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In this study, the turbulence fields generated by a group of modified fractal grid, referred to as
the rectangular fractal grids (RFGs), are documented and discussed. The experiments were carried
out using hot-wire anemometry in three facilities at Imperial College London, and LMFL in Lille,
France. Due to the large Reynolds number of the resulting turbulence, several data processing
methods for turbulence properties are carefully evaluated and discussed. Two spectral models were
adopted respectively to correct the large and small wavenumber range of the measured spectrum.
After the technical discussion, the measurement results are presented in terms of one-point statistics,
length scales, homogeneity, isotropy, and dissipation. The main conclusions are twofold. Firstly,
the location of maximum turbulence intensity xpeak is shown to be independent of inlet Reynolds
number, but dependent on the ratio between the lengths of the largest grid bars in the transverse
and vertical directions. This is crucial to the production of prescribed features of turbulent flows
in laboratory. Secondly, these RFG-generated turbulent flows are shown to be quasi-homogeneous
in the decay region for x/xpeak > 1.5, but the isotropy is poorer than that of the previous studied
fractal square grid-generated turbulence. In the beginning of the decay region, a decreasing pattern
of the integral length scale Lu and Taylor microscale λ was observed for the first time in decaying
turbulence, yet the ratio Lu/λ remained roughly constant along the centerline, so that Cε ∼ Re−1

λ ,
complying with the non-equilibrium scaling relation reported in previous studies for various turbulent
flows.

I. INTRODUCTION

Grid generated turbulence has been studied extensively over the past few decades. In most cases, planar grids with
uniform mesh sizes were used to produce flows close to a homogeneous isotropic turbulence. This series of works dates
back to Simmons and Salter [1] and Taylor [2], and contributions have been made by many [e.g. 3–9] to study the
evolution of various turbulence characteristics.

Over the last decade, research into space-filling fractal square grids, henceforth referred to as FSGs [10] has recorded
the existence of a non-equilibrium region where turbulence characteristics (such as various length scales and the
dissipation coefficient) evolve differently from the predictions of classical theory. Further, these observations have been
confirmed using conventional regular and bi-planar grids [11, 12] with measurements in the close vicinity downstream,
bringing an alternative perspective to the classical theory of equilibrium turbulence.

The remaining introduction will first summarize the scaling laws of one point statistics derived from grid-generated
turbulence (mostly fractal grids but also regular grids), after which the previous discussions on turbulence dissipation
rate are briefly reviewed. Here and for the rest of the discussion, x, y, z represent the streamwise, vertical, and
transverse directions, respectively, and the origin is always chosen to be the windward geometry center of the grid.
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FIG. 1. Example of space-filling square fractal grid, where L0 and t0 give the length and thickness of the bar at first iteration,
respectively.

A. Scaling of turbulence statistics

The very first study of fractal-generated turbulence was the turbulence generated by three dimensional fractal
objects[13], complemented later by simulations of periodic turbulence subjected to fractal/multi-scale forcing[14,
15]. The concept of fractal-generated turbulence was further consolidated by Hurst and Vassilicos [16], where two-
dimensional grids with three types of fractal-generating patterns were proposed, i.e. cross, I-shaped, and squares.

Out of the three variations of fractal grids, the best homogeneity of decaying turbulence was produced by the
space-filling fractal square grids (FSGs), i.e. grids with square patterns (as shown in figure 1 for example). The
pattern can be characterized by the fractal iteration number Nf , the bars’ length Lj and width tj . With relatively
low blockage ratios (approximately 25%), the grid exhibited large turbulence intensities and a protracted production
region in comparison to classical-grid generated turbulence with blockage ratios of 44%. The turbulence builds up to
a maximum value at a streamwise position xpeak, which sets apart the production region (x < xpeak) and the decay
region (x > xpeak). These authors[16] commented that it might be possible to control xpeak by designing the geometry
of the grids. Indeed, it was later shown that both xpeak and the turbulence intensity at the peak can be predicted
given the geometry of the grid[17, 18].

The homogeneity and isotropy of such FSG generated turbulence was deemed satisfactory in the decay region[10]
around the centerline. Large scale isotropy was least satisfactory. Nevertheless, the ratio of u′/v′ reached values
between 1.2 and 1.3, and Lu/Lv ≈ 2, where Lu = Luu,x and Lv = Lvv,x are the longitudinal integral length scales
of the fluctuating velocities u and v, respectively, which was not worse than that of the homogeneous turbulence
generated by active grids[8].

Mazellier and Vassilicos [17] performed further experiments on four different FSGs. By relating the wake width
l with the bar width tj (j = 0, ..., Nf − 1, Nf being the fractal iteration number) and the streamwise distance x
from the bar via l ∼ √xtj [19], they introduced the wake interaction length scale x∗ = L2

0/t0, where L0 is the length
of the largest bars and t0 is the corresponding largest bar width, both shown in figure 1. These authors were then
able to collapse data from their four grids such that the streamwise location of the peak turbulence intensity was
approximately

xpeak ≈ 0.45x∗ = 0.45
L2
0

t0
. (1)

Valente and Vassilicos [12] confirmed the scaling 1 for various regular grids, with a coefficient which can differ from
0.45 in the range between 0.4 and 0.63. Both mean velocities and turbulence intensities from these four different
space-filling FSGs collapsed with such scaling. The flow homogeneity was measured by the ratios Uc/Ud and u′c/u

′
d,

where Uc and u′c are the mean velocity and turbulence intensity, respectively, along the centerline of the grid, and Ud
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and u′d are along the streamwise line behind the corner of the square of second iteration [see 17]. Both of these ratios
approached 1± 10% by x/x∗ = 0.6.

Although the scaling relation of equation 1 successfully collapsed the streamwise development of various properties
(e.g. Skewness, Flatness, and length scales), it failed when Gomes-Fernandes et al. [18] compared data with different
incoming flow conditions. By taking into account the incoming flow turbulence level and the drag coefficient Cd of
the grid bars, Gomes-Fernandes et al. [18] proposed a length scale

x′∗ =
L2
0

αCdt0
(2)

where α was determined as 0.287 and 0.231 [after 20] for incoming flows with moderate and negligible free-stream
turbulence, respectively, and Cd was evaluated from the aspect ratio (defined as AR = d0/t0, where t0 and d0 are
the width and streamwise thickness of the largest grid bar, respectively), following Bearman and Trueman [21] and
Nakamura and Tomonari [22]. After plotting turbulence intensities against x/x′∗, they finally proposed a revised wake
interaction length scale

xpeak∗ = φx′∗ = 0.21x′∗ = 0.21
L2
0

αCdt0
(3)

where φ = 0.21 was determined empirically so that xpeak∗ = xpeak. Starting from the mean momentum equation of
wake flows, the authors also proposed a scaling relation for the centerline turbulence intensity level

u′

U∞
=

1

β

(
Cdt0

xpeak∗

)1/2

g

(
x

xpeak∗
; ∗
)
, (4)

where β is a constant equal to 2.88 and 2.68 [after 20] for incoming flows with moderate and negligible free-stream
turbulence, respectively, and the function g incorporates any residual dependencies that might exist on the boundary

or inlet conditions (denoted by ∗). The scaled turbulence intensity (u′/U∞)β(Cdt0/x
peak
∗ )−1/2 collapsed as a function

of x/xpeak∗ for six different inlet conditions as shown by Gomes-Fernandes et al. [18].

B. Turbulence dissipation

The study of turbulence dissipation has initiated numerous works on different types of turbulent flows over the past
few decades. The cornerstone of classical turbulence theory first proposed by Taylor [2] states that ε = Cεk

3/2/Lu
(where ε is the dissipation rate, Cε is the dissipation coefficient, k is the turbulent kinetic energy, and Lu is the
longitudinal integral length scale), with Cε = const, i.e. independent of Reynolds number, for turbulent flows with
large local Reynolds numbers Reλ � 1, where Reλ = u′λ/ν, u′ is the streamwise fluctuating r.m.s. velocity, λ is
the Taylor micro scale, and ν is the kinematic viscosity. This relation is referred to as the equilibrium dissipation
scaling, and is usually explained by the Richardson-Kolmogorov equilibrium cascade mechanism [23]. By assuming
ε = 15νu′2/λ2, which holds exactly for isotropic turbulence, it follows directly that Lu/λ ∼ CεReλ. This implies that
a larger range between Lu and λ is expected with increasing Reynolds number Reλ.

On the other hand, the dependence or independence of Cε on boundary/inlet/initial conditions, has been controver-
sial over the decades of turbulence research, with evidence from both experimental and numerical results. Gad-El-Hak
and Corrsin [7] showed a dependency of Cε = εLu/u

′3 on the initial condition, i.e. the injection rate of their jet grid,
and seemed to suggest a smoothly varying Cε with different initial conditions. Sreenivasan [24] summarized several
data sets up to that time, and showed that for certain grids Cε approached a constant value for Reλ > 100 when the
Reynolds number was varied by varying the inlet flow velocity. These observations were also included in the review
by Lumley [25].

More recently, new data and evidence from a number of experimental and numerical works contributed further
to the understanding of the behavior of Cε as summarized by Vassilicos [26]. It was not until the work on fractal
grids that the dependency of Cε on flow conditions and Reynolds number could be studied more comprehensively and
systematically. One outcome has been the discovery of a region with a new non-equilibrium dissipation scaling such
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that the dependency of Cε on Reynolds numbers is given by Cε ∼ Rem0 /RenL ∼ Re
m/2
0 /Renλ, where m ≈ n ≈ 1; Re0 is

a global Reynolds number such that Re0 = (U∞L0)/ν, and ReL is a local Reynolds number given by ReL = (u′Lu)/ν.
This non-equilibrium dissipation scaling has now been found in various types of turbulent flows [11, 12, 16–18, 27–36].

