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The suspension system is referred to as the set of springs, shock absorbers, and linkages that connect the car to the wheel system.
The main purpose of the suspension system is to provide comfort for the passengers, which is created by reducing the effects of
road bumpiness. It is worth noting that reducing the effects of such vibrations also diminishes the noise and undesirable sound as
well as the effects of fatigue on mechanical parts of the vehicle. Due to the importance of the abovementioned issues, the objective
of this article is to reduce such vibrations on the car by implementing an active control method on the suspension system. For this
purpose, a conventional first-order sliding mode controller has been designed for stochastic control of the quarter-car model. It is
noteworthy that this controller has a significant ability to overcome the stochastic effects, uncertainty, and deal with nonlinear
factors. To design a controller, the governing dynamical equation of the quarter-car system has been presented by considering the
nonlinear terms in the springs and shock absorber, as well as taking into account the uncertainty factors in the system and the
actuator. The design process of the sliding mode controller has been presented and its stability has been investigated in terms of the
Lyapunov stability. In the current research, road surface variations are considered as Gaussian white noise. The dynamical system
behavior for controlled and uncontrolled situations has been simulated and the extracted results have been presented. Besides, the
effects of existing uncertainty in the suspension system and actuator have been evaluated and controller robustness has been
checked. Also, the obtained quantitative and qualitative compressions have been presented. Moreover, the effect of controller
parameters on the basin of attraction set and its extensiveness has been assessed. The achieved results have indicated the good
performance and significant robustness of the designed controller to stabilize the suspension system and mitigate the effects of
road bumpiness in the presence of uncertainty and noise factors.

1. Introduction

In recent decades, the automotive industry has witnessed
rapid progress, and several studies in the cases of design of
car shape based on aerodynamic optimization [1], [2], op-
timization of the air intake system of the engine [3], in-
vestigation of sound quality for passenger car [4], stress
analysis and design improvement of door hinge for compact
cars [5], study of fuel consumption for various driving styles
in conventional and hybrid electric vehicles [6, 7], design
optimization of the cowl cross bar-light [8], investigation of
a rear independent suspension for light vehicle [9], and
study of nonlinear control of suspension system [10-12]

have been conducted to develop and optimize different
aspects of vehicle performance. The suspension system is one
of the main components of a car which plays an important
role in providing passenger comfort. The suspension system
is generally divided into three classes of passive, semiactive,
and active. The main task of this system is to reduce the
amplitude and unwanted effects of vibrations imposed by
road surface roughness on the car’s chassis. In addition to
providing comfort, reducing such impacts plays an im-
portant role in the transportation of goods and military
industries. For example, when transporting fruits, animals,
or delicate materials, vibrations with large amplitudes are a
matter of concern. Reducing vibrations is also essential for
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accurate aiming of military vehicles. Furthermore, damped
vibrations improve vehicle steering [13], braking perfor-
mance, and energy consumption. Additionally, fatigue can
be prevented in many parts of the vehicle such as the body
and engine.

As the most effective method for reducing the impact of
chassis vibrations, active suspension has been extensively
studied in the literature. Rizvi et al. [14] have utilized robust
control techniques for active control of a car suspension
system. Wang et al. [15] presented a new model-free frac-
tional-order sliding mode control based on an Extended
State Observer (ESO) for quarter-car active suspension
systems.

Mardani [16] has investigated energy harvesting, han-
dling, and ride comfort tradeoff between passive and active
suspension systems, using a PID controller. Khodadadi and
Ghadiri [17] have utilized PID, fuzzy logic, and Hinf con-
trollers to analyze the suspension system. Kumar et al. [18]
applied a fractional-order fuzzy PD controller to analyze the
car suspension system. In [19], the adaptive neurofuzzy
inference system control has been utilized to analyze the
active suspension system. Other control strategies related to
the control and optimization of industrial systems that can
be also applied to the control of the suspension system have
been presented in [20], [21].

Nonlinear factors and parameters of spring and the
shock absorber are the main points to be taken into con-
sideration. Furthermore, unmodeled uncertainties in the
suspension and other mechanical systems can make it dif-
ficult to control the system. In addition, the actuator can also
include uncertainty or defects, where defects are inherently
considered a type of uncertainty. The abovementioned is-
sues, that is, nonlinearity, uncertainty, and disturbances,
complicate the design procedure of the active suspension or
controller.

