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Summary

Immunopathogenesis involving T lymphocytes, which play a key role in defence against viral infec-
tion, could contribute to the spectrum of COVID-19 disease and provide an avenue for treatment. 
To address this question, a review of clinical observational studies and autopsy data in English and 
Chinese languages was conducted with a search of registered clinical trials. Peripheral lymphopenia 
affecting CD4 and CD8 T cells was a striking feature of severe COVID-19 compared with non-severe 
disease. Autopsy data demonstrated infiltration of T cells into organs, particularly the lung. Seventy-
four clinical trials are on-going that could target T cell-related pathogenesis, particularly IL-6 path-
ways. SARS-CoV-2 infection interrupts T cell circulation in patients with severe COVID-19. This could 
be due to redistribution of T cells into infected organs, activation induced exhaustion, apoptosis, or 
pyroptosis. Measuring T cell dynamics during COVID-19 will inform clinical risk-stratification of hospi-
talised patients and could identify those who would benefit most from treatments that target T cells.

Abbreviations:ACE2: Angiotensin-converting enzyme 2; CCR5: C-C chemokine receptor type 5; CD: Cluster of differentiation; COVID-19: 
Coronavirus disease 2019; H&E: Haematoxylin and eosin; HIV: Human immunodeficiency virus; HLA-DR: Human leukocyte antigen – DR 
isotype; ICU: Intensive care units; IFN: Interferon; IHC: Immunohistochemistry; IL: Interleukin; mTOR, mechanistic target of rapamycin; NK: 
Natural killer; P53: Tumour protein P53; PBMC: Peripheral blood mononuclear cell; PCR: Polymerase chain reaction; PD-1: Programmed cell 
death protein 1; RNA: Ribonucleic acid; SARS-CoV: Severe acute respiratory syndrome coronavirus; Th: T helper; Tim-3: T-cell immunoglob-
ulin mucin 3; Treg: regulatory T cell.
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Graphical Abstract

In this review, we demonstrate that CD4+ and CD8+ T cell lymphopenia is a feature of severe COVID-19 
compared with moderate disease in hospitalised patients. Pathology data indicate T cell infiltration 
into infected organs, particularly the lung. Potential mechanisms affecting T cells in severe disease due 
to SARS-CoV-2 infection include T cell redistribution and sequestration, pyroptosis, and apoptosis.

Keywords:  CD4 cell, CD8 cell, SARS-CoV-2 virus, COVID-19, T cell biology

Introduction

SARS-CoV-2 is the causative agent of the COVID-19 
pandemic, responsible for a global health crisis unpre-
cedented in recent times. A  number of immunological, 
pathological, and histological studies indicate a role 
for T cells in the pathogenesis underlying COVID-19 
[1–3]. However, the speed and spread of SARS-CoV-2, 
coupled with challenges in collecting experimental 
clinical evidence means that characterisation of 
immunopathogenesis has thus far been limited.

CD4+ and CD8+ T cells play key roles in containing 
and resolving viral infections. Suppression of T cell re-
sponses is associated with a failure to achieve sterilising 
immunity against viral infection, classically demonstrated 
by HIV infection [4, 5]. Viral pathogenicity can sup-
press T cell function through a number of mechanisms 
including direct and indirect cytotoxicity, organ-based 
sequestration, and suppression of both antigen recogni-
tion and the downstream effector mechanisms that con-
tain infection [6–10]. Damage to the T cell compartment 

can also have longer term clinical and immunological 
sequelae, limiting responses to other pathogens even in 
recovered individuals [11–14].

Evidence from observational studies indicates that 
immunopathology is an important driver of the clinical 
features of severe COVID-19 [15, 16]. The mechanisms 
of this immunopathology in COVID-19 are unclear. An 
excess inflammatory response has been widely observed 
and is associated with the later stages of disease and 
multi-organ failure. Dysregulation of both CD8+ and 
CD4+ T cell circulation and function within specific tis-
sues could contribute to this immune injury.

The quality and quantity of T cell function is im-
portant in all stages of SARS-CoV-2 infection, once viral 
replication is established, including viral containment, 
the resolution of infection and recovery. Severe COVID-
19 therefore mainly represents a failure of normal T 
cell function to contain and resolve SARS-CoV-2 infec-
tion. We systematically reviewed clinical observational 
data from histopathology and immunological studies of 
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autopsies and in vivo clinical observational cohorts to 
identify whether the data gathered so far supports this 
idea.

