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We present a numerically exact method to compute the full counting statistics of heat transfer in
non-Markovian open quantum systems, which is based on the time-evolving matrix product operator
algorithm. This approach is applied to the paradigmatic spin-boson model in order to calculate the mean
and fluctuations of the heat transferred to the environment during thermal equilibration. We show that
system-reservoir correlations make a significant contribution to the heat statistics at low temperature and
present a variational theory that quantitatively explains our numerical results. We also demonstrate a
fluctuation-dissipation relation connecting the mean and variance of the heat distribution at high tem-
perature. Our results reveal that system-bath interactions make a significant contribution to heat transfer
even when the dynamics of the open system is effectively Markovian. The method presented here pro-
vides a flexible and general tool to predict the fluctuations of heat transfer in open quantum systems in
nonperturbative regimes.
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I. INTRODUCTION

The importance of heat management at the nanoscale
has grown in tandem with advances in the fabrication and
control of small devices, motivating increasing interest
in the nonequilibrium thermodynamics of open quantum
systems [1–4]. For example, quantum thermal machines
have been studied in such diverse experimental plat-
forms as single-electron transistors [5–7], trapped ions
[8–10], superconducting circuits [11], and spin ensembles
[12,13]. Numerous technologically or biologically impor-
tant systems are also naturally described as quantum heat
engines, including lasers [14], light-emitting diodes [15],
and light-harvesting complexes [16–19]. These minuscule
machines all operate far from equilibrium and are sig-
nificantly affected by quantum and thermal noise. Strong
coupling may blur the boundary between system and envi-
ronment [20,21], potentially leading to non-Markovian
effects [22,23] with interesting thermodynamic conse-
quences [24–28]. In addition, the importance of fluctua-
tions at small scales means that the statistical character of
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thermodynamic quantities such as work and heat cannot be
ignored [29,30]. These features together give rise to a rich
and varied phenomenology with important ramifications
for emerging quantum technologies.

A crucial limiting factor for the performance of quantum
devices is the transfer of heat to and from their surround-
ings. A detailed understanding of heat transfer is therefore
essential to optimize control protocols while minimizing
wasteful dissipation [31–33]. More generally, heat flux is a
fundamental source of irreversibility and entropy produc-
tion in open quantum systems [34,35]. Entropy production
limits the efficiency of heat engines and refrigerators [36],
determines the energy cost of information erasure [37] and
feedback control [38], constrains current fluctuations far
from equilibrium [39–43], and can be directly measured
in well-controlled quantum settings [44–46]. However,
modeling heat transfer in strongly coupled systems is a
difficult theoretical problem because it requires access to
the energetics of the bath. On the contrary, the major-
ity of techniques for describing open quantum systems
either neglect the environment’s dynamics completely or
treat it via an effective or approximate description [47].
An accurate, tractable method to predict the fluctuations
of heat transfer in generic open quantum systems is still
lacking.

Here, we fill this gap by developing an efficient
numerical method to compute heat statistics using
the path-integral formulation of dissipative quantum
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mechanics [48]. Previous research has shown that the
probability distributions of heat and work can be for-
mally derived within this framework [49–51]. However, a
direct evaluation of the corresponding path integral is only
possible for a few exactly solvable models, while numer-
ical approaches based on the quasiadiabatic path-integral
(QUAPI) method [52,53] require careful fine tuning to
avoid error accumulation [54,55]. We solve this problem
by generalizing the time-evolving matrix product opera-
tor (TEMPO) algorithm [56] to calculate the character-
istic function of energy changes in the bath, equivalent
to the Fourier transform of the heat probability distribu-
tion. This algorithm exploits a tensor-network represen-
tation of the QUAPI propagator to describe complicated
non-Markovian evolutions efficiently [57]. As a result,
we obtain a flexible and accurate tool to describe fluc-
tuating heat transfer in generic, strongly coupled open
quantum systems, which can be extended to deal with
time-dependent Hamiltonians [58] or multiple baths [55].

The canonical open quantum system comprises a small,
few-state system coupled to a bosonic bath. This general
setting is known to be amenable to efficient tensor-network
descriptions [59,60]. For the sake of concreteness, in this
work we focus on the paradigmatic spin-boson model,
which describes quantum dots [61], ultracold atomic impu-
rities [62], and superconducting circuits [63], to name
just a few examples. We demonstrate our approach by
applying it to the nonequilibrium quantum thermodynam-
ics of this important model. We first verify the accuracy
of our method by comparison with the exact solution in
the limit of the independent-boson model. Then we com-
pute the time-dependent heat transfer and its fluctuations
across a range of parameters in the unbiased spin-boson
model, including the challenging low-temperature and
strong-coupling regimes. We interpret our results using
the notion of generalized equilibration in strong-coupling
thermodynamics [21], and develop analytical models that
quantitatively explain the mean heat exchange in the high-
temperature and low-temperature limits. We also show
numerically that the heat distribution obeys a fluctuation-
dissipation relation (FDR) in the high-temperature limit,
which is similar to the well-known FDR of the work distri-
bution [64]. Interestingly, our results show that the system-
bath interaction energy makes a considerable contribution
to the heat statistics, even in the weak-coupling and high-
temperature regime where a Markovian description of the
system dynamics alone is accurate. This underlines the
need to interpret with great care the standard Markovian
description of quantum thermodynamics [65], which is
based on properties of the open system alone.