To reduce the effects of uncertainty and disturbances,
robust control methods are needed since not all control
methods are capable of providing stabilization [22-24].
Sliding mode controller and Hinf are two of the most im-
portant robust control methods offering a favorable per-
formance in reducing the effects of noise and uncertainty
[25-27]. It is necessary to determine the norms related to
uncertainties and disturbances, in the Hinf method. But for
the SMC method, it is only necessary to have the upper and
lower bands of these terms. Also, in the Hinf method, there is
no problem called chatting phenomenon but in the SMC
method, there is such a phenomenon [28, 29]. However,
with procedures, the effects of this phenomenon can be
reduced. In general, considering that, in this study, only the
upper and lower bands of uncertainties and disturbances are
available, the sliding mode method has been utilized to
control. It is noteworthy that, in the recent study [30], the
SMC method was used to design the controller and the Hinf
method was used to determine the optimal feedback gain.
This study shows that the SMC and Hinf methods are
combined and used simultaneously to control the dynamical
systems [31].

Given the importance of controlling and modeling the
car suspension system, this study discusses the control of this
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system and the evaluation of its stability by means of a basin
attraction set. As mentioned before, in addition to the linear
term, springs and shock absorbers include nonlinear terms.
Furthermore, these parts as well as actuators can also include
uncertainties. Therefore, for the precise simulation of the
system, all of the abovementioned parameters are considered
in this work. Due to the high capability of the sliding mode
method in controlling the nonlinear systems and over-
coming the effects of uncertainty and disturbance, this
method is considered to control it. In addition to the dis-
cussion of structure control, the discussion of the basin of
attraction set is also examined at the end of the results
section. Moreover, the effects of uncertainty in the system
and actuator together with the effects of controller pa-
rameters on the dynamical behavior of the system and the
region of attraction set are investigated. In this paper, based
on the authors’ previous related research [31-34], road
surface variations are considered as Gaussian white noise.
Obviously, the use of fuzzy-sliding mode [35], neural-sliding
mode, or second-order sliding mode controller along with
more complexity and calculations can increase the efficiency
of the control system or reduce the effects of chattering. In
addition to these cases, it is even possible to increase the
scope of research by considering the existence of faults in the
structure or investigating the fault-tolerant problem in the
presence of time-delayed Markov jump [36] and examine
the control of the faulty system. However, considering that
the main purpose of this paper is reducing uncertainty ef-
fects and considering nonlinear factors in dynamic modeling
and evaluating stability, so only the common first-order
sliding mode scheme is recruited to analyze of results.

2. Model Description

Before presenting the controller design and mathematical
molding of the quarter-car suspension system, the geometric
and physical model of this system is presented here.

Considerable research has been conducted by assuming
the suspension system in the linear range [37]. However, in a
more precise point of view, considering the actual situation
of spring and damper between car and the tire [38], as well as
considering that springs and dampers include nonlinear
terms, it is more accurate to consider these nonlinear terms
in simulation procedure. Furthermore, tire stiffness consists
of a set of linear and nonlinear terms. Therefore, in this
paper, to increase the accuracy of the physical model,
nonlinear terms of springs and damper also participate in
physical modeling.

Figure 1 shows the nonlinear quarter-car model used in
this study. As shown, the system includes two masses of M,
and M,. Sprung mass M, represents a quarter of the
equivalent mass of the vehicle and passengers, while the
unsprung mass M, represents the mass of the wheel. As
shown in the figure, a spring, a shock absorber, and an
actuator are present between masses M,; and M,.

Depending on how the spring and shock absorber are
linked between the tire and car, these parts may be con-
sidered with nonlinear terms. One such model is the
Machperson model [38]. In addition, as mentioned earlier,
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FIGURE 1: Schematic view of active quarter-car suspension model.

springs and shock absorbers naturally include nonlinear
terms; although these nonlinear terms may have a dimin-
utive effect, considering them increases the simulation
accuracy.

The spring and shock absorbers consist of linear and
nonlinear where K; and Dy, represent the constants for the
linear terms of the spring and shock absorber, respectively.
Moreover, K,and Dy, express the nonlinear spring and
shock absorber coefficients. The actuator provides the force
needed for controlling the system. The tire exhibits a stiffness
and, therefore, is modeled as a spring connected to mass M,
from the top, while its other end is in contact with the road
surface from the bottom. The coefficient K,; represents the
constant for the linear term of the tire stiffness, while the
coefficients K, and K,; denote the constants for its non-
linear terms. The vertical displacement of masses M, and M,
is also shown and indicated by x; and x,, while x, represents
the vertical variations in the pavement.