Later, Valente and Vassilicos [37] studied the non-equilibrium behavior of the dissipation coefficient by comparing
measurements behind fractal and regular grids and both confirmed and generalized the finding of Mazellier and
Vassilicos [17], showing that Lu/λ ∝

√
Re0. Their results revealed two distinct regions for Cε such that Cε ∼ Rem0 /RenL

held for xpeak < x < 5xpeak, where m ≈ n ≈ 1, and Cε ≈ const for x > 5xpeak with a rather abrupt transition at
x = 5xpeak. The streamwise extents of these two regions correspond to about the same number of (a few) turnover
times[12, 29]. A later study[12] also ruled out the dependency of such a scaling law on the choice of length scales by
showing that both longitudinal and transverse length scales follow this non-equilibrium scaling relation, regardless of
the inhomogeneity and anisotropy of different flows.

To close this section, it is worth mentioning that previous works on passive grid-generated turbulence (i.e. excluding
active grids) were all carried out with regular grids, single square grids and FSGs, or variants of FSGs such as the grid
used by Hearst and Lavoie [29]. In all of these grids, all corresponding bars, whether horizontal (in the z direction) or
vertical (in the y direction) had the same lengths and thicknesses, i.e. L0 and t0 are defined irrespective of orientation.
In the current study, we introduce and document the turbulence generated by the rectangular fractal grid (referred to
as RFG), which is stretched in the transverse (z) direction, and consequently two distinctive lengths and thicknesses
are present at each iteration.

C. Outline

The current manuscript documents and discusses the turbulence generated by RFGs using experimental data from
wind tunnels. In section II, the experimental setup and a detailed description of the RFG are presented first. To
rectify the resolution limit of small scale turbulence structures at large Reynolds numbers, some considerations of data
processing methods are discribed in section II C. In the discussion of results, mean statistics of the turbulence are
presented first to explore the scaling relations for the wake interaction length scale. The evolution of turbulence length
scales is examined in section III C before the homogeneity and isotropy of the flow are tested. The non-equilibrium
scaling relation is then studied using the RFG-generated turbulence. Some remarks and suggestions for future work
are given in the end to close the manuscript.

II. EXPERIMENTS

A. Facilities and experimental setup

Experiments presented in this study were conducted in three facilities: the Honda wind tunnel and 3×3 wind tunnel
in the Department of Aeronautics at Imperial College London, and the Lille wind tunnel at Lille Fluid Mechanics
Laboratory (LMFL). The dimensional details of the test sections at each facility are given in table I. In the Honda
and 3 × 3 experiments, the pressures before and after the contraction were measured to determine the free stream
velocity U∞, whereas in the Lille experiments a Pitot tube placed at the beginning of the test section was used.
Further descriptions can be found in [38].

Information about the setup including the range of the traversing systems are listed in table I. For the Honda
experiments, single hot-wire measurements were obtained along the centerline of the wind tunnel with spatial resolution
∆x = 0.4 m at y = z = 0 m, and along the streamwise direction at y = 330 mm, z = 0 m, henceforth referred to as
center and bar330, respectively. In the y−z plane at x = 2 m, the flow was probed across the span for −1 m < z < 1 m
with spanwise resolution ∆z = 0.1 m at y = 0.1, 0.2, 0.3 m, respectively, whereas at x = 8 m, measurements were taken
for 0 m < z < 1 m with ∆z = 0.1 m at y = 0.1, 0.2, 0.3 m, respectively.

Two point correlation measurements were also taken in the Honda wind tunnel to study the integral length scales
in the y direction. The fixed wire was placed on the center plane at two locations (x, z) = (6 m, 0 m), and (x, z) =
(8 m, 0 m), respectively, with the other wire moving up to a separation of 360 mm to measure the correlation functions
Ruu,y.
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TABLE I. Summary of wind tunnel and measurement specifications in different experiments. The x, y, z represents the
streamwise, vertical, and transverse directions, respectively. Packets of data defines the number of independent pieces of data
samples acquired. The low-pass filter is applied within the anemometer before the data is recorded.

Facility Name Honda 3× 3 Lille
Contraction Ratio 9 : 1 9 : 1 5.4 : 1

Cross Section Area 3 m× 1.5 m 0.9 m× 0.9 m 2 m× 1 m
Test Section Length 8 m 4.2 m 21 m
x Traverse Range [2 m, 8 m] [0.8 m, 4.1 m] [0.9 m, 18.6 m]
y Traverse Range [0 m, 0.36 m] [−0.15 m, 0.15 m] [−0.327 m, 0 m]
z Traverse Range [−1 m, 1 m] −− −−

Freestream Velocities U∞ 5, 10, 15, 17 m/s 6, 10 m/s 6, 9 m/s
Freestream Turbulence 0.2% 0.1% 0.2%
Hot-Wire Anemometer DANTEC Streamline DANTEC Streamline TSI IFA 300

Hot-Wire Type Single Wire Cross Wire Single Wire
Hot-Wire Diameter 5 micron 5 micron 5 micron

Hot-Wire Length 1 mm 1 mm 1.25 mm
Sampling Frequency 100 kHz 125 kHz 50 kHz

Sampling Time 200 s 300 s 600 s
Packets of Data 1 2 3
Low-Pass Filter 30 kHz 30 kHz 20 kHz

In the 3 × 3 wind tunnel experiments, two streamwise profiles were taken using a cross wire along the centerline
(y = z = 0 m) and behind the center of the largest horizontal bar (y = −0.144 m z = 0 m) with a streamwise step of
∆x = 0.3 m, referred to as center and bar, respectively. Profiles were obtained at U∞ = 6 m/s and U∞ = 10 m/s to
vary the inlet Reynolds number, and two packets of 300 s samples were acquired at each data point.

The cross hot-wire was calibrated at the beginning and end of every data set acquired using the look-up table
method proposed by Lueptow et al. [39] for five velocities from 3 m/s to 19 m/s and seven angles ranging from −27◦

to 27◦. The cross wire was mounted on a servo motor and was aligned with the x − y plane. The temperature
and free stream velocity were monitored during all acquisitions, and the data was discarded if temperature variation
∆Ta = Ta,max − Ta,min was larger than 0.1 °C, or the inlet velocity U∞ varied by more than ±1.5% of the target
value.

In the Lille experiments, two profiles were measured from x = 0.86 m to 18.6 m along the centerline and behind the
horizontal bar (y = −0.327 m, z = 0 m), referred to as center, and bar, respectively. Two free stream velocities were
used, i.e. U∞ = 6 m/s and 9 m/s.

During the acquisition in the Lille experiment, the incoming velocity was monitored continuously and was found to
fluctuate by less than ±0.5%U∞. The wind tunnel is also equipped with a temperature regulator. The fluctuation of
ambient temperature was monitored at all times to be within ±0.15 °C of the calibration temperature at 17 °C. The
data acquisition would restart if either the velocity or temperature variations exceeded these limits, and three packets
of 600 s samples were acquired at each location.

Note that the Lille wind tunnel has a 93 mm long grit 40 sandpaper (mean roughness 425 micron) attached to
the bottom and the top of the tunnel walls upstream of the test section. This feature was not removable, and the
turbulence far downstream is inevitably affected by the growing boundary layer, especially for measurements behind
the horizontal bar, which was only 0.17 m above the bottom wall. However, the thickness of the tunnel’s boundary
layer was found to be 0.17 m at x = 12 m downstream of the grid, which is far into the decay region of the turbulence.

B. Grid design

The original motivation to design a rectangular fractal grid, or RFG, was threefold: (i) stretch the size in z and

therefore increase the integral length scale, (ii) test the interaction length scale xpeak∗ previously proposed for FSGs,
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FIG. 2. Rectangular fractal grid for the Honda and Lille wind tunnel. Dimensions mark the first iteration of the grid.

TABLE II. Dimensions of the rectangular fractal grid, where L, t, d correspond to length, width and depth of the bar,
respectively, and j = 0, 1, ...Nf − 1, where Nf = 4 is the number of fractal iterations. The subscript y and z gives the direction
of the dimension, e.g. L0y means the length of the bars of the first iteration in the y direction.

j 0 1 2 3
Ljz (mm) 1954 703 253 91
Ljy (mm) 1004 341 116 39
tjz (mm) 305 73 18 4
tjy (mm) 88 31 11 4
djz (mm) 184 45 15 15
djy (mm) 54 19 15 15

and (iii) examine the non-equilibrium dissipation scaling [26] when two large length scales of the grid are present.
The first RFG was designed to fit in the Honda wind tunnel (see figure 2). Detailed dimensions of this grid are

given in table II. In addition, the grid was designed with a third dimension d, which is the depth of the bar in
the streamwise direction. This dimension was chosen to give each bar an aspect ratio AR (equal to the streamwise
thickness d over the transverse width t) of 0.61 where possible so that the drag coefficient Cd of each bar could be
maximized [21]. The last two iterations of the grid, however, have larger aspect ratios of approximately AR = 1 and
AR = 3.75, respectively, due to durability concerns during manufacturing.

