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ABSTRACT 

 
Background: The pathophysiology of dyspnoea (‘breathlessness’) is poorly understood and 

treatment options limited.  This is particularly true for heart failure in which dyspnoea is a 

cardinal symptom, even when the heart failure is optimally managed.  This thesis aims to 

untangle mechanisms and utilise this knowledge to optimise heart failure management. It 

focuses on the potential of nebulised furosemide as an adjunct treatment, given its excellent 

safety record and existing evidence that it modulates dyspnoea via direct action on lungs.   

Methods: A multi-dimensional questionnaire was used to survey the prevalence of dyspnoea 

in the heart failure community.  A randomised, double blind, placebo-controlled crossover trial 

(RCT) was then performed in healthy participants to determine the specific components of 

dyspnoea that are relieved by the action of furosemide on the lungs.  This study led to the 

design of a feasibility RCT in patients with heart failure using the visual analogue scale (VAS) 

ratings of the ‘air hunger’ (AH) component of dyspnoea as the primary outcome measure.  The 

RCT itself; i) addressed other issues that could account for variability in relief seen in previous 

studies, ii) explored blood biomarkers of heart failure in relation to dyspnoea and iii) provided 

guidance for future definitive clinical trials. 

Results: 1) 47% of patients experienced dyspnoea in the community.  Dyspnoea-12 scores 

correlated with New York Heart Association class, with many in class III experiencing dyspnoea 

at rest. 2) Nebulised furosemide specifically relieved AH induced in healthy participants but did 

not affect the 'work/effort' component.  Relief was only with nebulised, not intravenous 

furosemide. 3) Breathing furosemide quickly or slowly did not alter dyspnoea relief, but 

ventilation was not matched. 4) Cardiopulmonary exercise testing (CPET) produced an average 

VO2peak of 54±15% predicted, with a measurable anaerobic threshold in 73% of tests and 

raised dyspnoea to 42±19%VAS. 5) Nebulised furosemide resulted in no significant 

improvements in exercise capacity.  6) Cardiac biomarkers increased appropriately and 

returned to baseline within 1 hour of exercise.  The maximal absorption efficiency of nebulised 

furosemide was 2%.   

Conclusion: 1) Dyspnoea is a prevalent symptom in heart failure, comparable to chronic 

obstructive pulmonary disease. The NYHA classification may require clarification regarding 

presence of breathlessness at rest.  2) Relief of dyspnoea with nebulised furosemide occurs via 

a mechanism within the lungs and should be targeted at those in whom ‘air hunger’ 

predominates.  3) CPET is a feasible method for dyspnoea assessment in heart failure.  4) Fully 

powered RCT of nebulised furosemide in heart failure are warranted taking on board the 

preliminary information gathered in this thesis to optimise treatment effect.    
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INTRODUCTION  
 

Severe breathlessness or dyspnoea is a frequent and debilitating symptom observed in 

patients with broad ranging pathologies including pulmonary disease, heart disease, 

neuromuscular disorders and cancers.  Dyspnoea is a cardinal symptom of heart failure 

irrespective of the underlying aetiology and progresses as the disease advances.  Heart 

failure is a major global disease, affecting around 26 million people worldwide1 and 

accounting for 8.5% of deaths in the US2.  Dyspnoea occurs both in patients with 

preserved and reduced ejection fraction, and can be acute, such as in the context of 

acute pulmonary oedema, or chronic. The work of this thesis begins with a survey of 

dyspnoea within the community to better understand the scope of the problem in 

heart failure.    Dyspnoea is described as one of the most unpleasant/distressing 

symptoms experienced by the patient and yet the mechanism behind dyspnoea in 

heart failure is not fully understood.  Assessment can therefore be difficult and 

treatment options are often limited.  Despite proven therapies in heart failure for relief 

of symptoms and mortality benefit seen from beta-blockers, angiotensin-converting-

enzyme inhibitors or angiotensin receptor blockers, mineralocorticoid receptor 

antagonists, diuretics and device therapy such as cardiac resynchronisation, many 

patients remain dyspnoeic3.    

A better understanding of the mechanisms of dyspnoea is needed to be able to 

identify and implement much needed new treatment options.  This thesis continues by 

exploring the mechanisms of dyspnoea.  This initially involves studying healthy 
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volunteers and then focuses on the potential application of nebulised furosemide for 

dyspnoea relief in chronic heart failure (CHF).   

This introduction covers the different types of dyspnoea, the current theories 

regarding the potential underlying mechanisms, its assessment, and the treatment 

options available; whilst focusing on nebulised furosemide as a putative future 

therapy.  

1.1. CURRENT UNDERSTANDING OF DYSPNOEA 

For a long time dyspnoea was thought to be a single sensation arising from a single 

source (respiratory muscles).  The current consensus for the definition of dyspnoea is 

that it is a subjective experience of breathing discomfort that is comprised of 

qualitatively distinct sensations that may vary in intensity4.  It is modulated by multiple 

interactions involving physiological, psychological, social and environmental factors5.  

Advances have also been made with regard to assessment of dyspnoea with the 

advent of multi-dimensional dyspnoea questionnaires6, 7 and establishment of 

experimental models capable of inducing the individual components of clinical 

dyspnoea.  

At least three distinguishable sensations of dyspnoeic discomfort have been identified; 

air hunger, work/effort, and chest tightness;8-10 thus the sensation of breathlessness 

due to excessive exertion feels different to that caused by asphyxiation.  Individual 

component sensations can be separately manipulated and therefore are thought to 

arise from different neural pathways11-14. These different types of dyspnoea may open 

up the possibility for different types of targeted treatment.  
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1.1.1. Mismatch theory of dyspnoea 

In its simplest form, dyspnoea is thought to be both related to an awareness of 

increased breathing and the perception that the drive to breathe has not been 

matched by adequate pulmonary ventilation4, 15. The size of the resulting mismatch 

between the voluntary motor command and the amount of chest wall expansion or 

lung stretch, gives the severity/intensity of the sensation perceived, Fig. 1.1.  This is 

known by a variety of terms such as efferent-reafferent mismatch, length-tension 

inappropriateness, or neuromechanical dissociation16-18.   

Site of perception of dyspnoea: 
Insular cortex
Anterior Cingulate
Amygdala
Cerebellum

Motor Output

Motor cortex
Volitional drive

Brain stem 
Respiratory 
Complex

Ventilation Demand  = Ventilation

No Dyspnoea

↑Demand
Ventilation

Dyspnoea

Demand
↓Ventilation

Dyspnoea

Peripheral afferents

Efferent copyMotor command

Sensory Cortex

• Peripheral chemoreceptors ↑PaCO2, ↓ PaO2, ↓pH

• Lung receptors
• Cardiovascular receptors

Medullary central 
chemoreceptors

↑PaCO2

Limbic system 
emotions

Respiratory Muscles/
Chest wall

Association cortex: Thought and Experiences

Thalamus

 Figure 0.1.  Mismatch theory of dyspnoea 

There are multiple central respiratory controllers in the brain stem, mechanoreceptors 

in the lung and chemoreceptors in the peripheral circulation and medulla that control 

breathing.  A mismatch between the efferent copy (need to breathe) and feedback 

from peripheral afferent receptors (how much you are breathing) results in dyspnoea.    

PaCO2 = partial pressure of carbon dioxide, PaO2 = partial pressure of oxygen.   
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Sense of air hunger 

When the spontaneous respiratory motor drive of the brainstem15 is increased due to 

hypoxia, hypercapnia, acidosis or exercise, this information is relayed as a ‘corollary’ 

copy to the cerebral cortex19, 20 leading to the air hunger21, 22.  However, when subjects 

are free and able to respond with larger tidal volumes, increased vagal afferent 

discharge from lung mechanoreceptors inhibit the ‘corollary’ copy as it ascends to the 

midbrain19. Four different lung mechanoreceptors have been identified; slowly 

adapting pulmonary stretch receptors (saPSR), rapidly adapting pulmonary stretch 

receptors (raPSR), pulmonary C-fibre receptors and bronchial C-fibre receptors.  All of 

these transmit information to the central nervous system18, 23 and information from 

these receptors may modulate the intensity of air hunger24.  If the reflex increase in 

ventilation is prevented due to clinical pathology or due to experimental intervention, 

the sensation of air hunger occurs.  Neuroanatomical studies in humans are 

challenging and therefore little is known about how afferent pulmonary information is 

processed centrally.  Animal studies have proposed that the site of comparison of the 

signals reporting need to breathe and signals reporting the prevailing ventilation for air 

hunger resides within the midbrain/thalamus region25.  The nucleus tractus solitarius 

(NTS) in the medulla receives afferent information from peripheral sensors via the 

vagal C fibres26.    The NTS processes the signals and determines the output of sensory 

information from the lungs to downstream reflex pathways and to areas within the 

higher brain26.  A study in decerebrate, paralyzed and ventilated cats with the spinal 

cord transected at C7-T1 and carotid sinus nerves cut but vagus nerve left intact found 

neurons with respiratory-associated rhythmic activity.  Changing the pulmonary vagal 

input via a variety of methods showed that the vagal input (probably from PSRs) 
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inhibited the respiratory-associated firing of neurons by a direct mechanism which was 

independent of a vagal effect on medullary respiratory drive25.  This suggested that 

these neurons are involved in relaying information to the cortex where it could be 

interpreted as the sensation of dyspnoea and if the lungs expand this would be 

expected to lessen the sensation.  This occurs in automated reflex breathing.  This is in 

contrast to the conscious awareness of the outgoing respiratory motor command to 

the ventilatory muscles.   Air hunger is thought to increase when information from 

saPSR decrease24 for a given respiratory motor drive.  This suggests an inhibitory effect 

of saPSR activity on the sensation of air hunger27-30.  Conversely, an increased drive to 

breathe from arterial blood gas disturbance in the absence of changes in saPSR activity 

associated with fixed tidal volumes will accentuate air hunger24, 25, 31-37.   

Sense of breathing effort 

Excessive respiratory muscle activity (e.g. due to increased impedance to inspiration12, 

13, 38, 39 such as from weak breathing muscles, interstitial lung disease and chronic 

obstructive pulmonary disease (COPD)), often results in the work/effort type of 

dyspnoea 9.  When there is an increase in voluntary motor drive from the cerebral 

cortex40, 41 to the respiratory muscles; this triggers a sensation of respiratory effort12, 

13.  If the brain sends an efferent voluntary motor command to the respiratory muscles 

to increase tidal volume, a corollary discharge of this signal reports the demand for 

breathing to the brain.  If the returning afferent signals (reporting the prevailing level 

of ventilation) from the mechanical receptors in the airways and chest wall, show that 

expansion is less than expected, then the cortex registers that the inspiratory muscles 

are weak or not working properly and that the system is ‘loaded’5, 42, 43.   



6 
 

1.1.2. Psychological influences on dyspnoea 

It is well documented that there is a strong psychological component to dyspnoea44.  

For example, breathlessness during light exercise is not unpleasant whereas 

breathlessness present to the same degree in certain diseases can be intolerable.  It is 

therefore not just the physical sensory input but the context in which it arises that 

culminates in the symptom of dyspnoea.  The areas of the brain that have been 

identified in functional brain imaging studies of dyspnoea perception are also 

associated with psychological factors (e.g. fear and anxiety) or have great connectivity 

to areas known to be involved in manifesting these psychological states.  For example, 

the amygdala which is involved with emotion processing and sensory modulation has 

been shown to be activated in several (but not all) functional MRI dyspnoea studies45, 

46. Another area likely to be involved in the psychological processing of dyspnoea is the 

pre-frontal cortex.  This is central to emotional processing, including threat/fear 

awareness associated with unpleasant sensations (e.g. pain), and has recently been 

identified during breathlessness-related anxiety processing in COPD patients47-49.  It is 

likely that the activation of brain regions depends on the type of breathlessness or 

breathing stimulus employed, and that these networks may be different between 

patients and healthy controls. This is particularly salient for ‘emotional’ breathlessness 

processing, which is highly subjective and dependent upon context.  

1.2. CLINICAL DYSPNOEA 

The main causes of dyspnoea are increased chemical or neurological drive to breathe 

such as by stimulation of chemoreceptors, increased work of breathing such as in 

pleural effusions and decreased neuromuscular power as found in cachexia.  The 
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chemical drive to breathe is controlled by hypercapnia and hypoxia, detected by 

chemoreceptors in the medulla and carotid bodies.  Peripheral receptors include 

mechanical stretch receptors in the chest wall and diaphragm, stretch receptors in the 

airways and pulmonary C-fibres in the lung parenchyma.  These all send afferent 

signals to the brain about the current level of ventilation.  In heart failure the increased 

pulmonary venous pressure and presence of fluid stimulates the pulmonary C fibres50. 

In clinical practice it would be useful to be able to determine the underlying cause of 

dyspnoea by the descriptors patients use to describe their breathlessness.  One study 

comparing lung cancer patients to those with cardiorespiratory disease found that all 

patient groups were characterised by more than one cluster of descriptors, with 

several clusters being shared between groups.  There were some specific sets of 

clusters, such as in heart failure the most common descriptors were 'I feel out of 

breath (57%)', 'my chest feels tight (33%)', 'I cannot get enough air (33%).' However, 

the relationship was not sufficient to aid differential diagnosis51.  It is therefore not 

possible to diagnose someone with heart failure based on their description of 

dyspnoea.  Another study found that the most common terms volunteered by patients 

with chronic heart failure were 'hard to breathe', 'shortness of breath' and 'gasping'.  

These overlapped with some of the descriptors of dyspnoea used  in patients with 

COPD which were; 'scary', 'hard to breathe', 'shortness of breath', and 'cannot get 

enough air'.  The only term that was significantly different between COPD and CHF was 

'my breath does not go all the way out' which was more specific to COPD52.  Identifying 

the different components of patients dyspnoea could be useful as it implies that the 

dyspnoea is being generated by different underlying pathways/mechanisms and this 

could aid treatment.  The multi-dimensional dyspnoea questionnaire (MDP) was 
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designed to identify the different components and has been shown to correlate well 

with the D1253.   

1.2.1. Heart Failure 

Dyspnoea in patients with stable CHF has a different presentation and quality to the 

dyspnoea resulting from acute heart failure or decompensated chronic heart failure 

resulting in pulmonary oedema.  In pulmonary oedema, pulmonary congestion reduces 

the compliance of the lung and increases the work/effort of breathing54.   Conversely, 

in stable CHF, patients tend to report their dyspnoea as smothering, suffocating at 

rest, not enough air, an inability to breathe or they express a sensation of rapid 

breathing rather than describe an increase in work/effort4.  Dyspnoea in CHF remains 

poorly understood and poorly investigated despite dyspnoea severely limiting quality 

of life for these patients.  One approach to managing heart failure is to resolve the 

peripheral pathophysiological issues giving rise to breathlessness, Fig. 1.2.  However 

even when heart failure is optimally managed the debilitating breathlessness persists; 

the limited literature available on dyspnoea in patients with heart failure suggests that 

over 50% experience daily dyspnoea or fatigue that affects their quality of life, restricts 

their activities and undermines their will to live55, 56.  It has been shown that dyspnoea 

is a better predictor of cardiac mortality than the presence of angina57.  An alternative 

approach is to alter the perception of dyspnoea utilising advances in the understanding 

of brain mechanisms as shown in Fig. 1.1 above.  This could help identify new therapy 

targets in CHF48, 58.   
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Potential Mechanisms of Dyspnoea in Chronic Heart Failure  

 

Figure 0.2.  Potential causes, risk factors and treatments of dyspnoea in CHF 

Original teaching initially explained the mechanisms of dyspnoea in heart failure 

through the haemodynamic theory of poor left ventricular (LV) function requiring high 

left filling pressures to try to maintain cardiac output.  This increased pressure is 

transmitted back to the pulmonary vasculature resulting in vascular distension and 

interstitial oedema.  The oedema reduces pulmonary diffusion and may stimulate 

pulmonary vascular nerve endings/receptors (pulmonary C-fibre receptors, previously 

known as J-receptors) and play a role triggering dyspnoea4, 50, 59-61.  However, even 

when the pulmonary oedema is treated and resolved patients often still report 

dyspnoea.  This therefore suggests that pulmonary oedema is not the sole cause of 

dyspnoea in heart failure.  While increased LV filling pressures may reduce pulmonary 

diffusion and result in interstitial oedema, haemodynamic changes alone cannot fully 

explain the cause of dyspnoea in chronic heart failure.  No studies have directly 

compared ventricular function to ratings of dyspnoea. If exercise is used as a surrogate 
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marker for dyspnoea, there is only a weak correlation with LV dysfunction, Fig. 1.362, 63.  

Again, if using exercise as a surrogate for dyspnoea, measurement of pulmonary 

venous pressures also does not show any correlation64, 65, nor does the use of 

vasodilators66.  In those studies that have used exercise tolerance as a marker of 

dyspnoea there does not appear to be a direct link to a reduced cardiac output.  

Therefore, one needs to look beyond LV dysfunction to gain a full understanding of 

dyspnoea in heart failure.     

 

Figure 0.3.  Relationship between heart function and exercise capacity 

There is a relatively poor correlation between LV ejection fraction (LVEF) and exercise 

capacity63. 

Evidence suggests there is a reflex network that becomes hyperactive in heart failure 

due to changes in the musculoskeletal system, and that this is detected by 

mechanoreceptors/metaboreceptors in skeletal muscles67.  It is known that in heart 

failure the sympatho-inhibitory reflexes are suppressed. A recent theory thus proposes 

that fatigue and dyspnoea in heart failure are due to hyperactivation of signals 

originating from receptors located in the skeletal muscles68.  Metaboreceptors within 

the muscle detect changes in the metabolic milieu of the muscle tissue, such as poor 

oxygen delivery compared to oxygen demand.  Activation of these afferent receptors 
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can affect the heart rate, blood pressure, cardiac output, systolic volume, ventilation 

and sympathetic tone67, 69 and could generate the feeling of dyspnoea. 

Another theory implicates ergo receptors (mechanoreceptors sensitive to movement) 

in the respiratory skeletal muscles which, when activated, signal dyspnoea70.  These 

have been shown to be overactive in patients with CHF.  Their activity is linked to the 

ventilatory response to exercise resulting in dyspnoea and contributing to the 

sympathetic overactivity of CHF.  Diaphragmatic weakness is present in heart failure 

and increases progressively during pressure overload, irrespective of the presence of 

pulmonary oedema.  This has been shown to be associated with signalling changes in 

angiotensin II and adrenoceptors resulting in centrally controlled ventilatory 

overdrive71.  However, evidence suggests that dyspnoea remains, despite paralysis of 

these respiratory muscles24, which indicates that another signalling pathway is 

involved; most likely arising from receptors in the lung.  

A further potential mechanism is related to pulmonary pressures. Chronic LV failure 

can result in pulmonary hypertension, with an increased trans-pulmonary gradient and 

increased pulmonary vascular resistance.  Dyspnoea is often found with pulmonary 

hypertension regardless of the underlying cause.  In patients with heart failure, 

pulmonary vascular resistance is an important determination of exercise capacity, 

which contributes to dyspnoea on exertion72, 73.  Malfatto et al (2015) showed that 

increased pulmonary capillary wedge pressure (PCWP, measured directly and 

estimated non-invasively) significantly contributes to abnormal ventilation in chronic 

advanced heart failure74.  The authors suggest that pulmonary congestion may be the 

crucial component eventually leading to exertional dyspnoea, rather than low cardiac 

output or abnormal autonomic balance. However, other studies have shown a 
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dissociation between PCWP and dyspnoea severity, such that patients with a high 

PCWP are minimally dyspnoeic and patients with low PCWP may experience severe 

dyspnoea75.  Stable CHF patients with high PCWP typically do not develop pulmonary 

oedema. This is partly due to the protective mechanisms76, 77, but also the 

development of alveolar fibrosis. This alveolar remodelling process may be protective 

against further high pressure damage and may increase resistance of the lung to the 

development of pulmonary oedema in stable CHF patients78.  These patients also have 

reduced pulmonary microvascular permeability79, which may be a defence against 

pulmonary oedema in patients with chronic pulmonary venous hypertension.  

However, it also causes a decrease in alveolar diffusion capacity, impairs gas transfer 

and reduces exercise capacity.   

Patients with stable CHF often exhibit a restrictive ventilatory flow loop.  They also 

present with reduced diffusing capacity of the lung for carbon monoxide (DLCO)80 

which are typically associated with elevated pulmonary vascular pressures.  It is 

possible that the simple displacement of the lung by the enlarged heart accounts for a 

substantial portion of the restrictive pattern seen, while the rest is due to interstitial 

oedema, pleural effusions, vascular engorgement and respiratory muscle weakness54.  

This may all contribute to the development of dyspnoea. 

The emergence of dyspnoea in CHF thus appears to be due to activation of 

mechanoreceptors (including ergoreceptors) and metoboreceptors in skeletal and 

respiratory muscles such as the intercostal and diaphragm muscles.  While a role for 

pulmonary congestion (interstitial oedema) and reduced pulmonary diffusion is 

appearing increasingly unlikely in many patients with chronic heart failure, one cannot 

rule out a contribution of this factor.  More research is needed to fully elucidate the 
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origins of dyspnoea in CHF, for example: magnetic resonance imaging of the lungs to 

assess for presence of interstitial oedema and correlate with dyspnoea ratings. It 

should also be considered that there may be different aetiologies depending on 

individual pathophysiology and psychology.  Given current understanding of the 

mechanism of air hunger involving comparison of signals reporting the need to breathe 

with those reporting the prevailing ventilation, it is interesting to speculate whether 

the air hunger experienced by heart failure patients arises from diffusion impairment 

combined with respiratory muscle dysfunction.  Patients with both COPD and HF have 

an increased neural drive, with a ventilator response above that required to overcome 

an increase in ‘wasted’ ventilation resulting in hypocapnia and reduced exercise 

capacity81.  

While the development of dyspnoea in CHF is not yet fully understood, it is clear that 

the dyspnoea in these patients is having a real and measurable impact on their day to 

day life. 

1.2.2. The impact of physical exertion in CHF 

Reduced exercise tolerance is a key symptom of patients with heart failure.  This has 

been characterised by a decrease in maximal oxygen uptake (VO2 max), which is the 

most powerful predictor of dyspnoea during exercise82 and has prognostic value83.  

Impaired systolic function is not the only factor involved in reduced exercise tolerance 

in CHF and the determinants of VO2 max are more complex than in the normal 

subjects.  The majority of haemodynamic parameters assessed at rest do not correlate 

with VO2max and this is likely due to the fact that these do not take into consideration 

the reserve of the heart, which can only be assessed during exercise or with 
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pharmacological stress, and the key role played by circulatory and muscular peripheral 

factors. 

In patients with CHF the maximum heart rate is reduced with a blunted chronotropic 

response.  This is due to the desensitization of beta adrenergic receptors84 .  Stroke 

volume (end-diastolic minus end-systolic volume) is reduced at rest in CHF and it often 

reduces further during exercise85.  Patients with CHF are not able to increase their 

contractile reserve (and reduce end-systolic volume) to meet the increased afterload 

that occurs during exercise.  Therefore the only way to alter the stroke volume is to 

increase the end-diastolic volume but this is varies among patients, and is 

accompanied by significant increases in filling pressures.  Increased compliance of the 

ventricles can increase the end-diastolic volume but in advanced heart failure this is 

often exhausted.  There is also diastolic dysfunction with impaired relaxation that 

reduces LV filling during exercise.  There is a blunted blood pressure response during 

exercise related to the reduction in cardiac output and also has prognostic value86.  

Mitral regurgitation can increase significantly during exercise and in some patients can 

explain the reduced exercise tolerance and associated dyspnoea87.   

Exercise limitation in CHF is often not only related to the heart but to extra-

cardiac/peripheral abnormalities.  Increasing cardiac output during exercise with 

dobutamine results in a minimal increase in oxygen consumption due to a parallel 

reduction in arteriovenous oxygen difference88.  This reduced oxygen extraction is 

thought be due to a redistribution of cardiac output away from the active muscles or 

due to altered muscular use of oxygen. 
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There is also a blunted vasodilation in response to exercise in patients with CHF due to 

abnormalities in the endothelium and profound alterations in flow-dependent 

vasodilatation88.  Atrophy of muscle is common in patients with heart failure and is 

associated with cachexia, deconditioning and malnutrition.  Cross sectional area of a 

muscle group is closely correlated to VO2max.  There is also a change in the muscle 

fibre distribution and skeletal muscle composition that correlate with reduced exercise 

tolerance in CHF89, 90.  Reductions in mitochrondial density and enzymes involved in 

the oxidative pathway are also reduced and explain the rapid fall in intracellular pH 

indicating the preferential use of anaerobic glycolysis compared to normal subjects91.  

It is unknown whether abnormalities in the vasculature or muscles are more important 

in determining exercise limitation.   

Patients with CHF experience dyspnoea during physical exertion92.  These patients 

have a higher degree of ventilation for any given workload compared to normal 

subjects93.  The respiratory pattern is also different with an increased respiratory rate 

and decreased tidal volume94.    Dynamic hyperinflation is known to contribute to 

dyspnoea in patients with COPD95.  It results in an increase in end-expiratory lung 

volume and subsequent reduction in inspiratory capacity.  Unlike in COPD dynamic 

hyperinflation is not known to occur in patients with chronic heart failure and is 

therefore not thought to cause dyspnoea.  However, there is a significant overlap of 

patients with COPD and HF, with approximately 30% suffering from both conditions96 

and therefore many patients with HF may show signs of hyperventilation if they have 

co-existing COPD.   

In patients with stable chronic heart failure there is an elevated exercise ventilation 

response compared to normal subjects at all levels of exertion.  Exercise studies in 
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patients with heart failure show an increased minute ventilation/carbon dioxide 

production ratio (VE/VCO2).  This is mainly attributed to alveolar hyperventilation due 

to augmented peripheral chemosensitivity due to the abnormal cardiorespiratory 

reflex control in CHF (increase in sympathetic tone)97.  This alone will not reduce the 

PaCO2 unless the set point about which the PaCO2 is controlled is depressed or the 

hypoxic or ergoreceptor stimulus is high.   However, there is also an increase in 

physiological dead space (calculated from measurements of arterial CO2 and mixed 

expired CO2) during exercise in patients with severe CHF98-100.  It is thought that this 

occurs due to exercise hyperventilation and impaired cardiac output with most severe 

patients unable to double their cardiac output from rest to maximal effort.  The 

disproportionate increase in ventilation associated with reduced cardiac output and 

lead to high alveolar ventilation/perfusion ratios during exercise.  This shift leads to an 

increased physiological dead space measurement for CO2 (as solubility of CO2 remains 

unchanged), and is not due to the lack of perfusion to some alveolar regions as 

previously thought101.   

Exercise oscillatory ventilation (EOV) is a parameter seen during cardiopulmonary 

exercise testing of patients with severe CHF.  It is characterised by the cyclic waxing 

(hyperpnoea) and waning (hypopnoea) periods of ventilation.  It can be present 

throughout exercise or terminate before peak exercise.  It is defined by the American 

Heart Association as the persistence of a periodic breathing pattern for at least 60% of 

exercise with an amplitude of ventilatory oscillation ≥15% of the average resting 

ventilation value.  The cause of EOV is debated but thought to be related to circulatory 

delay (due to reduced cardiac output), deranged chemoreflex response (increased 



17 
 

chemo-sensitivity to PaCO2 and PaO2) and/or baroreflex impairment102.  It has been 

shown to have good prognostic value for morbidity and mortality103. 

1.2.3. Measurement of dyspnoea in CHF 

It is clear that dyspnoea is a major problem in CHF, and there are several ways to 

measure this symptom, some of which remain open for debate.  The purpose, setting 

and patient population can assist in deciding the choice of scale.  While it is 

recommended that the intensity of dyspnoea should be regularly documented in the 

notes of patients with advanced cardiac disease104, there is a lack of consensus on 

which tools should be used to measure it both qualitatively and quantitatively.  Over 

30 ways of recording dyspnoea have been used in clinical trials105, 106, each with a 

different focus (e.g. sensory perception versus distress)107, 108 and addressing different 

scenarios (e.g. rest versus exercise).  Many of these scoring systems have not been 

validated in heart failure and dyspnoea evaluation is therefore often included in 

generic instruments (e.g. New York Heart Association Classification) or general quality 

of life measurements (e.g. Chronic Heart Failure Questionnaire109).  The Chronic Heart 

Failure Questionnaire is well validated in patients with CHF and includes other related 

symptoms such as fatigue, and there are specific dyspnoea questionnaires that may 

also be developed for use in CHF6. Simpler and faster rating scales may also be used. 

The Borg scale is often used to assess dyspnoea in cardiovascular disease, although it is 

considered less sensitive for dyspnoea ratings and reproducibility than visual analogue 

scales (VAS)110. VAS, numeric rating scales (NRS) and Likert scales (Fig. 1.4) are all quick 

and easy, allow for repeated measures at a variety of time points, and have been 

widely used in multiple heart failure trials111-113 as well as in studies of dyspnoea114-116. 

The flexibility of these scales, however, also results in inconsistencies in the type of 
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dyspnoea measured between studies, making comparisons difficult.  Multi-

dimensional scales may be preferable when precision and the ability to detect a 

change are required.  Scales that select a single number (VAS, NRS, MBS) may be 

preferable when they are completed at regular short intervals, or included in a larger 

group of patient reported outcomes.  There has been no standardised adoption of any 

single breathlessness tool and therefore it can be difficult to transfer information from 

clinical trials into clinical practice.  NRS has been shown to be more practical than the 

VAS for repeated measures in cancer patients117.  The ordered categorical Verbal 

Descriptor Scale (VDS = none, mild, moderate, severe) is a four level scale has been 

shown to strongly correlate with the NRS118.  Repeatability of NRS and VAS often 

require large numbers of patients to achieve sufficient power in clinical trials.  Reading 

numbers aloud and assessing the maximum number of numbers that can be read 

aloud in 1 minute and the number of numbers read per breath has been proposed as a 

potentially useful measure of assessing breathlessness in patients with pleural 

effusions.  It showed good repeatability and was sensitive to detecting an 

improvement with pleural drainage119.  This has not yet been tested in patients with 

heart failure.  As a rule of thumb, measurements of dyspnoea in a clinical population 

should be sensitive to the minimally clinically important difference (MCID), which is the 

smallest change in score which patients perceive as beneficial and which would 

mandate, in the absence of side effects and excessive cost, a change in the patient’s 

management 120.  MCID has been suggested as a 1 point improvement in the Borg 

score and 10mm on a VAS in all aetiologies 121, although it has not been fully explored 

in heart failure.   
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In summary the VAS, NRS and MBS are all quick methods of measuring and detecting 

changes in dyspnoea. They are very simple to use, easily understood by the patient, 

have good reproducibility (completed by the patient) and do not matter if it is being 

administered by different healthcare professionals.  In this thesis the VAS and MBS are 

utilised.  These represents a simplistic view of dyspnoea and neglects the different 

physical and affective components that are now known to constitute dyspnoea122.  

Some studies will require more complex dyspnoea specific questionnaires.   

The Dysnpoea-12 questionnaire (D12) has also been used throughout this thesis as a 

method for assessing dyspnoea.  This is a multi-dimensional questionnaire that was 

designed to give a single score of dyspnoea that comprises of both the physical and the 

emotional components.  The D12 was developed with the aim to select the minimum 

number of descriptors that covers all components of dyspnoea, irrespective of the 

underlying pathology.  The descriptors were identified as terms used by the patients.  

Therefore it is a quick and easy tool for patients and researchers to use to assess both 

the physical and emotional aspects of dyspnoea.   The questionnaire was designed by 

collecting a pool of 88 common phrases that patients use to describe breathlessness 

from published primary data studies.  It has been validated in many different cohorts 

of patients, including heart failure.  The total dyspnoea score is independent of 

underlying pathology.  It is a short form and consists of 12 descriptors, divided into 7 

physical and 5 emotional aspects.  Subjects can answer ‘none’, ‘mild’, ‘moderate’ or 

‘severe’ with an associated score of 0, 1, 2 and 3, giving an overall maximal score of 36.  

It provides an overall total score of dyspnoea and while not designed to measure the 

physical and emotional individual components, it is possible to assess these separately.  

The D12 in this thesis is often used to assess dyspnoea at a specific point in time.  The 



20 
 

original D12 validation paper tested the D12 using the reference frame 'these days' i.e 

non temporally specific.  This paper does not state it cannot be used in a temporally 

specific way and a recent paper by Ekstom et al (2020) has shown the minimally 

important clinical difference (MCID) does not change if you use various timeframes 

(average, best, worst and current)123.    The MCID for the Dyspnoea-12 questionnaire is 

3 points124.  The questionnaire is included in the methods chapter.  The D12 has not 

previously been used in clinical trials to test an intervention or used in patients with 

heart failure.  To date it has mainly been used as a valid and reliable instrument to 

measure dyspnoea in different cohorts of patients with dyspnoea125. It has been 

shown to be well correlated with the multi-dimensional dyspnoea questionnaire 

(MDP)53. This is a longer questionnaire and needs health professional input for 

completion.  The MDP and D12 have been designed for different purposes.  The MDP is 

designed to specifically to measure different dimension, whereas the D12 includes 

them in a single score6.     

 

Figure 0.4 Varieties of rating scales 

A. The visual analogue scale (VAS), which consists of a bland line usually 100mm long 

whose ends are labelled as the extremes (no dyspnoea at all; worst possible dyspnoea).  

The patient is asked to put a line indicating their severity of dyspnoea (at that time or 

another time point).  B. Word-labelled/graphic VAS with descriptive terms added. C. 

Graphic/numeric rating scale G/NRS with numbers added. D. The Likert scale, which 

uses descriptive terms to describe severity/intensity of dyspnoea. 
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In addition to questionnaire-based measurements, cardiopulmonary exercise testing 

(CPET) is increasingly used to assess dyspnoea.  This method is often useful in assessing 

dyspnoea of unknown aetiology or used to work out which system is contributing the 

most to the presence of dyspnoea in patients with multiple co-morbidities.  It is 

recommended to use CPET for assessing the cause of dyspnoea when the above 

measurements do not correlate with the clinical picture (often patients reduce their 

activity levels to avoid experiencing breathlessness without realising it), or where there 

is co-existent lung and heart disease and it is necessary to determine which one is 

contributing the most to the sensation of dyspnoea.   

