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 27 

Abstract 28 

The disruption of Zn homeostasis has been linked with breast cancer development and 29 

progression. To enhance our understanding of changes in Zn homeostasis both inside and around 30 

the tumour microenvironment, Zn concentrations and isotopic compositions (d66Zn) were 31 

determined in benign (BT) and malignant (MT) tumours, healthy tissue from reduction 32 

mammoplasty (HT), and histologically normal tissue adjacent to benign (NAT(BT)) and malignant 33 

tumours (NAT(MT)). Mean Zn concentrations in NAT(BT) are 5.5 µg g-1 greater than in NAT(MT) 34 

(p = 0.00056) and 5.1 µg g-1 greater than in HT (p = 0.0026). Zinc concentrations in MT are 12.9 35 

µg g-1 greater than in HT (p = 0.00012) and 13.3 µg g-1 greater than in NAT(MT) (p < 0.0001), 36 

whereas d66Zn is 0.17‰ lower in MT than HT (p = 0.017). Benign tumour Zn concentrations are 37 

also elevated compared to HT (p = 0.00013), but are not significantly elevated compared to 38 

NAT(BT) (p = 0.32). The d66Zn of BT is 0.15‰ lower than in NAT(BT) (p = 0.045). The similar light 39 

d66Zn of BT and MT compared to HT and NAT may be related to the isotopic compensation of 40 

increased metallothionein (64Zn-rich) expression by activated matrix metalloproteinase (66Zn-41 

rich) in MT, and indicates a resultant 66Zn-rich reservoir may exist in patients with breast tumours. 42 
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Zinc isotopic compositions thus show promise as a potential diagnostic tool for the detection of 43 

breast tumours. The revealed differences of Zn accumulation in healthy and tumour-adjacent 44 

tissues requires additional investigation.  45 

 46 

Introduction 47 

Zinc (Zn), with its five stable isotopes (64Zn, 66Zn, 67Zn, 68Zn, and 70Zn), typically occurs in 48 

the divalent (Zn2+) form, and is the second most abundant transition metal in organisms after 49 

iron (Fe) [1]. This reflects that Zn is a component of approximately 3000 human proteins [2] and 50 

has many roles in the body, including contributing to normal growth and development, immunity, 51 

cellular homeostasis, cell survival, and biochemical functions [1,3,4]. Zinc also catalyses reactions, 52 

stabilizes protein structures, and is a cofactor or component of more than 300 metalloenzymes 53 

[1,5]. The Zn content of the human body ranges from 1.5 to 3 g and the total cellular Zn 54 

concentrations are in the several hundred micromolar range [6]. With an absolute daily Zn 55 

requirement of 2 to 3 mg, the recommended daily intake of an adult is approximately 10 mg, 56 

resulting in a turnover time in the body of 150 to 300 days [7–9].  57 

In the late 1990s, the development of multi-collector inductively coupled plasma mass 58 

spectrometry (MC-ICP-MS) and ion exchange chromatography procedures, which can efficiently 59 

purify metals and metalloids from even complex sample matrices prior to isotopic analysis, 60 

enabled rapid measurements (compared to thermal ionisation mass spectrometry) that are able 61 

to routinely resolve subtle changes in the isotope amount ratios of Zn and other metals such as 62 

copper (Cu) and Fe in a diverse range of natural samples [10,11]. This advance opened a new 63 
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research frontier for planetary, earth, and environmental scientists and also enabled the first 64 

investigations of metal stable isotope distribution in the human body, and the processes that 65 

govern their allocation [11]. Since then, investigators have sought to establish a stable isotope 66 

reference range for Cu, Fe, Zn, and other elements in the blood compartments, cerebrospinal 67 

fluid, and urine of healthy subjects so as to understand changes observed in those suffering from 68 

diseases where metal dyshomeostasis is fundamental to disease pathogenesis [12–33]. This 69 

includes breast cancer, where the dysregulation of Zn homeostasis is implicated in carcinogenesis 70 

[34,35].  71 

The histidine-rich Zn-regulated transporter (ZRT), Fe-regulated transporter (IRT)-like 72 

protein (ZIP) family, and Zn transporter proteins (ZnT) facilitate Zn homeostasis in normal cells 73 

[36]. Zinc homeostasis breaks down in cancerous cells due to the increased expression of Zn 74 

importers (ZIP5, ZIP6 (LIV-1), ZIP7, ZIP8, and ZIP10), which produce an influx of Zn into cancer 75 

cells [34,35]. The anti-oxidant protein metallothionein (responsible for buffering cytosolic Zn) is 76 

also crucial to Zn homeostasis in normal cells, despite binding only a small portion of total cellular 77 

Zn (in the nano- to picomolar range) [6]. In malignant breast cancer cells, ZnT2 and 78 

metallothionein are also overexpressed, providing protection from Zn hyperaccumulation and 79 

preventing apoptosis by either removing Zn from the cell or redistributing it among cellular 80 

compartments [37,38].  81 

It is not known whether the malfunction of Zn-binding proteins causes or results from 82 

tumourigenesis [39]. The trend towards ZIP upregulation in most cancers may indicate increased 83 

cellular Zn uptake requirements to meet the demands of increased rate of proliferation and 84 

metabolism [39]. This excess Zn may also be used to induce Zn-dependent processes. Such 85 
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processes include metastasis, angiogenesis, and the production of matrix metalloproteinases 86 

(MMPs) - a family of Zn-dependent endopeptidases that are capable of digesting extracellular 87 

matrix (ECM) and basement membrane [40,41]. The ECM is a framework of proteins and 88 

proteoglycans secreted by stromal fibroblasts that gives structural support to cells and is 89 

important to cell adhesion, differentiation, proliferation, and migration [41]. Cancer cell 90 

migration, invasion, metastasis, and angiogenesis are all dependent on the surrounding tumour 91 

microenvironment [42]. MMPs are critical molecules in these processes because they degrade 92 

various cell adhesion molecules in ECM, thereby giving cancer cells access to new territories [42]. 93 