The grid was manufactured from CNC routed plywood sheets, and the depth was modified using foam blocks
attached to the downstream side of the grid bars. The grid was then mounted in the wind tunnel with two supporting
aluminum profiles attached to the downstream side of the two largest vertical bars. A smaller version of the grid
(scaled down by a ratio of 1.54) was manufactured to fit in the Lille wind tunnel with same material and specifications,
except for the smallest grids. Due to the glass surface of the Lille wind tunnel, it was mounted on two horizontal
aluminum profiles with rubber pads at each end to hold on the side walls, attached to the largest horizontal bars of
the grid.

For the 3 × 3 experiments, the grid was scaled down by a ratio of 3.5, and two mirrored halves of it were added
at both ends in the vertical direction to fit into the square test section, as shown in figure 3. The grid was made of
laser cut acrylic sheets and was fitted on a wooden frame to support the largest bars. As with the other grids, the
bar thickness were adjusted to achieve AR = 0.61 using foam blocks attached to the grid bars.

The dimensions of the largest bars in each experiment are described in table III. Note that since there are two large
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FIG. 3. Rectangular fractal grid for the 3× 3 wind tunnel with frame.

TABLE III. Largest bar size, wake interaction length scales, and the total blockage ratios of the rectangular fractal grids in all
experiments, where xpeaky∗ = 0.21(L2

0y)/(αCdt0y) and xpeakz∗ = 0.21(L2
0z)/(αCdt0z). The actual streamwise location for maximum

turbulence intensity xpeak(m) is also given, which is further elaborated in section III B.

L0z(m) t0z(m) xpeakz∗ (m) L0y(m) t0y(m) xpeaky∗ (m) σ(%) xpeak(m)

Honda 1.954 0.308 3.924 1.004 0.088 3.591 33.4 5.20
Lille 1.272 0.199 2.557 0.654 0.057 2.339 34.3 3.79
3× 3 0.558 0.087 1.123 0.287 0.025 1.032 33.8 1.72

scales, there are also two wake interaction length scales xpeaky∗ = 0.21(L2
0y)/(αCdt0y) and xpeakz∗ = 0.21(L2

0z)/(αCdt0z),

calculated using the two corresponding dimensions marked by subscripts y and z. Note that xpeaky∗ 6= xpeakz∗ due to the
difference of grid bar dimensions in the y and z directions. The blockage ratios for all these grids are very similar at
around 33.8%, taking into account the mounting/supporting elements, which is only slightly larger than σ = 25% to
32% for the square fractal grids used by Valente and Vassilicos [27].

C. Data processing

Due to the lack of thermal control in the Honda wind tunnel, temperature variations between different runs as large
as 5 °C were measured during a day of measurement, so a temperature correction method was implemented for the
data taken in the Honda experiment. The method is based on the relation that E2

0 = A′ +B′Ta [38, 40] at any given
free stream velocity, where E0 is the output voltage from the anemometer, A′ and B′ are fitting constants, and Ta is
the ambient temperature. The corrected calibration curves taken at different ambient temperatures were successfully
collapsed (see figure 4), and the same procedure was employed for all hot-wire data from the Honda experiments
before further analysis.

Another issue frequently encountered in experimental works is that the largest scales of the flow are often insuf-
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FIG. 4. Original calibration curves at different temperatures (red), and corrected curves (black).

ficiently resolved due to limited sample size. In order to calculate the longitudinal integral length scale Lu, several
methods were compared. The method of integrating auto-correlation functions is not used here due to the ambiguity
in the choice of integration limit [41]. These results are also affected by the piecewise sample size if one takes the
average of integral length scales calculated from shorter pieces of the samples (see appendix A). Based on the Wiener-
Khinchin theorem, the auto-correlation function and the power spectral density is a Fourier pair, and therefore the
power spectral density provides another option to calculate Lu. In practice, the inertial range of the power spectrum
density is first fitted to a model to extrapolate the low wavenumber range of the spectrum, and the integral length scale
is calculated using Lu = πE11(k = 0)/(2u′2), where k is the wavenumber defined as k = 2πf/U (f is the frequency in
time), and u′ is the streamwise turbulence r.m.s. velocity. To calculate wavenumber k, the spatial signal is converted
from the time series using Taylor’s hypothesis, where the local mean velocity U is taken as the convection velocity.
To justify the use of Taylor’s hypothesis, some preliminary comparison with PIV (Particle Image Velocimetry) data
captured around xpeak was examined (see figure 2.7 of [38]), and it was shown that the spectra produced from both
measurement techniques agreed well over the inertial sub-range and the beginning of dissipation range.

To model the spectrum, one of the most frequently used is the von Kármán model [42], which can be written in a
one-dimensional form as

E+
11(k) =

2u′
2
Luu,x
π

1

{1 + [kLuu,xB(1/2, 1/3)/π]2}5/6
(5)

where k is the wave number, andB is the beta function related to the Γ function byB(1/2, 1/3) = Γ(1/2)Γ(1/3)/Γ(5/6).
More recently, another spectral model was proposed by Wilson [43] based on Meijer’s G-function (referred to as the
G-model in this text), of which the one dimensional form can be written as

E∗11(k) =
2u′

2
l

3B(1/2, 1/3 + b)
(k2l2)−5/6Bk2l2/(1+k2l2)(5/6, b), (6)

where Bx is the incomplete beta function. This model includes two fitting variables l and b, and is therefore more
accurate than the von Kármán model [43] in terms of adjusting the energy level for the inertial sub-range and energy-
containing range independently.

Figure 5 shows an example to compare these two models with experimental data, fitted using nonlinear regression
in the least squares sense. It is clear that the von Kármán model underestimates the spectral levels in the energy-
containing (low wavenumber) range, as reported by Wilson [43]. The sum of squared residuals for the G-model is also
smaller. Therefore the G-model is used henceforth in this study to correct the spectra in the energy-containing range
and to calculate integral length scales in the following discussion. Note that the G-model might introduce unwanted
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FIG. 5. Comparison of two spectra models against experimental data taken from Honda wind tunnel, in the decay region of
RFG generated turbulence.

error if the Reynolds number is small, such that the inertial sub-range does not show a definite −5/3 slope. In that
case, further care must be taken to choose an appropriate spectrum model.

While the inertial range of spectra can be corrected by the G-model method, the dissipation range of spectra is
also of concern. This part of a spectrum usually suffers from electrical noise which shows up as spurious rises at the
end of the spectrum proportional to k2 [44, 45]. This rise can lead to overestimation of the dissipation rate ε because
of the k2 term in the integrand. Furthermore, at sufficiently large Reynolds number, the Kolmogorov length scale
sometimes cannot be resolved due to limited resolution of the hot wire, so it is often desirable to extrapolate the
spectra to obtain higher wavenumber components. Although there have been many discussions on spectral models
for the large wavenumber range [46, 47], we refer to the method discussed by Pearson [48] and Zhou et al. [49],
such that for sufficiently large k, the spectrum E11(k) has the form k−5/3exp(αk + β), where α and β are constants.
Thus a linear extrapolation can be applied to In[k5/3E11(k)] with respect to k. Antonia [45] improved the form to
E11(k) ∼ kmexp(αk+β), where the exponent −5/3 was substituted by the variable m as he found that the magnitude
of m increases with Reλ. The actual value of m (approximately of 2) is chosen by trial and error to give the best fit.
The dependence of this method on the choice of fitting wavenumber range was found to be negligible. Extrapolations
performed based on ranges from 2 kHz to 5 kHz and 3 kHz to 6 kHz, respectively, give 1.8% difference in the dissipation
rate ε calculated by integrating the corrected spectrum. One example of the corrected result is given in figure 6. It
can be observed that the re-sampled spectrum correctly represents the original one in the dissipation range.

For calculations using fluctuating velocity signals, the signals are filtered first. The cutoff frequency is chosen to be
fc = 2.3fnoise, where fnoise is the frequency where f2E(f) has a minimum in the high frequency range. The constant
2.3 compensates for the Nyquist limit, and the transition band (the region between pass band and stop band) of the
filter.

Note that the iterative filtering method adopted in [29, 50] was also tested. This method uses the Kolmogorov
frequency fη as a reference to check the selection of the cutoff frequency fc, and recursively reduces fc until the small
scale properties such as η and fη converge. The results, however, depend theoretically on the parameters of the filter,
because the filtered spectrum is always attenuated by the transfer function of the digital filter itself, and the converged
results do not necessarily represent the true values of small scale properties. For these reasons, the aforementioned
extrapolation method is used to correct for the high frequency range of signals.
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FIG. 6. Re-sampled spectra (squares) after the extrapolation (red lines) from the Honda centerline data at x/xpeak = 1.08,
U∞ = 10 m/s.

D. Experimental uncertainties

Finally, the results of different calculation methods at selected locations are summarized in table IV to give an
overview of the uncertainties. For turbulence intensities calculated using the fluctuating velocity signals and corrected
spectra the differences are all well within ±1%U∞. The longitudinal integral length scales are computed by L+

u =
πE+

11(0)/(2u′2) (using the spectrum E+
11(k) corrected by the von Kármán spectrum model), and L∗u = πE∗11(0)/(2u′2)

(using the spectrum E∗11(k) corrected by the G-function model), respectively. Their differences are all within ±5%
from the mean value of L+

u and L∗u. However, there is always an underestimation by the von Kármán spectrum model,
which is in agreement with the discussions found in Wilson [43].

