQF. 

 

Figure 33: Mapping of the UK’s Public Sector Data Quality Framework to ADDQF 

As can be seen in Figure 33, all dimensions of the UK’s public sector data quality 

framework are elements of ADDQF. 

8.4. Need, Relevance and Uniqueness of ADDQF 

It must be noted again that implementation of the framework must consider all its 

elements, and that it can be adopted by any public organisation in Abu Dhabi 
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regardless of the data quality state it has. The framework aims to improve data quality 

in public organisations and will certainly provide improvement. This is based on the 

fact that the framework provides a formal approach to enhancing data quality and also 

benefits from other frameworks that are used for the same aim. Data quality is defined 

as “the totality of features and characteristics of a dataset that bear on its ability to 

satisfy the needs that result from the intended use of the data” (Arts et al., 2002). 

Redman (2001 cited by Angelsen et al., 2011 p.192) maintains that high quality data 

are those which fit their intended uses in operations, decision making, and planning. 

Furthermore, such data are supposedly free from defects and they acquire desired 

characteristics. Batini et al. (2009) studied common aspects of data quality. They 

considered and compared thirteen data quality methodologies and identified three 

directions that data quality is currently taking, namely: (1) considering more data types 

and moving from data quality to information quality, (2) approaching data quality 

issues in accordance with business process issues, and (3) focusing on new types of 

information systems, such as P2P and Web information systems. Batini et al. (2009) 

further maintain that there are open issues in data quality measures that require 

addressing, such as the identification of more robust statistical, probabilistic, and 

functional correlations between data quality and process quality. 

Digitisation and storing of data in electronic format has made data more pervasive than 

ever. It has however raised many questions on its quality and hence efficiency of 

storing large amounts of data over a long time. Data quality plays a significant role in 

many if not all business and governmental applications (Batini et al., 2009). According 

to the Audit Commission and the National Health Service in England (2007), the risk 

of not identifying and addressing weaknesses in data quality is that information may 

be misleading, decision making may be flawed, policies may be ill-founded, resources 

may be wasted and poor services may not be improved. There is also a risk that good 

performance may not be recognised and rewarded.  

Several initiatives have been launched worldwide by both the public and private 

sectors to promote the importance of data quality and to provide further guidance on 

its attainment, for example, the Data Quality Act passed by the U.S. government in 

2002 (Batini et al., 2009), the Data Quality Initiative Framework by the Government 

of Wales in 2004 to improve the information quality for general medical practices 
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(HIQA, 2011), and a framework to support improvement in data quality in the public 

sector in the UK by the Audit Commission in 2007, among many others. 

Public bodies and governmental institutions are confronted with real challenges of 

choosing the correct data from huge amounts of data produced by the operations of 

these organisations. Moreover, the rapid development of data digitisation produced 

data stored in organisations’ data warehouses, which required efficient exploitation 

and knowledge extraction. Padhy et al. (2012) argue that the value of strategic 

information systems is easily recognised; however, efficiency and speed are not the 

only factors of competitiveness. Padhy et al. maintain that the need for quality data is 

crucial given several reasons, including cost and the likely sensitivity of decisions 

taken by governmental bodies. Typically, these data are used for producing statistical 

analyses and forecasts on economic, social, health and education issues. These facets 

are highly related to government planning in areas like economic growth, development 

of interest rates and inflation, household income, education standards, crime trends 

and climate change, among others. Furthermore, the continuous increase in 

complexity in decision making requires executives to consider a vast number of inputs 

and a considerable amount of knowledge (Liu et al., 2010), rendering the necessity of 

acquiring tools for assessing the quality of the data at hand inevitable. Decision makers 

in the public sectors vary in their needs for the quality of data. At high levels, leaders 

often need to take complex decisions on priorities and resource allocation. Lawmakers 

and regulators must acquire correct information to help them make judgements on 

governance and performance. Even the general public and the service end-users need 

accessible information for their informed decisions, which is the responsibility of the 

competent body to provide them with such information. 

Therefore, the considerations of the difficulties of attaining data quality measures as 

described above is somewhat lessened by the importance of assessing the quality of 

the data they use for making decisions for public organisations. International relevant 

standards, such as the ISO 9000 suite, can help benchmark data quality performance 

but cannot replace customised and tweaked frameworks of data quality based on 

particular settings of the public sector in general and a certain country’s public sector 

in particular. Although some few successful cases of adoption of international data 

quality standards are recorded in the literature (for example in China (To et al., 2011), 

India (Srivastav, 2010), Australia (Singh & Mansour-Nahra, 2006) and Finland 
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(Moreland & Clark, 1998)), governments worldwide are still reluctant to do so (Singh 

& Mansour-Nahra, 2006). Moreover, the application of the ISO system to the public 

sector may even be counter-effective. For example, Abdullah et al. (2013) identified 

five common barriers in the literature to implementing the ISO 9000 standard in local 

government organisations, as well as two additional barriers identified in the 

researcher’s study findings. These barriers relate to aspects of an individual public 

organisation, its resources, behaviour, culture, administrative practices and changes 

within the ISO 9000 version itself. 

Governments worldwide have attempted to approach data quality issues and develop 

their own guidelines or frameworks for data quality assessment. Regardless of the 

difficulties of attaining such frameworks, the examples of government data quality 

guidelines are many in practice. The Health Information and Quality Authority 

(HIQA, 2011) provide information on data and information quality frameworks for 

the health sector in England, Wales, Canada and New Zealand. Moreover, the Data 

Quality Act passed by the U.S. government in 2002 aims to ensure and maximise the 

quality of information, the Data Quality Initiative Framework by the Government of 

Wales in 2004 to improve the information quality for general medical practices 

(HIQA, 2011), and a framework to support improvement in data quality in the public 

sector in the UK by the Audit Commission in 2007. Therefore, it can be seen that the 

need for data quality assessment criteria has already been addressed for the public 

sector in several countries either by law or by initiatives of competent bodies. Hence, 

the question of choosing the appropriate data quality for certain public organisations, 

which can be generalised to other organisations, is a task governments usually 

undertake. As the above examples demonstrate, governments realise the importance 

of data quality and have hence sought to develop standards for assessing the quality 

of the data they acquire. 

Following this trend, and given the considerations mentioned above, a framework for 

data quality for the public sector in Abu Dhabi Emirate will bring about similar 

benefits as its counterparts. More importantly however, the unique factors of the 

framework to Abu Dhabi that were devised from empirical data where the framework 

would be implemented will ensure it will work as intended. 