Recent pilot work indicates that malignant breast tumours may preferentially accumulate 94 

isotopically light 64Zn compared to adjacent histologically normal tissue [43]. This was 95 

hypothesized to be caused by S-rich metallothionein dominating the isotopic selectivity of breast 96 

cancer cells, rather than histidine-rich ZIPs and ZnTs. Unlike Cu, for which oxidation state plays a 97 

significant role in isotope fractionation, fractionation of Zn isotopes in compounds is 98 

predominantly influenced by coordination number and ligand chemistry. Higher mass isotopes 99 

tend to concentrate in compounds that provide stronger chemical bonds with the lower energy 100 

levels, and to a first order, the strength of the bond is expected to increase with ionization energy 101 

or electronegativity from sulfur (S) through nitrogen (N) to oxygen [17,25]. For example, Zn 102 

binding with cysteine (Zn-S bonds) in metallothionein is expected to be more concentrated in the 103 

light isotope, 64Zn, than in bonds with histidine (Zn-N bonds) [17,44]. Furthermore, recent studies 104 

demonstrate that Zn isotopes are significantly fractionated in conditions such as pancreatic 105 

ductal carcinoma (PDAC) [29] and hematological malignancy [20], which leads to isotopic changes 106 
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in Zn reservoirs including urine and blood, respectively. These results demonstrate that Zn 107 

isotopes are potentially useful diagnostic and prognostic markers for various medical conditions. 108 

 This study provides new insights into the disruption of Zn homeostasis during malignant 109 

breast tumour growth through elemental and isotopic analysis of Zn in healthy breast tissue 110 

taken during reduction mammoplasty (HT), histologically normal tissue adjacent to malignant 111 

tumours, (NAT(MT)), and malignant breast tumours (MT). Additionally, for the first time, Zn 112 

isotope compositions of benign breast tumours (BT) and histologically normal tissue adjacent to 113 

benign tumours (NAT(BT)) are analysed to determine whether the enrichment in light 64Zn is 114 

specific to malignant breast tumours or also observed in the benign condition. Where possible, 115 

NAT(BT)-BT and NAT(MT)-MT tissue sample pairs were therefore taken from the same patient. 116 

High levels of Zn in the breast tissue of women with benign breast disease may be associated 117 

with a modest risk of developing malignancy [45] and this research will help evaluate whether Zn 118 

stable isotopes have the potential to serve as diagnostic markers of breast cancer.  119 

Notably, this is the first instance of a comparison of Zn concentrations and isotopic 120 

compositions in the three “healthy” tissue types, HT, NAT(BT), and NAT(MT), as well as both BT 121 

and MT. Histologically normal tissue adjacent to tumours commonly serves as a healthy control 122 

sample for cancer studies, but evidence suggests that NAT presents a unique intermediate, pre-123 

neoplastic state between healthy and tumour tissue [46,47], composed of morphologically 124 

normal but molecularly altered cells [48]. The latter findings call into question the assumption 125 

that histological normalcy implies biological normalcy [46].  The results of this study thus enhance 126 

our understanding of changes in Zn homeostasis both inside and around the tumour 127 

microenvironment. 128 
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 129 

Methodology 130 

Sample collection 131 

 This study received approval from the Tissue Management Committee of the Imperial 132 

College National Institute of Healthcare (NHS) Tissue Bank (Application Number: R15001-6A). 133 

Sample collection took place between May 2015 and November 2016 at Charing Cross Hospital, 134 

Imperial College London, NHS Trust, London, UK. Benign and malignant breast tumours (BT and 135 

MT), along with histologically normal tissue adjacent to tumours (NAT) were taken from patients. 136 

Healthy breast tissue was taken from volunteers undergoing reduction mammoplasty. Where 137 

possible, pairs of tumour and NAT samples were obtained from the same patient. Tissue samples 138 

were taken during surgery using pre-cleaned ceramic knives and stored at -18°C in separate 139 

sterile VWR® Metal-Free polypropylene centrifuge tubes, which were cleaned in 2 mol L-1 HNO3 140 

for two days before being rinsed with 18.2 MW cm H2O and left to dry. Histologically normal 141 

tissue adjacent to tumours was dissected beyond observed aberrations.  142 

 143 

Sample preparation 144 

 Sample preparation was performed under ISO Class 4 metal-free laminar flow hoods 145 

either in the MAGIC Clean Room Laboratory at Imperial College London or in the Clean Laboratory 146 

Suite at the University of Oxford. Distilled acids diluted with ≥18.2 MW cm H2O (Millipore) were 147 

used throughout sample preparation. Between 0.02 and 0.89 g of wet sample was mixed with 148 
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5.2 ml of 15 mol L-1 HNO3 and 2.8 ml of 30% H2O2 in acid-cleaned 100 ml PFA vessels and allowed 149 

to stand overnight before being microwave digested using either an Ethos EZ oven fitted with an 150 

SK-10 High Pressure Rotor or a MARS 5 Digestion Microwave System, for 90 minutes, ramping up 151 

to a temperature of 210°C at a pressure of 1.72 x 106 Pa. Separation of Zn from matrix elements 152 

was achieved by anion exchange column chromatography using Bio-Rad AG® MP-1M (100-200 153 

mesh) resin in hydrochloric acid media [49]. 154 

 155 

Concentration measurements and isotopic analysis 156 

An initial determination of Zn concentrations by isotope dilution was carried out for each 157 

sample to ensure that an appropriate sample aliquot was digested for isotopic analysis. The 158 

sample solutions were mixed in optimal proportion (molar ratio of spike-derived to natural Zn of 159 

S/N ≈ 1) with a 64Zn-67Zn double spike (64Zn/67Zn ≈ 2.5) to enable the correction of any isotope 160 

fractionation incurred during chromatographic separation and isotopic analysis. Following the 161 

addition of Zn double spike solution to the digested sample aliquots that were re-dissolved in 2 162 

mol L-1 HCl, the mixtures were refluxed on a hot plate at 130°C for at least 12 hours to allow the 163 

samples to fully equilibrate with the double spike [49,50].  164 

The coupled Zn isotope and concentration measurements with the double spike 165 

technique followed previously described techniques [49,51]. Measurements were performed on 166 

a Nu Plasma HR MC-ICP-MS (Nu Instruments Ltd., Wrexham, UK) at low mass resolution with 167 

either an Aridus II (Teledyne CETAC Technologies, Omaha, US) or a DSN-100 desolvation system 168 

