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ABSTRACT 

 

The human myocardium harbours resident multi-potent cardiac progenitor cells 

(CPCs). We investigated the distribution, properties, differentiation potential and 

effect of LV function on CPCs in all chambers of the human heart.   

Biopsies from all chambers of the heart from the same patient with good (EF>45; 

n=5) and impaired LV function (EF<45; n=5) was analysed for c-kitpos and MDR-

1pos CPCs. CPCs were isolated using MACS from ten patients (Good and Impaired 

LV, n=5/group) and was characterised.  

CPCs were identified in all chambers of the heart in both groups. The RA from good 

LV group had significantly (p<0.05) less c-kitpos (6± 0CPCs/mm2) and MDR-1pos 

CPCs (5± 1 CPCs/mm2). In the impaired LV group, the LV (38± 2 CPCs /mm2) had 

significantly more c-kitpos CPCs.  Overall, the impaired LV group had significantly 

(p<0.05) more c-kitpos (32± 1CPCs /mm2) and MDR-1pos (47± 1 CPCs /mm2). 

Irrespective of LV function both c-kitpos and MDR-1pos CPCs were significantly 

higher (p<0.05) in ventricle than atria. 

CPCs from the LV (80±2%) are significantly (p<0.05) more proliferative than RV 

(64±4%) and RA (64±6%) in good and impaired LV group, respectively. Regardless 

of LV function the atria and ventricle showed no difference in proliferation. 

Cardiosphereogenesis was significantly (p<0.05) higher in the good LV group. 

Irrespective of the LV function, cardiosphereogenesis, α-sarcomeric actin and 

calponin expression were significantly increased (p<0.05) in the LV chamber.  In 

impaired LV group, the LV showed significant (p<0.05) expression for Nkx2.5. 

Overall, the cardiomyogenic and calponin expression were significantly (p<0.05) 

increased in impaired LV patients. The vWF expression was significantly (p<0.05) 

increased in LA and the atria of the good LV group. 

In conclusion, there is a variation in the distribution, stem cell properties and 

differentiation potential of CPCs across all 4 chambers of the human heart. These 

variations are also affected by the LV function.
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1. INTRODUCTION 

1.1 The Physiology of the Human Heart 

1.1.1 The Development and Anatomy of the heart  

In humans, the heart is the first organ to form, and it begins to beat at around day 

22-23 following fertilisation; furthermore, by the 4th week, the circulation of the blood 

is established (Figure1.1). The formation of this truly remarkable organ is due to four 

characteristic pools of progenitor cells; the cardiac crescent (First Heart Field; FHF), 

the Second Heart  Field (SHF), the proepicardial organ and the cardiac neural crest. 

These progenitors differentiate into cardiomyocytes, endothelial cells, vascular 

smooth muscle cells, fibroblasts, and the conduction system to form a heart. This 

differentiation process is tightly controlled by complex signalling cascades which are 

securely orchestrated by various genes. The ability to switch these genes on and off 

ultimately allows normal cardiac development to occur. This orchestration is 

achieved by transcription factors (TF), growth factors and microRNAs (miRNAs) 

(Roche P et al. 2013).  

 

 

 

Figure 1. 1  Time line illustrating the development of the heart.   (Adapted from 

https://embryology.med.unsw.edu.au/embryology/index.php/Intermediate-

Heart_Valves).  
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The onset of cardiogenesis begins in the embryonic disc, within the mesodermal 

layer of the trilaminar region, known as the cardiogenic plate. It is located cranially 

and laterally to the neural plate. The right and left endocardial heart tubes, containing 

the progenitor cells eventually fuse (cranio-caudally) to form a single primordial tube. 

This process occurs at the ventral midline following lateral folding of the embryo and 

is complete by day 21. The cardiac crescent is made up of early cardiovascular 

progenitors comprising of characteristic epithelial cells and expresses specific 

cardiac transcription factors (Harvey RP. 2002). The progenitors within the 

endoderm, through various regulatory mechanisms, direct cardiac specification. Wnt 

is one of the earliest markers associated with cardiac specification within the 

mesodermal progenitors. However, endogenous Wnt antagonist such as Crescent 

and Dickkopf-1 plays a crucial role in regulating this (Pandur P. et al. 2002; Kwon C 

et al. 2007). 

The primordial tube is divided into several regions, such as truncus arteriosus, 

bulbus cordis (forms right ventricle), primordial ventricle (forms left ventricle), 

primordial atrium (will give rise to common atrium) and sinus venosus.  The 

developing heart has distinctive layers (Figure 1.2). The splanchnic mesoderm gives 

rise to the myocardial layer, the endothelium within the tube gives rise to the 

endocardial layer, and the mesothelial cells from sinus venosus contribute to the 

formation of the epicardium.  

 

Figure 1. 2 Different regions of the heart tube. (Adapted from 

http://www.meddean.luc.edu/lumen/meded/grossanatomy/thorax0/heartdev/ma

in_fra.html) 

http://www.meddean.luc.edu/lumen/meded/grossanatomy/thorax0/heartdev/main_fra.html
http://www.meddean.luc.edu/lumen/meded/grossanatomy/thorax0/heartdev/main_fra.html
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During the fourth week, the process of cardiac looping occurs and is completed by 

the fifth week (Figure 1.3). This looping allows the straight tube to form a complex 

structure that begins to look like an adult heart. The primitive right and left atria fuse 

to create common atrium and around day 28  the septum primum forms and 

contribute to the partitioning of atria.    

The superior and inferior vena cava becomes incorporated into the RA as the 

sinuatrial orifice moves to the right side, leaving the left sinus horn to form the 

coronary sinus. The pulmonary veins are formed in the back wall of the ventricle.  

During early ventricular development, minor trabeculations are evident throughout 

the primordial ventricle; which enlarge as the ventricles grow. The primordial 

muscular interventricular ridge contributes to the formation of the septum. The 

partitioning of the truncus arteriosus and the conus cordis into the aorta and 

pulmonary trunk constitute the final changes. The truncus swelling and the conus 

swelling from the walls of the outflow tract contribute to the septum that achieves this 

partitioning.  

 

 

Figure 1. 3 Crossection of the heart tube showing the ventricular section. 

(Adapted from 

https://embryology.med.unsw.edu.au/embryology/index.php/Intermediate_-

_Heart_Valves) 
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Altogether there are four valves within the heart, 2 AV valves composed of leaflets 

and chordae. The aortic and pulmonary (semilunar) valves are located in the aorta 

and the pulmonary trunk.  The development of the AV valves usually occurs around 

5 to 8 weeks following gestation. The AV valve has two leaflets (bicuspid/Mitral) and 

attached via fibrous chords (chordae tendineae) to the papillary muscle. The bulbar 

ridge and subendocardial tissue contribute to the formation of the semilunar valve.  

The above intricate process of heart formation relies heavily on conserved 

cardiogenic TF. The key TFs such as Nkx2.5, MEF2C, Hand1, Hand2, Tbx5 and 

GATA4 are implicated in the early cardiogenesis. The understanding of the influence 

of Nkx2.5 comes from fruit fly and mice (Bodmer R et al. 1993; Lyons I et al. 1995; 

Tanaka M et al. 1999). This TF plays a crucial role in early cardiogenesis; in 

establishing cardiac lineages within the primary (first) heart field and contribute to the 

formation of the cardiac crescent. Nkx2.5 null mice have been shown to have a 

deficiency in cardiac looping and reduced ventricular markers. Mutations that alter 

the ability of Nkx2.5 to bind to DNA has been associated with an autosomal 

dominant form of CHD (atrial septal defects with atrioventricular conduction defects) 

within humans (Reamon-Buettner SM et al. 2010). Subsequent studies to date have 

associated over 40 Nkx2.5 related mutations that contribute CHD in humans.  

Myocyte enhancer-binding factor 2C (MEF2C) gene is required for muscle formation 

and expressed in the mesodermal layer before the development of the heart tube 

(Nguyen HT et al. 1994). The MEF2C null mouse show impaired cardiac looping, RV 

development and reduced expression of cardiomyocyte-specific genes (Edmondson 

DG et al. 1994; Lin Q et al. 1997). In humans, MEF2C mutation may lead to non-

syndromic congenital heart defects (Kodo K et al. 2012). 

MEF2C indued Hand 1/2 expression plays a supportive role in ventricular 

development. The development of right and left ventricular myocardium relies on the 

expression of helix-loop-helix transcription factors, eHAND/Hand1 and 

dHAND/Hand2. The role of both Hand1/2 is less clear within humans. The Hand2 

mutation causes outflow tract stenosis within humans, and mutation of Hand1 is 

associated with ventricular septal defect (VSD) amongst Chinese patients. (Holler KL 

et al. 2010; Shen L et al. 2010).  
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Evidence from human and mouse models show that the functional loss of one allele 

of the TF Tbx5 is associated with atrial and ventricular septal defects seen in Holt-

Oram syndrome (Basason CT et al. 1997). Tbx5 is expressed throughout the cardiac 

crescent during early development and contributes to the formation of the linear 

heart tube, cardiac looping, chamber specification, septation and cardiomyocyte 

differentiation (Bruneau BG et al. 2001; Hiroi Y et al. 2001).  During cardiac looping, 

Tbx5 expression is limited to the atria and left ventricle, marking the boundary for the 

formation of the ventricular septum (Bruneau BG et al. 1999). Tbx5-null mice show 

stunted cardiac development due to impaired looping and hypoplasia of the left 

ventricle (Bruneau BG et al. 2001). 

The other crucial TF in cardiogenesis is GATA4 (Liang Q et al. 2002; Zhou P et al. 

2012; van Berlo JH et al. 2010); which is expressed during development of 

endoderm  (Watt AJ et al. 2004; Zeisberg EM et al. 2005) and in the adult CM. 

GATA4 also plays an essential role in cardiac differentiation and morphogenesis 

(Kuo CT et al. 1997). GATA4 deficient mice have major cardiac defects resulting in 

incompatibility with life (Kuo CT et al. 1997 ). GATA 4 also has a direct influence on 

other TF such as Mef2C, Hand2 and GATA6, which contribute to cardiovascular 

progenitor differentiation. The complex generated from GATA4 association with Tbx5 

and Nkx2-5 triggers signalling cascades that contribute to cardiac development 

(Bruneau BG et al. 2001, Belaguli NS et al. 2000). Heterozygous GATA4 mutations 

in human cause familial septal defects, right ventricular hypoplasia and 

cardiomyopathy (Rajagopal SK et al. 2007). 

During development, the proepicardial organ is generated at the sinus venosus and 

contributes to the formation of the epicardium.  The protrusion of cells from the 

proepicardial organ, through the extracellular matrix, results in the formation of the 

epicardium.  This process is mediated by the bone morphogenetic protein (BMP) 

signalling (Nahirney PC et al. 2003; Ishii Y et al. 2010) and has been shown to 

differentiate into coronary vascular smooth muscle cells and endothelial cells. 

Finally, the outer epicardial layer is composed of epithelial cells is the last to form 
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1.1.2 The Four chambers of the heart 

Characteristically the adult heart is made of four chambers; right atrium, left atrium, 

right ventricle and left ventricle. Although the thickness of the wall across the 

chambers varies, the underlying structural organisation remains the same. The 

myocardium is sandwiched by the inner endocardial layer and an outer epicardial 

layer (Figure 1.5). 

 

 

 

Figure 1. 4 Cross-section of the heart outlining the layers 
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1.1.2.1 The right atria 

 

The right atrium is a thin-walled muscular compartment which consists of the 

appendage, the venous part, the vestibule and the septum. The arrangement of the 

pectinate muscle within the RA is characteristic. The muscle arises from the terminal 

crest and inserts into the inferior-lateral wall of the atrium. The appendage wall is 

entirely composed of the pectinate muscles, and typically it overlaps and branches 

but never encroaches near the orifice of the tricuspid valve. 

The myofibres within the atria are circumferentially orientated around the fossa and 

the peripheral fibres spread towards the origin of the terminal crest.  Also, the fibres 

that run anteriorly combine with fibres that arise from the apex of Koch's triangle and 

the eustachian ridge. The fibres from the posterior part merge into obliquely 

organised fibres that covers the epicardial surface of the venous sinus (Wang K et al. 

1995; Ho SY et al. 2002). 

 

1.1.2.2 The left atria 

 

The left atria have several layers of fibres that are aligned differently with regional 

differences in the thickness of the myocardium.  However, the walls are uniformly 

smooth textured (Wang K et al. 1995).   Due to the absence of the terminal crest, the 

pectinate muscle in the LA is not as organised compared to the RA. The prominent 

interatrial bundle is located on the epicardial side and continues in parallel with 

circularly arranged fibres.  These fibres originate from the anterior/antero-superior 

margin of the atrial septum and arch sideways to merge with the interatrial bundle 

before dividing to cover the appendage circumferentially. These fibres then remerge 

to generate a broad-band in the inferior wall which subsequently joins the septal 

raphe.  

Deep to the circular fibres, is a layer of oblique fibres originating from the 

anterosuperior septal raphe.  These fibres move to the top to become longitudinal 

with branches that circumvent the pulmonary veins. However, the septopulmonary 

bundle in the posterior wall divides into two oblique fascicles and merge with the 

superficial circular bundle.  
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1.1.2.3 The right ventricle 

 

The right ventricle (RV) is typically crescentic in shape and composed of 

predominantly transverse fibres Buckberg G et al. 2014).  These transverse fibres 

when contracts draw the tricuspid annulus toward the RV apex. The interventricular 

septum is composed of oblique helical fibres that cross each other at 60° angles. 

1.1.2.4 The left ventricle 

 

The left ventricle consists of three layers as per the longitudinal alignment of the 

myocardial strands. These layers include subepicardial (superficial), middle, and 

subendocardial (inner) (Figure 1.5). The orientation of these fibres are different in 

each layer, but they are interconnected with the superficial layer extending from one 

ventricle to another. The more superficial strands pass obliquely over the 

interventricular groove, across the obtuse margin and run towards the apex of the 

LV.  

The superficial layer of the ventricle contributes towards 25% of the wall thickness 

(Sanchez-Quintana D et al. 1999; Ho S.Y et al. 2009). The spiral convolution of the 

myocardial strands contributes to the formation of the subendocardial layer, which 

makes accounts for 20% of the wall thickness (Sanchez-Quintana D et al. 1999; Ho 

S.Y et al. 2009). 

The middle layer of the left ventricle makes up 53–59% of the ventricular wall 

thickness; thickest at the base and thins out toward the apex of the LV.  The strands 

within this layer are more circumferentially organised and run parallel to the mitral 

orifice. The fibres within the subendocardial layer run longitudinally and insert into 

the aortic, mitral valves and the membranous septum. Eventually, they fuse with 

trabeculations and merge with the papillary muscles 

The orientation of the fibres determines the biventricular function. The more 

transverse fibres in the RV contribute to more circumferential strain which contracts 

the narrow crescentic cavity. This force accounts for about 20-30% of the EF.  

Moreover, in the LV, the helical fibres induce longitudinal strain, while the oblique 

spirals thicken and coil. This action produces >60% of the EF (Ho S.Y et al. 2009). 



  INTRODUCTION 

 

26 
 

1.1.3 The heart as a self-renewing organ 

For a long time, it was believed that the adult mammalian heart was a post-mitotic 

organ with no intrinsic capacity to regenerate after myocardial injury. Traditionally 

cardiomyocytes have been categorised as terminally differentiated cells that adapt to 

increased work and compensate for the disease through hypertrophy rather than 

proliferation (Soonpaa et al. 1998). However, compelling evidence accumulated over 

the last decade has refuted the above notion and suggests that the heart has 

regenerative potential (Kajstura J et al. 1998; Nadal-Ginard et al. 2003; Beltrami et 

al. 2003; Bergmann O et al. 2009; Ellison et al. 2013). Indeed, cells undergoing 

mitosis and cytokinesis with subsequent generation of cardiomyocytes (1%) have 

been demonstrated in human hearts under normal and pathological conditions 

(Ahuja et al. 2007; Senyo SE et al. 2013; Scalise et al. 2019).  

It was in 1998; the mitosis within adult cardiac myocytes was first described 

(Kajstura J et al. 1998). The study reported a rate of 14 myocytes per million 

amongst healthy adult hearts, with a subsequent 10-fold rise in mitotic cells in 

patients with dilated cardiomyopathy and severe IHD. Through integrating carbon-14 

(14C) into DNA, Bergmann O et al. (2009) studied the cardiomyocyte turnover in the 

normal human heart. The study reported cardiomyocyte DNA synthesis to be an 

ongoing process throughout life with a turnover of 0.2-2% of cardiomyocyte annually. 

However, this rate was shown to decrease with age. In another study using 15N 

mass spectrometry in a mouse model, a similar proportion of cardiomyocyte turnover 

was observed with a reported reduction with age. (Senyo SE et al. 2013).  Despite 

the generation of cardiomyocytes, confusion remains as to the source from which 

they arise (Bergmann O et al. 2009. However; Senyo SE et al. (2013 ), was able to 

demonstrate new cardiomyocyte generation from pre-existing cardiomyocytes.  

Alongside this, there is evidence that a primitive population of stem cells may 

contribute to the formation of new cardiomyocytes in the adult heart.  Hsieh et al. 

(2007) used a pulse of 4-OH-tamoxifen followed by induction of green fluorescent 

protein (GFP- achieving 82.7% expression), in a double-transgenic mice model to 

track the fate of adult cardiomyocytes.  They created the double transgenic mouse 

(Mer-CreMer-ZEG ) by crossbreeding mice that were cardiomyocyte-specific 

MerCreMer and ZEG. They demonstrated that the percentage of GFP+ 
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cardiomyocytes remained unchanged during normal ageing up to one year. 

Therefore, indicating that stem or precursor cells did not contribute to the formation 

of new cardiomyocytes at a significant rate in the normal ageing heart. Following an 

injury to the myocardium (myocardial infarction or pressure overload), there was a 

15% reduction in  GFPpos cardiomyocytes in areas associated with the injury; hence 

suggesting that after injury, stem cells contributed to the replacement of 

cardiomyocytes. Several studies (Beltrami et al. 2003; Bearzi et al. 2007; Ellison et 

al. 2013; Uchida S et al. 2013) confirm that the adult myocardium, including the 

human, harbours tissue-specific bona fide endogenous cardiac progenitor cells 

(CPCs) with true intrinsic regenerative capacity and distributed throughout the heart. 

The above evidence highlight the ability of the heart to self-renew and regulate itself 

during the onset of cardiovascular disease, ageing and the subsequent development 

of heart failure. The recognition and application of the CPCs will help clinical 

translation.  

1.2 Resident cardiac stem/progenitor cells in the myocardium 

 

Stem/progenitor cells were first discovered in the adult mammalian heart in 2003 

(Beltrami et al. 2003). A cell which can clone, self-renew and be multipotent is 

classified as a stem cell (Wagers AJ et al. 2004). The cardiac stem/progenitor cells 

(CPCs) are positive for various stem cell surface markers such as c-kit (c-kitpos); Sca-

1, Islet-1 and CDCs or can be isolated as side-population cells (SP) (Figure 1.5). 

Several independent groups have confirmed the existence of  CPCs, (Ellison et al. 

2013b), and although a variety of markers have been proposed to identify CPCs in 

different species; (Figure 1.6) (Torella et al. 2006, Oh et al. 2003; Matsuura et al. 

2004; Messina et al. 2004; Smith et al. 2007; Laugwitz et al. 2005; Moretti et al. 

2006; Kattman et al. 2006; Wu et al. 2006; Bearzi et al. 2007; Chong et al. 2011), it 

remains to be determined whether this plethora of primary and secondary markers 

used to identify the CPCs population to date may represent a sole CPCs at various 

stages of its development and physiological state.  (Ellison et al. 2010; Smith AJ et 

al. 2014) (Figure 1.5). 
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Figure 1. 5  Endogenous cardiac progenitor cell populations identified and 

characterised thus far (adapted from Tyl Le& JJH Chong 2016) 

 

1.2.1. c-kit positive CSCs 

So far, as many as seven different phenotypic CPC populations have been 

described; primarily based on a single antigen have been identified in the adult heart, 

including humans.  The identified population of c-kitpos CPCs are characterised to be 

CD34neg, CD45neg, Sca-1pos, MDR-1pos, CD105pos, CD166pos, GATA4pos, NKX2-

5pos/neg or low, and MEF2Cpos (Chong JJ et al. 2016; Scalise et al. 2019) 

c-kit is a proto-oncogene which encodes a transmembrane tyrosine kinase receptor. 

Also known as CD117, it binds to its ligand, stem cell factor, and triggers biological 

effects in the regulation of cell differentiation and proliferation in various systems. 

(Wehrle-Haller et al. 2003; Chi et al. 2010; Kasamatsu et al. 2008). Adult transgenic 

mice that were heterogeneous for c-kit receptor mutation showed alterations in 

cardiac anatomy and function together with defects in haematopoiesis, skin 

pigmentation and immune response (Reith et al. 1990; Cable et al. 1995; 

Theoharides et al. 1993). c-kit positive cells are relatively small (~ 5µm diameter) 
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and express markers for cardiomyocyte lineage (e.g. GATA-4, Nkx2.5 and MEF2), 

whereas blood cell lineage (CD45), skeletal muscle and neural markers were not 

detected. These cells can be propagated over long-term culture passages and 

maintained in a stable undifferentiated, self-renewing state without signs of abnormal 

karyotype (Miyamoto S et al. 2010; Vicinanza et al. 2017). They have also been 

shown to be multipotent and can regenerate cardiomyocytes and vasculature when 

injected into the infarcted heart in vivo (Beltrami et al. 2003). Indeed, injecting c-

kitPOS CPCs into the infarcted myocardium in animals showed these cells targeted 

the border zone of the injured myocardium and differentiated into cardiomyocytes 

(Dawn et al. 2005; Oh et al. 2003; Wang et al. 2006).   

Therefore, c-kit- positivity and hematopoietic-lineage-markers negativity has been 

the hallmarks for identifying CPCs from and within cardiac tissue (Bolli et al. 2011; 

Arsalan et al. 2012). 

The evidence from rodent models (Sarvanakumar et al. 2013) suggests that the 

distribution of CPCs is higher in the atrium than ventricle and implies that the atria 

may be the origin of CPCs (Sarvanakumar et al. 2013; Arsalan M et al. 2012). The 

analysis from several studies shows CPCs to exist in a very small percentage. 

Beltrami AP et al. (2003), showed there to be 1 per 10000 myocytes, but other 

studies have reported a range from 1 CPCs per 20000-30000 CMs (Torella et al. 

2007; Mishra R et al. 2011). Recently, Vicinanza et al. (2017); documented that only 

1–2% of total c-kitpos myocardial cells are the ‘truly’ clonogenic, multipotent CPCs.  

In mouse models, stem cell niches that harbour long-term BrdU-retaining cells were 

identified within the myocardial interstitium (Urbanek et al. 2006). These cardiac 

niches contain CPCs and lineage-committed cells, which are committed to 

supporting cells represented by myocytes and fibroblasts (Urbanek et al. 2006). 

Furthermore, it was shown that in the mouse heart, the number of niches was higher 

for the atrial myocardium than at the base–mid-region of the left ventricle (Urbanek 

et al. 2006). They reported CPCs in the atria to be 0.08% of the atrial CMs vs 0.05% 

of the ventricular CMs. However, these niches are yet to be identified and 

characterised in the human myocardium. 
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Cardiac progenitor cells play a crucial role in normal cardiac homeostasis and 

response to ‘wear-and-tear’ injury (Nadal-Ginard B et al. 2014). A study by Ellison et 

al. (2013), using various rodent models of diffuse myocardial injury showed that c-

kitpos CPCs have potential to restore cardiac function through the regeneration of lost 

cardiomyocytes. However, this regeneration and functional recovery were not 

observed if the CPCs were ablated; but with the progeny of one c-kitpos CPC, the 

regenerative process was restored. With their data, they were able to conclude that 

c-kitpos CPCs are necessary and essential for regeneration and repair of the 

myocardium.   

A recently published article (Van Berlo et al. 2014) argues that endogenous c-kit 

positive cells generated cardiomyocytes at a functionally insignificant level within the 

heart. The authors used mice with Cre/lox knock-in within the c-kit locus. In one line 

they introduced Cre-IRES-nGFP and tamoxifen based mER-Cre-mER in the other 

line. Thus, introducing the CRE in the kit gene at the ATG start codon of exon 1.  

However, this mouse model is sub-optimal (Torella et al. (unpublished data)) and 

doesn’t sufficiently label the c-kit positive CPCs. The cells express c-kit at low to 

moderate levels but the CRE readily labels the CD45+mast cells and CD31+ 

endothelial (progenitor) cells, which express c-kit at high levels (Vicinanza et al. 

2017).  Additionally, the study did not show that the labelled lineage-traced c-kit cells 

were stem/progenitor cells with properties and characteristics similar to those 

properties and characteristics of CPCs described by others (Bearzi et al. 2007; 

Ellison et al. 2013; Smith et al. 2014; Vicinanza C et al. 2017).  

A study by Bearzi et al. 2007 isolated and expanded the c-kit positive CPCs from 

human myocardium. Human c-kit positive, lineage negative cells were shown to be 

clonogenic and differentiated into cardiomyocytes, smooth muscle cells and 

endothelial cells.  In addition to this, when these cells were injected intramyocardially 

into the infarcted myocardium of immunodeficient rats and mice, they contributed to 

the formation of myocytes and neovasculature. The newly formed human 

myocardium was shown to integrate into rodent myocardium without any structural 

deformity while contributing to the improvement of the overall performance of the 

infarcted heart.  Further chromosomal analysis alongside Cre-Lox experiments 
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demonstrated that the newly formed cardiomyocytes were due to the injected human 

CPCs; hence excluding the theory, this may be due to cell fusion (Bearzi et al. 2007). 