The undertaken comparison established a mapping between ADDQF and two other 

data quality frameworks, namely the UK’s public sector data quality framework and 
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the Framework for Information Quality (FIQ) based on the Zachman Framework for 

Enterprise Architecture. The elements of FIQ and the UK’s public sector data quality 

framework were all matched by elements of ADDQF. However, ADDQF has unique 

features that the other two frameworks do not have as highlighted above. In particular, 

the integrity and interaction among the elements were emphasised in the discussion. 

The elements of ADDQF have mutual and transitive relationships and therefore 

require that the framework be considered as a whole not as individual elements. The 

elements could be thought of as levels, each of which should be attained in order to 

obtain data quality and eventually effective decisions. For example, embracing 

cultural values is the basis of the other levels. Relationships between levels are 

transitive and hence extend forwards and backwards across levels. This means that, 

for example, the relationship between decision making and data quality extends to 

leadership and so on. Other frameworks suggest using the framework elements 

without considering the layered approach or viewing the framework as an integral 

system but rather suggest that elements could be adopted individually. The other 

frameworks do not emphasise the concept of layers or levels as required by ADDQF. 

Furthermore, no transitive relationships among elements are regarded in the other 

frameworks. These relationships were found essential in this study in order to improve 

data quality in the adopting organisation. Another aspect unique to the ADDQF is 

adoption of knowledge extraction and data mining techniques. The use of data 

refinement techniques, such as data mining and integration of data mining and decision 

support systems is another unique feature of ADDQF. New and emerging techniques 

of data quality enhancement and knowledge extraction may also be of significant 

importance for the organisation as shown in the experiments conducted, and should be 

considered as key aspects of improving data quality. In this sense, data mining 

techniques and their integration with decision support systems as detailed in previous 

chapters 4, 5 and 6 will help improve data quality and provide decision makers with 

valuable information. 

The importance of those distinguishing factors of ADDQF as the findings revealed as 

well as shown in the discussion is that attaining data quality requires a chain of 

processes and elements that interact with one another. Existence of those elements is 

necessary but not sufficient as detailed in the discussion since, for example, leadership 

should extend to all levels, reporting must follow a vertical and horizontal approach 



173 

in the organisation, and measuring organisational performance requires inputs from 

all levels, and so on. 

8.5. Implementation, Recommendations and Expert 

Reviews 

Implementation of the framework (ADDQF) can be suggested based on the findings 

and discussion. Implementation procedures of each of the elements of ADDQF were 

provided in the framework element sections under the element description. Further 

implementation recommendations are provided hereby. 

The findings coupled with the discussion in particular the comparison of existing 

frameworks with ADDQF, provide strong evidence of the ability to adopt and use the 

framework by Abu Dhabi’s public organisations. ADDQF is suggested as an outcome 

of the conducted research on the data quality issue encountered in the target public 

organisations in Abu Dhabi and substantiated by extensive research into data quality 

requirements. ADDQF should provide the necessary elements needed for achieving 

data quality enhancement up to attaining effective decisions by identifying and 

resolving the root causes. As the discussion above maintains, adoption of the 

framework must consider it as an integral system with connected elements, and 

therefore implementation should be undertaken as an ongoing project in the adopting 

organisation. Each element has a mutual positive relationship with the lower level’s 

element. Data quality has a mutual positive relationship with the highest level, 

decision making. As can be noticed, embracing cultural values is the basis of the other 

levels. Relationships between levels are transitive and hence extend forwards and 

backwards across levels. This means that, for example, the relationship between 

decision making and data quality extends to leadership. 

The implementation project by the adopting organisation would start by understanding 

and embracing cultural values of the organisation. This is a key aspect in shaping 

organisational practice and performance in public sector organisations (O'Donnell & 

Boyle, 2008), which ultimately helps undertake change in the organisation. Based on 

findings from the interviews and the literature reviewed in this work, developing 

organisational culture that admires data quality requires addressing key issues 

represented as the elements of the framework. This directly leads to the next level of 
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the framework which is leadership. Leadership is obviously important for determining 

the effectiveness of culture change. Leaders are key personnel who are responsible for 

understanding and managing culture in their organisation.  Leaders need to adopt a 

methodological basis to support the decision making process. Leadership acts as the 

centre of all the elements required for improving data quality, which provides direction 

and control. For that, leaders must resort to training programmes, technical and 

interpersonal, that also consider the cultural values that the organisation preaches. This 

includes more training courses and supportive bodies of the organisational units, such 

as decision support centres, information security and strategic management. These all 

act as organisational units to provide decision makers with quality data. It is also 

important to acknowledge human and cultural factors involved in the decision making 

process. Such factors have implications into how training and raising awareness are 

implemented to lead to effective methods of system development. The programmes 

can be reinforced by policies and procedures that align with the organisation’s cultural 

aspects. Reporting should therefore be effective in order to act as evaluation of 

improvement. Reporting requires that information systems should be robust and 

centralised, with data consistency being verified and enhanced by using advanced data 

refinement techniques. Since the framework targets public organisations, service 

quality can be used as a tracking mechanism for organisational performance. These all 

contribute to improving data quality, which ultimately serves attaining effective 

decisions. Each element should be revisited at various intervals to ensure continuous 

improvement of data quality in the organisation. The mutual and transitive 

relationships among elements described earlier mean that attaining each element will 

have a positive impact on improving the other elements. 

The implementation process is depicted in Figure 34. 
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Figure 34: ADDQF implementation processes with transitive positive relationships existing 
between them 

The framework and the implementation aspects were also reviewed by the 14 

executives interviewed earlier in the 7 organisations in Abu Dhabi Emirate. Initial 

feedback received included comments such as “the framework may provide a 

systematic approach to identifying and rectifying quality issues at ADPO” by 

Interviewee 3 from ADPO and “the framework is well-thought-of in terms of 

applicable elements and can be tested and evaluated with little to no change” by 

Interviewee 4. As seen in the comments below, the executives also pointed out the 

normative nature of the framework in the sense of its possible implementation in their 

organisations: 

“The framework gives importance to the continuous development of the 

organisation” (Interviewee 6). 

“It provides strategies for redefining and analysing data” (Interviewee 12). 

“The aspect on training with culture in mind is a very important point to 

notice” (Interviewee 9). 

“It establishes a basis for improving data quality and contains executable 

elements” (Interviewee 5). 

The framework simply reflects some of the known problems and identifies the areas 

which result in current data quality problems, it unfolds the underlying roots of the 

problems which may be overlooked or are not easily spotted by ordinary auditing. 

Furthermore, the executives maintained that the framework is normative in the sense 

of the possibility of implementation in their organisations. The elements that the 



176 

framework embeds provide a basis for refining several relevant factors that add up to 

improving the quality of data reaching decision makers. 