(Nu Instruments Ltd.) for sample introduction fitted with glass nebulizers that had a typical 169 
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uptake rate of approximately 100 to 120 µl min-1. With an instrumental sensitivity of about 120 170 

V ppm-1 for the Faraday cup detectors fitted with 1011 Ω resistors, the isotope analyses were 171 

performed at Zn concentrations of 50 to 100 ng g-1. The sample solutions were run interspersed 172 

between and relative to analyses of the isotopic reference material, IRMM-3702 Zn (also mixed 173 

with the double spike at S/N ≈ 1), to monitor and correct for within- and between-session changes 174 

in instrumental mass bias [49,51].  175 

As natural variations in the ratio (R), 66Zn/64Zn, are small, isotopic data are reported in 176 

d66Zn notation, which denotes the parts per thousand (‰) change in the 66Zn/64Zn value of a 177 

sample relative to a standard (Std; Equation 1).  178 

 179 

δ""Zn%&'	(‰) = -	
./01234

./5067087
− 1; 1,000 (1) 180 

 181 

The d66Zn values, originally determined relative to IRMM-3702 Zn (d66ZnIRMM), were 182 

recalculated so that all results are given relative to the JMC-Lyon Zn isotope reference material 183 

(d66ZnJMC-Lyon) using Equation 2 [52]. 184 

 185 

δ""Zn>?@ABCDE = FGH
IIJEKLMM	
N,OOO

+ 1QGR
IIJEKLMMSTMU	

N,OOO
+ 1Q − 1V 1,000  (2) 186 

 187 

A value of 0.30‰ was used for the d66Zn offset between IRMM-3702 and JMC-Lyon Zn 188 

(D66ZnIRMM – JMC-Lyon), based on results from the interlaboratory calibration of the new Zn isotope 189 

reference material, AA-ETH Zn (D66ZnAA–JMC = –0.28‰ and D66ZnAA–IRMM = 0.02‰) [52]. 190 
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 191 

Statistical analysis 192 

Statistical analyses were conducted using SAS Studio 3.8 software (SAS Institute). Because 193 

the assumption of normality was not fulfilled (assessed using Shapiro-Wilk’s test), the non-194 

parametric Kruskal-Wallis test was used to compare Zn concentrations and d66Zn between tissues 195 

types. An analysis of within-group variations was performed using the Wilcoxon signed-rank test 196 

to compare Zn concentrations and d66Zn in patients that provided both NAT and tumour samples, 197 

allowing for the control of possible variability in Zn concentrations and d66Zn associated with age, 198 

diet and medication uptake. The relationship between Zn concentrations and d66Zn for benign 199 

and malignant breast tumours was assessed using the Spearman rank correlation coefficient (r). 200 

P-values of less than 0.05 were considered statistically significant. No correction was made for 201 

multiple comparisons. The d66Zn could not be obtained for some samples due to limited 202 

availability of material, resulting in an insufficient amount of Zn for isotopic analysis. Additionally, 203 

some samples were damaged during transport between facilities for isotopic analysis. In detail, 204 

d66Zn data is missing for 18% of HT, 13% of NAT(BT), 5% of NAT(MT), 6% of BT, and 10% of MT 205 

samples and missing data were excluded from statistical analyses.   206 

 207 

Results 208 

Quality control 209 



11 
 

Zinc blank contributions were monitored and remained below 1.5 ng, which is equivalent 210 

to less than 0.8% of total sample Zn. Assuming a ‘normal’ terrestrial d66Zn of 0.25‰ for the blank, 211 

the d66Zn value of a sample with –0.66‰ (the lowest measured in this study) will be biased by 212 

less than 0.01‰ by the contamination, which is negligible given the overall uncertainty of the 213 

results [50,53,54]. 214 

Following the collection of raw data, the double spike data reduction was performed 215 

offline using an iterative procedure developed by Siebert et al. that corrects for instrumental 216 

mass bias and ion exchange chromatography-induced mass fractionation [55]. Spectral 217 

interferences from isobars (64Ni+) and doubly-charged ions (Ba2+) were monitored at masses 60 218 

(60Ni+) and 67.5 (135Ba2+), respectively, and the corrections were propagated through the iterative 219 

data reduction to ensure they are adjusted for instrumental mass bias [50]. The applied 220 

corrections were consistently very small. In detail, contributions to the ion beam at mass 64 from 221 

64Ni+ were ≤ 15 ppm for samples and ≤ 2 ppm for bracketing runs of the IRMM-3702 Zn standard. 222 

Furthermore, interferences from doubly-charged Ba were < 1ppm at 132Ba2+/66Zn, ≤ 5 ppm at 223 

134Ba2+/67Zn, and ≤ 25 ppm at 136Ba2+/68Zn for samples and < 1ppm at 132Ba2+/66Zn, ≤ 5 ppm at 224 

134Ba2+/67Zn, at ≤ 20 ppm for 136Ba2+/68Zn for IRMM-3702 Zn runs. At these levels, even 225 

unreasonably large errors in the interfering element corrections (of ±10%) have negligible effects 226 

(of < 0.01‰) on the final d66Zn data. Analytical artefacts are further de-magnified by the 227 

comparatively similar interference levels of samples and the bracketing IRMM-3702 Zn runs, 228 

relative to which d66Zn sample values are determined. Consequently, the 2SD precisions that are 229 

reported for most samples refer to the 2SD reproducibility that was obtained for bracketing 230 
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standard measurements (IRMM-3702 Zn), which were performed alongside samples in a given 231 

measurement session. These precisions varied from ± 0.03 to ± 0.12‰. 232 

With blank and interference contributions to uncertainty being negligible, mass 233 

spectrometric uncertainty is primarily responsible for the total d66Zn uncertainty, and this is 234 

predominantly limited by the instability of the instrumental mass bias [50]. To a first order, the 235 

mass spectrometric uncertainty can hence be characterized by the reproducibility of d66Zn values 236 

determined for replicate analyses of a London Zn – Zn double spike mixture [50]. During this 237 

study, this was ± 0.08‰ (2SD) for column-processed mixtures and ± 0.04‰ (2SD) for mixtures 238 

that did not undergo column chemistry.  239 

The method reproducibility was monitored by repeat analyses of sample solutions, and 240 

by measuring both unprocessed and column-processed aliquots of the in-house London Zn 241 

solution throughout measurement sessions, which yielded mean d66Zn of 0.12 ± 0.04‰ (2SD, n 242 