The few studies of dyspnoea that have been performed in CHF have rarely addressed 

all 3 aspects of dyspnoea; the intensity, quality (individual components of dyspnoea) 

and the emotional domain.  The recent development and validation of multi-

dimensional dyspnoea questionnaires6 provides new opportunities to better 

understand dyspnoea in CHF.     

1.3. TREATMENT OF DYSPNOEA IN CHF 

Efforts to relieve dyspnoea initially targeted improving the mechanics of breathing and 

reducing demand of breathing.  A newer focus is to alter the perception of dyspnoea 

via altering the activity of neural signals sent to the brain reporting the level of 

breathing.  This new approach has led to the exploration of novel interventions, 

including the use of nebulised furosemide.  

The ideal approach is to determine the underlying aetiology for the individual patient, 

and treat this accordingly, but unfortunately this is not usually feasible in patients with 

chronic heart failure where reversible causes have already been excluded. In the 
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absence of a simple solution (e.g. correction of dyspnoea caused by anaemia), several 

options have been suggested for the treatment of dyspnoea in CHF.  Therefore after 

optimisation of the underlying cause (such as with diuretics and afterload reduction) 

options include oxygen, opioids (such as morphine), nebulised furosemide, sildenafil, 

serelaxin, nesiritide, or with non-pharmacological therapies such as the hand-held fan, 

pulmonary rehabilitation, cardiac rehabilitation exercise training and cognitive 

therapy126.  

The impact of oxygen treatment on dyspnoea in chronic heart failure remains 

uncertain.  Patients who are hypoxic at rest or on minimal exertion may benefit104, 127 

but those without hypoxia have not been shown to benefit128.  

Opioids have long been used to treat dyspnoea within palliative scenarios or in acute 

heart failure, but the current heart failure guidelines by the European Society of 

Cardiology do not recommend routine use of opioids and advise cautious use in 

patients with severe dyspnoea, such as in pulmonary oedema3.  Morphine use is only 

currently recommended in the American Heart Association for patients in the end-

stages of heart failure129.  Imaging studies have shown that opioids dampen the brains 

response to breath-holding130. It is thought to act by depressing spontaneous 

respiratory drive (thereby reducing corollary discharge) and by modulating cortical 

activity.  One pilot study showed that short term opioid administration reduced 

dyspnoea in CHF131 but the effect diminishes over 6 weeks to 3 months132 and long 

term studies are lacking133.   Whilst opioids remain a potential treatment option; they 

are associated with side effects including constipation, sedation, addiction and 

importantly respiratory depression. Despite this, their use is recommended on a case-

by-case basis for patients with advanced cardiopulmonary disease and unrelieved 
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dyspnoea, taking into account the patient’s history, comorbidities and risk of 

respiratory depression104.  A recent RCT in CHF suggested a medium-term benefit, 

although underpowered, and proposed that morphine should only be prescribed when 

other measures are unhelpful ensuring early management of side effects134. 

Furosemide is commonly prescribed as a tablet or injection for fluid overload in 

patients with heart failure.  It is a loop diuretic which acts through inhibition of the 

Na+-K+-2Cl- co-transporter in the thick ascending limb of the loop of Henle to inhibit 

sodium and chloride reabsorption to cause a diuresis (excretion of water in the urine).  

It can lead to symptomatic relief of breathlessness due to pulmonary oedema and 

relief of peripheral oedema.  It acts by reducing filling pressures and slowing 

ventricular dysfunction135, 136.  However, systemic furosemide has not been shown to 

improve survival and prolonged use can be harmful by activating neuro-hormonal 

responses.  Furosemide can cause a reduction of intravascular volume resulting in 

renin-angiotensin-aldosterone activation and a reduction in natriuretic peptides137.  

Plasma renin was found to be increased in patients receiving a diuretic138.  Activation 

of this system may impair renal blood flow and reduce glomerular filtration rate.  One 

study showed that by reducing the dose of furosemide there was an increase in 

glomerular filtration rate139.  Over a third of patients develop intra-renal resistance to 

furosemide requiring progressively increasing doses for adequate relief of circulatory 

congestion140-142. Subcutaneous administration of furosemide has also been studied in 

acute decompensated heart failure but not for dyspnoea relief in stable chronic heart 

failure143.  Na+-K+-2Cl- channels are found in the airways and therefore another 

theoretical mechanism is the local easing of pulmonary congestion within the lungs.  

This, however, would only apply to those patients with pulmonary congestion and as 
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discussed earlier, patients with chronic heart failure can develop protective 

mechanisms to prevent pulmonary oedema.   

Sildenafil is a selective inhibitor of type 5 phosphodiesterase and has, in a single study, 

been shown to improve ventilatory efficiencies and relieve breathlessness after both 3 

and 6 months of treatment in patients with heart failure with reduced ejection 

fraction, especially if there is secondary pulmonary hypertension144.  Therefore, this 

may be a novel treatment for dyspnoea relief in the management of heart failure.  

However, a meta-analysis in pulmonary hypertension showed that while it improved 

haemodynamic parameters, when compared to placebo, it did not have any clinically 

meaningful effect on breathlessness145.   

Non-pharmacological therapeutic options such as the hand-held fan, pulmonary 

rehabilitation, cardiac rehabilitation exercise programmes and cognitive therapy are all 

potentially beneficial.  The hand-held fan is an attractive option as it has minimal side 

effects and the user has full control but there is conflicting evidence as to its 

efficacy146-149. 

Other drugs that may be of use include anxiolytics and antidepressants.  The use of 

these have not been supported by experimental evidence, with results showing either 

no effect; or data on their efficacy being insufficient or lacking. Similarly, other 

potential targets, such as brain natriuretic peptide (BNP) or its N-Terminal prohormone 

(NT-proBNP), have not yielded treatments for dyspnoea or dyspnoea relief150-152.  

Treatment programmes such as pulmonary rehabilitation may be of use to CHF 

patients as they are to COPD patients, particularly as rehabilitation appears to act in 
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part on the processing of dyspnoea rather than its origin, although their impact on 

dyspnoea remains unclear4, 48, 153-155.   

In summary, several treatment options exist. Some have greater support in the 

literature than others and some come with concerns of side effects. Oxygen therapy, 

opioids, nebulised furosemide (discussed in more detail below), sildenafil, alongside 

non-pharmacological therapies might all be good options, but this should be 

determined on an individual basis. It has become clear, however, that dyspnoea is not 

a symptom that can be ignored, and it is imperative that one tries to alleviate 

dyspnoea to impart further symptom relief, even when the heart failure is optimally 

managed.   

1.4. NEBULISED FUROSEMIDE  

Although furosemide is commonly prescribed in tablet form for the relief of 

breathlessness in heart failure, nebulised furosemide has not yet been assessed with 

respect to its relief of breathlessness in this patient population. Nebulised furosemide 

for treatment of dyspnoea in CHF remains unexplored and this thesis aims to address 

this.  This novel approach circumvents some of the side effects of systemic furosemide 

and is not known to have any significant side effects of its own.  Nebulised furosemide 

aims to improve the quality of life of patients with CHF by relieving their 

breathlessness on exertion and enabling them to  increase their physical activity.  It 

also may offer dyspnoea relief to those who remain breathlessness at rest despite 

optimal medical management.   

Nebulised furosemide has been shown to relieve cough via modulation of C-fibre 

receptor activity156.  It has also been shown to prevent bronchoconstriction in patients 
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with asthma157, 158.  The mechanism of action of nebulised furosemide for dyspnoea 

relief is thought to involve a different set of receptors; it appears to have a local effect 

on the airway mucosa and acts via altering the activity of pulmonary stretch 

receptors27, 30.  Modulation of vagal afferent fibres from these receptors is known to 

modulate the sensation of dyspnoea18, 23.   

In rats, nebulised furosemide has been shown to increase the activity of pulmonary 

stretch receptors, and may result from an influx of sodium ions30.  Furosemide inhibits 

the sodium-potassium-chloride cotransporter thereby increasing the sodium ions and 

activating the stretch receptors.  Nebulised furosemide has been shown to activate the 

slowly adapting pulmonary stretch receptors and suppress the pulmonary irritant 

receptors in anaesthetised rats27, 30.  It has also been shown to increased pulmonary 

stretch receptor activity  in quadriplegic humans24 and relieve ‘air hunger.’  Therefore, 

nebulised furosemide may relieve breathlessness by replicating the sensation of an 

increase in tidal volume.   

Nebulised furosemide is not currently licensed for use in routine clinical practice, 

although it has been studied for over 20 years in research, Table 1.1.  There are a few 

case reports and several small randomised clinical trials assessing the use of nebulised 

furosemide for dyspnoea relief in a wide spectrum of medical conditions such as, 

asthma157 157-172, COPD28, 173, 174 and cancer175-178.  It has also been trialled in infants, 

including pre-term babies with breathing difficulties179-181.  It has also been used in 

adult healthy volunteers27, 29. The results of these trials has been variable and in 

randomised controlled trials nebulised furosemide has only been shown to relieve 

dyspnoea in patients with COPD.  There has been one case report of using nebulised 

furosemide in a patient with heart failure with no intravenous access182 and one 
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randomised control trial.  This study assessed the haemodynamic response of 

nebulised furosemide with a right heart catheter in patients with heart failure183.  It 

was not designed to assess dyspnoea.  The dyspnoea recording were taken at 

rest/baseline and were similar, and at low levels, in both the nebulised furosemide and 

placebo group.  It did not assess the change in dyspnoea ratings during the study.  No 

study has yet to formally assess the effect of nebulised furosemide on relief of 

breathlessness in patients with heart failure. Systemic absorption of nebulised 

furosemide into the circulation is a potential alternative mechanism for the action of 

furosemide in relieving breathlessness.  Furosemide causes vasodilation in the lungs184 

however the amount absorbed from a nebulised dose is unlikely to have a significant 

effect on lung vasculature as the absorption efficiency has been shown to be up to 30% 

of the nebulised dose185, equivalent to approximately 5mg for a 40mg nebuliser.  It is 

unlikely that this small amount of furosemide causes any effect on dyspnoea.  Further 

support that nebulised furosemide acts via a direct action in the lungs is provided by: i) 

direct exposure of the lung tissue to furosemide in rat preparations resulted in 

modulation of PSR afferent activity but not when administered intravenously30 ii)  

other studies in which beneficial effects of furosemide have been evident only when 

nebulised rather than administered via tablet157  iii) absence of haemodynamic 

changes with nebulised furosemide in a study assessing wedge pressure 

measurements in heart failure patients suggesting no systemic mechanism of action183 

iv) the desire to urinate has not been evident in some studies suggesting the systemic 

effects may be minimal. 

Other support for use of this novel treatment option comes from the lack of any 

serious side effects.  Most trials that have evaluated the adverse effects of nebulised 
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furosemide identified no significant toxicity.  Kohara et al175 found moderate nausea in 

1 patient, mild sleepiness and nausea in 3 patients (n=15).  Cough, sputum production, 

and nausea were the most common side effects, but these were tolerated and easily 

managed.  These effects resolved in a few hours.  Moosavi et al29  found that 

intermittent cough accompanied the inhalation of furosemide for several naive 

subjects, but did not persist after inhalation. Naive subjects did not report ill effects 

when contacted the day after treatment. One study in advanced cancer patients 

suggested that dyspnoea worsened after nebulised furosemide although this was not 

significant and a clinical trial was recommended186.  One study found no serious 

adverse events but noticed a small but significant fall in FEV1 and FVC with nebulised 

saline177.  Many studies found no noticeable side effects or adverse events176, 186-188.   
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Table 0.1  Summary of studies investigating dyspnoea relief by nebulised furosemide 

Listed in chronological order.  PEFR: Peak expiratory flow reading.  FEV1: Forced expiratory volume in 1 second.  VAS: Visual analogue scale.  CDS: Cancer 

Dyspnoea Scale.  QDS: four times a day 

Trial Study design Subjects 
or 
Disease 

N =  Age 
(mean) 

Male Dose Component of 
dyspnoea studied 
and dyspnoea 
induction. 

Parameter 
assessed 

Results 

Saba et al., 
2020 

Randomised, 
double-blind, 
crossover 

COPD 69 65 55% 40mg Physical activity at 
a level up to the 
level before the 
study 

mMRC 

Borg 

Adding nebulised furosemide to nebulised 
salbutamol significantly relieves dyspnoea (4 points on 
Borg and 1.5 on mMRC) more than single therapy 
without any side effect 

Waskiw-
Ford et al., 
2018189 

Randomised, 
double-blind, 
crossover  

Healthy 24 25 100
% 

40mg 
and 
120mg 

Intensity and 
unpleasantness of 
breathlessness 
using CPET 

MBS Compared with 0.9% saline, neither 40 nor 120mg of 
nebulised furosemide had an effect on ratings of 
perceived breathlessness during exercise or an effect 
on cardiometabolic, ventilatory, breathing pattern, or 
dynamic operating lung volume responses during 
exercise. 

Morélot et 
al., 2018185 

Randomised, 
double-blind, 
crossover  

Healthy 11 32 73% 40mg Breathing 
discomfort using a 
clinical ventilator  

VAS 

MDP 

Both saline and furosemide relieved breathing 
discomfort by 20% VAS (and by 16% VAS with IV 
furosemide). Effectiveness of nebulised furosemide 
was weakly correlated with larger tidal volumes.  
Response to nebulised furosemide was inversely 
correlated to furosemide blood level. 
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Trial Study design Subjects 
or 
Disease 

N =  Age 
(mean) 

Male Dose Component of 
dyspnoea studied 
and dyspnoea 
induction. 

Parameter 
assessed 

Results 

Banzett et 
al., 2017190 

Randomised, 
double-blind, 
crossover  

Healthy 12 

 

24 

 

17% 80mg Breathing 
discomfort using a 
clinical ventilator  

VAS  

MDP 

Both saline and furosemide relieved breathing 
discomfort with a mean treatment effect of 17% VAS 
for nebulised furosemide and 13% for nebulised 
saline. 

Vahedi et 
al., 2013174 

Double-blind, 
Randomised 

COPD 100 73 63% 40mg Dyspnoea during 
COPD exacerbation 

VAS Nebulised furosemide significantly relieved dyspnoea 
compared to nebulised saline.   Dyspnoea improved 
with furosemide by 2.7 on VAS scale compared to 1.6 
with saline  

Newton 

2012191 

Randomised, 
double-blind, 
crossover 

Stable 
Heart 
Failure 

32 

 

52 94% 40mg Breathlessness, no 
dyspnoea 
induction 

0 to 10 
scale 

No difference in dyspnoea with nebulised furosemide 
compared to saline.  Nebulised furosemide did not 
exert an acute haemodynamic effect in patients with 
stable chronic heart failure.   

Laveneziana 
et al 2008192 

Double blind 
randomised 
crossover 

Healthy 9 31 56% 40mg or 
80mg 

Respiratory effort 

Cycle exercise with 
external resistive 
load 

10-point 
Borg 

 Furosemide did not affect the perception of 
respiratory effort and did not seem to have any clinical 
benefit in the treatment of severe dyspnoea. 

Wilcock 

2008177 

Double-blind, 
Randomised 

Lung 
Cancer/
Mesoth
elioma   

15 66 47% 40mg  Breathlessness, 
Number reading 
test and arm 
exercise test 

Dyspnoea 
exertion 
scale  

No significant difference.  40% patients felt 
breathlessness improved with nebuliser compared to 
no treatment – 50% preferred saline, 17% furosemide 
and 33% reported equal benefit.   
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Trial Study design Subjects 
or 
Disease 

N =  Age 
(mean) 

Male Dose Component of 
dyspnoea studied 
and dyspnoea 
induction. 

Parameter 
assessed 

Results 

Jensen 

200828  

Randomised, 
double-blind, 
crossover  

COPD 20 

 

61 55% 40mg Dyspnoea intensity 

CPET – constant 
load exercise 

10-point 
Borg 

Exercise 
time 

Furosemide led to a significant decrease in dyspnoea 
intensity (~1point reduction on Borg) at the highest 
equivalent exercise time and a significant increase in 
exercise endurance time.  

Moosavi 

200729 

Randomised, 
double-blind, 
crossover  

Healthy 10 

 

26 60% 40mg Air hunger  

Hypercapnia with 
constrained 
ventilation 

100mm 
VAS 

Significant improvement in AH rating after furosemide.  
Mean treatment effect 13mm VAS. 

Ong 2004173 

 

 

 

Double blind 
randomised 
crossover 

COPD 20 68 100
% 

40mg Respiratory 
discomfort 

Exercise 
(incremental & 
constant work) 

100mm10 
point VAS 

 Inhalation of furosemide alleviated the sensation of 
dyspnoea during constant-load exercise testing in 
patients with stable COPD.  Mean reduction of 9mm 
VAS. 

 

Kohara 

2003175 

 

Uncontrolled 
clinical series 

Cancer 15 

 

6 

 

 20mg Sense of effort 
anxiety and 
respiratory 
discomfort 

No induction 

CDS  

(12-point 
scale) 

Inhalation of nebulised furosemide alleviated the 
sensation of dyspnoea for sense of effort, sense of 
anxiety, and total dyspnoea. In 80% of patients the 
total dyspnoea score improved significantly after 
inhalation of furosemide by 2points CDS. 

Stone 
2002186 

 

Double blind 
randomised 
crossover 

Cancer 7 

 

72 57% 20mg 

 

Breathing difficulty 
and distress 

No induction 

100mm 
VAS  

 

No significant difference between placebo and 
furosemide for difficultly or distress.  Trend for 
worsening dyspnoea after nebulised furosemide.   
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Trial Study design Subjects 
or 
Disease 

N =  Age 
(mean) 

Male Dose Component of 
dyspnoea studied 
and dyspnoea 
induction. 

Parameter 
assessed 

Results 

Shimoyama 
2002176 

Case report Cancer 3 

 

51 100
% 

20mg 
QDS  

Breathlessness 

No induction 

VAS  

 

Significant improvement in breathlessness in all 3 
patients. 

Minowa et 
al 2002193 

Double blind 
randomised 
crossover 

Healthy 10 25-37 80% 40mg Respiratory 
discomfort, 
hypercapnia by 
steady state and 
rebreathe 

200mm, 
10-point 
VAS 

Nebulised furosemide improves the dyspnoeic 
sensation produced during hypercapnic hyperpnoea. 
With mean treatment effect 10-15mm VAS. 

Nishino et 
al, 

200027 

Double blind 
randomised 
crossover 

Healthy 12 

 

25-40 6 
(50%
) 

40mg Urge to breathe 

i)Breath hold 

ii) Hypercapnia + 
resistive load 

VAS 
(200mm 10 
point) 

Increased breath-hold (by 50%) with nebulised 
furosemide and slower development of respiratory 
discomfort with loaded breathing (median reduction 
of ~30mm VAS during loaded breathing). 

Hinckley, 
2000167 

Double-blind 
placebo 
controlled 

Acute 
asthma 

35 NA NA 40mg Breathlessness 

No induction 

10-point 
dyspnoea 
scale 

No statistical improvement in dyspnoea by adding 
furosemide to standard care in acute exacerbations of 
asthma. 

Stone 
1994178 

Case report Cancer 1 NA NA 20mg Dyspnoea None Patient found nebulised furosemide had the most 
beneficial effect on his dyspnoea.  
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1.5. RATIONALE FOR THESIS   

The mechanism of dyspnoea in heart failure is not yet fully understood.  While 

ergoreceptors are likely to be involved in the aetiology of the sensation, it remains 

unlikely that this will explain the complexity of dyspnoea in CHF fully. As with 

respiratory disease, dyspnoea in CHF is probably a composite of several issues, both 

physiological and psychological and develops over time. Treatment of this disabling 

symptom should try to incorporate these different dimensions for the optimal 

alleviation for each individual patient.  

Heart failure is a major health burden and continues to increase.  Dyspnoea is 

subjective and its correlation to objective measures are weak but it is an important 

symptom and has been the primary outcome measure in recent acute heart failure 

studies194-196. One meta-analysis showed that loop diuretics in heart failure reduced 

mortality and improved exercise capacity but concluded that the trials used in this 

meta-analysis were small. The authors also stated that the evidence is insufficient to 

justify widespread use of diuretics to reduce mortality but that it will continue to be 

used for symptomatic benefit197.  

There is a wide range of treatments available for symptom relief for heart failure.  The 

mainstay of treatments are beta blockers, angiotensin converting enzyme inhibitors, 

aldosterone antagonists and more recently, angiotensin receptor neprilysin inhibitor3.  

These all have prognostic benefit.  Most studies in heart failure investigate new 

treatments  to improve mortality rather than aiming for symptom relief.  However, 

breathlessness is a key symptom of heart failure, even when  it is optimally treated and 
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quality of life would improve by treating this symptom.  Nebulised furosemide is an 

attractive treatment option as it may have a dual mode of action by both modulating 

the afferent signals reporting the prevailing level of ventilation, and acting on the Na+, 

K+, Cl- channels within the lungs to ease any  pulmonary congestion that may be 

present at the site198.    As discussed earlier the exact mechanisms of dyspnoea in 

chronic heart failure are unknown with a variety of possible factors that may 

contribute.  However, nebulised furosemide is not proposed to modulate the 

mechanoreceptors/ergoreceptors/metaboreceptors in the skeletal and respiratory 

muscles but to alter the signal reporting the ventilation, which is compared to the 

signal reporting the need to breathe.  It is not known if altering this signal will ease 

dyspnoea in this patient cohort.  Nebulised furosemide has also been shown to be 

beneficial in a randomised controlled trials of patients with COPD, and given that there 

is 30% overlap between the two conditions it may benefit these specific patients.  The 

evidence for nebulised furosemide as a viable treatment option is uncertain due to the 

variability seen in the trials.  This thesis aims to enhance the understanding of the 

mechanisms of dyspnoea in heart failure and to address the variability seen with 

nebulised furosemide in previous studies, Table 1.1.  It aims to provide further 

evidence for the role of pulmonary vagal afferents in dyspnoea relief from nebulised 

furosemide, for example to assess whether it is due to a direct action on the lungs or 

via the systemic circulation.  Recent advances within the field of dyspnoea research, 

such as the multi-dimensional questionnaires (e.g. Dyspnoea-12 and the 
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Multidimensional Dyspnea Profile), can now be used to guide trials assessing dyspnoea 

relief in heart failure.   

1.5.1. Hypothesis and Aims 

Hypothesis: Nebulised furosemide is a viable adjunct to optimal medical management 

of chronic heart failure by providing greater symptom relief via a direct action within 

the lungs.   

General Aims 

1) Address key outstanding questions with regard to dyspnoea relief by nebulised 

furosemide 

One key outstanding question is how specific nebulised furosemide is with regard to 

the qualities of clinical dyspnoea relief.  This could be accounting for much of the 

variability seen in previous studies of nebulised furosemide for dyspnoea relief.  Recent 

advances in our understanding of dyspnoea include the recognition that there are 

different distinguishable qualities of clinical dyspnoea, that these arise from different 

neural pathways, and that the air hunger is the most unpleasant component of 

dyspnoea.  Guided by this information Chapter 4 aims to verify that nebulised 

furosemide relieves dyspnoea and that this is primarily due to relief of the air hunger 

component via its effects on lung stretch receptor vagal afferents.  Another recent 

advance includes the ability to experimentally induce the air hunger component of 

clinical dyspnoea in healthy volunteers using established reproducible and safe 

methods.  Chapter 4 takes advantage of this and allows a hypothesis driven definitive 

study to be answered.   
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2) Determine the scale of the problem dyspnoea creates for heart failure patients 

in the community 

It is now accepted that, like pain, dyspnoea is multi-dimensional.  This has resulted in 

the development of validated multi-dimensional questionnaires, including the 

Dyspnoea-12 and MDP.  Patients with heart failure were part of the original cohort 

used to develop the Dyspnoea-12 but this tool has not been used in clinical research in 

patients thus far.  Previous studies have attempted to determine the extent of 

dyspnoea prevalence within various patient groups within the community but have not 

taken advantage of the new multi-dimensional questionnaires and none have been 

conducted in HF patients.  Chapter 3 involves a postal survey of dyspnoea in the local 

heart failure community using the Dyspnoea-12.    

3) Lay the groundwork for a future clinical trial of nebulised furosemide for 

dyspnoea relief as an adjunct to treatment of chronic heart failure 

In order to conduct a meaningful clinical trial that will determine whether nebulised 

furosemide is a useful adjunct to optimal management of heart failure, there are a 

number of other potential factors that could be introducing variability into the efficacy 

of nebulised furosemide.  These include: the breathing pattern used when inhaling the 

furosemide; the method used to induce dyspnoea in heart failure (exercise or 

hypercapnia); the type of exercise used to assess breathlessness (CPET or 6-minute 

walk test, 6MWT); the utility of various rating scales of dyspnoea (VAS, Borg etc.); and 

the variability in the systemic absorption of nebulised furosemide from the lungs. 

Chapter 5 aimed to conduct a pilot study in a representative sample of 12 patients with 
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advanced heart failure to specifically address these uncertainties.  Cardiac biomarkers 

analysis was available during the course of the study and it was possible to incorporate 

these into this pilot study (Chapter 6).   
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2. METHODS 

 

The methodology used in this thesis are as follows: 

i) Laboratory-based experimental models of clinical dyspnoea 

ii) Dynamic exercise testing  

iii) Assessment of subjective ratings of respiratory discomfort 

iv) Blood analysis 

2.1. EXPERIMENTAL MODELS OF CLINICAL DYSPNOEA 

As discussed previously, dyspnoea comprises of distinct components (Air Hunger-AH, 

Work/Effort-WE and chest tightness) that arise from different neural pathways.  

Studying clinical populations in order to understand the mechanisms of dyspnoea (or 

its relief with interventions) is particularly challenging, as clinical dyspnoea varies 

naturally throughout the disease trajectory, irrespective of the underlying pathology.  

At peak exercise, patients with cardiorespiratory disease are likely to experience both 

the AH and WE components of dyspnoea.  In patient groups, it is therefore challenging 

to distinguish intervention related changes from clinical fluctuations and co-

morbidities.  Experimentally inducing dyspnoea in a laboratory setting offers a suitable 

environment to identify putative therapeutic targets that can inform future clinical 

trials, to maximise their effectiveness.    

The methods used in this thesis to experimentally induce two of the individual 

components of dyspnoea are established, validated, reliable and safe, Fig. 2.1.  These 
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tests induce specific components of dyspnoea in healthy volunteers.  They do not aim 

to reproduce the exact sensations of dyspnoea that patients with heart failure 

experience.  The amount of AH and WE that contribute to dyspnoea in patients with 

heart failure is unknown and is likely to vary for each individual patients.  

Experimentally induced breathlessness in healthy volunteers instead aims to offer an 

environment that is not affected by changes in clinical status.  A study by O'Donnell et 

al., (2013) compared experimentally induced dyspnoea (increasing end-tidal CO2 during 

restricted ventilation evoking AH)  in healthy subjects and in patients with chronic lung 

disease199.  Using the multi-dimensional dyspnea profile (MDP) to measure the sensory 

qualities as well as the immediate discomfort and secondary emotions they found that 

COPD patients and healthy volunteers reported similar levels of immediate discomfort 

relative to sensory intensity.  There was no difference in the affective response to 

experimentally induced dyspnoea in those with COPD compared to healthy volunteers.  

They also found no difference in affective response between dyspnoea induced in the 

laboratory and that evoked by activities of daily living199.  This study has not been 

performed in patients with heart failure.  AH can be generated systematically by 

hypercapnia with constrained ventilation29 and WE can be specifically induced by 

adding an inspiratory resistive load and targeting ventilation200.  How these 

experimentally induced sensations are related to clinical dyspnoea is still open to 

debate.  One study comparing chronic obstructive pulmonary disease (COPD) patients 

to healthy volunteers reported that the COPD patients experienced episodes of 
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dyspnoea during activities of daily living that were similar in intensity and 

unpleasantness to that of the experimentally induced dyspnoea test199.   

 

Figure 2.1 Experimentally induced dyspnoea circuit 

The Breathing Circuit was identical for air hunger (AH) test and work/effort (WE) test, 

except that the external resistance was removed in the AH test. To elicit AH, CO2 was 

added to the flow of fresh gas into the bag and this flow was fixed at baseline alveolar 

ventilation. To elicit WE, individuals were instructed to empty the bag with each breath 

while the flow of fresh bag into the bag was increased and CO2 was added to maintain 

normocapnia.  PETCO2 = end tidal PCO2 

2.1.1. Air Hunger Test 

Hypercapnia with constrained ventilation: This model of experimentally induced 

dyspnoea has been employed in a number of previous studies, in several laboratories 

around the world22, 24, 29, 185, 190, 200-203.  Participants were semi-reclined in a padded 

chair, whilst wearing a nose clip, and breathing via a mouthpiece.  Humidified warmed 

gas (Fisher and Paykel HCL150) was delivered into a 3-litre anaesthetic bag supplying 
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the inspiratory gas via a one-way valve (Hans Rudolph, model No.5710, USA).  Expired 

gas was expelled via a second one-way valve.  Minute ventilation was constrained as it 

could not exceed the flow into the bag.  For each participant the level of ventilation 

was held constant at their normal resting level (i.e. the bag just collapsed with each 

breath). The participant’s respiratory rate (fR) was fixed at 12 breaths per minute 

(healthy volunteer study) or to their baseline rate (heart failure study) by breathing in 

time with a metronome, resulting in a fixed tidal volume.  Minor adjustments of each 

participant’s tidal volume (VT) and fR (for the HF study) occurred at the start of each 

session to ensure that all participants were comfortable at baseline settings.   

Participants were informed that the amount of air at times would be limited.  They 

were encouraged to relax as much as possible and were coached not to pull excessive 

pressures with ineffective efforts against the collapsed bag.  During the test dyspnoea 

was induced by changing varying amounts of carbon dioxide (10% CO2, 21% O2, 

balanced N2; BOC, England) to the inspired air (Sechrist air-oxygen mixer, USA), whilst 

fixing ventilation to resting levels.  Only a small increase (<20mmHg) in the inspired 

fraction of CO2 is required to generate a stimulus-response relationship between CO2 

and the perceived level of AH by the participant. This method has been shown to 

produce strong air hunger stimulation without any major noticeable work/effort 

sensation21.   

Two AH test protocols were performed: 

i) Ramp: This involved a gradual increase in inspired CO2 every minute until 

the maximal tolerated level of breathlessness (reached top of visual 
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analogue scale, VAS) or came off the mouthpiece. An example of a RAMP 

test in one individual is shown in Fig. 2.2.  

ii) Steady state: The CO2 was manipulated to give up to 5 minutes of a fixed 

level of end tidal CO2 (PETCO2), chosen to target a level of 50% (‘test’ level) 

of the visual analogue scale for AH (based on the ramp).  Ideally 4 minutes 

are required to ensure the stimulus and perceptual ratings reach a steady 

state203.   In the healthy volunteer study (Chapter 4), there was also up to 5 

minutes of a ‘masking’ level that was chosen to target a level of 25% of the 

VAS for AH.  The ‘masking’ level served to prevent the participants from 

‘expecting’ a certain result.  The order of the 5-minute test and masking 

steps were altered between runs.  Brief periods of unrestrained breathing 

separated the two levels of hypercapnia during which participants 

performed an inspiratory capacity manoeuvre in order to facilitate rapid 

change in inspired CO2 level and to reduce the chance of atelectasis.  An 

example of a typical air hunger step produced from using this method is 

shown in Fig. 2.3. 
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Figure 2.2 Typical AH ‘ramp’ 

This is a typical example of a ‘ramp’ test for AH for one participant.  The bottom panel 

shows the continuous PCO2 measured from the mouthpiece and the top panel shows 

the AH ratings on the VAS scale every 15 seconds.  Each minute the inspired CO2 was 

increased to raise the end tidal PCO2, which the participant notes to be an increase 

dyspnoea sensation and rates it accordingly on the 100mm VAS by providing a rating 

every 15 seconds.   
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Figure 2.3 Typical AH ‘steady state’ 

This is a typical example of a ‘steady state’ test for AH for one participant.  There are 

two 5-minute steps with approximately 30 seconds of free breathing in between.  The 

top panel shows AH ratings on the VAS scale every 15 seconds.  The bottom panel 

shows continuous measurements of PCO2 measured at the mouthpiece from which end-

tidal PCO2 was derived and the top panel shows AH ratings on the VAS scale every 15 

seconds.   

End-tidal carbon dioxide partial pressure (PETCO2) is used as an indicator of arterial 

partial pressure of carbon dioxide (PaCO2).  For this assumption to be valid, gas 

exchange within the lungs should be normal.  In the healthy volunteers’ study 

presented in this thesis, this can be assumed.  In the heart failure study, however, this 

may not be as accurate as these participants may have pulmonary oedema affecting 
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gas exchange.  The heart failure patients selected for Chapter 5 are chronic stable heart 

failure patients, on optimal medical treatment so the pulmonary oedema should be 

minimal. The presence of a plateau on the continuous PETCO2 waveform usually 

indicates a true reading.   

It was noted during the AH test for the patient study (Chapter 5) that some of the 

patients were requiring high levels of flow.  Therefore the accuracy of the flowmeter in 

the circuit was tested  using a Douglas Bag and Harvard Dry Gas Meter (accurate to 

±1.5%). This showed that at low flow rates there was good reliability and repeatability.  

However, at higher levels of flow there was reduced accuracy, with an increased 

coefficient of variation.  This is likely to be due to a leak in the system at higher flow 

rates, Fig. 2.4 

 

Figure 2.4 Accuracy of flow meter in the circuit 

Flow rate measured at different set flow rates within the experimental dyspnoea circuit.  

Note: flow rate accurate at lower set flows but less accurate at high flow rate, with a 

lower flow measured.   



46 
 

Some criticisms of this AH test suggest that the negative airway pressure that is 

generated is the sensation that gives rise to the dyspnoea experienced during the test.  

However previous experiments within our laboratory have shown that even if this 

airway pressure difference is removed (by performing targeted breathing to a visual 

cue to fix tidal volume, rather than a bag) the sensation of air hunger still persists, Fig. 