A brief outline of the paper is as follows. In the next
section, we introduce the spin-boson model and define
the thermodynamic quantities of interest. Details of our
numerical method are provided in Sec. III. We then
present results for the independent-boson and spin-boson

models in Sec. IV, before concluding in Sec. V. Units
where � = 1 = kB are used throughout.

II. PRELIMINARIES

A. Quantum thermodynamics of relaxation processes

We are interested in the nonequilibrium thermodynam-
ics of an open quantum system coupled to a large heat
bath. The Hamiltonian of such a system can be written
generically as

Ĥ = Ĥ S + Ĥ B + Ĥ I , (1)

where Ĥ S is the free Hamiltonian of the quantum system,
Ĥ B is the free Hamiltonian of the environment, and Ĥ I
is the Hamiltonian that describes the interaction between
these two components. Following the standard approach
[66], the bath is modeled by an infinite collection of
harmonic oscillators coupled linearly to the system, so that

Ĥ B =
∑

j

ωj â†
j âj , (2)

Ĥ I = Ŝ ⊗
∑

j

gj (âj + â†
j ). (3)

Here, âj is the annihilation operator for mode j of the bath,
ωj is the corresponding mode frequency, gj is a coupling
constant, and Ŝ is an arbitrary system operator. The bath is
characterized by its spectral density function [52]

J (ω) =
∑

j

g2
j δ(ω − ωj ). (4)

Nonequilibrium processes at the nanoscale feature sig-
nificant and measurable fluctuations. Therefore, thermo-
dynamic process variables such as work, W, and heat, Q,
must be promoted to stochastic quantities described by the
corresponding probability distributions, P(W) and P(Q).
Thermodynamic work is associated with changes in the
external conditions defining the Hamiltonian, while heat
is defined here to be the change in energy of the bath.
Operationally, each of these quantities can be extracted
from a two-point measurement of Ĥ (work) or Ĥ B (heat) at
the beginning and end of the evolution, either with direct
projective measurements [67] or via ancillary probes [68–
71]. Therefore, under strong-coupling conditions where
the commutator [Ĥ B, Ĥ I ] is non-negligible, work and heat
are simultaneously measurable only if the system-bath
interaction vanishes at the beginning and end of the evo-
lution [21]. This is the relevant scenario for cyclic thermal
machines, for example, and also the one that we assume
here.
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Following the above reasoning, we consider the relax-
ation dynamics starting from a product state

ρ̂(0) = ρ̂S(0)⊗ ρ̂B(0), (5)

where ρ̂S(t) = TrB[ρ̂(t)] is the reduced state of the open
quantum system and ρ̂B(t) is the state of the bath with
a thermal initial condition ρ̂B(0) = e−βĤB/Tr[e−βĤB] at
inverse temperature β = 1/T. The system evolves in time
according to ρ̂(t) = Û(t)ρ̂(0)Û†(t), where Û(t) = e−iĤ t

is the time evolution operator. The energy and entropy
change of the system are respectively given by

�U = 〈Ĥ S〉t − 〈Ĥ S〉0, (6)

�S = S[ρ̂S(t)]− S[ρ̂S(0)], (7)

where we denote time-dependent expectation values by
〈•〉t ≡ Tr[•ρ̂(t)] and S[ρ̂] = −Tr[ρ̂ ln ρ̂] is the von Neu-
mann entropy of the state ρ̂. Note that, unless the initial and
final states of the system are in thermal equilibrium, nei-
ther �U nor �S as defined above necessarily correspond
to variations of thermodynamic potentials.

Since the Hamiltonian is time independent during the
relaxation process, all energy transferred during the evo-
lution is in the form of heat exchanged with the bath. The
mean heat absorbed by the bath is given by

〈Q〉 = 〈Ĥ B〉t − 〈Ĥ B〉0. (8)

The first law of thermodynamics states that

〈Q〉 = 〈W〉 −�U, (9)

where 〈W〉 is the average work performed on the entire
system by switching the system-bath interaction on and
off at the endpoints of the evolution. Assuming that this
switching is instantaneous, we have 〈W〉 = −〈Ĥ I 〉t (i.e.,
〈Ĥ I 〉t is the mean interaction energy just before it is
switched off), which follows from energy conservation,
〈Ĥ 〉t = 〈Ĥ 〉0, and the fact that 〈Ĥ I 〉0 = 0 for an interaction
of the form of Eq. (39). The average heat dissipated into the
bath therefore comprises two contributions: the change in
the system’s internal energy and the system-bath interac-
tion energy developed throughout the relaxation process.
This dissipation is associated with an average entropy
production

〈�〉 = �S + β〈Q〉, (10)

which obeys 〈�〉 ≥ 0 in accordance with the second law
[34,35], where equality holds for reversible processes.