= 3) and 0.13 ± 0.08‰ (2SD, n = 5), respectively. The London Zn d66Zn reported here, as well as 243 

the repeatability and intermediate precision, are in accord with previously published results 244 

[43,49,50,52,56,57]. However, repeated analyses of pure Zn standard solutions do not account 245 

for mass spectrometric uncertainties that can arise for samples as a consequence of non-spectral 246 

matrix effects. To account for this, two relevant matrix-matched biological reference materials, 247 

ERM-BB184, bovine muscle, and ERM-BB186, pig kidney, were analyzed throughout the study 248 

period and column-processed alongside with tissue samples. Analyses of these samples yielded 249 

mean d66Zn of 0.03 ± 0.12‰ (2SD, n = 10) and -0.38 ± 0.14‰ (2SD, n = 9), respectively, relative 250 

to JMC-Lyon Zn. This is in excellent agreement with previously reported results [32,49].  251 
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Where sufficient material was available, sample homogeneity was assessed by splitting 252 

samples into two aliquots and analyzing separately. Although homogeneity could only be 253 

assessed for three samples, variations in d66Zn are within analytical precision (< 0.12‰, 2SD) for 254 

both ‘normal’ tissues and the benign tumour, whereas variations in Zn concentrations for the 255 

benign tumour are greater than in ‘normal’ tissues (Supplementary Information Table S1). 256 

 257 

Zinc concentrations and d66Zn in unpaired samples 258 

Determined in this study were Zn concentrations (Table 1, Supplementary Information 259 

Table S2) for 69 breast tissue samples (10 HT, 8 NAT(BT), 16 NAT(MT), 17 BT, 17 MT) and d66Zn 260 

for 62 tissue samples (8 HT, 7 NAT(BT), 15 NAT(MT), 17 BT, 15 MT) (Table 2, Supplementary 261 

Information Table S2). All benign tumours are fibroadenomas except for one tubular adenoma 262 

and one phyllodes tumour. Invasive ductal carcinoma (IDC) was identified in all breast cancer 263 

patients for whom breast cancer type was available (Supplementary Information, Table S2). In 264 

addition to the presence of IDC, ductal carcinoma in-situ (DCIS) was identified in nine patients 265 

and lobular carcinoma in-situ in one (Supplementary Information, Table S2). Invasive ductal 266 

carcinoma is the most common type of breast cancer and accounts for 50 to 70% of breast 267 

cancers in previously published series [58,59]. Included in all subsequent descriptions and 268 

interpretations are results from Larner et al., which consists of data for one HT, three NAT(MT), 269 

and five MT [43].  270 

When tissue taken during reduction mammoplasty and both types of NAT are considered 271 

together as nominally ‘normal’ tissue, Zn concentrations range from 0.4 to 14.0 µg g-1 with a 272 
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mean of 3.6 ± 3.3 µg g-1 (SD), and d66Zn varies from -0.61 to 0.23‰ with a mean of -0.22 ± 0.19‰ 273 

(SD). Considered separately, Zn concentrations in HT and NAT(MT) are similar, with HT ranging 274 

from 0.6 to 6.5 µg g-1 with a mean of 2.3 ± 1.7 µg g-1 (SD), and NAT(MT) ranging from 0.4 to 7.4 275 

µg g-1 with a mean of 1.9 ± 1.6 µg g-1 (SD) (Table 1). In contrast, Zn concentrations in NAT(BT) are 276 

significantly elevated compared to HT and NAT(MT) (p = 0.0026 and p = 0.00056, respectively) 277 

and range from 2.4 to 14.0 µg g-1 with a mean of 7.4 ± 4.4 µg g-1 (SD) (Table 1). Despite the 278 

elevated NAT(BT) Zn concentrations, there is little variation in d66Zn amongst the ‘normal’ tissues, 279 

with HT ranging from -0.37 to -0.01‰ with a mean of -0.20 ± 0.13‰ (SD), NAT(BT) ranging from 280 

-0.33 to 0.00‰ with a mean of -0.17 ± 0.15‰ (SD), and NAT(MT) ranging from -0.61 to 0.23‰ 281 

with a mean of -0.25 ± 0.23‰ (SD) (Table 2).  282 

 283 

Figure 1 Zinc concentrations in healthy breast tissue taken during breast reduction surgery (HT); 284 
histologically normal tissue adjacent to benign tumour, NAT(BT); histologically normal tissue 285 
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adjacent to malignant tumour, NAT(MT); benign tumour, BT; and malignant tumour, MT. The box 286 
represents the 25th-75th percentiles (with the median as a horizontal line) and the whiskers 287 
represent the range. Outliers are denoted outside of the range if they exceed a distance of 1.5 288 
times the interquartile range below the 1st quartile or above the 3rd quartile. The thresholds for 289 
significance were defined as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). All 290 
other relationships displayed no statistical significance (p ≥ 0.05). Data from HT, NAT(MT), and 291 
MT measured by Larner et al. are included [43]. 292 

 293 

Figure 2 d66Zn variations in healthy breast tissue taken during reduction mammoplasty (HT); 294 
histologically normal tissue adjacent to benign tumour, NAT(BT); histologically normal tissue 295 
adjacent to malignant tumour, NAT(MT); benign tumour, BT; and malignant tumour, MT. The box 296 
represents the 25th-75th percentiles (with the median as a horizontal line, median as a cross) 297 
and the whiskers represent the range. Outliers are denoted outside of the range if they exceed a 298 
distance of 1.5 times the interquartile range below the 1st quartile or above the 3rd quartile. The 299 
threshold for significance was defined as p < 0.05 for significant results (*). All other relationships 300 
displayed no statistical significance (p ≥ 0.05). Data from HT, NAT(MT), and MT measured by 301 
Larner et al. are included [43]. 302 

 303 
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The Zn concentrations of BT and MT are almost identical and together are significantly 304 

elevated compared to ‘normal’ tissues (p < 0.0001), with BT ranging from 1.5 to 66.8 µg g-1 with 305 

a mean of 15.4 ± 16.2 µg g-1 (SD), and MT ranging from 2.0 to 57.5 µg g-1 with a mean of 15.2 ± 306 