2.5.  This confirms that the airway pressure during the AH test is a consequence rather 

than a cause of having AH.   

 

Figure 2.5 Negative airway pressure and air hunger 

Air hunger test with tidal volume fixed by using a bag or a visual voluntary target.  The 

use of the bag creates a negative airway pressure.  If this airway pressure is removed 

the air hunger sensation persists for the same level of PCO2 and ventilation 

(unpublished data.) 
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2.1.2. Work or Effort Test 

Participants were semi-reclined in a padded chair breathing via a mouthpiece.  

Humidified warmed gas was delivered into a 3-litre anaesthetic bag supplying the 

inspiratory gas via a one-way valve.  Two resistors (12cmH2O and 8cmH2O at 1L/s) were 

added, in series, to the inspiratory side of the circuit.  Expired gas was expelled via a 

second one-way valve.  The participant was instructed to just empty the anaesthetic 

bag with each breath, and the frequency of each breath was fixed by a metronome at 

12 breaths per minute.  Therefore, the amount of gas flowing into the bag determined 

the targeted minute ventilation.   

Two WE test protocols were performed: 

i) Ramp: This involved a gradual increase in flow.  The flow began at a level 

that matched the individual’s baseline alveolar ventilation  and then was 

gradually increased until the maximal tolerated level of breathlessness, or 

until the participant could no longer empty the bag, or the limit of flow-

meter (20l/min) was reached. 

ii) Steady state: The flow was set at a fixed level for up to 5 minutes chosen to 

target a level of 50% (‘test’ level) of the visual analogue scale for WE, whilst 

keeping the PETCO2 at normal resting levels.  There was also up to 5 minutes 

of a ‘masking’ level that was chosen to target a level of 25% of the VAS for 

WE.  The ‘masking’ level served to prevent the participants from ‘expecting’ 

a certain result.  The order of the 5-minute test and masking steps were 

altered between runs.  Brief periods of unrestrained breathing separated 
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the two levels of hypercapnia during which participants performed an 

inspiratory capacity manoeuvre to replicate what happens in the AH test.   

As mentioned above, during the WE test two resistors were added in series (8 and 

12cmH2O/l/s) and the total resistance was estimated be 20cmH2O, as it has been 

shown that resistances of series combination are approximately equivalent to the 

algebraic sum of the individual resistors204.  To test if this was an accurate estimate 

each resistor was tested individually and in series, at different levels of flow and the 

resistance calculated, Fig. 2.6.   

 

Figure 2.6 Pressure-flow characteristics of resistors 

Pressure measured at several different flows whilst the resistor was in inspiratory line 

for the 8 cmH2O/L/s resistor (Ο), 12 cmH2O/L/s resistor (∆), and both included in series 

(□).  The actual measured resistance is shown as the slope of the linear regression 

through all data points for each dataset.  Note 1: when in series the measured 

resistance is equal to the sum of the individual resistances measured for each resistor.  

Note 2: measured resistances are higher than the stated resistance of the resistors by a 

factor that increases with increased flow 
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The measured value of each resistance was higher than expected (i.e. the 8cmH2O/l/s 

had a measured resistance of 14cmH2O/l/s and the 12cmH2O/l/s had a measure 

resistance of 21 cmH2O/l/s.)    However, the measured resistance of the two resistors 

in series was exactly the sum of the two (14 + 21 = 35cmH2O/l/s).  The higher readings 

from each individual resistor may be due to the circuit adding some resistance or the 

resistors need recalibrating.  It is unlikely to be due to condensation or saturation as 

the resistors were tested when fully dry.   

2.2. MEASUREMENTS 

Airflow was measured at the mouth via a pneumotachometer (Respiratory Flow Head 

MLT300L, ADinstruments, Oxford, UK) and integrated (FV156 respiratory flow 

integrator, Validyne Engineering, CA, USA) to provide tidal volume (VT).  Breathing 

pattern was recorded by DC-coupled respiratory inductance plethysmography 

(RespiTrace R250, Studley Data Systems, Oxford, UK).  Pressure at the mouthpiece was 

measured via a fine-bore (1.5mm) sampling tube inserted into the mouthpiece 

connected to a pressure transducer (Differential pressure transducer, ±50 cmH20, 

Validyne Engineering, CA, USA). Tidal PCO2 and PO2 were measured with a calibrated, 

fast-responding, respiratory gas analyser (ML206, ADinstruments, Oxford, UK) via a 

separate fine bore sampling tube inserted into the mouthpiece.  Blood pressure, 

oxygen saturations (SaO2) and electrocardiogram were also monitored (DatexOhmeda 

Cardiocap 5, Madison USA).  Signals were sampled at 20Hz by an A-D converter and 

digitalised and recorded for offline analysis (Micro1401 with Spike 2 software, 

Cambridge Electronic Design, Cambridge, UK.)   
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Non-invasive blood pressure (BP) was automatically recorded every two minutes via an 

inflatable cuff on the upper arm (Datex-Ohmeda, F-CM1-04).  3-lead electrocardiogram 

(ECG; HME Lifetrak) and non-invasive arterial oxygen saturation (SpO2) using a finger-

probe pulse oximeter (Nellcor) were monitored continuously throughout all 

experiments.  Raising the level of inspired CO2 can lead to increases in blood pressure 

and heart rate.  Experiments were immediately stopped if any of the following 

occurred i) SpO2 <95%, ii) heart rate >150 beats per min, iii) frequent ectopic beats on 

ECG trace and iv) PETCO2 was limited to a maximum of 65mmHg.   

Prior to each visit the equipment was calibrated using a calibration gas and a 3litre 

syringe.  Testing for leaks within the circuit was performed each visit by ‘inspiring’ using 

the 3-litre syringe attached to the mouthpiece whilst the gas supply was off.  After 

each visit the breathing circuit was dismantled and soaked in an antiseptic solution for 

at least 15minutes.  The circuit was then rinsed and dried.    

Debrief:  After each experimentally induced dyspnoea test, the participant was asked 

an open-ended question about the breathing sensations in the test they had just 

completed.  This was followed by giving the participant a list of standard descriptors 

and asking them to select all of the descriptors that they experienced during that test.  

They were then asked to identify the top 3 descriptors that they experienced during 

the test, Table 2.1.  During the first ramp test they were asked to rate any breathing 

discomfort on the VAS and then at the end of the test they were asked to identify the 

top 3 descriptors from the standard descriptor list.  This is a non-validated 

questionnaire but established the quality of breathlessness experienced and allowed 
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instructions on which sensations the participant should focus on in the subsequent 

tests.  For the AH test these were 'feel starved for air', 'feel a hunger for more air', 'feel 

an urge to breathe more', 'feel short of breath' and 'breaths feel too small'.  For the WE 

test these were 'breathing requires more work', 'breathing requires more effort', 'size 

of breath feels too large' and 'feels like heavy exercise'.  It also ensured that the 

dyspnoea tests were inducing the correct components of dyspnoea each time, allowing 

the stimulus to be comparable between test runs.  The debrief also included a list of 

other symptoms/side effects that they may have experienced during the test (feeling 

flushed or warm, headache, dizziness etc.) 

Table 2.1 Standard descriptors 

After each experimentally induced dyspnoea test this list of sensations were shown and 

participants were asked to tick any that they felt during the test, and then to select the 

top 3 sensations that they experienced during the test.   

 Tick 1, 2 or 3 

A feeling of suffocation or smothering   

Size of breaths feels about right   

Breathing requires more work   

Breathing is comfortable   

Feel starved for air   

Feel short of breath   

Feels like heavy exercise   

Feel a hunger for more air   

Breathing requires more effort   

Size of breaths feels too large   

Feel an urge to breathe more   

Feel a tightness or constriction in chest   

Breaths feel too small   
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Practice tests: 

In the healthy volunteer study (Chapter 4) the participants underwent two practice 

sessions as they do not normally experience intense dyspnoea.  This was deemed not 

to be required for the heart failure study (Chapter 5) as these patients are already 

familiar with experiencing dyspnoea.  The practice sessions allowed the participants to 

become familiar with the breathing circuit and of how to rate their dyspnoea 

sensations.  This included reliably using the full VAS scale.    For this study it was 

necessary to ensure that the participants specifically rated air hunger for the AH test 

and sense of work/effort for the WE test.  The practice sessions allowed this 

assessment.  After the first test the instruction was to rate on the VAS ‘any 

uncomfortable breathing sensations.’  At the end of the test, the debrief (see above) 

determined if they had in fact rated the ‘air hunger’ cluster of descriptors.  It was 

important that two different practice sessions are run in order to obtain consistency in 

data collection. 

2.3. EXERCISE INDUCED DYSPNOEA 

2.3.1. 6 Minute Walk Test 

The 6-minute walk test (6MWT) is used extensively in cardiology and it was first used in 

patients with heart failure in 1985205.  It is a measure of the distance walked for 6 

minutes at the patient’s own pace, Fig. 2.7.  In this thesis, the distance is calculated 

from laps achieved on a 20m course in a straight hospital corridor. The American 

Thoracic Society states the course should be 30m in length but this was not possible 
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within the department.  This requires patients to take more time to reverse direction 

more frequently, thereby reducing the distance walked during 6 minutes.  However, a 

recent multicenter study found no significant effect of the length on the distance 

walked, ranging from 15-50m corridors.206  The test and equipment followed a 

standard operating procedure at each visit.  Minimal equipment was needed and all 

patients were able to perform this test.  It is not a maximal exercise test and does not 

give detailed information regarding the interaction between the pulmonary and 

cardiovascular circulation.  It is known to be a reliable first-line test for quantification 

of exercise intolerance in patients with heart failure207.  The correlation with prognosis 

from various studies has been inconsistent with some showing a strong correlation and 

others only showing a weak or no correlation207-209.  One study suggested that the 

6MWT was an inaccurate predictor of mortality209.  A possible explanation for these 

varying results may be the different population groups studied (for example, ref 14, 

only studied New York Heart Association-NYHA II-III), different underlying aetiologies, 

different ages or due to the different protocols used (i.e. different levels of verbal 

encouragement).   The use of the 6MWT was assessed in a systematic review and 

found poor correlation between the distance walked and the NYHA class210.  However, 

a 6MWT distance of less than 300m did predict poorer prognosis in stable heart failure 

patients.  Dyspnoea can be measured at the start and end (and during) using dyspnoea 

rating scales (see section below).  In the patient study (Chapter 5) 6 patients performed 

the 6-minute walk test before and after mist inhalation.   
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Figure 2.7 Six Minute Walk Test 

Distance walked in 6 minutes at the patient’s own pace. 

2.3.2. Cardiopulmonary Exercise Testing 

Cardiopulmonary Exercise Testing (CPET) is used less frequently than the 6MWT as it is 

more labour intensive and requires specialist equipment and training, Fig. 2.8.  

Clinically there is mounting evidence for using CPET, and within research its use 

continues to increase.  In cardiovascular disease, CPET is used to assess the degree of 

exercise limitation, to determine the underlying mechanisms causing dyspnoea and to 

monitor response to treatment or deterioration in the condition211.   
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Figure 2.8 CPET using a cycle ergometer 

CPET = Cardiopulmonary exercise testing.  Image courtesy of the Cardiovascular Clinical 

Research Facility) 

CPET enables information to be gathered about respiratory, cardiovascular and muscle 

function by providing measurements of oxygen consumption, carbon dioxide 

production and ventilation on a breath-by-breath basis.  It also gives an indication of 

the effort the subject has given during the test.  Table 2.2 shows some common 

parameters measured during CPET. 
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Table 2.2 Common CPET parameters 

Parameter Definition Notes 

VO2 Amount of oxygen extracted from inspired 
gas per unit time (absolute value (ml/min)  

Can be corrected for weight 
(ml/kg/min)) 

VCO2 Amount of carbon dioxide exhaled from the 
body per unit time (ml/min) 

 

VO2max Maximum oxygen uptake achievable, despite 
further work rate increases 

Ideally confirmed by multiple 
tests 

Peak VO2 Highest VO2 achieve during presumed 
maximal effort 

Aim RER >1.15 

RER Respiratory exchange ratio.  Derived as the 
ratio of carbon dioxide production to oxygen 
uptake (VCO2/VO2) 

This ratio can be used to 
estimate the respiratory 
quotient (RQ), an indirect 
measurement of calorimetry, 
at rest but not during exercise 
due to the accumulation of 
lactate.   

VE Volume of air inhaled or exhaled by the body 
in 1 minute 

 

MVV The maximum potential ventilation 
achievable 

Estimated as forced expiratory 
volume in 1 second (FEV1 x 40) 

AT Anaerobic Threshold.  Exercise limit above 
which the subject’s anaerobic high energy 
phosphate production supplements aerobic 
metabolism 

(V-slope method) 

 

Denotes the break in the linear 
relationship between VCO2 
and VO2 as subjects exercise 
past an intrinsic limit resulting 
in the disproportionate 
increase in ventilation and 
production of carbon-dioxide  

BR Breathing Reserve.  The difference between 
MVV and the achieved maximum exercise 
minute ventilation.   

This can be expressed as 
absolute values (L/min): 

MVV-VEmax 

 or as a percentage (%): 
VEmax/MVV 

VE/VCO2 
slope 

The slope of the linear regression line of 
ventilation to VCO2 production 

 

Measurement is taken using 
linear data points before the 
steeping associated with 
respiratory compensation.   

Ramp 
exercise 

Common style of protocol used for 
determining maximal work and gas exchange 
limits 

Ideally with a duration of 6-
12minutes 
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CPET was introduced to clinical practice in cardiology in 1985211 and peak oxygen 

consumption (VO2) has been shown to reliably predict prognosis212.  Analysis of the 

results is useful in understanding the reason for exercise limitation.  Ideally patients 

perform a maximal exercise test to provide a number of variables such as direct 

measure of oxygen consumption (VO2 max) that have been shown to have prognostic 

value213-215.  VO2max is usually defined as the average of the final 30 seconds of VO2 at 

peak effort.  Before accepting a true VO2max criteria for satisfying maximal effort must 

be met.  This is usually defined as an RER >1.15, >80% of maximal predicted heart rate, 

or a plateau in the VO2 versus time regression with increasing work resulting in no 

additional increase in VO2.  Patient with advanced heart failure are rarely able to 

perform a VO2max test and peak VO2 is used instead.  Table 2.3 shows mean peak VO2 

for males and females in NYHA III and IV.  There is a lack of data on the utility of these 

stress tests in patients with advanced heart failure, New York Heart Association Class III 

(NYHA-III) – indicating that patients are breathless on minimal exertion – or NYHA IV – 

indicating breathlessness at rest.  Not all patients are able to perform CPET due to co-

morbidities (e.g. severe osteoarthritis of the knees) or very advanced disease.  Chronic 

heart failure is indicated by a normal breathing reserve, low VO2 at anaerobic threshold 

(<40% of predicted), flattening oxygen pulse, and high VE/VCO2 slope216.   
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Table 2.3 Gender differences in peak VO2 according to NYHA class217. 

The difference in mean peak VO2 (ml/kg/min) in men and women in NYHA class II and 

III217. 

 Mean Peak VO2 (ml/kg/min) 

 NYHA II NYHA III 

Men 16.4 13.5 

Women 14.8 11.7 

 
 
 

 

 

 

CPET can either be performed on the treadmill or an electronically braked cycle 

ergometer. Cycle ergometers are useful for quantifying work-rate accurately and are 

better for those with balance problems, although leg fatigue can stop the test before a 

true VO2max is achieved, with peak VO2 on a cycle being 10-20% lower than on a 

treadmill218.   

Submaximal exercise testing 

Criteria are used to define maximal exercise effort in healthy volunteers and those with 

cardiovascular disease219.  These are a peak RER ≥1.10-1.15, post exercise lactate 

≥8mmol/L, a plateau in the VO2 to work rate relationship, a heart rate of ≥90% of 

NYHA Classification 
Class I No symptoms and no limitation in ordinary physical activity, e.g. shortness 
of breath when walking, climbing stairs etc. 
Class 2 Mild symptoms (mild shortness of breath and/or angina) and slight 
limitation during ordinary activity. 
Class 3 Marked limitation in activity due to symptoms, even during less-than-
ordinary activity, e.g. walking short distances (20-100 m). Comfortable only at rest. 
Class 4 Severe limitations. Experiences symptoms even while at rest. Mostly 
bedbound patients 
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predicted, ≥8 on the Borg scale for perceived exertion, and the patients’ appearance.    

Patients with advanced heart failure are not used to doing maximal levels of exertion 

during daily life.  For those with a reduced ejection fraction, one guideline recommends 

an RER >1.05 and achievement of an anaerobic threshold on optimal medical 

treatment to be used to define a maximal CPET220.  However, many patients are unable 

to reach this RER due to a combination of factors such as, muscle or ventilatory 

abnormalities, cardiac dysfunction, medication side effects or early fatigue221.  Patients 

with heart failure are often unable to reach a heart rate >90% of predicted.  This is due 

to chronotrophic incompetence which is common in heart failure222, 223, as well as the 

result of beta-blockade, a standard therapy for heart failure.  The worse prognosis 

arises from those with a low peak VO2 (≤10ml/kg/min) who manage to attain a RER 

≥1.15224.  However, peak VO2 and VE/VCO2 slope are significant prognostic indicators 

irrespective of the RER225.   

Reproducibility of CPET 

The reproducibility of CPET parameters has been investigated with a test-retest 

coefficient of variability of 5.9%226.  This amount of ‘noise’ may prevent any useful data 

being gathered when trying to determine prognostic information and repeat testing.   

In this thesis CPET was performed on a seated stationary electromagnetically braked 

cycle ergometer (Ergoline GmbH, Bitz, Germany) using an incremental value with 

respiratory gases collected via a facemask with an integrated system for collecting and 

measuring respiratory gases continuously (Metalyzer 3B, Cortex Biophysik, Leipzig, 

Germany).  ECG and heart rate measurements were recorded continuously and blood 
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pressure was recorded every 2 minutes using a manual mercury sphygmomanometer 

(Accoson Freestyle, Essex, United Kingdom).  Patients were instructed to maintain 55-

65 rpm during the test.  The test had an initial 2 minutes of unloaded cycling, with the 

workload increasing to 20 W at 2 minutes and then a gradual increase of 7.5 to 20 W 

depending on the patients reported level of activity, aiming to complete the test within 

6 to 12 minutes.  The patient then cycled continuously until exhaustion/maximum they 

were willing to do, or until they were unable to keep the rate at 55rpm.  Patients then 

had a 2-minute cool down period with a revolution rate of their preference, with ECG 

monitoring continuing for 6 minutes.  CPET was terminated prematurely if any of the 

following occurred; chest pain suggestive of ischaemia, ischaemic ECG changes, 

complex ectopy, second- or third-degree heart block, fall in systolic pressure >20 mm 

Hg from the highest value during the test, hypertension (>250 mm Hg systolic; >120 

mm Hg diastolic), symptoms and signs of severe hypoxaemia, sudden pallor, dizziness 

or faintness, signs of respiratory failure or mental confusion.   

2.3.3. Detecting changes in Exercise Tests with Interventions 

Both the 6MWT and CPET have been used to measure the response to an intervention.  

In heart failure, the 6MWT has been used in a range of studies to assess the effect of 

new or established interventions, such as testing a new medication for cardiac 

amyloidosis (tafamidis), in the addition of intravenous iron therapy, beta-blockers, 

prostaglandins, optimal adjustment of medical therapy, use of cardiac 

resynchronization therapy or of exercise training and detraining227-235.  Often a large 

variance is detected regarding the change in the 6MWT distance when testing an 
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intervention and this may be in part due to the test and re-test repeatability.  However, 

6MWT may not be a sensitive marker of change as proven therapies such as beta-

blockers and angiotensin converting enzyme (ACE) inhibitors which significantly 

improve LV ejection fraction and NYHA class have not been shown to make a significant 

difference in the distance walked during a 6MWT.   

In heart failure, CPET has been used less frequently to assess the effect of an 

intervention.  Examples where it has been used include studies investigating the 

addition of oral or intravenous iron to standard medical therapy236, 237.  Patients with 

NYHA class III-IV are rarely included in trials using CPET to assess outcomes of an 

intervention as this group may not be able to do enough exercise to generate 

meaningful data.  However, there is an increasing view that CPET is underutilised in 

cardiology.    

2.4. ASSESSMENT OF DYSPNOEA (PATIENT REPORTED OUTCOME MEASURE) 

As discussed previously, dyspnoea comprised of different qualities and any 

measurement of dyspnoea should ideally cover the intensity, quality and emotional 

response of the respiratory discomfort.  In patients, the severity of dyspnoea and the 

associated unpleasantness varies.   

During incremental exercise testing, assessment of the intensity of dyspnoea was 

measured using the Borg Scale or Visual Analogue Scale (VAS).  The Borg scale was 

initially used to measure perceived exertion and the scale ranged from 6 to 20.  The 

Modified Borg Scale (MBS) was then created which was a 10-point scale with verbal 
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anchors to aid comparisons between tests.  The MBS has good reliability and validity 

for the ratings of dyspnoea238.  The VAS consists of a line 100mm long with word 

anchors at either end, ‘no breathlessness at all’ to ‘worst possible breathlessness’.  The 

reliability and validity is good112.   

Dyspnoea ratings in clinical trials 

Over 30 ways of recording dyspnoea have been used in clinical trials105, 106, each with a 

different focus, such as sensory perception versus emotional distress107, 108, or 

addressing different time points (e.g. rest versus exercise).  The most commonly used 

scales are the VAS, the numerical rating scale (NRS) and the MBS as they are 

convenient, quick and user friendly.  Dyspnoea is present in many different conditions, 

such as heart failure, COPD and cancer and descriptors of dyspnoea overlap between 

these different conditions51.  All of the scores above naturally will include both the 

severity and unpleasantness of dyspnoea unless specifically instructed otherwise.   

In the AH and WE test an electronic 100mm vertical electronic visual analogue scale 

(VAS) is used to obtain subjective ratings of AH or WE.  Ratings were cued by a ‘light 

emitting diode (LED) light indicator every 15 seconds which instructed participants to 

rate how much AH or WE they were feeling at that point in time.  In the AH test the 

participants were asked to focus on the sensations; 'feel starved for air', 'feel a hunger 

for more air', 'feel an urge to breathe more', 'feel short of breath' and 'breaths feel too 

small'.  For the WE test the participants were asked to focus on the sensations; 

'breathing requires more work', 'breathing requires more effort', 'size of breath feels 

too large' and 'feels like heavy exercise'.  The range covered 0mm (no breathlessness) 
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to 100mm (tolerable limit) as previously described21, 29, 239.  Additional word anchors 

(‘slight’, ‘moderate’, ‘severe’ and ‘extreme’) were placed at equal separation alongside 

the scale which enabled participants to remember how much of the scale represented 

how much sensation from one occasion to the next 239. Extreme ratings activated an 

alarm, and the dyspnoea stimuli was immediately removed.   

In the heart failure study patients, in addition to obtaining subjective ratings from the 

AH test, dyspnoea ratings were also taken pre-exercise (CPET and 6MWT) and 

immediately at the end of exercise, and for 1- and 2-minutes into recovery.  Their 

dyspnoea ratings were recorded on both the VAS and the MBS, Figs. 2.9 and 2.10.  A 

good correlation between these scales has been shown previously240.  There were the  

word anchors mild, moderate, severe, extreme on the experimentally induced 

breathlessness tests electronic VAS but not on the VAS taken at the end of exercise.  

The word anchors were intended to make it easier for participants to remember how 

much of the scale represented how much sensation from one occasion to the next, as 

they were rating so frequently (4 every minute, approximately 40 ratings per test).  This 

did not apply to the VAS taken at the end of exercise where only 3 ratings were taken.  

 

Figure 2.9 Visual Analogue Scale 
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Figure 2.10 Modified Borg Scale 

In addition to the dyspnoea rating scales, complementary questionnaires relating to 

breathlessness are also useful in the assessment of dyspnoea.  In 1952, Fletcher first 

published a scale to rate the impact that dyspnoea is having on activities of daily living.  

A revised version focusing on the patients when walking or climbing stairs  became 

known as the Medical Research Council (MRC) scale241, 242.  This is the most commonly 

used dyspnoea scale in UK clinical practice.   

Since the MRC Dyspnoea Scale two more recent multidimensional questionnaires have 

been developed, the Multidimensional Dyspnoea Profile (MDP) and the Dyspnoea-12 

(D12)7, 243. These scales include both the physical and emotional aspects of dyspnoea.  

Utilising these questionnaires in conjunction with the dyspnoea rating scale allows a 

more focused approach to dyspnoea within research.   
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D12 

In the heart failure studies (Chapters 3 and 5) the Dyspnoea-12 (D12) questionnaire 

was utilised, Table 2.4.  This is a multi-dimensional questionnaire that comprised of 

both the physical and the emotional components of dyspnoea.  Other questionnaires 

such as the NRS do not include the emotional components of dyspnoea and it is 

therefore difficult to ascertain how much this is contributing to their overall ratings of 

dyspnoea.  The questionnaire was designed by collecting a pool of 88 common phrases 

used to describe breathlessness from published primary data studies.  It has been 

validated in many different cohorts of patients, including heart failure.  The total 

dyspnoea score is independent of underlying pathology and includes both physical and 

emotional components of breathlessness.  It consists of 12 descriptors, divided into 7 

physical and 5 emotional aspects and subjects can answer ‘none’, ‘mild’, ‘moderate’ or 

‘severe’ with an associated score of 0, 1, 2 and 3, giving an overall maximal score of 36.  

It provides an overall total score of dyspnoea and while not designed to measure the 

physical and emotional individual components, it is possible to assess these separately.    

It is not designed to determine the different components of dyspnoea but some 

descriptors are terms more frequently used in patients with AH and some others in 

those with mainly the WE component of dyspnoea.  The terms more aligned with AH 

are 'my breath does not go in all the way', I feel short of breath', and 'I cannot get 

enough air'.  The terms more aligned with WE are 'my breathing requires more work' 

'my breathing is exhausting.'   
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Table 2.4 Dyspnoea-12 Questionnaire 

Item None Mild Moderate Severe 

1. My breath does not go in all the way 0 1 2 3 

2. My breathing requires more work 0 1 2 3 

3. I feel short of breath 0 1 2 3 

4. I have difficulty catching my breath 0 1 2 3 

5. I cannot get enough air 0 1 2 3 

6. My breathing is uncomfortable 0 1 2 3 

7. My breathing is exhausting 0 1 2 3 

8. My breathing makes me feel depressed 0 1 2 3 

9. My breathing makes me feel miserable 0 1 2 3 

10. My breathing is distressing 0 1 2 3 

11. My breathing makes me agitated 0 1 2 3 

12. My breathing is irritating 0 1 2 3 

 

Minnesota Living with Heart Failure Questionnaire (MLHFQ) 

The MLHFQ is a validated patient reported outcome questionnaire (United States Food 

and Drug Administration, FDA) that measures the adverse effects of heart failure on 

the patient’s life.  It has been approved to test the effectiveness of treatments for 

heart failure by assessing the reduction in the adverse impact of heart failure on the 

quality of life.  It provides a total score (range 0–105, from best to worst HRQoL), as 

well as scores for two dimensions, physical (8 items, range 0–40) and emotional (5 

items, range 0–25). The other eight items (of the total of 21) are only considered for 

the calculation of the total score. 
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2.5. DRUG DELIVERY 

The nebulisers used throughout this thesis were MicroAir U22 Omron Nebulisers.  This 

model has been used successfully in a previous study29.  It is handheld and easy to use, 

with nebulisation possible at different angles.  It is portable and will inform planned 

future clinical trials which involve patients taking the nebulisers home and using them 

independently.  The aerosol is created by ultrasound (from a titanium vibrator, 

oscillating at high frequency) and can be battery operated or plugged into the mains 

power supply.  It is easy to clean.   

2.6. BLOOD TESTS 

2.6.1. Biomarkers of Heart Failure 

BNP and Troponin 

The main cardiac biomarker used in heart failure is the brain naturetic peptide (BNP) or 

N-terminal pro-BNP) (NT-proBNP).  BNP is strongly linked to dyspnoea and can be used 

to discriminate between acute dyspnoea caused by heart failure and that caused by 

primary lung disease244.  Troponins (Troponin T (TnT) and Troponin I (TnI)) are most 

commonly used to diagnose myocardial infarction but are also often detectable in 

patients with heart failure.  The use of high sensitivity troponin assays (hsTn) has 

significantly increased the number of patients with heart failure with detectable 

troponin to 92%245, 246.  Elevation of these cardiac biomarkers are associated with 

increased mortality and hospital admissions246. Measuring hsTn over a few months 

strongly predicts all-cause mortality (HR 1.88)247.   
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Cardiac biomarker response to exercise 

Exercise improves morbidity and mortality for patients with heart failure with reduced 

ejection fraction248, 249.  Myocardial infarction is diagnosed by a single cardiac troponin 

value above the 99th centile and a significant time-dependent change in the cardiac 

troponin concentration in the presence of clinical symptoms and signs250.  The 

magnitude of the concentration change (i.e. the δ criterion) is not clear and varies from 

20 to 250%. ESC recommends a change of 20-50% depending on whether the baseline 

troponin is below or above the 99th percentile. BNP is useful for both the diagnosis and 

monitoring of patients with heart failure.  Exercise in heart failure is rarely mentioned 

and may be a confounding factor to diagnosing an MI using the δ criterion and may 

alter the BNP result.  Biological variability in patients with chronic disease is critical for 

interpretation and analysis of both BNP and Troponin to understand their utility in 

clinical situations.   

Collection of samples 

Cardiac biomarkers were studied in patients with heart failure (Chapter 5).  Blood 

samples were collected from 12 patients with stable heart failure with an ejection 

fraction <35%.  Each patient attended on 4 days over a minimum of 21 days.  Cardiac 

biomarkers were collected before and after exercise on two occasions each visit (4 

samples per visit, Fig. 2.11) with a total of 16 samples per patient.  Two series of blood 

samples were collected from the participants; one series included 4 samples collected 

within 3 hours, 2 pre-exercise and 2 post exercise; the second series consisted of, at 

most, weekly samples obtained over a period of at least 21 days (mean±SD 
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26.9±10.2days, range 22 to 53days).  The samples were collected from an antecubital 

venous catheter.  

 

Figure 2.11 Protocol demonstrating timings of blood sample collection 

Cardiac biomarkers are taken before exercise (A and D) and after exercise (B and E) at 

each visit.  Each participant attends on 4 visits.   

The interpretation of cardiac biomarkers over time and in relation to exercise allows us 

to assess the normal variability within each individual. The within-person variation 

(CVi), between person variation (CVg), RCV and II were calculated.  The RCV is the 

maximum difference between two consecutive results that might be caused by 

analytical variation (CVa) and within patient variability (CVi).  If the RCV is larger than 

the δ criterion used to diagnose disease then there is likely to be a high false positive 
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rate with low test specificity.  The index of individuality (II) is the utility of conventional 

population-based reference values and diagnostic cut-offs (e.g. 99th percentile).   

High sensitivity Troponin I assay (hsTnI) was determined on Abbott diagnostics. The 

limit of quantitation (LoQ) is 3.2 ng/L.  The 99th percentile for the reference population 

has gender specific cut-offs with males at 34 ng/L and females at 17 ng/L.  The 

functional sensitivity (CV=10%) is not specifically quoted by the lab.  The manufacturer 

standard states that the assay performs with a CV of ≤10% across the concentration 

range 10 - 50,000 ng/L.  BNP was analysed using Abbott Architect BNP.  Lower limit of 

reporting = 2.9 pmol/L.  The reference interval was up to 28.9 pmol/L.  The 

manufacturer quotes CV of <12% across the reportable range. 

2.6.2. Furosemide assay 

The amount of furosemide absorbed from a nebulised dose of furosemide is unknown.  

The mean mass of the drug delivered to the lungs is thought to be less than 20% of the 

total mass nebulised and only 50% of the drug delivered is likely to be absorbed 

systemically251-253.  To test this estimate blood samples were taken immediately before 

and immediately after nebulised furosemide.  The furosemide assay was then 

processed, as below:    

Chemicals and reagents 

Organic solvents were of HPLC grade (Rathburns, UK).  Other chemicals were of 

analytical grade (Fisher, UK).  Furosemide 1mg/mL Certified Reference Material and 
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warfarin 1 mg/mL Certified Reference Material were purchased from Cerilliant (Sigma, 

UK). 

Standards and quality control 

Standards were prepared in house in 3% BSA in saline (Fisher, UK) at concentrations 

0.05 – 1.0 mg/L and used to construct calibration curves.  Quality control materials 

(two levels) were prepared in house in 3% BSA. 

Extraction 

Samples were stored frozen prior to analysis.  Serum was acidified with 6M 

hydrochloric acid and internal standard (warfarin) was added to all samples.  

Furosemide was then extracted into hexane:ethyl acetate (70:30).  The organic phase 

was evaporated and reconstituted into methanol for analysis by HPLC. 

HPLC conditions 

HPLC analysis was carried out on a Varian ProStar system with PDA/fluorescence 

detection.  Separation used a Spherisorb 5 µm ODS 25cm x 4.6 mm ID column (Waters, 

Chromex Scientific, UK) at ambient temperature.  Mobile phase was acetonitrile: 

phosphate buffer, pH3.0, using a gradient 35-55% over 10 min.  Flow rate 2.0 mL/min.  

The detector used excitation and emission wavelengths 225 and 389 nm, respectively.   

Method performance  

Precision was assessed by running quality control material within (n=4) and between 

(n=24) batches.  Intra-assay precision was <6% and inter-assay precision was <12%.  

Recovery of spikes at 0.025, 0.05, 0.1 and 0.5 mg/L gave mean 109% difference from 
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the spiked value (range 98-120%).  All calibration curves were linear, r2>0.98.  The 

lower limit of quantification, defined as CV<20% with accuracy 80-120% of expected 

value, was 0.03 mg/L. 

