Supplementary information to:
Parallel Hybrid Simulations of Block Copolymer Nanocomposite
Systems using Coarray Fortran

Javier Diaz', Marco Pinna*?, Andrei V. Zvelindovsky? and Ignacio Pagonabarragaf!3+4

L CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique
Fédérale de Lausanne, Batochime - Avenue Forel 2, 1015 Lausanne, Switzerland
2Centre for Computational Physics, University of Lincoln, Brayford Pool, Lincoln, LN6
7TS, UK
3Departament de Fisica de la Materia Condensada, Universitat de Barcelona, Mart{ i
Franques 1, 08028 Barcelona, Spain
YUniversitat de Barcelona Institute of Complex Systems (UBICS), Universitat de
Barcelona, 08028 Barcelona, Spain

March 8, 2021

1 2D stencil

Figure shows the 2D stencil analogy to the 3D stencil used in the simulations. Calculating the
laplacian of a 2D array Vi ~<< ¢ >> — at point r in the grid requires looping over the nearest-
neighbors (NN) and the next-near-neighbors (NNN).

2 Computational resources

Access has been provided to several HPC facilities for this work. For reference, we list the available
resources, brief description, access method and specifications.

2.1 CSCS - Centro Svizzero di Calcolo Scientifico (Swiss National Super-
computing Centre)

Access has been provided to the Piz Daint (website) supercomputer through the Preparatory Project
allocation scheme. Specifications: Cray XC40 Intel®) Xeon®) E5-2690 v3 @ 2.60GHz (12 cores, 64GB
RAM) and NVIDIA®) Tesla® P100 16GB - 5704 Nodes In this machine the CRAY Fortran compiler
has been used without special flags.

The Cray Aries interconnect links all compute nodes in a Dragonfly topology

2.2 Mare Nostrum / BSC-CNS (Barcelona Supercomputing Center-Centro
Nacional de Supercomputacién)
Access has been provided via the HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of

the EC Research Innovation Action under the H2020 Programme; Mare Nostrum (BSC-CNS) (website)
compute nodes have 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total

*mpinna@lincoln.ac.uk
fipagonabarraga@ub.edu


https://www.cscs.ch/computers/piz-daint/
https://www.bsc.es/marenostrum/marenostrum

Figure S1: 2D stencil for the calculation of the laplacian. NN and NNN stand for the nearest-neighbor
and next-nearest-neighbors, respectively, for the point r in the 2D grid.

of 48 cores per node. In this machine the GNU Fortran compiler has been used with the OpenCoarrays
wrappers=, with level 3 of optimisations.
In this machine network communications use 100Gb Intel Omni-Path Full-Fat Tree.

2.3 ARCHER - Advanced Research Computing High End Resource, UK

Access has been provided via the ARCHER Driving test. Compute nodes in ARCHER (website) have
Cray XC30 MPP supercomputer where each node has two 12-core Intel Ivy Bridge, using a Cray Fortran
compiler. In this machine the CRAY Fortran compiler has been used without additional optimisation
flags.

The Cray Aries interconnect links all compute nodes in a Dragonfly topology

2.4 University of Lincoln [UoL]

Additionally, the Centre for Computional Physics HPC facilities at the University of Lincoln (UoL)
was used with gfortran for 48 AMD Opteron 6348 CPUs per node. In this machine the GNU Fortran
compiler has been used with the OpenCoarrays wrappers® with level of compiler optimisations.

Connection between nodes use InfiniBand.

3 Strong scaling in additional supercomputer facilities

We report the strong scaling of the purely CDS code for additional supercomputers. In figure [S2] we
can observe the strong scaling for three system sizes in each supercomputer. The scaling is comparatively
bad for a smaller sized system V = 1282 in the UoL cluster as expected for the hardware specifications. A
better scaling can be achieved in two national super computers with more modern hardware: ARCHER
and Mare Nostrum in (b) and (c), respectively. The Mare Nostrum supercomputer displays a satisfactory
scaling as well as ARCHER supercomputer with a close to idea behaviour.

4 Comparison MPI vs CAF

In order to compare the performance of the current CAF implementation and the previously reported
MPIT algorithm, we display the data points from figure 1 in the main text along with the data points from
reference Guo et al 2007 (figure 5). It is clear that the scaling of the CAF code is always above the


https://www.ARCHER.ac.uk/about-ARCHER/

128 21283

1 30 £-1283
»r [-e-256° wl [E-256° —o-256°
3 25
" 512 . » 512° 512° .
------ Linear Scaling - Linear Scaling 20f [+Linear Scaling| .