In terms of the Taylor microscale λ = u′/((du/dx)2)1/2, they are compared between λ̃ (where the velocity gradient
is calculated from the filtered fluctuating velocity) and λ∗ (where the velocity gradient is calculated by integrating

the G-model corrected spectrum). The difference between λ̃ and λ∗ at x/xpeak = 1 is ±4%, ±10% and ±3% for the
Honda, Lille and 3 × 3 experiment, respectively. The large error in the Lille experiment can be attributed to the
lower sampling/filter frequency due to hardware limitation, as presented in table I. At such large Raynolds numbers,
the high frequency components of velocity fluctuations tend to be under-resolved, leading to underestimated velocity
gradients and consequently an overestimation of the Taylor microscale. Nevertheless, this defect is assumed to be
rectified by the spectrum extrapolation method introduced above. The difference between λ̃ and λ∗ in the Lille
experiment decreases with Reynolds number down to ±3% at x/xpeak = 2.73.

To estimate the dissipation rate, we first calculate both ε̃iso = 15ν(du/dx)2, where (du/dx)2 is computed from the
filtered fluctuating velocity signal, and ε∗iso = 15ν

∫
k2E∗11(k)dk using the isotropic assumption, where E∗11(k) is the

G-function corrected spectra. It is noticed that ε∗iso is always larger than ε̃iso (table IV), especially at large Reynolds
numbers. This is explained by the filtering of the signal and the spectra extrapolation that compensates for the large
wavenumber range. For the Honda and 3 × 3 experiments, the differences between ε̃iso and ε∗iso are ±4% and ±7%
from their mean values, respectively, at x/xpeak = 1, where turbulence intensity is largest.

For the Lille experiment, however, the discrepancy between ε̃iso and ε∗iso is ±19% at x/xpeak = 1, and decreases to
±6% at x/xpeak = 2.73. This is consistent with the observations of Taylor microscale, such that the high frequency
velocity fluctuations are under-resolved. The corrected spectra are therefore used to estimate dissipation rates.

For full disclosure, the iterative filtering method proposed by Mi et al. [50] was tested too and did give a smaller
value of εiso = 6.8 m2s−3 at x/xpeak = 1 in the Lille experiment. While it does seem to reduce the discrepancy, the
method suffers from the attenuation of the digital filter and the ambiguity of converged length scale (as discussed in
section II C), and therefore does not suffice as a better choice.
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TABLE IV. Comparison of turbulence characteristics in different experiments along the centerline calculated using different
methods. The integral length scale are calculated as L+

u = πE+
11(0)/(2u′2) and L∗u = πE∗11(0)/(2u′2), where the superscript

+ and ∗ indicates the use of the von Kármán spectrum model and the G-function model, respectively. The Taylor microscale
λ = u′/((du/dx)2)1/2 is calculated as λ̃, where the velocity gradient is calculated from the filtered fluctuating velocity signal,
and λ∗, where the velocity gradient is calculated by integrating the G-model corrected spectrum. The dissipation is calculated
as εiso = 15ν(du/dx)2, and εXW = 3ν(du/dx)2 + 6ν(dv/dx)2. Velocity gradients are calculated either directly from the filtered
fluctuating velocity samples (marked by tilde hat) or by integrating the G-function model corrected spectrum (marked by

superscript ∗), such that (du/dx)2 =
∫
k2E∗11(k)dk, and (dv/dx)2 =

∫
k2E∗22(k)dk, where E∗11(k) and E∗22(k) are calculated

using the Taylor hypothesis assuming the local convection velocity equals to the local mean streamwise velocity U . The last
column is reproduced from Valente and Vassilicos [27] for comparison.

Data set Honda Lille 3× 3 Valente11

x/xpeak 1 1.54 1 1.65 2.73 1 1.48 2.62 1.04
U∞(m/s) 10 10 9 9 9 10 10 10 15
ũ′/U∞ 0.152 0.118 0.167 0.111 0.073 0.149 0.121 0.080 0.053
u′∗/U∞ 0.145 0.117 0.166 0.110 0.072 0.149 0.121 0.079 –
L+
u (m) 0.26 0.23 0.19 0.18 0.22 0.08 0.08 0.10 0.05
L∗u(m) 0.30 0.26 0.20 0.19 0.23 0.08 0.08 0.10 –
η̃(mm) 0.17 0.19 0.16 0.19 0.25 0.12 0.14 0.18 0.15
η∗(mm) 0.17 0.19 0.14 0.18 0.24 0.12 0.13 0.18 –

λ̃(mm) 11.5 10.9 9.6 9.0 10.2 5.8 5.7 6.9 4.8
λ∗(mm) 10.6 10.3 7.8 8.0 9.6 5.4 5.4 6.5 –

R̃eλ 1161 849 949 593 443 570 458 364 253
Re∗λ 1015 802 773 522 414 532 431 341 –

ε̃iso(m
2 s−3) 3.9 2.7 5.6 2.8 0.9 15.1 10.1 3.0 6

ε̃XW (m2 s−3) – – – – – 9.2 6.2 1.9 4.7
ε∗iso(m

2 s−3) 4.6 2.9 8.3 3.5 1.0 17.3 11.3 3.3 –
ε∗
XW

(m2 s−3) – – – – – 10.5 7.0 2.1 –

Another issue is the validity of the isotropic assumption used in calculating the dissipation rates. Comparisons are
made between εiso = 15ν(du/dx)2 and ε

XW
= 3ν(du/dx)2 + 6ν(dv/dx)2 from the 3× 3 experiments. To calculate the

dissipation rate ε∗
XW

from the spectrum, it is assumed that (du/dx)2 =
∫
k2E∗11(k)dk, and (dv/dx)2 =

∫
k2E∗22(k)dk,

where E∗11(k) and E∗22(k) are calculated using the Taylor hypothesis assuming a local convection velocity equal to the
local mean streamwise velocity U (as justified in the beginning of section II C). It seems that the isotropy assumption
causes an overestimation of the values of εiso, and the difference is roughly ±24% at x/xpeak = 1, whereas Valente
and Vassilicos [27] give a ±12% difference for the square fractal grid at x/xpeak = 1.04. Note, however, the value of
ε
XW

might be underestimated for cross wires since the 1 mm separation of the two wires is approximately 10η [see 27].
The legitimacy of the isotropy assumption is further discussed in section III D regarding the study of dissipation.

III. RESULTS

In this section the results are presented in the following manner. First of all, the Reynolds number effect of the wake
of the grid bars is examined using the Honda experiment data. The wake interaction length scale is then examined
using the streamwise evolution of turbulence statistics. Observations on the evolution of turbulence length scales are
presented in section III C, followed by discussions on the homogeneity, Gaussianity and isotropy of the flow. Finally,
the non-equilibrium scaling relation for current turbulent flows are examined using the dissipation coefficient and
spectra.
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FIG. 7. Transverse profiles of (a) mean velocity, and (b) turbulence intensity from the Honda experiments, at different inlet
velocities U∞ at x/xpeak = 0.38, y = 0 m.

A. Reynolds number effect

The transverse velocity profiles leeward of the grid center (figure 7 a) strongly depends on the wake generated by
the largest grid bars. It is therefore important to understand the Reynolds number effect of the turbulent wakes. For
that reason, the flow is probed across the span at x = 2 m (or x/xpeak = 0.38) y = 0 m at different Reynolds numbers
Re0 = U∞L0y/ν = 6.5× 105 to 1.9× 106.

Figure 7 gives the results for the mean velocity and turbulence intensity profiles at U∞ = 5, 10, 15, 17 m s−1. It is
obvious that the normalization by inlet velocity U∞ collapses both mean velocity and turbulence intensity profiles.
This suggests that the shape of the wake is independent of the inlet Reynolds number Re0.

B. Wake interaction length scales

The wake interaction length scale xpeak∗ was originally introduced by Gomes-Fernandes et al. [18] to characterize
the location where the wakes generated by the largest grid bars meet, and this length scale successfully collapsed

turbulence intensity profiles from several experiments with FSG. It is defined as xpeak∗ = 0.21L2
0/(αCdt0), which

incorporates the incoming flow turbulence condition via the constant α, the length L0, the width t0, and the drag
coefficient CD of the largest grid element.

Note though, the notation xpeak∗ is taken after Gomes-Fernandes et al. [18] for consistency. In the original paper this

wake interaction length scale physically gives the turbulence intensity peak location xpeak such that xpeak = xpeak∗ ,
but this is not the case for the current study, as the actual turbulence intensity peak location is further downstream

such that xpeak > xpeak∗ . One should not confuse xpeak∗ with the actual turbulence intensity peak location xpeak. Since
the RFG consist of two distinct large scales, the wake interaction length-scale can be calculated in either direction, as

shown in table III. For the current discussion, xpeakz∗ is used to normalize the streamwise development as it is assumed
that the thickest vertical bars generate most of the turbulent energy. The result is shown in figure 8 together with
profiles reproduced from Mazellier and Vassilicos [17] at U∞ = 5.2 m/s.