B. Heat statistics

By definition, the heat transfer is the energy change that
would be registered by projective energy measurements
on the bath at the beginning and end of the process. We
denote by �̂n = |En〉〈En| the projector onto the eigenstate
|En〉 of Ĥ B with eigenvalue En. The heat distribution is then
defined by

P(Q) =
∑

m,n

pnpn→mδ(Q+ En − Em), (11)

where pn = Tr[(1⊗ �̂n)ρ̂(0)] is the probability of mea-
suring initial energy En, and pn→m = Tr{�̂mÛ(t)[ρ̂S(0)⊗
�̂n]Û†(t)} is the conditional probability for the transi-
tion En → Em [49]. The fluctuating heat exchange can be
characterized by the statistical moments

〈Qn〉 =
∫ ∞

−∞
dQ P(Q)Qn

= (−i)n
dn

dunχ(u)
∣∣∣∣
u=0

. (12)

Here, we have introduced the characteristic function

χ(u) =
∫ ∞

−∞
dQ P(Q)eiuQ, (13)

where u is the counting field parameter. Using Eq. (11),
one easily obtains [29]

χ(u) = Tr[eiuĤBÛ(t)e−iuĤB ρ̂(0)Û†(t)]. (14)

It is convenient to define a modified time evolution opera-
tor as

V̂u(t) = eiĤBu/2Û(t)e−iĤBu/2. (15)

This allows us to rewrite Eq. (14) as χ(u) = Tr[ρ̂(t, u)],
with the modified density matrix

ρ̂(t, u) = V̂u(t)ρ̂(0)V̂
†
−u(t). (16)

Defining ρ̂S(t, u) = TrB[ρ̂(t, u)] as the reduced modified
system density matrix, we have

χ(u) = TrS[ρ̂S(t, u)]. (17)

The form in Eq. (17) facilitates the calculation of the heat
statistics by means of path-integral techniques.
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III. PATH-INTEGRAL METHODS

A. Influence functional for the modified density matrix

The dynamics of the modified reduced density matrix
ρ̂S(t, u) can be formulated as a path integral [48], in which
the effects of the environment on the open quantum system
are captured by an influence functional that is nonlo-
cal in time. This Feynman-Vernon influence functional
is well suited to numerically discretized approaches such
as QUAPI [52,53], upon which the TEMPO algorithm is
built [56]. Here we describe how to obtain the influence
functional modified by the counting field u.

To derive a discretized path integral for the modified
density matrix, ρ̂S(t, u) = TrB[V̂u(t)ρ̂(0)V̂

†
−u(t)], we divide

the time interval of interest t into N intervals of equal
length �, as t = N�. Then the total time evolution oper-
ator can be expressed as V̂u(t) = (e−iĤu�)N , with Ĥ u =
eiĤBu/2Ĥe−iĤBu/2 the Hamiltonian dressed by the counting
field. The environmental degrees of freedom are separated
from those of the system by defining the Hamiltonian
Ĥ env

u = Ĥ u − Ĥ S. The evolution operator over each time
interval is then approximated by the symmetric Trotter
splitting

e−iĤu� = e−iĤS�/2e−iĤenv
u �e−iĤS�/2 +O(�3). (18)

The path integral for ρ̂S(t, u) is constructed by inserting
resolutions of the identity in the eigenbasis of the system
coordinate Ŝ at each time step and then tracing over the
bath. We use the notation

∣∣s±k
〉

for the eigenstates of Ŝ,
where the index k indicates the time tk = k� and the super-
script + (−) is used to label eigenvectors inserted on the
left (right) of the density matrix. Given our product initial
condition in Eq. (5), we find that

〈s+N |ρ̂S(t, u)|s−N 〉 =
∑

s±0 ,s±1 ,...,s±N−1

F({s±k })I({s±k }, u)

× 〈
s+0

∣∣ρ̂ ′S(0)
∣∣s−0

〉
. (19)

Here, ρ̂ ′S(0) = e−iĤS�/2ρ̂S(0)eiĤS�/2 is a modified initial
condition, F({s±k }) =

∏N
k=1 G(s±k , s±k−1) is a product of free

propagators for the system, with

G(s±k , s±k−1) =
〈
s+k

∣∣e−iĤS�k
∣∣s+k−1

〉〈
s−k−1

∣∣eiĤS�k
∣∣s−k

〉
, (20)

where �k = � for k < N and �N = �/2, while the mod-
ified influence functional is

I({s±k }, u) = TrB

[ N∏

k=1

e−iĤenv
u (s+N−k)�ρ̂B(0)

N−1∏

k′=0

eiĤenv−u (s
−
k′ )�

]
.

(21)

Above, we have defined Ĥ env
u (s) = 〈s|Ĥ env

u |s〉 as the envi-
ronment Hamiltonian conditioned on a particular eigen-
value s of the system coordinate.

To evaluate the influence functional explicitly for the
spin-boson model, we introduce a compact superoperator
notation [51,54]. Let us move to an interaction picture with
respect to the free Hamiltonian Ĥ 0 = Ĥ S + Ĥ B by writing
ρ̃(t, u) = eiĤ0tρ̂(t, u)e−iĤ0t. From Eq. (16), we derive the
differential equation (d/dt)ρ̃(t, u) = LI (t, u)ρ̃(t, u), where
the Liouvillian superoperator is defined by

iLI (t, u) • =H̃I (t, u) • − • H̃I (t,−u) (22)

with H̃I (t, u) = eiĤBu/2H̃I (t)e−iĤBu/2 and H̃I (t) = eiĤ0tĤ I

e−iĤ0t. The solution for the modified reduced density
matrix is

ρ̃S(t, u) = I(t, u)ρ̂S(0), (23)

where the influence superoperator is given by

I(t, u) =
〈←−

T exp
[ ∫ t

0
dt′LI (t′, u)

]〉

B
, (24)

and we introduced the time-ordering symbol
←−
T , which

reorders superoperators such that time increases from
right to left, and the reservoir average, for any
superoperator X ,

〈X 〉B ≡ TrB[X ρ̂B(0)]. (25)

Since the interaction Hamiltonian Ĥ I is linear and the
reservoir thermal state is Gaussian, we may express Eq.
(24) exactly using a time-ordered cumulant expansion up
to second order [72]:

I(t, u) =←−T exp
[ ∫ t

0
dt′

∫ t′

0
dt′′〈LI (t′, u)LI (t′′, u)〉B

]
.

