
Towards a Framework for Nonlinear
Predictive Control using Derivative-Free

Optimization ?

Ian McInerney ∗ Lucian Nita ∗ Yuanbo Nie ∗∗

Alberto Oliveri ∗∗∗ Eric C. Kerrigan ∗,∗∗

∗Department of Electrical & Electronic Engineering, Imperial College
London, SW7 2AZ London, UK, email:

{i.mcinerney17,lucian.nita16,e.kerrigan,}@imperial.ac.uk
∗∗Department of Aeronautics, Imperial College London, SW7 2AZ

London, UK
∗∗∗Department of Electrical, Electronic, Telecommunications

Engineering and Naval Architecture, University of Genoa, via Opera
Pia 11a, 16145, Genova, IT, email: alberto.oliveri@unige.it

Abstract: The use of derivative-based solvers to compute solutions to optimal control problems
with non-differentiable cost or dynamics often requires reformulations or relaxations that
complicate the implementation or increase computational complexity. We present an initial
framework for using the derivative-free Mesh Adaptive Direct Search (MADS) algorithm to
solve Nonlinear Model Predictive Control problems with non-differentiable features without
the need for reformulation. The MADS algorithm performs a structured search of the input
space by simulating selected system trajectories and computing the subsequent cost value. We
propose handling the path constraints and the Lagrange cost term by augmenting the system
dynamics with additional states to compute the violation and cost value alongside the state
trajectories, eliminating the need for reconstructing the state trajectories in a separate phase.
We demonstrate the practicality of this framework by solving a robust rocket control problem,
where the objective is to reach a target altitude as close as possible, given a system with
uncertain parameters. This example uses a non-differentiable cost function and simulates two
different system trajectories simultaneously, with each system having its own free final time.

Keywords: optimal control, mesh adaptive direct search, derivative-free optimization

1. INTRODUCTION

Model Predictive Control (MPC) has grown in popularity,
due to its explicit handling of system constraints and the
availability of efficient optimization solvers to compute the
control solution. With the rise of data-based control and
economic MPC, more engineers are wanting to control
systems described by higher-fidelity models that capture
nonlinearities or systems that only have blackbox/data-
based models. These systems may pose a challenge for
solvers that use first or second-order methods, since these
methods require derivative information for the system
dynamics, which may not be available or easily attainable.

MPC can also be used with derivative-free optimization
methods, where no knowledge of the derivatives for the
optimization problem is required. To solve the Nonlinear
MPC (NMPC) problem, these methods perform simula-
tions of the dynamics to locate the future input trajectory
that minimizes the cost function. These solvers can lead
to embarrassingly parallel implementations, since all sim-

? The support of the EPSRC Centre for Doctoral Training in
High Performance Embedded and Distributed Systems (HiPEDS,
Grant Reference EP/L016796/1) and a Royal Society International
Exchanges Grant (IES/R3/170011) is gratefully acknowledged.

ulations in an iteration can be run in parallel. Simulation-
based solvers have been readily used in Finite Control Set
(FCS) algorithms in power electronics (Kouro et al., 2015).
The derivative-free methods used to solve the FCS MPC
problem are inefficient for long time horizons though, since
they usually perform an exhaustive search of the possible
future input sequences, which leads to a combinatorial
explosion in the search space size as the horizon grows.
Prior work has suggested several ways to work around
this combinatorial explosion by randomly sampling a fixed
number of points in the search space (Joos et al., 2012), or
using methods such as pattern search (Gibson, 2015), the
Nelder-Mead simplex algorithm (Sadrieh and Bahri, 2011),
Trust Region methods (Dæhlen et al., 2014), or Particle
Swarm Optimization (Xu et al., 2016).

In this work, we build on the pattern search method
from Gibson (2015) and instead propose using the Mesh
Adaptive Direct Search (MADS) algorithm from Audet
and Dennis (2006). Using MADS, the number of points
evaluated around the current iterate grows linearly with
the input dimension, instead of combinatorially. We also
propose an NMPC formulation for derivative-free opti-
mization solvers that provides an easy way to handle the
problem’s path constraints and Lagrange cost term.