Search strategy and selection criteria

Observational studies for this review were identified 
through a search of PubMed for articles published from 
1 December 2019 to 31 December 2020, by use of the 
terms ‘COVID-19’ and ‘T cells’. Articles published in 
English and Chinese were included. Observational studies 
were selected if they reported original T cell counts in pa-
tients with severe and non-severe COVID-19. The selec-
tion process is shown as a flow chart (Fig. 1).

Autopsy studies for this review were identified 
through a search of PubMed for articles published from 
1 December 2019 to 31 December 2020, by use of the 
terms ‘COVID-19’ and ‘Autopsy’. Articles published in 
English and Chinese were included. The inclusion criteria 
for post-mortem studies were measurement of T lympho-
cytes in patients who died of COVID-19 by haema-
toxylin and eosin (H&E) or immunohistochemistry 
(IHC) staining. The selection process is shown as a flow 
chart (Fig. 1).

Clinical trials for this review were identified through 
a search of ClinicalTrials.gov database for trials started 
from 1 December 2019 to 31 December 2020, by use 
of the terms ‘COVID-19’ and ‘CD147/IL-6/CCR5/PD-1/
mTOR’. Phase 1 clinical trials were excluded; phase 2, 3, 
and 4 clinical trials were included.

Clinical classification of COVID-19 and data 
extraction

Clinical descriptions in the eligible publications, which 
were from China, the Republic of Korea, Italy, France, 
Poland, Turkey, and Spain, followed broadly similar 
guidelines to classify patients with COVID-19 by dis-
ease severity. Four categories of COVID-19 disease were 
described, all of which had confirmed COVID-19 by 
polymerase chain reaction (PCR) testing or suspected 
COVID-19 based on clinical diagnostic criteria such as 
the Chinese Clinical Guidance of COVID-19 Pneumonia 
Diagnosis and Treatment [17] (Supplementary Table 1). 
Cases were asymptomatic, mild-moderate, severe, or 
critical. Mild-moderate cases had fever and respiratory 
symptoms such as dry cough, nasal obstruction, sore 
throat; severe cases were defined as those with pneu-
monia causing respiratory compromise and an oxygen 
saturation ≤93% when breathing room air at rest, and 
critical illness was defined as cases of COVID-19 where 
invasive ventilation was required. A  summary of clin-
ical features measured in the included publications is 
shown in the Supplementary Table 1. The reported 
CD3+ cell count (×106 cells/L), CD4+ cell count (×106 
cells/L), CD8+ cell count (×106 cells/L), and CD4:CD8 
ratio were extracted from the selected publications. 
Cases that were admitted to intensive care unit (ICU), 
did not survive or were designated as critical or severe 
in the original publication were allocated to the se-
vere group, cases that did not meet these criteria were 

Figure 1. Flow chart of the study selection process.
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allocated as non-severe. Infection with SARS-CoV-2 
was confirmed in the autopsy cases by PCR, spike pro-
tein under transmission electron microscopy, IHC, or 
RNA hybrid assay.

Peripheral T cell lymphopenia in severe 
COVID-19

Data on peripheral blood white cell counts and immune 
cell subsets have been widely collected during hospital 
admission for COVID-19. Forty studies have overwhelm-
ingly reported that peripheral T cell lymphopenia was 
worse in patients with severe COVID-19 compared with 
those with mild disease (Table 1). Although a wide range 
of T cell counts were reported with differences evident in 
standardised reported values for each study, the direction 
of change between severe and non-severe COVID-19 in 
these studies was consistent (Table 1). For all studies re-
porting CD3, CD4, and CD8 counts, the standardised 
mean difference in severe versus non-severe COVID-19 
was significantly lower in severe disease (P  <  0.00001 
for all three; Fig. 2). For studies which only presented 
the median and interquartile range (27/40), mean and 
standard deviations (SD) were estimated using mathem-
atical methods [18].