(26)

The exponent is evaluated using well-known properties of
bosonic thermal states; see Appendix A for details. The
result is expressed in terms of three correlation functions:

ηC(t, u) =
∫ ∞

0
dω

J (ω)
2ω2 sin(uω)

[
coth

(
ω

2T

)
[sin(ωt)− ωt]

− i[1− cos(ωt)]
]

, (27)

ηA1(t, u) =
∫ ∞

0
dω

J (ω)
ω2 cos2

(
uω
2

)[
coth

(
ω

2T

)

[1− cos(ωt)]+ i[sin(ωt)− ωt]
]

, (28)
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ηA2(t, u) =
∫ ∞

0
dω

J (ω)
ω2 sin2

(
uω
2

)

×
[
coth

(
ω

2T

)
[1− cos(ωt)]+i[sin(ωt)−ωt]

]
.

(29)

Here J (ω) is the spectral density function of the bath
defined in Eq. (4). Following Ref. [54], we recover the
path-integral representation from Eq. (23) by simply dis-
cretizing time into N intervals and inserting resolutions
of the identity at each time step, 1̂ =∑

s±k

∣∣s±k
〉〈

s±k
∣∣, as

in Eq. (19). In the interaction picture, the free propaga-
tors F({s±k }) do not appear and we obtain the influence
functional in the form

I({s±k }, u) =
N∏

k=0

k∏

k′=0

I�k(s±k , s±k′ , u), (30)

I�k(s±k , s±k′ , u) = exp
[
−

∑

q,q′=±
sq

kη
qq′
k−k′(u)s

q′
k′

]
. (31)

Here,�k = k − k′ and ηqq′
k−k′(u) are the discretized correla-

tion functions

η++k−k′(u) = ηA1
k−k′(u)+ ηA2

k−k′(u) = [η−−k−k′(u)]
∗, (32)

η−+k−k′(u) = ηA2
k−k′(u)− ηA1

k−k′(u)+ 2ηCk−k′(u), (33)

η+−k−k′(u) = [ηA2
k−k′(u)− ηA1

k−k′(u)− 2ηCk−k′(u)]
∗, (34)

where ηαk−k′(u) = ηα(tk − tk′ , u) for α = C,A1,A2. Our
expression for I({s±k }, u) matches that recently derived in
Ref. [55] and it is straightforward to verify that, for u = 0,
it reduces to the original influence functional described in
Ref. [52].

The form of Eq. (30) emphasizes that the environment
introduces memory into the evolution by coupling the
system coordinate to itself at different times. Crucially,
however, the correlation functions ηα(t, u) decay to zero
for sufficiently large t and therefore the memory time of
the environment is finite. This insight forms the basis of
the TEMPO algorithm described in the following section.

B. TEMPO algorithm

TEMPO [56] is an efficient algorithm to compute path
sums of the form of Eq. (19), given an influence functional
of the form of Eq. (30). The standard TEMPO algorithm
can be applied directly to our problem, with the only
novelty being that here the influence functional is parame-
terized by the counting field u. We therefore provide only

a brief summary of TEMPO here, directing the interested
reader to Ref. [56] for a detailed description.

The key assumption of both the QUAPI and TEMPO
methods is that the nonlocal time correlations encoded in
the influence functional have a finite range, i.e., ηα(t, u) ≈
0 for t > τC, where τC is the bath memory time. Therefore,
in the discretized form of the modified influence func-
tional (30) one can introduce a maximum value of |k − k′|
beyond which the coefficients ηαk−k′(u) are negligible for
all u. As a result, we may approximate I�k(s±k , s±k′ , u) ≈ 1
for |k − k′| > K , where the memory depth K is chosen to
be at least K ≥ τC/�.

The assumption of finite memory depth allows for an
efficient description of the quantum dynamics through an
iterative tensor propagation scheme, which forms the basis
of QUAPI [52]. To see this, note that the summand in Eq.
(19) can be viewed as an (N + 1)-index object called the
augmented density tensor (ADT), denoted AσN ···σ1σ0 , where
each “superindex” σk = {s+k , s−k } takes four possible values
(there are d2 values in general, with d the dimension of sys-
tem S). The modified density matrix is found by summing
over all but the final index, i.e.,

〈
s+N

∣∣ρ̂S(t, u)
∣∣s−N

〉 =
∑

σ0,...,σN−1

AσN ···σ0 , (35)

where the remaining index σN = {s+N , s−N } is determined
by the values of s±N on the left-hand side. The ADT is
built iteratively starting from the initial condition Aσ0 =
I0(s±0 , u)