In Section 2 we introduce the NMPC optimization problem
we use throughout the rest of the work, and in Section 3 we
present an overview of the MADS algorithm. In Section 4,
we show how to transform the NMPC problem into a
form suitable for the MADS algorithm. We then present
an example showing MADS solving an NMPC problem
in Section 5, and conclude the paper with some future
research directions in Section 6.

2. NONLINEAR MODEL PREDICTIVE CONTROL

NMPC can be formulated as the optimization problem

min
x,u,tf

Φ(x(tf), u(tf), tf) +

∫ tf

t0

L(x(t), u(t), t)dt (1a)

s.t. f(x(t), ẋ(t), u(t), t) = 0, ∀t ∈ [t0, tf] (1b)

g(x(t), u(t), t) ≤ 0, (1c)

h(x(0), u(0), t0, x(tf), u(tf), tf) = 0, (1d)

where x : [t0, tf] → Rnx and u : [t0, tf] → Rnu are the
continuous-time state and input trajectories, respectively.
f is the continuous-time nonlinear system dynamics, g is
the path constraints, and h is the boundary conditions.
The cost functional (1a) is composed of two terms: the
Mayer cost Φ, and the Lagrange cost L.

3. MESH ADAPTIVE DIRECT SEARCH

This section provides a tutorial on the Mesh Adaptive
Direct Search (MADS) algorithm. We combine the ideas
from several works into a single statement of the algorithm,
and provide a thorough discussion on the two techniques
for implementing constraints in MADS. The notation used
in this section has been slightly modified from the original
MADS papers to make it consistent and to allow for a
clearer description of the NMPC framework in Section 4.

MADS is an extension of the Generalized Pattern Search
(GPS) derivative-free method, and was first proposed in
Audet and Dennis (2006). MADS has been extended to
work with other types of variables (such as periodic,
granular, integer or binary), model-based techniques, and
multi-objective optimization (Audet and Hare, 2017). The
optimization problem that we solve using MADS is

min
c,w
F(c)

s.t. (c, w) ∈ Ω :={c ∈ Rm, w ∈ Rj : ωi(c, w) ≤ 0,∀i ∈ K},
where F : Rm → R is an arbitrary function that computes
the cost of the optimization problem. The vector c ∈ Rm
contains the optimization variables that form the search
space and w ∈ Rj is a vector of internal variables computed
by F and used only in the constraints. The constraint set Ω
is defined by the functions ωi(·) spanning the search space
and the internal variables of the cost function F , with K
the set of indices for the functions ωi(·) that define Ω.

3.1 MADS Algorithm

Pattern search methods sample the search space at a set of
points called poll points in each iteration. The poll points
are located on a mesh of size δk inside a frame of size ∆k

around the current iterate ck, as in Fig. 1. The poll point
with the lowest cost value is chosen as the next iterate.

ck

p1

p2

p3

∆k = 1/2 δk = 1/4

(a) MADS after 1 iteration

ck

p1 p2

p3

p4

∆k = δk = 1/2

(b) GPS after 1 iteration

Fig. 1. The mesh (solid black lines spaced δk apart) and
frame (region of size ∆k inside the solid blue lines) for
GPS and MADS after 1 successful iteration.

The overall MADS algorithm is given in Algorithm 1, and
consists of three main parts: a search phase, a poll phase,
and a mesh/frame adaptation phase. In the search phase,
a set of points located on the mesh is generated (with no
restriction on the method used to generate the points). The
cost function is evaluated at these points, and if any have
a lower cost value than the current iterate, the mesh and
frame size are enlarged, and the search phase is repeated.
If no better point is found, the poll phase is started.

In the poll phase, a set of polling directions that form a
positive spanning set of the search space are generated to
create a set of m+1 or more poll points contained inside
the frame. The cost function is evaluated at each poll
point. MADS can perform these evaluations in parallel
and in an opportunistic fashion, meaning it can evaluate
multiple poll points at once and end the current iteration
immediately after finding a point with lower cost value.