The theoretical basis of the framework, supported by the mapping onto other existing, 

well-established frameworks, in addition to the distinctive features of the framework 

detailed above, all provide strong evidence for the ability of the framework to improve 

data quality. Moreover, given the multitude of elements encapsulated in the 

framework, for example, policies, systems, humans, culture and leadership, it is highly 

likely that the framework can form a basis for changed organisational practices of Abu 

Dhabi public organisations towards improved data quality. The argument of forming 

a basis for organisational change is reinforced by the integration and interaction of 

elements, and culture as an influencing factor. The framework embeds inclusion of 

key features of Arab culture being drawn from Arabic settings of the investigated 

organisations. The role of Arab culture may hence facilitate making decisions in the 

absence of quality data. Given concerns with previous attempts to address the data 

quality issue in Abu Dhabi Emirate, the framework is likely to provide an effective 

response to these concerns. As realised from the framework development, the 

literature and other established frameworks, common elements exist in many 

frameworks with the same objectives. However, the distinctive features of ADDQF 

are believed to be significant as a basis for change for Abu Dhabi’s organisations into 

a data quality adopting organisations. 
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Chapter	9:	Conclusion	

9.1. Conclusion and Recommendations 

Data quality is an important aspect of organisations’ strategies. Providing decision 

makers with the most accurate data possible for reaching the best decisions possible 

and consequently attaining their objectives is an ever-sought aim. In the case of public 

organisations, decisions ultimately concern the public and hence, diligence is required 

to make sure that these decisions do, for instance, preserve the economic resources, 

maintain public health, and provide national security. This research comprised a study 

of several aspects of data quality and its decisive role in providing decision makers 

with appropriate insights into making efficient decisions. It was evident from the 

results obtained that there is a positive relationship between the quality of data 

reaching decision makers and the efficiency of the decisions made. The focus of the 

study was on strategic decisions in public organisations. 

Generally speaking, strategic decisions made in public organisations are not efficient 

if the results obtained are unsatisfactory, such as waste of public resources and 

squandering. The decision making process requires a wealth of information in order 

to achieve efficient results. Public organisations typically acquire great amounts of 

data generated by public services. However, the vast amount of data stored in public 

organisations’ databases may be one of the main reasons for inefficient decisions made 

by public organisations. Processing vast amounts of data and extracting accurate 

information is not an easy task. Although technology helps in this respect, it cannot 

improve decisions to a significant level of assurance. Technology is not sufficient to 

furnish data quality for public organisations’ decision makers to make efficient 

decisions. For example, Decision Support Systems (DSSs) have been widely used in 

the private and public sectors to help decision makers improve their decisions. 

However, DSSs are associated with some drawbacks, such as rising costs and 

inaccuracy. Data mining techniques can help improve accuracy of data provided by 

DSSs. This research proposed certain aspects of using data mining to improve results 

obtained by DSSs. It was shown, however, that further considerations and 

requirements are needed for improving data quality. 
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Seven public organisations in Abu Dhabi Emirate were considered to discuss how 

public organisations can attain a better decision making process. 

Research shows that there is a positive relationship between data quality and efficiency 

of decisions: higher data quality promotes better decisions. Therefore, in order to 

improve the decision making process, it is necessary to provide decision makers with 

quality data. The findings in the organisations revealed inefficiency of decisions, 

although certain countermeasures were considered. For example, DSSs have been in 

use in the organisations but they have failed to improve the quality of decisions to a 

confident level of sufficiency. This study argued that technological considerations 

would not be adequate to improve the decisions. The research maintained, based on 

the findings of studies conducted in these Abu Dhabi public organisations and 

supported by a literature review, that a complete data quality framework is needed in 

order to improve data quality and consequently the decision making process in public 

organisations. The studies conducted in the public organisations in Abu Dhabi 

contributed to the design of a data quality framework. The framework comprises seven 

elements ranging from technical to human-based, which are found important to attain 

data quality in public organisations taking Abu Dhabi public organisations as the case. 

The interaction and integration of these elements contributes to the quality of data 

reaching decision makers and hence to the efficiency of decisions made by public 

organisations. Sufficiency and generalisation of the framework to any public 

organisation are maintained by the flexibility of the sub-elements which may be 

modified according to the different needs of individual public organisations, given that 

all elements of the framework are considered in the implementation project. By 

adopting the framework to incorporate data quality in the strategic endeavours, the 

decision making process in public organisations in Abu Dhabi will be more efficient 

and decision will be more effective. The quality of data will directly improve the 

overall quality of decisions.  

9.2. Achievement of the Aim and Objectives 

The general aim stated at the initial stage is satisfied by conducting this study. The 

aim was “to understand data quality issues in public organisations in Abu Dhabi 

Emirate and accordingly suggest appropriate ways for overcoming these issues up to 

improving data quality used for strategic decisions of these organisations.” This aim 
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was attained by the devised data quality framework for Abu Dhabi public 

organisations. The framework was realised by a combination of three elements: 

1. Findings from interviews at seven public organisations in Abu Dhabi; 

2. Outcomes of a review of existing literature; and 

3. Comparison with existing frameworks for data quality. 

Implementation guidance of the framework was provided and the framework was 

reviewed by the 14 executives interviewed earlier in the 7 organisations of Abu Dhabi 

Emirate. The executives maintained the normative nature of the framework in the 

sense of its possible implementation in their organisations. The framework does not 

only reflect some of the known problems in the studied organisations, but also 

identifies the areas which result in current data quality problems. Essentially, the 

framework targets the underlying roots of the problems which may be overlooked by 

ordinary auditing. The elements that the framework integrates provide a basis for 

refining several relevant factors that add up to improving the overall quality of data 

reaching decision makers. 

The framework has high potential to provide an effective response to data quality issue 

in public organisations in Abu Dhabi. The framework has distinctive features, such as 

culture, all-level leadership, system integration, and data refinement techniques. 

Moreover, the integrity of the framework and the intertwining nature of its elements 

are distinctive features of the framework. These factors have been overlooked by other 

frameworks aimed at addressing the same aspects. 

The research questions initiated at early stages of the study can hence be answered 

now: 

1. Is data quality an issue in public organisations in general and in Abu Dhabi’s 

public organisations in particular? How is this issue manifested? 

Answer: Yes, it is. Improving the quality of data reaching decision makers is 

an ongoing aim of any organisation regardless of its type or nature. The study 

provided evidence that data quality is a main issue in public and private 

organisations (Chapters 2, 6 and 7). However, because strategic decisions in 

public organisations are directly related to the public and these decisions have 

social, economic and political consequences in the countries, improving data 

quality is more important and necessary to address in public organisations than 
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in private organisations. The need for quality data is crucial given several 

reasons, including cost and likely sensitivity of decisions taken by 

governmental bodies (Chapter 7 and 8). 