3. Mathematical Modeling

3.1. Governing Dynamic Equation of Quarter-Car System.
The governing dynamic equation of the system shown in
Figure 1 can be represented as follows:

M%) + K (%) = %) + Ko (%, - x2)3 + Dy (% = %;) + Dy (%, — 9&2)2 + f1(xt) =h(x,t)u
M,x, - K (x1 - xz) -Ky (x1 - x2)3 -D, (351 - ’52) -D,, (’51 - xz)z (1)
+Kyy (x5 = x0) + Ky (%, — x0)2 ~ Ky (x, - xo)3 + fr(x,t) = —h(x,t)u,

where X, and X, represent the time derivatives of x; and x,
and u is the actuator force, in which its magnitude is
specified by the controller. Given that actuators are not
usually considered to be ideal and include uncertainty, the
bounded function h(x,t) was considered to model the ac-
tuator uncertainty. Note that the minimum value of /i (x, t) is
positive and denoted by h. Functions f, (x,t) and f, (x,t)
also signify the unmodeled uncertainty of the system that has
a known upper limited value.

3.2. Sliding Mode Controller Design. In this section, the
sliding mode controller has been designed to stabilize the
vertical movement of mass M. The goal is to stabilize the
vertical movement of M, that is, x,, and to track x,. To this

€, =e,,
i 1
€y =—

M,

Note that the second relation of equation (1) is used to
determine the value of x, in each time step. In an actual
system, there is no need to solve such relations for deter-
mining x,, because its values are directly obtained from the
installed sensors. However, since this study is a simulation,
the second relation in equation (1) must be solved. More-
over, the vertical variations of the road are considered as

[_Ksl (x1 = %) —Kg (x; - xz)3 = Dy (% = %;) = Dy (% - 3&2)2 - f1 (0 +h(x, t)”] — Xy

end, the tracking error is considered as e = x; — x; [39]. The
tracking error is also expressed by € = x; — x;. Assuming
e = e}, the dynamic of tracking error can be expressed as

{e:xl—xd,

é=x,— X,
Or (2)
€ =6y
. . T Xg
é, = X,

By determining X, from equation (1) and substituting it
in equation (2), the error dynamics can be written as

(3)

white Gaussian noise; this section briefly discusses the
stochastic It6 and Stratonovich integrals.

The Itd and Stratonovich integrals are explained in the
following given their application in solving stochastic dif-
ferential equations. These two integrals are widely used to
solve such equations in cases where the studied system is
subjected to the Wiener process. Consider I 0 h(t)dw, where



w: [0,T] x QO — R represents a Wiener process and X:
[0,T] x 3 — R is a semimartingale compatible with fil-
tration. Under these conditions, and relying on the Riemann
Sum, the above integral value can be expressed in two ways:

THu) )l @

B+t

S )@

Equations (4) and (5) represent the integral forms of It6
and Stratonovich relations, respectively, where N is the
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number of divisions in the time interval [0,T] and j is the
counter. df = T/N represents the time interval between two
samples. It must be noted that the Wiener process is the
integral of white noise; in other words, x,dt = dw.Since the
term K, x,dt represents the term h(t)dw and the value of
K,, is constant with respect to time, It6 and Stratonovich
assume identical forms according to equations (4) and (5)
[40].

Having discussed the It6 and Stratonovich integrals, the
design of the sliding mode controller is explained in the
following. Considering e; = x, — x; and e, = X; — x; and by
placing x, = e, + x; and X, = e, + x; in equation (3), the
dynamic error equation can be rewritten as follows:

€, = e,
] , , , (6)
éy = A [_Ksl (e, +x,) - Ky, (e, +x,)" — Dy (é; +x,) = Dy (é; +%,)" — f1(e;x,1) + h(e, x, t)u] - Xy
1
s=e, + Aey,
where x, = x; — x, and X, = x; — X,. (7)

To design the sliding mode controller, we consider the
sliding surface s and its time derivative as follows:

S=é,+Aé; =é, + Ae,.

By inserting e, and ¢, from equation (6) into (7), we have

ST [_Ksl (e1+x,) ~ Ko (e +x,)" = Dy (€, +%,) = Dy (6 +%,)" = f1(e.x. 1) + h(e,x, t)u] = X4 +Ae,. (8)
1

3.2.1. Lyapunov Function and Controller Stabilization:.
In this section, we shall discuss the Lyapunov function and
how to stabilize the controller using the time derivative of
the Lyapunov function [41-43].