From figure 8, it can be observed that the length scale xpeakz∗ fails to collapse the data from FSGs and RFGs. All

of the turbulence intensity profiles from Mazellier and Vassilicos [17] peak at x/xpeak∗ = 1 as expected, but for the

RFGs, this peak location is at x/xpeakz∗ = 1.40, which corresponds to x/xpeaky∗ = 1.53.
This discrepancy can be explained by a review of the scaling proposed by Gomes-Fernandes et al. [18], who followed

the results from Symes and Fink [20] to derive their scaling for the evolution of the wake half width and intensity.
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FIG. 9. Influence of external turbulence on the development of (a) wake half-width, and (b) turbulence intensity. Reproduced
after Symes and Fink [20], where R2 is the coefficient of determination such that R2 = 1 indicates a perfect fit with no residual
error.

The effect of the free stream turbulence was studied, as reproduced in figure 9, and was characterized by the constant
coefficients α and β as in (y1/2

θ

)2
= α

x

2θ
,

(
U∞
u′cl

)2

= β
x

2θ
, (7)

where y1/2 is the wake half width, θ is the momentum thickness, and u′cl is the turbulence intensity at the centerline
of the wake. The parameters α and β are functions of the free stream turbulence intensity and were used by Gomes-
Fernandes et al. [18] in their derivation of x

′

∗ = L2
0/(αCDt0) assuming that L0 = 2y1/2 and 2θ = CDt0. The final
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FIG. 10. (a) Mean streamwise velocity profiles normalized by U∞, (b) turbulence intensity profiles normalized by U∞, and (c)
turbulence intensity profiles normalized by local mean velocity U along the centerline against x/xpeak from all experiments.
The data from fractal square grids (FSG) is reproduced from Mazellier and Vassilicos [17].

definition of xpeak∗ = φx
′

∗ incorporates a coefficient φ = 0.21 to scale the peak turbulence intensity at x/xpeak∗ = 1,
and the value was determined empirically based on results from Mazellier and Vassilicos [17].

The spreading rate of wake depends not only on the free stream turbulence, but also on initial/inlet conditions, as
suggested by Wygnanski et al. [51] and George [52]. The reason for the discrepancies evident in figure 8 lies most
likely in the shape of the grid. Firstly, the spreading rate might be affected by the local shear on the grid plane
due to the non-uniform grid geometry. This is also evident from equation (7) as suggested by the inclusion of the
momentum thickness θ, which will be affected by the presence of a mean shear. Secondly, there are two distinctive
wake interaction length-scales in the flow, and the wakes from both directions collectively affect the actual turbulence
peak location. These effects cannot be quantified at the moment, but for a given ratio of the largest lengths of the
grid bars, i.e. L0z/L0y, the value of the coefficient φ should be the same. That is to say, equation (3) needs to be

generalized such that xpeak∗ = φL2
0z/(αCdt0z), where φ = f(L0z/L0y) (e.g. φ = f(1.945) = 0.294 for the current grid

geometry), to calculate the actual location of peak turbulence intensity. For the rest of the discussion, the measured
physical turbulence peak location xpeak is used to normalize the streamwise distance for simplicity.
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FIG. 11. Longitudinal integral length scale profiles Lu/L0z along the centerline from (a) the Honda experiment, and (b) all
three experiments.

The streamwise mean velocity and turbulence intensity profiles for all experiments are given in figure 10. The mean
profiles collapse well except for the Lille experiments, where both the mean velocity and turbulence intensity are
notably higher. The difference in the mean velocity might be explained by the different measurement methods of U∞.
A Pitot tube is used in the Lille experiments (roughly 10 cm off the centerline and 20 cm upstream of the grid), and
wall pressure across the contraction is used in the other two experiments. Therefore, the exact incoming velocity U∞
is slightly different due to the non-uniform grid geometry. This effect is also seen in figure 10 (b). In fact, when the
turbulence intensity is normalized with the local mean velocity U , the collapse from all experiments clearly improves
(figure 10 (c), and the discrepancies are within 1%U .

C. Integral length scales and Taylor microscales

To further understand the streamwise evolution of the turbulence characteristics, the length scales of the turbulence
are of interest. All of the length scales are calculated from the corrected spectra, as discussed in section II C, and the
superscript ∗ is therefore omitted henceforth, such that Lu ≡ L∗u. Previously, it has been shown that the longitudinal
integral length scale Lu (i.e. Lu = Luu,x, the streamwise integral length scale of fluctuating velocity u) in the FSG-
generated turbulence has a magnitude of approximately 0.2L0 in the decay region (x/xpeak > 1), where L0 is the
length of the largest grid bar, and that the ratio of Lu/λ remains roughly constant in a significant part of the decay
region [17, 18, 29].

The integral length scale Lu measured from the Honda experiments is given in figure 11 (a), where the length scale
Lu/L0z appears to decrease in the decay region from x/xpeak = 1 to 1.5. This is surprising as the integral length scale
is expected to grow in decaying turbulence, or remain roughly constant in case of the non-equilibrium dissipation.
Nevertheless, the decreasing behavior is confirmed by the results from the 3 × 3 and Lille experiments, as shown in
figure 11 (b), which also reveal that this decrease exists only in the beginning of the decay region. The value of Lu
increases monotonically after x/xpeak = 1.5.

Note that Lu in figure 11 is normalized as Lu/L0z, and this ratio is doubled if Lu/L0y is used. In the region from
x/xpeak = 1 to 1.5, the average value of Lu/L0z is approximately 0.14, or equivalently Lu/L0y ≈ 0.28. To draw
comparison between FSG and RFG, we refer to square and rectangular wind tunnel cross sections, respectively. The
corresponding length scale of the grid bar of RFG and FSG in a rectangular wind tunnel yields L0y ≈ L0 (L0 being the
largest bar length in FSG grids), while in square wind tunnel it is L0z ≈ L0. As such, the largest integral length scales
produced by the RFG and FSG are compared between Lu/L0y ≈ 0.28 and Lu/L0 ≈ 0.2 for rectangular wind tunnels,
or Lu/L0z ≈ 0.14 versus Lu/L0 ≈ 0.2 for square wind tunnels. Therefore, it can be concluded that the grid geometry
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FIG. 12. Longitudinal integral length scale profiles Lu/L0z, (a) from the Honda experiment along the streamwise direction at
y = 0.33 m, and (b) from the 3× 3 and Lille experiments behind the center of the horizontal bar.

matching the shape of wind tunnel cross section would produce the largest possible integral length scales. Since most
wind engineering wind tunnels incorporate rectangular cross sections, the RFG does offer an option to produce larger
integral length scales for engineering applications. Furthermore, with the regional decrease of Lu (figure 11) and
monotonic decreasing turbulence intensity (figure 10), various combinations of length scale and turbulence intensity
might be realized by choosing the desired streamwise location x/xpeak.

The streamwise profiles of Lu with y offsets are shown in figure 12. The Honda case shows the streamwise profile at
y = 0.33 m, which is approximately at the height of the smallest grid bars closest to the center. It seems that the value
of Lu decreases only slightly in the region from x/xpeak = 0.8 to 1 before monotonically increasing afterwards. All of
the profiles behind horizontal bars from the 3 × 3 and Lille experiments in figure 12 (b) show a monotonic increase
throughout the measurement domain. The increasing rate seems impeded slightly in the region of 0.8 < x/xpeak < 1.5,
but is recovered immediately at x/xpeak > 1.5. This observation might suggest that the decrease of the length scale is
caused by the interaction of the two vortex systems from the horizontal and vertical bars. Such interaction is strongest
at the centerline, and diminishes with increasing offset, which agrees with the observations.

To confirm the decrease of integral length scale in the region 1 < x/xpeak < 1.5, two-point correlations are also
measured at x = 6 m and 8 m, or x/xpeak = 1.15 and 1.54 in the Honda experiments. The values of Luu,y are calculated
by integrating up to the first zero-crossing point, which shows a decrease from Luu,y ≈ 116 mm (at x/xpeak = 1.15)
to Luu,y ≈ 111 mm (at x/xpeak = 1.54). The results support our discussion of the decreasing integral length scale Lu
in the beginning of the decay region.

The evolution of the Taylor microscale is given in figure 13 for each experiment with streamwise profiles along
the centerline and along the streamwise direction with y offset. The Taylor microscale λ is calculated by λ = λ∗ =
u′/((du/dx)2)1/2, where the velocity gradient is calculated by integrating the G-model corrected spectrum assuming
Taylor’s hypothesis. It shows a similar trend to the integral length scales, where their values decrease in the region of
x/xpeak = 1 to 1.5 along the centerline, and grow monotonically elsewhere. The value of λ at two y locations becomes
similar after approximately x/xpeak = 1.8.

These observations agree with the conclusion that the decrease of length scales is caused by the wake interaction,
which is strongest on the centerline at x/xpeak = 1, and diminishes away from this location. This decrease of turbulence
length scales is observed for the first time in decaying turbulence, and the exact mechanism perhaps calls for another
study of the flow structures in the region around x/xpeak = 1 using, for example, Particle Image Velocimetry, to fully
understand the dynamics.
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FIG. 13. Streamwise profiles of the Taylor microscale λ from (a) Honda experiments, (b) 3 × 3 experiments, and (c) Lille
experiments.

D. Homogeneity, Gaussianity, and isotropy

The homogeneity of the RFG-generated turbulent flow is assessed using the mean statistics from the Honda wind
tunnel experiments. The transverse profiles at different y locations and the two-dimensional assembly contours are
given in figures 14 and 15. At x = 2 m (x/xpeak = 0.38), the mean velocity contour was plotted assuming y symmetry
of the flow, and it suggests that there is a rectangular jet-like structure in the middle of the grid with higher mean
velocities. At x = 8 m (x/xpeak = 1.54), the flow was measured across half of the span and symmetry was assumed
in both y and z directions to produce figure 14 (b). The variations are much reduced, which suggests that the flow
is approaching a homogeneous state. The velocity contour in figure 14 (b) show an oval shape at x/xpeak = 1.54,
in contrast to the rectangular shape at x/xpeak = 0.38. This is different from the FSG results where axisymmetric
shapes are observed immediately in the decay region [53–55] due to the fact that L0y 6= L0z.