2. What are the main problems facing improving data quality in public 

organisations? 

Answer: Public organisations face challenges of choosing the correct data for 

strategic decisions from huge amounts of data produced by the operations of 

these organisations (Chapters 2 and 7). The complex and bureaucratic nature 

of public bodies and governmental institutions requires careful attention to 

several matters when undertaking a change project. Furthermore, the 

continuous increase in complexity in decision making requires executives to 

consider a vast number of inputs and a considerable amount of knowledge, 

rendering the necessity of acquiring tools for assessing the quality of the data 

at hand inevitable (Chapter 4). Moreover, decision makers in the public sectors 

vary in their needs for the quality of data (Chapters 2 and 4). 

3. How can data quality contribute to better decision making? 

Answer: This relationship is better understood by looking at the proposed data 

quality framework. The framework consists of elements contributing to data 

quality. Each element has a mutual positive relationship with the lower level’s 

element. Relationships between levels are transitive and hence extend forwards 

and backwards across levels. This means that data quality has a mutual positive 

relationship with the highest level, decision making (Chapter 8 the 

implementation recommendations section). 

4. Are there specific methods to be followed for improving data quality in Abu 

Dhabi’s public organisations? If so, what are these methods? How can these 

methods assure better data quality? 

Answer: The data quality framework encapsulates the possible areas of improvement 

of the quality of data reaching the decision makers in public organisations in Abu 

Dhabi The theoretical basis of the framework, supported by the mapping onto other 

existing, well-established frameworks, in addition to the distinctive features of the 

framework detailed above, all provide strong evidence for the ability of the framework 

to improve data quality. Moreover, given the multitude of elements encapsulated in 

the framework, for example, policies, systems, humans, culture and leadership, it is 
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highly likely that the framework can form a basis for changed organisational practices 

of Abu Dhabi public organisations towards improved data quality. The argument of 

forming a basis for organisational change is reinforced by the integration and 

interaction of elements, and culture as an influencing factor. The framework embeds 

inclusion of key features of Arab culture being drawn from Arabic settings of the 

investigated organisations. The role of Arab culture may hence facilitate making 

decisions in the absence of quality data. Given concerns with previous attempts to 

address the data quality issue in Abu Dhabi Emirate, the framework is likely to provide 

an effective response to these concerns. As realised from the framework development, 

the literature and other established frameworks, common elements exist in many 

frameworks with the same objectives. However, the distinctive features of ADDQF 

are believed to be significant as a basis for change for Abu Dhabi’s organisations into 

a data quality adopting organisations (Chapter 8). 

9.3. Contribution to Knowledge 

Data quality plays a significant role in many if not all business and governmental 

applications (Batini et al., 2009). According to the Audit Commission and the National 

Health Service in England (2007), the risk of not identifying and addressing 

weaknesses in data quality is that information may be misleading, decision making 

may be flawed, policies may be ill-founded, resources may be wasted and poor 

services may not be improved. There is also a risk that good performance may not be 

recognised and rewarded. 

This work makes a significant contribution to knowledge in several respects all related 

to data quality. These are detailed in the Discussion chapter and a brief description of 

the contribution is provided below. 

This work comprised extensive research and an empirical study that collected primary 

from interviews in seven public organisations in Abu Dhabi. The outcome is a data 

quality framework, denoted ADDQF, for Abu Dhabi’s public organisation. The 

framework aims to improve data quality in public organisations with proven potential 

to do so. This is based on the fact that the framework provides a formal approach to 

enhancing data quality, and also benefits from other frameworks that are used for the 

same aim. 
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A comparison was undertaken between ADDQF and other well-established data 

quality frameworks, namely the UK’s public sector data quality framework and the 

Framework for Information Quality (FIQ) based on the Zachman Framework for 

Enterprise Architecture. The elements of FIQ and the UK’s public sector data quality 

framework were all matched by elements of ADDQF. However, some facets which 

contribute to both data quality and to better implementation of the framework are 

overlooked by the other frameworks. These facets are unique to ADDQF. In particular, 

the integrity and interaction among the elements of the framework were found 

significant. The elements of ADDQF have mutual and transitive relationships and 

therefore require that the framework be considered as a whole not as individual 

elements. The elements could be thought of as levels, each of which should be attained 

in order to obtain data quality and eventually effective decisions. For example, 

embracing cultural values is the basis of the other levels. Relationships between levels 

are transitive and hence extend forwards and backwards across levels. This means that, 

for example, the relationship between decision making and data quality extends to 

leadership and so on. Other frameworks suggest using the framework elements 

without considering the layered approach or viewing the framework as an integral 

system but rather suggest that elements could be adopted individually. The other 

frameworks do not emphasise the concept of layers or levels as required by ADDQF, 

which are key aspects for the implementation of the framework. Furthermore, no 

transitive relationships among elements are recognised in the other frameworks. These 

relationships were found essential in this study in order to improve data quality in the 

adopting organisation. Another aspect unique to the ADDQF is adoption of knowledge 

extraction and data mining techniques. The use of data refinement techniques, such as 

data mining and integration of data mining and decision support systems is another 

unique feature of ADDQF. New and emerging techniques of data quality enhancement 

and knowledge extraction may also be of significant importance for the organisation 

as shown in the experiments conducted, and should be considered as key aspects of 

improving data quality. In this sense, data mining techniques and their integration with 

decision support systems will help improve data quality and provide decision makers 

with valuable information. 

The importance of the distinguishing factors in ADDQF as the findings revealed and 

shown in the discussion is that attaining data quality requires a chain of processes and 
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elements that interact with one another. Existence of those elements is necessary but 

not sufficient as detailed in the discussion since, for example, leadership should extend 

to all levels, reporting must follow a vertical and horizontal approach in the 

organisation, and measuring organisational performance requires inputs from all 

levels, and so on. 

9.4. Limitations and Future Work 

The work has certain limitations which are highlighted in this section. First, the study 

relied mainly on qualitative design, which may be regarded over-descriptive in some 

contexts. The study focussed on public organisations in Abu Dhabi and it may need 

further discussion on how results specific to Abu Dhabi’s public organisations can be 

generalised to a broader spectrum of public organisations. Given the cultural context 

and particularity of that context of the chosen organisations, the proposed framework 

may need to be tailored in order to be adopted by other public organisations, although 

the flexibility of the sub-elements of the framework, which may be modified according 

to the different needs of individual public organisations, allows generalisation of the 

framework to other public organisations. Regardless of that, the results might have 

been more substantial had a wider range of organisations been investigated. 