Where reported (in 30/40 studies), data on the 
CD4:CD8 ratio were more variable compared with find-
ings for the lymphocyte subsets (Table 1). Overall, the 
CD4:CD8 ratio was not significantly different in those 
patients with non-severe disease compared with pa-
tients with severe disease (P  = 0.08), and the direction 
of change varied across the studies (Table 1, Fig. 2). 
Normal CD4:CD8 ratio is variously described as ≥ 1 
or ≥ 1.2 and decreases with age [59]. Only one study 
reported a CD4:CD8 ratio <1.2, in either severe or 
non-severe COVID-19, the CD4:CD8 ratio therefore 
remained within normal range in both non-severe and 
severe COVID-19. Taken together, and compared with 
non-severe COVID-19, there is mounting evidence that 
severe COVID-19 disease is associated with a reduced 
frequency of CD3+ T cells affecting both CD4+ and CD8+ 
T cells in the peripheral circulation.

Given that lymphopaenia is known to be a feature 
of viral infection, rather than unique to severe COVID-
19 we searched for observational studies that had meas-
ured CD4 and CD8 counts in other respiratory viral 
infections. Only two studies that reported compara-
tive lymphocyte levels comparing between severe and 
non-severe infections were found, one in influenza [60] 
and one for SARS-CoV-1 [61]. Both indicated acute 
lymphopenia in severe disease (Supplementary Table 
2). One study has compared lymphocyte levels between 

patients with SARS-CoV-2 and influenza, and the counts 
were similar [62]. This suggests that lymphopenia may be 
a common feature of severe respiratory viral infections 
and not unique to SARS-CoV-2 and therefore strategies 
that target it may be more broadly beneficial.

Clinical, virological, and immunological sig-
nificance of T cell lymphopenia in COVID-19

Lymphopenia could be a risk factor for severity, mor-
tality, and poor prognosis in COVID-19, with T cells the 
most affected compared with B cells and natural killer 
(NK) cells [63, 64]. T cell counts negatively correlated 
with survival and CD4+ and CD8+ T lymphocytes de-
creased significantly in patients with severe disease [40]. 
In the early stage of the COVID-19 outbreak, a hospital 
in Wuhan studied lymphocyte subsets in 27 patients; 
lymphopenia was common (70.4%, 19/27) in severe 
cases, and T lymphocytes decreased more than B lympho-
cytes. Interestingly, CD4+ and CD8+ T cells but not B 
lymphocytes or NK cells, were significantly elevated after 
treatment of symptomatic disease suggesting that clinical 
and immunological recovery may be correlated and can 
be measured by an improving peripheral CD4 and CD8 
count [65]. In another study, although CD4:CD8 ratio 
remained in the normal range, CD8+ T lymphocytes were 
the most improved subsets after treatment [66]. While 
only one study reported that CD4+ T cell count was in-
dependently associated with ICU admission [67], several 
results highlighted the role of CD8+ T cells in COVID-
19. CD8+ T cell lymphopenia was analysed as an inde-
pendent predictor for the prognosis of COVID-19 [26, 
46]. Notably, an association of decreased lymphocytes 
with disease severity, has been observed suggesting that 
lymphopenia is an important predictive factor for the se-
verity of COVID-19 [57,68,69].

The nature of the association between lymphopenia 
and failure of viral containment has not been established, 
however a negative correlation between T cell count and 
virus detection could indicate that T cells contribute to 
the limitation of viral load. Peripheral blood lymphocyte 
counts on admission were significantly and negatively 
correlated with SARS-CoV-2 nucleic acid-positive dur-
ation in 18 patients. Amongst lymphocytes, the T cell 
count but not B cell or NK cell count that negatively cor-
related with nucleic acid-positive duration [70]. Another 
study which analysed T cells in 66 recovered COVID-19 
patients, found that CD4+ T cell count was predictive of 
the duration of viral RNA detection in the stool sample 
[71]. These data suggest that depletion of T lymphocytes 
is associated with a delay in viral clearance; however, the 
direction of causality is yet to be established.
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While clinical data indicate T cell lymphopenia is 
associated with persistent SARS-CoV-2 viraemia, some 
studies also indicate that infection may alter the quality 
and phenotype of the CD4+ T cell response. Surprisingly, 
a higher than normal naive-to-memory CD4+ T cell ratio 
has been observed suggesting an impact on the differen-
tiation of naive to memory T cells in COVID-19 patients 
[64]. There was a lower frequency of regulatory T cells 
(T regs) in patients with severe disease compared with 
those with mild disease [34]. Patients had reduced levels 
of CD4+ Th1 cells [72], with a reported Th2 skewed re-
sponse in peripheral blood smears from ICU patients 
[73]. An upregulated Th17 response was found in 39 
COVID-19 patients [74]. Bioinformatics analysis shows 
that genes involved in Th17 cell differentiation were en-
riched in patients with both mild and severe COVID-
19 [75]. Altogether these observations of skewed T cell 
helper phenotypes suggest that the inhibition of Treg-
induced anti-inflammatory responses and increased Th2 
or Th17 responses, which are inflammatory without ne-
cessarily leading to viral control, could be involved in the 
pathogenesis of COVID-19 [76].