Further studies in the human myocardium, showed a high yield of c-kit positive cells 

within the human atria compared to other chambers. In this study (Itzhaki-Alfia A et 

al. 2009), biopsies were obtained from 94 patients and put into explant culture. c-

kitpos cells were isolated using fluorescence-activated cell sorting (FACS). Although 

these were cells were not lineage negative sorted the study report higher number of 

c-kitpos cells derived from atria compared to other chambers; right atrium (24±2.5%), 

left atrium (7.3±3.5%), right ventricle (4.1±1.6%), and left ventricle (9.7±3%; 

P=0.001).  Indeed, a group of German scientists (Arsalan et al. .2012) assessed this 

by taking small tissue biopsies (0.36± 0.09 gram) from the left ventricle, the 

appendages of the right atrium and left atrium of 20 adult patients undergoing 

cardiac surgery. The number of c-kit positive cells isolated from these three regions 

was measured using flow cytometry. The study showed the prevalence of c-kit 

positive cells in both atria (4.90 ± 1.29%) was about five times greater than in the left 

ventricle (0.62 ± 0.14%, P = 0.035). This finding implies that the regenerative 

capacity of the atria is likely to be higher than that of the left ventricle. 

In a recent publication, atrial samples obtained from patients who underwent LVAD 

implantation was used to extract CPCs (c-kitpos), endothelial progenitor cells (EPC) 

and mesenchymal stem cells (MSC) using enzymatic digestion, explant culture 

technique and MACS sorting (Monsanto et al. 2017). The MAC sorting was used to 

isolate c-kit positive CPCs and endothelial progenitor cells (EPCs; CD31pos). 

Subsequently, CD90 and CD105 were used to isolate c-kitneg MSCs. The authors 

showed that from single atrial biopsy, three characteristically different progenitor 

cells could be isolated (Monsanto et al. 2017).    

Recent clinical trial utilising eCPCs, (SCIPIO) has shown improvements in cardiac 

function in ischemic heart failure patients (Bolli et al. 2011). Cardiac Stem Cell 

Infusion in Patients with Ischemic Cardiomyopathy (SCIPIO) is a phase one 

randomized trial of autologous CSCs as a therapy for ischemic HF. In this trial the 

investigators isolated c-kit+ CPCs from the right atrial appendage obtained from 16 

patients with HF induced by ischemia, undergoing coronary artery bypass surgery 

and propagated them ex vivo (2 million cells per patient). Subsequently, after five 
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months following cardiac surgery, 500,000 to 1 million CPCs were injected via 

intracoronary into infarcted areas, and the control was not given any treatment. Four 

months after the injection they showed a significant improvement in LVEF (from 

30.3% at baseline to 38.5%) when compared to the control group (30·1%) and at 

one year follow up, there was an increase in LVEF by 12.3 EF units compared to 

baseline and showed a significant reduction in infarct size at 4 months and 12 

months (by 7·8 g (24%) and 9·8 g (30%) respectively).  

 

1.2.2. Sca-1 positive and side population CSCs 

While c-kit has been used as a marker for cardiac progenitor cell, some scientists 

based the isolation of cardiac progenitor cells on another stem cell marker, stem cell 

antigen (Sca-1). Sca-1 is involved in cell signalling, and cell adhesion in mice 

(Patterson et al. 2000) and Sca-1+ cardiac resident cells were first described by Oh 

et al. (2003). Characteristically these cells are 2-3µm, small, rounded and have a 

high nucleus to cytoplasm ratio (Samal R et al. 2012).  The Sca1+ CPCs express 

cardiac-specific factors such as Gata-4 and MEF2C early on; however, only a 

minority of them have self-renewing and multi-potent capabilities (Matsuura K et al. 

2004; Chong JJ et al. 2011; Noseda et al. 2015). 

The cardiac resident Sca-1 positive cells lack haematopoietic stem cell markers 

(CD45 and CD34). Still, unlike c-kit positive cells, they do not spontaneously 

differentiate in vitro unless stimulated with chemicals (i.e. 5-azacytidine) or after 

being co-cultured with cardiomyocytes (Wang et al. 2006).  When Sca-1+ CPCs were 

treated with 5-azacytidine, they expressed α-sarcomeric actinin, cardiac troponin, 

Nkx2.5 and α-MHC (Oh et al. 2003).  Moreover, spontaneous contractions of these 

cells were induced with the addition of oxycontin (Matsuura K et al. 2004).  Sca-1+ 

CPCs have also been shown to differentiate into smooth muscle and endothelial 

lineages (Iwakura et al. 2011; Noseda et al. 2015). In murine heart Sca-1+, CPCs 

were shown to contribute to the generation of new cardiomyocytes, including after 

injury to the heart (Uchida S et al. 2013).  

The use of Sca-1 to identify and isolate CPCs is promising; however, Sca-1 does not 

share the homology with other species, including human. Hence, restricting any 
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potential translational research to enhance human myocardial regenerative 

therapies. It has been shown that c-kitpos CPCs also express Sca-1 and comparable 

numbers of c-kitposCD45negCD31neg and Sca-1posCD31neg cell populations have been 

reported (Smith et al. 2014) along with self-renewing, clonogenicity and 

differentiation potential in vitro and in vivo (Vicinanza et al. 2017). Hence it would 

appear that they are of the same cell population, and their expression of the surface 

markers vary according to their physiological/differentiation state. 

Cardiac side population (SP) cells are closely related to Sca-1 cells and are 

identified in their ability to release Hoechst 33342 using Abcg2 transporter. It has 

been shown that around 80-90% of the SP  cells are Sca-1+, and only 1% of Sca-1+ 

are SP cells (Unno K et al. 2012).   

Despite Sca-1’s lack of human homology, van Vliet et al. (2008) showed a rat anti-

mouse Sca-1 antibody was able to bind a homogenous population of cells isolated 

from adult human atrial biopsies. This population, named as human cardiomyocyte 

progenitor cells, had the ability to self-expand, they express early myogenic 

transcription factors such as GATA-4, Mef2c, Isl-1, and Nkx-2.5 and differentiate into 

mature cardiomyocytes upon stimulation with 5-azacytidine in-vitro (Smits AM et al. 

2009). It has also been suggested that Sca-1 + ‘very small embryonic-like stem cells’ 

(VSELs) in mice are the same population that express CD133 in humans (Zuba-

Surma EK et al. 2011).  

 

1.2.3. Cardiosphere-derived cells (CDCs) 

Cardiosphere derived cells (CDCs) have the potential to regenerate myocardium 

(Messina et al. 2004; Smith R et al. 2007). CDCs form multicellular clusters (20–150 

µm cellular spheres) from clonally derived cells in suspension and can contribute to 

multiple lineages (Messina E et al. 2004).  The assessment of functional outcome 

following CDCs transplantation into the murine model post MI show better ischemic 

tissue protection with the enhanced remodelling with reported functional benefits 

(Carr CA. et al. 2011; Li at al. 2012). Also, upon stimulation with 5’-azacytidine and 

TGFβ1 in vitro, CDCs were shown to have the capabilities to differentiate into 

endothelial cells (Perbellini, F et al. 2015). A recent study by Gallet et al. (2016) 
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assessed the potential of allogeneic rat CDCs to decrease the effects of HFpEF 

amongst hypertensive rats. Hypertension was induced to dhal fed rats with a high 

salt diet for 7 weeks, and treatment was randomised to CDCs vs control (saline) 

group.  Rats treated with CDCs normalised LV relaxation and LV diastolic pressures 

(17±10mmHg vs 9±4 mmHg in control, P=0.015 and 8±3mmHg in CDC, P=0.002).   

CDCs have in fact been isolated from various species including humans by several 

groups (Messina E et al. 2004; Smith RR et al. 2007; Davis DR et al. 2009; Mishra R 

et al. 2011).  Messina E et al. (2004) showed CDCs derived from humans 

myocardium to express c-kit. Furthermore, it has been shown that CDCs can be 

isolated from all four chambers of the human heart (Mishra R et al. 2011). In 

addition, the CDCs derived from humans are clonogenic and can self-renew 

(Messina E et al. 2004; Bearzi et al. 2007). Several clinical trials have evaluated the 

potential of CDCs, including  ALCADIA and TICAP.  In the ALCADIA trial, the CDCs 

were expanded from endomyocardial biopsies obtained during CABG. The 

investigators used a hybrid therapy with scaffolds. The cultured CDCs were injected 

intracoronary. The trial showed a 12.1% increase in EF at 6 months, with a 3.3 % 

reduction in infarct size. The TICAP trial (Ishigami S et al. 2015) enrolled 7 patients, 

and CDCs were obtained from the RA of patients. The CDCs were expanded and 

injected via intracoronary, one month following surgery. They were able to show an 

increase in EF from 46.9% to 54.0% (P = 0.0004) compared to control, 46.7% to 

48.7%. These studies demonstrate that autologous CDCs are safe and could be 

effective in treating dysfunctional myocardium.   
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1.2.4 ADLH high cells 

In 2013 Koninckx et al. described progenitor cells isolated from human atrial 

appendages based on high aldehyde dehydrogenase activity (ALDH).  ALDH is an 

enzyme that metabolises the aldehydes related to their carboxylic acids and aids 

resistance to alkylating agents. These progenitor cells were called cardiac atrial 

appendage stem cells (CASC) and were isolated from right atrial appendages from 

patients undergoing cardiac surgery using the enzymatic technique.  These cells are 

ALDH+CD34+CD45- and negative for c-kit. Around 30% of these cells are positive 

for platelet-derived growth receptor alpha (PDGFαr), and surprisingly all expressed 

Isl-1.  The frequency of CASCs within the RAA of the human heart is low; 0.9 ± 0.8% 

total heart cell population. Characteristically these cells were mononuclear with 

broad cytoplasm with little vacuoles and demonstrated morphological differences to 

c-kitpos CPCs. A single cell sort experiment showed a clonogenicity rate of 16% and 

they expressed pluripotency-associated genes.  When subjected to medium 

enriched with growth factors stimulating HSC cell growth; CASCs did not grow. Also, 

compared to BM derived ALDH+ cells, the CASC cells failed to differentiate into 

either adipogenic or osteogenic lineages when incubated in identical culture settings. 

These properties suggest that CASCs are different to that of BM derived ALDH cells. 

When CASCs were co-cultured with primary cultures of neonatal rat cardiomyocytes, 

they showed a superior cardiac differentiation, compared to that of CDC-derived 

cells.  Furthermore, the electrophysiological properties of the differentiated cells 

derived from CASCs were comparable to mature cardiomyocytes and were capable 

of generating action potentials (Koninckx R et al. 2012). Intramyocardial injection of 

these cells showed successful engraftment, preserved LV function, improved cell 

viability and cardiac differentiation in a minipig MI model.  
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Figure 1. 6  Timeline of landmark events in cardiac CPC history. 

 

 

The current evidence to date clearly shows that human myocardium harbours 

endogenous cardiac progenitor cells (Table 1.1). These cells are multipotent, 

clonogenic and capable of self-renewal in both vitro and in vivo; therefore, ensuring 

myocardial regeneration remains a real possibility. However, it is important to isolate 

and characterise these cells in accordance with specific phenotypes that have been 

described, including negative for markers of blood lineage such as CD34, CD45 and 

CD31. 
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1.3 Isolation of CSCs from human myocardial samples  

 

Mainly two isolation methodologies have been employed to extract CPCs from both 

human and murine hearts (Beltrami AP et al. 2003; Messina E et al. 2004, Cesselli D 

et al. 2011). These include both enzymatic digestion and explant techniques; 

following which cells are isolated based on transcriptional or surface markers. The 

weight of the sample received contributes to the choice of either enzymatic digestion 

and explant methodology (Table 1.1).  

1.3.1. Enzymatic digestion 

In enzymatic digestion, the tissues are exposed to various enzymes such as trypsin 

and collagenase to breakdown and release the small cells deep within the 

myocardial tissue. The dissociated cells are then purified to isolate CPCs.  The 

enzymatic digestion of myocardial tissue and the isolation of CPCs using magnetic-

activated cell sorting (MACS) or Flow cytometry activated cell sorting (FACS) based 

on specific markers; led to the identification of various progenitor cells including that 

of c-kitpos CPCs (Bearzi et al. 2007; Beltrami AP et al. 2003). 

This process was dependant on the sample size; any samples of less than 30 mg 

were not suitable for FACS analysis (Bearzi C et al. 2007).  Hence many studies 

have used enzymatic approach for isolation of CPCs from human myocardial 

samples; mainly obtained from explanted hearts or atrial appendages.  

Retrograde perfusion of the heart containing enzymes has been successfully 

employed to isolate CPCs from whole rodent hearts (Torella D et al. 2004; Ellison 

GM et al. 2007; Smith A et al. 2014). In this technique, the aorta is cannulated, and 

the retrograde perfusion allows removal of blood, perfuse and penetrate enzymes 

thorough the entire tissue to yield effective digestion. Hence,  the retrograde 

perfusion methodology allows optimal enzymatic digestion across the whole heart, 

allowing maximum dissociation of CPCs from deep within the myocardium. Since the 

entire heart is required for retrograde perfusion technique; it is impractical to use it to 

isolate human CPCs.  Another drawback is over-digestion which has been shown to 

damage surface markers (Levesque JP et al. 2003; Mishra R et al. 2011) and can 
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cause internalisation of the cell surface receptors, like c-kit, leading to lower yield 

(Smith A et al. 2014).
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Table 1.1 Types of CPC isolated using both enzymatic digestion and explant techniques and their phenotypes 
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1.3.2 Explant culture 

The explant culture technique is an alternative approach to extract CPCs. In this 

methodology, fragments of myocardial tissue are explanted in culture media, and the 

cells which migrate out of the tissue are expanded and sorted for CPCs by surface 

marker expression.    

The first isolation of adult human CPCs from the atria and the ventricle using explant 

culture technique was successfully reported in 2004 by Messina et al. Tissues were 

initially minced and subjected to brief enzymatic digestion (0.2% trypsin and 0.1% 

collagenase IV) before cultured as explants in complete explant medium. The cells 

isolated by FACS were c-kitpos and were clonogenic, expressed stem and endothelial 

progenitor cell markers. Cells grown as outgrowth cells from the tissue explants were 

able to form cardiospheres in suspension culture.  

This technique was refined to improve the efficiency by Smith R et al. (2007), during 

which partial enzymatic digestion was introduced prior to explanting on culture 

dishes coated with fibronectin. The biopsies were obtained percutaneously from the 

right ventricular septal wall. The biopsies from 70 patients had an average weight of 

21.0±1.9 mg.  The CDCs derived from the isolated cells differentiated into cardiac 

lineages and expressed antigenic properties of stem cells. When CDCs were 

injected into the border zone of the infarcted area in the SCID mouse, they were able 

to engraft and migrate into the infarcted zones; with the percentage of viable 

myocardium being more significant in CDC group, compared to the fibroblast- 

treated group (Smith R et al. 2007).  

Bearzi et al. (2007) explored the conditions needed to isolate and expand human c-

kitpos CPCs from myocardial samples. The group compared both enzymatic and 

explant culture techniques and the isolated cells were MACS sorted for c-kit and 

further characterised.  The weight of the samples from 88 patients undergoing 

cardiac surgery varied from ~20-100 mg; which essentially determined the isolation 

process as samples less than 30mg was deemed insufficient for FACS analysis. The 

enzymatic digestion used enzymes, such as collagenase for dissociation; while in 

the explant culture, minced myocardium was seeded onto uncoated Petri dishes with 

media. The c-kitpos cells from the enzymatic digestion was 1.1 ± 1.0% of the entire 
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cell population and 1.6 ± 1.4% from explant-derived cells. At P0 the lineage negative 

(Lin−) c-kitpos cells obtained from enzymatically dissociated cells was 41 ± 14% of 

small cells, and GATA4-positive cells (early committed) was 59 ± 14%; the 

corresponding values were 52 ± 12% and 48 ± 12% for explant derived cell 

technique. They showed that cells isolated using both techniques maintained a 

stable phenotype and not reach growth arrest.  When subjected to serum culture, 

human CPCs derived from both techniques, attached rapidly with sustained growth 

to P8 and did not show any signs of growth arrest during this period.  

In addition to explant culture and enzymatic digestion, suspension explant culture 

(SEC) has also been introduced as a new culture methodology (Steele A et al. 

2012).  This paper assessed the SEC technique to isolate CPCs from atrial 

appendages of paediatric patients with end-stage HF. Overall, 25 patients were 

evaluated, with a mean weight of the sample being 1.19g (0.21-10.9g).  The atrial 

appendage sample from humans was suspended in a high volume of media without 

exposing them to enzymes. This suspension of biopsies reduced the fibroblast 

outgrowth that occurs as a result of contact with a substrate (Steele A et al. 2012).  

Cells isolated were shown to be c-kitpos and showed differentiation capabilities to 

cardiac lineages through the expression of flk-1positive, smooth muscle actinpositive, 

troponin-Ipositive, and myosin light chainpositive markers.  

Various groups have successfully isolated CPCs using either method as described 

above. Each technique has its own advantages and disadvantages; however, the 

choice of methodology is largely dictated by the sample size, with a smaller sample 

not being suitable for enzymatic digestions. 
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1.4 Heart Failure and its treatment 

 

The European Society of Cardiology (ESC) defines heart failure (HF) as a clinical 

syndrome with typical symptoms, associated with clinical signs due to structural 

and/or functional cardiac abnormalities that impair the ability of the ventricle to fill or 

eject blood, therefore reducing cardiac output.   

1.4.1 Global incidence of heart failure 

The prevalence of heart failure (HF) is rising due to ageing populations and improved 

survival following advanced therapeutic availabilities. However, the mortality rate 

amongst the HF patients, remain woefully high (Ziaeian B et al. 2016).  This 

epidemic problem contributes to significant morbidity, mortality and contributes to 

climbing healthcare expenditure. It is estimated that there are about 38 million 

people with HF worldwide and 1-2% of the total healthcare expenditure is attributed 

to HF in Europe and North America (Ziaeian B et al. 2016). According to the British 

Heart Foundation, about 1-2 million people are living with HF in the UK alone.  The 

incidence of the HF, along with the prevalence, has been shown to increase with age 

(Bleumink GS et al. 2004, Lloyd-Jones DM et al. 2002). The lifetime risk of 

developing HF amongst both men and women at the age of 40 was estimated to be 

one in five by the Framingham study.  In addition, this study also found one in nine 

men and one in six women were at risk of developing HF over their lifetime without 

myocardial infarction (MI) being the aetiology of their HF. A large prospective cohort 

study involving over twenty thousand men examined the relationship between 

modifiable lifestyle factors and the lifetime risk of heart failure. This study showed the 

lifetime risk of developing HF was around 13.8% at the age of 40 and demonstrated 

that maintaining a healthy lifestyle is associated with a lower lifetime risk of HF 

development (Djoussé L et al. 2009).  

HF can occur in patients with either preserved or a reduced left ventricular ejection 

fraction (HFpEF or HFrEF, respectively).  The PREVEND cohort study assessed the 

incidence between HFpEF and HFrEF over an eleven and a half year period. During 

this time, 4.5% were diagnosed with HF, of which 34% had HFpEF, and 66% had 

HFrEF (Brouwers FP et al. 2013). In addition to this, HFpEF is more common in the 

young black population. The CARDIA study prospectively examined the incidence of 



  INTRODUCTION 

 

43 
 

HF between blacks and whites of both sexes (18 to 30 years of age) over 20 years. 

This study concluded that black people were significantly at higher risk of developing 

HF before the age of 50 when compared to the white population (Bibbins-Domingo K 

et al. 2009). 

Overall survival following the diagnosis of HF remains poor. Once HF is diagnosed, 

the survival rates are 50% and 10% at 5 and 10 years, respectively (Ziaeian B et al. 

2016). In addition, HFpEF has been shown to confer better prognosis compared to 

HFrEF cohorts (8-9 % vs 19% respectively; Bursi F et al. 2006).  Another meta-

analysis of patients with HF found an overall 30% reduction in mortality amongst 

patients with preserved LV compared to reduced LV function (Berry C et al. 2012).

1.4.2 Pathophysiology of heart   failure 

Cardiac output (CO) is the amount of blood pumped by the heart over a given period. 

This is affected by heart rate (HR) and stroke volume (SV (the amount of blood 

ejected by the ventricle per heartbeat, which is approximately 1 cc/kg)) and is usually 

4–8 L/min (Mohrman DE et al. 2010). Furthermore, the competency of the valves, 

ventricular contraction and wall integrity also contribute to CO. In turn, the 

contractility, preload and afterload of the heart affect the SV. These important and 

complex relationships primarily contribute to maintaining good synchronicity and 

cardiac function.  Therefore, the failure of the heart to contract effectively (Systolic 

dysfunction) and abnormal relaxation (diastolic dysfunction) contributes to the 

development of HF. Although it is easier to consider the term systolic and diastolic 

dysfunction to understand the underlying pathophysiology of HF, the two processes 

are very closely related. The diastolic heart failure is also denoted as heart failure 

with preserved ejection fraction (HFpEF), and the systolic heart failure signified as 

heart failure with reduced ejection fraction (HFrEF). There are distinctive features 

such as epidemiologic factors, morphologic differences of the LV, as well as 

differences in the cardiomyocytes and extracellular matrix that defines both HFrEF 

and HFpEF in its entirety (Quiñones MA et al. 2006; Aurigemma GP et al. 2006; 

Drazner MH et al. 2011). 
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1.4.2.1 Normal LV function 

 

In HFpEF, the LVEF is typically normal and usually characterised by abnormal 

diastolic function. Often in this group, the LV undergoes hypertrophy with concentric 

remodelling (Zile MR et al. 2001; Baicu CF et al. 2005) (Figure 1.7).  An injury to the 

myocardium, such as MI can convert HFpEF to HFrEF; otherwise, such translation is 

uncommon (Desai RV et al. 2011 and Hwang SJ et al. 2014).  

The diastolic dysfunction describes the mechanical abnormalities of the ventricle, 

resulting in impaired relaxation and filling in diastole. This occurs irrespective of the 

EF and may or may not contribute to symptoms. Importantly it has been shown that 

diastolic dysfunction is a risk factor for developing HFpEF (Borlaug BA et al. 2013). 

Patient’s heart with HFpEF undergoes considerable structural remodelling affecting 

the cardiomyocytes and the extracellular matrix; therefore contributing to the overall 

different morphological features of both the LV and LA. Thus, altering the 

functionality of the heart and contributing to the symptoms experienced by the 

patient.  In this group, the LV undergoes concentric remodelling associated with 

hypertrophy, and characteristically the end-diastolic volume is normal with an 

increased relative wall thickness with an associated increase in LV mass.  (Quiñones 

MA et al. 2006; Aurigemma GP et al. 2006; Drazner MH et al. 2011; Lam CS et al. 

2007 and Melenovsky V et al. 2007).  

Microscopically, the cardiomyocytes typically have a large diameter with minimal 

change in length, hence the increased wall thickness but little changes to chamber 

volume. Also, increased collagen deposition and fibrillation in the extracellular matrix 

component were seen (Aurigemma GP et al. 2006; Zile MR et al. 2015). The 

interstitial fibrosis is also a recognised a feature but many patients do not 

characteristically have these (Mohammed SF et al. 2015). 

1.4.2.2 Impaired LV function 

 

In the HFrEF (Figure 1.7) group, the EF is impaired with dilatation of cardiac 

chamber, increased end-diastolic volume and eccentric remodelling (Yancy CW et 

al. 2013 and Ponikowski P et al. 2016). However, there is little change in wall 

thickness but can be explained microscopically. In HFrEF the cardiomyocytes are 
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elongated with no changes to the diameter. Hence, while there are no changes to 

wall thickness, but there is an increase in LV volume (Quiñones MA et al. 2006; 

Aurigemma GP et al. 2006; Lam CS et al. 2007 and Melenovsky V et al. 2007). At 

the early stages, there is a breakdown and disruption of the collagen. During the 

later stages, the fibrotic changes along with subsequent scaring, contribute to the 

decreased collagen deposition (Aurigemma GP et al. 2006 and van Heerebeek L et 

al. 2006). 
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Figure 1. 7 The characteristics of HFpEF and HFrEF   
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1.4.3 Current treatment of heart failure 

At present, the management of HF is mainly focused on symptomatic relief and 

limiting disease progression via pharmacology and limited surgical therapies.  These 

strategies do not lead to repair or restoration of healthy cardiac tissue and function 

(Deedwania and Carbajal et al. 2011). For those with terminal HF, the only effective 

treatment option is cardiac replacement therapy in the form of heart transplantation, 

mechanical circulatory support and cell transplantation therapy (Akhmedov et al. 

2012).  Figure 1.8  shows the overall management of HF through stages. Due to the 

destructive nature of the disease, considerable efforts have been placed on research 

from all fronts to combat this. Before the 80s, in the non-pharmacological era, the 

treatment was mostly palliative; with the emphasis placed on bed rest and fluid 

restriction.   However, the first pharmacological therapy was introduced in the mid-

80s in the form of digitalis and diuretics. Also, the first Vasodilator Heart Failure Trial 

(V-Heft) (Cohn et al. 1986) was commenced. This trial showed a reduction in 

mortality when patients were treated with a combination of vasodilators such as 

hydralazine and isosorbide dinitrate; as compared with either placebo or prazosin 

(anti-hypertensive). 

In the 90s, neurohormonal therapeutic agents such as Angiotensin-converting 

enzyme (ACE) inhibitors, beta-blockers, and spironolactone were trialled and 

introduced to the existing pharmacological strategies. The CONSENSUS (Swedberg 

K et al. 1987) and SOLVD-Treatment (Yusuf S et al. 1991) trials reported an overall 

reduction in mortality (up to 40%) with the use of ACE such as enalapril. The 

SOLVD-Prevention trial (Yusuf S et al. 1991) showed that the use of Enalapril in 

asymptomatic patients with impaired EF reduced hospitalisation related to HF.  