2.7. STATISTICAL ANALYSIS 

Descriptive statistics have been performed to present and summarise data.  Test of 

significance have been performed to draw conclusions from the results.  Statistical 

analysis was performed using SPSS (Version 25, IBM, Armonk, New York), Microsoft 

Excel 2016 and SAS 9.4.    In this thesis, variability of data is indicated by either 

standard deviation (sd) or standard error (se).  Tests of inference were primarily 

analyses of variance (ANOVA).  This method allows estimates of independent and 

mixed effect of several factors on a dependent variable.  The outcome variables were 

continuous.  In this thesis most of the data was measured repeatedly in the same 

subject and so the analyses used most frequently was Repeated Measures ANOVA.   

Repeated measures analysis of variance 

Details are provided for individual tests within each chapter but all were analysed using 

SPSS Version 25.  In general, the initial ANOVA included all the within and between 

factors.  If the existence of a significance was indicated within the mixed effects then 

further ANOVA were performed to determine the individual contribution of the various 

factors.  All ANOVA test were performed using SPSS Version 25.  Statistic from the 

ANOVA was set at 5% level of probability of the null hypothesis being true.   
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Other statistical test employed in this thesis included Chi square, Student’s t-test, 

Linear Mixed Model 'mixed' procedure, and tests of linear regression.  Student’s t-test 

were performed where ANOVA was unwarranted for unnecessary.  This was usually a 

paired t-test.   

Repeated measures ANOVA was most frequently used statistical analysis in SPSS.  Chi 

squared was also used.  The Linear Mixed Model 'mixed' procedure was used in 

Chapter 4.  Chapter 5 was a pilot study and mainly descriptive statistics were used.  

Missing data was treated by using the pre or post mist value, or if not possible the 

average of that set of values.   

Treatment of missing data 

There were very few missing data points in this thesis.  Any missing data resulted in the 

SPSS excluding the full set of data for that subject.  To avoid this, missing data were 

replaced by representative values from the same subject.  For example, for the missing 

blood test results (3 in total), the results on the same day at the same was taken as had 

occurred before (or after) the mist.     

2.8. SUMMARY 

Laboratory-based experimental models have been used in Chapters 4 and 5 to elicit 

dyspnoea in a controlled and systemic way to allow different components of dyspnoea 

to be investigated whilst minimizing confounding factors.  Exercise tests have been 

used to elicit dyspnoea in Chapter 5 as closer representation of ‘real life.’  Subjective 

ratings of respiratory discomfort have been investigated throughout this thesis, from 
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simple visual analogue scales to more complex questionnaires, investigating both the 

physical and emotional components to dyspnoea.  Finally, blood tests have been 

performed to gain a better understanding of how cardiac biomarkers change with 

exercise, as well as their within-subject and between-subject variability over time.  

Furosemide assay data allows direct measure of systemic absorption from a nebulised 

dose of furosemide.   
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3. DYSPNOEA PREVALENCE IN COMMUNITY HEART 

FAILURE 

 

3.1. INTRODUCTION 

The origins of dyspnoea are poorly understood in heart failure and there is a poor 

correlation with objective measures of heart or lung function62, 63 yet dyspnoea is a key 

predictor of mortality, reduces quality of life and affects the will to live254, 255.  

Dyspnoea is one of the most frequent symptoms of heart failure, with over 50% 

experiencing daily dyspnoea and limiting the ability to perform activities of daily 

living55.  However, this research by Barnes et al. (2006) used the Kansas City 

Cardiomyopathy Questionnaire which covered all symptoms related to heart failure, 

and was not specifically related to dyspnoea.  Dyspnoea is not only a physical symptom 

and, like pain, is frequently associated with a strong emotional/psychological 

component.  In 2010, a new questionnaire was developed focusing on dyspnoea called 

the ‘Dyspnoea-12’ (D12).  It is a validated multidimensional tool comprising of 12 items 

and unlike some of the more commonly used measures of dyspnoea, such as the visual 

analogues scale, it incorporates both the physical and affective aspects of dyspnoea in 

a single global score of dyspnoea severity7.  One of its strengths is that it has been 

designed using phrases that patients themselves used when describing their 

breathlessness.  The variation of dyspnoea over the day or week is unknown in patients 

with heart failure.  Dyspnoea is usually only assessed during GP or hospital 

appointment and anecdotal evidence from the community heart failure team suggest 
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that the nature and extent of dyspnoea may be different in the community setting.  

Readmission rates for heart failure are high (~17.5%) and are similar to that of chronic 

obstructive pulmonary disease-COPD (16.5%), compared to an average readmission 

rate of 6.6%256 and have major financial implications in the NHS.  Gaining a better 

understanding of the prevalence and unpleasantness of dyspnoea in the community 

may allow targeted treatment and reduce readmissions.   

The relative contribution of the different components of dyspnoea (air hunger (AH), 

work effort (WE) and chest tightness) are unknown in patients with heart failure.  How 

these components vary from rest to exercise has also not been studied.  This study 

focuses on the prevalence, quantity and variation over the day and weeks rather than 

the quality of their dyspnoea.   

Specific aims: 

1) To assess the prevalence of dyspnoea at rest in patients with heart failure 

within the local community and understand to what degree the physical and 

emotional/unpleasant components contribute to the symptom of dyspnoea.   

2) To assess the variations in dyspnoea in patients with heart failure within each 

day and over 1 week. 

3) To correlate dyspnoea with other factors; ejection fraction (preserved or 

reduced), New York Heart Association class, gender and age.   

 

Null hypotheses: 

1)  There is no variation in dyspnoea in patients with heart failure within each day 

or over a period of 1 week 

2)  There is no correlation with ejection fraction, NYHA class, gender or age 
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3.2. METHODS 

Participants 

One hundred and fifty patients were initially identified by reviewing consecutive heart 

failure clinic letters from the John Radcliffe Hospital, Oxford over a period of 1 month.    

The inclusion criteria consisted of a diagnosis of heart failure with reduced (<50%) or 

preserved (>50%) ejection fraction. Patients had to be ≥18years old, with no upper age 

limit.  The exclusion criteria consisted of patients who had documented dementia or 

confusion which was likely to impair their ability to answer the questionnaire and/or an 

indication on the clinic letter that they required a translator.   

Full ethical approval was obtained from the NHS Health Research Authority (REC 

reference number 16/YH/0360) and the Oxford Brookes Departmental Research Ethical 

Officer with Oxford Brookes University serving as the research sponsor.   

Sample size 

Re-examination of the raw data that was used in a previous publication7 showed that 

the D12 score in 106 patients with heart failure had a standard deviation of 24% full 

scale.  The minimally clinically important difference (MCID) for total D12 score is 

reported to be 9.7% full scale257.  Using this information, it was determined that 50 

subjects would be needed to be able to reject the null hypothesis for mean differences 

between time points (morning, noon, evening) with a power 0.8 and Type I error 

probability is 0.05.  This calculation was performed using PS Power and Sample 

Calculations software V3.0 January 2009.  When stratified according to age, sex, New 
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York Heart Association (NYHA) class and ejection fraction it is likely that any non-

significant differences would need to be treated with caution as the research is 

underpowered for definitive conclusions with regard to these comparisons. Thus, for 

the secondary analyses this research is preliminary. 

Barnes et al. (2006) showed dyspnoea present in 54% of patients with heart failure.  

For 50 patients to be the minimum number of patients with dyspnoea in the sample 

108 patients are required, for a probability of 95%.  Sample size affects the prevalence 

estimates.  The more data available the more precise the estimate.  As the sample size 

increases the confidence in the estimate increases, with a reduction in uncertainty and 

greater precision (standard error decreases).  Protocol 

Recruitment started in October 2016 and 150 consecutively identified patients with 

heart failure were each sent twenty-one D12 questionnaires to complete 3 times a day 

(morning, midday and evening) for 7 days.  The D12 was used as it is a valid and 

reliable instrument to measure dyspnoea in different cohorts125 and takes into account 

both the emotional and physical components of dyspnoea.  It was designed using 

language that patients used themselves and can be filled in without the need of a 

trained healthcare professional.  It is also quick and simple to perform.  The MCID for 

the Dyspnoea-12 questionnaire is 3 points124.  The questionnaire is included in the 

methods chapter.   A reminder letter was sent after 1 month to non-responders.  The 

instructions to the patient were to sit at rest for 5 minutes and then to rate their 

dyspnoea at that moment in time and to return the questionnaires by mail once 

complete.  The original D12 validation paper tested the D12 using the reference frame 
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'these days' and it was pointed out in this paper that when using it in this way it is 

being used in a non-temporally specific way7.  The paper does not however explicitly 

state that it should not be used in a temporally specific way.  A recent paper by 

Ekstrom et al., 2020 has shown that the MCID does not change if you use various 

specific timeframes, for example, average, best, worst and current intensity123.  In this 

chapter the patients were asked to rest for 5minutes to fill this questionnaire in and to 

rate their breathlessness at that moment in time.  Any returned without completion 

was taken to mean that they withdrew from the study.  On each questionnaire the 12 

items were presented in a random order.  Chapter 2 provides details of the validity and 

features of this questionnaire.   

Statistical analysis 

A repeated measures analysis of variance was performed with 2 within factor; time of 

day (3 levels; morning, noon and evening) and day of the week (7 levels; Monday to 

Sunday).  This analysis was performed for D12 total score and for the component D12 

physical and emotional scores, all expressed as %full scale.  A further analysis was 

performed with the addition of between factors of age, sex, NYHA class and ejection 

fraction (two levels: reduced, <50% and preserved, >50%).   

3.3. RESULTS 

A total of 109 males (73%) and 41 females (27%), with a mean age of 77 years were 

sent an invitation to participate.  Fifty three percent (male: female 75:25%) had a 

reduced ejection fraction and 47% (male: female 69:31%) had a preserved ejection 
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fraction.  Twenty eight returned the questionnaires without completing them, 

indicating that they did not wish to participate, and 30 returned the fully completed set 

of questionnaires giving an overall response rate of 20%.  This was a lower than 

anticipated response rate and the study is underpowered.  Analysis of the results has 

been undertaken to generate preliminary data but when 'significance or lack of' is 

stated this must be interpreted with caution.  Of those that participated 14 (47%) 

experienced some dyspnoea and the remaining 16 (53%) did not experience any 

dyspnoea.  

For those that experienced dyspnoea (n=14) the overall mean% full scale±sd total, 

physical and emotional D12 scores were 23±22, 18±17 and 5±6 respectively.  The 

within subject standard deviation was 6.2% full scale.  The 95% range was 0 to 67% full 

scale.  When averaged over 7 days for morning, noon and evening times the scores 

were 23±22, 24±23, 23±23 for the D12 total, 18±18, 18±18, 18±20 for D12 physical and 

5±7, 6±8, 5±7 for D12 emotional respectively.  Repeated measures ANOVA did not 

detect any main effect of time of day or day of week or any significant interaction 

between these within factors for D12 total, D12 physical or D12 emotional 

components, all p>0.05, Fig. 3.1.  However, the study is underpowered for this analysis. 
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Figure 3.1 D12 scores at different timepoints 

Variation in total D12 scores at morning, noon and evening time over 7 days.  The 

mean±sem total, physical and emotional scores for dyspnoea expressed as %full scale 

recorded at morning, noon and evening over 7 consecutive days. 

i) Type of heart failure (reduced or preserved ejection fraction) 

Accepting that the study is underpowered, preliminary analysis showed that in those 

with a preserved ejection fraction 67% experienced dyspnoea, compared to 38% in 

those with a reduced ejection fraction but this did not reach significance, chi squared 

p=0.15, Table 3.1.  This calculation includes all patients who reported any degree of 

dyspnoea on the D12.  Repeating this analysis with no dyspnoea defined as never 

rating above a threshold of 9.7% (the MCID) did also not result in a significant 

difference (chi squared p=0.16), although the proportion of reduced ejection fraction 

patients with dyspnoea decreased further to 29%.  
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Table 3.1 Dyspnoea prevalence in preserves and reduced ejection fraction subsets.   

Chi-squared analysis of the ratio of dyspnoea presence and absence among preserved 

and reduced ejection fraction subgroups of patients with heart failure.  No dyspnoea 

indicates a score of zero on the total D12 score.    The chi-square statistic is 2.07. The p-

value was not significant at 0.15, however the study is underpowered for this analysis. 

 Dyspnoea No dyspnoea Marginal Row Totals 
Reduced 8 (9.8)    13 (11.2)    21 
Preserved 6 (4.2)    3 (4.8)    9 
Marginal Row Totals 14 16 30 (Grand Total) 
 

In those patients where dyspnoea was present, the D12 scores were similar between 

those with a reduced and preserved ejection fraction (25±24 vs. 20±22 respectively, 

mean%±sd).  There was a slight trend for an increase in the physical component for 

those patients with a reduced compared to the preserved ejection fraction (21±19 

versus 14±16)..  There were no significant differences in the emotional components in 

reduced compared to preserved ejection fraction (5±7 versus 6±7), Fig. 3.2.  However, 

the study is underpowered for this analysis. 
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Figure 3.2 D12 scores in heart failure with a reduced or preserved ejection fraction.   

The mean±sem total, physical and emotional scores for dyspnoea expressed as %full 

scale averaged for morning, noon and evening over 7 days in 14 patients with reduced 

and preserved heart failure in the community. 

ii) New York Heart Association (NYHA) class 

Preliminary data of this study showed the presence of dyspnoea on the D12 

questionnaire correlated with the NYHA class.  For the 14 patients who reported 

dyspnoea 7 were in NYHA class III, 6 were in class II and 1 was in class I.  For the 16 

patients without dyspnoea 3 were in NYHA class III, 7 were in class II and the remaining 

6 were in NYHA class I, Fig. 3.3.  The study was underpowered, however preliminary 

analysis showed there was a significant difference in D12 scores between Class I and III, 

p=0.02.  There was a trend for a difference in D12 scores between Class II and III, 

p=0.05, Fig. 3.4.  There was no significant difference between Class I and II, p=0.39.    
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Figure 3.3 Proportion of patients with dyspnoea within each NYHA class   

The proportion of patients experiencing dyspnoea increases with each NYHA class.    

 

Figure 3.4 D12 score in each NYHA class 

The mean±sem total D12 expressed as %full scale averaged for morning, noon and 

evening over 7 days in 14 patients with reduced and preserved heart failure in the 

community according to NYHA class.   
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iii) Sex and Age 

For the 30 patients who responded 10 (33%) were female and 20 (67%) were male.  In 

the 14 who reported some level of dyspnoea 5 (36%) were female and 9 (64%) were 

male.  In the 14 who reported dyspnoea the total D12 was 22±30 for females and 

24±19 for males.   Gender nor age had any significant effect on the total D12 score or 

for the individual physical and emotional components Table 3.2.   However, the study is 

underpowered for this analysis. 

Table 3.2 D12 scores according to gender and age 

The mean±sd total D12 expressed as %full scale averaged for morning, noon and 

evening over 7 days in 30 patients with heart failure in the community.  

  N D12 total (% ±sd) D12physical (% ±sd) D12emotional (% ±sd) 

Sex Female 

-reduced 

-preserved 

10 

8 

2 

11±23 

12±26 

5±3 

13±30 

16±33 

4±3 

7±13 

7±15 

7±9 

 Male 

-reduced 

-preserved 

20 

14 

6 

11±17 

7±14 

19±23 

15±23 

11±20 

24±29 

5±11 

2±7 

11±17 

Age 50-60 1 0 0 0 

 60-70 3 21±31 25±37 43±19 

 70-80 13 8±12 13±20 1±4 

 80-90 11 14±24 18±31 9±16 

 90-100 2 3±4 1±2 7±8 

 TOTAL 30 11±20 15±26 6±14 
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iv) Mortality 

Mortality increased with age.  Approximately 15% of those experiencing dyspnoea in 

the age group 70-80years old died compared to none of the patients in that age group 

who reported no dyspnoea, Fig. 3.5.  In the older age group of 80-90years the reverse 

was true, with more patients dying in those that reported no dyspnoea.    

 

 

Figure 3.5 Dyspnoea and survival rate 

Survival in each age group, stratified according to presence or absence of dyspnoea.  

SOB = shortness of breath/dyspnoea 

 

3.4. DISCUSSION 

The study has found that patients with heart failure in the local community report a 

relatively low level of dyspnoea at rest (23±22, mean%±sd) that did not vary with time 

of day or day of the week over a 1-week period.  This information has not previously 

been reported and provides insight into the experience of dyspnoea for those patients 

0

20

40

60

80

100

50-60 60-70 70-80 80-90 90-100

(1) (4) (14) (9) (2)

Su
vi

va
l r

at
e

Age  (yrs)
n

SOB No SOB



87 
 

living with heart failure in the community.  However, the correct sample size was not 

achieved and therefore the data including the prevalence estimates should be treated 

with caution.   

Comparison with the literature 

In the paper that originally presented the D12 (Yorke et al., 2010), re-examination of 

the raw data for the levels of dyspnoea reported by 106 heart failure patients for D12 

total, physical and emotional scores were higher than the corresponding data in the 

current study; 30±24, 33±25, 26±26 versus 23±22, 18±17 and 5±6% respectively, mean 

%full scale±sd7.  This difference is likely due to our methodology which asked patients 

to sit for 5 minutes before completing the questionnaire, whereas the original study 

asked about breathlessness ‘these days’ in terms of how patients currently experience 

breathlessness in their daily lives, and not at a specific time-point or after a specific 

activity.  Asking them to sit for 5 minutes was done to standardise the results but likely 

had the effect of minimizing any dyspnoea experienced and, in retrospect, added value 

may have been achieved if patients were asked to complete the D12 after a short walk 

or after climbing a flight of stairs.  Another reason for these differences may be due the 

definition of ‘chronic heart failure’ which is not reported in the Yorke et al. (2010).  The 

distribution of reduced and preserved ejection fraction is unknown.  However, this may 

not affect the results as a study by Bhatia et al. (2006) found dyspnoea present in 

96.2% of those with a reduced ejection fraction and 94.9% in those with preserved 

ejection fraction (p=0.11)258 and this study showed no significant difference in the 
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severity of dyspnoea experienced in each group.   However, the study is underpowered 

for this analysis. 

The proportion of patients who indicated any level of dyspnoea on the D12 amounted 

to 47% which is similar to the 54% reported previously by Barnes et al. (2006) using the 

Kansas City Cardiomyopathy Questionnaire which is not specific to dyspnoea but 

covers a range of symptoms related to heart failure55.   

In acute exacerbation of COPD, Nishmura et al. (2018) recorded D12 throughout 

admission 259.  Our data fits most closely with day 1 of an acute exacerbation of COPD, 

with a much higher score (29%full scale, total D12) than at 84 days after an acute 

admission (11%full scale, total D12)259.  This suggests that patients with heart failure 

are experiencing a similar level of dyspnoea to those experience by patients on day 1 of 

an admission with acute exacerbation of COPD.   It is not clear in the Nishimura et al. 

(2018) study as to whether the scores were taken before or after initial treatment for 

COPD had been administered on the day of admission.  The patients previous 

admissions to hospital are not recorded and for both heart and lung disease the 

disease trajectory tends to be the same with a gradual decline in the disease, which is 

populated by exacerbations (more severe symptomatic brief episodes) which then 

resolve but never return to the baseline set before the exacerbation260, 261.   It is 

unknown as to where on the trajectory these patients are in either study.   

Heart failure with reduced or preserved ejection fraction 

There was a trend for more dyspnoea in those with preserved compared to reduced 

ejection fraction (25±24 vs. 20±22 respectively, mean%±sd), with a greater proportion 
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attributable to the physical components of the D12 for those with a reduced ejection 

fraction (21±19 versus 14±16.)  Heart failure with a preserved ejection fraction is more 

common in females (66%) and heart failure with a reduced ejection fraction is more 

common in males (63%)258.  Eighty percent of the females in this study had a reduced 

ejection fraction and this is not representative of the normal distribution of heart 

failure.  It is possible that this bias existed in this study, as those with preserved 

ejection fraction are often more frail with multiple co-morbidities and therefore may 

not have been able, or are less willing to complete the multiple questionnaires that 

were required.  Although both preserved and reduced ejection fraction appear to 

experience similar levels of dyspnoea, the study by Bhatia et al. (2006) did not separate 

this into males and females so it is unknown if this is likely to alter the results.      

Correlation with NYHA class 

Preliminary analysis of data obtained by stratifying the data according to age, sex, 

NYHA class and ejection fraction, taking into account the study is underpowered, found 

there were no significant differences apart from between the overall D12 score for 

NYHA class I and NYHA III (p=0.02).  This is expected as breathlessness is a component 

used for classifying patients into their NYHA class.  There was a trend seen for between 

Class II and III, however this lack of significance should be treated with caution as the 

research is underpowered with regard to this comparison.   The definition of NYHA III is 

“marked limitation in activity due to symptoms, even during less-than-ordinary activity, 

e.g. walking short distances (20-100 m).  Comfortable only at rest.”  However, this 
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study shows that 66% of patients in NYHA III do experience a degree of dyspnoea at 

rest within the community. 

Correlation of dyspnoea severity with time of day 

In COPD there are several studies describing the fluctuation of symptoms over the day, 

with the most severe symptoms in the morning262, 263.  Unlike in COPD there were no 

such fluctuations in dyspnoea seen during this study for the morning, noon or evening, 

23±22, 24±23, 23±23 respectively.  The highest dyspnoea scores were recorded on Day 

3 (29±27) compared to Days 1, 2, 4, 5, 6 and 7 (26±24, 22±24, 22±22, 19±20, 21±22, 

23±24 respectively).  The MCID for D12 is at least 9.7% full scale257 so this change in 

symptom intensity is unlikely to be recognised by the patient. This increase on day 3 

was mainly down to two participants having significantly higher scores on this day 

compared to the other days..    

Situational dyspnoea 

The preliminary analysis of this study does not support the notion that the nature and 

extent of dyspnoea varies between a healthcare environment (GP/hospital) compared 

to the community setting.  When comparing the D12 scores recorded in our laboratory 

(Chapter 5) to those in this study, where they completed it within their own home, the 

total D12 scores (21±15, 23±22 mean %full scale±sd respectively) were not significantly 

different (SPSS independent t-test; p=0.70), and this was also true for the individual 

emotional and physical components (27±18, 31±29 and 11±16, 12±1, mean %full 

scale±sd, respectively.)  However, it is noted that the mean D12 scores were all higher 

in the community than in the laboratory.  This may be due to the fact that the 
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instructions for completing the D12 questionnaire were not identical, such that the 

instruction for the laboratory test was for them to rate how their dyspnoea is ‘these 

days’ compared to ‘at this moment’ for this study, which was performed after 

5minutes of rest.  A previous study reported as an abstract by Russell et al. (2016) 

showed that D12 scores reported “these days” are greater than those reported “today” 

which is also consistent with the pain literature which shows recalled sensation is 

reported as more intense than symptoms in the moment264.  This data does not fit with 

the pattern seen in this thesis (higher when asked to rate ‘now’ than ‘these days’).  The 

Russell et al. (2016) study was performed in those with lung disease rather than heart 

failure and this may account for the differences seen in this study. It is possible that 

psychological factors at home relating to a diagnosis of heart failure may raise the 

scores of self-reported dyspnoea, although the emotional component of the D12 was 

similar (11±16 vs. 12±15 % full scale emotional±sd).   

Mortality 

As expected the mortality rate increased with age in this study, however, only those 

that reported experiencing dyspnoea in the younger age groups died, compared to 

those reporting ‘no dyspnoea’ on the D12 questionnaire.  This agrees with previously 

published literature showing that dyspnoea is a predictor of mortality254.  For the older 

age group of 80-90years the absence of dyspnoea was associated with an increased 

mortality compared to those with dyspnoea.  This may be related to the increased risk 

of mortality from all conditions in these age groups, or due to the small number of 

patients in these groups.   
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Critique of study and future directions of study 

The main limitation is that the study is underpowered due to a lower than anticipated 

response rate.  Nevertheless, most of the trends reported are consistent with the 

published literature.  The NYHA class is a widely accepted classification, although this 

limited study suggests that some patients classified as class III are not comfortable at 

rest.  This raises the possibility that some patients should be re-classified as class IV or 

the text amended to take this into account.    

This study utilises the D12 score to assess the dyspnoea in a multidimensional way that 

previous tools for assessing dyspnoea had ignored, by including the emotional 

component of dyspnoea.  Another questionnaire has been developed that also 

separates the physical and emotions components of dyspnoea.  This is known as the 

Multidimensional Dyspnea Profile (MDP)243.  This questionnaire required more input 

for the patient and healthcare professionals than the D12.  The D12 was used in this 

study as it is straight-forward and easy for the patient to complete without the need 

for any healthcare professional input.  It therefore works well in this study.    

This study excluded patients who required a translator as only the English version of 

the D12 questionnaire was used in this study.  The D12 has been translated into a 

number of different languages (e.g. Italian, Portuguese, Arabic) and future studies 

could include a wider population where English is not the first language265-267.   

In this study, participants were asked to complete the questionnaire after sitting for 5 

minutes to standardise the results, however, this had the effect of minimizing the 

participants’ level of dyspnoea; it would have been interesting to assess the results of 
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completing the D12 immediately after climbing a flight of stairs and how this would 

alter the results as one of the common features of heart failure is dyspnoea on 

exertion, rather than at rest, which is thought be related to a more advanced stage of 

heart failure.   

3.5. CONCLUSIONS 

This study has advanced our understanding of the prevalence of dyspnoea at rest in 

heart failure patients in the community setting using a questionnaire survey that 

considers the multidimensionality of dyspnoea.  Almost half the patients experience 

some dyspnoea at rest.  Unlike in COPD, this preliminary data provides no evidence for 

any significant variability within each day or between days.  As expected the dyspnoea 

scored by the D12 correlated with NYHA class.  Experiencing symptoms at rest applies 

to NYHA class IV however this study shows a significant proportion of patients in class 

III are experiencing dyspnoea at rest.  Clarification is needed regarding the term 

‘comfortable at rest’ in the NYHA class III classification to address this.   
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4. SPECIFICITY OF DYSPNOEA RELIEF WITH NEBULISED 

FURSOSEMIDE 

 

4.1. INTRODUCTION 

Dyspnoea accounts for over 15% of symptom burden among hospitalised patients and 

contributes to poor quality of life by limiting activity, increasing anxiety levels and 

undermining the will to live56, 268. It is present in a wide range of conditions such as 

chronic obstructive pulmonary disease (COPD), chronic heart failure, advanced cancer 

and neuromuscular disease269. Given its prevalence and impact, there is an urgent 

clinical need for more effective treatments. Nebulised furosemide offers a potential 

complementary treatment for dyspnoea relief270. 

Furosemide is a loop diuretic. It is usually taken orally or intravenously and acts 

through inhibition of the sodium-potassium-chloride co-transporter in the thick 

ascending limb of the loop of Henle in the kidneys271. In rats, nebulised furosemide has 

been shown to sensitize slowly adapting pulmonary stretch receptors (saPSR) in the 

lung parenchyma30. Stimulation of these receptors has been shown to relieve air 

hunger (AH; an uncomfortable urge to breathe) in high level quadriplegic humans in 

whom afferent information from the chest wall is blocked but vagal afferents from 

lungs remain intact24. Along with AH, clinical dyspnoea is comprised of other 

distinguishable components including the sense of breathing work/effort (WE) and 

chest ‘tightness’43. These components can vary based on interactions between 



95 
 

physiological, psychological, social and environmental factors4. The mechanisms 

underlying dyspnoea are complex with multiple voluntary and involuntary triggers as 

well as feed-forward and feed-back mechanisms4. Measuring breathlessness is difficult 

as the sensation of breathlessness is subjective and does not correlate well with 

objective measures of lung or heart function272, 273. The distinct components of clinical 

dyspnoea are thought to arise from separate neural pathways43. This theory comes 

from studies showing that despite complete paralysis of the respiratory muscles, 

subjects show the same AH stimulus-response to CO2 and that increasing the tidal 

volume using a ventilator can relieve AH in C1-C2 quadriplegics, suggesting a vagal 

pathway rather than feedback from chest wall afferents13, 22, 24. For AH a corollary 

discharge of the drive to breathe from the brain stem has been proposed274 whereas 

for WE a corollary discharge from the motor cortex driving voluntary breathing has 

been proposed as the source of the sensation13. 

The optimal solution for relief of dyspnoea is to treat the underlying pathology but this 

is not always possible and does not always lead to symptom relief. In chronic 

conditions, such as heart failure or COPD, symptom control becomes a priority in order 

to improve quality of life. A newer focus is to alter the perception of dyspnoea via 

altering the activity of neural signals sent to the brain reporting the prevailing level of 

breathing. The mechanism of action of nebulised furosemide has not been fully 

elucidated but current theory suggests that it acts by modulating pulmonary stretch 

receptor activity. There is evidence to support this theory, both in animal and human 

studies30, 275. 
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The current study hypothesized that nebulised furosemide would relieve AH but not 

the sense of breathing effort. The result of this study have been published in a peer-

reviewed journal276.  t. 

Specific Aims: 

1. Determine the specific type of dyspnoea relief by nebulised furosemide 

2. Assess the effect of intravenous furosemide on dyspnoea relief 

4.2. METHODS  

Sixteen healthy volunteers (9 male) attended the Oxford Brookes Cardiorespiratory 

Research Laboratory on 4 occasions. Eligibility criteria included; age above 18 years, no 

regular prescription medication in the previous 2 weeks and if female, not pregnant or 

planning pregnancy. Oxford Brookes University Research Ethics committee approved 

the protocol and all participants provided written informed consent. 

All participants and all healthcare professionals apart from those who administered the 

interventions were blinded to the medications. Each participant visited the laboratory 

on 4 occasions; two practice sessions to familiarise themselves with the equipment and 

to become accustomed to rating the sensation of dyspnoea and; two ‘test’ sessions 

where participants nebulised the mists, with different dyspnoea stimuli (AH or WE) on 

different days in random order. On these days the participants were randomised to 

either inhale aerosolized mist (nebuliser; MicroAir U22 Omron, Milton Keynes, UK) in 

the order of furosemide (40 mg, 10 mg/ml; hameln pharmaceuticals gmbh, Langes 

Feld, Hameln, Germany), saline (4 ml; B.Braun, Melsungen, Germany), furosemide (FSF) 
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or saline, furosemide, saline (SFS) for both study days. Prior to each mist inhalation 

they gargled with a menthol mouthwash. The nebulisation duration of the furosemide 

mist was approximately 10-15 min and the saline mist 5-10 min. Each mist inhalation 

started after 6–11 min of the steady state test level of each pre-mist AH or WE test. 

The post mist steady state test level was between 9 and 14 min after the end of the 

mist inhalations. Each AH or WE test lasted 10 min, with a total visit duration of around 

3 h (7 AH or WE tests, and 3 mist inhalations.) 

4.2.1. Dyspnoea Stimuli 

Two different dyspnoea stimuli were tested in each volunteer on different days.  The 

air hunger (AH) and work/effort (WE) tests are described in detail in the methods 

section.  In both situations the initial test was 'ramp' and this was followed by the 

'steady state' protocol.  Two 5 min steady state levels of end tidal CO2 (ETCO2) were 

chosen to target a level of 50% (‘test’ level) and 25% (‘masking’ level) of the visual 

analogue scale (VAS) for AH, Fig 4.1. This method has been shown to produce strong 

AH stimulation without any major WE sensation21. 

For the WE test, there were two 5min steady state levels of targeted ventilation, a 

‘test’ level that generated 50% WE on the visual analogue scale and a ‘masking’ level 

generating 25%, Fig. 4.1. This stimulus was always limited by participants failing to 

meet a higher ventilation target and not because they reached the top of the VAS for 

WE. Normocapnia (mean ± SD: 41.9 ± 1.2 mmHg) was maintained throughout.  
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Figure 4.1 Standard tests of air hunger and work/effort 

Left: Typical raw data set for the air hunger (AH) test during which two levels of end-

tidal PCO2 were imposed and ventilation was constrained. The vertical dashed lines 

indicate the steady state level of AH associated with the test level of CO2 chosen to elicit 

50%VAS ratings in pre-mist trials. Right: Typical raw data set for the work effort (WE) 

test in which two levels of targeted VT were imposed and normocapnia was 

maintained. The vertical dashed lines indicate the steady state level of WE associated 

with the test level of VT chosen to elicit 50% VAS ratings in pre-mist trials. During both 

tests ventilatory constraint or targeting was suspended briefly and participants were 

instructed to take a sigh. VAS ratings were provided every 15 s in response to a LED 

cue. VT Tidal volume, PAW continuous airway pressure measured at the mouth. 

4.2.2. Intravenous infusions 

During each inhalation period, participants also received a 15min (1 ml/min) 

intravenous infusion of 0.1 mg/ml solution furosemide if nebulised substance was 0.9% 

sodium chloride, or 0.9% sodium chloride if nebulised substance was furosemide (i.e. 

SFS infusions for FSF inhalations versus FSF infusions for SFS inhalations.) Infusions 
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were administered via a catheter inserted in the antecubital vein using a syringe driver 

(Graseby In-line Pressure Syringe Pump 3200, Graseby Medical Ltd., Ashford, UK).  

Furosemide (1.5mg) was infused over a period of time set to match the duration of 

inhalation. This dose was chosen as this was the amount expected to be systemically 

absorbed from a 40 mg nebuliser dose277. This ensured that both participants and the 

researchers did not know which mist was furosemide or 0.9% sodium chloride since 

the systemic effects (diuresis) were similar in each case. It also allowed an assessment 

of the systemic effect on furosemide on dyspnoea relief. 

An overview of the protocol is shown in Fig. 4.2.   

 

Figure 4.2 Schematic of protocol 

Each participant attended on two ‘test’ days where they nebulised either the 

furosemide or the saline in the order of furosemide/saline/furosemide or in the order 

saline/furosemide/saline, with corresponding IV infusions on both ‘test’ days.  On one 

day they performed the AH test and other day the WE test on 7 occasions, before and 

after mist inhalations.    