Possible mechanisms for T cell 
lymphopenia

Dissection of the mechanism for the universal finding of 
peripheral T cell lymphopenia in SARS-CoV-2 infection 
particularly in severe COVID-19, will be important for 

the development of treatments and identifying who is at 
risk of severe disease.

SARS-CoV-2 infection of T cells

It is not yet clear whether SARS-CoV-2 can cause 
cytopathology through directly infecting T cells. Viral 
gene and angiotensin-converting enzyme 2(ACE2) ex-
pression were not detectable in the peripheral blood 
mononuclear cells (PBMCs) of COVID-19 patients [77]. 
Findings that the spike protein can bind to CD147 also 
known as basigin, and mediate viral invasion have not 
been corroborated [78, 79]. More recently a study has 
suggested that SARS-CoV-2 could interact with the CD4 
molecule and that CD4-positive cells are permissive to 
viral infection [80]. However in vivo infection of CD4+ 
but not CD8+ T cells is not supported by published 
studies. Given the very early and conflicting nature of the 
data, caution is needed when interpreting these reports.

T cell redistribution

Although SARS-CoV-2 replication occurs principally 
in the lung, in severe cases, patients present with multi-
organ failure in the late stage. This begs the question as 
to whether this is due to direct viral infection of these or-
gans or due to an indirect effect of viral replication in the 
lung. To investigate this, we evaluated 123 autopsy case 
series of SARS-CoV-2 patients. In the respiratory tract, 
lung congestion, patchy lesions, diffuse alveolar damage, 

Figure 2. Forest plot of T cell subsets in patients with severe and non-severe COVID-19. CD3+, CD4+ and CD8+ T cell counts are sig-
nificantly lower in patients with severe COVID-19 compared with those in patients with non-severe COVID-19 (P < 0.00001). The 
effect of severity of disease on the CD4:CD8 ratio was inconclusive (P = 0.08). Black diamond represents test for overall effect of 
40 studies.
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widespread vascular thrombosis, and new vessel growth 
were distinct characteristics of COVID-19 [81, 82]. Of 
significance for the interaction of the virus with T cells, 
74 out of 123 studies reported mild-to-prominent infil-
tration of lymphocytes into organs by H&E staining, 36 
out of 74 studies additionally confirmed T cell infiltra-
tion by IHC staining (Fig. 1). Both T cell infiltration and 
viral infection, as confirmed by presence of spike protein 
and/or viral nucleic acid, was observed in the heart [83], 
spleen [84], pharynx [82, 85], liver [83], and kidney [86]. 
Activated T cells in lymph nodes have also been reported 
[87]. In the spleen, the commonly reported lymphoid 
hypoplasia and lymphocytic depletion, especially CD8+ 
T cells indicates a decrease in the source of circulating 
lymphocytes [88]. The absence of germinal centres in 
hilar and posterior mediastinal lymph nodes suggests 
that the differentiation and maturation of B cells is also 
impacted [87].

The movement of T cells into tissues could be driving 
some of the observed damage. Cardiovascular changes 
reported were cardiomyocyte hypertrophy, degeneration, 

necrosis, congestion, and oedema of interstitial tissue 
[89]. H&E staining and caspase 3 staining support a 
model of inflammatory infiltration consistent with a pat-
tern of endothelial apoptosis [90]. CD8+ T cell activation 
could contribute to cardiac injury in patients with severe 
disease [91]. The myocarditis found in histopathological 
studies could result from hyper inflammation of patho-
logical T cells and cytokine storm [92]. Finally, the in-
tense inflammation observed in severe COVID-19 could 
be associated with aberrant T-cell endothelial cell inter-
actions leading to altered tethering and adhesion of cells 
[93]. Taken together, these autopsy findings indicate that 
normal T cell circulation is interrupted during severe dis-
ease due to SARS-CoV-2 infection (Fig. 3).

One potential driver for T cell redistribution con-
tributing to the observed lymphopenia is the cytokine 
environment. Type I interferons are associated with SARS-
CoV-2 infection, and in mouse models, lymphopenia was 
dependent on IFN signalling [94]. This may be a greater 
problem in the prolonged viral infection associated with 
severe COVID-19.