The final step in the MADS algorithm is to adapt the
mesh and frame based on the results of the polling. If
a lower cost has been found, then the mesh and frame
get enlarged by the adjustment parameter τ to allow for
a faster exploration of the search space. If no lower cost
value is found, then the mesh and frame sizes are shrunk
by τ to concentrate the search closer to the current iterate.
MADS can be terminated once the mesh size reaches a
pre-determined threshold, meaning that there is no better
point within that distance of the current iterate.

The poll and mesh adaptation phases are the only two
phases required in every iteration of the MADS algorithm
to get convergence. The search phase is optional; however,
its use can speed up algorithm convergence, since it allows
for more varied exploration of the search space. This
can help the algorithm explore faster than the mesh can
enlarge, and help it escape local minimums.

3.2 Constraint Handling

Implementing constraints inside MADS can be handled in
at least one of two ways: (1) directly constrain the poll
points and either reject any that violate the constraints or
modify the poll points, (2) compute a metric indicating the
amount of constraint violation and use it in the algorithm.
If a constraint only contains variables in the algorithm’s
search space (e.g. only containing c and not w), option 1

allows for any poll points that violate the constraint to be
skipped and not evaluated. Doing this can help to speed up
the optimization process when F is expensive to evaluate,
but does not provide any information to guide MADS from
infeasible points to the feasible space.

To handle constraints that include both the poll point c
and internal variables w, the cost function can be redefined
to be an extremal barrier function

FΩ(c) =

{
F(c), ∀c ∈ Ω,

∞, ∀c /∈ Ω.
(2)

The barrier term (2) ensures that MADS optimizes over
only the feasible points by forcing all infeasible points
to have infinite cost. While easy to implement, this has
several drawbacks, including (i) no information is provided
to guide MADS from infeasible points to the feasible space,
(ii) a feasible starting point is required.

Alternately, Audet and Dennis Jr (2009) proposed a pro-
gressive barrier technique that uses the constraint viola-
tion to keep both a feasible and infeasible iterate. In the
poll phase, the np polling directions are used to generate
a set of np poll points around both iterates (2np total poll
points). By tracking the best infeasible iterate, MADS can
overcome the drawbacks of the extremal barrier method.

We define the set Ψ ⊃ Ω as the relaxed constraint
set, where some constraints are implemented using a
progressive barrier form and others use an extremal barrier
form. The function H : Rk+j → R is then used to compute
the constraint violation, and is defined as

H(c, w) =


0, if (c, w) ∈ Ω,∑
l∈KΨ

(max{ωl(c, w), 0})2
, if (c, w) ∈ Ψ \ Ω,

∞, otherwise,

where KΨ is the set of indices for the constraints ω(·) that
use the progressive barrier form.

Inside MADS, the progressive barrier relies on the notion
of a dominating iterate, which is a point that is better than
the others in a specific sense.

Definition 1a. (Dominating Feasible Point). The feasible
point p ∈ Ω dominates the point y ∈ Ω, denoted p ≺F y,
when F(p) < F(y).

Definition 1b. (Dominating Infeasible Point). The infeasi-
ble point p ∈ Ψ\Ω dominates the point y ∈ Ψ\Ω, denoted
p ≺H y, when F(p) < F(y) andH(p, wp) ≤ H(y, wy) (with
at least one strict inequality).

For feasible points, dominating means that the point has
the smallest cost value, while for infeasible points it means
that the point has both the smallest cost value and the
smallest constraint violation.

An iteration of the MADS algorithm is one of three types:
dominating, improving or unsuccessful. A dominating it-
eration is when MADS finds a new point that has both a
lower cost value and also a lower (possibly 0) constraint
violation, so the iterates are updated, and the mesh is
expanded to search in a larger region around the new
iterates. In an improving iteration, no points with a lower
cost were found, but an infeasible point with a constraint
violation smaller than the penalty parameter η was found.
In this case the new point becomes the next infeasible
iterate, the mesh remains unchanged, and η is set to the

constraint violation at the new infeasible iterate. All other
iterations are considered unsuccessful, so the mesh will be
shrunken to search in a closer region to the iterates in the
next iteration. Formal definitions for these iteration types
can be found in Audet and Dennis Jr (2009).