16.2 µg g-1 (SD) (Table 1). Both BT and MT have significantly elevated Zn concentrations compared 307 

to HT (p = 0.00013 and p = 0.00012, respectively) and NAT(MT) (p < 0.0001 for both), but not 308 

NAT(BT) (p = 0.32 and p = 0.39, respectively) (Fig. 1). As was observed for the Zn concentrations, 309 

the d66Zn of BT and MT are nearly identical and both are significantly lower than in ‘normal’ 310 

tissues (p = 0.0049), with BT ranging from -0.58 to -0.06‰ with a mean of -0.32 ± 0.16‰ (SD), 311 

and MT ranging from -0.66 to -0.05‰ with a mean of -0.37 ± 0.17‰ (SD) (Table 2). Malignant 312 

tumours have significantly lower d66Zn than HT (p = 0.017), but BT compared to HT just failed to 313 

reach significance (p = 0.058). The d66Zn of both MT and BT are significantly lower than in NAT(BT) 314 

(p = 0.011 and p = 0.045, respectively), but not NAT(MT) (p = 0.093 and p = 0.45, respectively) 315 

(Fig. 2). Whereas Zn concentrations and d66Zn do not significantly correlate in benign (r = -0.30, 316 

p = 0.26) nor malignant breast tumours (r = -0.21, p = 0.38), benign and malignant tumours were 317 

generally characterized by higher Zn concentrations and lower d66Zn compared to their 318 

respective NATs (Fig. 3).  319 

 320 
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 321 

Figure 3 Relationship between d66Zn and Zn concentrations in healthy breast tissue taken during 322 
breast reduction surgery (HT); histologically normal tissue adjacent to benign tumour, NAT(BT); 323 
histologically normal tissue adjacent to malignant tumour, NAT(MT); benign tumour, BT; and 324 
malignant tumour, MT. Data from HT, NAT(MT), and MT measured by Larner et al. are included 325 
[43]. The error bar represents the between-run d66Zn reproducibility of ERM-BB184 (bovine 326 
muscle) achieved in this study.  327 

 328 

Zinc concentrations and d66Zn in paired samples 329 

Zinc concentrations were determined in five NAT(BT)-BT and 15 NAT(MT)-MT pairs (Table 330 

1).  As with the unpaired samples, no significant difference was found between the Zn levels of 331 

NAT(BT)-BT pairs (p = 0.44), whereby the benign tumours have Zn concentrations that only differ 332 

from paired tissue by 1.1 ± 3.9 µg g-1 (SD). In contrast, malignant tumours have Zn concentrations 333 
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that are significantly higher (p < 0.0001) compared to the paired adjacent tissue, with a mean 334 

concentration difference of 14.0 ± 14.3 µg g-1 (SD). 335 

Zinc isotope data were obtained for four NAT(BT)-BT and 12 NAT(MT)-MT pairs (Table 2). 336 

In contrast to unpaired samples, the d66Zn of benign tumours do not significantly differ from their 337 

NAT(BT) counterparts (p = 0.13), with a mean difference of 0.10 ± 0.04‰ (SD). Similarly, 338 

malignant tumour d66Zn data are not significantly different from those of the paired adjacent 339 

tissue (p = 0.18), with a mean difference of 0.11 ± 0.25‰ (SD). The apparent differences in Zn 340 

isotope systematics of paired and unpaired samples may reflect that only a small number of 341 

paired samples were available for analysis. 342 

 343 

Discussion 344 

Distribution of Zn in NAT 345 

 Previously reported results in studies of breast tissue Zn levels vary greatly, with Zn 346 

concentrations in HT, NAT(MT), and MT spanning up to three orders of magnitude [47,60–66]. 347 

This could be due to a combination of breast tissue heterogeneity, the wide variety of analytical 348 

techniques employed, and some sample sets being prepared wet, dried to constant weight, or 349 

freeze-dried, making direct comparison challenging. However, the distribution of Zn appears to 350 

be fairly homogeneous in healthy breast tissue, whereas in tumours, hot spots occur where the 351 

amount of Zn is higher than elsewhere in the analyzed tissue [67]. In general, Zn concentrations 352 

in HT and NAT(MT) are significantly lower than in MT, which is in agreement with the results of 353 

this study. Interestingly, Zn concentrations in NAT(BT) are significantly elevated relative to HT 354 
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and NAT(MT) (Fig. 1). To the best of our knowledge, Zn concentrations in NAT(BT) were 355 

determined in just one other study [68], but there have been no direct comparisons of HT or 356 

NAT(MT) with NAT(BT). Although Zn concentrations were only able to be determined in eight 357 

NAT(BT) samples in this study, all eight possessed concentrations that are higher than the 358 

averages of HT and NAT(MT), indicating that an important relationship may have been identified.  359 

There are several potential explanations for the increased Zn concentrations found in 360 

NAT(BT). Histologically normal tissue adjacent to benign tumours may contain a greater 361 

proportion of fibroglandular tissue compared to healthy breast tissue, which is primarily 362 

composed of lipid-rich adipose tissue [69]. Fibroglandular tissue is also denser than adipose tissue 363 

and could be a source of elevated Zn in histologically normal tissue adjacent to benign tumours 364 

[69]. Physiological processes that lead to increased Zn levels in benign or malignant tumours may 365 

have affected the composition of the healthy tissue margin around the lesions [47]. The regions 366 

immediately surrounding tumours have many morphologic and phenotypic distinctions from 367 

non-tumour-bearing healthy tissue, including pH levels, allelic imbalance and telomere length, 368 

stromal behaviour, and transcriptomic and epigenetic aberrations [70–73]. These phenotypic and 369 

genetic changes are apparent up to 4 cm away from tumour margins [46]. The high Zn 370 

concentrations in NAT(BT) compared to HT and NAT(MT) could also be associated with a specific 371 

immune response to a benign tumour. For example, a specific humoral immune response against 372 

benign tumours with a distinct serum reactivity pattern has been reported, and this seroreactivity 373 

is observed to decline with malignancy [74]. 374 

The approach of using NAT as a healthy control for cancer studies has many advantages. 375 