〈
s+0

∣∣ρ̂S(0)
∣∣s−0

〉
. Defining the propagator tensors

Bσn···σ0
μn−1···μ0

=
( n∏

k=1

δ
σn−k
μn−k

)
G(s±n , s±n−1)

×
n∏

�k=0

I�k(s±n , s±n−�k, u) (36)

with δσμ the Kronecker delta symbol, the ADT at the nth
time step is given by the contraction

Aσn···σ0 = Bσn···σ0
μn−1···μ0

Aμn−1···μ0 (37)

with the Einstein summation convention assumed. Because
of the finite memory depth K , propagator (36) acts
nontrivially on at most K indices of the ADT, since
I�k(s±n , s±n−�k) = 1 for�k > K . At the nth time step, there-
fore, when n > K , one needs only to store the object
Aσn···σn−K , with the remaining indices summed over. (For
the first K time steps, one stores the full ADT.)

The limiting factor for QUAPI is the computational
resources needed to store and perform contractions on
K-index tensors. The TEMPO approach circumvents this
limitation by representing the ADT and the propagators as
tensor networks, which can be stored efficiently using trun-
cated singular-value decompositions, enabling very large
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values of K to be reached. Comparing with previously
developed methods, which are able to perform at val-
ues up to K ∼ 10 [55], in the calculations we show in
this paper the TEMPO approach performs at a value of
K = 500. The tensor-network representation is efficient
due to the finite range of temporal correlations contained
in the ADT. This is analogous to the well-known abil-
ity of tensor networks to represent many-body quantum
states exhibiting short-ranged spatial correlations [73]. In
the present case, the bond dimension, i.e., the number of
singular values retained during the construction of the ten-
sor network, quantifies correlations between different time
points induced by the non-Markovian environment. The
bond dimension is controlled by retaining only those sin-
gular values λ greater than a cutoff λC. We define the cutoff
as λC = λmax10−p/10 with λmax the highest singular value.
The accuracy of the algorithm is therefore controlled by
the exponent p as well as the memory depth K and the
numerical time step �.

IV. SPIN-BOSON MODEL RESULTS

Although our method is general, in the following we
specialize to the spin-boson model describing a single spin
one-half interacting with a bosonic bath of harmonic oscil-
lators [66]. In this case, the terms in Eq. (1) take the
form

Ĥ S = ω0Ŝz +�Ŝx, (38)

Ĥ B =
∑

j

ωj â†
j âj , (39)

Ĥ I = Ŝz

∑

j

gj (âj + â†
j ). (40)

Above, Ŝz and Ŝx are the spin operators for the system. We
focus on an Ohmic spectral density function of the form

J (ω) = 2αωe−ω/ωC , (41)

where α is a dimensionless coupling constant and ωC is a
large cutoff frequency. In the following, we consider two
different limits of the spin-boson model: the independent-
boson model with � = 0, and the unbiased spin-boson
model with ω0 = 0 and � �= 0. The independent-boson
model is exactly solvable, allowing us to verify the accu-
racy of our numerical method. We then turn to the unbiased
spin-boson model, an archetypal example of a noninte-
grable open quantum system.

A. Independent-boson model

The independent-boson (IB) model is described by Eqs.
(38)–(40) with � = 0. The Hamiltonian can be diagonal-
ized by a polaron transformation, which takes the general

form

P̂ = exp
[

Ŝz

∑

j

fj
ωj
(âj − â†

j )

]
. (42)

This describes a spin-dependent displacement of each bath
oscillator by an amount proportional to fj . The choice fj =
gj diagonalizes the IB Hamiltonian as P̂†Ĥ P̂ = Ĥ 0 − 1

2 Er,
where Ĥ 0 = Ĥ S + Ĥ B is the free Hamiltonian and we have
defined the reorganization energy

Er = 1
2

∫ ∞

0
dω

J (ω)
ω
= αωC, (43)

which determines the shift in ground-state energy due to
the system-bath interaction.

In the IB model, [Ĥ , Ĥ S] = 0, meaning that the local
energy of the spin is conserved and �U = 0. Therefore,
the heat dissipated into the bath is associated purely with
the system-bath interaction, as discussed in Sec. II A. In
particular, we show in Appendix B that the heat charac-
teristic function is independent of the state of the spin and
given explicitly by

lnχ(u) = −1
2

∫ ∞

0
dω

J (ω)
ω2 [1− cos(ωt)]

×
{

[1− cos(ωu)] coth
(
ω

2T

)
− i sin(ωu)

}
.

(44)

Differentiation of this quantity yields closed-form expres-
sions for arbitrary cumulants of the heat distribution, given
in Appendix B. Specifically, the mean heat is found to be

〈Q〉 = 1
2

∫ ∞

0
dω

J (ω)
ω

[1− cos(ωt)], (45)

which is strictly positive and independent of temperature.
Interestingly, these properties are shared by all odd cumu-
lants of the heat distribution in the IB model. For an Ohmic
spectral density, we have 〈Q〉 = αω3

Ct2/(1+ ω2
Ct2), which

monotonically approaches the reorganization energy in the
long-time limit:

〈Q〉∞ = αωC = Er. (46)

For an Ohmic spectral density function, Eq. (45)
depends on only two parameters, the coupling strength and
the frequency cutoff. While ωC sets the timescale of the
heat transfer process, the mean exchanged heat scales lin-
early with α. At first glance, it is not obvious that for strong
coupling our method will be able to give the correct pre-
diction, as this regime is in general difficult to model. It
is therefore of interest to demonstrate the validity of the
numerical method for different values of α.