Figure 3. Hypothesis for peripheral T cell lymphopenia during SARS-CoV-2 infection and severe disease. According to experi-
mental data from peripheral blood of patients with severe COVID-19, we propose two drivers for peripheral lymphopenia. Firstly, 
T lymphocytes in the periphery are attracted by chemokines released by infected cells and immune cells at the site of disease and 
migrate out of the periphery to infected organs, mainly the lungs. Secondly, functionally exhausted T lymphocytes and activation 
of Th1/Th2/Th17 responses at the site of disease, fail to achieve viral containment, and undergo cell death through a variety of 
mechanisms including apoptosis and pyroptosis. It is likely that interruption of the normal circulation of T cells is the key compo-
nent in this cycle.
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T cell activation, exhaustion, and apoptosis

Given that lymphopenia was associated with higher viral 
loads, dysregulation of T cell circulation could be associ-
ated with antigen-driven over-activation and exhaustion, 
which may in turn lead to their absence in peripheral 
circulation. Data to support this hypothesis are scarce. 
The abnormal cytokine profile in COVID-19 has been 
well described and also in association with expression of 
apoptosis pathway transcripts in PBMC but more data 
are needed to demonstrate whether these are linked [77, 
95]. Several studies have indicated expression of exhaus-
tion and activation markers in severe COVID-19. Kinetic 
studies found that CD4+ and CD8+ T cells expressed 
higher levels of the exhaustion markers PD-1, Tim-3, 
and NKG2A in the symptomatic stage, compared with 
the prodromal and recovery stages [25, 96]. Analysis of 
a peripheral blood sample taken from a deceased patient 
showed that the remaining CD4+ and CD8+ T cells were 
hyperactivated, indicated by the expression of both CD38 
and HLA-DR. The increased frequency of CCR6+ Th17 
CD4+ T cells and perforin and granulysin positive CD8+ 
T cells suggests that T cell activation accounted for se-
vere immune injury in this patient [97]. Downregulation 
of the costimulatory molecule CD28 in patients with 
severe disease also suggests activation of T cells might 
contribute to aberrant signalling [98]. Different levels of 
activation markers were observed in different classes of T 
cells, with a very high level of activation in CD8+ T cells 
observed compared to CD4+ T cells [99]. An incompetent 
or aberrant CD8+ T-cell response could limit antigen-
specific immunity, and there is some evidence this might 
be occurring in older people, although our review has 
not demonstrated lymphopaenia to be uniquely CD8+ T 
cell biased [100, 101]. It was notable that in clonal ana-
lysis of CD8+ T cells, they were highly activated but not 
exhausted in COVID-19 patients compared with healthy 
controls [102]. While data are accumulating indicating T 
cell hyperactivation in COVID-19, whether this is mech-
anistically linked to lymphopaenia remains to be seen.

Cell death

Finally, T cell lymphopenia could also be a func-
tion of SARS-CoV-2 infection-induced cell death. The 
cytokine storm produced by T cells and other inflam-
matory cells can promote apoptosis, pyroptosis, and 
necrosis of T cells in turn [25, 103]. A study of SARS-
CoV found higher plasma Fas-ligand level in patients, 
which is associated with a higher level of caspase-3, 
which plays a key role in cell apoptosis, in CD4+ and 
CD8+ lymphocytes [104]. Since there are similarities be-
tween SARS-CoV-1 and SARS-CoV-2, it was proposed 

that lymphocyte apoptosis is one of the causes of 
lymphopenia in COVID-19. Genes involved in apoptosis 
and P53 signalling pathways were enriched in PBMCs 
and cells of bronchoalveolar lavage fluid sample in three 
COVID-19 patients, indicating cell apoptosis could con-
tribute to lymphopenia [77].

Another form of inflammation induced cell death is 
pyroptosis, which is caspase-1 triggered cell death via 
cleavage of gasdermin family members. Pyroptosis is trig-
gered by inflammatory cytokines. While no studies have 
directly reported T cell pyroptosis during COVID-19 in-
fection, one study proposed a mechanism for cytokine 
induced cell death [105]. This cell death was linked to 
IFNγ and TNF, both of which are elevated in patients 
with severe COVID-19, so it could potentially be a mech-
anism. Type I interferons have also been shown to prime 
cells for Fas-mediated apoptosis [106] which may drive 
the cell death seen.