The profiles and the assembled contours of the turbulence intensity fields are given in figure 15. The turbulence
intensity has its minimum around the centerline, and it peaks just off the side of the biggest bars, where the gradient of
the mean velocity is largest as seen in figure 14. This peak location moves aside with increasing height corresponding
to the shape of the wake, which is altered by the smaller iterations on the grid. In general, the turbulence intensity
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FIG. 14. Contours of U/U∞ at x/xpeak = 0.38 (a), and x/xpeak = 1.54 (b) at U∞ = 10 m/s from the Honda experiments,
assembled from (c) and (d), respectively.

profiles becomes more homogeneous with increasing y, which seems to support the idea that the smaller iterations
tend to homogenize the flow. At x/xpeak = 1.54, the variation of u′/U∞ across the span is reduced to approximately
3%, as shown in figure 15.

To further quantify the homogeneity in the streamwise direction, we refer to the criteria proposed by Corrsin [56],
namely

∂Lu/∂x� 1, (8a)

(Lu/λ)∂λ/∂x� 1, (8b)

(Lu/u2)∂u2/∂x� 1. (8c)

The results for these relations from all experiments are presented in figure 16. The values of ∂Lu/∂x and (Lu/λ)∂λ/∂x
are all approximately 0 in the decay region. This do not contradict the increasing integral length scales observed in
figure 11 and 12, but rather implies that the variation is indeed slow. The results for (Lu/u2)∂u2/∂x, however, show
a larger deviation from 0. The minimum appears to occur at x/xpeak ≈ 1.5, which corresponds to the region of
decreasing length scales. The maximum deviation is approximately 0.075, which is larger than the reported value
of 0.05 from the FSG generated turbulence [29]. The results along the streamwise direction with y offsets are also
given in figure 16, which appear similar to that along the centerline, and similarly the most obvious deviation from
homogeneity is observed in figure 16 (f). These results seem to suggest that the turbulence in the beginning of the
decay region 1 < x/xpeak < 1.5 is not strictly homogeneous, but the rest of the decay region might be considered
homogeneous under the criteria of relations 8.

The Gaussianity of the flow was also examined using the probability density functions (pdf) of the streamwise
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FIG. 15. Contours of u′/U∞ at x/xpeak = 0.38 (a), and x/xpeak = 1.54 (b) at U∞ = 10 m/s from the Honda experiments,
assembled from (c) and (d), respectively.

fluctuating velocity. Figure 17 (a) shows the pdf of u/u′ at the peak location x/xpeak = 1 from different experiments
with different inlet Reynolds numbers. The collapse of the pdf confirms the independence on inlet Reynolds number.
The distribution is clearly non-Gaussian, and skewed to the left, which means more negative velocity fluctuations,
depicting a negative velocity skewness Su. From the 3 × 3 experiments, the pdf from different streamwise locations
along the centerline are shown in figure 17 (b). The pdf approached to Gaussian in the decay region at x/xpeak = 1.4
and x/xpeak = 2.6, with the latter being slightly better. As demonstrated in figure 17 (c), the pdf of u/u′ beyond
x/xpeak = 2.6 from the Lille experiments are skewed to the left again, suggesting the deviation away from Gaussianity
further downstream for the Lille experiment. Nonetheless, this part of data from the Lille experiment, where the
development might be interfered by the growing boundary layer from the wall, is included for the discussion as it
serves as a reference for possible applications to use RFGs in wind engineering studies.

To look at the isotropy of the flow, we use the data from the 3× 3 experiments where both u and v components of
the velocity were measured. Ideally, large scale isotropy of turbulent flow requires u′/v′ = u′/w′ = 1 and Lu/Lv =
Lu/Lw = 2 (where Lv = Lvv,x is the streamwise integral length scale of fluctuating velocity v). The results are
presented in figure 18. In figure 18 (a), the ratio of u′/v′ behind the centerline and behind the bar are both larger than 1,
and gradually converges to u′/v′ = 1.35. This value is larger than the previously reported values of u′/v′ = 1.05 ∼ 1.15
[5] for passive bi-plane grid-generated turbulence, u′/v′ = 1.13 ∼ 1.16 [57], u′/v′ = 1.21 ∼ 1.43 [8] for active-grid-
generated turbulence, and u′/v′ = 1.1 ∼ 1.25 for FSG-generated turbulence [27, 29], respectively.

This anisotropy is also evident in figure 18 (b), where the integral length scale ratio Lu/Lv is everywhere well above
2 on the centerline. This is comparable to the results of Hearst and Lavoie [29], where they reported values of Lu/Lv
of 2.4 to 2.5 in the decay region. These observations of large scale anisotropy seem to come from the two distinct
length scales L0y and L0z, such that the largest eddy scales in these two directions are much different, which makes
sense as they are determined by the physical size of the grid bars in each direction.
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FIG. 16. Streamwise homogeneity of ∂Lu/∂x (a, d), (Lu/λ)∂λ/∂x (b, e), and (Lu/u2)∂u2/∂x (c, f) from three experiments.
The left column presents the data measured along the centerline. The right column presents the data measured along the
streamwise direction with an y offset, i.e. behind the horizontal bar in 3 × 3 and Lille experiments (denoted by bar), and at
y = 330mm, z = 0mm in the Honda Experiment (denoted by bar330).



21

−10 −5 0 5 10

10
−6

10
−4

10
−2

10
0

u/u′

P
r
ob
a
bi
li
ty

 

 

3x3,
Re

0
=3.7×10

5

Lille,
Re

0
=7.6×10

5

Honda,
Re

0
=1.3×10

6

Gaussian

(a)

−15 −10 −5 0 5 10 15

10
−6

10
−4

10
−2

10
0

u/u′

P
r
ob
a
bi
li
ty

 

 

x/x
peak

=0.5

x/x
peak

=1.4

x/x
peak

=2.6

Gaussian

(b)

−10 −5 0 5 10

10
−6

10
−4

10
−2

10
0

u/u′

P
r
ob
a
bi
li
ty

 

 

x/x
peak

=1

x/x
peak

=2.5

x/x
peak

=4.8

Gaussian

(c)

FIG. 17. Probability density function of u/u′ (a) at x/xpeak = 1 with different inlet Reynolds numbers Re0 = U∞L0z/ν, (b) at
different streamwise locations along the centerline in the 3× 3 experiment with U∞ = 10 m/s, and (c) at different streamwise
locations along the centerline in the Lille experiment with U∞ = 9 m/s. The dashed lines give the Gaussian distribution.

The small scale isotropy indicator (dv/dx)2/(du/dx)2 is shown in figure 19. It is clear that this ratio is much smaller
than the isotropic value of 2, even though the values are increasing monotonically. The values behind the horizontal
bars are slightly larger (and hence marginally more isotropic) than that on the centerline, which is in agreement with

the previous observation on the large scale isotropy. The ratio of (dv/dx)2/(du/dx)2 is smaller than that from the

FSG-generated turbulence reported by Valente and Vassilicos [27], where they showed (dv/dx)2/(du/dx)2 ≈ 1.4 in
the decay region. The anisotropy partly explains the discrepancies of the dissipation rate ε calculated with different
methods, as discussed in section II C.

Finally, to further evaluate the isotropy assumption in discussing the decaying turbulence, the ratios of the advection
and dissipation −Aiso/εiso and −A

XW
/ε

XW
are examined, where Aiso = (3/2)U(∂u2/∂x), assuming u2 = v2 = w2,

and A
XW

= U(∂k/∂x), where k = (u2 + 2v2)/2. Results from the 3× 3 experiments are given in figure 20 (a). It can
be seen that the ratio roughly collapses for both cases with and without the isotropy assumption, and stays roughly
constant in the region x/xpeak > 1.1. This is slightly different from the results discussed by Valente and Vassilicos
[27] as the ratio in their case becomes constant at x/xpeak ≈ 0.8, which indicates that the turn to isotropy of the
FSG-generated turbulence is faster. To evaluate the consistency, the ratio of −Aiso/εiso for the Honda and Lille
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measurements along the centerline are also given in figure 20 (b). It is observed that this ratio evolves in the same
way, and stays close to 1 in the decay region. Following these discussions, we might argue that, although the flow
is not strictly isotropic, the isotropy assumption can be used to look at the evolution of the dissipation rate as the
energy contributions from these terms remain proportional. This has to exclude the region x/xpeak < 1.1, which is
roughly the production region of the flow.

E. Non-equilibrium energy dissipation scaling

In section III C, it has been shown that the values of Lu and λ increases along the streamwise direction except for
a regional decrease between x/xpeak = 1 to 1.5 along the centerlines. To further study the dissipation scaling, the
ratio of Lu/λ along the centerline and along the streamwise direction with a y offset are now given in figure 21.
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FIG. 21. Streamwise profiles of Lu/λ for different inlet velocities (a) along the centerline, and (b) along the streamwise direction
for the bar330 data set from Honda experiments and the bar data set from other experiments. Red and black colors mark the
production and decay region, respectively. Blue marks the region in Lille experiments where x/xpeak > 3.