100 
 

4.2.3. Measurements 

A 100 mm electronic VAS was used to obtain subjective ratings of both AH (during AH 

tests) and WE (during WE tests). Ratings were cued by a ‘rate now’ light every 15 s, 

which instructed participants to rate how much AH or WE they were feeling at that 

point in time, throughout the 10 mins of each AH and WE test, Fig. 4.3. In the practice 

sessions, participants were immediately asked to select descriptors from a set list for 

any of the sensations they felt during that test, and to rank the top 3. In future test 

sessions they were asked to focus on those descriptors that matched the AH sensation 

for the AH test and WE sensation for the WE test. The range covered 0 mm (no 

breathlessness) to 100 mm (tolerable limit) as previously described21, 29, 239. Additional 

word anchors (‘slight’, ‘moderate’ and ‘severe’) were placed at equal separation 

alongside the scale, which enabled participants to remember how much of the scale 

represented how much sensation from one occasion to the next. The order of test 

sessions (AH or WE) were randomly allocated and counterbalanced. 
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Figure 4.3  Effect of mist inhalations on steady state air hunger and work/effort 

This dataset is from an individual who received the mists in the order of furosemide-

saline-furosemide (FSF) with the corresponding saline-furosemide-saline (SFS) 

intravenous infusions on both days. Panels A to F show the last minute of each test level 

of end-tidal CO2 (AH) or of VT (WE) –these regions of interest are shown by the vertical 

dashed lines in Figure 4.1. AH test day: Air hunger ratings were reduced after 

furosemide inhalation (A to B and E to F) but not after saline inhalation (C to D). WE 

test day: No obvious differences in ratings were evident before and after any mist 

inhalations 

Participants voided prior to the start of each test session and the output was measured 

at approximately 25 min after each mist inhalation by urinating into a measuring flask. 

AH = air hunger, WE = work effort 
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4.2.4. Data analysis 

The visual analogue scale (VAS) in the last minute of each test step for the two 

furosemide mists presented for half the participants were averaged (those in the FSF 

group) and for the 2 saline mists presented for the other half (for those in the SFS 

group). The Linear Mixed Model “mixed” procedure of SAS 9.4 was used to analyse the 

data. Initially a full mean model with three factors; two levels of ‘condition’ (AH or WE), 

two levels of ‘mist’ (Furosemide or Saline), and 7 levels of ‘time’ (tests A-G; Fig. 4.2). All 

the 2-way and 3-way interactions were examined. Reducing the mean model by 

removing non-significant terms individually, resulted in the final model with 3 main 

effects and one interaction between condition-mist. 

4.2.5. Sample size 

In a preliminary study 10 healthy volunteers rated 13% lower AH on VAS with nebulised 

furosemide relative to nebulised saline29, with a standard deviation of 16% resulting in 

an effect size of 0.81. Based on this observation, it was determined that 16 participants 

were required to detect an effect size of 0.81 using matched pairs t-test at 5% 

significance level and 86% power. 

4.2.6. Randomisation 

Participants were randomised to mist allocations after completing the two practice 

sessions. One of 17 recruited participants did not progress to randomization, Fig. 4.4; 

this was because despite increasing levels of hypercapnia (up to end tidal carbon 

dioxide partial pressure-PETCO2 of 54 mmHg), they rated near zero dyspnoea and self-
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terminated the test due to light-headedness during practice sessions. They denied any 

experience of dyspnoea during the test. 

 

Figure 4.4 Participant flow diagram 

The mist order allocation (FSF or SFS) was randomly assigned by the unblinded 

researcher to 16 sequential numbers, ensuring that 8 participants were allocated to the 

SFS group and 8 to the FSF group. A blinded researcher assigned each consecutive 

participant to the next available allocation number. Apart from the unblinded 

researcher, all other investigators and participants did not know whether the allocated 

number corresponded to FSF or SFS group. Once full analysis had been completed the 

principal investigator was provided with the allocation code. 
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Participants were provided with detailed written information about the interventions 

and protocol. They were aware they were going to receive furosemide or a placebo 

(control substance, saline) to inhale as a mist and to have as a solution via a vein in the 

arm (that was not the same as the mist) 3 times per visit. The diagram in the 

participant information leaflet showed the mist order as A, B, A. 

4.3. RESULTS  

Participants were recruited between 1st October 2015, with the first participant 

enrolled on 6th October 2015 and the last participant  enrolled on 26th February 2016. 

The last visit for the last participant was on 11th March 2016. The median duration for 

all visits was 19 days. 

The baseline characteristics of the participants who completed the study are shown in 

Table 4.1. The FSF mist order group and the SFS mist order group were well matched 

apart from by chance a higher proportion of participants who were Caucasian in the 

FSF compared to the SFS groups (p = 0.031). It is notable that 2 of the 3 (S9, S12) 

individuals who had an increase in AH (rather than a relief) following nebulised 

furosemide had a history of asthma. These two and S15 who also had a history of 

asthma were in the SFS group. No other notable differences were observed for 

individuals with a history of asthma.  Almost 70% had some previous experience of 

breathing apparatus and this was driven by most of the participants having snorkelled 

before.  One participant had used a mouthpiece before during a cardiopulmonary 

exercise test.  
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Table 4.1 Participant characteristics 

  Total FSF SFS p value 

Number 16 8 8 NS 

Males: Female 9: 7 4: 4 5: 3 NS 

Mean age, yr. (mean ± SD) 24.3 ± 3.7 23.6 ± 3.1 25 ± 4.3 NS 

Caucasian: Non-Caucasian 11: 5 8: 0 3: 5 *0.031 

Mean height, m 

(mean ± SD) 

1.7 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 NS 

Mean weight, kg 

(mean ± SD) 

79.5 ± 24 88.4 ± 28 70.6 ± 17 NS 

History of Asthma 3 0 3 NS 

Smoker/Ex-smoker: Never 

smoked 

5: 11 3: 5 2: 6 NS 

Previous experience with 

breathing apparatus 

11 6 5 NS 

Regular Sport: Sedentary 14: 2 7: 1 7: 1 NS 

Abbreviations: FSF Mist order inhalation furosemide-saline-furosemide, SFS Mist order 
inhalation saline-furosemide-saline, NS not significant, *p < 0.05 
Note: Experience of breathing apparatus included snorkelling, scuba diving or previous 
testing 
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4.3.1. Effect of mist inhalations on AH and WE.   

A treatment effect (relief with nebulised furosemide relative to relief by nebulised 

saline) was seen with furosemide for the AH test, Fig. 4.5. Mean VAS for dyspnoea was 

significantly lowered by furosemide relative to saline inhalation (Difference of Least 

Squares Mean ± SE of − 9.7 ± 2.1%VAS) for the AH test (p = 0.0015, Tukey-Kramer 

adjusted), but was not significantly changed by furosemide relative to saline inhalation 

(+ 1.6%VAS ± 2.4SE) for the WE test (p = 0.903).   

 

Figure 4.5 Change in AH and WE associated with mist inhalation 

Panel A. Mean ± SEM AH (left panels) and WE (right panels) before and after 

furosemide inhalations (black bars) and before and after saline inhalations (grey bars) 

in the 8 individuals who were allocated to the saline-furosemide-saline order of mist 

inhalations (top panels) and in 8 individuals who were allocated to the furosemide-

saline-furosemide order of mist inhalations (bottom panels). VAS ratings improved to a 

greater extent after furosemide compared to saline mist inhalations for AH, but this 

pattern was not evident for WE. Panel B. Least Squares Mean change in VAS ratings 

before and after nebulised furosemide relative to the change before and after nebulised 

saline for AH and WE. AH = air hunger, WE = work/effortETCO2 = end tidal CO2 

(mean ± SD mmHg). 
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Four of the 16 participants showed a relief of over 20%VAS with nebulised furosemide 

for AH but no relief of this magnitude was seen in any participants for WE, Fig. 4.6. 

 

 

Figure 4.6 Individual data for change in VAS for AH and WE 

Individual data for change in visual analogue scale for AH and WE. Individual change in 

VAS, % full scale, of AH at fixed test levels of PETCO2 (left panel), and of the sense of 

breathing WE at fixed test levels of tidal volume (right panel) following nebulised 

furosemide (dark bars) and nebulised saline (grey bars). Closed bars indicate the 

average change in VAS for two furosemide inhalations in half the participants (S1, 2, 4, 

7, 10, 11, 14, 17) or the change in VAS for one furosemide inhalation in the other half. 

Open bars indicate the average change in VAS for two saline inhalations in half the 

participants (S3, 5, 6, 8, 9, 12, 13, 15) or the change in VAS for one saline inhalation in 

the other half. Inhalation of furosemide tends to produce a reduction in VAS after 

furosemide more often than after saline for the AH test. For WE test reductions were 

evident for both nebulised furosemide and nebulised saline. Participants are arranged 

in order of response to furosemide for the AH test.  AH = air hunger, WE = work/effort, 

VAS = visual analogue scale 

4.3.2. Single versus two doses of furosemide  

The average relief of AH from furosemide inhalations (averaged response for mists 1 

and 3; 2x40mg) in the FSF group was greater than the relief seen with the single 

furosemide inhalation (mist 2; 1x40mg) in the SFS group; this group-wise comparison 
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did not achieve statistical significance (mean ± SD − 15.5 ± 12 versus − 6.6 ± 27%VAS, 

unpaired t-test with unequal variance; p = 0.42). However, within the FSF group, 7 of 

the 8 participants had substantially greater relief of AH after the second inhalation 

(mist 3) of furosemide compared to the first (mist 1) - a doubling of relief (mean ± SD 

− 10 ± 12 versus − 21 ± 13%VAS) which was highly significant (paired t-test, p = 0.002). 

In contrast, comparing the mean change for WE between the first and second doses of 

furosemide in the FSF group revealed no significant difference (paired t-test, p = 0.41). 

There were no significant differences between the first and second dose of saline 

within the SFS group for either AH or WE tests (paired t-test p = 0.6 and 0.3 

respectively), Fig. 4.7.  In addition, there was a strong correlation (R2 =0.8) between the 

amount of relief of AH with the first dose of furosemide and the subsequent amount of 

relief with the second dose of furosemide.  This was not seen for saline, Fig. 4.8.  
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Figure 4.7 Second dose effect 

Left panels (A and C): Individual (n = 8) changes in VAS ratings of AH in response to first 

and second doses of nebulised furosemide in the furosemide-saline-furosemide (FSF) 

group (A). Corresponding changes for the first and second doses of nebulised saline in 

the saline-furosemide-saline (SFS) group (C). For the FSF group the 2nd dose of 

furosemide had a greater reduction in AH relief than the first dose in all but one 

participant. This was not true for the 2nd dose of saline in the SFS group. Participants 

are arranged in order of response to first dose of furosemide for the FSF group or first 

dose of saline for SFS group. Right panels (B and D): The mean reduction in AH for the 

first and second dose of furosemide (B) and saline (D) 
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A      B 

 

Figure 4.8 Correlation between response to 1st and 2nd doses 

A) Strong correlation between dyspnoea relief with 1st and 2nd dose of nebulised 

furosemide.  B) Weak correlation between 1st and 2nd dose saline.   

4.3.3. Distinguishability of stimuli and blinding of participants 

AH and WE stimuli were clearly distinguishable; subjective selection of descriptive 

phrases from a set list immediately following breathing tests verified that the AH test 

predominantly elicited phrases consistent with ‘air hunger’ whereas the WE test 

predominantly elicited phrases consistent with ‘work/effort’, Fig. 4.9. Choice of 

descriptors following AH and WE test showed a low level of conflation in sensation 

ratings, with 6% choosing WE descriptors for the AH test and 10% choosing AH 

descriptors for the WE test. 
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Figure 4.9 Dyspnoea Descriptors 

Frequency with which each descriptive phrase was selected by participants to describe 

their experience during air hunger tests (AH; left panel) and WE tests (WE; right panel). 

AH cluster of descriptors dominated the participants’ choice of the respiratory 

sensations felt during the AH tests while the WE cluster of descriptors dominated the 

participants’ choice of the respiratory sensations felt during the WE tests. 

Cumulative urine output was matched for FSF and SFS groups. There was no significant 

difference in the cumulative urine volume between participants in the FSF versus the 

SFS group with their concomitant intravenous infusions (mean ± SD, 1.6 ± 0.4 l versus 

1.5 ± 0.5 l; p = 0.4). No other side effects related to the furosemide or saline inhalation 

were reported. 
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4.4. DISCUSSION  

This study verifies that experimentally induced AH in healthy individuals is substantially 

relieved by nebulised furosemide compared to nebulised saline control. Furthermore, 

this study shows for the first time that this effect was specific for the AH component of 

dyspnoea rather than the sense of breathing effort. 

4.4.1. Confirmation of AH relief by nebulised furosemide 

The same stimulus to generate AH (hypercapnia with constrained ventilation) and the 

same dose of nebulised furosemide, delivered by the same method was used in the 

Moosavi et al. (2007) study, which had demonstrated a borderline treatment effect 

with nebulised furosemide relative to saline inhalation29. This study was powered to 

support a definitive outcome and had 16 participants compared to 10 in the original 

study.  It showed a significant treatment effect with nebulised furosemide compared to 

nebulised saline for dyspnoea relief, specific to AH.   

In contrast to the current findings, Banzett et al. (2017) have recently published a study 

using similar methods in 11 healthy volunteers indicating no significant difference 

between relief of breathing discomfort by nebulised furosemide and by nebulised 

saline190. The effect of nebulised furosemide reported by Banzett et al.190 was greater 

than in this study (mean ± SE: − 17 ± 3 versus − 11 ± 5 %VAS); this is likely to reflect the 

fact that they used a higher dose (80 mg versus 40 mg) with controlled delivery on a 

mechanical ventilator. However, the effect of saline was far greater in the study by 

Banzett et al.190 compared to this study (mean ± SE: − 13 ± 4 versus − 2.5 ± 4 %VAS); this 
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is likely to be due to an enhanced placebo effect in their study as participants were 

informed they were going to receive 2 active treatments and one saline, whereas in 

reality they had one active substance and two saline controls. Likewise, a second study 

published by this group185 also reported a significant effect of nebulised saline (− 20 

%VAS); this study also used a similar deception to that alluded above which is again 

likely to have enhanced the placebo effect. While this second study used the same 

dose (40 mg) to this current study they also reported a larger relief of ‘breathing 

discomfort’ with furosemide (− 20%VAS). This could be explained by the different 

delivery method used, which reduced loss of aerosol to the atmosphere during 

expiration185. The different delivery method they used reduces loss of aerosol to the 

atmosphere during expiration and also assuming a similar absorption efficiency (both 

studies in healthy volunteers) could have led to a greater and more prolonged 

interaction of furosemide with lung stretch receptors thereby accounting for a greater 

relief. 

4.4.2. Specificity of relief 

The relief of experimentally induced dyspnoea in healthy individuals by nebulised 

furosemide was first shown by Nishino et al. (2000) who induced dyspnoea by i) a 

combination of inspiratory resistive load and hypercapnia, and ii) breath-holding27. The 

first of these stimuli was likely to have induced both WE and AH components of 

dyspnoea. Since participants were instructed to rate respiratory discomfort, both of 

these sensations could have contributed to their ratings. The breath hold task may 

have generated AH specifically but breath-holding is a non-steady state. A subsequent 
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study in healthy individuals which specifically focused on experimentally induced 

steady state AH generated similar levels of relief29. This suggests that the nebulised 

furosemide may well have specifically relieved the AH component in the stimuli used 

by Nishino et al.27. 

In contrast, there is direct evidence that nebulised furosemide does not affect the 

sensations associated with respiratory effort during expiratory flow limited exercise192 

or during exercise in the presence of external thoracic restriction in healthy 

individuals189. External thoracic restriction during exercise will elicit both AH and WE 

component of dyspnoea189, 278. In the study by Waskiw-Ford et al. (2018) individuals 

were asked to rate the intensity and unpleasantness of their perceived dyspnoea 

without specifying which component of dyspnoea to focus on189; it could be that the 

reported lack of relief was because of the participants focusing on WE due to the 

increased metabolic demand in this situation. Breathing effort is assumed to arise from 

non-vagal afferents from the chest wall, though a role for vagal afferents from the 

lungs in the sense of breathing effort cannot currently be discounted. Nebulised 

furosemide does appear to confer some benefit to exercising COPD patients but clinical 

dyspnoea in this scenario is likely to be multifactorial and may not be specifically 

related to respiratory effort28. It is generally accepted that AH and WE components of 

clinical dyspnoea likely arise from different neural pathways43. Previous reports have 

provided evidence that the AH component of dyspnoea is relieved by increased vagal 

afferent input from the lungs24, 33, 36, 37 or accentuated by absence of vagal afferents 

from the lungs279. It is not known whether the vagal afferent information has any role 
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in the sense of breathing effort - our data would suggest that vagal afferents (and 

indirectly, stretch receptors) have no role in generation of WE, but are involved in AH.  

This also fits with the theory that work/effort sensation of dyspnoea arises from non-

vagal afferents from the chest wall. 

Nebulised furosemide demonstrated a statistically significant treatment effect that 

reached the accepted level for the minimally important clinical difference (MCID) for 

AH but not for WE280. There was some evidence of a placebo effect with, on average, a 

slight reduction in AH with nebulised saline. Some studies have shown a substantial 

relief of laboratory-induced dyspnoea with saline in over 30% of participants185, 190. 

However, O’Donnell and colleagues found that overall the administration of aerosol 

saline had little effect on experimentally induced AH, provided the expectation of a 

treatment effect is minimized281. In the current study, the careful blinding procedures 

and instructions participants received ensured that they were unable to guess correctly 

when they had received the active or placebo substance. 

This is the first study to compare the effect of nebulised furosemide and nebulised 

saline on AH and WE induced separately in the same individuals allowing a direct 

comparison of treatment effects. Our data confirms that the mechanism of dyspnoea 

relief by nebulised furosemide, presumed to be via modulation of vagal afferents from 

the lungs, specifically relates to AH and not WE. 
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4.4.3. Action of nebulised furosemide in the lungs 

Nebulised furosemide is known to have many beneficial effects all of which appear to 

be mediated by actions on the airway epithelium such as; improvements in exercise 

induced asthma 282, inhibition of cough in asthmatics and healthy volunteers156, 158, 170, 

and induced bronchodilation in constant-load exercise testing in COPD173. 

The most likely explanation for relief of dyspnoea with nebulised furosemide is 

modulation of lung mechanoreceptor feedback which replicates the sensation of larger 

tidal volumes; thus experimentally induced AH is relieved when tidal volume is 

increased24, 283. This is further supported by recent studies that have reported a weak 

to moderate correlation between the extent of dyspnoea relief with increased tidal 

volumes (whilst free breathing) on the one hand, and relief by nebulised furosemide on 

the other hand185, 190. Thus, nebulised furosemide may be acting at least in part via the 

same pathway. 

There are many different mechanoreceptors in the lung including; slowly adapting 

pulmonary stretch receptors (saPSR), rapidly adapting pulmonary stretch receptors 

(raPSR), pulmonary and bronchial C-fibre receptors (irritant receptors). These receptors 

collectively transmit information to the central nervous system reporting the tidal 

volume or the presence of airway irritants284. Exposure of anaesthetised rats to 

nebulised furosemide has demonstrated sensitization of saPSRs and desensitization of 

raPSRs30. Evidence points to the saPSRs being the most likely mechanoreceptor 

involved since the raPSRs could not signal maintained volume changes as they provide 

feedback relating more to transition between inspiration and expiration rather than 
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the magnitude of lung stretch284, 285. Studies in humans have suggested that it is 

feedback concerning the overall ventilation rather than intra-breath variables that 

account for the level of breathlessness perception15, 286. 

The diuretic effect of furosemide occurs via its chloride channel blocking property 

affecting the sodium-potassium-chloride co-transporter in the loop of Henle271. 

Because the same membrane co-transporters are expressed on vagal sensory neurons 

present in the airways287, it is possible that the modulation of pulmonary stretch 

receptor sensitivity by nebulised furosemide may occur by the same mechanism. In 

vitro studies of isolated human lung tissue are needed to verify the precise mechanism 

of action of nebulised furosemide on pulmonary stretch receptors. 

4.4.4. No evidence for systemic action for dyspnoea relief with nebulised 

furosemide.   

A potential alternative mechanism of action of furosemide in relief of dyspnoea is via 

systemic effects from absorption of the nebulised furosemide into the circulation. 

Morélot-Panzini et al. (2018) estimated an absorption efficiency of up to 30% of the 

nebulised dose185. From this information and assuming the maximal level of efficiency, 

gives an estimate that a 40 mg nebulised dose would result in 5 mg entering the 

systemic circulation assuming a respiratory frequency of 12 breaths per minute and a 

duty cycle of 0.4. This appears to be higher than our estimate of systemic load of 

1.5 mg from inhalation of a nebulised dose of 40 mg in this study. They also found that 

when given 15 mg intravenously participants had an average 16%VAS improvement in 

dyspnoea. It is suggested that in heart failure systemic furosemide relieves dyspnoea 
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by easing pulmonary congestion and thereby reducing activation of pulmonary C-fibre 

receptors288, 289. This cannot explain relief of dyspnoea by intravenous furosemide in 

healthy volunteers with no pulmonary congestion. The authors suggest that this result 

could be explained by the placebo effect as the participants were informed that they 

would only receive active substances. In the current study a dose of intravenous 

furosemide (1.5 mg) that more closely matched the amount absorbed from the 

nebulised dose was infused concurrently with nebulised saline. To maintain blinding, 

intravenous saline was infused during furosemide inhalation. In both cases the rate of 

infusion was set to match the period of inhalation. We therefore consider the findings 

of the current study showing no significant relief from intravenous furosemide 

(mean ± SEM, − 2.5% ± 4) to demonstrate more clearly that the AH relief by nebulised 

furosemide is via direct actions within the lungs. 

Further support for a mechanism of relief of AH via direct actions in the lungs is 

provided by: i) direct exposure of the lung tissue to furosemide in rat preparations 

resulted in modulation of PSR afferent activity but not when administered 

intravenously30 ii) other studies in which beneficial effects of furosemide have been 

evident only when inhaled rather than administered via tablet158 iii) absence of 

haemodynamic changes with nebulised furosemide in a study assessing wedge 

pressure measurements in heart failure patients suggesting no systemic mechanism of 

action290 iv) absence of any detectable difference in cumulative urine output between 

the two groups in this study (SFS and FSF) which discounts a mechanism of action 

related to diuresis. 
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4.4.5. Suggestion of ‘second dose’ effect 

This study shows a beneficial cumulative effect of repeated furosemide inhalations 

(2x40mg). This is the only study that has to our knowledge investigated the effect of a 

second dose of nebulised furosemide on experimentally induced AH in healthy 

individuals. We noted a significant reduction in AH ratings with the second dose of 

furosemide in those who had the mists in the order FSF (mean ± SEM − 10.2 ± 4.2 

versus − 20.8 ± 4.6%VAS). This was not seen for saline in those who had SFS so it is 

unlikely to be an order effect (mean ± SEM − 6.5 ± 5.0 versus − 1.6 ± 7.9). It is possible 

that the first dose of furosemide sensitizes the receptors so that the second dose has 

an additive/cumulative effect. Another possibility is from a carry-over effect where the 

nebulised furosemide is still active in the lungs for up to at least an hour after the first 

inhalation. Supporting this theory is Morélot-Panzini et al. (2018) study reporting that 

the rate of systemic absorption of nebulised furosemide is inversely related to the 

extent of dyspnoea relief185. This suggests that when the furosemide remains in the 

lungs, in contact with the pulmonary stretch receptors for a longer duration, the action 

of furosemide on dyspnoea relief is increased. An enhanced ‘second dose’ effect due to 

the pharmacokinetics is a recognised phenomenon in psychopharmocology291. 

The question remains whether the ‘second dose’ effect is related to sensitisation of 

stretch receptor-furosemide interaction or a carry-over effect from the first dose of 

furosemide due to incomplete removal of furosemide from the lungs before the 

second dose. In the current study the time between first furosemide mist and the 

second was approximately 90 min. If we accept that on average the furosemide stays 
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within the lungs for up to 1 h based on the effect of a single dose on dyspnoea relief29 

the length of time between the first and second dose would go against a carryover 

effect to explain the greater relief with the second dose. This is further supported by 

the fact that in the SFS group the time between the middle furosemide mist and the 

second saline mist was less than 1 h and the pre-second saline mist AH remained below 

the pre-first saline mist level (consistent with a carryover effect of the middle 

furosemide mist). We would therefore favour a sensitisation explanation to account for 

the bigger relief from the second dose of furosemide in the FSF group.  This is also 

supported by the strong correlation between the air hunger relief with the first dose 

and second dose of furosemide which suggests it is related to an individual’s receptor 

sensitivity to furosemide, and not due to a carryover effect.   The clinical ramifications 

of the second dose effect, if due to sensitisation, may affect the dosing regimen.  For 

example, prescribing nebulised furosemide twice a day and taking the medication 

regularly, rather than 'as required.' 

4.4.6. Technical considerations 

It was difficult to achieve a target level of 50% VAS with the WE test compared to the 

AH test. This resulted in the average VAS recordings for WE being lower (40-50mmVAS) 

compared to the AH average VAS recordings (50-60 mm VAS). A higher resistance in 

the circuit may have enabled both sensations to be studied at more comparable levels 

of the VAS. Though unlikely, we cannot discount the possibility that nebulised 

furosemide would not have been effective in relieving WE if the WE test had also been 

performed with a target level above 50% VAS. 
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It was noted that the time taken to nebulise 4 ml saline to 4 ml of furosemide differed 

(duration of saline mist was approximately 5-10 min and the furosemide approximately 

10-15 min), and this was also reported independently in another recent study185. In the 

current study, the unblinded researcher added saline or pretended to add a solution to 

the nebuliser to ensure the time taken to nebulise either solution was equal thereby 

maintaining blinding. 

The participant selection of descriptive phrases after each breathing test confirmed 

that the different stimuli elicited the required sensations and that the participants 

were able to distinguish the different forms of dyspnoea (AH vs WE). For the AH tests 

participants were instructed to focus on and rate the form of dyspnoea indicated by 

the phrases they had previously selected following the initial exposure to the AH 

stimulus (during practice sessions). If the participant reported other sensations such as 

‘breathing required more work’ during the AH tests, they were coached not to include 

this sensation in their ratings and to report them after each trial if present. For the WE 

tests the participants were instructed to focus on and rate the form of breathlessness 

indicated by the phrases they had previously selected following the initial exposure to 

the WE stimulus (during practice sessions). If the participant reported other sensations 

such as the AH descriptors, they were coached not to include this sensation in their 

ratings but to report them after each trial if present. After completing each trial, the 

participant described their sensations and picked phrases from a given list of 

descriptive phrases and identified the top 3 most relevant. Subject selections following 
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the AH and WE tests were consistent with the type of stimulus. Participants were also 

queried about any non-respiratory sensations or external clues. 

The participants and investigators were successfully blinded to the study drugs and 

neither were able to correctly identify the correct order of mist inhalation. There was 

no detectable taste difference detected by the participants. 

4.4.7. Applicability of conclusions 

This study was performed in a narrow age range (20-28 years). It is therefore not 

known whether the same results will apply to older population. It is possible that the 

sensitivity of PSRs alters with increasing age or is affected by lung/heart disease. Most 

patients with chronic dyspnoea will be much older than these study participants. 

4.4.8. Validity of conclusions 

The test level of end tidal CO2 (ETCO2), the level chosen to generate 50% VAS full scale 

for AH at baseline, was different in the FSF group compared to the SFS group 

(48 ± 0.4 mmHg vs 52 ± 0.3 mmHg). We do not believe that this affects our data but it is 

interesting to consider why. A post prandial rise in ETCO2 has been demonstrated292 

but in our study there was no difference in consumption between the groups. They 

were also tested over both morning and afternoon sessions (FSF group: 3 in the 

morning, 5 in the afternoon. SFS group: 4 in the morning, 4 in the afternoon). There 

were no significant sex differences between the groups or differences in smoking habit. 

By chance there was an uneven distribution of ethnicity among the SFS and FSF groups 

(p = 0.031). All participants in the FSF group were Caucasian whereas the SFS group 
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were not (Caucasian =3, Others = 5). There is some suggestion in the literature that the 

level of dyspnoea is associated with ethnicity293. This may explain some of the 

differences seen in this study. There was also a trend for increased weight (88 kg vs 

70 kg) and for playing a wind instrument (3 vs 1) in the FSF group. In the SFS group 

more participants had a history of asthma (3 vs 0.) Although these were not statistically 

significant some of these differences in characteristics may explain the different 

ETCO2 levels in each group. 

4.4.9. Limitations 

Ventilation, tidal volume and inspiratory reserve volumes were targeted at 

substantially different levels to generate AH and WE rated at approximately 50% on 

the VAS (9 vs 17 L/min; 0.75 vs 1.6 L, 1.8 vs 1.0 L respectively). For both AH and WE the 

levels of these variables were well matched before and after mist inhalations. 

However, the frequency of vagal feedback from PSRs will have been at a higher level 

for WE compared to AH test. We cannot therefore discount the possibility that had the 

WE test been done at the same level of afferent feedback from PSRs that the nebulised 

furosemide would have relieved WE as well. As discussed above (specificity of relief 

section) there is a lack of evidence for the role of vagal afferent feedback from PSRs in 

WE modulation. Furthermore, from a practical viewpoint it would have been very 

difficult to strictly control the ventilatory parameters between AH and WE tests while 

maintaining a clear distinction in the quality of the dyspnoea generated; and a far 

greater resistive load would have been required to generate 50% full scale on the VAS 

for WE. 
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In the VAS ratings of AH and WE, participants were not specifically asked to rate 

intensity or unpleasantness and it is likely that they rated a combination of both of 

these. From this study we cannot say which component was more predominant, 

however from previous studies we know that AH is more unpleasant than WE200. 

Since instructions prior to intervention could influence the outcome (e.g. amplify the 

placebo effects) we asked participants at the end of the study which order they 

thought they received the active and placebo substances. They were either unsure or 

chose an order that was not feasible (e.g. thought they received FFS or SSF or FSS etc.) 

We do not have any evidence that the small placebo effect we observed in this study 

arose from biasing the participant expectations through the instructions given prior to 

the start of the protocol. 

4.5. CONCLUSIONS 

Nebulised furosemide was effective at relieving the AH component of dyspnoea but 

not the WE component. This is consistent with a mechanism involving sensitization of 

slowly adapting pulmonary stretch receptors leading to dyspnoea relief that specifically 

applies to the AH component, the most unpleasant form of dyspnoea. We suggest that 

multi-dimensional dyspnoea assessment tools should be used to identify patients 

where AH predominates the symptom burden and future clinical studies with 

nebulised furosemide should target these patients, irrespective of their underlying 

pathology, to optimise dyspnoea relief. 
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5. PILOT STUDY OF NEBULISED FUROSEMIDE FOR 

DYSPNOEA RELIEF IN ADVANCED HEART FAILURE 

 

5.1. INTRODUCTION 

Nebulised furosemide has been used for over 20 years in research (see Introduction 

chapter for details) but its use has not been transferred to clinical practice.  More 

recently the option of using nebulised furosemide for dyspnoea relief has emerged due 

to a lack of alternative safe and effective treatments294.  However, the variability of 

response to nebulised furosemide for dyspnoea relief has prohibited its use as a viable 

treatment option; some participants experience a large relief in dyspnoea and others a 

small or no response185, 275, 295.  This pilot study seeks to explore this variability in order 

to inform future fully powered clinical trials. The study also aims to see if it is feasible in 

heart failure patients to perform the air hunger sensitivity test (see chapter 2-methods) 

that has never been trialled in this patient cohort.  

There have been only two studies using nebulised furosemide in patients with heart 

failure and these were focused either on the haemodynamic response183, 295 or the 

diuretic effects of systemic absorption of furosemide from the lungs182.  In the current 

study, the focus is on optimising dyspnoea relief with nebulised furosemide through 

manipulation of breathing patterns of inhalation, determining the best method for 

eliciting dyspnoea to test the intervention and for quantifying dyspnoea in patients 

with heart failure.   
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Specific aims included:  

a) To assess the optimal dyspnoea measurement tool in heart failure (VAS, MBS, D12) 

Quantifying dyspnoea can be challenging with a variety of tools available, as described 

in Chapter 2-Methods105.  Simple scales include the Visual Analogue Scale (VAS) and 

Modified Borg Scale (MBS), whereas more detailed multi-dimensional information 

regarding dyspnoea can be gathered from questionnaires such as the Multidimensional 

Dyspnoea Profile (MDP) and Dyspnoea12 (D12), which include assessment of 

emotional content6.  Patients with heart failure were included in the validation and 

development of the D12, but the D12 has not previously been used in heart failure 

clinical trials, whereas the MBS and VAS have both been used126.  Minnesota Living 

with Heart Failure Questionnaire (MLHFQ) is a measure of quality of life in heart failure 

and includes a statement on shortness of breath with some reference to activity levels.  

This sub-study therefore; i) addressed concurrent validity of D12, VAS and MBS in 

assessment of hypercapnia induced dyspnoea and exertional dyspnoea, and ii) 

explored the relative sensitivity of these dyspnoea measurements for detecting change 

with nebulised furosemide. 

b) Determine the optimal breathing frequency during nebulised furosemide 

Breathing pattern of inhalation (fast and slow) may affect region of deposition and 

extent of systemic absorption potentially accounting for some of the variability 

previously noted28, 29, 177, 192.  A couple of recent studies have attempted controlled 

delivery of furosemide via volume controlled non-invasive mechanical ventilation; 

however, the focus there was to maximise the amount of drug delivered, rather than 
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to manipulate the site of deposition185, 295. The aim here was to manipulate breathing 

frequency to determine the optimal pattern for drug administration.  It was 

hypothesised that inhaling the mist with different breathing patterns would alter the 

deposition within the lungs296; slow (deeper) breaths would result in the particles 

depositing deeper within the airways compared to faster (shallow) breaths where they 

would deposit more in the upper airways.  Given that the pulmonary stretch receptors 

are located deep within the airways it was hypothesised that the slow deep delivery 

method would result in greater relief with nebulised furosemide compared to the fast 

shallow breaths.  An alternative method to achieve this would have been to alter the 

particle size297.   

c) Feasibility of Cardiopulmonary Exercise Testing and air hunger tests in assessing 

nebulised furosemide for dyspnoea relief 

In clinical cardiology, Cardiopulmonary Exercise Testing (CPET) was first used in 1985 to 

evaluate the degree of heart failure211 but it is not commonly used to assess the effect 

of an intervention.  For this purpose, 6-Minute Walk Test (6MWT) is used more 

frequently, due to ease of use and lack of requirement for specialist training and 

equipment.  Thus, there is a lack of data on the utility of CPET in patients with 

advanced heart failure.  New York Heart Association (NYHA) class III and IV in particular 

are often excluded from clinical trials on the assumption that they are unable to 

exercise enough to generate meaningful data.  There is mounting evidence supporting 

greater use of CPET clinically and its use in research is increasing.298-300  CPET is 

included in this study to review if the parameters assessed during CPET are able to 

determine if the intervention is having a significant effect, and to compare it to the 
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6MWT.  CPET requires more training and more complex equipment but multiple clear-

cut endpoints are possible, compared to the 6MWT.  In comparison to the 6MWT, it is 

also possible to use parameters gained during CPET to provide useful information 

despite a suboptimal effort during the test.  Cardiac pathology is indicated by a normal 

breathing reserve, low oxygen consumption (VȩO2) at anaerobic threshold (<40% of 

predicted), flattening oxygen pulse, high minute ventilation/carbon dioxide production 

ratio (VȩE/VȩCO2) slope and low oxygen uptake efficiency slope (OUES)216, 301.  This data 

can be obtained from a low workload incremental test lasting 6-12 minutes.  Testing 

hypercapnic air hunger sensitivity has never been trialled in heart failure patients 

previously.  It was unknown as to whether patients with heart failure who are already 

experiencing dyspnoea would be able to perform this test.  The aim here was to 

perform CPET and air hunger sensitivity tests to elicit dyspnoea and assess the 

response to nebulised furosemide.   