Beta-blockers are now a valuable addition to a cocktail of various pharmacological 

drugs, but at the beginning, the therapeutic effectiveness of the beta-blocker was 

questioned amongst patients with reduced ejection fraction and the side effects that 

arise from adrenergic blockade (Chana A et al. 2014). However, the U.S. Carvedilol 

Heart Failure Study (Packer M et al. 1996), and COPERNICUS trial (Packer M 
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2001), both showed conclusive evidence that use of carvedilol contributed to a 

reduction in mortality.  

Mineralocorticoid-receptor antagonist (MRA) such as spironolactone and eplerenone 

are essential drugs used in the management of heart failure. The evidence from both 

RALES trial (Pitt B et al. 1999) and the EMPHASIS-HF trial (Zannad F et al. 2011), 

which assessed the efficacy of spironolactone and eplerenone respectively; showed 

an overall reduction in mortality of 30% when used in combination with an ACE 

inhibitor and a loop diuretic.  

In 200, In addition to this multi-cocktail drug therapy,  cardiac devices were 

introduced and evaluated as an adjunct to the current treatment of HF. Several types 

of devices such as left ventricular assist device (LVAD), the implantable cardioverter-

defibrillator (ICD) and biventricular pacemakers, CRT; have been used, and several 

trials showed a reduction in mortality. The LVAD/BIVADs are mainly used as a 

bridge to transplant and in few patients used as destination therapy (REMATCH 

(Rose EA et al. 2001), COMPANION (Bristow MR et al. 2016), RAFT (Tang ASL et 

al. 2010). In some patients, despite the current treatment modalities, heart transplant 

remains the only option.  
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Figure 1. 8 Overall management of HF through stages. Adapted from NICE 

guidelines   

 

1.4.4 Cellular therapies for the treatment of heart failure 

Cell transplantation therapy is a way to prevent or treat human disease by 

administration of cells that have been selected, multiplied and pharmacologically 

altered outside the body (Preston et al. 2003; Mason and Dunnill et al. 2008).  Once 

successful, cell transplantation therapy has the potential to be administered early 

post-cardiac injury to the myocardium to stimulate sufficient myocardial regeneration 

and prevent the onset of end-stage heart failure.  

The idea that resident cardiac stem cells would be the best cell type to repair a 

myocardial infarction is logical. However, numerous studies focused on identifying 

suitable non-cardiac sources of cells for cardiac repair because of the long-held 
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belief that the mammalian heart is an organ with no intrinsic capacity to regenerate 

after myocardial injury. There have been many promises and challenges of using 

non-cardiac cells for transplantation as a potential therapy for heart diseases (Hare 

and Chaparro et al. 2008; Pallante and Edelberg et al. 2006). Indeed, several studies 

have investigated various cell types; such as skeletal myoblasts, bone marrow 

mononuclear cells, bone marrow-derived hematopoietic stem cells, mesenchymal 

stem cells and cardiac progenitor cells as potential cell types to treat patients post-MI 

and those with chronic HF (Sanganalmath SK 2013, Leong YY et al. 2017). Figure 

1.9 shows the progression of cell therapy trials for HF to date.  

 

 

 

 

 

Figure 1. 9 Progression of cellular-based therapy to date. Adapted from 

Hastings et al. 2015. 
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1.4.4.1 Skeletal Myoblasts 

 

The use of skeletal myoblasts in cardiac regeneration was explored almost 20 years 

ago in animal models post-infarction (Chiu R.C et al. 1995; Yoon P.D et al. 995 and 

Ghostine et al. 2002). In 2003, Menasche et al. performed the first human myoblast 

transplantation in patients with severe HF due to ischemia. In this study, about 870 

million cells were injected into the scar region at the time of coronary artery bypass 

grafting (CABG).  Despite showing functional improvements, the majority of the 

patients developed ventricular tachycardia.  The subsequent multicentre clinical 

study (Magic Trial) had skeletal myoblasts injected (400 or 800 million; n=33 and 

n=34, respectively) in and around the scar site; in 97 patients.  The skeletal 

myoblasts were harvested from the patient’s skeletal muscle, purified and expanded 

before injection.  All patients were fitted with a defibrillator.  The trial showed an 

increased uptake on PET scan with an improvement of left ventricular ejection 

fraction (LVEF) on echocardiogram; however, the trial was terminated due to 

malignant ventricular arrhythmias (Menasche P et al. 2008).  

1.4.4.2 Bone marrow-derived cells (BMDCs) 

 

Most clinical trials have used bone marrow-derived mononuclear cells (BMMNCs). 

These trials have shown BMMNCs to be safe, but their efficacy has been less than 

convincing. In a mouse model, when lineage negative c-kitpos (Lin-c-kitPOS) cells 

obtained from the bone marrow were injected into the peri-infarcted myocardium; 

they were shown to improve contractility, reduce infarct size and form new 

cardiomyocytes. This study reported a 70% reduction in infarct size and showed new 

cardiomyocytes formation in excess of 50%.  Also, the left ventricular (LV) end-

diastolic pressure (LVEDP) was shown to be 36 % lower in Lin-c-kitPOS group 

(Orlic.D. et al. 2001). However, a further study by Murry et al. (2004) showed that 

Linnegc-kitPOS BMDC’s were not capable of transdifferentiating into cardiomyocytes.  

The results from the BMDC clinical trials (Table1.2) where BMDC have been 

transplanted into HF patients have been varied. The trials were randomized, 

placebo-controlled and often multi-centred.   The REPAIR-AMI (Schächinger  v. et al. 

2006) trial was the first randomised, double-blinded study to recruit more than 200 
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patients and give an intracoronary infusion of autologous BMMNCs or placebo. This 

trial demonstrated a significant increase in LVEF compared to the placebo group 

(5.5% vs 3 %; p>0.01) at six months. As with BOOST trial (Meyer G.P et al. 2006 et 

al.), this trial also showed more significant benefit in patients with LVEF <50%. 

However, the five years follow up from these studies has not been that conclusive; 

this is primarily due to variety of study design, patient selection and differences in the 

number of cells, phenotype of cells and mode of cell delivery amongst studies. In 

addition, the BMMNC is primarily made up of early committed cells, and only a 

fraction of these are hematopoietic stem cells (2%), EPCs (4%), and MSCs (0.01%) 

(Dimmeler S et al. 2009). This heterogeneity of cell type, number and the 

subsequent viability may also affect the therapeutic potential of the BMMNCS 

(Nguyen P et al. 2016). The postulated mechanism of their action is that of a 

‘paracrine’ effect on the recipient’s myocardial cells (Ellison et al. 2012).  The 

paracrine effect refers to a mechanism whereby cardiac repair and regeneration is 

stimulated from the factors released from transplanted cells.  These factors act in a 

paracrine fashion to induce neovascularisation, protect cells, improve survival and 

orchestrate regeneration via activation of endogenous cardiac stem/progenitor cells. 

Moreover, clinical trials such as The Late TIME randomised trial (Traverse et al. 

2011) failed to demonstrate improvement in cardiac function or symptoms in patients 

post-myocardial infarction following intracoronary delivery of autologous BMCs. In 

this trial, 150 million cells were infused and compared against the placebo group. 

Between the two groups, there was no significant change in LVEF at six months 

when compared to baseline (48.7% to 49.2% vs 45.3% to 48.8%). However, a recent 

systematic review and meta-analysis (Fisher et al.  2014) evaluated the clinical 

safety and efficacy of autologous adult bone marrow-derived stem cells (BMSC) as a 

potential therapy for chronic IHD and heart failure.  This analysis highlighted 

evidence that BMSC treatment improves LVEF but showed only a small clinical 

benefit in long term performance status and mortality; concluding cell therapy to be 

safe. Importantly this analysis suggested that cell therapy is more beneficial to 

patients with IHD and HF than those with acute MI (Fisher et al.  2014).    
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Table 1. 2  BMDC based therapy in acute myocardial infarction  (Adapted from Nguyen P et al 2016). 

 

Trial Year 
Patholog

y 

Design of the 

Trial 

No of 

Pt’s 

Types Cells 

Used 

Cell 

Harve

st Site 

Mode of 

Delivery 

Follow up 

Period months 
LVEF 

TOPCA

RE-AMI 
2002 

Acute MI 

s/p PCI 

non-randomized, 

matched control 
31 

autologous 

BMMNCs/PBSCs 

BM 

iliac 

crest 

IC 4 
Improved from 51.6 ± 

9.6% to 60.1 ± 8.6% 

BOOST 2004 
STEMI s/p 

PCI 

randomized, 

open-label, 

single-center 

60 
autologous 

BMMNCs 

BM 

iliac 

crest 

IC 18 No change 

LEUVE

N-AMI 
2006 

STEMI s/p 

PCI, LV 

dysfunctio

n 

Randomized, 

DB, PC 
67 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 4 No change 
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Trial Year 
Patholog

y 

Design of the 

Trial 

No of 

Pt’s 

Types Cells 

Used 

Cell 

Harve

st Site 

Mode of 

Delivery 

Follow up 

Period months 
LVEF 

REPAIR

-AMI 
2006 

Acute MI 

s/p PCI, 

LVEF< 

45% 

Randomized, 

DB, PC 
204 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 4 
Increase in EF by 2.5% 

above baseline 

ASTAMI 2006 
Ant 

STEMI 

randomized, 

open-label, 

single-center 

97 
autologous 

BMMNCs 

BM 

iliac 

crest 

IC 6 No change 

FINCEL

L 
2008 

STEMI s/p 

thromboly

sis + PCI 

Randomized, 

DB, PC 
80 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 6 
Increase in EF by 5% 

above baseline 

BONAM

I 
2011 

STEMI s/p 

PCI, 

LVEF 

<45% 

Randomized, 

DB, PC 
101 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 3 No change 
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Trial Year 
Patholog

y 

Design of the 

Trial 

No of 

Pt’s 

Types Cells 

Used 

Cell 

Harve

st Site 

Mode of 

Delivery 

Follow up 

Period months 
LVEF 

LATE-

TIME 
2011 

Acute MI 

s/p PCI, 

LVEF< 

45% 

Randomized, 

DB, PC 
87 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 6 No change 

TIME 2012 

anterior 

STEMI s/p 

PCI, LV 

dysfunctio

n 

Randomized, 

DB, PC 
120 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 12 No change 

SWISS-

AMI 
2013 

Acute MI 

s/p PCI 

randomized, 3-

arm trial, DB, PC 
192 

autologous 

BMMNCs 

BM 

iliac 

crest 

IC 12 No change 
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Trial Year 
Patholog

y 

Design of the 

Trial 

No of 

Pt’s 

Types Cells 

Used 

Cell 

Harve

st Site 

Mode of 

Delivery 

Follow up 

Period months 
LVEF 

TECAM 2015 
STEMI s/p 

PCI 

randomized, 

open-label, 

SB,PC 

120 

autologous 

BMMNCs, G-

CSFs, both 

Autolo

gous 
IC 12 No change 

MI: myocardial infarction, SB: single-blinded, DB: double-blinded, PC: placebo-controlled, BM: bone marrow, BMMNCs: bone 

marrow derived mononuclear cells, MSCs: mesenchymal stem cells, ADSCs: adipose-derived stem cells, CDCs: cardiosphere-

derived cells, IC: intracoronary, TEN: trans-endocardial, SM: skeletal myoblasts, TEP: transepicardial, AR: arrhythmogenicity 
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1.4.4.3 Mesenchymal Stem Cells (MSCs) and Endothelial Progenitor Cells 

(EPCs) 

Both Mesenchymal Stem Cells (MSCs) and Endothelial Progenitor Cells (EPCs) are 

derived from the purification of bone marrow aspirate.  

The human mesenchymal stem cells (hMSCs) and BMNCs populations were 

compared in the TAC-HFT trial for HF.  This randomised controlled trial studied 65 

patients with HF and compared hMSCs vs placebo; BMNCs vs placebo for a year. 

The study found these cells to be safe and showed some evidence towards reverse 

remodelling (a reduction in infarct size (-18.9%; 95% CI, -30.4 to -7.4, P = .004)) 

within the hMSCs group but not in BMNCs or placebo group.  In addition to bone 

marrow, adipose tissue has also been used as a source for MSCs. The adipose 

tissue-derived MSCs have been implicated in several clinical trials (Table 1.2), 

including the APOLLO trial (Houtgraaf HJ et al. 2012). This randomised control trial 

assessed the relevance of adipose tissue-derived MSCs in patients with ST-

elevation MI.  In this study, 17 million MSCs were infused via the coronaries. At six 

months, they showed MSCs to be safe in a clinical setting and showed an 

improvement in cardiac function, perfusion and around 50% reduction in scar size 

(Houtgraaf HJ et al. 2012).   

The role of EPCs was assessed by several trials (Table 1.3); including ACT-34-CMI 

trial (Losordo DW et al. 2011). In this randomised, double-blinded study; patients 

were given 1 of 2 doses (1×105 or 5×105 cells/kg of EPCs) of EPCs.  A significant 

reduction in the frequency of angina and increased exercise tolerance was observed 

in the low dose group, compared to the placebo at both six and twelve-month 

intervals.    
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Table 1.3  Cellular based therapy in Chronic Myocardial Infarction (Adapted from Nguyen P et al 2016). 

 

 

Trial Year Pathology 

Design 

of the 

Trial 

No 

of 

Pt’s 

Types Cells 

Used 

Cell 

Harvest 

Site 

Mode of 

Delivery 

Follow up 

Period 

months 

LVEF 

Losordo 

et al. 
2007 

intractable 

angina, 

ischemia 

Rando

mized, 

DB, PC 

24 

peripheral 

CD34+ after 

G-CSF × 5d 

peripheral 

blood 
TE 6 n/a 

ACT34-

CMI 
2011 

refractory 

angina, 

ischemia 

Rando

mized, 

DB, PC 

167 

peripheral 

CD34+ after 

G-CSF × 5d 

peripheral 

blood 
TE 3/6 n/a 

 

 

MI: myocardial infarction, SB: single-blinded, DB: double-blinded, PC: placebo-controlled, BM: bone marrow, BMMNCs: bone 

marrow-derived mononuclear cells, MSCs: mesenchymal stem cells, ADSCs: adipose-derived stem cells, CDCs: cardiosphere-

derived cells, IC: intracoronary, TEN: trans-endocardial, SM: skeletal myoblasts, TEP: transepicardial, AR: arrhythmogenicity 
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1.4.4.4 Cardiac Stem/Progenitor Cells (CPCs or CSCs) 

  

More recently, cardiac-derived stem/progenitor cells (CSCs or CPCs) have been 

used in clinical trials. SCIPIO a Phase I/II clinical trial (Bolli R et al. 2011) isolated c-

kit+ CPCs from the right atrial appendage obtained from 16 patients with HF induced 

by ischemia, undergoing coronary artery bypass surgery and propagated them ex 

vivo (2 million cells per patient). Three to five months following surgery, 500,000 to 1 

million CPCs were injected via intracoronary into infarcted areas, and the control was 

not given any treatment. The initial results after four months showed a significant 

improvement in LVEF (from 30.3% at baseline to 38.5%) when compared to the 

control group (30·1% [at four months after CABG). In addition, at one year there was 

an increase in LVEF by 12.3 EF units compared to baseline. The study also 

demonstrated a significant reduction in infarct size at four months and 12 months (by 

7·8 g (24%) and 9·8 g (30%) respectively).  

In addition to this a further phase I/II clinical trial, the CADUCEUS trial recruited 25 

patients between 2-4 weeks following MI with LVEF between 25% to 45%. Patients 

had intracoronary stents to treat the blocked arteries. Patient’s assigned to 

cardiosphere-derived cells (CDC) received autologous CDCs (12.5-25 million cells) 

generated from endomyocardial biopsy, 1.5-3 months post-infarct and cells were 

infused into coronary artery related to the infarct area.   Over the 12 months, there 

was a significant reduction in scar size in CDC treated group (−11.1 ± 4.6%, p < 

0.001 within-group, p = 0.004 between groups) and the infarcted hypokinetic zones 

showed recovery and improvement. However, the trial failed to show a significant 

change in LVEF in CDC-treated patients (5.4 ± 10.6%) vs control patients (5.8 ± 

3.3%), an improvement NYHA functional class or quality of life. Of note, 

cardiosphere-derived cells are a mixed, heterogeneous population of cells and only 

~1% has the characteristics of being defined as cardiac progenitor cells (Makkar RR 

et al. 2012) (Table1.5).  
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Table 1. 4  Cellular based therapy using MSCs and EPCs (Adapted from Nguyen P et al 2016). 

Trial Year Pathology 
Design of the 

Trial 
No of Pt’s Types Cells Used 

Cell Harvest 

Site 

Mode of 

Delivery 

Follow up 

Period 

months 

LVEF 

POSEIDON 2012 ICM, LVEF <40 

randomized, 

NO placebo 

controlled 

30 
Autologous and 

Allogenic hMSCs
*
 

EMBX TEN 30d/12 No change 

C-CURE 2013 
ICM with LVEF 

<40%, NYHA> =2 

randomized, 

DB, PC 
36 

Autologous 

Cardiopoietic 

hMSCs
*
 

BM iliac crest TEN 6 

Increase in EF 

by 7% above 

baseline   

PRECISE 2014 
ICM with LVEF 

<45%, NYHA> =2 

randomized, 

DB, PC 
27 Autologous ADRCs liposuction TEN 36 No change 

TAC-HFT 2014 ICM, LVEF <50% 
randomized, 

DB, PC 
59 

Autologous 

BMMNC and MSCs 
BM iliac crest TEN 1 No change 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349705/table/T2/#TFN3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349705/table/T2/#TFN3
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Table 1.5 Cellular based therapy using cardiac progenitor cells (Adapted from  

Nguyen P et al. 2016). 

Trial Year Pathology 

Design 

of the 

Trial 

No of 

Pt’s 

Types 

Cells 

Used 

Cell 

Harvest 

Site 

Mode of 

Delivery 

Follow up 

Period 

months 

LVEF 

CADUCEUS 2012 
AMI s/p PCI 
LVEF  <45% 

randomiz
ed 

25 
Autologo
us CDCs 

Endomyo
cardial  

IC 6 No change 
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The vast amount of clinical studies has concentrated on BMDCs as the source for 

cell-based therapy. Still, it is becoming more evident from current literature that 

regeneration of functional myocardium requires a high level of coordination, cellular 

interaction between various cell types and extracellular matrix. Co-administration and 

transplantation of more than one cell have the potential to enhance myocardial 

regeneration than the use of single-cell line (Leong YY et al. 2017).  

The promise of cell therapy remains a real possibility. The ongoing quest to find the 

best cell type and the necessary conditions to stimulate sufficient myocardial 

regeneration and prevent the onset of end-stage heart failure remains a significant 

challenge. 

 

1.5 Alterations to CPC activity and potency in the aged and diseased human 

heart 

 

The process of ageing imposes a physiological challenge to many organs, including 

the heart leading to the pathogenesis of HF (Dutta et al. 2012; North & Sinclair, 

2012). The effects attributed to ageing is evident at both macroscopic and 

microscopic level. These changes alter the homeostatic function and response to 

injury within the heart (Oh J et al. 2014), therefore, increasing the risk of developing 

cardiovascular diseases (Lakatta EG. et al. 2003; North & Sinclair, 2012). The 

cellular changes that follow the above process contribute to the alterations of cardiac 

physiology leading to early diastolic filling, reduced ventricular filling with impaired 

cardiac output and subsequent development of HF (Lakatta EG. et al. 2003). Such 

significant physiological changes lead to myocardial structural changes, including 

atrial dilatations and ventricular hypertrophy.  Vascular changes, such as arterial 

thickening and stiffness, also occur with ageing (Kusumbe AP. et al. 2016). These 

changes alter the endothelial structure leading to dysfunction and cause an 

abnormal response to vascular injury.  

Alterations to CPC activity and potency are associated with ageing (Figure 1.10A), 

cardiovascular diseases (such as ischemic injury, cardiac hypertrophy and heart 

failure), metabolic disorders and both genetic and environmental factors (Chimenti C 
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et al. 2003; Dimmeler et al. 2008; Beltrami et al. 2011; Cheung T.H et al. 2013).  

Although the number of CPCs is increased in response to the above conditions; its 

potency remains questionable.  This decline in CPC function is due to DNA damage, 

telomere shortening and external factors; which ultimately leads to impaired cardiac 

homeostasis (Cesselli  D et al. 2017; Lewis-McDougall F et al. 2019; Cianflone E et 

al. 2019).  The above intrinsic and extrinsic components alter cellular activities and 

induce senescence. The interaction of both mechanisms works synergistically and is 

orchestrated through a paracrine fashion (Beltrami AP et al. 2011). Figure 1.10B. 

 

 

Figure 1. 10A Mechanisms associated with stem/progenitor cells senescence  

(Cianflone E et al. 2019)
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Figure 1.10B Characteristic features between young and aged cardiac 

stem/progenitor cells (adapted from Hariharan and Susman 2016).
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Telomerase activity and length have been shown as key components in regulating 

stem cells (Sahin E et al. 2010; Cianflone et al. 2019). Telomerase is a reverse 

transcriptase enzyme that elongates the telomere, using its RNA molecules as 

templates (Blackburn EH et al. 2000). The truncation of telomeres beyond a critical 

length induces cells into senescence, therefore causing growth arrest at G1 phase 

(Cheung T.H et al. 2013).  Once activated, this process of senescence appears to be 

a vicious cycle (Figure 1.11). The subsequent build-up of senescent and 

dysfunctional cardiomyocytes and CPCs leads to a decline in functional capacity to 

maintain cardiac homeostasis.  The CPCs typically display DNA damage, shortened 

telomeres with reduced activity, high expression of cyclin-dependent kinase 

inhibitors (CDKIs), p16INK4a and p21Cip1 (Sharpless & DePinho, 2007; Chimenti et 

al. 2003; Torella et al. 2004; Urbanek et al. 2005; Kajstura et al. 2010; Cesselli et al. 

2011; Baker et al. 2011). In a study (Cesselli et al. 2011); which evaluated the impact 

of ageing and CHF on CPCs, showed telomere shortening, reduction in CPCs 

telomerase activity, increased frequency of telomere-induced dysfunction foci within 

CPCs with higher expression of p16INK4A and p21CIP1. This study assessed 18 

control patients and 23 explanted CHF hearts. The disease was shown to impair the 

equilibrium between the cardiomyocytes pool and non-senescent CPCS, therefore 

enhancing myopathy. The capacity of the CPC to clone, proliferate and migrate was 

altered along with gene expression.  The changes to the gene expression were 

associated with activation of the senescence-associated secretory phenotype 

(SASP), such as IL-6 and IGFBP7. 
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Figure 1. 11 The cascade of intrinsic events that leads to the vicious 

senescence cycle (adapted from Cesselli D 2017). 
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The properties and numbers of CPCs isolated have been compared between 

different age groups and in diseased hearts. Generally, the neonatal human heart 

tends to have more c-kitpos CPCs, and this number declines by a factor of three 

between the ages 2-13 (Mishra R et al. 2011). Also, the ability of the cells to 

proliferate is highest amongst cells isolated from foetal cardiac tissues (Cesselli D et 

al. 2011) and declined with increasing age. Both neonatal and young CPCs showed 

similar ability in differentiating into all three lineages (Mishra R et al. 2011).  

Furthermore, the effects of nucleostemin (NS) have been evaluated in myocardial 

ageing (Hariharan N et al. 2015).  This study compared the CPCs isolated from the 

human foetal heart (FhCPC), adult human diseased heart (AhCPC), as well as from 

young (YCPC) and old mice (OCPC) for features of senescence and NS expression. 

They used a knock out NS heterozygous mouse model (NS+/-) to assess the 

contribution of NS. The expression of NS was low, with a reduction in proliferation 

and telomere length in the AhCPC group compared to the FhCPC group. The 

features of CPCs from AhCPC and OCPC were comparable and of similar 

characteristics to NS silenced CPCs. These cells were typically flat, multinucleated, 

slower S-phase, reduced expression of stemness markers with up-regulated p53 and 

p16. The resultant senescent CPCs following NS silencing was mediate partly by 

p53. The NS induction stabilised the c-Myc pathway via Pim-1 kinase.  

A study by Mohsin et al. (2013) investigated hCPC senescence characteristics 

through ex vivo modification of Pim-1.  The biopsies were obtained from patients 

undergoing LVAD implantation, and c-kitpos  hCPCs were isolated. hCPCs with a 

green fluorescent protein (hCPC-eGFP) and hCPC-Pim1 (transduced with a 

lentivirus for eGFP and Pim-1). They showed that hCPCs isolated from multiple 

patients with heart failure had characteristic differences in growth rate, telomere 

length and senescence expression. Genetically modified Pim-1 boosted the hCPCs 

with advanced biological age, increasing their ability to proliferate, increase telomere 

length and reduce senescence capabilities.  

Both animal and human studies have shown CPCs to increase by at least two-fold 

amongst aged and diseased heart.  However, about 70 % of CPCs in aged and 

diseased hearts is deemed senescent and positive for p16Ink4a, (Torella D et al. 2004; 

Beltrami AP et al. 2011; Cianflone et al. 2019). Work from our lab has shown, 
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irrespective of age, gender or disease the number of CPCs isolated from human 

myocardial sample to be comparable. However, the isolated CPCs expressed 

increased markers for senescence (p16, Senescence-Associated-β-gal) with an 

associated reduction in multipotent and proliferative markers (Lewis et al. 2016).    

These aged-senescent CPCs were characteristically incompetent with reduced 

clonal efficiency and differentiation capacity.  When the CPCs isolated for aged 

hearts were grown in Wnt3A enriched media or transfected with lentivirus inducing 

Bmi-1 expression, the senescent-induced proliferative impairment in CPCs was 

corrected. Regardless of this, clonally derived CPCs from a single CPCs of young or 

old hearts, showed similar differentiation capabilities and gene expression. These 

findings demonstrate that CPC ageing is a stochastic process (Ellison GM. et al. 

2012; Cianflone E et al. 2019).  