The choice of the data mining technique for the conducted experiments was limited to 

classification. The aim of the experiments was to show the use of the technique can 

improve data quality. Testing with more techniques, such as clustering for instance, 

may provide further insight into the uses and benefits of data mining in public 

organisations. 

The framework’s theoretical basis, supported by the review of the literature and the 

mapping onto other well-established frameworks, in addition to the executives’ 

positive feedback on its applicability and normative nature, all provide high potential 

for the framework. However, implementation of the framework would be more 

insightful 

Future work can use the abovementioned limitations as a basis for developing the work 

further. For example, investigating the aspects of data quality in several public 

organisations across the UAE, other Arab Gulf countries, or even across the Arab 

world would be desirable for generalising the results over Arab culture. Accordingly, 
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the impact of culture would be better realised and understood. Complementary 

quantitative survey would also be a desirable addition in measuring recurrence of 

problems related to data quality, or for measuring integrity of data. Further research 

on this aspect would be necessary in order to identify aspects of how quantitative data 

may be benefited from. 
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Appendix	I:	Using	Data	Mining	in	
Organisations:	A	Pilot	
Questionnaire	
1. How is data required by decision makers stored and accessed? 

[  ] Totally in database management systems (MS Access, Oracle, etc.) 

[  ] Partly in database management systems 

[  ] Totally manual/hard archive 

2. Do you apply on the data stored any regular statistical analysis such as regression 
analysis or decision support techniques? 
[  ] Yes 

[  ] No 

[  ] Not sure 

3. Does the organisation use any forms of Decision Support System (DSS) to support 
decision makers 
[  ] Yes 

[  ] No 

[  ] Not sure 

4. Do you believe, based on knowledge or insight, that systems used by decision 
makers, whether DSS or others, must be improved? 
[  ] Yes 

[  ] No 

[  ] Not sure 

5. Do you believe, based on knowledge or insight, that some of the organisational data 
quality can be of significant improved if there exists any technique of extracting it? 
[  ] Yes 

[  ] No 

[  ] Not sure 

6. Does the organisation have any perspective on data mining uses in the present or 
the future? 
[  ] Yes 

[  ] No 

[  ] Not sure 

7. Would your organisation be part of integrating current systems with data mining 
techniques for optimising systems used by decision makers? 
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[  ] Yes 

[  ] No 

[  ] It needs further studies to decide 
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Appendix	II:	Interview	Questions	
Forward 

The risk in not identifying and addressing weaknesses in data quality, or the 

arrangements that underpin data collection and reporting activities, is that information 

may be misleading, decision making may be flawed, resources may be wasted, poor 

services may not be improved, and policy may be ill-founded. There is also a risk that 

good performance may not be recognised and rewarded. 

Questions: 

1. What are the major challenges and problems the organisation faces (or has 
faced) at the decision making level and how do you deal (or have you dealt) 
with them? 

2. Do you refer any of the above problems to insufficient quality of the data 
received by decision makers? 

3. How are data generated, evaluated and stored in your organisation?  
4. How does the organisation realise the importance of data quality?  
5. How do you assess the quality of the data? In other words, what criteria do 

you use to make sure that certain data received by decision makers are of 
quality?  

6. How is the process of strategic decision-making undertaken in the 
organisation?  

7. What are the types and nature of the information used in strategic decision-
making (For example financial statements, figures, tips, ideas, etc.)? 

8. What are the sources of data that reach the decision-makers?  
9. How often are decisions taken based on quality data?  
10. Are there any policies established or adopted by the organisation for data 

handling at all levels?  
11. How does the reporting process take place in the organisation? 

 

 المنظمةفي  جودة البيانات حول مقابلة

تھدف ھذا المقابلات إلى فھم جودة البيانات في المؤسسات العامة وستكون مفيدة لاقتراح أطر تطوير جودة 

 .البيانات في ھذه المؤسسات

ار القرما ھي التحديات والمشاكل الرئيسية التي تواجھھا المنظمة (أو قد واجھتھا) على مستوى صنع  .1
 وكيف تتعاملون (أو قد تعاملتم) معھا؟

 ھل تعيدون أي من المشاكل المذكورة أعلاه لسبب نقص جودة البيانات التي تصلإلى صناع القرار؟ .2
 كيف يتم إنشاء البيانات، تقيمھا وتخزينھافي المنظمة ؟ .3
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 كيف تقوم المنظمة بإدراك أھمية جودة البيانات؟ .4
ارة أخرى، ما ھي المعايير التي تستخدمونھاللتأكد من أن بيانات معينة كيف تقيمون جودة البيانات؟ بعب .5

 ھي ذات جودة؟
 كيف تتم عملية اتخاذ القرارات الاستراتيجية في المنظمة؟ .6
ما ھي أنواع وطبيعة المعلومات المستخدمة في اتخاذ القرارات الاستراتيجية؟ (مثل البيانات المالية،  .7

 خ.)الأرقام، النصائح، الأفكار، ال
 ما ھي مصادر البيانات التي تؤخذ من قبل صانعي القرار؟ .8
 كم من القرارات تبنى على بيانات ذات جودة؟ .9

 . ھل ھناك أي سياسات أنشأتھا أو اتخذتھا المنظمة للتعامل مع البيانات؟6 .10
 ) في المنظمة؟Reportingكيف تتم عمليات الإبلاغ، بمعنى آخر تداول المعلومات ( .11

  



205 

Appendix	III:	Sample	Interview	
Transcripts	
Al Ain Hospital (22 October 2014) 

1. What are the major challenges and problems the organisation faces (or has faced) 

at the decision making level and how do you deal (or have you dealt) with them? 

As a business entity of an enterprise most decisions at strategic level are coming 

directly from the HQ.  for the facility that by itself is a challenge as those decisions 

sometimes has no consideration for the facility resources availability.  For example 

when the HQ decides that the budget will be reduced to a certain amount, the facility 

have to face the challenge of finding places to make cuts or cost reduction with the 

minimum impact possible.  Difficult in decision making for the facility comes here. 

We often use data as productivity compared to service size and staffing to see if cutting 

some positions would do “mostly we try to cut vacant positions” or reduce the size of 

the service.  

2.      Do you refer any of the above problems to insufficient quality of the data received 

by decision makers? 