Along the centerline, the ratio Lu/λ stays roughly constant in the decay region, although results from the Honda
experiments seem to decrease slightly between x/xpeak = 1 to 1.5 in figure 21 (a). The variations of Lu/λ from the
Honda experiment at different freestream velocities are equivalent to ±5%, ±3%, and ±2% (between 20.6 to 17.2,
27.8 to 25.0, and 34.0 to 31.3), respectively. Referring to section II D, the uncertainties of Lu and λ are estimated
to be approximately ±5% and ±4%, respectively, for the Honda experiment. Therefore, the decrease observed in
figure 21 (a) is deemed insignificant. In the region of x/xpeak = 1.5 to 3, the constancy of Lu/λ is in agreement
with the non-equilibrium scalings already seen in fractal-generated turbulence [17, 18, 29] and other turbulent flows
[30, 34–36, 58, 59]. Further discussions regarding the spectrum are reported in appendix B.

The blue data points in figure 21 mark the region where Reλ stays roughly constant from the Lille experiment, as
shown in figure 22 (a) and (b), and therefore should not be interpreted as evidence for the non-equilibrium scaling
relation. With the y offset, as shown in figure 21 (b), the value of Lu/λ seems roughly constant in the decay region
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FIG. 22. Streamwise profiles of Reλ (a) along the centerline from different experiments, (b) normalized by the inlet Reynolds
number Re0 = U∞L0/ν along the centerline, and (c) normalized along the streamwise direction with y offset, i.e. behind the
center of the horizontal bar in 3 × 3 and Lille experiments (denoted by bar), and at y = 330 mm, z = 0 mm in the Honda
Experiment (denoted by bar330).

for data from Honda and 3× 3 experiments, but increases monotonically in the Lille experiment. The reason for such
observations can be partly explained by the growing Reλ as shown in figure 22 (c), which might be caused by the
growing boundary layer.

The profiles of Taylor Reynolds number Reλ = u′λ/ν from different experiments with different U∞ are given in
figure 22 (a). The values of Reλ increase with inlet Reynolds number Re0 = U∞L0z/ν, and figure 22 (b) shows the
collapse of Reλ/

√
Re0 for all the experiments along the centerline. Note that the value of Reλ/

√
Re0 stays roughly

constant in the region of x/xpeak > 3, which corresponds to the blue data points in figure 21 (a). These data points
are therefore not to be interpreted as indications of the non-equilibrium dissipation scaling law.

Along the streamwise direction with y offset, the normalization Reλ/
√
Re0 does not collapse the data as shown in

figure 22 (c). It suggests that the streamwise evolution of Reλ/
√
Re0 varies differently along the streamwise direction

off the centerline of the grid. The values of Reλ/
√
Re0 do not vary as much as along the centerline, and the data

from the Lille experiment grow monotonically.
For turbulence generated by various grids, the Reynolds number Reλ usually decreases along the streamwise di-

rection x in the decay region [60]. The constant or increasing Reynolds numbers Reλ observed in these experiments
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FIG. 23. Profiles of u′2/U2
∞ against x/xpeak from (a) Honda and 3× 3 experiments, and (b) Lille experiments, plotted in log

scale.

suggest that the decreasing rate of u′ is similar or smaller than the growth rate of λ. From figure 13, it can be observed
that in the decay region x/xpeak > 2, the growth rate of λ is the same as they collapse in the figure. Therefore, the
main reason for the differences in the evolution of Reλ perhaps lies in the different decay rates of the turbulence
intensity u′.

This might make sense as the growing boundary layer would increase the turbulence intensity level of the flow. In
the Lille experiment, the thickness of the wall boundary layer eventually became larger than the measurement height
behind the horizontal bar, implying that the decay of u′ behind the bar would be much slower than that along the
centerline, which is demonstrated in figure 23.

In figure 23 (a), the decay rates of the data along the centerline and those with y offset appear to be similar, and
their values become closer with increasing x/xpeak distance in the Honda and 3× 3 experiments. These two cases are
free from any wall effects. Figure 23 (b) shows the data from the Lille experiments. It can be observed that the decay
rate of the data behind the bar is much smaller than that of the centerline data, and the decay rate is reduced along
the centerline from approximately x/xpeak > 3. These observations support the scenario that the decay of turbulence
intensity is retarded by the growing boundary layer, and it explains the slight increase of Reλ behind the horizontal
bar at the end of the measurement domain such that the decay rate of u′ is smaller than the growth rate of λ, as
discussed regarding figure 22 (c).

Going back to the ratio of turbulence length scales, the non-equilibrium dissipation scaling relation have shown
that Lu/λ ≈ const while Reλ decreases [27, 29, 37]. The results from the current measurements along the centerline
are given in figure 24 (a). The best constancy of Lu/λ is observed in the decay region of 3× 3 and Lille experiments,
while the value of Lu/λ increases with larger Re0.

The ratio of Lu/λ from the Honda experiments in the decay region seems to have a weak dependence on Reλ, as
observed in figure 24 (a). Referring to section II D, the uncertainties of Lu and λ are estimated to be approximately
±5% and ±4%, respectively, for the Honda experiment. Therefore, the variations of Lu/λ equivalent to ±5%, ±3%,
and ±2% (same as those from figure 21 a) are deemed insignificant. The data marked in blue come from the region
of x/xpeak > 3, where Reλ ≈ const and consequently L/λ ≈ const, as shown in figure 24 (a).

Along the streamwise direction for the bar and bar330 data cases in figure 24 (b), the value of Lu/λ from Honda
and 3× 3 experiments seems to be constant at different Reλ, and increases with increasing Re0. The data from Lille
experiments follows Lu/λ ∝ Reλ, corresponding to the monotonic growth of Lu/λ as shown in figure 21 (b). This
part of data is not further interpreted as the region is expected to be affected by the boundary layer in the Lille wind
tunnel.

Now if we define the dissipation coefficient as Cε = εisoLu/u
′3, and assume λ2 = νu′2/εiso, it implies that Lu/λ ∼

CεReλ. For regions with Lu/λ ≈ const, it follows that Cε ∝ Re−1λ . Normalized results along the centerline and along
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FIG. 24. Profiles of Lu/λ as a function of Reλ (a) along the centerline, and (b) along the streamwise direction with y offset.
Blue marks the region in Lille experiments where x/xpeak > 3.
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FIG. 25. Reynolds number dependence of Cε/
√
Re0 along the streamwise direction on the centerline (a) and with y offset (b).

Red and black colors mark the production and decay region, respectively. Blue marks the region in Lille experiments where
x/xpeak > 3.

the streamwise direction off the centerline are given in figure 25. In both cases, Cε decreases with increasing Reynolds

number Reλ, and that the values collapse with the non-equilibrium scaling such that Cε ∝ Re
1/2
0 /Reλ, as the data

collapse in figure 25 (a) for the decay region (black and blue). Figure 25 (b) gives the results off the centerline, and
a clear deviation from the scaling relation can be observed in the Lille data, where the local Reynolds number Reλ
slightly increases (blue symbols) as discussed regarding figure 22.

Finally, the dissipation coefficient Cε is plotted as a function of x/xpeak in figure 26. Figure 26 (a) has been shown
in previous works [e.g. 26, 29], demonstrating the non-equilibrium scaling. However, the data from Lille experiments
at x/xpeak > 3 (blue symbols) should be interpreted with caution as Reλ ≈ const was observed in this region, so this
constancy of Cε may not be depicted as the non-equilibrium scaling relation. Nevertheless, the values of Cε collapse
well elsewhere. Figure 26 (b) shows the results along the streamwise direction for the bar and bar330 cases. Note that
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FIG. 26. Dissipation coefficient Cε as a function of x/xpeak (a) along the centerline, and (b) along the streamwise direction with
y offset. Red and black colors mark the production and decay region, respectively. Blue marks the region in Lille experiments
where x/xpeak > 3.

the relative measurement location in Honda experiments (bar330) and the other two is not the same, so the grouped
collapse is not surprising.

IV. CONCLUSIONS AND FUTURE WORK

In this study, a variation of the space-filling fractal square grid (FSG) was designed, referred to as the rectangular
fractal grid (RFG), and tested in three different facilities to document the turbulence field.

Some technical issues regarding the hot-wire signal processing were discussed first. Two types of spectrum models
were implemented to correct the large scale and small scale ranges of the spectra, respectively. The wake interaction

length scale was examined, which failed to collapse the FSG and RFG data using the previous definition of xpeak∗ .
The main reason for the discrepancy is in the spreading rates of the wakes generated by grid bars, which vary for
different shapes of the fractal grid. The effect can be incorporated by a scale factor φ = f(L0z/L0y) = 0.294 for the
current grid geometry. This is critical to produce turbulent flows in laboratory with desired downstream variations.

The integral length scale Lu and Taylor microscale λ both showed a decreasing pattern in the beginning of the
decay region, which was observed for the first time in grid-generated decaying turbulence. From comparisons with
the streamwise profiles away from the centerline, it seems that the dynamic interactions of the two vortex systems
from the grid bars are causing this rather unusual behavior.

In the region where decreasing length scales are observed, the flow was shown to be more inhomogeneous, even
though the homogeneity for the rest of the flow is similar to those of FSG-generated turbulence. The anisotropy level
in both large and small scales was shown to be greater than that for FSG generated turbulence.