In particular it allows the comparison of samples from the same individual, which reduces 376 
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individual-specific and anatomical site-specific effects [46]. However, the results of this study and 377 

others suggests that NAT presents a unique intermediate, pre-neoplastic state between healthy 378 

and tumour tissue, which is composed of morphologically normal but molecularly altered cells 379 

[46–48,60–65,68]. Histological normalcy therefore does not necessarily imply biological 380 

normalcy, highlighting the potential need for changes to healthy control sampling practices for 381 

tissue samples adjacent to tumours [46]. By extension, it is also possible that even ‘healthy’ 382 

breast tissue taken during reduction mammoplasty is not truly representative of the normal 383 

condition. Breast size is correlated with factors such as body mass index, weight, height, and oral 384 

contraceptive use (hormone expression), and also specific genetic variants, that may influence 385 

Zn homeostasis [75,76]. 386 

 387 

Distribution of Zn in benign and malignant tumours 388 

Malignant tumours contain significantly elevated levels of Zn compared to HT and 389 

NAT(MT) (Fig. 1), likely due to the increased expression of Zn importers (ZIP5, ZIP6, ZIP7, ZIP8, 390 

and ZIP10) in cancer cells [34,35]. The observation of malignant breast tumours containing 391 

elevated levels of Zn is consistent with previous results [47,60–65]. The d66Zn of MT are lower 392 

than in HT and NAT(MT) (Fig. 2), but interestingly, this only reached significance for HT. This 393 

selective distribution of Zn might be associated with specific mechanisms of Zn transport from 394 

NAT(MT) to MT mediated by the tumour or immune system, or it might be the result of defence 395 

mechanism ‘exhaustion’ in the surrounding tissue [77–79]. Of particular interest are the almost 396 

indistinguishable Zn concentrations (Fig. 1) and d66Zn (Fig. 2) found in BT and MT. As mentioned 397 

earlier, the direct comparison of breast tissue Zn concentrations between studies is a challenge, 398 
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but when both benign and malignant breast tumours have been analysed, Zn levels were 399 

consistently found to be similar [68,80–83]. Increased expression of ZIPs, ZnT2, and 400 

metallothionein in breast cancer cells is well-documented and results reported here indicate that 401 

their net isotopic product is an isotopically light Zn pool in breast cancer tumours [34,35,37,38]. 402 

Little is known about protein expression in benign breast tumours. However, there are reports 403 

of increased metallothionein-1 expression in malignant breast tissue compared to 404 

fibroadenomas [84]. This makes the similarities between the d66Zn of BT and MT even more 405 

intriguing as metallothionein has been suggested as the source of isotopically light Zn in 406 

malignant breast tumours [43]. A suitable mechanism is therefore required to explain the 407 

similarities between the d66Zn of BT and MT.  408 

If similar ZIP and ZnT expression in BT and MT are assumed to explain the almost 409 

indistinguishable Zn concentrations found in these tissues, increased expression of 410 

metallothionein-1 in malignant breast tissue compared to fibroadenomas should give MT a 411 

lighter Zn isotopic composition than BT. The lack of a difference in d66Zn between BT and MT may 412 

possibly reflect the increased production of MMPs by breast cancer cells. Under normal 413 

physiological conditions, MMP activity is precisely regulated in order to prevent tissue disruption, 414 

but in cancer cells the physiological balance is disrupted, allowing tumour cells to invade adjacent 415 

healthy tissue [85]. In malignant breast tissue, MMP-1, -2, -8, -9, -10, -11, -12, -13, -15, -19, -23, -416 

24, -27, and -28 are strongly expressed compared to normal breast tissue [85]. Similar to how the 417 

increased Zn of tumours is heterogeneously distributed, this also appears to apply to the 418 

distribution of MMPs [67]. This was been demonstrated for MMP-11, and also extends to its 419 

expression in metastatic specimens compared to non-metastatic tumour samples, which is 420 
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increased in the former [67,86]. A study of MMP-2 and MMP-9 found expression tended to be 421 

significantly higher in malignant breast tissue compared to fibroadenomas [87]. Matrix 422 

metalloproteinases exhibit considerable diversity in their domain structures and protein 423 

substrate specificities, but Zn and cysteine residues are structural elements shared by all 424 

members of the MMP family [40,88]. Furthermore, all members of the MMP gene family share 425 

that they are synthesized in a latent, inactive form as a result of the formation of an 426 

intramolecular complex between the single cysteine residue in its pro-peptide domain and the 427 

essential Zn ion in the catalytic domain - a complex which blocks the active site [88]. The MMPs 428 

in malignant breast tumours are predominantly in their latent form but can become activated by 429 

the dissociation of the cysteine residue from the complex [89,90]. The activation of this so-called 430 

‘cysteine-switch’ in MMPs mostly occurs outside of the cell once exposed to the extracellular 431 

environment through the removal of their autoinhibitory pro-domain and changes the role of Zn 432 

to the catalytic function [88,91,92]. However, MMPs including MMP-11 and -23 (strongly 433 

expressed in breast cancer tissue) are activated by a pro-protein convertase within the secretory 434 

pathway (Fig. 4) [93–97].  435 

Activated MMPs are critical in the process of degrading various cell adhesion molecules 436 

in ECM, thereby giving cancer cells access to new territories [42]. The core structure of a latent 437 

MMP is Zn(His)3(Cys)2+ but when activated, the core structure becomes Zn(His)3(H2O)2+. Density 438 

functional theory estimates of Zn isotope fractionation suggest that the d66Zn of activated MMPs 439 

should be 0.40‰ higher than for latent MMPs (D66ZnActivated MMP – Latent MMP = 0.40‰ at 310 K) and 440 

even about 0.17‰ higher than for histidine [44]. Therefore, any light Zn isotope signature 441 

imparted on MT by S-rich metallothionein may be compensated by the isotopically heavy Zn 442 
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associated with histidine from activated MMPs (Fig. 4). As such, this mechanism can potentially 443 

account for the Zn isotope similarities between BT and MT. Based on the available data, a 444 

potential Zn stable isotope biomarker (whether identified in serum, urine, or another reservoir) 445 

might indicate the presence of a breast tumour but may lack the ability to differentiate whether 446 

it is benign or malignant. Additionally, taking into account that Zn concentrations in tumours are 447 

affected by the microenvironment of surrounding tissue, our findings of significant differences in 448 