The penalty parameter η is nonincreasing with iteration
number, starting at∞ and decreasing to 0 as the algorithm
runs. This means that at the beginning, MADS is priori-
tizing the search for the lowest cost value by allowing large
constraint violations, but over time η decreases and forces
the infeasible iterates to move towards the feasible space.
The penalty barrier constraint method behaves similar to
a filter method in other optimization algorithms, such as
SQP, but requires the barrier/penalty parameter to be
only nonincreasing and not strictly decreasing.

3.3 Meshing

In MADS, the frame and mesh are controlled by different
parameters (∆k and δk, respectively), with

δk = min{∆k, (∆k)2} (3)

normally used. The main difference between MADS and
GPS is that in GPS δk = ∆k at all times. By allowing the
mesh to shrink faster than the frame size, more polling
points are created around the iterate ck. For example,
Fig. 1a shows the result of one iteration of MADS using
update rule (3). In this case there are 24 possible polling
points for MADS, versus 8 for GPS in Fig. 1b.

3.4 Convergence

The fact that the mesh in MADS shrinks faster than
the frame size means that, as the algorithm converges,
there will be an asymptotically dense set of poll directions
created. It was shown in Audet and Dennis (2006) that
this set of asymptotically dense poll directions allows for
the algorithm to converge to a Clarke stationary point
with non-negative Clarke derivatives (e.g. a local minimum
for the non-smooth function) when linear constraints are
placed on the search space. In contrast, GPS loses the
theoretical convergence guarantees when simple bound
constraints are applied. Additionally, when a progressive
barrier approach is used for handling nonlinear constraints,
it was shown in Audet and Dennis Jr (2009) that MADS
is still effective at finding the stationary point.

4. NMPC PROBLEM FORMULATION FOR
DERIVATIVE-FREE OPTIMIZATION

The core of the problem formulation we propose is a
continuous-time shooting method based on Gibson (2015),
where the search space for MADS is the set of all input
trajectories. Each function evaluation in the MADS al-
gorithm simulates the system over the time horizon with
the chosen input trajectory, and then computes the overall
cost value and constraint violation for that trajectory. To
easily handle the path constraints and the Lagrange term,
we introduce an augmentation scheme where the system
dynamics are augmented with new states representing the
Lagrange term and the path constraint violation.

Algorithm 1 Mesh Adaptive Direct Search with Progres-
sive Barrier Constraints (Audet and Hare, 2017)

Let: Mk be the set of all mesh points using mesh size δk

Let: ≺F and ≺H be as given in Definitions 1a and 1b
Require: ∆0 ∈ (0,∞) . Initial frame size
Require: τ ∈ (0, 1) . Mesh size adjustment parameter
Require: εstop ∈ [0,∞) . Stopping tolerance
Require: c0f And\Or c0i . Initial mesh centers

k ← 0
1: while ∆k ≥ εstop do 1

2: Vk ← ∅
3: δk ← min {∆k, (∆k)2} . Compute mesh size

4: 1) Search Phase:
5: Generate search points Sk ⊂Mk

6: for all s ∈ Sk do
7: Compute F and H at s
8: if s ≺F ckf then

9: ck+1
f ← s . Dominating

10: goto line 35
11: else if s ≺H cki then

12: ck+1
i ← s, ηk+1 ← H(s) . Dominating

13: goto line 35
14: end if
15: end for

16: 2) Poll Phase:
17: Generate positive spanning set Dk
18: Pk ← {ckf + δkd ∀d ∈ Dk} ∪ {cki + δkd ∀d ∈ Dk}
19: for all p ∈ Pk do
20: Compute F and H at p
21: if p ≺F ckf then

22: ck+1
f ← p . Dominating

23: goto line 35
24: else if p ≺H cki then

25: ck+1
i ← p, ηk+1 ← H(p) . Dominating

26: goto line 35
27: else if H(p) < ηk then
28: Vk ← Vk ∪ {p} . Improving
29: end if
30: end for

31: if Improving then
32: v ← argmax{H(v) : H(v) < ηk, v ∈ Vk}
33: ck+1

i ← v, ηk+1 ← H(v)
34: end if

35: 3) Mesh/Frame Update:
36: if Dominating then
37: ∆k+1 ← τ−1∆k . Expand frame size
38: else if Improving then
39: ∆k+1 ← ∆k . Frame doesn’t change
40: else
41: ∆k+1 ← τ∆k . Shrink frame size
42: end if

43: k ← k + 1
44: end while
1If a variable is not set in an iteration, it retains the same value in

the next iteration.