020338-6



QUANTUM HEAT STATISTICS WITH TIME-EVOLVING... PRX QUANTUM 2, 020338 (2021)

FIG. 1. Mean heat dissipated into the bath as a function of time
in the independent-boson model, as given by Eq. (45) (triangles)
and as calculated numerically (solid lines), for four different val-
ues of the coupling strength α. The spin splitting is ω0 = 1, the
temperature is T = 5, and the bath cutoff is ωC = 5. The param-
eters controlling the numerical accuracy are K� = 5, � = 0.01,
and p = 100, and the derivative is taken at u = 0.01.

The mean heat is plotted as a function of evolution time
for several different coupling strengths in Fig. 1. We use
these results to validate the numerical algorithm, whose
results are shown in the same plot. We find excellent
agreement between our simulations and the exact solution
for each value of α considered. A simple estimate of the
accuracy of our approach is obtained by comparing the
asymptotic heat values to the exact result in Eq. (46). For
the convergence parameters we have used, we find a rela-
tive discrepancy of δQ/Q = 0.04% in the case of α = 0.1,
which increases to δQ/Q = 0.67% in the case of α = 1.5.
These discrepancies could be further reduced by increasing
the accuracy of TEMPO through changing the conver-
gence parameters �, p , and K . For an in-depth discussion
on the accuracy of the mean heat calculations with respect
to the convergence parameters and value of the counting
field, see Appendix C.

To quantify the fluctuations of the exchanged heat, we
consider the variance 〈〈Q2〉〉 = 〈Q2〉 − 〈Q〉2, which is given
by

〈〈Q2〉〉 = 1
2

∫ ∞

0
dωJ (ω)[1− cos(ωt)] coth

(
βω

2

)
. (47)

Unlike the mean heat in Eq. (45), which is independent
of temperature, the variance in Eq. (47) depends on the
inverse temperature of the bath β. We show that our
method is accurate for both a lower and a comparable tem-
perature kBT with respect to the energy scale of the system
ω0. Figure 2 shows the variance as a function of time for
different values of the temperature and coupling strength.
The numerical predictions again match the analytical solu-
tions given by Eq. (47). Note that in order to get a better
match between the solutions for high coupling, α = 1.5,
the value of the counting field at which the numerical

T = 0.1, α = 0.1

T = 1, α = 0.1

T = 1, α = 1.5

FIG. 2. Variance of the heat dissipated into the bath as a func-
tion of time in the independent-boson model. The solid lines
are the second cumulant calculated numerically for the values
of the temperature and coupling strength indicated. The triangu-
lar markers are the corresponding analytical results given by Eq.
(B11), l = 1. The spin splitting is set to ω0 = 1 and the bath cut-
off is ωC = 5. The parameters controlling the numerical accuracy
are K� = 5, � = 0.01, and p = 100. The derivative is taken at
u = 0.01 for α = 0.1 and at u = 0.005 for α = 1.5.

derivative of χ(u) is taken has been set to u = 0.005, com-
pared to the value of u = 0.01 in the case of α = 0.1.
This suggests that high coupling strength cases require in
general more computational precision than low coupling
cases, although not higher precision in the singular-value
decomposition cutoff or time step. The relative discrepancy
in the asymptotic values between analytical and numer-
ical solutions for 〈〈Q2〉〉 in the case of T = 1 are found
to be δQ2/Q2 = 0.12% for α = 0.1 and δQ2/Q2 = 0.06%
for α = 1.5. In the case of T = 0.1, α = 0.1, the relative
discrepancy is δQ2/Q2 = 0.13%.

B. Unbiased spin-boson model

We now turn to the spin-boson model with � �= 0,
focusing on the unbiased case where ω0 = 0. In this
context, TEMPO has previously been used to pinpoint
the localization phase transition [56], which occurs when
T = 0 and at a critical value of the coupling α [74,75],
and to study non-Markovian dynamics induced by spatially
correlated environments [57]. Here we use it to inves-
tigate the nonequilibrium thermodynamics of relaxation
over a range of temperatures and coupling strengths. In
the following, we take � = 1, which defines our unit of
energy.

1. High temperature and weak coupling

We begin by studying the regime of weak coupling and
relatively high temperature, with α = 0.1 and T = 5. The
mean heat transfer is plotted in Fig. 3 as a function of
time, starting from a pure initial state, ρ̂S(0) = |�0〉〈�0|.
Specifically, we consider three different initial conditions:
|�0〉 ∈ {|←〉, |→〉, |↑〉}, where Ŝx|→〉 = 1

2 |→〉, Ŝx|←〉 =
− 1

2 |←〉, and Ŝz|↑〉 = 1
2 |↑〉. We also consider two values
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FIG. 3. Heat transfer for the spin-boson model in the high-
temperature weak-coupling regime, with bath cutoff ωC = 5
(top) and ωC = 50 (bottom). Solid lines represent numerical
results for the mean heat 〈Q〉(t) transferred to the bath as a func-
tion of time for three different initial states of the system. Dashed
lines represent the asymptotic approximation for 〈Q〉∞ given
by Eq. (49). The environment parameters are set to T = 5 and
α = 0.1. The parameters controlling the numerical accuracy are
K� = 5, � = 0.01, and p = 100, and the derivative is taken at
u = 0.01 for ωC = 5 and u = 0.001 for ωC = 50.