Some of the problems are due to data quality, but not because its insufficient.  As an 

enterprise we collect huge amounts of data, but the problem is the validation.  A lot of 

data elements are collected at the facility level and also at the enterprise level.  Aside 

from being efforts duplication, this process of collecting same data at 2 different 

location creates inconsistency.  We have always had and still have lots of figures that 

are reported by the HQ totally different that our in-facility reports.  One example is 

“patient days” it is a data field that we calculate based on the number of omissions, 

length of stay, and other inputs.  And the HQ calculates the same field.  We both use 

the same calculation methodology that the HQ created, however more than often the 

figure for the same time frame that we calculate comes out different than the one from 

HQ.  it takes about 1 to 2 weeks every quarter just to try and reconcile with the HQ 

what could be the reason behind the variance.  Sometimes we find it’s the cut off dates 

on timeframes and sometimes it is other reasons and sometimes we just cannot 

pinpoint the reason because everything seems in alignment.  At the end of the day if 
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we can’t align to the HQ figure we have to accept it as it is.  Now, even though it is 

one figure that has the problem, many areas are affected.  The “patient days” figure is 

used for calculation of many financial and non-financial KPIs, we can fail to meet 

some of our KPIs due to such issues when we know that in reality we are meeting the 

KPI. 

3.       How are data generated, evaluated and stored in your organisation? 

At the HQ level, almost all data are generated by the Business intelligence department, 

then certain reports and dashboards are created and distributed to those who should 

receive it.  Few other departments run their own data from their own systems such as 

IT and HR. data usefully comes from 3 to 4 different systems for example, Oracle for 

manpower related data, Malaffi for service related data “number of visits, type of 

service, patients financials, etc.” and risk assessment systems. At the creation of any 

new report a validation process is conducted to ensure that report is pulling correct 

data accurately.  For reports that can be run at the facility as well as the HQ, the facility 

is asked to validate the report as well.  For example if the report is created to pull the 

number of cases that had a DVT after going through surgery, at the facility we validate 

by running the report for a short timeframe then checking the cases to see if they really 

meet the report criteria, then we run a different time frame and repeat to see if the 

results are consistent.  However data extracts “taking the data fields out of the system 

raw as they are usually not validated.  They should be inserted correctly from the 

beginning and they have entry criteria therefore they should be accurate “there are 

some errors due to human errors “ 

At facilities level reports are generated at few different locations, but mostly from 

Health Information Management department, business performance/performance 

management departments, IT, quality.  Departments that have Mallafi Modules can 

run their own reports as well, such as Lab and Radiology.  Usually running reports is 

limited to certain staff within those departments to ensure confidentiality of 

information, and limit the load on reporting tools.  Similar systems to the HQ are used 

to generate reports at the facility, and very rarely a facility will have different reports 

than the HQ.  

Storage of electronic data is on an enterprise servers, everything is hosted centrally, 

even applications and facility wide licensed software.  Generated reports are stored “if 
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needed to be stored” at each generating department in protected share folders. 

Otherwise they can be regenerated whenever needed. 

As patient records, we still have paper based records “hybrids” and the paper based 

data is stored in the facility for specific time frames, then the can be moved to 

secondary storage areas. 

4.       How does the organisation realise the importance of data quality? 

As previously mentioned data quality is very important, and inaccurate data can lead 

to many problems from losing performance KPIs to providing under standard service 

for our patients.  Simple example, data entry for the patient information into mallafi 

system, although it’s governed by many system restrictions and criteria, error is 

possible due to human errors or system malfunction.  If we enter the wrong patient 

name and fail to match the information in the system with the actual patient we are 

treating, there is a risk of administering the wrong treatment and endangering the 

patient life.  Even though this scenario is really rare to happen as we have a patient 

identification process, but such a simple data quality issue can lead to a huge problem.  

From business performance perspective, if the data accuracy is not up to standard we 

could be operating services that are pure cost without income value.  For example we 

have to ensure that the data telling us the number of visits to radiology is actually 

reliable.  Because if the number of visits is less than a certain number, then the service 

its not covering its costs.  Also the data we push to the insurance providers, if quality 

is not assured they can simply reject our claims and not pay us. 

5.       How do you assess the quality of the data? In other words, what criteria do you 

use to make sure that certain data received by decision makers are of quality? 

Any data received from the decision makers at the HQ are usually considered valid 

unless we see that it doesn’t align with our data at the facility “if we have 

corresponding data internally”.  Usually the HQ allows us to give counter proposals 

to their data reports if we think their data is wrong.  If we can provide evidence to our 

argument then the data at the HQ level is changed. The criteria of assessment depend 

on each data report provided. 

6.       How is the process of strategic decision-making undertaken in the organisation? 

Once the HQ set the enterprise strategy, the facility set a strategic planning session on 

how to adapt and implement the HQ strategy.  Data of facility performance and 
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manpower is used to ensure decision making is supported with availability of 

requirements 

7.       What are the types and nature of the information used in strategic decision-

making (For example financial statements, figures, tips, ideas, etc.)? 

Staffing plans, financial statements, for decisions related to capex justification are 

required  in terms of facility performance "number and trend of visits" and expected 

outcomes is required as well 

8. What are the sources of data that reach the decision-makers? 

As previously mentioned there are certain data sources in the enterprise such as the 

Oracle system and the EMR "malaffi" system and other data creating systems such as 

Patient Safety Net which produce data about incident reporting.  All these sources are 

accessible for decision makers at both the enterprise and the facility level.  Even if 

they don't have a direct reporting access, they can request the data and its provided to 

them. 

9. How often are decisions taken based on quality data? 

At facility level, decisions are either taken based on data or they are implementation 

to the HQ decisions.  For example, the hospital outpatient clinics are currently opened 

at the evening,  there was a data review to make a decision on whether or not it is 

worth continue having them open.  The data statistics shows that some of the clinics 

are not as active as they should be; therefore the facility is now in the process of 

finalizing a decision to close them.  in the other hand, there was a mandate from the 

HQ to see only "Thiqa" insurance holders in certain hours within the day, this project 

had to be implemented as mandated even though our current stat shows that we will 

suffer a drop on volume due to this decision  but there is nothing much to do about it.  

From the HQ level this mad ate was not done based on our data, but rather based on a 

strategic vision.  After the implementation however, we are now monitoring the data 

to make decisions on resources allocation and service quality like waiting times  

10. Are there any policies established or adopted by the organisation for data handling 

at all levels? 

there are few policies adopted regarding data handling.  we have a data validity policy 

from the HQ, we also have data integrity policy and confidentiality policy.  But as far 
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as how reporting is done and accessibility to reports there are no policies currently.  

For the communication of information within the facility and with the HQ we have a 

communication plan. 