4.1 Cost Functional

We split the NMPC cost functional (1a) into its two terms,
and augment the system dynamics with the Lagrange term
by adding a new state l(t) that represents the value of the
Lagrange term at time t. This new state is governed by

l̇(t) = L(x(t), u(t), t), (4)

which is computed alongside the system’s trajectory.

4.2 Path Constraints

The constraints (1c) are formulated as progressive barrier
constraints inside the set Ψ. An L1 measure of constraint
violation is used for each constraint, meaning the value
reported as the violation experienced by constraint i is

vi =

∫ tf

0

max{0, gi(x(t), u(t), t)}dt. (5)

To compute the integral (5), we add new states v(t) that
represent the constraint violation over time, with those
states being governed by the dynamics equation

v̇(t) = g+(x(t), u(t), t) (6)

where g+ is the vector function representing the element-
wise computation of max{0, gi(x(t), u(t), t)}.

4.3 Overall Problem Formulation

An implementation of the formulation described in this
section is given in Algorithm 2. The first step is to
construct the input trajectory described by the current
poll point c. The structure of the input trajectory will
depend on the problem, but possible options are: (i) a zero-
order hold trajectory with the input values at each sample
given by the elements of the poll point, (ii) an interpolated
polynomial with the interpolation points given by the
elements of the poll point, (iii) a feedback policy with
the parameters of the policy given by the elements of
the poll point. After constructing the input trajectory, the
augmented system (7) is simulated over the horizon length
using a suitable numerical solver for differential equations.

After the simulation completes, the boundary condition
violation is computed, and the total constraint violation is
then computed using (9), where ρ are weights that can be
applied to various path and boundary constraints to give
them more influence in the algorithm. Finally, the value
of the NMPC cost function (1a) for the selected poll point
is computed using (10), which computes the Mayer term
and then adds the final value of the Lagrange state l(tf).

4.4 Discussion of the Augmentation Scheme

The proposed augmentation scheme provides an easy way
to include constraints in the derivative-free optimization
problem, but it may not be the most efficient way. Moving
the constraints and the Lagrange term into the dynamics
allows them to be on the same mesh as the dynamics,
and removes the need for additional quadrature schemes
to compute the final cost and constraint violation after
the system has been simulated, as is usually done in other
solvers. While this removes the need for an algorithm to
handle the mesh refinement, it introduces a requirement

Algorithm 2 Function evaluation for the NMPC problem

Let: c be the point in the search space being evaluated
1: Construct the input trajectory u from c
2: Simulate the augmented dynamics (7) using an appro-

priate solver for the differential equations[
0
0
0

]
=

 f(x(t), ẋ(t), u(t), t)

L(x(t), u(t), t)− l̇(t)
g+(x(t), u(t), t)− v̇(t)

 (7)

3: Compute the violation of the boundary conditions

vb =
∑
i

ρbi |hi(x(0), u(0), t0, x(tf), u(tf), tf)| (8)

4: Compute the overall constraint violation

H ← v2
b +

∑
i

ρi(vi(tf))2 (9)

5: Compute the cost function value

F ← Φ(x(tf), u(tf), tf) + l(tf) (10)

that the dynamics solver must have an error control
mechanism to limit the numerical integration error.

While easy to use, the augmentation scheme can also
introduce inefficiencies to the solver. By introducing the
dynamics equations (4) and (6), we have made the solvabil-
ity and the stiffness of (7) be dependent on the Lagrange
term and the constraints as well. This means that when
the cost or constraints vary over time or are defined by stiff
equations, they can cause the dynamics solver to struggle
and possibly require smaller step sizes.