of the cutoff, ωC = 5 and ωC = 50. Inspection of these
results suggests that the heat transfer, 〈Q〉, is a sum of two
contributions. The first contribution is the heat transferred
directly from the system as it relaxes to a thermal state
ρ̂

eq
S ∝ e−βĤS . The corresponding change in internal energy

will be

�U∞ = −�2 tanh
(
β�

2

)
− 〈Ĥ S〉0. (48)

The second contribution to the mean heat transfer is asso-
ciated with switching on the system-bath interaction, and is
equivalent to the work done in a cyclic process as discussed
in Sec. II A. If we assume that this contribution is the reor-
ganization energy, as in the independent-boson model, we
expect

〈Q〉∞ = Er + �2 tanh
(
β�

2

)
+ 〈Ĥ S〉0. (49)

This approximation shows near-perfect agreement with the
long-time limit of the numerical results, as demonstrated

by the dashed lines in Fig. 3. Note that Eq. (48) is inde-
pendent of the details of the bath spectral density (i.e., α
and ωc), while Er does not depend in any way on the spin
degrees of freedom. This indicates that, at high temperature
and weak coupling, the displacement of the bath modes
is not affected by the thermalization of the spin. Instead,
these two processes give rise to independent and additive
contributions to the mean heat transfer.

These distinct modes of heat transfer take place on dif-
ferent time scales. This is illustrated by the blue lines in
both the ωC = 5 and ωC = 50 case of Fig. 3, correspond-
ing to the low-energy initial state |�0〉 = |←〉. First, heat
is transferred to the environment as the system-bath inter-
action forces the bath modes to rapidly adjust to their new
equilibrium. This takes place over a time set by the inverse
cutoff,ω−1

C ≈ 0.2 forωC = 5 andω−1
C ≈ 0.02 forωC = 50.

Then, the direction of heat flow reverses as the bath gives
up energy in order to bring the spin to thermal equilibrium,
which occurs on a slower timescale fixed by the inverse
of the thermalization rate, which can be estimated as γ ≈
(π/4)J (�) coth(β�/2) from standard weak-coupling the-
ories, e.g., the secular Born-Markov master equation [76],
giving γ−1 ≈ 0.8 forωC = 5 and γ−1 ≈ 0.65 forωC = 50.
A comparison between the two different values of ωC in
Fig. 3 shows how a larger frequency cutoff determines a
shorter timescale for the heat transfer process for fixed T
and α. (The reorganization energy Er is 10 times larger in
the ωC = 50 case, so that the energy due to the displace-
ment of the bath modes dominates over that due to the spin
thermalization.)

It is worth emphasizing that the system-bath interaction
energy gives a significant contribution to the heat transfer,
even though the system dynamics is very well captured by
a Markovian, weak-coupling description. Indeed, for the
parameters considered in Fig. 3 and ωC = 5, the reorga-
nization energy is comparable to the natural energy scale
of the spin, since Er = �/2. Nevertheless, Fig. 4 shows
that in this regime the calculated spin dynamics (solid
curves) matches the corresponding Born-Markov and
weak-coupling approximated problem (dash-dot curves),
within the limits of such an approximation, the coupling
strength being set to α = 0.1. The discrepancy shown in
Fig. 4 is � 10%.

2. Lower temperature and stronger coupling

We now consider the heat transfer at intermediate and
low temperatures. In Fig. 5 we show the mean heat transfer
for temperatures T = 1 and T = 0.1, starting from the state
|�0〉 = |↑〉. We see the same monotonic relaxation behav-
ior as observed at high temperature (cf. the orange curve in
Fig. 3), albeit proceeding on a slower timescale as the tem-
perature is reduced. Outside of the high-temperature limit,
the asymptotic value of 〈Q〉 can no longer be well approx-
imated by Eq. (49), shown by the dashed lines in Fig. 5.
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FIG. 4. Expectation value 〈Ŝx〉(t) for the spin-boson model at
weak coupling and high temperature for three different initial
states of the system. The figure shows a comparison between
the numerical results (solid lines) and the results obtained in the
Born-Markov and weak-coupling approximation with the same
parameters (dash-dot lines of the same color as the correspond-
ing initial states). The environment parameters are set to T = 5,
α = 0.1, and ωC = 5. The parameters controlling the numerical
accuracy are K� = 5, � = 0.01, and p = 100.

We find that the spin’s internal energy change and the total
heat transfer are smaller in magnitude than Eqs. (48) and
(49) predict, as Figs. 5 and 6 both show. This demonstrates
that the tendency of the spin to minimize its local free
energy defined by Ĥ S competes with the displacing effect
of Ĥ I on the bath modes. As a consequence of this inter-
play, both�U and 〈W〉 depend nontrivially on system-bath
correlations generated during the relaxation process.