CPCs with a normal functional capacity which expresses telomerase, cycling protein, 

Ki67 along with reduced senescent markers have been identified within the ageing 

heart (Urbenek et al. 2003; Dawn et al. 2005). These cycling competent CPCs can 

migrate to the damaged area of the myocardium and induce regeneration and 

cardiac function (Gonzalez et al. 2008 Lewis-McDougall F et al. 2019; Cianflone E et 

al. .2019). 

  

 The evidence accumulated thus far shows a complex interaction of various factors 

outlined above at the cellular level, which alter the CPC activity directly and 

indirectly; therefore, altering their potency. This complex interaction is seen in both 

aged and diseased human hearts. In this situation, the increase in CPCs that is 

observed is not sufficient to replace the loss of cardiomyocytes. It is possible through 

an understanding of the complex interaction of factors described above; novel 

strategies may be explored to reduce, stop or reverses cellular senescence and 

ageing. 
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1.6 Aims & Hypotheses 

 

Our lab group has specified the CPC population to be Sca‐1pos/c‐

kitpos/CD31neg/CD45neg/Tryptaseneg (Ellison et al., 2013; Vicinanza et al., 2017) 

distinguishing them from cardiac c‐kitpos CD31pos and CD45pos/Tryptasepos 

(endothelial and mast cells respectively). Such a distinction should be established to 

characterise the CPCs appropriately.  

The aim is to obtain a better understanding of the chamber-specific location, 

distribution, incidence and biology of the human CPCs as defined by our lab group, 

to design better protocols for the regeneration of functional contractile mass in 

human post-myocardial infarction, either by autologous human CPC transplantation 

and/or through the activation of these regenerative cells in situ.  

The first specific aim is to identify, quantify and characterise eCSCs within human 

myocardial samples taken from all four cardiac chambers. It is hypothesised that 

there will be more CPCs in the atria, compared to ventricles.   

The second specific aim is to assess whether human CPCs isolated from the 

different cardiac chambers of patients with normal LV function behave in the same 

way, exhibiting similar growth and multipotency in vitro compared to human CPCs 

isolated from patients with the disease. It is hypothesised that human CPCs isolated 

from patients with the disease have decreased proliferative capacity, clonogenicity, 

and multipotency potential compared to human CPCs isolated from patients with 

normal LV function. In addition, there will be no differences in growth and 

multipotency of the human CPCs isolated from the four cardiac chambers.
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2. METHODS 

 

2.1 Patients 

This study was ethically approved by Imperial College NHS trust with NEC approval 

(13/LO/0457). Patients suitable for the study were identified and gave full informed 

consent for all four-chamber (RV, LV, RA and LA) biopsies to be obtained.  Patient 

age, gender and demographics were also recorded (Table 2.1). 

Biopsies were obtained from four chambers (Figure 2.1) during an elective cardiac 

surgical procedure in patients with normal (EF>50; n=5) and impaired left ventricular 

(LV) function (EF<49; n=5). Samples were collected for immunohistochemical 

analysis and cardiac stem/ progenitor cell isolation.  
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Table 2. 1 Patient demographics of whom the biopsies were taken from: 
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Figure 2. 1A   Myocardial Biopsy sampling. Using a Tru-Cut needle, a 
full-thickness biopsy was taken from all four chambers of the human 
heart.  Each biopsy consisted of all three layers; Endocardium, 
Myocardium and Epicardium.   

 

Figure 2. 21B   Each biopsy consisted of all three layers; 
Endocardium (A), Myocardium and Epicardium (B).   
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2.2 Tissue collection for immunohistochemical analysis 

Samples were fixed in formalin for 24 hours and then processed in a 

tissue processor (Leica, TO 1020) on the following cycle: 

1. Formalin – 1 hour 

2. Formalin – 1 hour 

3. Alcohol 70% – 1 hour 30 minutes 

4. Alcohol 80% – 1 hour 30 minutes 

5. Alcohol 96% – 1 hour 30 minutes 

6. Alcohol 100% – 1 hour 

7. Alcohol 100% – 1 hour 

8. Alcohol 100% – 1 hour 

9. Xylene – 1 hour 30 minutes 

10. Xylene – 1 hour 30 minutes 

11. Paraffin – 2 hours 

12. Paraffin – 2 hours 

Paraffin wax blocks containing the samples were obtained using an 

embedding station (Leica, EG 1160A). A microtome was used to cut 5μm 

tissue sections (Leica RM 2235) mounted on to poly-lysine coated 

microscope slides (Sigma-Aldrich, cat. no. P0425-72). Microtome 

sectioning was across the myocardium in the longitudinal plane, with 

epicardium to endocardium right to left. 

2.3 Immunohistochemistry on cardiac chamber cross-sections  

Immunohistochemistry (IHC) is a great tool to visualise and assess cellular 

architecture using microscopy. IHC allows recognition of antigens in cells 

of tissues by exploiting the principle of antibodies to antigens binding 

specificity using primary (target antigen) and secondary (fluorochrome) 

antibodies (Figure 2.2). 
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Figure 2. 32 Schematic to show antibody binding and 

immunofluorescence on cell/tissue proteins. 

To prepare for this process, deparaffinisation and rehydration of the 

sections were achieved by placing slides in the oven at 70oC for 30 

minutes to melt the wax, followed by further washes in the following: 

1. Xylene – 2 x 5 minutes 

2. 96% ethanol – 1 x 4 minutes, 1 x 3 minutes 

3. 90% ethanol – 3 minutes 

4. 80% ethanol – 3 minutes 

5. H20 – 4 minutes 

Warm citric acid buffer (0.35g/L citric acid monohydrate, Sigma, 2.4g/L 

Citric acid trisodium, Sigma; pH6), heated at full power for 10 minutes in a 

microwave was used to achieve antigen retrieval.  

Slides were allowed to cool to room temperature (RT) for 30-45 minutes 

then washed with distilled water for 1 minute, followed by further multiple 

washes in PBS (Sigma 5 x 2-minute washes). 

ImmEdge™ Pen (Vector) was used to create a hydrophobic barrier around 

each tissue section before blocking with 10% donkey serum (Sigma) in 

PBS for 30 minutes at RT in a humidified chamber.  After discarding the 
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donkey serum, the primary antibody was applied, followed by the 

secondary antibody. In between each antibody incubation and after the 

secondary antibody incubation, 5 x 2 minutes washes with PBS were 

performed. Table 2.2 lists the primary and secondary antibodies used, the 

dilution and incubation times.  

DNA binding, 4, 6-diamidino-2-phenylindole (DAPI) dye (1:1000, Sigma) 

was applied for 15 minutes at RT, followed by multiple PBS washes (6 x 2 

minutes) to counterstain the nuclei before mounting in Vectashield™ 

mounting medium (Vector laboratories).   
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Table 2. 2 Antibodies used on paraffin embedded tissue sections. 

Primary 

Antibody 

Antigen  Raised 

In  

Location Incubation 

period 

Temperature Dilutio

n 

Secondary 

antibody 

Incubation 

period 

Temperatur

e 

Dilutio

n 

c-kit 

DAKO 

(A4502) 

CD117, 

tyrosine 

kinase 

receptor 

Rabbit Surface 

receptor 

Overnight 4°C 1/50 Donkey anti-

rabbit 488 

Alexa 

(Stratech) 

One hour 37°C 1/100 

MDR 1 

Biorbyt 

(Orb18237) 

Human 

ABCB1 / P 

Glycoprotei

n 

Mouse Surface 

receptor 

One hour 37°C 1/50 Donkey anti-

mouse 594 

(Stratech) 

One hour 37°C 1/100 

Tryptase 

Abcam 

(ab194854) 

Mast cells goat Cell 

Membran

e 

One hour 37°C 1/50 goat anti-

mouse 594 

(Invitrogen) 

One hour 37°C 1/100 

α-sarc 

Sigma-

Aldrich 

(A2127) 

Sarcomeric 

actin 

mouse cytoplasm One hour 37°C 1/50 Dylight 594 

Donkey anti-

Mouse 

IgM(Stratech) 

One hour 37°C 1/100 
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2.4 Immunohistochemistry Quantification 

Cardiac sections from all four chambers were stained to identify cardiac 

progenitor cells and mast cells as phenotyped by our lab group, with the 

following characteristics:  

c-kit positive, MDR-1 positive, Tryptase negative (c-kitpos/MDR-

1pos/Tryptaseneg)- cardiac progenitor cells (CPCs) 

c-kit positive, MDR-1 positive, Tryptase positive (c-kitpos/MDR1pos/Tryppos)- 

mast cells. 

All quantification was conducted at x 60 magnification on a confocal 

microscope (Zeiss, LSM 710).  

c-kitpos/MDR-1pos and Tryptasepos, mast cells and c-kitpos/MDR-1pos   and  

Tryptase neg CPCs cells were identified and counted across the entire 

section.  The area of the cardiac section was measured using ImageJ. The 

number of cells was expressed per area (mm2).   

  

2.5 Human Cardiac small Cell Isolation 

 

2.5.1 Enzymatic Digestion Technique 

 

For larger samples (>100 mg) enzymatic digestion technique was used to 

dissociate the tissue. First, samples were transferred into a bacteriological 

petri dish and cleared of fat/connective, before being weighed. Following 

washes with PBS  (2-3 times), 3ml DMEM (Invitrogen) was added and the 

sample minced with a surgical blade into 0.5-1mm3 fragments. The 

minced tissue was incubated at 37oC in a conical flask containing 10ml of 

dissociation media (Table 2.3) and agitated using a magnetic stirrer for 5 

minutes.  After the 5-minute dissociation, the minced tissue solution was 

gently pipetted with a transfer pipette to dissociate the tissue further. The 

solution was filtered through a 100µm cell strainer into a 50ml centrifuge 

tube. The tissue fragments collected on the strainer were transferred back 
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into the conical flask with fresh 5ml of dissociation media for another cycle 

of digestion. The strainer was washed through with an equal amount of 

quenching medium (Table 2.3) into the 50ml tube, which was left on ice 

until the whole process was complete. The cycles of dissociation were 

repeated (7-9 times) until all the tissue fragments had disappeared and/or 

became pale in colour. All 50ml tubes are centrifuged at 400g, brake 7, for 

7 minutes at room temperature. The supernatant was then discarded, and 

the pellet was mixed with incubation media.  

To remove the cellular debris, the incubation media with the pellet was 

suspended with 8 ml of Optiprep/DMEM mixture (with a density of 1.09 

g/ml) and centrifuged at 800g for 15 min at room temperature. The top 

layer was discarded, and the pellet was resuspended in incubation media 

and proceeded to CPC isolation (Figure 2.3). 
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Table 2. 3   Media composition used for CPC isolation  

Media Formulations 

Quenching 

Medium 

DMEM (Invitrogen, 31885-023), FBS (Life Technologies), 

Fungizone (Invitrogen, 15290-018) (1% (vol/vol) , 

Gentamicin  (Sigma-Aldrich, G1397) (1% (vol/vol), 1 % 

Penicillin/Streptomycin (Invitrogen, 15140-122)   

Incubation 

Medium 

DPBS (-Ca, -Mg) (Invitrogen, cat. no. 14190-136), BSA  

(5mg/ml), EDTA (2mM), Fungizone (Invitrogen, 15290-

018) (0.1% (vol/vol), Gentamicin (Sigma-Aldrich, 

G1397)(0.1% (vol/vol) , 1 % Penicillin/Streptomycin 

(Invitrogen, 15140-122) (1% (vol/vol) 

Dissociation 

Media 

Collagenase II (Worthington), DMEM (Invitrogen, 31885-

023)   final concentration of 250 U/ml               

Human CSC 

Growth 

Media 

DMEM-F12-HAMS ( Sigma-Aldrich D8437) , Neurobasal 

medium (500 ml) (Invitrogen, 10888-022),   ITS (0.1% 

(vol/vol)) ( Invitrogen 51500-056), Glutamax (Sigma-

Aldrich, G7029), Fungizone (Invitrogen, 15290-018)(0.1% 

(vol/vol)), Gentamicin (Sigma-Aldrich, G1397)(0.1% 

(vol/vol)), Penicillin/Streptomycin (1% (vol/vol)) (Invitrogen, 

15140-122) ESQ-FBS ( Invitrogen, 10439-024), B27 

supplement (2% (vol/vol)) (Invitrogen, 17504-044), N2 

supplement (1% (vol/vol)) (Invitrogen, 17502-048),   

Human EGF  (20 ng/ml) (Peprotech), Human (10 ng/ml) 

bFGF (Peprotech) , Human LIF (10 ng/ml)  (Millipore, cat. 

no. LIF2010).         

Differentiation 

Media 

α-MEM with FCS (final concentration of 2%  (vol/vol)) 

(Invitrogen), dexamethasone (1 µM),  penicillin-

streptomycin (1% (vol/vol)(Invitrogen, 15140-122)), 

gentamicin (0.1% (vol/vol)) (Invitrogen, 15140-122) and 

Fungizone (0.1% (vol/vol)(Invitrogen, 15140-122). 
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Figure 2. 43 Isolation of CD45
-ve

, CD31
-ve

 and c-kit
+ve

 (green) CPCs using enzymatic and explant techniques. 

Stained by IHC for c-kit (green), CD45 (red) and DAPI (blue). 
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2.5.2 Explant culture technique 

Biopsies from all four chambers of the human myocardium were 

transferred into a bacteriological petri dish and washed with PBS, before 

being minced with a surgical blade into 0.5-1mm3 fragments. Fragments 

were plated on fibronectin (0.01units/ml of Hanks salt solution) coated six-

well plates with 2ml of growth media (Table 2.2).  Cultures were incubated 

at 37°C hypoxic incubator (Humidified 37 °C, 5% CO2 sterile incubator 

(HealForce HF90)) until there was a confluent layer of adherent cells 

outgrowing from each tissue fragment. Then the cells were trypsinised and 

re-plated in a T25 flask to reach confluence before CPC isolation (Figure 

2.3).  

2.5.3 CPC Isolation following either Enzymatic digestion or Explant 

culture of samples  

The small cell suspension was spun at 400g for 10 minutes, and the pellet 

obtained was then resuspended in the appropriate amount of incubation 

media (Table 2.2). The standard protocol (Miltenyi) was used to sort for 

CPCs using Magnetic Activated Cell Sorting (MACS)(Figure 2.3). To 

deplete CD45pos cells, the cardiac cell pellet was resuspended in 80µl 

incubation media before adding 20µl of CD45 microbeads (Miltenyi, 120-

000-250). This was then incubated at 4°C for 15 minutes on a rocker. The 

cell suspension was washed with 1ml of incubation media and centrifuged 

at 300g for 5 minutes at 4 °C. After aspiration of the media, the labelled 

pellet was resuspended in 500µl of incubation media. At this stage the MS 

magnetic sorting column was set up with a 30µm pre-separation filter fitted 

above the column and the MS column primed with 500µl of incubation 

media. Then the labelled cell suspension was run through the column.  

Then two washes with 500µl of incubation media was performed to rinse 

through all the unbound cells. The unlabelled CD45negative cell fraction was 

collected in a 15ml falcon tube, and the positively-labelled cells remained 

within the MS column was discarded. To obtain c-kitpos cells, the collected 

unlabelled CD45negative cell suspension was centrifuged at 300g for 5 
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minutes at 4 °C to obtain a cell pellet. The pellet was then resuspended in 

80µl of incubation media and 20µl human CD117 microbeads (Miltenyi, 

130-091-332). This was then incubated at 4°C for 15 min on rocker. The 

cell suspension was washed with 1ml of incubation media and centrifuged 

at 300g for 5 minutes at 4 °C. After aspiration of the media, the labelled 

pellet was resuspended in 500µl of incubation media. The MS magnetic 

sorting column was set up again with a 30µm pre-separation filter fitted 

above the column primed with 500µl of incubation media. Then the 

labelled cell suspension was run through the column.  Then two washes 

with 500µl of incubation media was performed to rinse through all the 

unbound cells. This time the unlabelled c-kitneg cell fraction was collected 

and discarded. To retrieve the c-kitpos labelled cells within the MS column, 

the column was removed from the magnetic stand carefully and placed 

into a 10ml falcon tube. 500µl incubation media was used to plunge the 

column twice and the c-kitpositive  labelled cells were obtained. The c-

kitpositive CD45negative fraction was then centrifuged at 300g for 5 mins at 

4°C. Following aspiration of the media, the pellet was resuspended in 

growth media and plated on T25 coated flask with human growth media 

for proliferation of CPCs. 

2.6 Cell culture  

2.6.1 Purification of Human Cardiac Stem / Progenitor Cells 

Isolated c-kitpos and CD45neg cells were plated on a non-coated flask for 20 

minutes with growth media and incubated at 37°C in 5% CO2. This step 

was employed to remove contaminating fibroblasts which stick to the 

plastic within 20 minutes.  

After 20 minutes, the supernatant from the flask, containing the non-

adhered cells was collected and plated on  to CELLstart™ CTS™ I 

(Gibco) coated flasks in growth media (Table 2.2). The cells were 

incubated at 37°C in 5% CO2 and passaged when reached   ~80% 

confluence; approximately after 6-8 days. Cells were characterised for the 

properties of stem/progenitor cells (see below).  
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2.7 Immunocytochemistry of c-kitpos and CD45neg 

Using a Cytospin 4 centrifuge and Shandon EZ double cytofunnels 

(Thermo Scientific), 200ul of 50,000 cells/ml were spun onto poly-L-sine 

coated slides (Thermo Scientific) and fixed using Shandon cellfix (Thermo 

Scientific).  

The slides were immersed in 95% ethanol for 15 minutes to remove the 

fixative followed by 5 x 2 minutes washes with PBS. The slides were then 

permeabilised using 0.1% triton-x for 10 minutes at RT to stain for nuclear 

proteins; followed by 5 x 2 minutes washes with 0.1% Tween PBS. After 

blocking with 10% donkey serum in 0.1% Tween PBS for 30 minutes at 

RT, the primary antibody was applied. Then slides were washed for 5 x 2 

minutes in Tween PBS. Following which the secondary antibody was 

applied, followed by 5 x 2 minutes in Tween PBS washes.  Table 2.4 

contains a list of antibodies used. DAPI was used to counterstain the 

nuclei for 15 minutes at RT. A final wash with PBS for 6 x 2 minutes was 

carried out before mounting with Vectashield™ (Vector laboratories). 

The number of positive cells/nuclei was quantified as a percentage of total 

nuclei at x 40 magnification using a confocal microscope. 
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Table 2. 4 Antibodies used in immunocytochemistry of cytospin 

slides. 

Primary 
Antibody 

Host Dilution Incubation Secondary 
Antibody 

Dilution Incubation 

c-kit 

DAKO 

(A4502) 

 
Rabbit 

1/50 
Overnight 

4°C 

Alexa Fluor 
488 Donkey 
anti-Rabbit 
(Stratech) 

1/100 1 hour at 37° 

CD31 
Santa Cruz 
(sc-1505) 

 
Goat 

1/50 1 hour at 37° 

Dylight 488  
Donkey anti-

Goat 
(Stratech) 

1/100 1 hour at 37° 

DDR2 

 
Goat 

1/50 1 hour at 37° 

Dylight 488 
Donkey anti-

Goat 
(Stratech) 

1/100 1 hour at 37° 

CD34 
Santa Cruz 

 

 
Goat 

1/50 1 hour at 37° 

Dylight 488 
 Donkey 
anti-Goat 
(Stratech) 

1/100 1 hour at 37° 

CD45 
Santa Cruz 

 
Rat 

1/50 1 hour at 37° 

Alexa Fluor 
594 Donkey 

anti-Rat 
(Stratech) 

 

1/100 1 hour at 37° 
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2.8 Clonogenicity  

Clonogenicity assay was used to determine the clonogenic potential of the 

c-kitpos and CD45neg CPCs at P4.  This was achieved through serial 

dilution, and a single cell was deposited into a well of a 96-well coated 

plate (n=3). The number of wells which formed colonies from a single cell 

was quantified and expressed as a percentage of the total number of wells 

that had a single cell at the beginning. The fastest growing and the best 

looking colonies were picked and expanded further through cell culture. 

2.8.1 Cardiosphere formation  

Fifty thousand clonally derived c-kitpos, and CD45neg CPCs at P5 were 

placed on 100mm2 bacteriological dishes with normal growth media (10ml) 

without human LIF for six days. Three bacteriological dishes were set up 

for each cardiac chamber. The average number of cardiospheres were 

quantified from 10 fields of view and expressed as the number of 

cardiospheres /mm2. 

2.8.2 Differentiation  

CM, smooth muscle and endothelial differentiation were evaluated by 

staining for α-actinin sarcomeric, Nkx-2.5, calponin and vWF, respectively.  

These markers have been previously validated by our lab group.  

The nuclei were counterstained with 4, 6diamidino-2-phenylindole (DAPI). 

Cells were assessed using a confocal microscope. At day 5, clonally 

derived cardiospheres were transferred to 12 well plates containing non-

coated coverslips with base differentiation media (Table 2.3).  At day 10 

they were fixed with 4% (vol/vol) formaldehyde (in PBS) for 20 min on ice. 

The fixative was then removed and washed 5 x 2 minutes washes with 

PBS. This was then stored at 4 °C for up to 4 days.   The slides were then 

washed 5 x 2 minutes with 0.1% Tween PBS and blocked with 10% 

donkey serum in 0.1% Tween PBS for 30 minutes at RT.  The primary 
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antibody was applied, and after each antibody, incubation slides were 

washed for 5 x 2 minutes in Tween PBS. Then secondary antibody was 

applied and after each antibody incubation slides were washed for 5 x 2 

minutes in Tween PBS.  Table 2.5 contains a list of antibodies used. DAPI 

was used to counterstain the nuclei and washed with PBS for 6 x 2 

minutes before mounting with Vectashield™ (Vector laboratories).  

Table 2. 5 Antibodies used in differentiation assay. 

Primary 
Antibody 

Host Diluti
on 

Incubation Secondary 
Antibody 

Dilution Incubation 

α 

sarcomeric 

actin 

Sigma-

Aldrich 

(A2127) 

 
 

Mous

e 
1/50 

Overnight 
4°C 

Alexa Fluor 
594 

Donkey 
anti-Mouse 
(Stratech) 

1/100 
1 hour at 

37° 

Nkx2.5 
R&D 

 
Goat 

1/20 
Overnight 

4°C 

Dylight 488 
Donkey 

anti-Goat 
(Stratech) 

1/100 
1 hour at 

37° 

Calponin 

 
Goat 

1/50 
Overnight 

4°C 

Dylight 488 
Donkey 

anti-Goat 
(Stratech) 

1/100 
1 hour at 

37° 

vWF 
DAKO 

(A0082) 

 
Rabbit 

1/50 
Overnight 

4°C 

Dylight 488 
Donkey 

anti-Rabbit 
(Stratech) 

1/100 
1 hour at 

37° 
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2.9 Statistical Analysis  

 

Data represented as Mean ±SEM. Independent T-test was used to determine the 

statistical significance between 2 groups, and One-way ANOVA was used for more 

than two groups. Significance was reported when p<0.05.
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RESULTS 

3. CPC location and distribution within all four chambers of the human heart. 

 

3.1 Introduction 

 

The existence of progenitor cells of cardiac origin – CPCs - has been confirmed by 

numerous animal studies (Oh et al. 2003 Bearzi et al. 2007; Chong et al. 2011; 

Ellison et al. 2013). However, the use of myocardial samples to isolate and 

characterise these unique and rare cells from the human heart has been limited.  

The original identification of human CPCs raised the possibility of the human heart to 

regenerate and form new functional cardiomyocytes in ageing and following 

myocardial injury (Quaini et al. 2002; Bearzi et al. 2007; Bergmann et al. 2009).  

Various CPC markers including that of c-kitpos/MDR-1pos CPCs have been 

extensively characterised and shown to comply with all the properties of a 'stem cell;' 

(Bearzi et al. 2007; Ellison et al. 2013). However, their importance to cardiac 

regeneration remains unclear and continually questioned (Zaruba et al. 2010; van 

Berlo & Molkentin, 2014).   

Pouly et al. (2008) showed c-kitpos cells to be rare (1/mm2 atrial tissue and 2.7/mm2 

RV tissue) following a study which involved analysing endomyocardial biopsies taken 

from the right ventricle (RV) and right atrial appendages of patients six years post-

heart transplantation. However, these c-kitpos cells were cardiac mast cells as they 

expressed CD45 and tryptase and were negative for Nxk2.5 and CD105. Ellison et 

al. 2011, showed that cardiac mast cells represent ~80% of the total number of c-

kitpos cells within the pig atria. Moreover, Vicinanza et al. (2017) showed that 90% of 

the c-kitpos cells in the mouse and rat heart are CD45pos and CD31pos, identifying 

them as haematopoietic (mast cell) and endothelial origin, respectively.   

c-kit positive CPCs have been characterised, as mentioned previously. It has been 

shown that c-kit positive CPCs are also positive for Sca-1 (60 ± 10% of c-kit+ eCSCs 

are also Sca-1 positive) and MDR-1 (ABCG2) (Leong Y et al. 2017). Sca-1 cells 

have been shown play a crucial role but have been shown to lack human homology 

(Vicinanza et al. 2017). However, human MDR-1 positive CPCs are less well 
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studied, therefore understanding this marker, expressed in  SP  cells, will help 

evaluate cardiac CPC characteristics further. Therefore, the identification of c-kit 

CPCs alone would not be representative due to the heterogeneity of the phenotype 

(Scalise M et al.2019). Hence our study also included the study of MDR-1 positive 

cells.  

Despite these efforts, the distribution and characterisation of c-kitpos cells and thus 

CPCs across all four chambers of the human heart has not been determined, nor 

has there been a comparison of their number between patients with normal (>50% 

EF) and impaired (<49% EF) LV function.   