5. NUMERICAL EXAMPLES

We demonstrate the use of the formulation from Section 4
by solving a robust rocket throttle control problem. We
examine a laboratory scale rocket aiming to reach its
apogee at a target altitude of 10,000 feet, governed by

ẋ(t) = f(x(t)) =

 vv(t)
T (t)−0.5CDρ(h(t))πd

2

4 (vv(t)2)

m(t) − g(h(t))

−T (t)
Isp

 ,
with the state vector x = [h vv m]

′
composed of the

rocket’s altitude, vertical velocity and mass, respectively.
g(h) and ρ(h) are the gravitational constant and the air
density at altitude h, respectively, and d is the rocket
diameter. The model has an uncertain drag coefficient
CD ∈ [CDl , CDu] and specific impulse Isp ∈ [Ispl , Ispu].
The thrust is a function of time, T (·), that takes values
from the set T (t) ∈ [0, Tmax].

It can be shown that the open-loop system is monotone
with respect to the throttle setting and physical parame-
ters (CD, Isp) (Angeli and Sontag, 2003), so all possible
trajectories will lie in a tube defined by an upper xu
and lower xl trajectory (using the upper and lower drag
coefficients and specific impulses, respectively). We use
a piecewise constant throttle function, and optimize over
both the throttle settings Ti and the switching times σi.
A robust version of the problem then optimizes over the
two trajectories xl and xu, with the objective to minimize
the largest deviation of the two trajectories from a target
apogee in the min-max formulation

(a) Altitude profile

(b) Velocity profile

(c) Input trajectory

Fig. 2. Open-loop solution to (11) with 5 phases (Switching
times are at the dotted lines).

min
T,σ

max
xl,xu

{|hu(tfu)− 3048|, |3048− hl(tfl)|} (11a)

s.t. ẋl(t) = f(xl(t)), ẋu(t) = f(xu(t)) (11b)

xl(0) = xu(0) = [0 0 33.5]
′

(11c)

vvl(tfl) = vvu(tfu) = 0 (11d)

vvl(t) ≤ 150 ∀t ∈ [0, tfl] (11e)

vvu(t) ≤ 150 ∀t ∈ [0, tfu] (11f)

ml(tfl) ≥ 26, mu(tfu) ≥ 26 (11g)

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σi (11h)

σi ≤ min {tfl , tfu} (11i)

Ti ∈ [0, Tmax] ∀i (11j)

where the same thrust function is used for both the
upper and lower trajectories. The trajectories share the
same thrust profile Ti and switching times σi, but have
their own final times given by tfu and tfl for the upper
and lower trajectories respectively. As an example path
constraint, we constrain the rocket’s velocity to be less
than 150 m/s, representing a modeling constraint where
the drag coefficient uncertainity bounds are only known
below 150 m/s.

MADS was used to solve (11) with a thrust trajectory
composed of five intervals. This resulted in optimal throt-
tle settings shown in Fig. 2c, which resemble the theoreti-
cally optimal ‘bang-singular-bang’ solution. The resulting
altitude and velocity profiles can be seen in Figures 2a

(a) No constraints enforced

(b) Constraints enforced as progressive barrier constraints

Fig. 3. Cumulative violation of constraints (11e) and (11f)

and 2b, respectively. In the velocity profile, the constraint
of 150 m/s is satisfied by both the upper and lower trajec-
tories when the constraint is implemented using additional
states, as described in Section 4.2.

The evolution of the violation state for constraints (11e)
and (11f) can be seen in Fig. 3. The violations experienced
when the velocity constraints are not enforced are shown
in Fig. 3a, and are monotonically increasing along the
horizon. Once the constraints are enforced, the constraint
violation decreases significantly, as shown in Fig. 3b.

The non-zero violation for the upper trajectory is due
to the current implementation of the progressive barrier
constraints in the DirectSearch.jl 1 Julia package that was
used. In the current implementation, there is no method
for passing the internal variables w from the computation
of F to the computation of H. This means that (9) could
not be used to compute the progressive barrier penalty
value, so instead the velocity constraints were implemented
by adding a penalty term in the cost for the deviation from
zero of the final value of the velocity constraint states v(t).