Definition 1. The Lyapunov point X is considered stable if
there exists £ > 0 such that § (¢) > 0 and ||x (0) — X|| < §; then,
lx(t) = x| <& for all t>0. Note that the initial condition
é (¢)must exist for £> 0.

Definition 2. 'The fixed point X is asymptotically stable if it is
stable and there exists # >0 where lim,_,[x(t)-%| =0
whenever||x (0) — X[| < .

The Lyapunov stability and asymptotic stability are shown
in Figures 2(a) and 2(b), respectively. As shown in Figure 2(a)),
in Lyapunov’s stability, ||x () — X|| lies in the surrounded space
and remains in this region for different times. Note that, in this
case, the expression |x(¢) — x| is not necessarily required to
reach zero as time approaches co. However, as shown in
Figure 2b), x, (t) moves toward X over time, and as t — oo,
the value of ||x (t) — x|| approaches zero.

For Lyapunov stability, & (¢) actually represents the radius
of basin attraction set X. The aforementioned concepts help
better understand the design and function of the sliding mode
controller. In the absence of uncertainty, noise, and distur-
bance, asymptomatic stability is achievable for deterministic

systems using sliding mode controllers. However, these factors
are inherently present in dynamic systems, making it impos-
sible to have asymptotic stability, and merely Lyapunov stability
would be achievable. In deterministic systems, we can imple-
ment all the specifications accurately to ensure asymptotic
stability, and even the convergence rate of the dynamic error
can be specified. However, in presence of uncertainty or noise
in the system, asymptomatic stability cannot be guaranteed. As
shown in equations (1) and (8), the values for parameters of
h(x,t), f;(x,1), f5(x,1), and x, are unpredictable and thus
cannot be accurately modeled in the controller. Therefore,
asymptomatic stability for this system may not be guaranteed,
and only the Lyapunov stability can be achieved.

In the following, a definition is given for Lyapunov’s
function that its existence implies the existence of system
stability. Naturally, it should be noted that the lack of such
function is not a reason for instability. Actually, the existence of
such a term is a sufficient condition for stability. Although this
definition may not provide a straightforward method for de-
termining the control law, but based on this definition, the
control law will be presented to stabilize the feedback control
system.

Definition 3. Consider the energy function or Lyapunov
function V such that V > 0. If V <0, then the stability of this
system is guaranteed.
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FIGURE 2: (a) Lyapunov stability and (b) asymptotic stability [44].

In fact, V <0 indicates the decrescent rate of the energy
function, which indicates a decrease in energy and tendency
of V toward zero (for V >0, the energy of the system
gradually increases and the system goes toward instability).
In the continuation of this section, according to the above
definition, we will determine the control law for the feedback
control system with the Lyapunov stability approach.

The considered energy function is V = (1/2)s?, which
represents a positive function. The time derivative of this
function is equal to V =ss. Now, if we can satisfy the
condition V =ss<0, the control feedback rule may be
presented according to Definition 3.

By inserting § from equation (8) in V = ss, we have

V= S{ML [—Ksl (e, +x,) — Ky (e, +x,)° =Dy (é, + %,) — Doy (6, + %,)° = £, (x,8) + h(x, t)u] - X+ /162}. (9)
1

Now for stability, we have to determine u in such a way
that the above equation remains negative.

Determining u through this relationship is complex.
Therefore, in the following, we define an upper limit for V. If
the seminegative condition for this upper limit is met, then
the condition V <0 is also met. To determine u, we assume
that the whole expression to the right of this function is equal

to —nh(x,t)|s| where # is a positive number. According to
n>0, h(x,t)>0, and [s|>0, —nh(x,t)|s| and V become
negative and the condition of stable feedback control is
guaranteed. In fact, this equation is the basis for determining
control law and all calculations made in equations (12) and
(13) are to determine this law:

. slh(x,t) [ 1 3 A L2 Xl A
Ve K ley +x,| + Kgley + x,|” + Dy |é, + x,| + Dy (€, + %,,)" + F + |M_| tor le,|
1 0 1 1
h(x,t 10
SheDu (10)
Ml
V< —nh(x,t)lsl,
where F, = sup{|f, (x,t)|} and h(x,t)>h,>0 and 7 rep-
resents a positive number. The positive function F can then
be defined as follows:
1 3 . . Xq A
F = T K ey + x,| + Kgley + x,|” + Dy |é, + %,| + Dy (6, + %,)° + Fy + % tor les] |- (11)
17%0 1 1



Inequality (10) can be rewritten as follows:
h(x,t)u
M

1

V <|sIFh(x,t) +s = Jslyh (x, t). (12)

Considering the right side of (12) and dividing it by
h(x,t), the following relation is obtained:
sy = b= bIE,
(13)

u=-M, (11+F)% = —-M, (1 + F)sign(s).