This study first identified the abundance of c-kitpos and MDR-1pos cells across all four 

chambers of the human heart from good and impaired LV patients. Second, the 

abundance of c-kitpos or MDR1pos mast cells (tryptasepos) were determined.  Third, 

the abundance of c-kitpos or MDR1pos CPCs (tryptaseneg) were determined. Fourth, a 

comparison of c-kitpos cells, MDR1pos cells, c-kitpos CPCs, MDR1pos CPCs, c-kitpos 

mast cells and MDR1pos mast cells between patients with good and impaired LV 

function was made. 

3.2 Results 

3.2.1 Cardiac biopsy from all four chambers of the human heart from good and 

impaired LV patients. 

Cardiac tissue samples were obtained from patients undergoing cardiac surgery, as 

described in the method section. The biopsies were taken using Tru-Cut needle to 

achieve two full-thickness biopsies from the marked (using a sterile marker to identify 

epicardial surface) area of each chamber. One of the samples was used for 

histological analysis, and the other was used for cell isolation.  Furthermore, all the 

samples were obtained after establishing cardiopulmonary bypass. 

 

The patient demographic analysis is represented on table 3.1. There was a 

significant statistical difference in age between good and impaired LV patients.  

Furthermore, regardless of LV function, there was no statistical difference observed 
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between NYHA class 2/3 and between NIDDM and IDDM within my patient 

population. 

The samples were processed for histological analysis, as outlined in the Methods 

Chapter. Microtome sectioning was done across all layers of the myocardium in the 

longitudinal plane, with epicardium (right side) to the endocardium (left side). 

Immunohistochemistry (IHC) identified cells expressing c-kit, MDR1 and tryptase. 

Whole sections of all four chambers (RV, LV, RA and LA) from good (n=5) and 

impaired LV (n=5) patients were analysed. c-kitpos cells, MDR1pos cells, CPCs (c-

kitpos or MDR1pos and Tryptaseneg) and mast (c-kitpos or MDR1pos and Tryptasepos) 

cells were quantified and expressed as the number of cells per mm2 (cross-sectional 

area).   
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Table 3. 1  Patient Demographics. (LV-left ventricular; AF-Atrial Fibrillation; 

ACEi- Angiotensin-converting-enzyme inhibitors; ARB- Angiotensin II receptor 

blockers; IDDM- Insulin-dependent diabetes mellitus; NIDDM-Non-Insulin-

dependent diabetes mellitus; NS -not significant). 
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3.2.2 Quantification of c-kitpos cells in all four chambers of the human 

heart from good and impaired LV patients. 

 

 

Figure 3. 2 Identification of c-kitpos Cells. Representative confocal 

image showing a c-kitpos (green) cell indicated by the white arrow within the 

myocardial/ endocardial region. Cardiomyocytes are stained in red (α-

sarcomeric actin). Nuclei are stained in blue by DAPI.. Scale = 20µm  
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In good LV (Figure 3.2A) patients, the total number of c-kitpos cells were 

significantly (p<0.05) lower in RA (20±1/mm2) compared to LA 

(44±4/mm2), RV (66±6/mm2) and LV (69±3/mm2 (Figure 3.2A). In addition, 

a significantly (p<0.05) greater number of c-kitpos cells were present in the 

RV (66±/mm2) and LV (69±3/mm2) when compared to LA (44±4/mm2). 

This trend was also observed in the impaired LV group (Figure 3.2B), 

where the LV chamber had the highest number (p<0.05) of c-kitpos cells 

(85±3/mm2), compared to RA (56±1/mm2), LA (68±1/mm2) and RV 

(68±2/mm2) (Figure 3.2B). The RA had significantly (p<0.05) lower c-kitpos 

cells compared to the LA (68±1/mm2), RV (68±2/mm2) and LV 

(85±3/mm2). 



 RESULTS 

 

94 
 

 

R
A

L
A

R
V

L
V

0

2 0

4 0

6 0

8 0

1 0 0

 c
-k

it
p

o
s
 c

e
ll

s
 /

m
m

2

*

G o o d  L V

R
A

L
A

R
V

L
V

0

2 0

4 0

6 0

8 0

1 0 0

 c
-k

it
p

o
s
 c

e
ll

s
 /

m
m

2 *

Im p a ire d  L V

A

B

 

Figure 3. 3 c-kitpos cells in all four chambers of the heart. 

Quantification of c-kitpos cells across all four chambers of human 

myocardium.  (A) Good LV patients. * denotes p<0.05 vs all chambers, (B) 

Impaired LV patients. * denotes p<0.05 vs all chambers. Data is Mean 

±SEM, n=5 patients per chamber.   
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3.2.3 Quantification of MDR1pos cells in all four chambers of the 

human heart from good and impaired LV patients. 

 

Figure 3. 4   Identification of MDR-1pos CPCs cells. Representative 

confocal image showing an MDR-1pos (green) cell indicated by the white 

arrow within the myocardial/endocardial region. Cardiomyocytes are 

stained in red (α-sarcomeric actin). Nuclei are stained in blue by DAPI.. 

Scale = 20µm 
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Similar to the c-kitpos cell distribution, in good LV patients, the LV chamber 

had significantly (p<0.05) more MDR-1pos cells (66±2/mm2) than RA 

(18±1/mm2), LA (45±1/mm2) and RV (54±2/mm2) (Figure 3.4A). Moreover, 

the RV chamber had significantly (p<0.05) higher number of MDR-1pos 

cells (54±2/mm2) compared to LA (45±1/mm2) and RA (18±1/mm2) (Figure 

3.4A), In the impaired LV group, the RA (101± 4/mm2) and   RV 

(99±4/mm2) had significantly (p<0.05) more MDR-1pos cells compared to 

LA (86±1/mm2) (Figure 3.4B). The LV had (92±3 /mm2) MDR1pos cells, 

which showed no significant differences to the other chambers.    
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Figure 3. 5   MDR-1pos cells in all four chambers of the heart. 

Quantification of MDR-1pos cells across all four chambers of human 

myocardium.  Data is mean ±SEM, n=5 per chamber.  (A) good LV 

patients. * denotes significant differences (p<0.05) vs all chambers, † 

denotes significant differences (p<0.05) vs RA and LA. (B) impaired LV 

patients. * denotes significant differences (p<0.05) vs LA . 

 

* 
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3.2.4 Comparison of the overall distribution of c-kitpos cells and 

MDR1pos cells between good and impaired LV patients.  

The impaired LV function group had significantly (p<0.05) greater c-kitpos 

cells (69± 2/mm2) compared to the good LV group (50± 5/mm2) (Figure 

3.5A). Moreover, the overall number of MDR-1pos cells (95± 2/mm2) in the 

impaired LV group was significantly higher (p<0.05) compared to the good 

LV group (46± 4/mm2) (Figure 3.5B). 

3.2.5 Comparison of the overall distribution of c-kitpos cells or 

MDR1pos cells between atria and ventricle.  

Overall the ventricles had significantly (p<0.05) higher number of c-kitpos 

cells than atria in both good (67±3/mm2 vs 32±5/mm2) (Figure 3.6A) and 

impaired (76±3/mm2 vs 62±2/mm2) LV groups (Figure 3.6B). For MDR1pos 

cells, the ventricles of the good LV group showed significantly (p<0.05) 

more (60±2/mm2) MDR-1pos cells than the atria (31±4/mm2) (Figure 3.7A). 

There were no differences in the number of MDR1pos cells between 

ventricles and atria for the impaired LV function group (Figure 3.7B).  
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Figure 3. 6   Overall distribution of c-kitpos and MDR-1pos cells in Good 

LV vs Impaired LV. The overall abundance of c-kitpos (A)  and MDR-1pos 

(B) cells were compared between good LV and impaired LV group.  Data 

is mean ±SEM, n=20 per group (samples from each chamber taken from 5 

patients).  * denotes significant differences (p<0.05) vs good LV.  
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Figure 3. 7   Overall distribution of c-kitpos cells in Atria and Ventricle. 

The overall abundance of c-kitpos cells was compared between Atria (A) 

and Ventricle (B).  Data is mean ±SEM, n=10 per group (samples from 

each chamber taken from 5 patients).  * denotes significant differences 

(p<0.05) vs atria. 
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Figure 3. 8  Overall distribution of MDR-1pos cells in Atria and 

Ventricle. The overall abundance of MDR-1pos cells was compared 

between Atria (A) and Ventricle (B).  Data is mean ±SEM, n=10 per group 

(samples from each chamber taken from 5 patients).  * denotes significant 

differences (p<0.05) vs atria. 
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To summarise, the main findings were: 

 The Left Ventricle harbours the greatest number of c-kitpos cells, 

and the RA harbours the least c-kitpos cells, regardless of good or 

impaired LV function.  

 The number of MDR1pos cells is greatest in the LV and least in the 

RA for good LV patients. However, the LA harbours the least 

MDR1pos cells in impaired LV patients. 

 Impaired LV patients harbour increased number of c-kitpos cells and 

MDR1pos cells, compared to good LV patients.  

 The Ventricle harbours increased number of c-kitpos cells, 

regardless of good or impaired LV function.  

 The Ventricle harbours a greater number of MDR1pos cells in good 

LV patients. There were no differences between atria and ventricle 

for MDR1pos cells in impaired LV patients. 
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3.2.6 Quantification of c-kitpos tryptasepos mast cells in all four 

chambers of the human heart from good and impaired LV patients. 

 

In the good LV group, the c-kitpos tryptasepos mast cells (Figure 3.8) are 

more abundant in LV (39± 4/mm2) compared to RA (13± 1/mm2), LA (20± 

2/mm2), RV (36± 2/mm2  (Figure 3.9A)). RA and LA chambers have 

significantly (p<0.05) less c-kitpos mast cells compared to RV and LV 

chambers.  

The LV chamber (47± 1/mm2) in impaired LV group (Figure 3.9B) also had 

significantly (P<0.05) more abundant c-kitpos mast cells compared to RA 

(29± 0/mm2), LA (36± 1/mm2) and RV (37± 2/mm2). RA had significantly 

(p<0.05) fewer mast cells compared to other chambers. In addition, 

significantly (p<0.05) fewer mast cells were present in LA compared to RV 

and LV chambers. 

.  
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Figure 3. 9 Identification of c-kitpos Mast cells. Representative confocal images show c-kitpos (green) tryptasepos (red)  mast 

cell,  indicated by the white arrow within the myocardial/ endocardial region. Also, a c-kitpos (green) tryptaseneg (red)  CPC  is 

indicted by a yellow arrow. Nuclei are stained in blue by DAPI.  Scale = 10µm. Top Row – Cardiac chambers of good LV; 

Bottom Row- Cardiac chambers of Impaired LV.
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Figure 3. 10  c-kitpos tryptasepos mast cells in all four chambers of the 

heart. Quantification of c-kitpos tryptasepos cells across all four 

chambers of human myocardium.  Data is mean ±SEM, n=5 per 

chamber.  (A) good LV patients. * denotes significant differences (p<0.05) 

vs RV and LV, † denotes significant differences (p<0.05) vs RV and LV. 

(B) impaired LV patients. * denotes significant differences (p<0.05) vs all 

chambers. † denotes significant differences (p<0.05) vs LA and RV. 
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3.2.7 Quantification of MDR1pos tryptasepos mast cells in all four 

chambers of the human heart from good and impaired LV patients. 

In good LV group, the MDR-1pos mast cells (Figure 3.10) were more 

abundant in LV (44±3/mm2) than RA (13± 0/mm2), LA (32± 2/mm2) and RV 

(39± 2/mm2 (Figure 3.11A)). RA had significantly (p<0.05) less MDR-1pos 

mast cells compared to all other chambers. LA also had significantly less 

(p<0.05) MDR-1pos mast cells than LV.  

In the impaired LV group (Figure 3.11B), the distribution of MDR-1pos mast 

cells was similar between RA (51± 3/mm2), RV (50± 3/mm2), LV (52± 

2/mm2).  The LA chamber (40± 1/mm2) had significantly (p<0.05) low 

number of MDR-1pos mast cells compared to other chambers. 

 

In good LV group, the MDR-1pos mast cells were more abundant in LV 

(44±3/mm2) than RA (13± 0/mm2), LA (32± 2/mm2) and RV (39± 2/mm2 

(Figure 3.11A)). RA had significantly (p<0.05) less MDR-1pos mast cells 

compared to all other chambers. LA also had significantly less (p<0.05) 

MDR-1pos mast cells than LV.  

In the impaired LV group (Figure 3.11B), the distribution of MDR-1pos mast 

cells was similar between RA (51± 3/mm2), RV (50± 3/mm2), LV (52± 

2/mm2).  The LA chamber (40± 1/mm2) had significantly (p<0.05) low 

number of MDR-1pos mast cells compared to other chambers. 
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Figure 3. 11 Identification of MDR-1pos Mast cells. Representative confocal images show MDR-1pos (green) tryptasepos (red)  

mast cells,  indicated by the white arrow within the myocardial/endocardial region. Also, an MDR-1pos (green) tryptaseneg (red)  

CPC  is indicted by a yellow arrow. Nuclei are stained in blue by DAPI.. Scale = 10µm. Top Row – Cardiac chambers of good 

LV; Bottom Row- Cardiac chambers of Impaired LV.
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Figure 3. 12 MDR-1pos tryptasepos mast cells in all four chambers of 

the heart. Quantification of MDR-1pos tryptasepos  mast cells across all 

four chambers of human myocardium.  Data is mean ±SEM, n=5 per 

chamber.  (A) good LV patients. * denotes significant differences (p<0.05) 

vs all chambers, † denotes significant differences (p<0.05) vs LV. (B) 

impaired LV patients. * denotes significant differences (p<0.05) vs all 

chambers.  
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3.2.8 Comparison of the overall distribution of c-kitpos and MDR1pos 

tryptasepos mast cells between good and impaired LV patients. 

 

The impaired LV function group had significantly higher (p<0.05) c-kitpos 

mast cells (37± 2/mm2) compared to the good LV group (27± 3/mm2) 

(Figure 3.12A). The MDR-1pos mast cells (48± 1/mm2) was significantly 

(p<0.05) higher in impaired LV group compared to good LV group (32± 

3/mm2) (Figure 3.12B).  
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Figure 3. 13 Overall distribution of c-kitpos tryptasepos and MDR-1pos 

tryptasepos mast cells in Good LV vs Impaired LV. The overall 

abundance of c-kitpos (A) and MDR-1pos (B) mast cells were compared 

between good LV and impaired LV group.  Data is mean ±SEM, n=20 per 

group (samples from each chamber taken from 5 patients).  * denotes 

significant differences (p<0.05) vs good LV. 
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3.2.9 Comparison of the overall distribution of c-kitpos and MDR1pos 

tryptasepos mast cells between atria and ventricle.  

The distribution of c-kitpos mast cells was significantly (p<0.05) higher in 

ventricles compared to atria in both good (37±2/mm2vs 17±1/mm2) (Figure 

3.13A) and impaired (42±2/mm2 vs 33±1/mm2) LV groups (Figure 3.13B). 

The distribution of MDR-1pos mast cells was also higher in the ventricles 

compared to atria in both good (41±2/mm2 vs 23±3/mm2) (Figure 3.14A) 

and impaired (51±2/mm2 vs 45±2/mm2) LV groups (Figure 3.14B). In the 

good LV group, the distribution MDR-1pos mast cells were statistically 

significant (p<0.05). 
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Figure 3. 14 Overall distribution of c-kitpos tryptasepos mast cells in 

Atria and ventricle. The overall abundance of mast cells was compared 

between Atria (A) and Ventricle (B).  Data is mean ±SEM, n=10 per group 

(samples from each chamber taken from 5 patients).  * denotes significant 

differences (p<0.05) vs atria. 
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Figure 3. 15 Overall distribution of MDR-1pos tryptasepos mast cells in 

Atria and ventricle. The overall abundance of mast cells was compared 

between Atria (A) and Ventricle (B).  Data is mean ±SEM, n=10 per group 

(samples from each chamber taken from 5 patients).  * denotes significant 

differences (p<0.05) vs atria. 
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To summarise, the main findings were: 

 The Left Ventricle harbours the greatest number of c-kitpos mast 

cells, and the RA harbours the least c-kitpos mast cells, regardless 

of good or impaired LV function.  

 The number of MDR1pos mast cells is greatest in the LV and least in 

the RA for good LV patients; however, the LA harbours the least 

MDR1pos mast cells in impaired LV patients. 

 Impaired LV patients harbour increased number of c-kitpos mast 

cells and MDR1pos mast cells, compared to good LV patients.  

 The Ventricle harbours increased number of c-kitpos mast cells, 

regardless of good or impaired LV function.  

 The Ventricle harbours a greater number of MDR1pos mast cells in 

both good LV and impaired LV patients.   
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3.2.10 Quantification of c-kitpos tryptaseneg CPCs in all four chambers 

of the human heart from good and impaired LV patients. 

  

In good LV patients, the number of c-kitpos CPCs were higher in LV (31± 

4/mm2) compared to RA (6± 0/mm2), LA (25± 3/mm2) and RV (30± 5/mm2 

(Figure 3.16A)).  RA had significantly (p<0.05) less c-kitpos CPCs 

compared to other chambers.  In impaired LV group (Figure 3.16B), LV 

(38± 2/mm2) had significantly (p<0.05) more c-kitpos CPCs than RA (27± 

0/mm2), LA (32± 0/mm2) and RV (30± 2/mm2).  RA had significantly 

(p<0.05) less c-kitpos CPCs compared to LA and LV. 
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Figure 3. 16 Identification of c-kitpos CPCs. Representative confocal images show c-kitpos (green) tryptaseneg (red)  CPCs,  

indicated by the white arrow within the myocardial/endocardial region . Nuclei are stained in blue by DAPI..  Scale = 10µm. 

Top Row – Cardiac chambers of good LV; Bottom Row- Cardiac chambers of Impaired LV.
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Figure 3. 17  c-kitpos tryptaseneg   CPCs in all four chambers of the 

heart. Quantification of c-kitpos tryptaseneg  cells across all four 

chambers of human myocardium. The data is represented as mean 

±SEM, n=5 per chamber. (A) good LV patients. * denotes significant 

differences (p<0.05) vs all chambers. (B) impaired LV patients. * denotes 

significant differences (p<0.05) vs LA and LV. † denotes significant 

differences (p<0.05) vs all chambers. 
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3.2.11 Quantification of MDR1pos tryptaseneg CPCs in all four 

chambers of the human heart from good and impaired LV patients. 

  

The MDR-1pos CPCs were more abundant in LV (22± 2/mm2) compared to 

RA (5± 1/mm2), LA (19± 3/mm2) and RV (16± 2/mm2); within the good LV 

group (Figure 3.18A). RA had significantly (p<0.05) less MDR-1pos CPCs 

compared to other chambers. In impaired LV group (Figure 3.18B), RA 

(51± 1/mm2) and RV (49± 3 /mm2) had similar distribution of MDR-1pos 

CPCs compared to LA (46± 1/mm2) and LV (41± 1/mm2).  The RA and RV 

had significantly (p<0.05) more MDR-1pos CPCs compared to the LV 

chamber. 
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Figure 3. 18 Identification of MDR-1pos CPCs. Representative confocal images show (A) MDR-1pos (green) tryptaseneg (red) 

CPCs; indicated by the white arrow within the myocardial/endocardial region. Nuclei are stained in blue by DAPI.. Scale = 

10µm. Top Row – Cardiac chambers of good LV; Bottom Row- Cardiac chambers of Impaired LV.
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Figure 3. 19 MDR-1pos tryptaseneg   CPCs in all four chambers of the 

heart. Quantification of MDR-1pos tryptaseneg CPCs across all four 

chambers of human myocardium. The data is represented as mean 

±SEM, n=5 per chamber.  (A)Good LV patients. * denotes significant 

differences (p<0.05) vs all chambers. (B) impaired LV patients. * denotes 

significant differences (p<0.05) vs LV. † denotes significant differences 

(p<0.05) vs LV. 
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3.2.12 Comparison of the overall distribution of c-kitpos and MDR1pos 

tryptaseneg CPCs between good and impaired LV patients 

Overall, the c-kitpos (32± 1/mm2 vs 23± 3/mm2) (Figure 3.19A) and MDR-

1pos (47± 1/mm2 vs 16± 2/mm2) (Figure 3.19B), CPCs were significantly 

higher (p<0.05) in impaired LV group than good LV group respectively.  
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Figure 3. 20 Overall distribution of c-kitpos tryptaseneg and MDR-1pos 

tryptaseneg  CPCs in Good LV vs Impaired LV. The overall abundance of 

c-kitpos (A) and MDR-1pos (B) CPCs were compared between good LV and 

impaired LV group.  Data is mean ±SEM, n=20 per group (samples from 

each chamber taken from 5 patients).  * denotes significant differences 

(p<0.05) vs good LV. 
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3.2.13 Comparison of the overall distribution of c-kitpos and MDR1pos 

tryptaseneg CPCs between atria and ventricle.  

The distribution of c-kitpos CPCs was significantly (p<0.05) higher in 

ventricles compared to atria in both good (30±3/mm2 vs 15±3/mm2) 

(Figure 3.20A) and impaired LV (34±2/mm2 vs 30±/mm21) group (Figure 

3.20B). However, the distribution of MDR-1pos CPCs was 

significantly(p<0.05) higher in the ventricle (19±2/mm2) compared to the 

atria (12±3/mm2) in the good LV (Figure 3.21A) group only. In the impaired 

LV (Figure 3.21B) group, the distribution of the MDR-1pos CPCs was 

marginally higher in the atria (48±1/mm2) than the ventricle (45±2/mm2).  
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Figure 3. 21  Overall distribution of c-kitpos CPCs in Atria and 

ventricle. The overall abundance of c-kitpos CPCs was compared between 

Atria (A) and Ventricle (B).  Data is mean ±SEM, n=10 per group (samples 

from each chamber taken from 5 patients).  * denotes significant 

differences (p<0.05) vs atria. 
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Figure 3. 22 Overall distribution of MDR-1pos CPCs in Atria and 

ventricle. The overall abundance of MDR-1pos CPCs was compared 

between Atria (A) and Ventricle (B).  Data is mean ±SEM, n=10 per group 

(samples from each chamber taken from 5 patients).  * denotes significant 

differences (p<0.05) vs atria. 

 

 



 RESULTS 

 

126 
 

To summarise, the main findings were: 

 The Left Ventricle harbours the greatest number of c-kitpos CPCs, 

and the RA harbours the least c-kitpos CPCs, regardless of good or 

impaired LV function.  

 The number of MDR1pos CPCs are greatest in the LV and least in 

the RA for good LV patients. However, MDR1pos CPCs are greatest 

in the RA and least in the LV in impaired LV patients.  

 Impaired LV patients harbour increased number of c-kitpos CPCs 

and MDR1pos CPCs, compared to good LV patients.  

 The Ventricle harbours increased number of c-kitpos CPCs, 

regardless of good or impaired LV function.  

 The Ventricle harbours a greater number of MDR1pos CPCs in good 

LV patients. However, the atria had more MDR1pos CPCs than the 

ventricle in impaired LV patients.  
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3.3 Discussion 

 

3.3.1 Quantification of CPCs in all four chambers of the human heart from 

good and impaired LV patients. 

 

In this study, the distribution of eCPCs from all four chambers obtained from a single 

patient at the time of surgery was assessed and compared to the distribution of the 

eCPCs between normal and impaired LV group.  

It was noticeable that during confocal analysis that CPCs were distributed more in 

the myocardial layer within the interstitial space. Some regions within the section had 

no nuclei; this is possibly due to underlying fibrotic response to myocardial injury. 

Furthermore, it may also represent damage that occurred during biopsy or sectioning 

(I performed all sectioning) of the samples, due to the relatively small myocardial 

sample size, 

Consistently the number of mast cells and the CPCs were distributed more in the 

ventricle than atria. Moreover, the LV chamber had more CPCs when compared to 

other chambers. This finding is similar for both good and impaired LV group. 

However, the mast cells and CPCs are more in abundance in the impaired LV group 

compared to the good LV group. 

These findings are different from the outcomes that have been reported before. The 

c-kitpos CPCs have been identified in a variety of species (Messina et al. 2004; 

Ellison et al. 2011) including that of humans (Bearzi et al.  2007 and Arsalan et al. 

2012). Characteristically these cells have reported to have ~1 eCPC per 1,000 

cardiomyocytes or 45,000 human CPCS per gram of tissue (Torella et al. 2007).  In 

2008, Pouly et al. used immune histochemical analysis of biopsies derived from right 

atrial appendages and right-side septum of patient undergoing heart transplant and 

ischemic cardiomyopathy.   They found the right-sided septum to harbour more c-

kitpos cells when compared to RAA.  Another study by Itzhaki-Alfia A et al. (2009), 

reported a higher number of c-kitpos and Islet-1pos in RA (24±2.5% and 7%) compared 

to other chambers (LA- 7.3±3.5%, RV-4.1±1.6%), and LV-9.7±3%; P=0.001). In this 

study, 113 biopsies were obtained 94 patients from discarded tissues from the 
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surgery. They did not lineage sort for their CPCs. However, their finding of an 

increased number of c-kitpos cells in the impaired LV group correlates with our 

findings.  

In 2012 Arsalan et al., isolated lineage negative CPCs from endocardial samples of 

RA, LA and LV from patients undergoing cardiac surgery.  They showed that the 

prevalence of c-kitpos cells in both atria (4.90 ± 1.29%) was about 5 times greater 

than in the left ventricle (0.62 ± 0.14%, P = 0.035).  

Further study by Dixit et al. (2017) examined the progenitor cells derived from the 

RA, LV and peripheral blood and compared their functional differences. They 

showed the c-kitpos CPCs population to be <1%, as previously described and showed 

higher abundance in LV compared to RA (0.87 ±0.45% vs 0.5±0.2%).  

CPCs have been shown to play a crucial role in cardiac homeostasis (Nadal-Ginard 

B et al. 2014).  Using various rodent models with diffuse myocardial injury c-kitpos, 

CPCs have been shown to restore cardiac function through regeneration of lost 

cardiomyocytes and when the CPCs were ablated this reparative process was not 

observed Ellison et al. (2013).  Hence this may explain why more CPCs cells were 

observed in the impaired ventricle. 