Zn concentrations of NAT(MT) and NAT(BT), despite similarity in BT and MT, support the 449 

assumption of physiological processes’ dissimilarity in NAT(MT) and NAT(BT) [98].  450 

 451 
Figure 4 A schematic of Zn trafficking in and around a simplified breast cancer cell. Zinc in dark 452 
and light blue represents a relative enrichment in the heavy (66Zn) and light (64Zn) Zn isotope, 453 
respectively. ZIPs transport Zn into the cytoplasm both from outside the cell and from organelles. 454 
ZnTs transport Zn from the cytoplasm to both the cell organelles and outside of the cell. 455 
Metallothionein and MMPs (both activated and latent) are strongly expressed compared to in 456 



24 
 

healthy breast tissue and benign tumours. Abbreviations: latent matrix metalloproteinase, 457 
MMPLat (light blue circles); activated matrix metalloproteinase, MMPAct (dark blue circles); 458 
metallothionein, Met (light blue heptagons); Zn-regulated transporter, Fe-regulated transporter-459 
like protein, ZIP; Zn transporter protein, ZnT (dark blue ellipses).  460 
 461 

Study limitations 462 

Limitations of this study include (1) the relatively small sample size; (2) sex - all patients 463 

recruited for this study were female, so findings may only be applicable to female patients with 464 

benign and malignant breast tumours; (3) the type, stage, and grade of tumours, as well as 465 

differences in hormonal status, were not controlled for in the analysis as covariates; (4) age-466 

associated changes in Zn homeostasis: participant ages ranged from 21 to 84 years and were not 467 

accounted for in the analysis (although, there does not appear to be an age effect for Zn 468 

concentrations in breast cancer tissue); (5) samples were received from only one hospital which 469 

could introduce selection bias due to the influence of race, cultural, and socioeconomic 470 

background of participants and the types of tumours obtained; (6) patients had varied treatment 471 

histories that might influence Zn concentrations and stable isotope compositions; and (7) 472 

smoking and other environmental factors (including varying diets, breastfeeding) known to 473 

influence Zn metabolism were not accounted for [99–103]. The results may therefore be 474 

distorted, but the consistency of results between unpaired and paired samples (MT-NAT(MT) and 475 

BT-NAT(BT)) indicates that these findings are unlikely to be due to non-tumour-related factors. 476 

Moreover, the analysis of paired samples with the comparison of within-subject variability allows 477 

controlling for age, medical history, and environmental factors that may influence the Zn 478 

concentration and isotopic composition. 479 

 480 
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Future work 481 

A key finding of Larner et al. was that the preferential sequestration of isotopically light 482 

Zn into breast cancer cells requires an isotopically heavy Zn pool to be present in the body to 483 

preserve the isotopic mass balance of the system [43]. However, no statistically significant 484 

difference in d66Zn was found between the blood serum of patients and controls. This may reflect 485 

the small mass of low-d66Zn that is sequestered in breast tumours and/or the rapid serum Zn 486 

turnover rate of over 150 times per day [104]. Further, recent work has found that an up to 25% 487 

decrease in serum Zn concentrations in the three hours postprandially (i.e. after eating) does not 488 

significantly fractionate serum Zn isotopes, which was hypothesized to be related to the rapid 489 

postprandial transfer of albumin-bound Zn in serum to the liver and pancreas to participate in 490 

phosphorylation reactions and the synthesis of digestive enzymes, respectively [57]. This 491 

suggests that a much larger source of effect than observed here (from the preferential 492 

accumulation of 64Zn in benign and malignant breast tumours) is required to significantly alter 493 

the Zn isotopic composition of blood serum. However, the study of serum Zn isotopic 494 

compositions for breast cancer patients could benefit from analyses of additional samples as only 495 

a limited number were studied previously [43]. Within serum, the Zn-binding protein a-2-496 

macroglobulin could be investigated to determine if it hosts the predicted isotopically heavy Zn 497 

pool. Zinc is bound more tightly by a-2-macroglobulin than albumin, which implies that the Zn 498 

isotope compositions of a-2-macroglobulin is more likely to reflect long-term disruptions to Zn 499 

homeostasis [105].  500 

The preferential excretion of isotopically light Zn in the urine of PDAC patients compared 501 

to healthy controls demonstrates that Zn isotopes in urine may have potential as prognostic 502 
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and/or diagnostic markers of cancer [29]. Further, new work by Schilling et al. shows that there 503 

is negligible difference in the d66Zn of urine from breast cancer patients and healthy controls (p 504 

= 0.32) [106]. However, paradoxically, the disruption of Zn homeostasis in patients with benign 505 

tumours is reflected in slightly higher urinary Zn concentrations (p = 0.12) and significantly lower 506 

d66Zn (p = 0.03) relative to healthy controls. Opposite to what was expected given the higher Zn 507 

concentrations and preferential uptake of 64Zn by benign tumours compared to NAT and healthy 508 

tissue, this represents an interesting basis for future work. With the caveat that the analysis of 509 

additional samples is required, it is possible that urinary d66Zn may have the potential to non-510 

invasively indicate whether a breast lump is benign or malignant. 511 

The results presented here demonstrate that further studies characterising differences in 512 

Zn levels, isotopic compositions, and mechanisms that alter gene expression and tumour-513 

adjacent stroma in NAT and healthy breast tissue are needed to gain a better understanding of 514 

the healthy condition [46]. Such studies should be conducted on samples that have been freeze-515 

dried with the wet weight recorded to allow comparison of concentrations with previously 516 

published results. Investigations that target the concentrations and isotopic compositions of 517 

further relevant elements, such as Cu and Fe, are also desirable as they may provide further 518 

insights into additional homeostatic changes that occur in tissue adjacent to tumours. It might 519 

also be beneficial for cancer prevention and therapy, as well as prognosis assessment, to 520 

understand the difference in Zn-related processes between NAT(MT) and NAT(BT), and their 521 

influence on disease progression. Additional malignant breast tumour samples of varied grade, 522 

stage, type, and hormonal status are also needed to properly evaluate potential associations 523 

between hormonal status, tumour characteristics, and Zn concentrations, in addition to d66Zn. 524 
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Zinc stable isotope compositions have the potential to offer insights into the underlying 525 

processes leading to observed trends in Zn accumulation. Taken together, such work may lead to 526 

novel therapeutic strategies in the treatment of cancer if key differences are discovered between 527 

the tissues [46].  528 

Costello et al. identified decreased levels of Zn in ductal malignant cells compared to 529 

normal ductal epithelium [107]. These results (produced using a semi-quantitative dithizone 530 

staining technique) potentially conflict with the growing body of work that has reported the 531 

enrichment of Zn in breast cancer tissues compared to adjacent histologically normal tissue 532 