The above equation indicates the control rule obtained
based on the sliding mode method, where the function
sign (s) is defined as follows:

1, s>0,
sign(s)=4 0, s=0, (14)
-1 s<0.

Equations (11) and (13) together with the relation of s =
é, + e, are the main blocks to design the sliding mode
controller. To simplify the feedback process and the basis for
determining the control law; the method of determining
control law and the control process is presented in Figure 3.
As it turns out, the most complex part of control design is
determining the function of F. To determine this term in
each simulation and in each time step, the values of x;, x,,
X, and x, are taken from the car model (using sensors in the
real system). Also, X; and X; are obtained based on reference
input or x,. Also, the sliding surface of s can be obtained
using blocks of Ae; and de,/dt. Finally, according to the sign
of sliding surface and using —M, Fsign (s) and —M, #sign (s),
the control force is determined, and it is imposed to the
suspension system. As it is known, the design terms consist
of A and n where they should be determined by the designer.
Another factor that is very important in the dynamic be-
havior of the system is uncertainty. There is also another
parameter of o that will be discussed later, which will be used
in the form of s/ (|s| + ¢) and instead of sign (s) to reduce the
chatting phenomenon. Therefore, in the results section, the
effects of these parameters on the dynamic behavior of the
suspension system will be fully investigated.

In the continuation of this part, the effects of controller
parameters of convergence speed of controller will be dis-
cussed. If the error is considered as X = x — x;, the sliding
surface equation can be reflected in the form of
s(x,t) = ((d/dt) + )" '%. In this article n=2. Also for
n =3, the sliding surface is presented in the form of
s =X + 2% + A’X. Given the initial conditions % (0) = e (0),
the equation for the sliding surface represents a linear
differential equation with constant coefficients. Based on
[45], the tracking error tends to zero exponentially and with
a time constant of (n—1)/A, where for n = 2, it is equal to
1/A. This time constant is for the case where the initial error
is placed on the sliding surface. If the initial position of the
error is not on the sliding surface, it reaches the surface in
less than |s (¢ = 0)|/% and then starts sliding on this surface.
Therefore, the parameters of A and 7 are the most important
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parameters in the study of convergence speed and their effect
on the dynamic behavior of the system will be addressed in
the continuation of this work.

Of course, the important point is that, due to the ex-
istence of white Gaussian noise, the tracking error or the
position of the system will never be settled at zero. This state
is like an example of a forced vibration with stochastic
nature.

In the above section, the design method of a sliding
mode controller was explained based on the Lyapunov
function. In the following section, some notes are discussed
on designing a sliding mode controller for a dynamic system
that is only affected by white noise. Consider the sliding
mode surface as follows [46]:

s=M(x,t) + B(x,t)u + H(x,t)v, (15)

where v expresses the Wiener process. Under these condi-
tions, instead of the above equations, the definition of the
Lyapunov function can be alternatively used for a stochastic
system as the range of the basin attraction set can be more
conveniently determined. Note that in this case, we could
consider the Lyapunov function as V = (1/2)E[s?] instead of
V = (1/2)s? where E[e] indicates the expected value. In this
case, instead of V, we must use dV = (1/2)E[d (s%)], where
dV' represents infinitesimal variations in V. Moreover,
contrary to the «case considered in this study
assuming (d/dt)[(1/2) (s?)] = 2ss, in the new situation, the
following equation based on Ito’s definition of derivation
must be used for determining the infinitesimal changes in s:

d(s”) = 2sds + dsds. (16)

Further information can be found in [47, 48]. Consid-
ering that no information is available on the expected values
E[x,] and E[x,], this method may no longer be used to
design a sliding mode controller, since x, and x, are not
necessarily a random Wiener process or white noise.