Figure S2: Single node strong scaling on additional supercomputers with the number of processors and

several system sizes. The ideal scaling is shown as a dashed line. The used supercomputers (compilers)
are: (a) UoL (gfortran), (b)) ARCHER (CRAY) and (¢) Mare Nostrum (gfortran).

MPI curve, for all three system sizes considered. It is important to note that hardware improvements in
the time between these two publications should definitely be taken into consideration. To facilitate the
comparison, we note that the MPI simulations were performed on SGI Altix 3700 computer which has 56
Intel Ttanium-2 CPUs (1.3 GHz 3 MB L3 Cache), as stated in reference”, using MPICH (Message Passing
Interface Chameleon) with Intel. On the other hand, the hardware details of the CSCS supercomputer
can be found in section 2.1l

5 Efficiency of the purely polymeric code

The efficiency of a parallel algorithm is defined as

T(m,1)

E = 7
(m:mp) = T (o)

(1)
where n,, is the number of processors, m is the total scale of the problem and T'(m, n,) is the computing
time. In Fig. the efficiency is displayed for several distributions of processors n, = NN, N, along
X,Y and Z, respectively and a total number of n, = 8 processors in two machines: (a) Mare Nostrum
and (b) CSCS. Although changes in the relative elapsed time are not considerable, an optimal speed-
up can be achieved using a non-square partition (ie different from N, = N, = N;). Fortran access
to arrays in memory privileges a minimal jump in the Z direction. For this reason, it is generally
recommended to perform loops in the order Z-Y-X. This can explain the hierarchy of elapsed time
for S(118 > S(181) > S(811)). Further understanding of the more complex arrangements require
knowledge over the particular architecture of the HPC facilities, in this case, Mare Nostrum and CSCS
supercomputers.

6 Strong scaling of the hybrid code in Mare Nostrum

In figure [S6| the strong scaling for the hybrid BCP /NP code is shown with simulations performed in
Mare Nostrum. The system size is V = 5122 grid points while the number of particles is N, = 108. The
dotted line shows the ideal scaling. The scaling is shown to be satisfactory for up to 16 processors, but
it has noticeably decreased for n, = 32.

In figure [S7] we break down the different contributions to the computational time in three repre-
sentative conditions: (left) 8 cores with concentration ¢, = 2.5 x 1072 of NPs, (middle) 8 codes with
¢p =1 x 107" and (right) 16 codes with ¢, = 1 x 107! | using a fixed volume V = 256 and particle
size Resr = 1.56. The different contributions to the total time are separated in terms of the role in the
hybrid simulation: polymer(red), coupling(blue) and colloidal (yellow).

Due to the various contributions, we describe them in the following lines:



.
:— v=1283 - CAF *==dde==' v=128° . MPI o*
30k V=2563 - CAF "-8"' V=2563 - MPI R

V=512% - CAF === == v=512° - MPI
25 smmnmumns [deal Scaling

5 10 15 20 25 30
cores

Figure S3: Comparison between the scaling of the CAF (black markers, solid line) and the MPI (blue
markers, dotted lines) code. The ideal scaling S = cores is shown as a dotted line. The data points for
the CAF scaling are the same as in figure 1 in the main text, while the MPI data points are extracted
from figure 5 in reference?.

a) serial

coupling

I| V2u II Update .

Colloid-colloid Update colloid

forces

b) parallel

V

cpl bound
calc

Colloid-colloid
forces

A

Update Update
colloid links

Figure S4: Flowchart of the algorithm: A single iteration (ie, a single time step) is shown from left to
right, indicating the polymer, colloid and coupling in red, yellow and blue respectively. In a) the simpler
serial algorithm is shown, while in b) we display the algorithm for the CAF implementation, including
the communication steps.




124 142 214
118 181 412 421 222
811 241
09k | 0.9F 118 181 124 142 214 241 222

08F
0.7F

06

04
03F
0.2F

01

Processors distribution: NXNyNZ Processors distribution: NxNyNZ

(a) (b)

Figure S5: Efficiency of the parallel algorithm in (a) Mare Nostrum and (b) CSCS for n, = 8 processors.
The processors are distributed in the X, Y and Z direction as shown in each bar.