5.2. METHODS 

5.2.1. Patient characteristics 

Twelve patients diagnosed with NYHA class III or IV attending the heart failure clinic at 

John Radcliffe Hospital or those under the care of the community heart failure nurses 

in Oxfordshire participated in the study (Table 5.1). The cause for their heart failure 

was either ischaemic or dilated cardiomyopathy. 
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Table 5.1 Patient Characteristics.  

HR = heart rate, BP = blood pressure, JVP =jugular venous pressure, NYHA = New York 

Heart Association. * Prior breathing experience includes scuba diving/snorkelling, 

playing a wind instrument, singing in a choir regularly, previous similar breathing tests 

or spirometry.   

Age (mean, median, range), years 77, 82, 48-90 

Gender (Male: Female) 8:4 

Ethnicity All Caucasian 

Height (cm, mean±sd) 169±12 

Weight (kg, mean±sd) 80±25 

HR (beats/min, mean±sd) 71±13 

BP (systolic/diastolic, mmHg, mean±sd) 127±23/69±14 

JVP (normal: raised) 12:0 

Peripheral oedema: no/yes 10:2 

Never smoked/Ex-smoker 7:5 

Prior breathing experience * no/yes 8:4 

NYHA class (III:IV) 12:0 

 

The inclusion criteria were patients aged 18 years or above with no upper age limit, 

treated with oral furosemide and clinically stable in the previous 3 months (no hospital 

admissions for heart failure).  The main exclusion criteria were a history of allergic 

reaction to furosemide (rare reports of hypersensitivity including anaphylaxis due to 

the sulfonamide group have been reported), symptomatic postural hypotension, renal 

(eGFR <15) or hepatic impairment, hypo- or hyperkalaemia (<3.0 or >5.9mmol/L) or 
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hypo- or hypernatraemia (<130 or >150mmol/L) over the preceding month, or co-

existent history of lung disease or nasal polyps. 

This research study was reviewed and approved by South Central - Oxford C Ethics 

Committee (NHS REC reference 15/SC/0480) and complied with the Declaration of 

Helsinki.  All participants provided written informed consent.  

5.2.2. Dyspnoea measurements 

The dyspnoea measurement tools VAS, MBS and D12 are described in more detail in 

Chapter 2-Methods.  The D12 was used in this study to gain insight into both the 

physical and emotional aspects of dyspnoea in patients with heart failure.  The only 

other dyspnoea questionnaire that also offers this is the multi-dimensional dyspnoea 

questionnaire (MDP).  The MDP is more labour intensive to fill in and requires a trained 

personnel to administer it with the patient.  The D12 can be completed by the patient 

alone and takes a couple of minutes to complete.  The D12 has not been used in this 

patient population before and its comparison to the VAS and MBS is unknown in this 

group.  Patients provided discrete ratings of air hunger on a word-labelled electronic 

VAS (0-100mm) every 15 secs throughout the hypercapnic air hunger breathing tests, 

cued by an LED.  The output of the VAS was recorded by an analogue to digital 

converter (Micro1401, Cambridge Electronic Design, UK) and stored for off-line analysis 

using Spike 2 software (Version 6.18, Cambridge Electronic Design, UK).  The D12 was 

administered immediately after each exercise and air hunger (AH) test, with the 

instruction to score their dyspnoea for how they were feeling at the point of 

termination of the test.  A horizontal paper VAS and vertical MBS were administered 
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immediately before, immediately after, 1 minute post, and 2 minutes post exercise; 

patients were instructed to focus on how they were feeling at that instant in time.  The 

D12 (‘these days’) was also administered at the start of each visit, along with the 

MLHFQ for how they were feeling over the previous week.  Scoring of the D12 and 

MLHFQ are described in Chapter 2 – Methods.   

5.2.3. Assessment of optimal breathing pattern 

During nebulisation patients targeted a fast or a slow breathing pattern, by breathing 

in time to a metronome, set at 20-30% below or above their baseline rate.  The 

achieved breathing patterns were recorded using respiratory induction 

plethysmography (Respitrace, Ambulatory Monitoring Inc, New York, USA).  This 

incorporated elasticated bands comfortably strapped around the chest and abdomen.  

Insulated wires stitched into the bands were stretched by displacement of the chest 

and abdomen during breathing, thereby changing the inductance of the bands.  The 

sum of these two displacements were calibrated by the patients breathing in and out 

of a bag with a known volume.  The gain of the signal from the chest band was set at 

twice the gain of the abdominal band in order to optimally reflect tidal volume 

changes302.  From the Respitrace sum signal the inspired TVȩ, Ti, Te and Ttot and 

respiratory frequencies were measured on a breath-by-breath basis throughout 

nebulisation and these were averaged for all breaths in the first minute, middle 

minute, and final minute of the nebulisation period.  The nebulisation period ranged 

between 10-20 minutes for all of the solution to be aerosolised.   
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5.2.4. Using hypercapnic air hunger and exercise to assess dyspnoea  

Air hunger  

The air hunger (AH) test involved hypercapnia with constrained ventilation.  Tidal 

volume was fixed by limiting flow into a 3 litre anaesthetic bag (held constant at a level 

that matched their normal resting ventilation) and fixed respiratory frequency to their 

baseline rate, by breathing in time to a metronome.  The test is explained in detail in 

Chapter 2 - Methods.  In this study a 'ramp' protocol was initially performed which 

involved a step increase in inspired CO2 every minute until patients reached the top of 

the VAS (maximum they are willing to tolerate).  This was followed by presenting a list 

of standard descriptors from which patients selected the best three descriptors of how 

they were feeling.  This ensured the patients were identifying AH as the predominant 

sensation elicited.  The ramp was then repeated with the patients instructed to focus 

on the AH descriptors only in their VAS ratings.  Additional word anchors (‘slight’, 

‘moderate’ and ‘severe’) were placed at equal separation alongside the scale, which 

enabled patients to remember how much of the scale represented how much 

sensation from one occasion to the next.  A steady state protocol was then performed 

with CO2 manipulated to give up to 5 minutes of a fixed level of end tidal CO2 (PETCO2), 

chosen to target a level of 50% (‘test’ level) of the VAS for AH based on the ramp data.  

The steady state protocol was repeated after the nebulisation.   
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Exercise 

Half the patients were randomly allocated to perform the 6MWT while the other half 

performed CPET.  Details of the 6MWT is described in detail in Chapter 2. CPET was 

performed on a seated stationary electromagnetically braked cycle ergometer, with 

patients wearing a facemask to enable breath-by-breath analysis of respiratory gases.  

Patients were instructed to keep pedal rate at 55-65rpm and underwent a ‘ramp’ 

protocol, depending on their self-reported baseline fitness level.  They cycled 

continuously until they were at the maximum level they were willing to do or were 

unable to keep up with the required pedal rate.  Electrocardiogram (ECG) and blood 

pressure (BP) were recorded for safety monitoring.  See Chapter 2 for more details.  

5.2.5. Study protocol and equipment 

This was a randomised double-blind placebo-controlled crossover pilot study. Twelve 

patients with advanced heart failure attended the Cardiovascular Clinical Research 

Facility at the John Radcliffe Hospital on four visits over a minimum of 21 days and a 

maximum of 53 days.  Patients followed the same protocol at each visit.  On the first 

visit, they were randomised to either CPET or 6MWT and they continued with this 

allocation for all visits.  This randomisation was to assess if patients with heart failure in 

Class III and IV were able to generate useful data during CPET and to assess which test 

may be more sensitive in detecting a change with an intervention (nebulised 

furosemide).  Patients were also randomised to the order in which they received the 

mist and the breathing pattern for that mist.  This resulted in the four following options 

for randomisation; ‘saline nebulised slowly’, ‘saline nebulised quickly’, ‘furosemide 
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nebulised slowly’ and ‘furosemide nebulised quickly’ which were allocated randomly to 

visit number.  The protocol is shown schematically in Fig. 5.1.  The figure includes 

details about blood sampling however, this data is reported in Chapter 6.  All 

participants and all healthcare professionals apart from those who administered the 

interventions were blinded to the medications.  On each visit the participants were 

randomised to either inhale nebuliser (MicroAir U22, Omron Healthcare, Milton 

Keynes, UK) of furosemide (40 mg, 10 mg/ml; hameln pharmaceuticals gmbh, Langes 

Feld, Hameln, Germany) or saline (4 ml; B.Braun, Melsungen, Germany).  The 

nebulisation duration of the furosemide mist was approximately 10-15 min and the 

saline mist 5-10 min. Total visit duration of around 3 h.  



135 
 

 

Figure 5.1 Flow diagram of study protocol  

VAS ratings were recorded electronically every 15 sec during the air hunger.  The D12 was administered after each AH and Exercise test.  

The VAS and MBS were administered immediately before and after exercise, and at 1- and 2- minutes after exercise. VAS = Visual Analogues 

Scale.  MBS = Modified Borg Scale.  D12 = Dyspnoea-12.  MLHFQ = Minnesota Living with Heart Failure Questionnaire
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5.2.6. Data analysis 

A sample size was not determined prior to this study because the primary measures 

of breathlessness have not previously been used in this patient group. A sample size 

of 12 patients reflected a conservative estimate of the likely number of suitable 

advanced heart failure patients (of the required NYHA classes) that can be expected 

from the sources of prospective recruitment over a one-year period at a single 

centre. All patients were included in the analysis up to the point of completion of 

the study or withdrawal.   

This was a pilot study of novel assessment and outcome measures; thus, the 

recently developed multidimensional Dyspnoea 12 questionnaire has not previously 

been used in a clinical trial and the air hunger has not been used to induce 

dyspnoea in patients with heart failure.  Descriptive statistics are presented for the 

air hunger test and exercise test.  To address the aims of the study both will be 

considered in relation to the following between factors: pre and post treatment 

(furosemide, saline) and breathing frequency during inhalations (slow, fast).    

Some post-hoc significance testing has been performed in addition to the 

descriptive statistics, however this is not definitive due to the small number of 

patients studied in this pilot trial, and is intended to be hypothesis generating.  This 

preliminary data is descriptive; however some statistical analyses were performed; 

1) The D12 was compared to the; i) MLHFQ, using Pearson Correlation ii) 

original heart failure cohort for the validation of D12, using repeated 

measures ANOVA and iii) VAS, MBS-dyspnoea and MBS-perceived exertion, 

using Pearson Correlation.  The effect of nebulised furosemide on exertional 
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dyspnoea using the VAS, Borg and D12 and the change in D12 across visits 1 

to 4 was analysed using repeated measures ANOVA.   

2) The optimal breathing pattern (slow or fast breathing frequency) whilst 

nebulising furosemide to achieve the greatest level of exertional dyspnoea 

relief was analysed using paired samples t-Test.  The difference between 

fast and slow breathing, and the effect of nebulised furosemide and saline 

on MBS level of exertion was also analysed using the paired samples t-Test.   

3) The optimal exercise test (CPET or 6MWT) for eliciting dyspnoea in patients 

with chronic stable heart failure was analysed using the independent-

samples t-test.   

4) The change in spirometry after nebulised furosemide and saline on was 

assessed using paired samples t-Test.   

5) The treatment effect of nebulised furosemide on air hunger sensitivity was 

analysed using the independent-samples t-test. 

6) The effect of nebulised furosemide on urine output was analysed using a 

paired sample t-Test.   

Distance walked from 6MWT were converted to estimates of peak VȩO2 based on 

the following equation in order to make this comparable with peak VȩO2 during 

CPET.   

Mean Peak VȩO2 (ml/kg/min) = 4.948 + 0.023 * mean 6MWD (m) (Standard Error of 

the Estimate 1.1ml/kg/min)303.   
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5.3. RESULTS 

5.3.1. Optimal method for measuring dyspnoea  

The main methods used for measuring dyspnoea in this study were the VAS, MBS 

and D12.  The MLHFQ also has some statements relating to dyspnoea.  The VAS is a 

continuous scale; the Borg scale is a category scale with ratio properties; the D12 is 

a multi-dimensional questionnaire quantified using a Likert scale.  The VAS in the 

AH test had verbal anchors which makes it similar to category scale with ratio 

properties239.   To enable comparison between the scales they have been converted 

to % full scale although this has limitations.  It may also limit the provision of useful 

data for future clinical trials.  The minimum clinically relevant difference for each 

these scale is similar at around 10% of full scale.  The MCID for VAS assessing 

dyspnoea is 8-10 points out of 100, for the MBS is 1 point out of 10 and for the D12 

is 3 points out of 36114, 123, 280.    VAS and MBS have been shown to be reproducible 

subjective measures of symptoms change before and after medication during 

exercise110.  The VAS at maximal exercise has been shown to be reproducible, with 

a within-subject coefficient of variation of 6% (range 2-10%).  However, submaximal 

VAS ratings were highly variable (21%, range 11 to 28%)304.  MBS had a higher 

within-subject coefficient of variation at peak exercise (14%, range 6 to 31%).  At 

submaximal exercise this increased to 25% (range 12 to 50%)305.  The sample size 

reflects of the repeatability of the test.  However, in this pilot study, which was 

designed to be more explorative rather than definitive, the low sample size means 

repeatability cannot be assumed.  However, D12 has been shown to have good 

test-retest reliability in different diseases but larger studies are needed to confirm 

the repeatability of this measurement7.   
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Comparing D12 ‘these days’ with MLHFQ 

The overall average score for D12 and MLHFQ taken at the start of each visit was 

20.5±15.4% and 24.4±12.7%, mean±sd, respectively. They were moderately 

correlated (R2 = 0.41, p = 0.02, n = 12, Fig. 5.2).  This was similar when analysing the 

physical and emotional components of both the MLHFQ and D12 separately (R2 = 

0.32, p = 0.04 and R2 = 0.32, p = 0.06, respectively, n=12).  When analysing visit 1 

only (prior to any interventions or mist) the R2 = 0.43, 0.52 and 0.17 for the total, 

physical and emotional correlation, respectively. 

 

Figure 5.2 D12 'these days' correlated to the MLHFQ 

The D12 ‘these days’ total score moderately correlated with the MLHFQ.  The four 

D12 and MLHFQ questionnaires for each patient were averaged. D12 = Dyspnoea-12 

‘these days’, MLHFQ = Minnesota Living with Heart Failure Questionnaire.   

There was no significant difference between D12 ‘these days’ scores taken at the 

start of successive visits. Both the D12 ‘these days’ and MLHFQ had higher mean 

scores for visit 1 compared to the other visits, but there was no similar trend for the 

subsequent visits, Table 5.2.   
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Table 5.2 Baseline dyspnoea ratings 

Dyspnoea ratings taken at the start of each visit.  D12 = Dyspnoea-12, MLHFQ = 

Minnesota Living with Heart Failure Questionnaire 

 Visit 1 

Mean±SD 

Visit 2 

Mean±SD 

Visit 3 

Mean±SD 

Visit 4 

Mean±SD 

D12 ‘these days’ (%) 27.5±17.5 19.7±14.6 18.1±15.7 16.7±13.0 

MLHFQ (%) 33.2±14.9 21.0±12.1 23.8±16.6 19.8±15.5 

D12 at peak exercise (%) 21.5±19.7 23.3±14.3 24.3±19.8 23.7±20.9 

 

The D12 score taken at peak exercise averaged for all 4 visits was slightly, but non-

significantly, increased compared to the D12 score for ‘these days’ averaged for all 

4 visits (23±19 vs 20±15, %total±sd, p=0.38).   

Comparison of D12 compared to the original heart failure validation cohort 

The original cohort of patients with heart failure used in the validation of the D12 

had a total D12 score of 30±24% (unpublished data from the original validation 

paper7).  In this study the D12 (total, physical and emotional) taken at the start of 

each visit ('these days'), at peak exercise and at steady-state air hunger is shown in 

Table 5.3.  The D12 'these days' and D12 at peak exercise were significantly less 

than the original data (p<0.05).  The physical components of the D12 were similar 

for 'these days' and at peak exercise but were significantly higher for the AH steady 

state D12.  The emotional components were significantly reduced for all of the D12 

questionnaires ('these days', peak exercise and AH steady state) compared to the 

original cohort, Table 5-3.   
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Table 5.3 D12 comparisons with original D12 heart failure cohort 

D12 questionnaire was taken at different timepoints during the study.  ‘D12 'these days' 

= at the start of each study visit.  D12Ex-peak = at peak exercise, D12AH-steady state = at 

the end of each steady state of the air hunger test, *=p<0.05.   

 Total D12 (% total) Physical (% physical) Emotional (% emotional) 

D12'original cohort'  30±24 33±25 26±26 

D12'these days'   20±15* 27±18 11±15* 

D12Ex-peak 24±18* 37±24 7±15* 

D12 AH-steady state 29±18 44±23* 8±16* 

 

Comparison of exercise dyspnoea ratings by the different tools 

Peak exercise ratings were highest using the VAS, followed by MBS and D12, when 

expressed as %full-scale, Table 5.4.  When averaged over 4 visits the dyspnoea 

ratings by the different tools differed significantly (repeated measures ANOVA, 

p<0.005, Table 5.4).  D12, VAS and Borg scores for dyspnoea at peak exercise were 

reproducible over repeated visits.   VAS shows the greatest magnitude of change at 

peak exercise, from baseline, with a mean±sd increase of 49±19% compared to MBS 

which was 34±20%.   
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Table 5.4 Exertional dyspnoea ratings over 4 visits 

Mean±sd of 24 scores at peak exercise (2 per visit for 12 patients). Scores are 

normalized to %full-scale and averaged over 4 visits and compared using repeated 

measures ANOVA VAS = Visual Analogue Scale, MBS = Modified Borg Scale, D12 = 

Dyspnoea-12. *= p<0.05 compared to VAS ƚ = p<0.05 compared to MBS ǂ = p<0.05 

compared to VAS   

  Visit 1 

Mean±SD 

Visit 2 

Mean±SD 

Visit 3 

Mean±SD 

Visit 4 

Mean±SD 

Average of all 4 

visits 

Pre-mist VAS (%) 65.3±25.3 60.2±21.2 61.8±25.6 66.0±19.8 63.3±2.8 

 MBS (%) 45.9±20.3 47.3±21.7 55.5±25.2 53.2±17.5 50.5±4.6* 

 D12 (%) 24.8±21.1 22.7±14.9 26.6±20.6 26.4±21.1 25.1±1.8ƚǂ 

       

Post-mist VAS (%) 66.3±28.9 61.3±20.1 65.8±25.7 66.0±23.0 64.9±2.4 

 MBS (%) 46.8±20.9 48.0±17.5 56.3±21.8 57.1±20.4 52.1±5.4* 

 D12 (%) 19.9±18.6 23.8±14.3 22.0±19.5 23.0±21.1 22.2±1.7ƚǂ 

 

There was a strong correlation between the VAS and MBS measurements (R2=0.81, 

p = 0.0003, n = 12), when all data was pooled (pre-exercise, peak exercise, 1- and 2-

min recovery).   This strong correlation persisted when data only from the CPET was 

analysed (R2 = 0.84, p = 0.01, n = 6) but was only mildly correlated for the 6WMT (R2 

= 0.30, p = 0.26, n = 6) data.  The D12 showed a weak correlation with the VAS (R2 = 

0.22, p = 0.13, n = 12) and MBS (R2 = 0.28, p = 0.07, n = 12).  When only the D12 

physical component was included in the comparisons, the correlation improved to 

0.63 (p = 0.002, n = 12) for the VAS and 0.71 (p = 0.0006, n = 12) for the MBS, Fig. 

5.3.  
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A B C  

Figure 5.3 Correlations between dyspnoea ratings 

The MBS and VAS were strongly correlated (A).  The D12 and VAS had a weaker 

correlation (B) as did the D12 and MBS (C).  Rating for dyspnoea using the VAS and 

MBS were averaged for all ratings (pre-exercise, immediately at the end of exercise, 

1-min and 2-min post exercise, pre and post mist) for the 12 patients.  For D12 

comparisons the VAS and MBS scores immediately post exercise were used, pre and 

post mist for all 12 patients.  D12 = Dyspnoea-12, MBS = Modified Borg Scale - 

Dyspnoea, D12 = Dyspnoea-12.   

Comparison of peak perceived level of exertion ratings and the different dyspnoea 

tools 

MBS perceived level of exertion correlated closest with MBS dyspnoea (R2 = 0.80, p 

= <0.001, n = 12) but also correlated moderately with the VAS dyspnoea (R2 = 0.63, 

p= 0.002, n=12).  It correlated poorly with the D12 (R2 = 0.14, p = 0.23, n =12, Fig. 

5.4).  There was no correlation with the work rate achieved on CPET and the 

patients reported level of exertion (R2 = 0.04, p=0.18, n=12). 
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Figure 5.4 Correlation between level of exertion and dyspnoea 

Correlation between perceived level of exertion at peak exercise measured using 

MBS with dyspnoea rated at peak exercise.  VAS, MBS and D12, all expressed as % 

full scale.   

Measuring the effect of nebulised furosemide on exertional dyspnoea using the 

different dyspnoea tools 

Nebulised furosemide did not significantly alter the exertional dyspnoea ratings 

(VAS, MBS or D12) taken immediately at the end of exercise, irrespective of 

exercise type (CPET or 6MWT). The magnitude of relief of exertional dyspnoea 

recorded on the VAS, MBS and D12 is shown in Fig. 5.5 separately for saline and 

furosemide nebulisation. The greatest difference detected was on the D12 with the 

furosemide mist (nebulised furosemide and saline, -6.1±10.9 vs -1.5±10.7 %full 

scale, respectively, p = 0.40).  The results were not significantly altered if the 

baseline ratings were deducted from the immediate peak exercise rating, for the 

VAS and MBS.  None of these analyses reached statistical significance.   
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Figure 5.5 Change in dyspnoea ratings before and after mist inhalation 

Error bars show SEM.  Greatest difference detected on the D12 with the furosemide 

mist.  VAS = Visual Analogue Scale, MBS = Modified Borg Scale, D12 = Dyspnoea-12 

 

Nebulised furosemide did not affect the rate of recovery at 2 mins for the VAS, Fig. 

5.6, or MBS-dyspnoea (figure not shown, shows same pattern as VAS).   
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Figure 5.6 VAS at baseline, immediately, 1 and 2 mins after exercise 

The data is averaged for the 12 participants.  VAS = visual analogue scale.   

5.3.2. Optimal breathing pattern 

The mists nebulised with a faster respiratory rate, as dictated by the metronome, 

resulted in an average breathing frequency of 15±3/min compared to the slower 

respiratory rate of 9±2/min, p=<0.001 (student t-Test), from a spontaneous level of 

12.2±3.6 breaths per minute.  The tidal volume was 701±253ml for the faster rate 

compared to 841±343ml for the slower rate, p=0.52.  The overall ventilation was 

10±4l/min for the faster rate and 8±4l/min for the slower rate, p=0.09.  The 

difference in the achieved ventilation for fast and slow targeting became greater 

over the period of nebulisation.   The achieved tidal volume for both the fast and 

slow targeting fell over the period of inhalation, Fig. 5.7.  
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Figure 5.7 Changes in breathing pattern during furosemide inhalation 

Tidal volume recorded at the start (A), middle (B) and end (C) of mist inhalation 

(duration of mist inhalation ~10minutes).  Dashed line = faster rate, solid line = 

slower rate.   
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The VAS data shows that nebulising furosemide with the fast breathing pattern 

resulted in greater exertional dyspnoea relief relative to saline for both the CPET 

and 6MWT.  In contrast, the D12 data showed that nebulising furosemide with the 

slow breathing pattern resulted in a greater treatment effect (dyspnoea relief with 

nebulised furosemide relative to nebulised saline) for the 6MWT but not the CPET 

(Table 5.5, please note, a negative number indicates greater exertional dyspnoea 

relief).  None of these trends showed statistical significance.  Nebulising the 

furosemide with a slow breathing pattern resulted in less distance walked during 

the post-mist 6MWT compared to the pre-mist 6MWT but no reduction was seen 

for peak work in CPET.  However, nebulising the furosemide with a fast breathing 

pattern resulted a negligible  reduction in the distance walked during the post-mist 

6MWT and in the peak work achieved during the post-mist CPET.  Slow or fast 

breathing during nebulised furosemide did not affect the maximum work rate 

achieved with slow inhalation resulting in a change of 0.5±5.7, compared to saline 

at -0.7±3.4watts.   
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Table 5.5 Breathing pattern during mist inhalation on dyspnoea relief  

Effect of breathing pattern during mist inhalation on exertional dyspnoea relief 

VAS = Visual analogue scale, D12 = Dyspnoea-12, ∆Ex test peak = change in 

exertional dyspnoea relief at peak exercise, CPET = cardiopulmonary exercise test, 

6MWT = 6 minute walk test, WR = work rate.  NB a negative result indicates a 

greater relief in dyspnoea  

Mist 
inhalation 

  Faster 
respiratory rate  

Slower 
respiratory rate  

VAS (% full 
scale) 

∆Ex test peak  
 

Furosemide -3.0±9.2 2.9±15.3 
Saline 5.3±13.4 1.1±17.1 
Treatment Effect -8.4±15.4 1.8±20.7 

- ∆CPET peak  
 

Furosemide -4.5±11.7 1.1±21.0 
Saline 3.0±18.9 -6.7±18.5 
Treatment Effect -7.5±20.4 7.8±28.3 

- ∆6MWT  
 

Furosemide -1.6±6.6 4.8±8.1 
Saline 7.7±5.0 8.8±14.3 
Treatment Effect -9.3±10.3 -4.1±7.5 

D12 (%) ∆Ex test peak 
 

Furosemide -2.6±11.5 -7.3±15.5 
Saline -3.8±16.1 1.6±9.2 
Treatment Effect 0.9±20.6 -8.3±18.1 

- ∆6MWT 
 

Furosemide -1.5±3.2 -4.6±5.6 
Saline -3.5±7.1 2.3±3.0 
Treatment Effect 2.0±8.4 -6.2±6.6 

- ∆CPET 
 

Furosemide -0.3±5.2 -1.0±5.5 
Saline 1.2±2.8 1.2±2.2 
Treatment Effect -1.3±6.6 0.2±5.1 

∆6MWT distance (m) Furosemide -0.2±20.1 -6.8±24.3 
Saline 2.0±23.1 15.0±38.6 
Treatment Effect -2.2±38.5 -21.8±54.6 

∆CPET max WR (watts) Furosemide -0.8±5.6 0.5±5.7 
Saline 3.0 ±3.7 -0.7±3.4 
Treatment Effect -3.8±6.8 1.2±3.5 

 

5.3.3. Optimal exercise test for dyspnoea 

Six patients performed the 6MWT and 6 patients performed CPET, on 8 occasions 

each (96 tests included in analysis).  Patients reported the same level of exertion 
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whether they had done a maximal symptom limited CPET test (5.3±2.3 MBS units) 

or the 6MWT (5.2±1.9 MBS units, p = 0.97).   

VAS increased to 56±17% from a resting level of 12% with 6MWT compared to 

increasing to 42±19% from a resting level of 18% with CPET (p=0.10).  There was a 

trend for increased D12 scores at peak exercise at the end of CPET (27±22, 

%total±sd) compared to 6MWT (19±13, %total±sd) but this did not reach 

significance, p=0.06.   

The averaged distance walked on the first 6MWT was 336±101m compared to 

338±110m on the second test.  There was no significant difference in the distance 

walked after nebulised furosemide compared to nebulised saline, -3.5m+19m, and 

8.5m+22m respectively, p=0.44.  The averaged maximal work rate achieved on the 

first and second CPET were identical (43±12watts) and the peak VȩO2 was similar 

(9.5±1.9 versus 9.8±2.1 ml/kg/min, mean±sd).  The peak VȩO2 estimated from the 

distanced walked during the 6MWT was greater than the measured peak VȩO2 

during CPET (12.7 vs 9.6ml/kg/min).   

The reason given by the patient for stopping the CPET test is shown in Fig. 5.8.  For 

the 6MWT, all patients completed the 6MWT and on only 6 of the 48 tests did the 

patient pause during the test.  This was always due to dyspnoea.  The frequency of 

stopping did not differ according to the mist inhalations.    
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Figure 5.8 Reason for stopping CPET 

6 participants each performed the test 8 times.    

The CPET data averaged for all CPET tests is shown in Table 5.6, and this is 

separated into the pre-mist test and post mist test.    

 

 

 

 

 

Table 5.6 CPET parameters 

VȩO2 = oxygen consumption. AT = anaerobic threshold, RER = respiratory exchange 

ratio, WR = work rate, VȩE = minute ventilation, VȩCO2 = expired carbon dioxide, O2 

pulse = oxygen pulse, OUES = oxygen uptake efficiency slope 

CPET parameter All tests 

(mean±sd) 
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VȩO2 peak  0.72±0.14 0.71± 0.13 0.73± 0.16 

VȩO2 peak (ml/kg/min) 9.7±2.0 9.5±1.9 9.8±2.1 

VȩO2 (% predicted) 54±15 53±15 54±16 

AT 0.6±0.1 0.6±0.1 0.6±0.1 

AT ml/kg/min 8±0.7 8±0.1 8±0.5 

AT at % peak 78±4 79±4 78±7 

AT at % ref 44±10 44±11 44±9 

RER 0.97±0.08 0.99±0.08 0.96±0.08 

WR (watts) 43±12 43±13 43±12 

VȩE (l/min) 32.1±6.8 32.4±7.0 31.7±6.7 

VȩE (% of MVȩV) 41.2±2.8 41.3±12.3 41.1±13.4 

VȩE/VȩCO2 slope 45.6±9.0 45.8±10 44.9±8.2 

VȩE/VȩCO2 at peak ET 39.3±4.8 39.3±4.6 39.2±5.2 

VȩE/VȩO2 at peak ET 38.4±6.9 39.0±6.9 37.1±7.1 

O2 pulse 9±3 9±3 10±3 

OUES 0.9±0.3 1.0±0.4 0.9±0.2 

 

 

Effect of mist on CPET variables 

Nebulised furosemide did not increase the maximal work rate achieved on CPET 

with furosemide inhalation resulting in a change of work rate of -0.17±1.5, 

compared to saline inhalation of 1.2±2.3 watts, p = 0.38.  During CPET the change in 

the measured peak VȩO2 with exercise was identical for furosemide and saline, 

0.2±1.0 and 0.2±0.7 ml/kg/min, respectively, p=0.93, Table 5.7.  The change in the 
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estimated peak VȩO2 from the distance walked was not significantly difference for 

furosemide or saline.   

Table 5.7 Change in peak VȩO2 measured/estimated with furosemide and saline 

 Furosemide Saline 

∆CPET (measured peak VO2 ml/kg/min 0.2±1.0 0.2±0.7 

∆6MWT (estimated peak VȩO2) ml/kg/min -0.1±0.5 0.2±0.7 

 

The RER was not altered by nebulised furosemide compared to nebulised saline (-

0.02±0.02 versus -0.05±0.54, p= 0.104).  In those that the anaerobic threshold was 

detected, it was increased by nebulised furosemide compared to saline, p=0.02, 

Table 5.8.  Anaerobic threshold expressed as % peak VȩO2 showed no significant 

difference.   

 

 

Table 5.7 Change in anaerobic threshold after each mist inhalation from baseline 

AT = anaerobic threshold 

 Furosemide Saline T.Test 

ΔAT 0.05±0.05 -0.01±0.05 0.005 

ΔAT ml/kg/min 0.6±1.11 -0.5±0.71 0.02 

ΔAT of %peak VO2 1.5±10.6 -3.0±6.6 0.51 

 

Nebulised furosemide did not affect the VȩO2 peak, VȩO2 ml/kg/min or VȩO2% 

reference value.  Nebulised furosemide did not significantly affect the VȩE L/min, VȩE 
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of %MVȩV, VȩE slope, VȩE/VȩCO2 at peak ET or the VȩE/VȩO2 at peak ET, Table 5.9.  The 

change in O2 pulse was also not altered by nebulised furosemide at 0.5±0.89 versus 

0.92±0.38 for saline, p=0.29.  The OUES was not changed by the nebulised 

furosemide.   