At the end of this section and before presenting the
results, we are interested in presenting the importance of
conservatism in controller design. One of the important
topics in designing a controller based on the definition of
Lyapunov function is conservatism in the presence of
uncertainties. Reducing such a factor can increase the
quality of system control or decrease the controller force.
Considerable studies have been done in this field, which
can be stated as the Linear Matrix Inequality (LMI) and
parameter-dependent Lyapunov function methods [49].
The use of the LMI method to reduce the conservatism of
linear systems is presented in [50]. One of the key features
of the LMI method in reducing conservatism is its ability to
be generalized to nonlinear systems and its easy imple-
mentation in MATLAB software [51]. Another study that
has been done in this field is based on the quadratic
Lyapunov function [49]. Other investigations in this case
and based on the definition of Lyapunov function are
presented in [49]. In this study, due to the presence of
uncertainty, reducing the conservative can improve the
controller design or decrease the control force. However,
due to the fact that the study of this topic in this paper
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Sliding mode controller

d2

dar 4

A4

. | construction [«
of F <

X2 X

K B “ [ Modelof| | &
"2 quarter car[
+
FIGURE 3: Block diagram of determining feedback control.
TABLE 1: Suspension parameters [51].
Suspension parameters Value
Sprung mass M, 295kg
Unsprung mass M, 39kg
Linear damping coefficient D, 3482 Ns/m
Nonlinear square damping coefficient D, 580 Ns/m?
Linear spring stiffness coefficient K, 15302 N/m
Nonlinear square spring stiffness coefficient K, 2728 N/m
Linear tire stiffness coeflicient K, 60063 N/m
Nonlinear square tire stiffness coefficient K, 42509 N/m
Nonlinear cube tire stiffness coefficient K5 22875N/m
0.03 T T T T T T T
0.02
0.01
g
g 0
L
g
8
< -0.01
23
2
-0.02
-0.03
-0.04 1 1 L L L 1 1

—— Uncontrolled system behavior
—— Controlled system behavior

FiGure 4: Uncontrolled and controlled system behavior using designed sliding mode controller for A =1 and # = 10.

causes much complexity and increases the unconventional 4, Results and Discussions

scope of the paper, it is generally referred to here. Due to

the significant importance of reducing conservatism, this  4.1. Control of Quarter-Car System. In this section, we intend
issue should be studied in future studies for the design of ~ to present and discuss the extracted results. The specifica-
controllers in nonlinear dynamic systems in the presence of ~ tions of the studied system are presented in Table 1
white Gaussian noise. according to the ISO 2631-1:1997 standard [51]. To
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FiGure 7: Controlled system behavior for different magnitudes of o and A = 1, # = 10. (a) (b)
TaBLE 2: Maximum displacement versus parameter of o.
o 0.5 0.05 0.005 0.0005
Maximum displacement 0.047 0.006 0.00094 0.00021

obtain the results, x; is considered as a constant with zero
value.

Figure 4 shows the behavior of vertical movement of
mass M, in the controlled and uncontrolled cases for A =1
and n = 10. As shown in the figure, the use of a sliding mode
controller significantly reduces the amplitude of the

vibration. Furthermore, the behavior of the active system is
negligible compared to the passive system. Figure 5 shows
only the behavior of the active system.

As mentioned, the chattering phenomenon is a major
problem of the sliding mode controller. Given the function
sign(s) in the control force equation, the amount of this



10

120 T T T T T T T

100 + g

80 1

60 - i

20 +

-20 . . . . . . .

Time (s)

(©)

Complexity

300 T T T T T T T

200

100

Time (s)

(@)

FIGURE 8: Variation of the control parameter of u(t) for Figure 7. (a). o = 0.5, (b). ¢ = 0.05, (c). 0 = 0.005, and (d). ¢ = 0.0005.

TABLE 3: Maximum amount of control force u(t)for various
amount of .

o 0.5
39.55

0.05
222.10

0.005
116.61

0.0005
260.62

Maximum amount of u(t)

force changes its sign at a high frequency, which is due to the
fact that sign (s)is discontinuous at s = 0. The changes in the
control force presented in Figure 5 are depicted in Figure 6.
As shown, the control force changes sign at a high frequency.