11. How does the reporting process take place in the organisation? 

There are certain reports that are run periodically and provided to certain key 

individuals and/or groups in the facility.  an example is the KPI reports on monthly or 

quarterly bases. 

There are other reports created based on request and provided to the requester.  an 

example is diagnosis related reports for specific studies or research or projects like the 

annual SEHA Transformational Event project. 
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Abu Dhabi Police (5 June 2013) 

 

 كيف تقوم المنظمة بإدراك أھمية جودة البيانات؟ .1

من  مشكلة البيانات عندنا مشكلة قديمة اي متخذ قرار يحتاج الي بيانات في الزمن الحالي اصبحت المعلومات 

الشغلات الداعمة لمتخذ القرار يعني يمكن الموارد بدات تقل فاستثماراتك لازم تكون ذكية جدا يعني ھل انا بستثمر 

في التدريب؟ في بناء مركز؟ على اساس انته تستثمر بشكل صحيح لازم يكون عندك ارقام دقيقة وتحليل ادق 

القيادة اقصد فيھا من مدير فرع الى اعلى متخذ قرار في فالقيادة في السنوات الاخيره بشكل عام ولما اتكلم عن 

الموسسة بدات تدرك ان العملية عندنا الوقت محدود التحديات كبيرة الامور اصعب عدم الوضوح في المتغيرات 

المستقبلية اصعب فاصبحت المعلومات عامل جذري لمحاولت التنبا بالمستقبل كتحليل أصبحت المعلومات 

صائيات عامل مھم جدا في تحديد اولوياتنا كاھداف استراتيجة وايضا اھم المشاريع الي عندنا والبيانات والاح

فالقيادة في الفترة الي طافت بسبب كل المتغيرات الي قاعدة تستوي ادركت ان المعومات لھا اھمية كبيرة  ويمكن 

ت في الفترة الي طافتھذا اصبح من اھم المواضيع الساخنة الي تناقش في اجتماعاتنا دقة البيانا . 

 

 ما ھي المعايير التي تستخدمونھا لتقييم جودة البيانات؟ بعبارة أخرى، كيف تقيمون جودة البيانات؟ .2

القيادة تستخدم عده طرق لتقييم جوده البيانات مثل المقارنات الداخلية المقارنات بالفترة السابقة المقارنة بين 

المراجعة الدورية للارقام ھذي تحليل الارقام ھذي كلھا خطوات نستخدمھا  التقارير الصادرة من جھات مختلفة 

لتاكد ھل ھذا الرقم صحيح او لا بمعنى لو انا اتكلم عن الوفيات على الطرق انا لست الجھه الوحيدة التي تصدر 

قارن ارقامنا البيان ھذا في عندنا جھات شريكة لنا مثل ھئه الصحة على المستوى الاتحادي والمحلي فدائما ن

بارقامھم ونحاول نعرف وين الاخطاء ونقارن الاتمدات في السنوات القليلة الماضية على اساس لو انشوف قفزات 

نوعية تبدا تسال ليش لو كان منطقي تعرف ان ھذي الارقام فيھا جزء من الصحة فھذي الادوات الي ممكن محم 

افة الى انه كان فيه عده مشاريع لمراجعة الانظمة الاحصائية نستخدمھا في التدقيق على بياناتنا الحالية بالاض

 .والاكترونية المختلفة الي عندنا لتدقيق مخزن البيانات نفسة والمعلومات نفسھا

 ھل يوجد اي صعوبات اوتحديات في جودة البيانات؟.3

ھذي وادراكھم للادخال الصعوبات كثرة والصعوبات تبدا من مدخلين البيانات فسھم ودراكھم لاھمية البيانات 

الصحيح من الانظمة الاكترونية اذا ما كان فيھا الحقول المناسبة وطلب المعومات المناسبة من على سبيل المثال 

ترابط قواعد البيانات الي تسھل لي اساخراج الاحصائيات بشكل دقيق ومتكامل من قدرات الموسسة من تحليل 

رار المناسب من المعومات والاحصائيات المشار اليھا ھذه كلھا تحديات الموشرات بشكلھا الدقيق الى اتخاذ الق

كانت موجوده و لا اقول انھا انتھت ولاكن القيادة ادركت وبدات تعرف اين مشاكلھا حتى ابسط شي تعريف 

ھل الموشر نفسه كبطاقة تعريف واليه احتساب واليه معادلة بدينا نخوض فيھا ونشوف ھل ھذه المعادلة الاصح؟ و

لو قارناھا بموسسات مرجعية اخرى ھل ھذه المعادلة  تقارن؟ مثل يوم اقول جرائم مغلقة الية تعريف الجرائم 

المغلقة كتعريف ومعادلة رياضية كاحتساب تختلف من دولة الى اخرى وانا عشان يعطيني الرقم قرائه حقيقية 
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الاحتساب ونطاق كلمه جريمة مغلقة يعني اليوم  لازم اعمله مقارنات مرجعية المقارنات ھذه تكون اصعب لو اليه

جريمة المخدرات  عندي انا تعتبر جريمة مغلقة ولاكن خارج الدولة في بريطانيا وامريكا لا تعتبر جريمة مغلقة 

وھنا لما احسب اجمالي الجرائم المغلقة مقابل امريكا وبريطانيا فالناتج لا يكون صحيحا وبتالي متخذ القرار لا 

عطي تصور واضح تعال الى اليه الاحتساب كمعادلة رياضية انا اقسمھا على عدد السكان على عدد السكان يقدر ي

في بداية السنه على عدد السكان في اخر السنه او كل شھر بشھر ھذي كلھا تفاصيل دقيقه وكلھا اضطرينا نخوض 

دخال الى الاستخراج والتحليل الى اخفيھا بحيث نجود من البيانات والمعلومات المتوفرة لدينا بتداء من الا .  