[46,47,60–65,68]. In cancerous tissues, cancer cells are often mixed with connective tissue, 533 

immune cells, and stromal tissues [108]. If the elevated Zn in breast cancer tissues is not 534 

associated with breast cancer cells, as conventionally understood, it will be important to identify 535 

where Zn is localized at the cellular level. Recently, Zn concentrations have been compared in 536 

cancer cell clusters and adjacent stroma, but future work should employ single-cell laser ablation 537 

(LA)-ICP-MS for an in-situ quantitative assessment of Zn concentrations in individual cells 538 

[65,109–111]. If the results of Costello et al. are reproduced, these observations may transform 539 

the way Zn dyshomeostasis in breast cancer is currently understood [107].  540 

 541 

Conclusions 542 

This study examined the disruption of Zn homeostasis associated with benign breast 543 

disease and breast cancer. Notably, this is the first instance of a comparison of Zn concentrations 544 

and d66Zn in the three “healthy” tissue types, HT, NAT(BT), and NAT(MT), as well as both BT and 545 
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MT. Zinc concentrations in NAT(BT) are significantly elevated relative to HT and NAT(MT), 546 

possibly due to a specific immune response to benign tumours [74]. Histologically normal tissue 547 

adjacent to tumours commonly serves as a healthy control sample for cancer studies. These 548 

findings call into question the assumption that histological normalcy implies biological normalcy, 549 

and suggest the potential need for changes to healthy control sampling practices. Higher Zn 550 

concentrations in NAT(BT) compared to NAT(MT) requires further investigation as a possible 551 

marker of malignization and disease prognosis. 552 

Malignant tumours contain significantly elevated levels of Zn compared to HT and 553 

NAT(MT) (Fig. 1), likely due to the increased expression of Zn importers (ZIP5, ZIP6, ZIP7, ZIP8, 554 

and ZIP10) in cancer cells [34,35]. The d66Zn of MT are lower than in HT and NAT(MT) (Fig. 2), but 555 

this only reached significance for HT. Of particular interest are the almost indistinguishable Zn 556 

concentrations (Fig. 1) and d66Zn (Fig. 2) found in BT and MT. There is little documentation of ZIP 557 

and ZnT expression in benign tumours, but metallothionein-1 is overexpressed in MT compared 558 

to fibroadenomas and should, in theory, lead to a d66Zn in MT that is lower than in BT [84]. It is 559 

possible that the lack of a difference in d66Zn between BT and MT may reflect the increased 560 

production of MMPs by breast cancer cells, as this could compensate for the isotopically light 561 

signature of metallothionein-bound Zn (Fig. 4) [85]. A Zn isotope biomarker (whether identified 562 

in serum, urine, or another reservoir) might have the potential to identify the presence of a breast 563 

tumour, but similarities between bulk tissue Zn concentrations and d66Zn in the two pathologies 564 

suggests such a biomarker may lack the ability to differentiate whether the tumour is benign or 565 

malignant. These findings are preliminary, and additional studies are required to establish the 566 

features of Zn dyshomeostasis in benign tumours, breast cancer, and adjacent tissues. 567 
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Table 1 Results for Zn concentrations (µg g-1) measured in participant samples 

Description Mean (SD) n SE Median Range 

HT 2.3 (1.7) 11 0.5 1.7 0.6 to 6.5 
NAT(BT) 7.4 (4.4) 8 1.5 7.3 2.4 to 14.0 

NAT(MT) 1.9 (1.6) 19 0.4 1.4 0.4 to 7.4 

BT 15.4 (16.2)  17 3.9 8.5 1.5 to 66.8 
MT 15.2 (16.2) 22 3.5 9.4 2.0 to 57.5 

BT-NAT(BT) pair difference 1.1 (3.9) 5 1.7    

MT-NAT(MT) pair difference 14.0 (14.3) 15 3.7   

Standard deviation (SD) of values provided in brackets, ( ); n = number of samples/pairs; SE = standard error of the 
mean; HT = 'healthy' breast tissue taken during reduction mammoplasty; NAT(BT) = histologically normal tissue 
adjacent to benign tumour; NAT(MT) = histologically normal tissue adjacent to malignant tumour; BT = benign 
tumour; MT = malignant tumour. Paired sample statistics for BT-NAT(BT) and MT-NAT(MT) calculated based on 
differences in Zn concentration.  
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Table 2 Results for Zn isotope compositions (d66ZnJMC-Lyon, ‰) measured in participant samples 

Description Mean (SD) n SE Median Range 

HT -0.20 (0.13) 9 0.04 -0.24 -0.37 to -0.01 

NAT(BT) -0.17 (0.15) 7 0.06 -0.23 -0.33 to 0.00 

NAT(MT) -0.25 (0.23) 18 0.05 -0.30 -0.61 to 0.23 

BT -0.32 (0.16) 16 0.04 -0.31 -0.58 to -0.06 

MT -0.37 (0.17) 20 0.04 -0.36 -0.66 to -0.05 

BT-NAT(BT) pair difference -0.10 (0.04) 4 0.02   

MT-NAT(MT) pair difference -0.11 (0.25) 12 0.07   

Standard deviation (SD) of values provided in brackets, ( ); n = number of samples/pairs; SE = standard error of 
the mean; HT = 'healthy' breast tissue taken during reduction mammoplasty; NAT(BT) = histologically normal 
tissue adjacent to benign tumour; NAT(MT) = histologically normal tissue adjacent to malignant tumour; BT = 
benign tumour; MT = malignant tumour. Paired sample statistics for BT-NAT(BT) and MT-NAT(MT) calculated 
based on differences in d66Zn.  
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