35 L] L] L] L] T T

30 F _6_5123 o -
~-Linear Scaling

35

n
Y

Figure S6: Strong scaling of the hybrid BCP/NP code vs the number of processors n, in a single
node. The speed-up S is compared with the ideal, linear scaling(dotted line). The number of particles is
N, = 105 and simulations were performed in Mare Nostrum. The coupling constant is set to o = 1.



100

/Iinked list
+~__colloid update
, coupling
80 coupling boundary
boundary search

~~CC-force calc

60

time (a.u.)

40

20

8 cores 8 cores 16 cores
®,=2.5e-2 ®,=1le-1 ®,=1le-1

Figure S7: Bar graph of the computational time for three different systems in a V' = 256> box: (left) 8
cores with concentration ¢, = 2.5 x 1072 of NPs, (middle) 8 codes with ¢, = 1 x 107! and (right) 16
codes with ¢, = 1x 1071 . The bar height is the time spent in each section of the code, in arbitrary units.
The colouring reflects the section type: Dark red for the in-processor calculation and transparent red
for the halo exchanges. Blue for coupling calculations, dark for coupling within local processor and two
transparent for searching and calculation of boundary particles. Finally, yellow for colloidal calculations.



e Polymer

— In-processor - Laplacian calculations (for ¢ and ), adding chemical potential and update
of Y

— 1 communication - halo exchange for 1) and p.
e Coupling

— In-processor - calculating forces and torques for particles within the processor’s domain.

— Boundary search - Search for particles within the boundary of local processor, ie, looking
for particles in neighboring processors that may be overlapping local processor.

— Boundary particles calculation - calculating coupling for particles which are in the bound-
ary

e Colloid

— Force Calculation - calculating colloid-colloid forces

— Update colloid - Update colloidal positions and communicate colloidal information between
Processors.

— Update linked list - Update the linked list.

Figure[S7| further confirms the main conclusions in figure 3 and 4 in the main text: the computational
effort to perform coupling calculations can be comparable and much higher than the purely polymeric
part. This is not the case for the colloid part (colloid-colloid forces calculations and updates), which
are always subdominant. It should be noted that the simulation parameters are particularly chosen to
reflect a high effort in the colloidal part, with 400000 particles in the system for the ¢, = 1 x 107!
case. The smaller concentration ¢, = 2.5 x 1072 leads to a smaller coupling contribution and a totally
negligible colloidal part, in the left bar. One can notice that the polymeric part remains mostly equal
in the left and middle bar as the polymer conditions are equal. On the other hand, in the right bar
the number of cores is doubled, which reflects in an approximate reduction in half in the computational
time. The computational time to perform the halo exchanges in the polymeric part remains the largest
communication effort in the simulation, which again should be emphasised is considering a particularly
large number of particles in the middle and right cases. The coupling boundary search is found to be
completely negligible compared with the two actual coupling calculations: in-processor and boundary
particle calculations.

The bottleneck of the computational time clearly depends on the concentration of particles in the
system. If the concentration is low, the calculations of the Laplacians are the main bottleneck of the
simulation, as the halo exchange is shown to be subdominant. If higher number of processors are used,
the performance of the code will decrease and the use of additional processors will not be beneficial, as
the ¢ and p communications become significant, as shown in figure 1 in the main text (this is clearly
dependent on the system size). For considerable concentrations the coupling contribution is not negligible
compared to the polymeric part, which can become the main bottleneck for the computational effort of
the simulation. The coupling calculation (both in-processor and boundary particles) are clearly the
heaviest part of the coupling part.

References

[1] A. Fanfarillo, T. Burnus, V. Cardellini, S. Filippone, D. Nagle and D. Rouson, Proceedings of the
8th International Conference on Partitioned Global Address Space Programming Models, 2014, pp.
1-11.

[2] X. Guo, M. Pinna and A. V. Zvelindovsky, Macromolecular Theory and Simulations, 2007, 16, 779—
784.



	2D stencil
	Computational resources
	CSCS - Centro Svizzero di Calcolo Scientifico (Swiss National Supercomputing Centre) 
	Mare Nostrum / BSC-CNS (Barcelona Supercomputing Center-Centro Nacional de Supercomputación)
	ARCHER - Advanced Research Computing High End Resource, UK
	University of Lincoln [UoL]

	Strong scaling in additional supercomputer facilities
	Comparison MPI vs CAF
	Efficiency of the purely polymeric code
	Strong scaling of the hybrid code in Mare Nostrum