 

 

 كم من القرارات تبنى على بيانات ذات جودة؟ .4

صعبه عملية الاحتساب القيادة العامة لشرطة ابوظبي ضخمة جدا القرارات تاخذ فيھا بشكل مستمر داء وادائم  

ورية امنية جنائية من فروع مترامية الاطراف على مستوى الامارة بتخصصات وخدمات ضخمة جدا يعنى مر

موراد بشرية  مالية الى اعلى متخذ قرار فاتخاذ القرار على الاحصائيات عملية صعة جدا للاكتساب فما بالك 

القرارات ذات جوده ولاكن ھذا تقدير  %70الدقيقة منھا لانى انا اساسا لا اعرف نسبه الدقيقة منھا من عدمه  و

ه غير مبنى على الي قاعدة من قواعد المعاير.ولاذالك لايمكن شخصي ويمكن ان اكون قد اخطات فيه ولاكن

 .احتسابه او العمل به

 

 ما ھي مصادر البيانات التي تؤخذ من قبل صانعي القرار؟5

نحن عندنا انظمة رئيسية الكترونية وانظمة ادارية النظام الجنائي النظام المروري نظام امن المنافذ نظام الموارد 

لية نظام الدفاع المدنى كموسسة ھذي كلھا انظمة حقيقية موجوده عندنت لدعم متخذ القرار وطلع البشرية نظام الما

إحصائيات وموشرات وبيانات ھذه البرامج الموجوده عندنا بالاضافة الى العدد الضخم من المعلومات الي ھيه 

 مختلفة من مصادر مختلفة سواء كانت داخل او خارج الموسسة

 

طبيعة المعلومات المستخدمة في اتخاذ القرارات الاستراتيجية؟ (مثل البيانات المالية، الأرقام، ما ھي أنواع و .6

 (.النصائح، الأفكار، الخ

أنواع كثيره على حسب طبيعة الموضوع اذا نتكلم عن الموارد البشرية بتاخذ معومات مواد بشرية واذا تتكلم عن 

ن مرورية غير عن سجون على حسب القرار الموتخذ ولاكن نحن المالية بتاخذ معلومات مالية الجريمة غير ع

دائما بغض النظر عن المعلومات ومصدرھا نحن نحاول نرسم صور واضحة لھذه المعلومات يعني معلومات 

ثلاث او اربع سنوات عشان نرسم ترنت معين تنبات مستقبلية مقارنات مرجعية للارقام ھذي مع دول مختلفة 

انك حيث انك فعلا تحصل على معلومة الان الرقم نفسة ليس له قيمة ولاكن الرقم مقابل  تقارير دولية بحيث

 مستھدف الرقم مقابل الثلاث السنوات الماضية مقابل مقارنات مرجعية مجموعه ارقام تودي معلومة
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اءه مثل مجموع الوفيات على الطرق في مكان معين بالاضافه على الجريمة في مكان معين يمكن يعطيك قر

مختلفه او المخالفين والوفيات والجرائم يعني انا جبت المخالفين من نظام والجرائم من نظام ولاكن عطاني صوره 

اكبر لانه فيه صورة تكاملية في الاحصائيات وھنيه عملية معقده جدا. وجواب السوال ھوه على حسب الموضوع 

علومات المطلوبة  لرسم الصورة الواضحةولاكم نحن دائما نسعى لرسم صوره واضحة بستخدام  كل الم  

 

 ھل الراي الشخصي او الحليل الشخصي يوثر على اتخاذ القرار؟.7

ھذا شي طبيعي نحن بشر ليس كل القادة يعتمد على الارقام بنفس الدقة ويصدقھا يعني مثل استطلاعات الراي 

عينين وھل ھذي يعني كل القادة يومنوا فيھا اليومي وھي  الادراك وعملية انطباعات معينة لمتخذ القرار و لناس م

بنفس الدرجة ؟ لا البعض يومن بھا ايمان كبير والبعض الاخر لا طيب ارتفاع جريمة معينة ھل معناه ان ھذه 

ظاھرة حقيقية؟ البعض منھم يقول لا والبعض الاخر يقول اتوقع انھا سوف تتغير ما اظن تستمر فاذا مسالة الحكم 

انات والارقام تختلف بختلاف اطباع القادة بختلاف قدراتھم وتجاربھم في الحياة ودرجة تعليمھم الشخصي على البي

  ولذلك فان الجانب الشخصي له تاكثر كبير على تفسير البيانات وبتالي على اتخاذ القرار

 ھل ھناك أي سياسات أنشأتھا أو اتخذتھا المنظمة للتعامل مع البيانات؟.8

رار حاولنا ندعم فيھا الموضوع ھذا فيه دورات تدريبيه كثيره فيه اليوم استحدثنا وحدات فيه منھجية اتخاذ ق

تنظيمية داعمة لتخاذ القرار مثل مركز دعم اتخاذ القرار مثل المعلومات الامنية مثل ادارة الاستراتيجية وموشرات 

 . استراتيجية ھذي كلھا ھياكل تنظيمية ووحدات تنظيمية

 

9. البيانات، تقيمھا وتخزينھا؟كيف يتم إنشاء   

 

نحن موسسة كبيرة  بيانات شغالة على مدار الساعة مروري جنائي منافذ كل الادخالات مستمرة بغض النظر عن 

الانظمة الداخلية مثل المالية والموارد البشرية ولاكن ھذه الانظمة الميدانية شغالة على مدار الساعة طيلة ايام 

المجتمع فيتم ادخال البيانات على حسب الجرائم وغيره بشكل امن وغيره ويوجد الاسبوع موسسة خدمية تدعم 

لدينا انظمة كثيره مثل امن المعلومات وغيره تخزينھا ومساندتھا على حسب منھجية معينة تخزن فيھا المعلومات 

  بشكل دائم ومستمر

  

10. بيانات؟ما ھي الأدوار والمسؤوليات المناطة بالموظف فيما يتعلق بجودة ال  

كل انسان له دور معين يعني انته عندك الوحدات التنظيمية مدخلين البيانات لھم ايضا دور يتم تدريبھم وتاھيلھم 

وغيره المعلومات الامنية الموجودة في الوحدات التنظيمية لھم دور ادارة المعلومات الامنية  المركزية لھا دور 

الادوار من مستوى للاخر ولاكن ھذه الادوار المفوض ان تسھم  قيادات الشرطة كمدراء عامين لھم دور تختلف
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في دقه البيانات ھذي أدارة الاستراتيجية لھا دور ولاكن الدور الاھم  والاكبر ھوه دوم مدخلين البيانات نفسھم  

 . المدراء المباشرين وايضا المعلومات الامنية

 

. 12. لوماتكيف تتم عمليات الإبلاغ، بمعنى آخر تداول المع  (Reporting) في المنظمة ؟ 

طبعا نحن منظمة سرية  ومعلوماتنا معتمدة بشكل كبير على السرية  فيه معلاومات متعارف عليھا تقارير توصل 

نحن عندنا مثلا اليوم  المعلومات العامة والموشرات العامة  مثل اجماعات اسيوعية في مراكز الشرطة  اجتماعات 

عات ربع سنوية  على مستوى الادارات العامة والقائد العام  وسمو الوزير ھذا التسلسل شھرية في مديريات  اجتما

المنطقي ولابعدين على حسب احاجة والطلب اوموضوع دراسة معينة او مشكلة قائمة وغيره يمكن تستحدث 

    طلب البيانات
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