The MDR-1pos cells mostly had a similar trend to c-kitpos cells. This observation 

suggests that they are of the same cell population, and their expression of the 

surface markers may vary according to their physiological/differentiation state. 

Interestingly as with our finding, Patella et al. (1998) showed more mast cells in the 

impaired LV group compared to normal LV. The distribution of cardiac mast cells is 

also higher in ventricle than atria and more abundant in impaired LV group compared 

to good LV group. It has been estimated that on average there is a fourfold increase 

in CPCs in the failing heart; 80% of which are mast cells that express CD45 (KuboH 

et al 2008). This finding may be related to the innate response of the myocardium to 

the loss of function in the impaired LV group.  

From our study, the age is the only patient characteristic, apart from LV impairment, 

that could correlate with the above observations. The age of the impaired LV 

population was significantly higher when compared to good LV patients. Several 
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studies have shown age and disease to affect the characteristics of CPCs (Cesselli 

et al. 2011; Lewis-McDougall F et al. 2019). These changes have been attributed to 

cellular senescence through various mediators. Accordingly, in this study, the 

impaired LV group had more CPCs and mast cells compared to the normal LV group 

as a possible response to cardiac homeostasis. The study by Lewis-McDougall F et 

al. (2019) showed that despite the increased in CPCs within aged failing hearts; the 

CPCs were shown to be dysfunctional. The other patient demographics factors were 

insufficient in numbers to associate a correlation with our findings. However, patient 

medical history, history of smoking, atrial fibrillation, previous myocardial infarction 

and the use of cardioprotective drugs, such as β-blockers and statins can alter the 

frequency of c-kitpos progenitors in the heart (Gambini E et al. 2012). 
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4. Isolation, clonogenicity and proliferation of CPCs isolated from all four 

chambers of the human heart. 

 

4.1 Introduction 

 

The understanding of the characteristics of CPCs that have been evaluated to date 

(Ellison et al. 2014, Smith A et al. 2014) has mainly come from animal work. In 

addition, several groups have isolated CPCs from human myocardium but limited 

mainly to the RA chamber (Bearzi et al. 2007; Monsanto et al. 2017; Itzhaki-Alfia A et 

al. 2009). These studies have shown the isolated CPCs to maintain a stable 

phenotype over time and proliferate and differentiate into different cardiac lineages 

(smooth muscle, endothelial and cardiomyocyte (CM)) (Bearzi et al. 2007; Ellison et 

al. 2013; Smith et al. 2014; Vicinanza C et al. 2017; Pouly et al. 2008; Mauretti et al. 

2017).  

Characteristically these cells have been reported to be ~1 eCPC per 1,000 

cardiomyocytes or 45,000 human CPCs per gram of tissue (Torella et al. 2007). In 

2008, Pouly et al. used immune histochemical analysis of biopsies derived from right 

atrial appendages and right-side septum of patients undergoing heart transplant and 

ischemic cardiomyopathy.   They found the right-sided septum to harbour more c-

kitpos cells when compared to RAA.  Another study by Itzhaki-Alfia A et al. (2009), 

reported a higher number of c-kitpos and Islet-1pos in RA (24±2.5% and 7%) compared 

to other chambers (LA- 7.3±3.5%, RV-4.1±1.6%), and LV-9.7±3%; P=0.001). 

However, these cells were not lineage sorted to characterise the isolated cells. 

Further study by Dixit et al. (2017) examined the progenitor cells derived from the 

RA, LV and peripheral blood and compared their functional differences. They 

showed the c-kitpos CPCs population to be <1%, as previously described and showed 

higher abundance in LV compared to RA (0.87 ±0.45% vs 0.5±0.2%).  

The isolation of the CPCs from the myocardium has been achieved by enzymatic 

dissociation or by explant culture technique. During the enzymatic digestion process, 



 RESULTS 

 

131 
 

the myocardial sample is exposed to proteolytic enzymes such as collagenase, 

which breaks down tissue compartments releasing small cells. This technique is well 

described by Smith et al. (2014) for rodent hearts. However, Bearzi et al. described 

both enzymatic and explant cultures techniques to isolate CPCs from human 

myocardium. When compared to enzymatic isolation process, the explant technique 

has been shown to yield less heterogeneous cell populations, while demonstrating 

higher proliferative rates and cell viability from relatively smaller biopsy samples 

(Salehinejad P et al. 2012; Yoon JH et al. 2013; Hilkens P et al. 2013).  

Once isolated, the cells are further purified using fluorescent or magnetic antibody 

tags by FACS or MACS, respectively (Zhu & Murthy et al. 2013). The MACS 

separation purity has been reported at around 75% (Zhou et al. 2013) and provides 

more structural integrity to the isolated cells compared to FACS along with higher 

output and faster separation (~1011 cells/hour vs 107 cells/hour). However, with 

FACS techniques, a high level of purity of the cell population (>95%) can be 

achieved. c-kitposCD45negCD31neg CPCs have been isolated using MACS by others, 

including our group (Bearzi et al. 2007; Ellison et al. 2013; Smith et al. 2014; 

Vicinanza et al. 2017).  

Our lab group has characterised the phenotype of the CPC as described previously.  

The isolation of CPCs, according to this phenotype, has enabled us to understand 

the fundamental biological principles and their application towards therapeutic goals.  

One of the essential features of CPC is the ability to generate clones. This inherent 

characteristic allows sufficient numbers to be created and expanded in-vitro without 

losing the regenerative capacity and differentiation potential (Ellison‐Hughes & 

Lewis. 2017). Supplementation of various growth factors to the culture media has 

also allowed successful propagation of clonal c-kit pos  CPCs and CDCs, without 

compromising their phenotype, differentiation potential or genomic stability (Itzhaki-

Alfi  A et al. 2009; Ellison‐Hughes et al. 2011). Previously, clonogenic CPCs have 

been shown to reside in niches within the myocardium (Beltrami et al. 2003).  A 

recent study by Lewis-McDougall FC et al. ( 2019); showed that CPCs isolated from 

hearts of older patient to have reduced proliferation, clonogenicity and differentiation 

potential. More importantly, the findings of single CPC derived clones from young 

and old patient were indistinguishable with regards to morphology, senescence, 
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multipotency, self‐renewing ability and differentiation potential. CPCs has been 

shown to play a crucial role in cardiac homeostasis (Nadal-Ginard B et al. 2014). 

Using various rodent models with diffuse myocardial injury CPCs have been shown 

to restore cardiac function through the regeneration of lost cardiomyocytes and when 

the CPCs were ablated this reparative process was not observed (Ellison et al. 

2013).  

Despite this volume of evidence regarding human CPCs, so far no study has 

extensively characterised the CPCs derived from all four chambers of the human 

heart or compared the characteristics of CPCs derived from normal and impaired LV 

function patients; to understand their basic characteristics .  
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The specifics aim for this study are:  

1. To isolate c-kitposCD45negCD31neg CPCs from all four chambers of 

the heart from patients with normal and impaired LV function using 

either enzymatic or explant culture technique.  

2. To assess and compare the clonogenicity and proliferation, of 

human CPCs from different cardiac chambers using in vitro assays. 

3. To compare the clonogenicity and proliferation of human CPCs 

isolated from patients with normal and impaired LV function.  
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4.2 Results 

4.2.1 Isolation of CPCs from myocardial samples using enzymatic 

technique.  

As described in the Methods, both enzymatic and explant culture 

techniques have been described and validated as a method of isolating 

CPCs from tissue biopsies. The choice of method primarily depends on 

the weight of the sample. Initially, I used the enzymatic approach to learn 

and gain competency in isolating CPCs. I enzymatically digested three 

samples obtained from right atrial appendage (RAA, n=1) and left atrial 

appendage (LAA, n=2). The number of CPCs isolated using the enzymatic 

technique was 19,366 ± 7050; counted using a hemocytometer (Table 

4.1). During this learning curve, I managed to achieve ~85% purity in 

isolating c-kitposCD45neg CPCs (Table 4.1; Figure 4.1).  

 

 

Table 4. 1 c-kitpos CPCs isolated using enzymatic digestion. 

Sample  Site  

LV 

Function 

Weight of 

sample 

(g)  

Number of 

CPCs  

% 

Purity  

1 RAA  Good 0.596 27500 74.3 

2 LAA  Impaired 0.277 15600 86.1 

3 LAA  Impaired 0.652 15000 90 
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Figure 4. 1  Identification of c-kitpos CPC isolated using enzymatic 

digestion. CPC isolated (A and B) from right atrial appendages stained by 

IHC for c-kit (green), CD45 (red) and DAPI (blue). Scale = 20µm. 
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4.2.2 Isolation of CPCs from myocardial samples using explant 

culture technique.  

All four-chamber biopsies were taken from good LV patients (n=5) and 

impaired LV patients (n=5) (Table 4.2). The atrial samples were received 

as a larger mass when compared to ventricular samples. To keep a 

consistent sample size, the Tru-Cut needle was used (as described in 

methods) on the atrial biopsies to obtain a representative sample size 

across all the chambers.  

Explant culture technique was used to extract cells from each biopsy 

(Figure 4.2A&B). At day six in culture, the outgrowth cells obtained from 

the explant for each chamber were MACS sorted for c-

kitposCD45negCD31neg. Although we achieved a high yield of CPCs, there 

was significant contamination of DDR2+ fibroblasts in the culture (Figure 

4.3A). I, therefore, proceeded with a further purification step to remove the 

fibroblasts. After MACS sorting for ckitposCD45negCD31neg, the cells were 

plated on a plastic flask for 20 minutes to allow fibroblasts to stick to the 

plastic. After this period, the supernatant containing the unattached cells 

(the CPCs) were transferred to CELLstart™ CTS™ coated flasks for 

expansion. The supernatant containing the unattached cells had no 

fibroblasts present and were ckitposCD45negCD31neg CPCs (Figure 4.3B). 

The cells that stuck to the plastic were confirmed as fibroblasts, being 

positive for DDR2 (Figure 4.3C).  

The samples used for explant isolation had a mean weight of 0.005g for 

both good and impaired LV group. The inter chamber comparison for the 

average number of CPCs per gram of tissue obtained also showed no 

statistical significance for both good and impaired LV group. However, the 

average number of CPCs per gram of tissue is significantly  (p<0.05) 

higher in good LV group when compared to impaired LV group (Table 4.3). 
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Table 4. 2   Weight of the biopsy obtained from each patient 

 

 

 

Table 4. 3  Weight of the sample used for explant, Mean±SEM number 

of CPCs isolated per gram of tissue for each cardiac chamber from 

good and impaired LV.  

 

   

Sample 

Number

LV 

Function

Right 

Atrium 

(mg)

Left 

Atrium 

(mg)

Right 

Ventricle 

(mg)

Left 

Ventricle 

(mg)

1 Good 270 288 5.16 5.22

2 Good 251 266 4.89 5.32

3 Good 302 279 5.12 5.16

4 Good 266 273 5.03 5.19

5 Good 199 229 5.21 4.98

6 Impaired 268 302 5.16 4.79

7 Impaired 225 229 5.15 5.12

8 Impaired 245 215 4.99 5.15

9 Impaired 206 312 5.26 6.03

10 Impaired 259 283 5.18 5.12

Good LV Impaired LV

RA 0.005 29825 ± 1106 20748  ± 1500

LA 0.005 27748 ± 696 25995  ± 1450

RV 0.005 28394  ± 709 19948   ± 1344

LV 0.005 36554  ± 1350 22348  ± 1266

Cardiac 

Chamber

Average Weight 

of Sample used 

for Explant (g)

Average No of CPCs /g of tissue 
(following purification step)
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Figure 4. 2A Outgrowth of cells from biopsy during explant culture-Good LV. Each well had 5 pieces of of myocardial 

tissue (white arrow) were plated in a 6 well fibronectin coated plates (A). Outgrowth of cells from the myocardial biopsy pieces 

at day1, day 4 and day 6 was observed in all four chambers through transmitted light microscope. Scale = 200µm 
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Figure 4. 2B Outgrowth of cells from biopsy during explant culture-Impaired LV. Pieces of myocardial tissue (white 

arrow) were plated in a 6 well fibronectin coated plates (A). Outgrowth of cells from the myocardial biopsy pieces at day1, day 

4 and day 6 was observed in all four chambers through transmitted light microscope. Scale = 200µm 
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Figure 4. 3 Purification of CPCs derived from explant culture of Fibroblasts. (A) Isolated c-kitpos (green), CD31neg (red) 

CPCs showing contamination with DDR2+ (white) fibroblasts. B) IHC of the c-kitpos CPCs from the supernatant following the 

fibroblast removal step showing no evidence of DDR2+ (red) fibroblasts. (C) IHC of the attached cells from the plastic flask 

showed predominant DDR2+ (Red) positive fibroblasts. DAPI stain nuclei blue. Scale = 20µm 
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Figure 4. 4A  Phase contract microscopic images-Good LV. Isolated CPCs in culture for each cardiac chamber, taken at 

day 6. Scale=500µm. 

 

Figure 4. 4B: Phase contract microscopic images-Impaired LV. Isolated CPCs in culture for each cardiac chamber, taken 

at day 7. Scale=500µm. 
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4.2.3 Cellular morphology of the isolated CPCs from all four 

chambers.  

 

Our observations have shown the isolated CPCs to be generally small and 

well rounded. These characteristic phenotypes are consistent with the 

description published by our lab group (Figure 4.3). 

Largely, the cells displayed a homogeneous cellular growth thorough out 

the culture period for all four chambers. On average, it took 6.8 days to 

reach confluence for the CPCs derived from good LV and 7.5 days for 

CPCs derived from impaired LV (Figure 4.4 A&B).  
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To summarise, the main findings were: 

 

 c-kitpos CD45negCD31neg CPCs can be isolated using both enzymatic 

and explant culture techniques. 

 Isolated CPCs can be further purified to remove fibroblasts 

effectively by using the fibroblast adherence to plastic removal 

technique.  

 Explant culture technique can be used to isolate CPCs from small 

biopsies taken from all four chambers of the human heart. 

 

  



 RESULTS 

 

144 
 

4.2.4 Clonogenicity of human CPCs isolated from patients with 

normal and impaired LV function. 

At passage 5, through serial dilution, single c-kitposCD45negCD31neg CPCs 

from good LV patients (n=5) and impaired LV patients (n=5) were 

deposited into 96 well cloning plates (n=3). IHC confirmed that CPCs 

maintained their phenotype as described previously (Figure 4.5). The 

single CPC went onto form clonal colonies of high-density cells (Figure 

4.6). Three of the fastest-growing, small rounded, phase bright CPC 

colonies from each patient were picked up and expanded further. 

Amongst good LV patients (Figure 4.7A), there was no significant 

difference in CPC clonogenicity between cardiac chambers RA (58±5%), 

LA (39±6%), RV (55±12%) and LV (63±11%). Amongst impaired LV 

patients (Figure 4.7B), the CPCs derived from the RV chamber (34±3%) 

had significantly decreased (p<0.05) clonogenic capability compared to 

the LV (49±3%).  

Overall, the ability to generate single CPC-derived clones was significantly 

(p<0.05) greater in the good LV (54±5%) group, compared to the impaired 

LV (43±2%) group (Figure 4.8). There were no differences in clonogenicity 

between atria and ventricle for good (48±5% vs 59±8%) and impaired LV 

function (45±4% vs 42±3%) (Figure 4.9).  
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Figure 4. 5 Characterisation of the isolated c-kitpos CPCderived from explant culture before Clonogenicity 

Experiment. Top row- CPCs from Good LV patients, Bottom row- CPCs from impaired LV patients. IHC for c-kit (green), 

CD45 (red) CD31 (white) and DAPI (blue). Scale = 20µm
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Figure 4. 6  c-kitpos CPC clones derived from single CPC.  Through 

serial dilution, a single CPC of isolated CPC was deposited into a well of a 

96 well plate (A). Transmitted light microscope showing the single CPC (B) 

and its clonal expansion at day 4. Scale= 500µm.  
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Figure 4. 7   Inter-chamber comparison of CPC clonogenicity. The ability to 

generate clones from a single CPC for each chamber for good LV (A) impaired LV 

(B) groups. Data are Mean ±SEM, n=5 per chamber. *denotes p<0.05 vs. LV.  
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Figure 4. 8  Overall comparison of CPC clonogenicity capabilities between 

Good LV and Impaired LV. The ability to generate clones from a single CPC for 

good LV and impaired LV is compared.  Data is Mean ±SEM, n=20 per group. 

*denotes p<0.05 vs. Impaired LV.  
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Figure 4. 9 Comparison of CPC clonogenicity between Atria and Ventricle. The 

ability to generate clones from a single CPC for both atria and ventricle for good LV 

(A) impaired LV (B) groups were compared. Data is Mean ±SEM, n=10 per chamber.  
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To summarise, the main findings were: 

 

• In Good LV group, there were no significant differences in CPC 

clonogenicity between chambers.   

• In the impaired LV group, the RV chamber CPCs showed a significant 

reduction in clonogenicity compared to the LV chamber. 

• Overall the CPCs from the good LV group showed a significant increase in 

clonogenicity compared to the impaired LV group.   
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4.2.5 Proliferation of human CPCs isolated from patients with good normal and 

impaired LV function 

The clonally derived CPCs from both good and impaired LV patients used for 

proliferation showed stable phenotype as described before (Figure 4.10) 

At passage 5, the proliferation of c-kitposCD45negCD31neg clonally derived CPCs were 

assessed using BrdU incorporation in vitro assay over 24 hours for good LV (Figure 

4.11) and impaired LV patients (Figure 4.12). The number of BrdUpos CPCs were 

compared to baseline (received BrdU for 30 mins) and represented as a percentage 

of total cells.  

Amongst good LV patients, CPCs isolated from the RV chamber (64±4%) showed a 

significantly (p<0.05) decreased proliferation, compared to CPCs isolated from the 

LV chamber (80±2%) (Figure 4.13A).  Amongst impaired LV patients, CPCs isolated 

from the RA chamber (64±6%) showed significantly decreased (p<0.05) proliferation, 

compared to CPCs isolated from the LV chamber (73±3%) (Figure 4.13B). 

Overall, the proliferation of CPCs was similar between good (71±2%) and impaired 

LV (69±2%) patients (Figure 4.14). The proliferation of CPCs for atria and ventricle 

for both normal LV (70±2% and 68±3%) and impaired LV (72±3% and 71±2%) 

patients were also similar (Figure 4.15). 
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Figure 4. 10 Characterisation of the isolated c-kitpos CPC before Clonogenicity Experiment. Top row- CPCs from Good LV 

patients, Bottom row- CPCs from impaired LV patients. IHC for c-kit (green), CD45 (red) CD31 (white) and DAPI (blue). Scale = 

20µm. 
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Figure 4. 11  Assessment of proliferation of isolated human CPCs- Good LV. Proliferation was assessed through the BrdU 

incorporation in vitro assay over 24 hours of CPCs. BrdUpos (green) and DAPI (blue) indicated by the white arrow at baseline 30 

minutes; and at 24 hours. Scale = 20µm. 
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Figure 4. 12  Assessment of proliferation of isolated human CPCs- Impaired LV. Proliferation was assessed through the BrdU 

incorporation in vitro assay over 24 hours of CPCs. BrdUpos (green) and DAPI (blue) indicated by the white arrow at baseline 30 

minutes; and at 24 hours. Scale = 20µm. 
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Figure 4. 13 Inter chamber Comparison  of CPC proliferation. Inter chamber 

comparison of the CPC proliferation for good LV (A) and impaired LV groups (B). 

Data are Mean ±SEM, n=5 per chamber. In good LV group (A), * denotes p<0.05 vs. 

LV. In impaired LV group (B), * denotes p<0.05 vs. LV 
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Figure 4. 14 Overall Comparison of CPC proliferation between Good and 

Impaired LV.  The overall assessment of CPC proliferation between good and 

impaired LV function.  Data are Mean ±SEM, n=20 per chamber.  
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Figure 4. 15 Comparison of CPC proliferation between Atria and Ventricle. The 

comparison of the CPB proliferation between atria and ventricle for good LV (A) and 

impaired LV (B). Data is Mean ±SEM, n=10 per chamber.  
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To summarise, the main findings were: 

 CPC proliferation was significantly decreased in the RV compared to LV in 

good LV patients. 

 CPC proliferation was significantly decreased in the RA compared to LV in 

impaired LV patients.  

 There was no significant difference in CPC proliferation between good and 

impaired LV patients. 

 There was no significant difference in CPC proliferation between atria and 

ventricle regardless of if they were derived from good or impaired LV function 

groups. 
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4.3 Discussion 

 

4.3.1 Isolation of human CPCs isolated from patients with normal and impaired 

LV function  

Despite achieving a high yield of c-kitpos CPCs (90% purity) using the enzymatic 

approach, I decided to use explant culture technique to the isolate CPCs as the 

biopsy obtained from the ventricle chambers were too small (~5.1mg for RV and 

~5.2mg for LV) for enzymatic isolation.  Therefore, I used the explant culture 

technique to isolate the CPCs from each cardiac chamber to be consistent with the 

isolation process. 

Although there has not been a comprehensive comparison made between the 

explant techniques versus enzymatic isolation methods, there are several 

advantages and disadvantages to both techniques. Two isolation methodologies 

have been used to isolate CPCs from both human and murine hearts (Beltrami AP et 

al. 2003; Messina E et al. 2004, Cesselli D et al. 2011; Smith A et al. 2014; 

Vicinanza et al. 2017). Following this procedure, the isolated cells are further 

characterised to yield CPCs based on transcriptional or surface markers.  

When compared to enzymatic isolation process, the explant technique has been 

shown to yield less heterogeneous cell populations, while demonstrating higher 

proliferative rates and cell viability from relatively smaller biopsy samples 

(Salehinejad P et al. 2012; Yoon JH et al. 2013; Hilkens P et al. 2013). These 

findings have been mainly attributed to undamaged tissue pieces with intact 

extracellular matrix (ECM) and release of cytokines and growth factors, which are 

relevant for cellular expansion (Hynes RO et al. 2009; Jing W et al. 2010). The 

effectiveness of the enzymatic process is mostly dependent on the type and 

concentration of the enzyme used for dissociation. The use of enzyme leads to the 

breakdown of ECM, resulting in lower yield with prolonged higher doubling time of 

the cells (Karahuseyinoglu S et al. 2007 and Seshareddy K et al. 2008). Bearzi et al. 

(2007) compared the two techniques and reported a 41% success in isolation of 

CPCs using enzymatic and 59% success using explant techniques. The weight of 
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the biopsy sample determines the choice of either enzymatic digestion or explant 

methodology. 

Generally, all the samples contained all layers of the myocardium and were obtained 

on full cardiopulmonary bypass (CBP). All but one patient in this study underwent 

CABG. The other patient aged 77 in the impaired LV group, underwent mitral valve 

repair and LAAO for atrial fibrillation. There was a significantly high number of CPCs 

isolated from good LV (30630 CPCs/g) samples compared to impaired LV samples 

(22260 CPCs/g). However, there was no statistical difference observed in the inter-

chamber comparison. The CPCs derived from the impaired LV group on average 

took longer to reach confluence when compared to CPCs from good LV (7.5 vs 6.8 

days), but this was not statistically significant. 

These observed differences could be attributed to several factors, including the 

quality of the samples, the impact of CPB on endogenous CPCs, age, and disease. 

The association between atrial fibrillation and cardiac fibrosis is well documented 

(Reese-Petersen Al et al. 2020). The cardiac fibrosis destroys the normal cellular 

architecture and therefore, may affect the number and the quality of the CPCs. 

Several studies have shown that CPB activates systemic inflammatory response and 

cause morbidity (Fujii et al. 2020). This impact on endogenous CPCs characteristics 

is largely unknown. However, it is widely documented that ageing and disease can 

alter the number and CPC behaviour (Cesselli D et al. 2011; Devalla et al. 2018; and 

Lewis-McDougall F et al. 2019) due to alteration in expression for markers such as 

p16INK4A, SA‐β‐gal with truncated telomeres. The activation of the inflammatory 

response to CPB may contribute to the ongoing cellular changes that occur due to 

ageing and disease.   

A further sub-analysis of our patient demographics shows that all but one of the 

patients were on a statin (3hydroxy-3-methylglutaryl coenzyme A- HMG-CoA 

reductase) for their hypercholesteremia and ACE (Angiotensin-converting enzyme) 

inhibitors for hypertension. Both medications have reduced significant morbidity and 

mortality for cardiac patients. Statins have been shown to reduce cardiac mortality 

and morbidity by lowering LDL cholesterol significantly. However, their positive 

pleiotropic effects have also been reported through mediators that regulates 

endothelial progenitor cells (Assmus B et al. 2003; Sandhu et al. 2017).  In addition 
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to this, ACE inhibitors which work on the renin-angiotensin mechanism have also 

been shown to enhance the characteristics of endothelial progenitor cells through 

modulation intracellular signalling pathways (Ahmadian E et al. 2015). 

It would appear that the number of CPCs isolated using explant technique from each 

cardiac chamber is multifactorial and may be altered in the diseased heart.  
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4.3.2 Clonogenicity of human CPCs isolated from patients with normal and 

impaired LV function  

Early on Bearzi et al. (2007), showed isolated CPCs could be cloned with an 

efficiency of ≈0.7% for CPCs derived from the enzymatic approach. In 2004 Messina 

et al., took atrial and ventricular samples from patients undergoing cardiac surgery 

and generated cardiospheres (CS) by explant culture technique.   They showed CS 

to be made up of clonally derived cells. In addition, CS derived from single cells were 

shown to be 1-10% clonally efficient.  It is worth remembering that CS is composed 

of only 1% of c-kitpos cells. However, our experiments showed increased clonal 

efficiency of CPCs with ≈54% for good LV and ≈43% for impaired LV patients. These 

experiments were conducted at P5 using CPCs derived from explant culture 

technique, and the CPCs were shown to maintain their phenotype as described 

earlier on. Further studies have also confirmed that these CPCs are cable of 

maintaining stable phenotypic characteristics in culture (Lewis-McDougall F et al. 