Treatment strategies and ongoing clinical 
trials targeting T cells

The link between lymphopenia and severe disease opens 
up a number of therapeutic strategies, to target the dif-
ferent mechanisms driving the lymphopenia. Treatment 
strategies that have been considered include blocking 
SARS-CoV-2 from infecting T cells [78], inhibition of 
cytokine secretion [107–109], mitigation of T cell ex-
haustion [110, 111], blockade of the chemokine re-
ceptor CCR5 [112, 113], and normalisation of Th1/Th2/
Th17 differentiation [114, 115]. Despite limited under-
standing of the pathogenesis and processes involving T 
cells in SARS-CoV-2 infection, some of these have al-
ready entered clinical trials (Table 2). Anti-IL-6 treat-
ment has been tested in a number of different settings, 
with mixed results. A recently published study indicates 
that in critically ill patients anti-IL-6 receptor drugs can 
improve outcomes [116] but in other settings it has been 
less effective.

Dexamethasone, which suppresses the immune re-
sponse via the glucocorticoid receptor, is the only drug 
so far to have shown to have consistent efficacy against 
COVID-19 [117]. Randomised clinical trials have 
shown that intravenous dexamethasone treatment sig-
nificantly prolonged ventilator-free days [118] and re-
duced mortality [119]. A  meta-analysis demonstrated 
lower 28-day all-cause mortality in the corticosteroid 
treatment group [120]. Despite clinical improve-
ments, the side effect of dexamethasone including 
dampening viral clearance, suppressing bone marrow, 
and interrupting metabolism need attention [121]. The 
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impact of dexamethasone on T cell circulation and 
function in COVID-19 will be important to study. Why 
dexamethasone, which acts pleiotropically has been 
more effective than targeted cytokine blocking drugs 
is not clear, there may be a goldilocks effect, where 

both too little and too great a cytokine response is 
detrimental, so dexamethasone dampens but does not 
completely block inflammation while specific cytokine 
drugs remove the beneficial role of the cytokine as well 
as the excess inflammation.

Table 2. Clinical trials using therapeutics targeting T cells

Rationale Target Drug ClinicalTrials.gov Identifier

Proposed viral entry (mechanism to be 
confirmed)

CD147 Meplazumab  
(Anti-CD147 antibody)

NCT04275245 Phase 1, 2  
NCT04586153 Phase 2, 3

Target a downstream component 
of aberrant immune cell 
communication Reduce cytokine-
storm, inflammation and exhaustion

IL-6 Tocilizumab  
(Anti-IL-6R antibody)

ChiCTR2000029765  
NCT04320615 Phase 3  
NCT04330638 Phase 3  
NCT04345445 Phase 3  
NCT04347031 Phase 2, 3  
NCT04349410 Phase 2, 3  
NCT04356937 Phase 3  
NCT04359095 Phase 2, 3  
NCT04361032 Phase 3  
NCT04372186 Phase 3  
NCT04377750 Phase 4  
NCT04380519 Phase 2, 3  
NCT04381936 Phase 2, 3  
NCT04403685 Phase 3  
NCT04409262 Phase 3  
NCT04412772 Phase 3  
NCT04423042 Phase 3  
NCT04424056 Phase 3  
NCT04577534 Phase 3  
NCT04600141 Phase 3  
NCT04678739 Phase 3  
NCT04730323 Phase 4

  Siltuximab  
(Anti-IL-6 antibody)

NCT04322188 Not shown  
NCT04329650 Phase 2  
NCT04330638 Phase 3  
NCT04486521 Not shown

  Clazakizumab  
(Anti-IL-6 antibody)

NCT04381052 Phase 2  
NCT04343989 Phase 2  
NCT04363502 Phase 2  
NCT04348500 Phase 2  
NCT04494724 Phase 2  
NCT04659772 Phase 2

  Sarilumab  
(Anti-IL-6 Receptor 

antibody)

NCT04315298 Phase 2, 3  
NCT04324073 Phase 2, 3  
NCT04322773 Phase 2  
NCT04327388 Phase 3  
NCT04341870 Phase 2, 3  
NCT04357808 Phase 2  
NCT04357860 Phase 2  
NCT04359901 Phase 2  
NCT04661527 Phase 2

  Fluoxetine  
(SSRI inhibitor)