To study the dissipation scaling, it was argued that the ratio of A/ε with and without the isotropy assumption
is similar, and therefore the isotropy (or constant anisotropy) assumption can be used to study the turbulence

characteristics during decay. The value of Cε in the decay region was shown to follow Cε ∼ Re
1/2
0 /Reλ, as stated by

the non-equilibrium scaling relation, regardless of the slightly poorer homogeneity and isotropy.
In general, the RFG-generated turbulence has revealed interesting features in several turbulence properties, and

further work to examine the interaction between the wakes might be useful in several ways. First of all, by varying the
ratio of the two lengths of the largest grid bars, the spreading rate of the wakes can be revisited to quantify the scaling
factor φ = f(L0z/L0y). This scaling factor can be used to generalize the definition of the wake interaction length scale
to prescribe the turbulence peak location xpeak, which can be of practical use in various wind tunnel applications.
Further measurements of the flow structures and terms in the turbulent kinetic energy equation in the beginning of
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the decay region may help elucidate the interaction mechanism between the two vortex systems generated by the two
distinct large length scales of the grid bars, and ultimately contribute to the general understanding of grid-generated
turbulence.
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[42] T. von Kármán, The fundamentals of the statistical theory of turbulence, J. Aeronaut. Sci. 4, 131 (1937).
[43] D. K. Wilson, A New Model for Turbulence Spectra and Correlations Based on Meijer’s G-Functions, Technical Note

ARL-TN-104 (Army Research Laboratory, 1998).
[44] G. S. Seyed and V. V. Srinivas, Hot-wire anemometry behaviour at very high frequencies, Meas. Sci. Technol. 7, 1297

(1996).
[45] R. A. Antonia, On estimating mean and instantaneous turbulent energy dissipation rates with hot wires, Exp. Therm.

Fluid Sci. 27, 151 (2003).
[46] T. Sanada, Comment on the dissipation-range spectrum in turbulent flows, Phys. Fluids A-Fluid 4, 1086 (1992).
[47] R. A. Antonia, H. S. Shafi, and Y. Zhu, A note on the vorticity spectrum, Phys. Fluids 8, 2196 (1996).
[48] B. R. Pearson, Experiments on small-scale turbulence, Ph.D. thesis, University of Newcastle (1999).
[49] T. Zhou, R. Antonia, and L. Chua, Performance of a probe for measuring turbulent energy and temperature dissipation

rates, Exp. Fluids 33, 334 (2002).
[50] J. Mi, M. Xu, and C. Du, Digital filter for hot-wire measurements of small-scale turbulence properties, Meas. Sci. Technol.

22, 125401 (2011).
[51] I. Wygnanski, F. Champagne, and B. Marasli, On the large-scale structures in two-dimensional, small-deficit, turbulent

wakes, J. Fluid Mech. 168, 31 (1986).
[52] W. K. George, The self-preservation of turbulent flows and its relation to initial conditions and coherent structures, Adv.

turb. , 39 (1989).
[53] K. Nagata, Y. Sakai, T. Inaba, H. Suzuki, O. Terashima, and H. Suzuki, Turbulence structure and turbulence kinetic

energy transport in multiscale/fractal-generated turbulence, Phys. Fluids 25, 065102 (2013).
[54] Y. Zhou, K. Nagata, Y. Sakai, H. Suzuki, Y. Ito, O. Terashima, and T. Hayase, Relevance of turbulence behind the single

square grid to turbulence generated by regular- and multiscale-grids, Phys. Fluids 26, 075105 (2014).
[55] S. Laizet, J. Nedic, and J. C. Vassilicos, The spatial origin of -5/3 spectra in grid-generated turbulence, Phys. Fluids 27,

065115 (2015).
[56] S. Corrsin, Turbulence: experimental methods, Handbuch der Physik 3, 524 (1963).
[57] H. S. Kang, S. Chester, and C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with

large-eddy simulation, J. Fluid Mech. 480, 129 (2003).
[58] T. Dairay, M. Obligado, and J. C. Vassilicos, Non-equilibrium scaling laws in axisymmetric turbulent wakes, J. Fluid Mech.

781, 166 (2015).
[59] S. Goto and J. C. Vassilicos, Unsteady turbulence cascades, Phys. Rev. E 94, 053108 (2016).
[60] G. Melina, P. J. K. Bruce, and J. C. Vassilicos, Vortex shedding effects in grid-generated turbulence, Phys. Rev. Fluids 1,

044402 (2016).



30

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Lag (m)

L
u
u
,x

(m
)

 

 

U
∞

 = 5 m/s

U
∞

 = 10 m/s

U
∞

 = 15 m/s

FIG. 27. Convergence of Lu with increasing integral domain. The symbols give the results by integrating the correlation
function only up to the first zero-crossing.

Appendix A: Integral length scale

In order to calculate the longitudinal integral length scales Lu, the correlation function was examined. It is noticed
that the auto-correlation function drops below zero and vibrates around R = 0 as the separation distance increases.
This phenomenon raises the question of the integration domain, which affects the calculation result of Lu significantly.
[see 41] discussed several methods using either the entire available domain, or up to where R = Rmin, or up to the
first zero-crossing if negative R is present, and they concluded that there may not be a clear relation between the
integral length scale and the integration domain. For the discussion here, the first zero-crossing point is used for
comparison. Figure 27 shows the variation of Lu as a function of the integration domain as well as the results by
integrating only up to the first zero-crossing (red symbols). It is hard to argue whether the values integrated up to
the first zero-crossing point are representative due to the large variations with increasing integration domain.

Another popular method to calculate Lu is to divide the sample into smaller piecewise samples, calculate Lu for
each piecewise sample by integrating up to the first zero-crossing point, and then take an average. This method,
however, is sensitive to the selection of the sample piece length, as shown in figure 28. It is clear that for pieces with
dt larger than 5 s, where dt is the sample time length for each piece, the results are converged. Also notice that the
streamwise development of Lu is fluctuating more than expected, and the discrepancies of the results using different
piecewise length at given location is about 10%. This seems to imply the ambiguity of this integration method, as
the integration domain cannot be well defined. Therefore the spectrum method discussed in section II C is used.

Appendix B: Self similarity of spectra

In the decaying homogeneous and isotropic turbulence, the classical equilibrium theory states that the spectra
are expected to collapse at small scales when normalized using inner variables (ε and η), and at large scales using

outer variables (u2 and Lu). For turbulent flows with the non-equilibrium scaling such that Lu/λ ≈ const, it has
been shown that either Lu or λ can be used to collapse the large-scale range and inertial range of energy spectra,
corresponding to a single-length scale spectra E11(k) = u′2lF11(kl) in those two ranges, where l is a characteristic
length scale [17, 27, 29].
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FIG. 28. Convergence of piecewise length in the calculation of Lu at U∞ = 10 m s−1.

Mazellier and Vassilicos [17] also showed a dependence of the spectra on the initial conditions, such that E11(k) =
u′2lF11(kl, Re0, ∗), where the initial condition is characterized by Re0, and ∗ represents any other possible factors.
To evaluate this scaling, compensated spectra at given Re0 are plotted at different streamwise locations, as shown in
figure 29.

The spectra are compensated with the −5/3 slope, and the inertial subrange shows a clear plateau in all cases. In
figure 29 (a) and (b), a weak dependence of Lu/λ on Reynolds number in the Honda experiment is observed, such
that the small dissipative scales are not collapsed when normalized using u′ and Lu. This agrees with the previous
discussion on figure 21. In the 3× 3 experiments, it has been shown that, even though Lu and λ decrease individually
in the beginning of the decay region, the ratio of Lu/λ is roughly constant. This corresponds to the well collapsed
spectra in the entire range as shown in figure 29 (c) and (d). A closer examination of the spectra of the Lille data,
as shown in figure 29 (e) and (f), reveals that the data are not perfectly collapsed at x/xpeak < 1.5, and those after
x/xpeak = 2.5 collapse better. Referring back to figure 21 (a), one could indeed argue that the value of Lu/λ decreases
slightly immediately after x/xpeak = 1, but the rest of the data falls into the non-equilibrium regime nevertheless.
The collapse of the spectra at x/xpeak > 3 is mainly due to the roughly constant Reynolds number Reλ as discussed
in the previous section.

To examine the dependence on Re0, and to avoid the effect of the region 1 < x/xpeak < 1.5, selected data from
3× 3 and Lille experiments at x/xpeak ≈ 2.45 are plotted in figure 30, where it can be seen that they do not collapse
in the dissipation range. Note that the spread of spectra in the dissipative range is smaller for normalization using
the inner variables. This also agrees with the analysis proposed by Valente and Vassilicos [27], such that for a given
Reynolds number ratio Reλ1

/Reλ2
the spread using outer variables are about 3 times larger than that using inner

variables.
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FIG. 29. Compensated one-dimensional spectra along the centerline using the inner variables (left) and outer variables (right)
at different streamwise locations normalized as x/xpeak from Honda experiments with U∞ = 10 m/s (a, b), 3× 3 experiments
with U∞ = 10 m/s (c, d), and Lille experiments with U∞ = 9 m/s (e, f).
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FIG. 30. Compensated one-dimensional spectra along the centerline using (a) inner variables and (b) outer variables at
x/xpeak ≈ 2.45 with different Re0 from 3×3 experiments with U∞ = 6 m/s and 10 m/s, and Lille experiments with U∞ = 6 m/s
and 9 m/s.