Table 5.8 Change in ventilator parameters after mist from baseline 

VȩE = minute ventilation, MVȩV = maximal voluntary ventilation, VȩO2 = oxygen 

consumption, VȩCO2 = expired carbon dioxide, ET = exercise tolerance 

 Furosemide Saline T.Test 

ΔVȩE L/min 0.07±2.4 -1.4±3.2 0.30 

ΔVȩE of %MVȩV 0.9±3.2 1.4±7.1 0.89 

ΔVȩE slope 0.6±7.9 1.7±12.5 0.89 

ΔVȩE/VȩCO2 at peak ET 0.4±1.3 -0.725±3.2 0.39 

ΔVȩE/VȩO2 at peak ET 0.5±1.6 -2.7±5.2 0.17 

 

 

Effect of Mist on Perceived Exertion 

There was no indication in this data that nebulised furosemide altered the level of 

perceived exertion at the end of exercise, and this was true for both CPET and 

6MWT (-0.02±0.6 furosemide versus 0.09±0.4 saline, p=0.72) 

5.3.4. Effect of Mist on Spirometry  

Furosemide did not significantly change the spirometry data collected in this study 

compared to saline for any of the following parameters; FVC, FEV1, FEV1:FVC, PEF, 

MVȩV, Table 5.9.  A significant difference was noted when furosemide was inhaled 

with slower slow inhalations compared to faster shallower inhalations; FVC 
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increased with slow breathing and reduced with fast breathing (p=0.001).  Similar 

trend for FEV1 and FEV1:FVC but not significant.  No change with PEF.   

 

 

 

 

 

 

 

Table 5.9 Changes in spirometry with mist inhalations 

Spirometry data from 6 patients (those allocated to CPET).  Spirometry was 

performed immediately before the CPET test, before and after each mist inhalation 

(8 results per patient).    FVC = full vital capacity, FEV1 = forced expiratory volume in 

1 second, PEF = peak expiratory flow.   

ΔFVC Furosemide 0.02±0.1
3 

p=0.26 Slow 0.05±0.13 *p=0.001 
Fast -0.09±0.09 

Saline 0.07±0.1
4 
 

Slow 0.07±0.18 p=0.26 
Fast 0.08±0.10 

ΔFEV1 Furosemide -
0.01±0.1
4 
 

p=0.48 Slow 0.06±0.16 p=0.102 
Fast -0.08±0.08 

Saline -
0.03±0.1
1 
 

Slow -0.07±0.13 p=0.48 
Fast 0.04±0.04 

ΔFEV1:
FVC 

Furosemide 0.10±3.3
5 
 

p=0.15 Slow 0.80±4.66 p=0.494 
 Fast -0.60±1.52 

Saline -
3.25±3.8

Slow -4.80±4.09 p=0.15 
Fast -0.67±1.53 
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5 
 

ΔPEF Furosemide -
0.37±0.5
5 

p=0.73 Slow -0.45±0.69 p=0.514 
Fast -0.29±0.42 

Saline -
0.13±0.9
3 
 

Slow -0.41±0.97 p=0.73 
Fast 0.58±0.14 

 

 

5.3.5. Hypercapnic air hunger sensitivity 

There was no evidence in this study of a treatment effect with nebulised 

furosemide in relief of AH, mean±sd furosemide vs saline, 2±14 vs 2±16, p=0.94, 

Table 5.11. 

Table 5.10 Change in VAS with furosemide and saline during AH test 

Difference in VAS before and after mist inhalation during AH steady state for all 

tests.  The difference in the VAS ratings pre and post mist were averaged for the fast 

and slow breathing pattern for furosemide and saline inhalation.   

Subjec

t 

Furosemide (Δ% full scale) Saline (Δ % full scale) 

1 28.75 10.45 

2 16.15 21.75 

3 -4.4 4.85 

4 15.45 7.35 

5 3 8.25 

6 0.85 -6.25 

7 -8.7 -14.35 

8 -5.5 -3.3 

9 -21.5 14.8 
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10 7.1 20.75 

11 9.65 -33.2 

12 -11.55 -6.7 

Mean 2.4±13.9 2.0±15.8 

 

Using only the data that met the inclusion criteria for a valid steady state (ETCO2 

values separated by <1mmHg from pre and post-test state, variation in ETCO2 over 

the steady state level <2.5mmHg and no patient selection of ‘extreme’ on the VAS 

scale) there remained no significant difference in the relief of AH with furosemide 

compared to saline, -2±20 vs -1±20, p=0.94.  Using this smaller dataset, the same 

pattern remained for when the furosemide was inhaled fast compared to slowly, 

with relief only seen with the fast inhalation, 3±24 vs -5±15, p = 0.62.   

Nebulised furosemide did not affect the D12 score (or % change) after the AH test, 

compared to the pre-mist AH test.  There was no significant difference whether 

furosemide was inhaled slowly or fast, p = 0.43.  Nebulised furosemide did not alter 

the physical or affective components of dyspnoea differently for the AH test, 

although there was a trend for greater AH relief with saline for the physical 

element, p = 0.09, Table 5.11.  Hypercapnic AH test in assessing dyspnoea using the 

D12 did not show any significant difference between nebulised furosemide and 

saline (-6±10 vs -9±10, p = 0.41). 
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Table 5.11 D12 after AH test 

D12AH = D12 after the AH test (% full scale±sd), D12AH-phys = Physical components of 

D12 (% full scale physical±sd), D12 AH-emot = Emotional components of D12 (% full 

scale emotional±sd) 

 Change after 

furosemide nebuliser 

Change after saline 

nebuliser 

P-value 

D12AH  -6±10 -9±10 0.41 

D12AH-phys  -4±22 -15±24 0.09 

D12 AH-emot -3±7 -6±14 0.55 

 

5.3.6. Urine output 

The average urine output was 152±81ml after furosemide inhalation versus 

122±89ml after saline inhalation.  The difference in urine output with nebulised 

furosemide compared to nebulised saline was not statistically significant, p=0.18.     

5.4. DISCUSSION 

This study addresses the optimal dyspnoea measurement tool in heart failure and 

the impact of furosemide (VAS, MBS, D12), determines the optimal breathing 

frequency during nebulised furosemide and  assesses the feasibility of CPET and air 

hunger tests in assessing nebulised furosemide for dyspnoea relief.   

 

 

5.4.1. Optimal method for dyspnoea measurements 

D12 performance  
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This pilot study is the first randomised clinical trial in heart failure patients using the 

multidimensional D12 questionnaire for assessment of dyspnoea.  It demonstrates 

that the D12 is a stable measure of dyspnoea for use in heart failure and that, in 

this study, was the method that detected the greatest relief of dyspnoea at peak 

exertion by nebulised furosemide, Fig. 5.5.   

D12 ‘these days’ correlated modestly with the MLHFQ and this is likely because the 

MLHFQ has some questions relating to dyspnoea and its indirect effects, such as on 

activities of daily living, although it also covers other symptoms not related to 

dyspnoea such as cost of medical care.  On one occasion a patient rated zero on the 

D12 but 50% on the MLHFQ for the physical aspects, this may be explained by the 

patient not experiencing dyspnoea (therefore rating zero on the D12) but 

experiencing other physical symptoms of heart failure (such as ankle swelling, poor 

sleep etc.)   

The highest scores for both the D12 'these days' and MLHFQ were recorded on visit 

1, compared to lower scores for the remaining 3 visits.  The instruction for D12 

'these days' is to rate dyspnoea over the previous 4 weeks.  It is likely that patients 

did this for visit 1, however for visits 2, 3 and 4 their ratings may have relied only on 

the previous week’s recall.  It has been shown in previous studies that the patients 

remember the worst event when recalling symptoms306.  It is also possible that 

patients' dyspnoea levels are reduced by the sequent visits becoming more familiar 

and ameliorating some of the associated anxiety.   

Interestingly the D12 scores at peak exercise are only slightly higher than those 

recalled during the D12 'these days'.  This has been noted before53 and this 
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discrepancy is thought to arise from patients self-limiting their activity during 

exercise, inaccurate recall, recall bias (peak end rule) or may be due to the 

difference between a safe supervised clinical setting versus the unmonitored home 

environment307.  Recalled sensations focus on the most meaningful or peak 

unpleasantness in order to avoid future similar sensations306, 308.  Therefore, in the 

D12 'these days' patients may be remembering an event associated with peak 

exercise or recalling the worst event in the last few weeks.   

Comparison of D12 compared to the original heart failure validation cohort 

The D12 in this preliminary study showed a significant reduction in the emotional 

component for all D12 questionnaires  - 'these days', peak exercise and AH 'steady 

state' - compared to the original cohort7.  The reduction in the emotional 

component at peak exercise or AH 'steady state' may be explained by the fact that 

patients expect to get breathless during exercise or are warned that they will do so 

during the AH test, so therefore does not induce such an emotional response.  The 

reduction in the emotion component for 'these days' is not as clear as selection of 

patients is from a similar pool of patients.  However, the standard deviation is large 

in both the original cohort and this cohort and remains within the expected range.  

The total D12 score at steady state for AH was almost identical to the original 

cohort, however this was due to a significantly higher physical component.  This 

may be due to AH being the most unpleasant sensation of dyspnoea200.    

Comparison of exercise dyspnoea ratings by the different tools 

Dyspnoea ratings using three different dyspnoea tools (VAS, MBS and D12) in this 

preliminary study were significantly different for the same test condition, when 
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expressed as % of full scale.  The VAS recorded the highest levels of dyspnoea 

followed by the MBS and D12, but this did not translate into the VAS detecting the 

greatest change in exertional dyspnoea ratings with an intervention (furosemide or 

saline mist.)  Dyspnoea measurements were taken before and at the end of exercise 

and not throughout the test.  Assessing dyspnoea during progressive exercise may 

have yielded some valuable data.       

The VAS and MBS had a strong correlation and this has been documented 

previously240.  Interestingly the correlation was stronger for CPET compared to the 

6MWT suggesting that the scales are used differently depending on the nature of 

the exercise.  The VAS scale is used over a wider range than the MBS and again this 

has been noted previously240.  The word anchors on the MBS often limit patients 

from rating above 5 ‘severe’, whereas on the VAS there were no word anchors in 

this study.  The experience in this lab is that when individuals are given the choice 

of placing word anchors on the VAS scale on average they will place ‘slight’ 

‘moderate’ and ‘severe’ equidistant along the scale, with severe at 75% full scale 

(unpublished data).  This also explains the higher readings on the VAS compared to 

the MBS.   

The D12 correlated only slightly with the VAS and MBS and had the lowest 

dyspnoea ratings overall. The D12 has 5 statements on the emotional aspects of 

dyspnoea, which rarely resulted in high scores after exercise, and therefore lowered 

the overall score.  This may reflect the positive psychological benefits of exercise309 

which may diminish the affective domain of dyspnoea, particularly in a controlled 

environment. The correlation is strengthened when using only the physical 

components of the D12 to the VAS and MBS, suggesting that the VAS and MBS are 
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more focussed on the physical component of dyspnoea, with less emphasis on the 

emotional component.   

Perceived level of exertion at peak exercise 

Use of MBS to measure ‘perceived level of exertion’ correlated best with the use of 

the MBS to measure ‘dyspnoea’. This is likely because they use the same word 

anchors on the scale.  The ‘MBS perceived level of exertion’ also correlated to a 

lesser degree with the VAS measure of dyspnoea but not for the D12 measure of 

dyspnoea at peak exercise.  This suggests that the D12 is not strongly related to the 

level of exertion as perceived by the patient.  There was no association between 

the achieved work rate during CPET and the patients’ reported level of exertion as 

each patient performed a maximal CPET test for their level of fitness/ability, 

resulting in different peak work rates for similar levels of exertion.   

Effect of nebulised mist on exertional dyspnoea measured using different tools. 

Preliminary analysis of this pilot study shows that dyspnoea ratings at peak exercise 

were not significantly improved by nebulised furosemide.  When assessing the 

change in dyspnoea ratings with the nebulised furosemide the D12 had the greatest 

change.  This is below the minimally clinically important difference (MCID) of 9.7%7 

suggesting that this change would not be detected by the patient.  The VAS and 

MBS were also below their MCIDs.  The rate of recovery of dyspnoea, recorded on 

the VAS and MBS, after exercise did not show any difference according to mist 

inhalation or whether the mist was inhaled with a slow or fast breathing frequency.   
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5.4.2. Optimal breathing pattern 

During nebulisation patients were successful in targeting their breathing frequency 

to the fast and slow rates that were set by the metronome.  The patients 

spontaneous baseline level of tidal volume was not recorded in this pilot study 

(respitrace was only applied during nebulisation with targeted breathing).  If the 

tidal volume were to appropriately compensate for the deviation of the respiratory 

frequency from the resting level during targeted breathing one would expect 

ventilation to be matched between slow and fast targeting.  However, ventilation 

was not matched (10±4 and 8±4l/min for the fast and slow rates respectively) and 

this discrepancy increased over the nebulisation period.  Therefore, faster mist 

inhalations were associated with higher overall ventilation which would increase 

the amount of furosemide delivered to the lungs.  This has implications for 

comparing dyspnoea relief with different breathing patterns of inhalation. For 

example, a slower rate of mist inhalation would result in lower overall ventilation 

and therefore, less furosemide delivered to the lungs which may reduce the effect 

of the furosemide on dyspnoea relief.   

 

Breathing frequency of nebulised furosemide – effect on relief of exertional 

dyspnoea 

In this preliminary study the VAS score demonstrated that nebulised furosemide 

inhaled using a higher breathing frequency resulted in a reduction in exertional 

dyspnoea, for both 6MWT and CPET.  There was no difference in the distance 

walked or the peak work rate achieved so this cannot account for the difference 
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seen.  However, the D12 score showed that the slower breathing frequency of 

nebulised furosemide resulted in a greater furosemide treatment effect.  This was 

only true for the 6MWT and not CPET, and this may be explained by the reduction 

in the distance walked during the second 6MWT.  This was a pilot study for 

descriptive analysis and was not powered to show any statistical significance.  

Analysis of the results was performed to assess if there were any clear signals.  

However, lack of statistical significance does not imply a lack of effect, rather that it 

is underpowered to show any significant difference.  Taking this into account, 

analysis showed that none of these effects were statistically significant, thereby 

suggesting that nebulising furosemide at different rates does not show a clear 

signal that it alters the effectiveness of dyspnoea relief.  However, the standard 

deviations for these results were large, and this may explain the lack of significant 

findings.  Larger datasets from bigger, powered studies might be worthwhile  to 

confirm the trends seen.   

5.4.3. Optimal exercise test for inducing dyspnoea. 

CPET and 6MWT are both valid methods of inducing dyspnoea (see chapter 2 - 

methods for details).  Dyspnoea was greatest on the 6MWT compared to CPET, 

despite CPET being intended as a maximal test and 6MWT as a sub-maximal test.  

The patients perceived level of exertion was similar suggesting the 6MWT was a 

maximal test for some patients, or that some patients chose to stop CPET earlier 

before they had reached their peak.  However, experimenter observation of the 

6MWT suggested that in some patients the 6MWT was a maximal test, with some 

patients stopping during the test due to dyspnoea, prior to being able to continue 

to complete the full 6 minutes.   
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Walking involves a larger muscle mass and more work against gravity compared to 

cycling and consequently, peak VȩO2 is 5–10% higher on the treadmill than on a cycle 

ergometer310.  This may explain why the 6MWT is more dyspnoea inducing than 

CPET.  On the other hand, the D12 score taken at peak exercise was highest for 

CPET compared to 6MWT.  This may be due to the inclusion of the emotional 

aspects of dyspnoea that are recorded as part of the D12, with patients finding 

CPET more ‘emotionally’ challenging than walking, which they might be expected to 

be more familiar with and therefore have less anxiety attached to the test.  The 

peak VȩO2 estimated from the 6MWT distance was greater than the measured peak 

VȩO2 during CPET.  This calculation can be used on a group wise analysis303, it is 

intended to create a generalised equation that can be used to predict peak VȩO2  

amongst patients with diverse cardiopulmonary disorders.  In this preliminary 

analysis neither nebulised furosemide nor saline significantly altered the peak VȩO2 

(measured or estimated).   

The distance walked during the 6MWT in this study was similar to previous studies 

in heart failure207, 311.  No improvement in the distance walked was seen with 

furosemide nebulisation.  A systematic review of 6MWT in randomised blinded 

pharmacological studies in patients with chronic heart failure showed that only 9 of 

47 studies showed a significant increase in 6MWT distance (2 for ACE inhibitors, 3 

for beta blockers, 1 for digoxin, 1 for ibopamine, 1 for L-arginine, 1 for beriberine) 

and this correlated with an improvement in symptoms.  It is also noted that trials 

showing a significant improvement were more likely to be seen in patients with 

more severe heart failure compared to those with milder symptoms.  However, this 

study had patients with severe heart failure but no increased trends were seen in 
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distance walked suggesting that maybe the furosemide does not result in an 

improvement in exercise capacity.  The distance walked in the second exercise was 

slightly longer than the first test which is surprising as one might expect the fatigue 

to be greater.  This effect has been seen in previous studies and is thought to be a 

learning effect312.  The slight increase seen was related to an increase in the 

distance walked following saline inhalation.   

The main reason for stopping the CPET test was leg fatigue, followed by dyspnoea.  

Other reasons included knee pain, anxiety, dizziness and angina.  Patients paused 

during six 6MWT tests and this was always due to dyspnoea.  This fits with the 

result discussed above showing that the 6MWT is more dyspnoea inducing than 

CPET.   

In this pilot study, there was no suggestion of a treatment effect seen with 

nebulised furosemide compared to nebulised saline according to CPET variables.  

The anaerobic threshold was not able to be determined in all patients (missing in 

27% of results) so this result needs to be interpreted with caution as the numbers 

are small.  The anaerobic threshold was significantly higher for nebulised 

furosemide compared to saline.  However, the anaerobic threshold expressed as 

percentage of peak VO2 was not significant, indicating that the difference in the AT 

between furosemide and saline is related to the difference in the peak VO2 

achieved.  This suggests that oxygen delivery may be improved with nebulised 

furosemide although these are patients on high levels of systemic furosemide and 

any additional diuresis is likely to be negligible.  An alternative mechanism may be 

via nebulised furosemide causing bronchodilation173.   



167 
 

As this study included patients with advanced chronic heart failure, a maximal CPET 

was not possible and no patients were able to perform a true VȩO2 max test (see 

methods chapter for criteria) and peak VȩO2 was used instead.  Most patients 

performed a submaximal exercise test with an RER on average <1.0.  The RER was 

slightly lower for the second exercise test compared to the first which is likely to be 

due to fatigue.  VȩE:VȩCO2 slope and OUES are useful markers when the test is 

submaximal 313.  Peak VȩO2 is also a prognostic indicator irrespective of the RER225.  

None of these changed with the intervention.  As expected the peak VȩO2 was 

markedly reduced compared to reference values314.  The percent predicted value 

was 54±15% which is severely reduced.  A VȩO2 peak <10ml/kg/min is classed as 

severe disability.  A VȩO2 peak <15ml/kg/min is associated with NYHA class IV315.  In 

this study they were in NYHA III but had a VȩO2 peak <10ml/kg/min which suggests 

the CPET has over-estimated the severity of their heart failure (or they have done a 

suboptimal test), or they were classified in the wrong group clinically316 

The absence of any trends/suggestions in this pilot study of nebulised furosemide 

for dyspnoea relief in patients with heart failure may be due to the type of 

dyspnoea induced during exercise.  It is likely that a large component of dyspnoea 

during exercise is due to the work/effort component 317 and a recent previous study 

has shown that nebulised furosemide only relieves the air hunger component of 

dyspnoea276.    

Spirometry 

In this pilot study, patient spirometry preceded each CPET test.  When combining 

the fast and slow breathing frequency of inhaling the furosemide and saline mist, 

there was no difference seen in spirometry values.  However, a significant increase 
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in FVC was seen when the furosemide mist was nebulised with the slow breathing 

frequency compared to the fast breathing frequency.  This may be due to 

bronchodilation and a reduction in atelectasis173 or may be due to chance as there 

were no other significant changes on spirometry with nebulised furosemide 

5.4.4. Hypercapnic air hunger sensitivity 

Air Hunger Test 

The AH test was a challenge for these patients to complete.  As a result, there was 

limited meaningful data from this test.  It was noted during the study that some of 

the patients were hyperventilating with low ETCO2 and this has been shown 

previously318.  This may have accounted for some of the difficulties associated in 

this test as the test relies on a steady baseline ventilation at the start of the test.  

This could make comparison of the ratings before and after the mist inhalation less 

reliable. 

No relief of AH was noted with nebulised furosemide compared to saline when 

comparing the dyspnoea ratings for the same fixed level of ETCO2 (steady state).  

The steady state was difficult to achieve in these patients with heart failure.  The 

test was often aborted early due to the patient reaching ‘extreme’ on the VAS scale 

whilst trying to achieve a steady state or for other reasons such as a poor steady 

state including ETCO2 values separated by >1mmHg from pre and post-test state or 

the variation in ETCO2 over the steady state level was >2.5mmHg.  However, the 

results did not alter whether analysing only those tests that met the criteria for a 

steady state or including all test results.   
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Low resting ETCO2 in patients with heart failure has been show in previous 

studies81, 319.  This was also noted in this study this may explain some of the 

challenges in performing the AH test in this patient population.  In animals, 

hyperventilation (and hypocapnia) occurs via stimulation of vagal afferents due to 

increased pulmonary venous pressure320. Patients with high pulmonary wedge 

pressures have lower arterial CO2 levels than those with normal wedge pressure321.  

In heart failure arterial oxygen is usually normal so hypoxia is not driving the 

hypocapnia322. A recent study by Rocha et al 2017 that showed that patients with 

resting hypocapnia had higher VE/VCO2 (ventilatory inefficiency) which was related 

to capillary CO2 and not to VD/VT81.  The increased neural drive leads to an 

increased in ventilatory response which is above what is required to overcome 

'wasted ventilation', resulting in hypocapnia.  However, the hyperventilation did 

result in better arterial oxygenation, which in the case of heart failure with a poor 

cardiac output is likely to be aiming to improve oxygen delivery, although at the 

detriment of worsening dyspnoea and poorer exercise tolerance.   

In this preliminary analysis, the D12 score performed at the end of the AH test was 

not affected by nebulised furosemide.  There was a trend seen for greater AH relief 

in the physical component of dyspnoea with nebulised saline compared to 

nebulised furosemide.  This may be due to the action of saline itself, such as 

moistening the airways, or may be due to chance due to the low power in this 

study.      
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5.5. CONCLUSIONS 

The D12 varies consistently with the other measures and is at least as stable a 

measure of dyspnoea, albeit at a lower level.  It can be used as a fast and efficient 

baseline measure of dyspnoea in patients with heart failure.  The VAS and MBS 

compared well in the assessment of exertional dyspnoea and either could be used 

in future clinical trials with nebulised furosemide.  The D12 appeared to be the 

most sensitive for detecting change in dyspnoea with nebulised furosemide and this 

finding suggest that in future clinical trials of nebulised furosemide it may be 

beneficial to include the D12 

Nebulising furosemide with different breathing frequencies does not appear to 

enhance the relief of dyspnoea and therefore does not need to be manipulated in 

future trials of nebulised furosemide.    There is a slight suggestion that a greater 

relief of AH occurs when furosemide is inhaled with a faster (shallower) breathing 

pattern. This may be explained by increased furosemide delivery due to the greater 

overall ventilation, or because less furosemide is absorbed systemically if it is being 

preferentially deposited in the conducting airways by the quick inhalation.  

However, this preliminary finding needs to be verified by targeting tidal volume as 

well as frequency to ensure better matching of overall ventilation. 

Both exercise and hypercapnic air hunger test are able to elicit dyspnoea.  The air 

hunger test proved difficult in this patient population, although resulted in the 

higher D12 scores compared to the exercise tests.  Since the D12 takes account of 

both emotional and physical aspects of dyspnoea this might suggest that 

hypercapnic air hunger test has a greater affective valence compared to exercise.  
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Nebulised furosemide is specific to air hunger relief and it is possible that the 

patients are experiencing work/effort more than air hunger.  CPET and 6WMT both 

elicited dyspnoea, with the greatest dyspnoea seen with 6MWT, with similar levels 

of perceived exertion.  Breathlessness was the predominant cause for stopping 

exercise with the 6MWT, whereas for CPET it was leg fatigue.  Given these points 

and the ease and simplicity of the 6MWT, in comparison  to CPET and the AH test, 

this suggests it may be the optimal method to elicit dyspnoea to detect a change 

with intervention (nebulised furosemide) in future clinical trials.    

This is explorative data.  Such measures typically require larger datasets.  The 

trends reported suggest that larger, powered studies are warranted to endorse or 

refute these results.  One thing that has not been done previously is to see how 

measures of dyspnoea relief relate to exercise induced changes in cardiac 

biomarkers which is addressed in the next chapter. 
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6. CARDIAC BIOMARKERS WITH EXERCISE AND 

NEBULISED FUROSEMIDE 

6.1. INTRODUCTION 

6.1.1. Cardiac biomarkers 

The main cardiac biomarker used in heart failure is the B-type naturetic peptide 

(BNP) or N-terminal pro-BNP (NT-proBNP).  BNP is strongly linked to heart failure 

and can be used to discriminate between acute dyspnoea caused by heart failure, 

and that caused by primary lung disease244.  It has a high negative predictive value 

and is therefore helpful in excluding a diagnosis of heart failure when patients 

present with dyspnoea.  It is also useful for prognosis and monitoring response to 

heart failure treatment323.   

Troponins (Troponin T (TnT) and Troponin I (TnI))  are primarily used to diagnose a 

myocardial infarction250 by using a single cardiac troponin value above the 99th 

centile and a significant time-dependent change in the cardiac troponin 

concentration in the presence of clinical symptoms and signs250.  The magnitude of 

the concentration change used to diagnose a myocardial infarction (i.e. the δ value) 

is not clear.  The European Society of Cardiology (ESC) recommends a change of 20-

50% depending on whether the baseline troponin is below or above the 99th 

percentile.   

Advances in immunoassay techniques have led to a 100-fold reduction in the limit 

of detection of troponin from 500ng/L to 6ng/L (high sensitivity troponin, hsTn).  

hsTnI has been shown to be associated with increased mortality in those presenting 

to the emergency department with acute dyspnoea324.   The use of hsTnI has 



173 
 

significantly increased the number of patients with heart failure with detectable 

troponin to 92%245, 246.  Measuring hsTn over a few months strongly predicts all-

cause mortality (HR 1.88)247.   

6.1.2. Effect of Exercise on Cardiac Biomarkers 

Exercise reduces morbidity and mortality for patients with heart failure with 

reduced ejection fraction248, 249.  Primary data studies, in both healthy volunteers 

and patients with heart failure, have shown conflicting evidence in cardiac 

biomarker response to exercise, Table 6.1.  However, a meta-analysis of 45 studies 

in healthy volunteers showed an increase in cardiac biomarker release after 

strenuous exercise325.  Performing exercise in heart failure may be a confounding 

factor to diagnosing an MI using the Tn δ value and can increase BNP326. In another 

patient cohort (pulmonary arterial hypertension) hsTnT levels increased after 

maximal physical exercise whilst NT-pro-BNP remained constant327.  One study 

showed a positive correlation between BNP and dyspnoea using the New York 

Heart Association (NYHA) function class as a scale of dyspnoea328. 
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Table 6.1 Studies assessing BNP response to exercise 

Study N Year Participant type Protocol  Result 
McNairy et 
al.326 

30 2002 Heart Failure 
Healthy 
volunteers 

Submaximal cycle 
ergometer - 75% 
of maximal heart 
rate 

NYHA I-II ↑30%, 
↑3.5% at 1 hr 
NYHA III-IV ↑16%, 
↑15% at 1hr 

Kruger et 
al.329 

57 2004 Chronic heart 
failure and 
healthy 
volunteers 

Maximal cycle 
ergometer 

BNP levels were not 
significantly altered 
by vigorous exercise 
 

Krupicka et 
al.330 

15 2010 Healthy 
volunteers 

Maximal cycle 
ergometer 

Fast and transient 
rise of plasma BNP, 
remained well 
within normal range 

Zdrenghea  
et al.331 

87 2014 Heart failure Cycle ergometer 
6MWT 
400mWT 

BNP ↑ both during 
maximal and 
submaximal 
exercise testing 

Aengevaer
en et al.332 

191 2017 Cardiovascular 
disease (CVD) 
and healthy 
volunteers 

Prolonged 
moderate 
intensity walking 

Small ↑ BNP in CVD 
but not in healthy 
volunteers.   

 

6.1.3. Biological Variation of Cardiac Biomarkers   

The biological variability from repeated measurements of BNP and hsTnI has been 

studied in patients with heart failure333-337 but not in relation to changes with 

repeated exercise.  The within-person variation (CVi) for BNP has been shown to be 

between 35 and 60% in healthy volunteers, and 20-40% in heart failure patients 

with a between-person variation (CVg) of 40-60% in healthy volunteers, and 40-

120% in heart failure336, 338, 339.    Biological variability in patients with chronic 

disease is critical for interpretation and analysis of both BNP and hsTnI to 

understand their utility in clinical situations.  The interpretation of cardiac 
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biomarkers in relation to exercise allows further insight into the normal variability 

within each individual.  

6.1.4. Systemic Absorption of Nebulised Furosemide 

Nebulised furosemide has been used for over 20 years in research and is thought to 

act via a direct action within the lungs and not via a systemic effect.  This is 

supported by studies in rats which show that modulation of lung receptors only 

occur when inhaled and not when given intravenously30, and in studies showing 

that the beneficial effects of furosemide are only observed when inhaled and not 

via tablets282.  This theory is also supported by the lack of haemodynamic changes 

when inhaled290.  However, until recently the amount of furosemide absorbed into 

the circulation when inhaled was unknown.  In the recent study by Morélot -Panzini 

et al. (2018) absorption efficiency was up to 30% of the inhaled dose185 with 

controlled delivery that avoided loss of furosemide to the atmosphere by 

separating inspiratory flow from expiratory flow.  Analysis of the blood samples 

from this data adds to the field by determining an absorption efficiency for inhaled 

furosemide when delivering the aerosol via an open facemask.   

It is not known whether existing blood assays for furosemide are adequately 

sensitive to detect small increments in blood levels of furosemide following a 

nebulised dose of 40mg, on top of high levels of systemic furosemide in patients 

with heart failure.  One of the aims of this study was therefore to assess whether a 

change in furosemide concentration could be detected with a nebulised dose of 

40mg and if possible, to compare with cardiac biomarker release during exercise.   

Specific aims: 
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1) Establish a correlation between cardiac biomarkers and exertional dyspnoea in 

this patient cohort.  It was hypothesised that there would be a positive correlation. 

2) Verify the cardiac biomarker response to exercise and compare this between 

exercise types (cardiopulmonary exercise testing-CPET and 6minute walk test-

6MWT).  It was hypothesised that cardiac biomarkers increase with exercise and 

return to baseline within 60 mins, and this would not affected by exercise type.   

3) Determine the biological variation in BNP and hsTnI with exercise over time.  It 

was hypothesised that there would be minimal biological variation during a single 

visit and over the duration of the study (~1 month) 

4) Assess the furosemide absorption efficiency and compare with cardiac biomarker 

release during exercise.  It was hypothesised that furosemide absorption efficiency 

would be <30% as an open facemask is used in this study.  It was also hypothesised 

that cardiac biomarker release with exercise would be inversely correlated with 

furosemide absorption. 

6.2. METHODS  

6.2.1. Participants and Blood Protocol 

The 12 patients participated in this randomised double-blind placebo-controlled 

crossover presented in Chapter 5 had multiple blood samples taken which are 

analysed to address the aims of this study.  All patients performed two exercise 

tests on 4 separate visits, the exercise type (CPET or 6MWT) remained the same for 

individuals over the course of the study.  A simplified protocol is shown in Fig. 2.11 

in the Methods chapter, to highlight the timing of blood samples.  The 4 samples 

taken each day were all taken within 3 hours.  The time between paired samples 
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was 65±22mins (mean±SD, end of first pair to start of second pair).  This was 

repeated on 4 visits, obtained over a period of at least 21 days (mean±SD 

26.9±10.2days, range 22 to 53days).   

Two blood samples were taken from each patient for the furosemide assay, one 

before the mist inhalation and one within 5 minutes after the mist inhalation.   

Full details of the protocol are described in Chapter 5. Ethics approval was covered 

by the approval in the study described in Chapter 5. 

6.2.2. Blood sampling technique 

Blood were taken via an antecubital venous cannula inserted at the start of each 

visit, 10ml of blood was discarded prior to each blood collection and 5ml saline was 

flushed into the cannula after each sample to maintain cannula patency.  12ml of 

blood was taken for samples A, D and E (troponin and BNP) – see Fig. 2.11.  4ml was 

taken for sample C (furosemide assay), and 16ml was taken for sample B (troponin, 

BNP and furosemide assay).  

6.2.3. Data analysis 

All participants had all samples taken, 16 samples collected per patient for cardiac 

biomarker analysis, 4 per visit for 4 visits, and 8 samples per patient for furosemide 

analysis.  The furosemide assay analysis was undertaken in 4 patients (see Chapter 

2-methods for specific details). 

Linear regression was used to compare mean BNP and hsTnI level with dyspnoea 

ratings at the end of exercise for visual analogue scale (VAS), modified Borg scale 

(MBS) and Dyspnoea12 (D12).  Due to the significant differences in baseline 
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measurement of BNP and Troponin, percentage change from the average of the 

first sample (A) taken each visit (1-4) was used for analysis and taken to be 100%.   

Repeated measures ANOVA was performed on the cardiac biomarker response to 

exercise, using SPSS Version 25.   

The biological variation profiles of cardiac biomarkers, BNP and Troponin I, in 

individuals before and after exercise (CPET and 6MWT) in patients with advanced 

heart failure were determined.  CVi and CVg were calculated using SPSS Version 25.  

The biological variation profiles of change in BNP and Troponin I in individual after 

CPET compared to after 6MWT in patient with advanced heart failure were 

analysed.   

6.3. RESULTS 

6.3.1. Correlation between cardiac biomarkers and exertional dyspnoea 

There was a poor correlation (R2 <0.1) between the change in cardiac biomarkers 

(BNP and hsTnI) with exercise and all ratings of dyspnoea (VAS, MBS and D12) at 

peak/end exercise, Fig. 6.1. There was also no correlation between the resting 

baselines levels of BNP and hsTnI and exertional dyspnoea ratings.   