2019; Ellison et al. 2013 and Vicinanza et al. 2018).  Furthermore, the overall clonal 

efficiency was better for good LV group compared to impaired LV group (≈54% vs 

≈43%), and the source of the CPC (atria or ventricle) did not appear to affect the 

ability to generate clones. These findings have not been previously reported. 

In the present study, the good LV patients were relatively younger (average age 56 

years) compared to patients within the impaired LV group (average age 71 years).  

Age and disease have been shown to be a critical determinant of CPCs functional 

characteristics. Various studies (Chimenti et al. 2003; Torella et al. 2004; Gonzalez 

et al. 2008; Cesselli et al. 2011; Lewis-McDougall F et al. 2019) have demonstrated 

a high level of senescent markers, impaired telomerase activity and telomerase 

erosion to be associated with ageing and disease.   Indeed, CPCs isolated from 

aged and diseased patients express high levels of p16INK4a and functionally these 

cells have been shown to be non-cycling and non-differentiating (Rolle IG et al. 

2020; Cesselli et al. 2017; Torella D et al. 2006).   

A further study by Cesselli et al. (2011), which examined the CPCs derived from the 

donor and explanted hearts during transplantation, showed shortened telomeres (up 

to 25%) with two-fold increased expression of p16INK4a and p21 senescent markers 
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within the aged and diseased group, compared to the donor hearts. The CPCs 

obtained from aged and diseased hearts in their study showed three times reduction 

in clonal efficiency compared to CPCs derived from the donor hearts.   

In addition, data from our lab have shown increased senescent CPCs with increased 

age, and CPCs isolated from aged (>70 years) patients shown decreased clonal 

efficiency, proliferation and differentiation potential. However, single CPC-derived 

clones from young, middle-aged, and old subjects were indistinguishable in terms of 

morphology, senescence, multipotency, self-renewing transcript profile, and 

differentiation (Lewis-McDougall F et al. 2019). These findings suggest that CPCs 

age and become senescent in a stochastic, non-autonomous manner. Furthermore, 

they show that senescent CPCs have SASP that adversely affect cycling competent 

non-senescent cells, making them more senescent. The above findings may explain 

why some of the cells deposited in the 96 well plates did not clonally expand and 

may also explain the differences observed between cells derived from good and 

impaired LV patients.  

Age and disease related changes to CPCs characteristics have also been 

demonstrated in animal models. Gonzalez et al. (2008), took CPCs from the rat heart 

and showed chronological ageing is related to telomerase attrition, and by using 

BrdU labelling, they demonstrated cycling competent CPCs to exist in the aged-

senescent heart. 

In conclusion, in line with previous findings that show decreased clonal efficiency of 

CPCs isolated from aged and diseased patients, the present study observed a 20% 

reduction in clonal efficiency in the impaired LV group, compared to the good LV 

group.  This reduction is most likely due to the increased age and disease of the 

impaired LV patients, compared to the good LV group.   
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4.3.3 Proliferation of human CPCs isolated from patients with good normal and 

impaired LV function 

The rate of proliferation of clonally derived CPCs within good and impaired LV group 

was ≈71% vs ≈70%. The proliferation rate was similar between good vs impaired LV 

group and between atria vs ventricles regardless of LV function. Although the 

proliferative rate of different cardiac chambers has not been described before; the 

impact of disease and ageing in relation to CPC proliferation has been documented.   

Bearzi C et al. (2007), isolated CPCs from biopsies obtained from healthy human 

hearts (without cardiovascular disease at the time of autopsy) and patients 

undergoing cardiac surgery. The generated single cell-derived clones had a 

proliferative rate of 90 ± 7% after 5 days in culture. Unfortunately, no comparison 

between inter-chamber or good vs impaired LV were made, unlike this study.  

Lewis-McDougall et al. (2018) showed that CPCs isolated from older (77-86 years) 

subjects had decreased (P<0.05) proliferation compared to CPCs isolated from 

middle-aged (34-62 years) subjects. However, the single CPC derived clones were 

shown to have comparable characteristics for proliferation and differentiation. These 

finding further supports our observations. 

A study by Walravens A et al. (2018), which compared cellular characteristic of 

human myocardial derived cardiac progenitors (c-kitpos CPC) derived from single 

clones and cardiosphere-derived cells (CDC) from young (y) and adult (a); showed 

higher proliferative rate for yCPCs compared to aCPCs. 

Several other studies also showed the age as a crucial determinant in proliferative 

ability. These studies showed the proliferative rates to be highest in CPCs derived 

from fetal and neonates; with age (increased to 13 years) related decline in 

proliferative ability (Mishra A 2011; van Vliet P et al. 2011). Although in our study we 

did not compare the age in relation to proliferation, our CPCs were isolated from an 

aged population, and the patients in the Impaired LV group were older than the 

patients in the good LV group. However, we did not observe any differences in CPC 

proliferation between good and impaired LV function. This finding may be related to 

the way the CPCs were isolated using explant culture technique than via enzymatic 
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approach.  It has been previously shown that explant culture minimises cellular 

damage and increase viability and proliferation. Cells derived from the explant 

technique have been shown to contain fewer heterogeneous cell population and 

demonstrate increased proliferation and cell viability in comparison to enzymatic 

methodology. These findings are likely to be due to the existence of intact ECM, 

which protects the cells from mechanical and enzyme induced stress. In addition to 

this, the release of growth factors and cytokines into the culture media may also 

provide a favourable environment for the cells (Salehinejad P et al. 2012; Yoon JH et 

al. .2013; Mushahary D et al. 2018). On further examination, such cells expressed 

high levels of mitosis and genes related to cell cycle (Sotiropoulou P A et al. 2006).   

This study showed that clonally derived CPCs from a single cell irrespective of the 

cardiac chamber or cardiac function is far more likely to be stochastic. These cycling 

competent cells are not affected by age or disease and therefore, potentially can 

maintain a stable phenotype. 
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5. Cardiospherogenesis and differentiation potential of CPCs isolated from all 

four chambers of the human heart. 

 

5.1 Introduction 

 

The ability to differentiate into all three cardiac lineages; cardiomyocytes, smooth 

muscle and endothelial cells is an essential feature of CPCs and defines them as 

multipotent stem/progenitor cells (Beltrami et al. 2003; Ellison et al. 2013). 

Cardiospheres are typically multicellular clusters (20–150 µm cellular spheres) 

derived from clonally expanded cells in suspension and, which can contribute to 

multiple lineages as first described by Beltrami et al. (2003).  

Further study by Smith et al. (2014) showed that clonally derived CPCs could 

differentiate into beating cardiomyocytes when grown in differentiating media 

containing specific growth factors that target TGFβ and Wnt signalling pathways. In 

2013, Ellison et al. showed that injecting clonally derived CPCs into the myocardium 

following an infarction can replace up to 20% of the cardiomyocytes within the 

infarcted zones; contributing to the improvement of LV function. 

This particular characteristic allows the clonally derived CPCs to be manipulated at 

various stages using specific growth factors to direct differentiation.   
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In this study, clonally expanded CPCs from all four chambers from both 

good and impaired LV patients were used to generate cardiospheres. We 

then evaluated the differentiation potential for endothelial, smooth muscle 

and cardiomyocyte lineages by plating the generated cardiospheres in a 

differentiation media.  

The specifics aim for this study were:  

1. To assess and compare the cardiospherogenesis of human CPCs from 

all 4 cardiac chambers. 

2. To compare the cardiospherogenesis of human CPCs isolated from 

patients with normal and impaired LV function. 

3. To assess and compare the differentiation potential of CPCs from all 4 

cardiac chambers.  

4. To compare the differentiation potential of CPCs isolated from patients 

with good and impaired LV function.  
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5.2 Results 

5.2.1 Cardiospherogenesis of CPCs isolated from all 4 chambers. 

50 000 CPCs derived from single clones were platted on bacteriological 

dishes, and the number of cardiospheres were quantified at day 6 and 

expressed as the average number of cardiospheres/mm2 for each 

chamber (Figure 5.1A&B). Irrespective of cardiac function, cardiospheres 

generated from LV chamber were noticeably larger when compared to 

cardiospheres derived from other cardiac chambers. 

In both the good and impaired LV patient groups, CPCs from the LV 

(Good, 9±1.4; Impaired,7±0.3/mm2) chamber showed a significant 

increase (p<0.05) in the ability to generate cardiospheres compared to the 

other chambers (RA (Good, 6±1; Impaired,4±0.2 /mm2), LA (Good, 5±0.5; 

Impaired,4±0.6 /mm2) and RV (Good, 5±1; Impaired,4±0.3 /mm2) (Figure 

5.2)). The overall ability of CPC cardiospherogenesis was significantly 

increased (p<0.05) in the good LV group (6±0.6), compared to the 

impaired LV group (5±0.4) (Figure 5.3). In the good LV group, there were 

no differences in CPC cardiospherogenesis between atria (5±0.4) and 

ventricles (7±1) (Figure 5.4). In the impaired LV group, the ventricles 

(5±0.5) showed a significant increase in (p<0.05) cardiospherogenesis, 

compared to atria (4±0.3) (Figure 5.4). 
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Figure 5. 1A Cardiospherogenesis of CPCs from each chamber-Good LV. Observation of cardiospherogenesis from all 

four chambers (good LV) under transmitted light microscope at day 6. 50000 cells were plated per dish. Scale =100µm. 

 

 

 

 

 



 RESULTS 

 

170 
 

 

 

 

 

Figure 5. 1B Cardiospherogenesis of CPCs from each chamber-Impaired LV. Observation of cardiospherogenesis from 

all four chambers (good LV) under transmitted light microscope at day 6. 50000 cells were plated per dish. Scale =100µm 
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Figure 5. 2 Inter chamber Comparison of Cardiospherogenesis of 

CPCs. Cardiospherogenesis of CPCs isolated from each chamber from 

good LV (A) and impaired LV patients (B). * denotes p<0.05 vs. all other 

chambers. Data are Mean ±SEM, n=5 per chamber. 
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Figure 5. 3 Overall Cardiospherogenesis of CPCs assessment: Good 

LV vs Impaired LV. The overall comparison of Cardiospherogenesis 

between good and impaired LV function.  The data is represented as 

mean ±SEM, n=20 (samples from each chamber taken from 5 patients). * 

denotes a significant difference (p<0.05) vs impaired LV. 
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Figure 5. 4 Comparison of Cardiospherogenesis of CPCs: Atria vs 

Ventricle. Comparison of cardiospherogenesis between atria and 

ventricle. (A) Good LV; (B) impaired LV. The data is represented as mean 

±SEM, n=10 per chamber (samples from each chamber taken from 5 

patients). * shows a significant difference (p<0.05) vs atria.  
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To summarise, the main findings were: 

 

 CPCs from the LV chamber showed increased 

cardiospherogenesis, compared to the other cardiac chambers, 

regardless of good or impaired LV function.  

 Overall, CPCs from good LV patients showed increased 

cardiospherogenesis, compared to impaired LV patients. 

 In the impaired LV, CPCs showed increased cardiospherogenesis 

in the ventricle compared to CPCs from atria.   
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5.3 Differentiation of CPCs into the three cardiac lineages 

 

It is well documented that CPCs are multipotent and capable of 

differentiating into all three cardiac lineages: cardiomyocytes, smooth 

muscle and endothelial cells. The progeny of a single CPC generated 

cardiosphere has been shown to express biochemical markers of 

cardiomyocytes, smooth muscle and endothelial cells (Messina E et al. 

2004; Bearzi et al. 2007; Vicinanza et al. 2017).  

We used the generated cardiospheres from all four chambers of the 

human heart to assess for multipotency using a spontaneous 

differentiation protocol as decribed in methodology (Figure 5.5).  

5.3.1. Differentiation of CPCs into the cardiomyocyte lineage 

Representative images of Nkx2.5/ -sarcomeric actin  expressed CPCs 

from good LV patients and impaired LV patients are shown on figures 5.6 

and 5.7 respectively. 

Following 8 days in cardiomyogenic differentiation media, in good LV 

patients, the expression of Nkx2.5 showed no significant difference 

between cardiac chambers (LV chamber (4±0.9AU), RA (3±0.6 AU), LA 

(3±0.3 AU) and RV (2±0.1 AU)). However, this expression of Nkx2.5 CPCs 

cardiospheres was significantly (p<0.05) higher in the LV chamber (11±1.1 

AU) from impaired LV patients compared to all the other cardiac chambers 

(RA (4±0.4 AU), LA (4±0.5 AU) and RV (3±0.6 AU) (Figure 5.8)).  

The expression for -sarcomeric actin (Figure 5.9) was significantly 

(p<0.05) increased in CPC cardiospheres from the LV (Good, 30±3.6 AU; 

Impaired, 60±2.3 AU) compared to all the other cardiac chambers for both 

good and impaired LV patient groups (RA (Good, 16±2.2 AU; Impaired, 

23±4.9 AU), LA (Good, 19±2 AU; Impaired, 30±2.5 AU) and RV (Good, 

9±2.4 AU; Impaired, 35±4 AU). 

Overall, the expression of Nkx2.5(Good, 5±0.8 AU; Impaired, 3±0.3 AU) 

and α-sarcomeric actin (Good, 37±4 AU; Impaired, 18±2 AU) was 
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significantly (p<0.05) increased in CPC cardiospheres from impaired LV 

patients, compared to good LV patients (Figure 5.10).  

There was no difference in Nkx2.5 expression between atria (3±0.3 AU) 

and ventricles (3±0.6 AU) for good LV patients.  However, in the impaired 

LV group, the ventricles (7±1.4AU) showed a significantly (p<0.05) 

increased expression of Nkx2.5, compared to atria (4±0.3AU) (Figure 

5.11). 

There was no difference in α-sarcomeric actin expression between atria 

(17±1.5 AU) and ventricles (20±4 AU) for good LV patients. However, the 

α-sarcomeric actin expression was significantly (p<0.05) increased in the 

ventricles (48±4.7 AU) of impaired LV patients, compared to atria 27±2.8 

AU) (Figure 5.12). 

 

  

A 

B 
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Figure 5. 5 Differentiation of CPC-derived cardiospheres.  The 

generated cardiospheres were plated in differentiation media on laminin 

coated dishes. Transmitted light microscope showing the outgrowth of 

cells from the cardiospheres at (A) Day 2 (B) Day 7. Scale= 100µm. 
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Figure 5. 6 Nkx2.5 and -sarcomeric actin expression-Good LV. IF staining of differentiated cells from each cardiac 

chamber (A-D) after plated in cardiomyogenic differentiation media for 8 days (Good LV). Green spots in nuclei – Nkx2.5; red- 

α sarcomeric actin and the nuclei were counterstained with DAPI (blue). Scale = 20µm. 
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Figure 5. 7   -sarcomeric actin expression-Impaied  LV. IF staining of differentiated cells from each cardiac chamber (A-D) 

after plated in cardiomyogenic differentiation media for 8 days (Good LV). Green spots in nuclei – Nkx2.5; red- α sarcomeric 

actin and the nuclei were counterstained with DAPI (blue). Scale = 20µm. 
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Figure 5. 8 NKx-2.5 expression of CPC cardiospheres following 8 

days in cardiomyogenic differentiation media.  Inter chamber 

Comparison NKx2.5 expression in both Good (A) and Impaired (B) LV. 

The data is represented as mean ±SEM, n=5 per chamber. * shows a 

significant difference (p<0.05) between LV and other chambers. 
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Figure 5. 9  -sarcomeric actin expression of CPC cardiospheres 

following 8 days in cardiomyogenic differentiation media. Inter 

chamber Comparison α-sarcomeric actin expression in both Good (A) and 

Impaired (B) LV. The data is represented as mean ±SEM, n=5 per 

chamber. * shows a significant difference (p<0.05) vs all chambers. 
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Figure 5. 10  Nkx2.5 and -sarcomeric actin expression of CPC 

cardiospheres following 8 days in cardiomyogenic differentiation 

media between good and impaired LV. Comparison of Nkx2.5 (A) and α 

sacomeric actin (B) expressed cardiomyocytes was made between good 

and impaired LV. The data is represented as mean ±SEM, n=20 per group 

(samples from each chamber taken from 5 patients). * shows a significant 

difference (p<0.05) vs good LV.   
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Figure 5. 11 Overall comparison of Nkx2.5 expressed cardiomyocytes 

between atria and ventricle. Comparison of Nkx2.5 expressed 

cardiomyocytes was made between atria (A) ventricle (B). The data is 

represented as mean ±SEM, n=10 (samples from each chamber taken 

from 5 patients) per chamber. * shows a significant difference (p<0.05) vs 

atria.   
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Figure 5. 12 Overall comparison of α- sarcomeric actin expressed 

cardiomyocytes between atria and ventricle. Comparison of α- 

sarcomeric actin expressed cardiomyocytes was made between atria (A) 

ventricle (B). The data is represented as mean ±SEM, n=10 (samples from 

each chamber taken from 5 patients) per chamber. * shows a significant 

difference (p<0.05) vs atria.  
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The primary outcomes of this section shows: 

 CPC cardiospheres differentiate into the cardiomyocyte lineage. 

 In the impaired LV group, Nkx2.5 expression in CPC cardiospheres 

from the LV chamber was increased, compared to the other cardiac 

chambers  

 Expression of -sarcomeric actin in CPC cardiospheres derived 

from the LV chamber was significantly increased, compared to the 

other cardiac chambers regardless of LV function. 

  Overall, Nkx2.5 and -sarcomeric actin expression were 

significantly higher in impaired LV group compared to the good LV 

group.  

 The ventricles from the impaired LV group showed a significantly 

greater Nkx2.5 and -sarcomeric actin expression compared to the 

atria.   
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5.3.2. Differentiation of CPCs into the endothelial cell lineage 

Representative images of vWF expressed CPCs from good LV patients 

and impaired LV patients are shown on figures 5.13 and 5.14 respectively. 

In the good LV patients, the CPC cardiospheres from the LA (24±3.4) 

showed a significantly (p<0.05) increased vWF expression, compared to 

all other cardiac chambers (RA (7±1.3 AU), RV (4±0.8 AU) and LV (4±1.0 

AU) (Figure 5.15)). There were no differences between chambers (RA 

(10±3 AU), LA (9±0.2 AU), RV (14±3 AU) and LV (12±1.0 AU)) for vWF 

expression in CPC cardiospheres from the impaired LV patient group 

(Figure 5.15).  

Overall, there was no difference between good (10±2 AU) and impaired LV 

(11±1 AU) patients for vWF expression of CPC cardiospheres (Figure 

5.16). 

In Good LV patients, vWF expression was significantly (p<0.05) increased 

in CPC cardiospheres from the atria (15±3 AU), compared to the ventricle 

(4±1 AU) (Figure 5.17).  There were no differences for vWF expression 

between the atria (10±2 AU) and ventricles (13±2 AU) for the impaired LV 

group.  
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Figure 5. 13  vWF expression-Good LV. IF staining of differentiated cells after plated in endothelial differentiation media for 8 

days. Green – vWF; nuclei were counterstained with DAPI (blue). Scale = 20µm.  

 

Figure 5. 14 vWF expression-Impaired LV. IF staining of differentiated cells after plated in endothelial differentiation media 

for 8 days. Green – vWF; nuclei were counterstained with DAPI (blue). Scale = 20µm.  
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Figure 5. 15 Inter chamber Comparison of  vWF expression – Good 

(A) and Impaired LV (B). Inter chamber Comparison vWF expressed 

endothelial cells. The data is represented as mean ±SEM, n=5 per 

chamber.  * shows a significant difference (p<0.05) vs all chamber. 
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Figure 5. 16 Overall comparison of vWF expressed cells between 

good and impaired LV. Comparison of vWF expressed endothelial was 

made between good and impaired LV. The data is represented as mean 

±SEM, n=20 per group (samples from each chamber taken from 5 

patients).   
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Figure 5. 17 Overall comparison of vWF expressed cells between 

atria and ventricle. Comparison of vWF expressed endothelial cells was 

made between atria (A) ventricle (B). The data is represented as mean 

±SEM, n=10 (samples from each chamber taken from 5 patients) per 

chamber. * shows a significant difference (p<0.05) vs ventricle.  
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The main outcomes of this section shows: 

 vWF expression in the LA chamber was significantly increased, 

compared to the other cardiac chambers in good LV group.  

 Overall, there was no statistical difference in vWF expression 

between good LV group and impaired LV group.  

 In good LV group, the vWF expression was significantly greater in 

the atria compared to the ventricle.  
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5.3.3 Differentiation of CPCs into the smooth muscle cell lineage 

Representative images of calponin expressed CPCs from good LV 

patients and impaired LV patients are shown on figures 5.18 and 5.19 

respectively. 

In both good LV and impaired LV patients, the calponin expression of CPC 

cardiospheres from the LV (Good LV, 8±2 AU; Impaired LV 18±2 AU) was 

significantly (p<0.05) increased, compared to other cardiac chambers (RA 

(Good LV, 2±0.2; Impaired LV 10±1.7), LA (Good LV 3±0.2 AU; Impaired 

LV 5±1.1 AU) and RV (Good LV 4±0.9 AU; Impaired LV 11±1.5 AU) 

(Figure 5.20)).  

Overall, calponin expression in CPC cardiospheres was significantly 

(p<0.05) increased in the impaired LV group (11±1.3 AU) compared to the 

good LV group (4±0.7 AU) (Figure 5.21). 

In both good and impaired LV patients, calponin expression was 

significantly (p<0.05) increased in the ventricle (Good LV 6±1.2 AU; 

Impaired LV 15±1.7 AU), compared to the atria (Good LV 2± 0.2; AU 

Impaired LV 7± 1.3 AU) (Figure 5.22).   
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Figure 5. 18  Calponin expression-Good LV. IF staining of differentiated cells from good LV group after plated in smooth 

muscle differentiation media for 8 days. Green – calponin; nuclei were counterstained with DAPI (blue). Scale = 20µm 
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Figure 5. 19  Calponin expression-Impaired LV. IF staining of differentiated cells from good LV group after plated in smooth 

muscle differentiation media for 8 days. Green – calponin; nuclei were counterstained with DAPI (blue). Scale = 20µm 
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Figure 5. 20 Inter chamber comparison calponin expressed cells.  

Inter chamber comparison calponin expressed smooth muscle cells was 

made between good (A) and impaired LV (B).  In good LV group - * 

denotes a significant difference (p<0.05) vs RA and LA . In impaired LV 

group- * denotes a significant difference (p<0.05) vs all chamber. The data 

is represented as mean ±SEM, n=5 per chamber.   
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Figure 5. 21  Overall comparison of calponin expressed cells between 

good and impaired LV. Comparison of calponin expressed smooth 

muscle cells made between good and impaired LV. The data is 

represented as mean ±SEM, n=20 per group (samples from each chamber 

taken from 5 patients). * shows a significant difference (p<0.05) vs good 

LV. 
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Figure 5. 22  Overall comparison of calponin expressed cells between 

atria and ventricle. Comparison of calponin expressed smooth muscle 

cells was made between atria (A) ventricle (B). The data is represented as 

mean ±SEM, n=10 (samples from each chamber taken from 5 patients) 

per chamber. * shows a significant difference (p<0.05) vs atria.  
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The primary outcomes of this section show: 

 Calponin expression in the LV chamber was significantly increased, compared 

to the other cardiac chambers regardless of LV function.  

 Overall, calponin expression in CPC cardiospheres was significantly higher in 

impaired LV group compared to the good LV group. 

 The ventricles from the impaired LV group showed a significantly higher 

calponin expression in CPC cardiospheres compared to the atria regardless 

of LV function. 
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5.4 Discussion 

5.4.1 Cardiospherogenesis of CPCs isolated from all 4 chambers. 

The term “cardiospheres” was coined by Messina et al. after isolating 

undifferentiated cells that formed clusters; which resembled that of neurospheres 

derived from neuronal progenitor cells (Reynolds BA et al. 1992). In this study, cells 

were isolated from human atrial (postnatal) and ventricular biopsies; as well as 

murine hearts.  They showed that within 2-3 days, the cells had formed 

cardiospheres with variable sizes (20-150 µm). They are made up of cardiac CPCs 

with its core cells demonstrating high stemness capabilities. When attached, cells 

from the cardiospheres spontaneously differentiate into cells expressing markers of 

all three cardiac lineages, including, cardiomyocytes, smooth muscle cells and 

endothelial. Furthermore, they were also shown to be clonogenic with ability to 

proliferate.  

However, unlike this study, they did not compare the ability of each cardiac chamber 

to generate cardiospheres or assess this ability between normal and impaired 

ventricles. To date, no study has made such a comparison. 

In this study, we demonstrate that cardiospheres can be generated from CPCs 

isolated from all four chambers of the human heart. Furthermore, we showed the 

CPCs derived from LV chamber are approximately twice as likely to generate 

cardiospheres with larger cardiospheres compared to other chambers regardless of 

LV function. Unlike other studies, we also showed that overall, the CPCs derived 

from good LV could generate cardiospheres more efficiently than CPCs from 

impaired LV group. 