Note that the chattering phenomenon damages the
actuators and reduces its lifecycle. Therefore, most designs of
the sliding mode controller try to somehow eliminate the
chattering phenomenon. As mentioned before, the function
sign(s) is responsible for the chattering phenomenon be-
cause of discontinuity at point zero. To eliminate chattering,
this article uses s/ (|s| + o)instead of sign(s), where o is a
positive and small number mathematically defined as
follows:

1 Is| > o,

Py (s) ={ (17)

o ls, Is| <o.

The function ¢, (s) is an approximation of sign (s) and is
not its exact equivalent. The accuracy of this approximation
is increased for smaller o values.

Figure 7 shows the results of chattering reduction for
different values of o.

The maximum displacements shown in Figure 7 are
presented in Table 2. As can be seen, with a decrease of o, the
level of maximum displacement decreases.

Moreover, variations of control forces for different
values of oare presented in Figure 8. As shown in Figure 7, by
decreasing o, the vibration amplitude is decreased. As shown
in Figures 8(a)-8(c), the use of the function ¢, (s) eliminates
the chattering phenomenon. However, as shown in
Figure 8(d), the chattering phenomenon is still present for
o = 0.0005, suggesting that chattering cannot be eliminated
for very small o values. Therefore, for proper operation of the
controller and reduction of the vibrations, the values o =
0.05 and ¢ = 0.005 are suitable, as they reduce the vibration
amplitude and eliminate the chattering phenomenon. Note
that, however, for o = 0.5, chattering is not detected, and
according to Figure 7(a), the amplitude of vibrations is
significant in this situation.

Also, the maximum amount of control force u(t) for
various amounts of ¢ is presented in Table 3. As it can be
seen from this table, the maximum amount of u (¢) increases
with the decrease of o.

In this section, we shall discuss the impact of changes in
A and 5 on the behavior of the system. Figure 9 shows the
behavior of the system for various A values when 7 = 10. As it
can be seen, the maximum amplitude of the system behavior
decreases as A increases.

Also, the maximum amount of displacement in terms of
land is shown in Table 4. As can be seen from this table, the
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TaBLE 4: Maximum displacement versus A.
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TaBLE 5: Maximum displacement versus #.
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maximum amount of displacement decreases with the in-
crease of land increases.

The behavior of the controlled system for various values
of n and A = 1 is also shown in Figure 10. As evident in the
figure, the amplitude of the system for # = 100 is consid-
erably higher than that at # =1 and 4 = 10.

The maximum displacement in terms of different # is
also shown in Table 5. As can be seen from this table, the
maximum amount of displacement increases with the in-
crease of 7. But as can be seen from this table, the maximum

displacements for # = 1 and 7 = 10 are almost the same, but
the maximum displacement for # = 100 is significant.

In this part, we intend to examine controller robustness
in the presence of system uncertainties. The results are
obtained for 0 = 0.05, A = 1, and # = 10, where f,(x,t) =
ax10%sin t and f,(x,t) = x 10%sin(¢). The behavior of
the controlled system for different a and f3 values is dem-
onstrated in Figure 11. As shown by these figures, the sliding
mode controller is highly capable of reducing the effects of
uncertainty.
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The behavior of the system for different values of « and 8
in the passive case is shown in Figures 12 and 13. As shown,
uncertainty significantly affects the behavior of the passive
system, considerably increasing the amplitude of the system
behavior.

The maximum displacement values shown in Figures 11
and 12 in terms of different a and f3 are presented in Table 6.
As can be seen from this table, with increasing « and S, the
maximum amount of displacement also increases. It is
noteworthy that the maximum amount of displacement for
the o = 8 = 6 is significant compared to other values.

In what follows, we shall discuss the controller robustness
in the face of controller uncertainty and system uncertainties.
For this case, it was assumed that a«=f=3 and
h(x,t) = 1+ y sin t. The resulting system behavior is depicted
in Figure 14 for different values of y. As indicated in this figure,
the controller offers high robustness in the presence of the
actuator uncertainty, such that the system behavior is negligibly
affected in both the absence and presence of uncertainty in the
actuator. The results indicate the high robustness of the
controller against actuator uncertainty.

4.2. Effect of Design Parameters and System Specifications on
the Changes in the Lyapunov Function and Its Derivative.

In this section, the Lyapunov function and its dependence on
parameters # and o are discussed. In Figure 15(a), the di-
agram of dV'/dt is plotted with respect to V' for the passive
case. As shown, the diagram V always assumes positive
values, but its derivative can take both positive and negative
values. Note that V' = (1/2)s?, or in other words s = + /2V.
The variation of dV/dt with respect to s was used in this
paper for a more accurate analysis of the results. In
Figure 15(b), the diagram of dV'/dt is plotted with respect to
s, which can assume both positive and negative values.