6. CONCLUSIONS AND FUTURE DIRECTIONS

We presented a formulation for NMPC that includes path
constraints and the Lagrange cost term in a form suitable
for use with MADS. We have also shown that this can
be used to solve problems with non-differentiable cost
functions, discontinuous dynamics and free end times.

This formulation provides the initial steps to implement
NMPC with MADS, but there are more open questions re-
maining. In the robust rocket control example in Section 5,
we showed a zero-order hold input sequence, but this
sequence can become impractical to optimize over for sys-
tems with a long horizon or many inputs. Additional work
should be done to examine how to effectively optimize over
the other input representations given in Section 4.3, and
to determine if there is a preferred representation to use.

1 https://github.com/ImperialCollegeLondon/DirectSearch.jl

The reliance on a single shooting method for simulating
the system trajectories in Algorithm 2 is also problematic.
Small changes to the input sequence/initial conditions can
drastically affect the simulated trajectory and the resulting
constraint violation measure, so searching for an input
trajectory that doesn’t violate the boundary conditions
or path constraints becomes more difficult. Future work
should explore if a multiple shooting paradigm can be
adapted into the proposed NMPC framework for MADS,
with a particular focus on efficient handling of the de-
fect constraints between the shooting regions. Addition-
ally, switching to a multiple shooting approach may add
opportunities for parallelism in the formulation itself by
simulating all shooting intervals in parallel.

Finally, the example demonstrates this framework in use
as an open-loop solver for optimal control problems, but
the parallelization potential and simplicity of the computa-
tions may make the MADS-based framework beneficial for
closed-loop control. More work should be done to examine
how this framework behaves in a closed-loop implemen-
tation, and how a warm-started MADS implementation
could be used inside a real-time iteration type framework.

REFERENCES

Angeli, D. and Sontag, E.D. (2003). Monotone control
systems. IEEE Transactions on Automatic Control,
48(10), 1684–1698.

Audet, C. and Dennis, J.E. (2006). Mesh Adaptive Direct
Search Algorithms for Constrained Optimization. SIAM
Journal on Optimization, 17(1), 188–217.

Audet, C. and Dennis Jr, J.E. (2009). A progressive bar-
rier for derivative-free nonlinear programming. SIAM
Journal on Optimization, 20(1), 445–472.

Audet, C. and Hare, W. (2017). Derivative-Free and
Blackbox Optimization. Springer, Cham, Switzerland.

Dæhlen, J.S., Eikrem, G.O., and Johansen, T.A. (2014).
Nonlinear model predictive control using trust-region
derivative-free optimization. Journal of Process Control,
24(7), 1106–1120.

Gibson, J.D. (2015). A direct search approach to opti-
mization for nonlinear model predictive control. Optimal
Control Applications and Methods, 36(2), 139–157.

Joos, A., Heritier, P., Huber, C., and Fichter, W. (2012).
Method for Parallel FPGA Implementation of Non-
linear Model Predictive Control. In 1st IFAC Work-
shop on Embedded Guidance, Navigation and Control
in Aerospace, 73–78. IFAC, Bangalore, India.

Kouro, S., Perez, M.A., Rodriguez, J., Llor, A.M., and
Young, H.A. (2015). Model Predictive Control: MPC’s
Role in the Evolution of Power Electronics. IEEE
Industrial Electronics Magazine, 9(4), 8–21.

Sadrieh, A. and Bahri, P.A. (2011). Application of Graphic
Processing Unit in Model Predictive Control. In 21st
European Symposium on Computer-Aided Process En-
gineering (ESCAPE-21), volume 29, 492–496. Elsevier
B.V., Porto Carras Resort, Chalkidiki, Greece.

Xu, F., Chen, H., Gong, X., and Mei, Q. (2016). Fast
Nonlinear Model Predictive Control on FPGA Using
Particle Swarm Optimization. IEEE Transactions on
Industrial Electronics, 63(1), 310–321.