A.  
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B.  

Figure 6.1 Correlation of dyspnoea ratings with cardiac biomarkers 

A: Change in peak exertional dyspnoea, using the D12, VAS and MBS, at the end of 

exercise (CPET or 6MWT) did not correlate with BNP (% change from baseline after 

exercise).  B: Change in peak exertional dyspnoea at the end of exercise did not 

correlate with hsTnI.   D12 = Dyspnoea-12, VAS = Visual Analogue Scale for 

dyspnoea, MBS = Modified Borg Scale for Dyspnoea, BNP = B-type naturetic peptide, 

hsTnI = high sensitivity Troponin I 

6.3.2. Effect of exercise on BNP and Troponin  

BNP varied widely from 8.7 to 1096.2ng/L across all data points pooled from all the 

subjects.  The range for hsTnI was 4 to 42ng/L.  Within each subject the BNP varied 

by 4.2 to 289.1ng/L, and troponin varied by 2 to 17ng/L, with up to 28% change 

with exercise for BNP and up to 40% change with exercise for hsTnI.  There were 

significant increases in cardiac biomarkers, BNP and hsTnI, (both p=0.001) before 

and after exercise, using all pooled data, Fig. 6.2.   
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Figure 6.2 Change in cardiac biomarkers before and after exercise 

BNP and hsTnI before and after exercise, taken as a percent change from baseline 

(average of sample A on all 4 visits).  * p=0.001 BNP= B-type naturetic peptide, hsTnI 

= high sensitivity troponin I 

The response was not different if analysed separately for pre and post mist; the 

increase in hsTnI response to exercise before and after mist inhalation remained 

constant at 5% and the change in BNP remained similar at 8% and 7%, Table 6.2.  

BNP dropped significantly (p=<0.001), to below baseline, 60 min after exercise with 

similar increase on second test.  hsTnI returned to baseline (no overshoot) 60 min 

after exercise, Fig. 6.3.  Separating the mists into furosemide and saline showed the 

same pattern, Table 6.2, with an increase in BNP and hsTnI response to exercise.  

BNP was also significantly reduced within 60 minutes of finishing exercise, for both 

furosemide and saline (p=0.01 and 0.004, respectively).  There were no significant 

differences between furosemide and saline and response to exercise in cardiac 

biomarkers (p=0.74 and p=0.13, BNP and hsTnI, respectively).  The hsTnI response 

to exercise tended to be smaller before and after the saline mist (3 and 4%, 

respectively) compared to the furosemide mist (7 and 8% respectively) but this 

difference was not seen for BNP.   
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Table 6.2 BNP and Troponin change with exercise before and after mist 

inhalation.   

BNP (ng/L)  = B-type naturetic peptide.  hsTnI (ng/L)= high sensitivity troponin I, Ex = 

Exercise (cardiopulmonary exercise testing or 6-minute walk test).  Diff = change in 

cardiac biomarkers (%) after exercise – before exercise.   

 Pre-mist Post-mist 

 Pre-Ex Post-Ex Diff P 

value 

Pre-Ex Post-Ex Diff P 

value 

BNP (%) 100±0 108±7 8 *0.02 96±5 103±6 7 0.07 

hsTnI (%) 100±0 105±6 5 *0.06 101±6 106±6 5 *0.001 

 Pre-Furosemide mist Post-Furosemide mist 

 Pre-Ex Post-Ex Diff P 

value 

Pre-Ex Post-Ex Diff P 

value 

BNP (%) 100±0 108±12 8 0.18 97±13 105±14 8 *0.01 

hsTnI (%) 100±0 107±15 7 0.24 99±13 107±15 8 *0.02 

 Pre-saline mist Post-saline mist 

 Pre-Ex Post-Ex Diff P 

value 

Pre-Ex Post-Ex Diff P 

value 

BNP (%) 100±0 108±9 8 *0.02 95±10 102±14 7 0.08 

hsTnI (%) 100±0 103±9 3 0.84 102±13 106±12 4 0.15 
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Figure 6.3 Change in cardiac biomarkers with exercise 

BNP and hsTnI increase with exercise, before and after mist inhalation.  hsTnI 

returns to baseline prior to the start of the second exercise test, within 60 minutes.  

BNP falls below baseline within 60 minutes.  Mean %change from baseline±sem.  

Dash-dotted line marks mist inhalation.  Light dashed lines = exercise (either CPET or 

6MWT).  BNP= B-type naturetic peptide, hsTnI = high sensitivity troponin I, Ex = 

exercise.  CPET = cardiopulmonary exercise test.  6MWT = 6-minute walk test.   

There were no significant differences in the response to exercise for BNP or 

Troponin for either of the two different modes of exercise tested (CPET or 6MWT), 

p=0.347, Table 6.3.    BNP increased by 10% after the 6MWT compared to 6% with 

CPET.  hsTnI remained constant with an increase of 5% for both CPET and 6MWT.  

Before and after mist inhalation did not significantly alter these results.   

Table 6.3 Cardiac biomarkers change with two different exercise types 

BNP and Troponin (% from baseline on visits 1-4) increases in response to a 

submaximal (6MWT) and maximal (CPET) exercise test.  6MWT = 6-minute walk 

test, CPET = Cardiopulmonary exercise test. 
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6MWT BNP (%) 98±1 108±5 10 *0.006 

 Trop (%) 100±3 105±4 5 *0.04 

CPET BNP (%) 98±3 104±7 6 0.06 

 Trop (%) 101±3 106±7 5 *0.03 

 

6.3.3. Biological variability of BNP and hsTnI 

The laboratory analytical variation (CVa) is up to 12% for BNP and up to 10% for 

hsTnI.  Outliers were removed using Cochran C (one subject was removed for BNP 

and another subject removed for hsTnI).  Normality test (Shapiro Wilk) were met.  

The within subject coefficients of variation (CVi) is 20% and 10% for BNP and hsTnI, 

respectively.  The within group coefficients of variation is 80% and 50% for BNP and 

hsTnI, respectively.   

6.3.4. Furosemide absorption efficiency 

Blood concentrations of furosemide were increased after a 40mg nebuliser of 

furosemide, Fig. 6.4.  The absorption of furosemide ranged from undetectable 

(<0.03mg/L) to 0.17mg/L (median 0.085).  The maximal absorption efficiency from 

nebulised furosemide was 2.1% (median 1.1%).  This was calculated from the 

difference in furosemide concentration of the blood sample taken immediately 

prior to furosemide nebulisation and that taken within 5 minutes of completing it.  

If all 40mg was absorbed into the blood and assuming that the average volume of 

distribution is approximately 5 litres, the concentration in the blood would be 

8.0mg/L.  The absolute value of maximal absorption of furosemide in this study was 

0.17mg/L (0.25mg/L detected post furosemide nebulisation minus 0.08mg/L 
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furosemide detected at baseline, immediately prior to nebulisation).  As a 

percentage of blood volume this results in 2.1% maximal absorption efficiency.   

Ideally, multiple blood samples would have been taken after completion of the 

nebuliser to determine the area under the curve and half life but due to time 

constraints this was not possible.  A single dose was taken within 5 minutes of 

completing the nebuliser as this has been shown in other studies of nebulised 

substances (such as salbutamol) to show the peak plasma concentration340.  

However, this is an assumption and further studies are warranted to investigate this 

further.   

 

Figure 6.4 Blood furosemide assay 

Blood assay results before and after 4ml nebulised saline (left) or 40mg nebulised 

furosemide (right). An increase in the blood levels of furosemide was detected after 

a 40mg dose of nebulised furosemide.  No change in furosemide level was seen with 

saline inhalation.  Data pooled from 4 visits in each of 4 patients (S2, S3, S8 and S9).   

BNP response to exercise correlated poorly with the amount of furosemide 

absorped (R2 =0.03, Fig. 6.5A).  However, if the clear outlier was removed the 
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correlation became strong with an R2 = 0.6 (p=0.04, Fig. 6.5B) indicating that the 

greater the absorption of furosemide from a nebulised dose the greater the BNP 

response to exercise.  One patient had a small reduction in blood furosemide 

following nebulised furosemide which was just above the limit of detection for the 

furosemide assay; this was taken to be zero absorption assuming that the 

elimination of systemic furosemide does not exceed the absorption from the lungs 

over the period of inhalation.  There was also a correlation seen with hsTnI and 

furosemide mist absorption (R2 = 0.3) with no outliers identified.   

A      B 

 

Figure 6.5 BNP response to exercise with furosemide mist absorption 

A. Change in systemic furosemide levels before and after furosemide inhalation for 4 

patients, on 2 visits each.  B.  Same plot with one outlier removed produced a strong 

correlation (R2 = 0.6) indicating the more furosemide that is absorbed systemically 

into the blood stream from a nebulised dose of furosemide the greater the BNP 

response to exercise.   
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6.3.5. Absorption of furosemide and relief of Air Hunger 

Nebulising furosemide in different breathing patterns did not significantly alter the 

air hunger (AH) ratings, however there was a trend for more furosemide absorbed 

with faster shallower inhalations compared to slower deeper inhalations, 0.1±0.05 

vs 0.03±0.08  mg/L±sd.  The relief of AH was not significantly altered by the 

systemic absorption of furosemide (8±29  vs 7±13 %VAS full scale±sd).  There was a 

weak correlation showing the greater the furosemide absorption the greater the 

relief in AH, Fig. 6.6.   

 

Figure 6.6 Correlation between furosemide absorption and AH relief 

6.4. DISCUSSION 

The main findings of the present analysis were as follows: 

1) Dyspnoea ratings did not correlate with cardiac biomarker release with 

exercise refuting the initial hypothesis.   

2) Cardiac biomarkers increased with exercise irrespective of exercise type or 

mist inhalation.   
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3) Analysis of biological variation produced lower CVi for hsTnI compared to 

BNP indicating that the former may be more suitable for patient follow up 

and determining therapeutic strategies from repeat measurements of 

cardiac biomarkers.   

4) Furosemide assay was sensitive enough to detect small but significant 

changes in blood levels of furosemide following inhalation of 40mg 

furosemide.  BNP response to exercise significantly correlated with 

furosemide absorption.   

6.4.1. Lack of correlation of exertion dyspnoea with cardiac biomarkers 

Maximal exercise is associated with dyspnoea.  Exertional dyspnoea is not usually 

the exercise limiting factor in healthy individuals but is often the limiting factor in 

respiratory disease (such as COPD).  BNP and hsTnI increase in response to 

ventricular wall stress341, 342; during maximal exercise this is thought to be due, in 

part, to increased end diastolic volume with increased stretch.  Although it would 

be reasonable to speculate that there would be a correlation between peak 

exertional dyspnoea ratings and change in cardiac biomarkers response to exercise 

in heart failure; this may not be the case since there are many factors such as 

fatigue of exercising muscle  that may precede any ventilatory limitations343.   

This is the first study to look at the correlation between the cardiac biomarker 

response to exercise and exertional dyspnoea.  This was not detected for either the 

change in the actual BNP/hsTnI value or the percent change from the pre-exercise 

measurement.  This may be because the increased in wall stretch (and therefore 

cardiac biomarker release) is only one small component to the changes that occurs 
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with exercise that result in dyspnoea.  It does not take into account the many other 

changes that occur with exercise such as the increased heart rate, increased lactate, 

diaphragm effort, muscle fatigue etc. that also play a part in the sensation of 

dyspnoea.  The sensation of dyspnoea is also subjective and covers a range of 

distinguishable subjective experiences such as work/effort, air hunger and chest 

tightness which are not detectable by the tools used to measure dyspnoea in this 

study.  It may be that the BNP is linked to an individual component of dyspnoea 

that the VAS, MBS or D12 are not sensitive enough to detect.  The timings of blood 

sampling may also have affected the results, although most previous studies have 

followed a similar protocol, with sampling done immediately prior to exercise and 

immediately after exercise326.  This has been shown to be able to detect a change in 

BNP with exercise, and if the sample had been delayed by 1 hour the BNP would 

have returned close to, or below, baseline.   

Resting cardiac biomarker levels also did not correlate with dyspnoea ratings.  This 

indicates that the resting BNP or hsTnI level does not predict who will experience 

increased levels of dyspnoea during exercise testing.   

6.4.2. Expected increase in cardiac biomarkers with exercise 

Following exercise BNP increased by 8% and hsTnI by 5%.  This BNP increase is 

lower than has been reported in some other studies, which reported increases of 

15-37%326, 344.  This difference may be explained by the patient population as in this 

study they were stable chronic patients with advanced heart failure on optimal 

medical therapy, whereas in McNairy et al. (2002) study it is not mentioned that 

they are stable so they may have included patients with a recent diagnosis.  This is 
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supported by the higher baseline BNP reading in the McNairy et al. (2002) 

compared to this study.  For those with positive response to exercise, the raw 

baseline level is correlated to the increase in BNP response with exercise (R2 =0.6).  

The higher the baseline BNP value the greater the response to exercise.  It may also 

be due to ‘noise’ as the numbers are small in both studies.  This cardiac biomarker 

response was seen during both the maximal (CPET) and submaximal (6MWT) 

exercise test.  The largest response (10%) was seen for BNP in response to the 

6MWT.  This is surprising as one might expect the largest response to be seen 

during a maximal exercise stress test, however in this study the response for a 

maximal stress test was lower at 6%.  This may be due to the fact that the CPET was 

performed on a cycle ergometer and the participants were free to stop at their own 

will, although they were encouraged to do as much as possible.  This is supported 

by an RER <1.1 in the majority of patients indicating a submaximal test.  Therefore, 

CPET is not a true maximal test in this cohort.  The 6MWT, on the other-hand, 

involved walking (can be more metabolically demanding than cycling slowly) and 

was stopped after 6 minutes.  This may be close to a maximal exercise test for many 

of the participants with advanced heart failure and may have led to greater stress 

on the heart with greater release of cardiac biomarkers.  Within an hour of stopping 

exercise hsTnI had returned to baseline, and in the case of BNP significantly below 

baseline and this was irrespective of type of exercise or mist inhalation (furosemide 

or saline).  This decrease was not seen in a previous study of same cohort of 

patients (NYHA III-IV) where they still had a 15% increase detected at 1 hour 326, or 

in a cohort of healthy volunteers at 3 hours345.  This may again be explained by the 

potential difference in the stability of patients in the McNairy study and this study, 
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with this study being of chronic stable patients on optimal therapy, whereas this is 

not stated in their study, or it may again be due to ‘noise’ due to the small numbers 

in each group.   

Many studies have looked at the change in BNP with exercise, both in patients with 

heart failure and healthy volunteers (Table 6.3) although few have studied repeated 

exercise tests within the same patients.  Sedaghat-Hamedani et al. (2013) 

performed a meta-analysis of 45 studies and assessed the increase in biomarker 

after strenuous exercise.  83% of healthy volunteers had results above the 99% 

centile after prolonged exercise325.  It can therefore be thought of as a physiological 

response to exercise but in the case of patients with advanced heart failure this 

may occur after shorter, less intensive exercise.   

6.4.3. Biological variation suggests that hsTnI is more suitable for 

monitoring heart failure 

The biological variation of cardiac biomarkers within each day and across all 4 visits 

within each subject was smallest for hsTnI, with a slightly higher CVi for BNP (10% 

vs 20%, respectively).  The CVg was very large for BNP (80%) and hsTnI (50%).  The 

CVi for BNP and hsTnI are within the same ranges as previously quoted in the 

literature336, 338, 346.The response to exercise was consistent during each day and 

across visits.  The use of hsTnI to diagnose a heart attack in heart failure should not 

be significantly affected by preceding activity and any change >20%, above 99th 

centile, should be considered significant250.  Given the smaller CVi for hsTnI this may 

be more suitable for monitoring heart failure than BNP.  BNP increases with 

exercise but returns to below baseline within 60 minutes.  BNP changed by a 
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maximum of 28% in this study and hsTnI increased by up to 40% with exercise so 

caution must be taken when assessing BNP or hsTnI results if the patient has rushed 

to clinic and had a blood sample taken immediately when being compared to their 

baseline readings.   

6.4.4. Systemic absorption of furosemide is detectable and correlates 

with BNP response to exercise.  

The amount of furosemide absorbed into the systemic circulation from a 40mg 

nebuliser is minimal, with a maximal absorption efficiency at 2.1%.  This is much 

less than Morélot -Panzini et al. (2018) had detected in their recent study (30%) and 

this is likely to be due to the different delivery method used.  In their study, they 

used controlled delivery so that the furosemide mist was only activated on 

inspiration; rather than in this study where the nebulisation ran continuously 

through an open facemask.  As approximately two thirds of the breathing cycle is 

spent in expiration some of the furosemide mist is expelled into the environment 

and not inhaled.   

This study suggested that increased systemic absorption of furosemide may 

enhance the BNP response to exercise with an R2 = 0.6 if the outlier is removed.  It 

is unclear why there was an outlier.  Work rate, distance walked, and change in 

heart rate (as a percentage of maximal heart rate according to age) were not 

different in this outlier and these factors did not correlate with BNP response, 

before and after furosemide inhalation.  It may represent a laboratory analytical 

error in BNP measurement, was it was not identified as an outlier for hsTnI.   The 

reason underlining the greater BNP response to exercise with increased furosemide 
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absorption is uncertain.  It could be argued that one would expect to see the 

opposite effect if the furosemide is reducing preload (via diuretic action on the 

kidneys), and therefore reducing wall stretch and BNP release.  However, one study 

has investigated the possibility that nebulised furosemide could affect preload 

(Newton et al., 2012) but this study did not find any change290.  Alternatively, if the 

furosemide inhalation was enabling patients to do more exercise (increased 6MWT, 

increased peak workload) then one may expect a greater increase in BNP/hsTnI in 

response to exercise but this increase in work capacity was not seen.  One possible 

explanation could involve the reduction in tidal volume seen after furosemide 

inhalation27 which is likely to be attenuated with greater absorption of furosemide 

from the lungs.  Higher tidal volumes would be associated with greater venous 

return and could therefore result in a higher BNP release, potentially explaining a 

correlation between furosemide absorption and BNP response to exercise.  Further 

studies to address this preliminary finding are required.  In an on-going study, 

baseline respiratory frequency is recorded prior to mist inhalation.   This shows the 

majority of patients with heart failure are hyperventilating.  Sheikh et al. (2013) 

showed a reduction in respiratory frequency by 7bpm (from 24 to 19bpm) with 

nebulised furosemide 174.  If the hyperventilation seen in heart failure reduces after 

furosemide, it may reduce the respiratory sinus arrhythmia, and with deeper, 

slower breathing, there would be greater venous return, increased end diastolic 

volume and therefore BNP release.   

The trend seen for greater furosemide absorption with fast shallow breathing 

compared to slower deeper breathing may be due to the higher ventilation during 

fast shallow breathing patterns, see previous Chapter, Fig. 5.6.  The weak 
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correlation between the amount of furosemide absorbed and relief of AH is 

explorative and requires further study.  It is possible that the more furosemide is 

absorbed, the greater the action on the Na+K+Cl- channels in the lungs and this 

enhances the action of removing any residual fluid locally.    

6.4.5. Limitations 

The furosemide analysis was performed in 4 of the 12 patients.  4 samples were 

initially analysed to see if it was feasibly possible to detect a change in furosemide 

blood levels after furosemide inhalation in patients already on oral furosemide 

tablets.  It was possible to detect a significant change in furosemide but due to 

analytical problems, the laboratory was not able to offer further analysis on the 

remaining samples.  Other laboratories were contacted but their sensitivities were 

not low enough to be able to detect the changes identified by the first laboratory.  

The 32 samples processed on their High-Performance Liquid Chromatography 

(HPLC) method posed a challenge analytically as there were multiple other peaks 

present in all samples.  They were unable to report what these were but suggested 

that they were possibly related to other drugs administered to the patients.  For 

most samples, this did not interfere with the peaks of interest.  However, for eight 

samples there was interference on their internal standard (IS).  Five of these 

samples did not have detectable furosemide peaks therefore these have been 

reported as below their lower limit of quantification.  3 samples had detectable 

furosemide but had interference.  These three results were calculated on external 

standard.  This is not usual procedure; however, the quality control was acceptable 

on external standard. 
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6.5. CONCLUSIONS 

Dyspnoea ratings did not correlate with cardiac biomarker release with exercise.  

Cardiac biomarkers increased with exercise irrespective of exercise type or mist 

inhalation and returned to baseline or below baseline within 60 minutes.  The intra-

individual biological variation of BNP and hsTnI is small, however there is wide 

inter-individual variation.  hsTnI had the lowest CVi and is therefore more suitable 

than BNP for patient follow up and to detect true changes in the clinical picture.  

Furosemide assay was sensitive enough to detect small but significant changes in 

blood levels of furosemide following 40mg inhalation.  Furosemide absorption 

correlates with cardiac biomarker response to exercise.  This interesting finding 

requires further study to elicit the reasons for this.  

Given the findings of this study it would be useful to assess the furosemide assay in 

more detail and assess the biological variation.  This would require sampling blood 

levels at different time points i.e immediately at the end of nebulisation, at 1 

minute, 2, minutes, 5 minutes, 10minutes and 30minutes.  This would give a more 

accurate and detailed understanding of the pharmacokinetics of nebulised 

furosemide.   

 

 

 

7. CONCLUSIONS 
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The primary purpose of this thesis was to investigate the mechanisms and 

management of dyspnoea in advanced heart failure.  Dyspnoea mechanisms in 

heart failure are not fully understood and treatment options are limited, often with 

patients remaining breathless despite optimal medical treatment.  Furosemide as a 

tablet or injection is a key component of heart failure treatment to relieve 

congestion and thereby ease symptoms.  However, increasing doses of furosemide 

are required over time, which can lead to renal impairment preventing further up-

titration and leaving patients symptomatic.  Nebulised furosemide offers an 

attractive treatment option that may modulate the afferent signals reporting the 

prevailing level of dyspnoea without appreciable addition to the systemic load. 

There is also the potential of targeting any residual pulmonary congestion via direct 

actions on the lung Na+, K+, Cl-channels; studies suggest that cardiogenic lung 

oedema is driven by Cl- channels which are inhibited by nebulised furosemide347.   

Nebulised furosemide has been shown to relieve dyspnoea, although the variability 

in response has limited its transfer to clinical practice185, 276, 295.  This thesis has; i) 

enhanced the understanding of the underlying mechanisms of dyspnoea, ii) 

addressed potential sources of variability seen in previous studies, iii) provided new 

evidence that dyspnoea relief by nebulised furosemide acts via a direct effect on 

the lungs and not via absorption into the systemic circulation.  Another novel 

aspect of this thesis was the use of a recently developed and validated multi-

dimensional dyspnoea questionnaire (D12) and the hypercapnic air hunger test, 

which have not previously been used in any clinical trials of heart failure.   The 

general aims identified in the introduction are discussed in light of the findings. 
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7.1. GENERAL AIM 1: ADDRESS A KEY OUTSTANDING QUESTION WITH 

REGARD TO DYSPNOEA RELIEF BY NEBULISED FUROSEMIDE 

A key question that was previously unanswered is whether nebulised furosemide 

specifically targets a certain quality of dyspnoea. This has been addressed by this 

thesis and the findings recently published276.  By studying healthy volunteers, it was 

possible to verify that nebulised furosemide relieves dyspnoea but also prove for 

the first time that nebulised furosemide specifically relieves the 'air hunger (AH)' 

component of dyspnoea and does not affect the 'work/effort (WE)' component 

within the same individuals.  These results were consistent with the theory that 

different neural pathways result in distinguishable qualities of clinical dyspnoea11-13 

with air hunger being the most unpleasant of these200.  Since air hunger is 

modulated by the activity of pulmonary stretch receptors, it is scientifically 

plausible that nebulised furosemide acts to relieve dyspnoea via altering the 

sensitivity of these receptors.  The thesis also uncovered a beneficial cumulative 

effect in dyspnoea relief from repeated furosemide nebulisations which may inform 

dosing regimens should nebulised furosemide be accepted into clinical practice 

The mechanism of action of nebulised furosemide was proved not to act via 

systemic absorption but due to a direct action within the lungs, likely via the vagal 

afferents on the lung stretch receptors which are involved in the sensation of 'air 

hunger' but not work/effort.  This is consistent with studies in rats showing that 

direct exposure of furosemide to lung tissue results in modulation of PSR afferent 

activity but not when administered intravenously30.  It also agrees with studies in 

humans showing beneficial effects of furosemide only when inhaled, not when 



198 
 

administered as a tablet282, and an absent haemodynamic response to nebulised 

furosemide290.   

This study suggests that patients will derive the most benefit from nebulised 

furosemide when AH predominates the symptom burden.  This can be detected 

using multi-dimensional questionnaires, such as the multidimensional dyspnoea 

profile (MDP)243 which was designed to individually measure three dimensions of 

dyspnoea; intensity, quality and unpleasantness.  Nebulised furosemide may 

significantly alter the symptom burden profile of heart failure patients towards a 

less unpleasant experience.   

7.2. GENERAL AIM 2: DETERMINE THE SYMPTOM BURDEN OF DYSPNOEA 

AMONG HEART FAILURE PATIENTS IN THE COMMUNITY SETTING.   

Dyspnoea is accepted to be multi-dimensional, similar to pain348.  A recently 

validated multi-dimensional questionnaire, the Dyspnoea-12 (D12), was used in this 

thesis to determine the extent of dyspnoea prevalence within patients with heart 

failure living in the community.  The prevalence of dyspnoea within the community 

setting has been studied in a variety of different patient groups349-351, but none 

have been performed using the D12.  The D12 had not previously been used in 

clinical trials of patients with heart failure, despite this cohort being included in the 

original validation of this instrument7.  The D12 score reflects both the physical and 

emotional aspects of dyspnoea.  Compared to other methods for measuring 

dyspnoea, such as the visual analogue scale or modified Borg scale, the D12 has the 

advantage of also determining whether the dyspnoea comprises of mainly a 

physical or an emotional component.   
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Chapter 3 involved a D12 postal survey which provided preliminary data on 

dyspnoea in the local heart failure community which, although underpowered, 

confirmed that dyspnoea is a prevalent symptom of heart failure.  In this 

preliminary analysis, there was a suggestion that the prevalence of dyspnoea was 

higher in patients with a preserved ejection fraction compared to those with a 

reduced ejection fraction, although the levels of dyspnoea recorded on the D12 

were similar.  Gender and age did not appear to affect the D12 score in this limited 

analysis.   

Dyspnoea in heart failure is usually thought to occur only on exertion (until the end 

stages of the disease), however this study provided preliminary data showing that 

almost half the patients experienced some dyspnoea at rest.  This has not been 

previously reported in the literature.  Unlike in chronic obstructive pulmonary 

disease (COPD)263, there was no obvious variation during the day or over the week.  

Although underpowered, and as to be expected, the presence and level of 

dyspnoea on the D12 correlated with the New York Heart Association (NYHA) class, 

with the higher NYHA score associated with the higher D12 scores.  Many patients 

were classed as NYHA III.  The description of this class states that patients are 

'comfortable at rest', however this study showed that substantial numbers within 

this class of patient were dyspnoeic at rest.  It is possible that patients learn to 

tolerate their dyspnoea and report being comfortable at rest, despite still being 

symptomatic. 
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7.3. GENERAL AIM 3: LAY THE GROUNDWORK FOR A FUTURE CLINICAL 

TRIAL OF NEBULISED FUROSEMIDE FOR DYSPNOEA RELIEF AS AN ADJUNCT TO 

TREATMENT OF CHRONIC HEART FAILURE 

Previous studies have shown variability in the extent of dyspnoea relief with 

nebulised furosemide29, 276, 295.  The sources of this variability are not well 

understood.  In Chapter 5 a number of potential sources of this variability were 

explored. This study was a pilot study and although statistical analysis was 

performed, this needs to be treated with caution as the results are underpowered 

to draw conclusions.  The following conclusions based on the preliminary analysis 

are intended to be hypothesis generating.   

The preliminary study reported in chapter 5 was unable to detect a clear effect on 

dyspnoea relief by changing the breathing frequency when inhaling furosemide.  

However, in this study tidal volume was not controlled and did not fully 

compensate for changes in breathing frequency so that overall ventilation was not 

well matched between conditions.  Thus, this study cannot fully discount breathing 

pattern of inhalation as a potential cause of variability in dyspnoea relief with 

nebulised furosemide.  However, two recent studies of dyspnoea relief with 

nebulised furosemide used a different delivery method (via a mechanical ventilator) 

and also found that this did not affect the variability in response185, 295.  

Two different methods were used to induce dyspnoea - exercise and hypercapnia.  

While exercise is an established dyspnoeic stimulus that has been widely used in 

clinical practice, the hypercapnic air hunger test has not previously been used to 

experimentally induce dyspnoea in patients.  The AH test was difficult to deliver in 
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this patient population, with many results having to be excluded due to not 

reaching the requirements of a reliable test.  The criteria for unreliable data was 1) 

scoring ‘extreme’ on the visual analogue scale (VAS) scale whilst trying to achieve a 

steady state, 2) targeted ETCO2 levels differing by >1mmHg between the last 

minute of pre- and post-nebuliser tests and 3) targeted ETCO2 fluctuating by more 

than 2.5mmHg during the steady state.   

In addition to the above, on-going studies in our lab show that high numbers of 

patients with heart failure exhibit hyperventilation at rest (hypocapnia).  This has 

been previously noted in the literature81, 322 with high pulmonary pressures being 

the proposed mechanism as discussed in Chapter 5319.  Another notable finding in 

patients with heart failure is oscillatory breathing.  This is thought to arise from 

enhanced carotid body chemoreflex sensitivity with surges of sympathetic nerve 

activity and hyperventilation causing disruption to the respiratory control system.  

The brainstem integrates the peripheral afferents and controls the respiratory and 

sympathetic nerve activity352.  This in turn activates the sympathetic nervous 

system via respiratory-sympathetic coupling which leads to a reduction in the vagal 

efferent signals to the heart and increased sympathetic activity.  This causes a 

worsening of cardiac function.  The kidneys are also susceptible to the increase in 

sympathetic nerve activity via the carotid body reflex, resulting in reduced renal 

perfusion and activation of the renin-angiotensin-aldosterone system, with a 

decline in renal function.  The carotid body mediated respiratory sympathetic 

coupling effect on the heart and kidneys is known as  cardiorenal syndrome353.    

The hyperventilation makes the air hunger test challenging to control, particularly 

when trying to match pre- and post- mist conditions.  This suggests that the air 
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hunger test needs to be modified if it is to be used in future clinical trials to try to 

achieve the a more reliable data set.  This could be achieved for example, by 

including the use of a ramp protocol before and after the mist, rather than aiming 

for a 'steady state'. 

The utility of various rating scales of dyspnoea were tested in this thesis.  Whilst the 

D12 has been translated into many different languages, validated and compared 

with other tools, it has not previously been employed in a randomised controlled 

trial.  The data showed good concurrent validity with the other dyspnoea 

measurements used in this study.  The D12 was able to detect the greatest change 

in exertional dyspnoea with nebulised furosemide, although this was below the 

minimally important clinical difference (MCID)354 so is a change that may not be 

appreciated by the patient.   

As expected, cardiac biomarkers increased acutely after exercise in this study with a 

small intra-individual and wide inter-individual biological variation of high sensitivity 

troponin I (hsTnI) and brain naturietic peptide (BNP).  They returned to baseline 

within 60 minutes.  This was irrespective of exercise type (cardiopulmonary exercise 

test-CPET or 6minute walk test-6MWT) and there was no correlation between 

exertional dyspnoea ratings and cardiac biomarker response to exercise.  

Analysis of furosemide detected in blood samples from 40mg nebulised furosemide 

showed variability in the amount absorbed from the lungs, with a maximal 

absorption efficiency of 2%.  This thesis showed an association between the 

systemic absorption of furosemide and the BNP response to exercise.  The reasons 

for this are unclear and this interesting finding requires further study to elicit the 
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reasons for this.  In another recent study185 furosemide absorption from an inhaled 

dose noted that there was an inverse correlation between the amount of 

furosemide absorbed and the dyspnoea relief.  This might imply the longer the 

furosemide remains in contact with the pulmonary stretch receptors the greater 

the dyspnoea relief.   

CPET and 6MWT were both found to be valid methods of inducing dyspnoea.  

Preliminary analysis did not show any significant improvement in the distance 

walked or the work rate achieved with nebulised furosemide.  All patients were 

able to perform CPET despite being in the advanced stages of heart failure, 

however CPET is more time consuming and resource heavy with significant 

technical skill required for interpretation.  Therefore, on balance, 6MWT is 

preferable in this patient population as it is simple, inexpensive and all patients 

were able to perform the test.   

7.4. CONCLUDING REMARKS 

The healthy volunteer study in this thesis provides the most convincing evidence of 

a treatment effect of nebulised furosemide for dyspnoea relief to date, and 

supports the theory that it acts via the manipulation of pulmonary stretch 

receptors.  Furthermore, the doubling of dyspnoea relief with the second dose 

might inform future dosing regimens should nebulised furosemide enter clinical 

practice.  Due to the nature of the condition, it was reasonable to expect that 

advanced heart failure patients would show a pronounced dyspnoea relief with 

nebulised furosemide.  The preliminary study reported in this thesis was not able to 

support this belief.  The low ETCO2 (hyperventilation) seen in some of the patients 
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may have amplified the ‘work/effort’ component of their dyspnoea which, as 

shown by the healthy volunteer study, is not relieved by nebulised furosemide.  

While this study in heart failure provides useful data for the design of future clinical 

trials with nebulised furosemide this was a pilot study and the trial was 

insufficiently powered to generate concrete conclusions regarding the treatment 

effect of nebulised furosemide for dyspnoea relief.  The survey of patients with 

heart failure within the community showed a high prevalence of low levels of 

dyspnoea at rest.  Despite the excellent safety record of nebulised furosemide, the 

minimal side effects, broad beneficial local effects within the lungs and the 

scientific plausibility in its mechanism of action; there remains considerable doubt 

about its clinical utility. The thesis sends a strong signal that if nebulised furosemide 

is harnessed correctly it could form a viable option for dyspnoea relief in a specific 

cohort of patients.  Future research within this field is therefore warranted.   A 

further study that is powered to assess the effects on nebulised furosemide on 

dyspnoea relief in patients with heart failure is currently on-going.  The addition 

knowledge gained in this thesis has been used to inform and simplify this current 

study.  This includes the use of the VAS to assess dyspnoea, and not the MBS.  

Additionally, no specific breathing pattern during nebulisation is required.  This 

current study will be published in a peer-review journal.   
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