Figures 16(a), 17(a), and 18(a) depict dV/dt in terms of V'
for # values of 1, 10, and 100. As shown, the Lyapunov
function and its derivative always assume positive and
negative values, respectively. By comparing the above-
mentioned figures, it follows that, as # increases, the domain
or the maximum value of the Lyapunov function and its
derivative grow wider. To better illustrate this, we are going
to examine this observation also on the diagram of dV/dt
with respect to s. Figures 16(b), 17(b), and 18(b) depict
dV'/dt with respect to s for # values of 1, 10, and 100. As
shown, as # increases, the range of variation in salso
increases.

Figures 17(a) and 17(b) show the diagrams dV/dt with
respect to V and s. As can be seen, the range of variations in s
is greater for # = 10 compared to # = 1. The diagrams dV'/d¢
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with respect to V and s for # =100 are plotted in
Figures 18(a) and 18(b). As mentioned before, increasing #
increases e, or, in other words, according to the definition of
the stability of the Lyapunov, by decreasing #, the value of
& (¢) decreases, causing the attraction set to shrink, in which
case the system becomes more stable according to the
definition of Lyapunov stability.

In the following section, we plan to discuss changes in
dV/dt with respect to V and s to eliminate chattering. As
mentioned earlier, in order to eliminate the chattering
phenomenon, s/ (|s| + o) is used instead of sign (s), where o
is a small number. Note that s/(|s| + ¢)is an approximation
of the function sign (s), the accuracy of which is acceptable if
o is sufficiently small. However, if inappropriate values are
selected for o, the sign of dV/dt is affected, causing it to
contradict its positive definite condition. In Figures 19-23,
the diagram dV/dt with respect to V and s is plotted for
different values of o, A=1 and 5 =10. A shown in
Figures 19-21, dV/dt can also take positive values, meaning
that the system can become temporarily unstable from the
viewpoint of the Lyapunov theory. In fact, in such condi-
tions, the chattering phenomenon is eliminated. The dia-
gram dV/dt with respect to s for o =0.05 is plotted in
Figure 20. As shown, the sign of the diagram dV/dt with

respect to s remains unchanged in different time steps.
However, as shown in Figures 22 and 23, for ¢ = 0.0005 and
0 =0.00005, the diagram dV/dt satisfies the absolute sta-
bility condition and dV'/dt assumes negative values for all s
values. As previously shown, the system exhibits a chattering
behavior for ¢ =0.0005 and o =0.00005, since dV/dt
changes signs in each time step.

5. Conclusion

Given the importance of active control for car suspension
systems, this paper addressed the design and dynamic analysis
of a quarter-car system. To achieve more precise modeling of
the suspension system, nonlinear factors in the springs and
shock absorber were taken into consideration. Furthermore,
uncertainty in the system and the actuator was taken into
account. Road surface variations were modeled as Gaussian
white noise. The sliding mode controller was employed to
control the quarter-car system given that this controller is
robust to uncertainty and noise and is a suitable controller for
nonlinear models. The dynamic equations governing the
behavior of the system were presented and the sliding mode
controller was designed for the studied system. The control
results for different cases of uncertainty were obtained and
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compared with the behavior of a passive system. The effect of
controller parameters on the system behavior and the con-
troller robustness to uncertainties and white noise were
presented. The results show that the sliding mode controller is
capable of reducing uncertainty and noise effects as well as
stabilizing the system. Finally, the effects of controller pa-
rameters on the system stability from Lyapunov’s view as well
as on the basin attraction set were presented.

After presenting of concluding remarks, the authors are
interested in presenting some future works that can be
studied with the presented method of this paper.

Performing such control activity is possible in the presence
of white Gaussian noise for other dynamic structures, for
example, investigation of the dynamic behavior of the tall
building in the presence of ground excitation or earthquake, in
which the ground displacement is considered as white
Gaussian noise; vibrations analysis of marine structures in the
presence of storms or sea waves using the active displacement
reduction system, for such research, sea waves considered as
white noise; aircraft wing vibrations in the presence of wind
force and reducing such vibrations by using mass or
vibroimpact dampers, in which wind force can be considered
as Gaussian white noise; and vibration evaluation of the dy-
namical system in the presence of time-delayed Markov jump.
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