NCT04377308 Phase 4

Table 2. Continued
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Vaccines that induce a T cell response

Priming the T cell response prior to infection with vac-
cination is one strategy to improve protection from 
disease. To date, the published human clinical vaccine 
studies including T cell data have been largely phase I/
II trials and are not designed to evaluate the protective 
role of T cells. Several of the studies have reported 
T cell responses after vaccination [122]. The mRNA 
vaccine BNT162b1-induced receptor binding domain-
specific CD4+ and CD8+ Th1 responses with IFN γ 
production [123]. A combination of rAd26 and rAd5 
vector-based vaccines induced proliferation of antigen-
specific CD4+ and CD8+ T cells [124]. Adenovirus 
type-5-vectored COVID-19 vaccine successfully in-
duced IFN γ-producing T cells in phase 1 and phase 
2 clinical trial [125, 126]. ChAdOx1 nCoV-19 vaccine 
also elicited IFN γ-producing T cells to a similar degree 
[127]. Induction of a robust SARS-CoV-2-specific T 
cell memory response may be different in natural infec-
tion compared with immunisation, and the frequency 

of SARS-CoV-2-specific T cells may be contingent upon 
both vaccine design and whether the initial response 
to the prime dose has been boosted [128]. Larger, 
follow-up studies will be required to identify the role 
of vaccine-induced T cells in protection from infection 
and disease.

Long COVID-19

The sequalae of infection with SARS-CoV-2 can be 
chronic and leave symptoms even in recovered nucleic-
negative individuals such as fatigue, chest heaviness, 
and breathlessness [129]. These symptoms have been 
grouped together as long COVID. Although data are at 
present limited, persistence of symptoms is common, 
particularly in patients who are hospitalised, with only 
13% of 143 patients symptom-free after discharge in 
one Italian study [130]. The role of T cells in this con-
dition is yet to be identified, but aberrant T cell circu-
lation, tissue infiltration, and immune damage during 

Rationale Target Drug ClinicalTrials.gov Identifier

  Ruxolitinib  
(JAK inhibitor)

NCT04331665 Not shown  
NCT04334044 Phase 1, 2  
NCT04338958 Phase 2  
NCT04348071 Phase 2, 3  
NCT04348695 Phase 2  
NCT04355793 Not shown  
NCT04359290 Phase 2  
NCT04361903 Not shown  
NCT04362137 Phase 3  
NCT04374149 Phase 2  
NCT04377620 Phase 3  
NCT04403243 Phase 2  
NCT04414098 Phase 2  
NCT04424056 Phase 3  
NCT04477993 Phase 2, 3  
NCT04581954 Phase 1, 2

Reduce aberrant T cell migration CCR5 Maraviroc  
(CCR5 antagonist)

NCT04441385 Phase 2  
NCT04475991 Phase 2  
NCT04710199 Phase 2

Leronlimab  
(Anti-CCR5 antibody)

NCT04343651 Phase 2  
NCT04347239 Phase 2  
NCT04678830 Phase 2

Limit T cell exhaustion PD-1 PD-1 blocking antibody NCT04268537 Phase 2
Nivolumab  
(Anti-PD1 antibody)

NCT04356508 Phase 2  
NCT04413838 Phase 2

Limit T cell exhaustion mTOR Rapamycin/ Sirolimus  
(mTOR inhibitor)

NCT04341675 Phase 2  
NCT04482712 Phase 1, 2  
NCT04461340 Phase 2

RTB101  
(PI3K/ mTOR) inhibitor

NCT04584710 Phase 2  
NCT04409327 Phase 2
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acute infection may all be important in determining 
longer-term outcomes.

Conclusion

Peripheral circulation T cell lymphopenia affecting both 
CD4+ and CD8+ T cells is a universal finding in case series 
of COVID-19 and is associated with severe disease. Our 
findings are in line with other publications [131–134]. 
Current evidence from autopsy and in vivo studies in-
dicates the most likely mechanism is the interruption of 
normal lymphocyte circulation and organ-based, and/or 
endothelial sequestration of T cells. This may be due to 
the intense inflammation caused by SARS-CoV-2 repli-
cation. Coupled with aberrant T cell function, T cell 
exhaustion, and persistent failure of viral containment, 
these findings indicate a self-amplifying inflammatory 
cycle in severe COVID-19, which should be prevented 
or interrupted with rationally designed vaccines and 
therapeutics.
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