It has been shown that the generation of cardiospheres decreases with age, disease 

and is dependent on sample source (Mishra R et al. 2010). This may explain our 

finding of higher cardiosphereogenesis in good LV compared to Cardiospheres 

derived from impaired LV patient samples. It is also worth pointing put that the 

impaired LV samples were derived from old aged patients, and the good LV sample 

was derived from a younger patient population. These findings were consistent with 

the findings of Lewis‐McDougall et al. 2019. They examined the effects of ageing 

and disease on isolated CPCs from young and old patients with heart disease. They 
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demonstrate increased expression of senescent phenotype with increasing age and 

with the disease. In particular, they also observed that CPCs isolated from younger 

patients (aged 34-62) generated significantly more and greater size of cardiospheres 

compared to the CPCs derived from older patients (aged 76-77). They went on to 

conclude that CPCs isolated from elderly patients with failing heart is dysfunctional 

with impaired cardiosphereogenesis. These findings strongly corroborate the above 

results noted in our study. From our findings, the LV chamber regardless of the LV 

function and CPCs derived from good LV patients, are far more efficient at 

generating cardiospheres and therefore might be the best source to isolate 

multipotent CPCs.    
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5.4.2 Differentiation of CPCs into the three cardiac lineages 

The ability to differentiate into the three cardiac lineages (cardiomyocytes, 

endothelial cells and smooth muscle cells) is an essential hallmark of CPCs 

(Beltrami et al. 2003; Bearzi C 2007; Ellison et al. 2013).  These characteristics have 

also been demonstrated in cardiosphere derived cells, where the cells undergo 

spontaneous differentiation into recognised lineages as described before(Messina et 

al.; Smith A et al. and Ellison et al. 2013). However, these effects have not been 

studied in CPCs isolated from each cardiac chamber, nor have the comparisons 

been made between cells derived from good and impaired LV patients.  

Bearzi et al. (2007), who isolated CPCs from human myocardium showed that in 

differentiating medium, the human CPC clones were able to differentiate into all 

three lineages (myocytes, SMCs, and ECs) and through electrical stimulation, at 1Hz 

they were able to induce contractility. Further in vivo study using clonogenic human 

CPCs, where the CPCs were injected into rat myocardium following infarction, 

showed new myocardial regeneration along with neovasculature formation. By using 

real-time PCR, they confirmed the presence of human transcription factors for 

cardiomyocytes, SMC and EC genes (Bearzi et al. 2007).  Similar findings have also 

been reported by other studies using CPCs derived from various rodent models and 

humans (Itzhaki-Alfia et al. 2009; Beltrami et al. 2003; Bearzi C et al. 2007; Ellison et 

al. 2013; Cesselli D et al. 2011).  

 Itzhaki-Alfia et al. (2009) reported that CPCs derived from human RA, although not 

statistically significant, were more capable of differentiation into the cardiomyocyte 

lineage, compared to CPCs derived from LA chamber. Indeed, at one-week post-

transplantation of the CPCs derived from RA were shown to be positive for human 

sarcomeric actin and early sarcomere formation. At one-month post-transplantation, 

they demonstrated some of the transplanted cells to express cardiac actin and 

intercalated disc structures. However, in our study, we have compared the 

multipotency of the CPCs derived from all four cardiac chambers in both good and 

impaired LV groups. Comparison of this kind has not been made before. We 

assessed the ability of CPCs isolated from all four chambers of the heart in both 

good and impaired LV to differentiate into each cardiac lineage spontaneously.    
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Due to the limited plasticity of CPCs, the in vitro differentiation of these cells still 

remains a challenge. To date, various methodologies using several differentiation 

factors including TGF-β, oxytocin, dexamethasone, 5-Azacytidine, Ascorbic Acid and 

retinoic acid have been explored.However, their efficacy is still very much debated 

(Malandraki-Miller et al. 2018).  

Lim JY et al. 2007, showed TGF-β1 to be a crucial player in cardiac differentiation 

through induction of Nkx2.5, which is a cardiac TF. Furthermore, TGF-β1 was shown 

to facilitate the differentiation of atrial derived Sca-1+ CPCs into functioning CMs 

(Goumans et al. 2007). These cells, as well as beating showed cross striations and 

gap junction communication. . Techniques which enhance the proliferation of the 

committed progenitors to improve the efficacy of CM generation is highly desirable 

but the signals which regulates the replication/differentiation of the CPCs is still 

lacking.  Our lab group has successfully differentiated cloned c-kitpos CPCs to 

generate beating CM through the addition of oxytocin, BMP2/4, TGF-β, and DKK1 at 

various stages in the differentiation protocol. (Smith AJ et al 2014; Vicenza et al. 

2018; Lewis-McDougall F et al. 2019). 

One of the characteristics of CPCs is to be able to differentiate into all three cardiac 

lineages, as discussed in the introduction. We wanted as a baseline using 

spontaneous differentiation protocol to understand this characteristic of the isolated 

CPCs from each cardiac chamber and compare such characteristics of CPCs 

between CPCs derived from good and impaired LV patients. Although the 

spontaneous differentiation not efficacious (Batalov I et al. 2015 and Rajala et al. 

2011), such evaluation will allow crucial understanding of the isolated CPCs. 
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In this study, both α-sarcomeric actinpos cardiomyocyte precursor cells and calponin 

expressed smooth muscle cells were significantly higher in the LV chamber 

regardless of the LV function status. The expression of Nkx-2.5pos cells was 

significantly higher in the LV chamber within the impaired LV group. Overall, the 

expression of α-sarcomeric actin, Nkx-2.5 and calponin were significantly higher in 

the impaired LV group compared to good LV.  However, the vWF expression was 

higher in the LA chamber of the good LV group and showed no significant difference 

between chambers for the impaired LV group.  

There is some evidence to suggest that the disease process can alter the CPCs 

activity and regulate differentiation. Urbanek et al. (2005); report an 85-fold and a 25- 

fold increase in differentiation into all three cardiac lineages in CPCs derived from 

myocardium following acute and chronic infarcts respectively. In another study, it 

was shown that differentiation into all three cardiac lineages was comparable 

between CPCs derived from old explanted hearts and young donor hearts (Cesselli 

D et al. 2011). More recently, it was shown from the data of patients undergoing 

cardiac surgery that CPCs isolated from older patients and diseased patients to have 

impaired differentiation capabilities despite increased accumulation (Lewis-

McDougall F et al. 2019). They showed the CPCs derived from older patients to 

have more senescent phenotype with a high expression for markers such as 

p16INK4A, SA‐β‐gal with truncated telomeres. More importantly, their study 

demonstrates that single CPC derived clones irrespective of age and disease were 

homogenous in terms of multipotency and differentiation.   

The behaviour of the isolated CPCs is related to their genetic profile and gene 

expression. The complex dynamic process that regulates various genes and TFs is 

crucial for cardiogenesis and influenced by their epigenetic memory (Mauritz et al. C 

2008 and Devalla et al. 2018).   

As shown before (Cesselli D et al. 2011; Devalla et al. 2018 and Lewis-McDougall F 

et al. 2019) it is possible to clonally select cycling competent CPCs from a single 

CPC, irrespective of age and disease. Such CPCs have been shown to retain their 
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functional capabilities and are potentially able to repair diseased myocardium 

depending on their epigenetic memory.  

Our study has identified, isolated and propagated clonally derived CPCs from all four 

chambers of the human heart and made a comparison of these characteristics 

between good and impaired LV patients. We have shown that clonally derived CPCs 

can differentiate into all three cardiac lineages, and this ability is altered in good and 

impaired LV. Understanding such fundamental characteristics and its relevant 

biology can enable us to plan an effective CPCs based regenerative therapy.
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6 DISCUSSIONS 

 

6.1 Introduction 

 

This thesis focused on two objectives. The first objective was to identify, quantify and 

characterise CPCs in human myocardial samples taken from all 4 cardiac chambers. 

The second objective assessed whether human CPCs isolated from the four cardiac 

chambers of patients with normal LV function behave in the same way, exhibiting 

similar growth and multipotency in vitro compared to human CPCs isolated from 

patients with impaired LV function. 

It was hypothesised that: There would be more CPCs in the atria, compared to 

ventricles; human CPCs isolated from patients with impaired LV function would have 

decreased proliferative capacity, clonogenicity, and multipotency potential compared 

to human CPCs isolated from patients with normal LV function; there would be no 

differences in growth and multipotency of the human CPCs isolated from the four 

cardiac chambers. 

 

6.2 Identification and Quantification of CPCs in human myocardial sample 

obtained from all four chambers of the heart in patients with normal and 

impaired LV function. 

 

The existence of both c-kitpos and MDR-1pos CPCs in human myocardium has been 

widely documented (Messina E et al. 2004; Bearzi et al. 2007; Itzhaki-Alfia A et al. 

2009; Nadal-Ginard B et al. 2014), and the exhaustive evidence from work done in 

rodent models and other species have also shown the heart to contain such CPCs,  

which behave as stem/progenitor cells and are capable of regenerating new 

myocardium in vivo (Beltrami et al. 2003; Ellison et al. 2013;  Smith AJ et al. 2014; 

Vicinanza C et al. 2017). Despite this evidence, the distribution, stem cell properties 

and differentiation potential of endogenous CPCs in all four cardiac chambers of the 

human heart, and how these are affected by LV function has not been characterised 

extensively.  
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The cardiac CPCs have been shown to have a variety of surface markers (Scalise et 

al. 2019) which tends to overlap. It is plausible that such phenotypic variation of 

expression may represent the same CPC at a different time frame in its development 

(Scalise M et al. 2019; Vicinanza C et al. 2017). 

This study, as previously described (Torella et al. 2007), found CPCs within the 

interstitial space of the myocardium taken from all four chambers of the human heart. 

Our quantification analyses revealed that in patients that had good LV function, the 

RA chamber harboured less CPCs (~5 times), compared to the other chambers and 

in the impaired LV group, the CPCs frequency was significantly higher (~2 times) in 

the LV chamber when compared to other chambers. Moreover, overall, the impaired 

LV group had a greater number of CPCs than the normal LV function group.  The 

density of the CPCs (1 cell per 1000 myocytes or 50,000 hCPCs per gram of tissue) 

is reported to be similar in both rodents and humans (Torella et al. 2007; Vicinanza C 

et al. 2017). Contrary to our findings, the distribution of the CPCs was shown to be 

higher in the atria than the ventricle (Sarvanakumar et al. 2013), however, the 

previous data were obtained from rodent models. A study by Itzhaki-Alfia A et al. 

(2009), which made no comparison between normal and impaired LV function, 

claimed the human right atrium harboured more CPCs, compared to the other 

chambers. However, these were c-kitpos cells and were not lineage sorted to purify 

for c-kitpos CD45neg tryptaseneg CPCs.  It has been reported that only 10% of cells that 

are positive for c-kit are lineage negative (Vicinanza C et al. 2017).  

The finding of greater numbers of CPCs in the hearts of patients with impaired LV 

function, compared to patients with normal LV function has also been observed in 

previous studies. These data may be explained by the cardiac homeostatic process 

and the effects of ageing. Indeed, the hearts of patients who had died of acute 

infarction undergoing transplantation harboured more CPCs than patients who had 

chronic heart failure needing a transplant.  (Urbanek K et al. 2005). This increase 

was notably higher in acute (7.5 times higher than undiseased) syndromes 

compared to the chronic disease process (3.5 times higher).  This large pool of 

CPCs has contained more senescent CPCs, expressing the senescence-associated 

marker p16INK4a.   
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In the present study, the cohort of patients within the good LV group was relatively 

young (mean age of 56.4), compared to those in the impaired LV group (mean age 

of 71). In addition to the injury-induced homeostatic response, the age of the patient 

can interact with disease status can also alter the number and potency of CPCs 

(Cesselli et al. 2011; Cheung T.H et al. 2013). Recently this was demonstrated on 

animal models by Castaldi et al.  (2017). In a study which examined biopsies taken 

from the elderly population with dilated cardiomyopathy without any coronary 

disease, compared to age-matched control patients with normal left ventricular 

function, there was a two-fold increase in CPCs in aged hearts with the disease 

compared to the control (Chimenti C et al. 2003). A further study by Cesselli et al. 

(2011) evaluated the impact of ageing and CHF on CPCs.  In this study, both ageing 

and disease were shown to be associated with telomere shortening, reduction in 

CPCs telomerase activity, increased frequency of telomere-induced dysfunction foci 

within CPCs and higher expression of p16INK4A and p21CIP1. Moreover, a study by 

Mohsin et al. (2013), showed that CPCs isolated from multiple patients with heart 

failure had characteristic differences in growth rate, telomere length and senescence 

marker expression. This large pool of CPCs that are generated in response to 

ageing and disease are highly dysfunctional (Cesselli et al. 2018; Lewis‐McDougall 

et al. 2019).  Epigenetic profiling of HSCs between old and young showed modified 

genetic markers with subsequent changes in gene expression, which support self-

renewal with loss of differentiation (Sun d et al. 2014).  This evidence further 

strengthens and explain our observations.   

Previous work by Kubo H et al. (2008) showed CPCs to increase by four-fold in 

diseased heart, but 80% of these cells were shown to be mast cells. Taken together 

with previous reports, the present findings further corroborate that there are 

increased CPCs in the hearts of patients with impaired LV function. It is possible that 

the complex interaction between ageing, disease and homeostasis at the cellular 

level alters the CPC activity directly and indirectly and therefore, alters CPC 

distribution and potency (Rolle IG et al. 2020).  

The identification and quantification of CPCs in the human myocardial sample is 

further complicated by patient-specific factors, including their past medical history, 

smoking history, AF and medication history, including statins and beta-blockers. In a 
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study by Gambini et al. (2012), which compared patient demographics, along with 

clinical variables to CPC number; showed several interesting outcomes. This study 

showed a direct correlation between beta-blocker usage and number of CPCs. 

Smoking, AF and previous MI showed an inverse relationship to CPC enrichment. In 

our study, we could not assess the impact of these important factors, as they are too 

low in numbers. However, in our study, these factors were relatively matched for the 

good and impaired LV groups.  

The present study showed that the left ventricular chamber, irrespective of LV 

function,to harbour the greatest number of c-kitpos CPCs compared to other cardiac 

chambers. Hence, the LV chamber may provide a better source of CPCs isolation. 
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6.3 Characterisation and Comparison of growth, clonogenicity and 

differentiation of human CPCs isolated from each of the four chambers of the 

heart, taken from patients with impaired or normal LV function. 

 

Potten and Loeffler have described certain characteristics that a cell should have to 

be classified as a stem/progenitor cell. Indeed, stem cells are "undifferentiated cells 

capable of 1) proliferation, 2) self-maintenance, 3) production of a large number of 

differentiated progenies, 4) regeneration of the tissue after injury, and 5) flexibility in 

the use of these options" (Potten & Loeffler, 1990).  

The cardiac stem/ progenitor cells represent ~1% of the cell population, which are 

capable of cardiomyogenesis (Vicinanza et al. 2017). The characteristics of the CPC 

population have been specified by our lab group (Ellison et al. 2013; Smith AJ et al. 

2016; Vicinanza et al., 2017) to be c‐kitpos, CD31neg, CD45neg and Tryptaseneg. 

Furthermore, it is prudent that it is distinguished from cardiac c‐kitposCD31pos 

(endothelial) and CD45pos and Tryptasepos (mast) cells.  

However, the potential role of this CPCs in cardiomyogenesis has been questioned 

by several groups (van Berlo et al. 2014; Li et al. 2018). Further analysis of their 

methodology indicates inadequate mouse model, which does not tag or more 

importantly, lineage trace the CPCs as described above (Vicinanza et al. 2017). 

 

Despite the vast amount of research that is published about human cardiac CPCs; 

none have assessed the basic characteristics according to the phenotype described 

by our lab group. This present study performed a comprehensive analysis of the 

functional characteristics of the CPCs isolated from each chamber of the heart, from 

patients with either normal or impaired LV function.  

The isolated CPCs demonstrated stem/progenitor characteristics in terms of 

generation of single cell-derived clonogenicity, proliferation, ability to generate 

cardiospheres and differentiation capabilities into all three cardiac lineages: 

cardiomyocytes, smooth muscle and endothelial cells. These data are in agreement 

with previous studies (Messina E et al. 2004; Bearzi et al. 2007; Torella D et al. 

2007; Itzhaki-Alfia A et al. 2009).   
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The present study found that CPCs isolated from the normal LV function patients 

had better capabilities to generate single cell-derived clonal colonies when compared 

to the impaired LV function group (≈54% vs ≈43%), and only the CPCs derived from 

RV chamber showed reduced clonogenicity compared to the LV chamber (34±3% vs 

49±3%). Nevertheless, these clonal rates are better than what is reported. 

Previously, Bearzi et al. (2007) showed the clonal efficiency to be ≈1-10% amongst 

single CPC derived clones.   

The previous studies mentioned above primarily used the enzymatic isolation 

process, in contrast to compared to this work.  The CPCs derived from the explant 

culture methodology are less likely to be affected by the proteolytic stress and 

subsequent potential cellular damage that follows the enzymatic isolation process. 

These CPCs are more likely to be cycling competent cells, which is aided by the 

intact ECM and the production of necessary growth factors during the culture 

process (Dergilev KV et al. 2016).   

Ageing and disease have been shown to influence the functional characteristics of 

CPCs (Gonzalez et al. 2008; Cesselli et al. 2018). Recently, Lewis-McDougall et al. 

(2019) showed that CPCs derived from the hearts of aged (>70 years) patients who 

were about to undergo cardiac surgery were dysfunctional, exhibiting decreased 

proliferation, clonogenicity, and differentiation, compared to CPCs isolated from the 

hearts of middle-aged patients.  However, the characteristics of the single cell-

derived clones from aged and young patients were not different with regards to 

morphology, senescence, multipotency, self‐renewing transcript profile and 

differentiation. Our results also indicate better clonal efficiency in good LV patients, 

who were relatively young compared to patients from the impaired LV group. Our 

subsequent experiments using clonally expanded CPCs also confer similar 

observations, to the one described by Lewis-McDougall et al. 2018.  

 

In our study, the proliferation of the clonally derived CPCs from a single cell was 

unaffected by LV function and was comparable between atria and ventricle.  The 

CPCs from the LV chamber showed increased capacity to generate 

cardiosphereogenesis irrespective of good or impaired LV function. 
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Another important hallmark of CPCs is their ability to differentiate into all three 

cardiac lineages; cardiomyocytes, smooth muscle and endothelial cells. This 

important characteristic has been reported by many studies (Itzhaki-Alfia et al. 2009; 

Beltrami et al. 2003; Bearzi C 2007; Ellison et al. 2013; Cesselli D et al. 2011; Lewis-

McDougall et al. 2018).  

As with cardiac development, the pluripotent stem cell differentiates through various 

stages (Figure 6.1), including CPCs before becoming cardiomyocytes, capillaries 

and arteries(Aguilar-Sanchez et al. 2018; Cianflone et al. 2019). This differentiation 

process is regulated by various transcription factors. Therefore, through the 

manipulation of these transcription factors, CPCs could be directed to a particular 

lineage type (Aguilar-Sanchez et al. 2018; Cianflone et al. 2019). Furthermore, the 

metabolic adaptation that occurs through ageing and disease; should not be 

overlooked, as these factors alter the underlying transcription profile. To this cause, 

various cell types and differentiation protocols are used to assess their differential 

capabilities (Malandraki-Miller et al. 2018). 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Cianflone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=30881594
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cianflone%20E%5BAuthor%5D&cauthor=true&cauthor_uid=30881594
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Figure 6. 1   Developmental cardiac markers for stages of cell differentiation. 

Adapted from  Cianflone et al. 2019 

Although no inter-chamber comparison of differentiation capabilities has not been 

reported, Ellison et al. 2013; shown CPCs derived from a single cell to be multipotent 

and differentiate into all three lineages. Furthermore, when these cells are injected 

into the myocardium following an infarction; they replace up to 20% of 

cardiomyocytes and improve overall LV function. 

The present study describes inter-chamber variability in the clonally derived CPCs 

ability to differentiate into the three lineages described, and this characteristic is 

altered by impaired LV function. This finding is possibly as a result of metabolic 

adaptation that occurs during injury and ageing, which ultimately regulates the 

differentiation capabilities, through modification of transcription factors (Malandraki-

Miller et al. 2018; Cesselli et al. 2018). 

The results of this study indicate, the potential of CPCs as cell-based therapy to 

depends on several factors, including cellular retention and cell survival, which is 

estimated at 1% of donor cell at four weeks.  The long-term cell survival of these 

cells has been problematic, compounded by the unfavourable inflammatory 
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environment mediated by injured tissues  and along with possible epigenetic induced 

changes that occurs in culture (Aguilar-Sanchez C et al. 2017). However, the results 

from our study indicate that CPCs derived from LV chamber using explant culture 

technique, that are clonally expanded, might provide a better source of cells, which 

could lead to more effective cell-based therapies.  

To summarise, the four cardiac chambers are unique in both cellular and functional 

characteristics. The CPCs isolated from each cardiac chamber are likely to show 

some subtle differences in characteristics. This, along with the disease of the 

myocardium, alters the isolated CPC activities. The present study provided a much-

needed analysis to understand the inter-chamber variability and its associated 

functional characteristics. 
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7  LIMITATIONS OF THE STUDY 

 

The findings outlined in this thesis provide a further understanding of the number and 

dynamics of CPCs within each cardiac chamber and between hearts with normal or 

impaired LV function.  It shows that each cardiac chamber has CPCs that are 

capable of generating clones, proliferate, form spheroid bodies in suspension and 

differentiate into the three cardiac lineages; cardiomyocytes, smooth muscle and 

endothelial cells. In addition, the results from the study demonstrate that these 

functional characteristics are altered when compared between chambers and 

between good and impaired LV function.  However, if I were to repeat this study, I 

would address the limitations identified below for a more thorough and in-depth 

analysis of each cardiac chamber and characterisation of the CPCs.  

The design of the study, methods used to accomplish the aims and analysis 

contributes to the limitations of the study.  

This study, in its entirety, was carried out by myself. I am a cardiac surgical trainee 

with a major interest in cardiovascular research related to clinical translation in HF.  

Despite having basic lab experience during medical school time, undertaking this 

PhD was a significant learning point at every level. Therefore naturally, the learning 

curve took considerable time before optimally working within the lab.  Initial few 

months were spent optimising protocols and learning various lab techniques to 

prepare me for the experiments ahead. A significant portion of the time was spent 

learning confocal microscopy.  

 

Patient selection: 

Due to patient recruitment, the average age of the patient population in the normal 

LV function group was low compared to impaired LV group.  Several studies, as 

discussed above, show age and disease to play a critical role to CPC homeostasis. 

Hence, an aged and sex-matched patient population sample would have enabled a 

more reliable comparative analysis. Furthermore; if the study had recruited patients 

undergoing transplant, the comparison between good, impaired LV and poor LV 

group could have been made.  
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Hence, more patients population that is matched for age and sex with a 

homogeneous distribution of demographics will allow better statistical interpretation 

and conclusion.  

 

CPC location and distribution within all four chambers of the human heart. 

The anatomy of the heart is highly complex. The biopsy obtained from each cardiac 

chambers is very small and may not be representative of the cardiac chamber.  

Although we were able to analyse all four chambers of the heart, the results need to 

be interpreted cautiously as biopsies were taken at a particular point in each 

chamber.   

The tissue sections should also be analysed for evidence of cardiac fibrosis, as 

fibrosis is a hallmark of cardiac disease. The histological analysis of this would allow 

us to map the CPC location more precisely.  

Isolation, clonogenicity,  proliferation of CPCs isolated from all four chambers 

of the human heart. 

Isolated CPCs could also have been analysed using flow cytometry for other CPC 

markers before proceeding with functional in vitro assays. This additional test would 

have further strengthened the study.  

A more thorough assessment of chamber specific atrial and ventricular myosin light 

chain expression (i.e. MLC-2a for atrial specificity and MLC2v-for ventricular 

specificity) of differentiated progeny would have allowed us to determine whether 

there were any underlying chamber specific characteristics of the CPCs derived from 

each chamber. 

The functional aspect of this study only focused on clonally derived cells. A 

comparison between original CPCs and clonally derived CPCs would have provided 

a valuable insight into the functional characteristic.  

Cardiospherogenesis and differentiation potential of CPCs isolated from all 

four chambers of the human heart. 
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This study assessed clonally derived CPCs for their ability to generate cardiospheres 

and spontaneously differentiate into all three lineages. Although this provides a 

useful analysis, a comprehensive comparison could have been made between 

isolated CPCs and clonally derived CPCs. The ability of CPCs from each chamber to 

generate secondary and tertiary cardiospheres could also have been evaluated.  

 In addition to the biochemical markers used to assess differentiation; other 

biochemical markers of cardiomyocytes (GATA-4, MEF2C, α-cardiac actinin, 

troponin I, troponin T, cardiac myosin heavy chain, cx43), smooth muscle cells 

(GATA-6, α-smooth muscle actin) and endothelial (Ets1 and CD31) could have 

provided a more robust assessment. I also could have undertaken some functional 

assays to determine whether the CPC-differentiated progeny were functional, i.e. 

cardiomyocyte beating assay (Smith et al. 2014).
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8 CONCLUSION 

 

This is the first study that has examined the phenotypic characteristics and dynamics 

of the CPCs derived from all four chambers of the human heart and compared these 

properties between the chamber and between normal and impaired LV function 

patients.  

Our results show LV chamber to harbour increased CPCs, and it was shown that 

increased numbers of CPCs exist in the hearts of patients with impaired LV function. 

Furthermore, we have identified, isolated and propagated clonally derived CPCs 

from all four chambers of the human heart. The CPCs derived from the LV chamber 

can generate more cardiospheres than other chambers. Furthermore, the 

cardiomyogenic and smooth muscle expressions are higher in the LV chamber 

irrespective of the LV function.  

Understanding such fundamental characteristics of the CPCs derived from the 

cardiac chambers and its relevant biology can enable us to plan an effective CPC-

based regenerative therapy. 
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9. FUTURE DIRECTIONS 

 

This thesis gives a basic understanding of CPCs isolated from each cardiac 

chamber, and the results indicate LV chamber as a potential source of CPCs for 

cellular therapy, but this requires further validation in an animal model.  

Using an established animal model such as the MI-regeneration NSG mouse model; 

the clonally derived CPCs from all four cardiac chambers can be used used to 

evaluate the regenerative potential and make a comparison between good and 

impaired LV derived CPCs.  This in-vivo analysis will identify the most suitable 

source of CPCs for successful myocardial regeneration protocols that will allow 

better cellular retention and lead to effective cardiomyogenesis.  
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