The effect of the correlations with the bath is indeed
to decrease the magnitude of �U with respect to the

T = 0.1, α = 0.1

T = 1, α = 0.1

T = 1, α = 1.5

FIG. 5. Mean heat 〈Q〉(t) exchanged by the bath for the spin-
boson model in weak coupling at temperatures T = 1 (solid line)
and T = 0.1 (dash-dot line), as a function of time, for an ini-
tial state of the system set to | ↑〉. Dashed lines represent the
sum of the energy change in the system and the reorganization
energy of the bath for the corresponding temperatures and cou-
pling strengths. Inset: same plot for temperature T = 1 and strong
coupling. The parameters controlling the numerical accuracy are
K� = 5, � = 0.01, and p = 100, and the derivative is taken at
u = 0.01. For all the plots, ωC = 5.

T = 1, α = 1.5

T = 0.1, α = 0.1

T = 1, α = 0.1
( )

( )

FIG. 6. Variation of internal energy of the system �U(t) as a
function of time for temperature T = 1, where the solid blue line
is for α = 1.5 and the solid orange line is for α = 0.1, and tem-
perature T = 0.1, where the dash-dot line is for α = 0.1. Dashed
lines represent the total internal energy change of the system in
the Markovian regime, −(�/2) tanh(�/2T), for T = 1 (dashed
orange line) and T = 0.1 (dashed magenta line). The parameters
controlling the numerical accuracy are K� = 5, � = 0.01 and
p = 100. For all the plots, ωC = 5.

value −(�/2) tanh(�/2T) predicted by Eq. (48), and rep-
resented in Fig. 6 by the dashed lines. Such discrepancy is
starkly greater for stronger coupling.

In order to understand this, we note that at strong
system-bath coupling the equilibrium state must be gen-
eralized to [21]

ρ̂
eq
S =

TrB[e−βĤ ]

Tr[e−βĤ ]
, (50)

i.e., the reduction of a global thermal state. This takes
into account correlations with the bath and reduces to the
standard form ρ̂

eq
S ∝ e−βĤS in the weak-coupling limit.

Assuming that the open quantum system couples to the
bath locally in space, the interaction Hamiltonian is a local
degree of freedom that is also expected to thermalize, in
the sense that

〈Ĥ I 〉∞ = Tr[Ĥ I e−βĤ ]

Tr[e−βĤ ]
. (51)

We emphasize that these thermalization conditions hold
only for local subsystems: they do not imply that the sys-
tem as a whole attains thermal equilibrium in the long-time
limit.

We estimate the effect of system-bath correlations on
heat transfer using the variational approach pioneered
by Silbey and Harris [77], which has been successfully
applied to understand various static and dynamic proper-
ties of the spin-boson model [78–80]. The method is briefly
summarized here with further details given in Appendix D.
The basic idea is to express the Hamiltonian in a different
basis by applying a unitary transformation that mixes the
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system and bath degrees of freedom. A judicious choice of
transformation—determined in this case by a variational
principle—leads to a weak effective interaction term Ĥ ′I in
the new basis, even though the bare interaction Ĥ I may be
strong.

Specifically, the Hamiltonian is diagonalized approxi-
mately using the polaron transformation in Eq. (42), with
the displacements {fj } interpreted as variational parame-
ters. After the transformation, the Hamiltonian is written as
P̂†Ĥ P̂ = Ĥ ′0 + Ĥ ′I ≈ Ĥ ′0. Here, Ĥ ′0 is the free Hamiltonian
in the variational frame, which is given up to a constant by

Ĥ ′0 = �′Ŝx +
∑

j

ωj â†
j âj , (52)

where �′ is a renormalized tunneling matrix element to
be defined below. The neglected interaction term, Ĥ ′I ,
describes residual transitions between dressed states of the
system and environment and is proportional to the spin tun-
neling amplitude �. The effect of Ĥ ′I is made as small as
possible by choosing the variational parameters to mini-
mize the Feynman-Bogoliubov upper bound on the free
energy; see Appendix D for details. This is achieved by
taking fj = gjφ(ωj ) with

φ(ω) =
[

1+ �
′

ω
tanh

(
β�′

2

)
coth

(
βω

2

)]−1

, (53)

�′ = � exp
[
− 1

2

∫ ∞

0
dω

J (ω)
ω2 φ2(ω) coth

(
βω

2

)]
,

(54)

which must be solved self-consistently for �′. The heat
transfer is then found by approximating e−βĤ ≈ P̂e−βĤ ′0 P̂†

in Eqs. (50) and (51), yielding

〈Q〉∞ = E′r +
�′

2
tanh

(
β�′

2

)
+ 〈Ĥ S〉0. (55)

This has the same form as Eq. (49) but with both the
tunneling matrix element �′ and reorganization energy
E′r = 1

2

∫
dωJ (ω)φ(ω)/ω renormalized.

The variational theory predicts that both the spin tun-
neling matrix element and the reorganization energy are
reduced relative to their bare values, since �′/� ≤ 1 and
φ(ωj ) ≤ 1. Physically, this occurs because the tunneling
between spin states |↑〉 ↔ |↓〉 induced by Ĥ S is sup-
pressed by the spin-dependent mode displacements gener-
ated by Ĥ I , which reduce the effective overlap between the
two spin states. The equilibrium state emerges from a bal-
ance of these two competing effects, which explains why
both �U and 〈Q〉 are reduced at low temperature relative
to Eqs. (48) and (49).

Variational
Additive

FIG. 7. Long-time limit of the heat transfer for the spin-boson
model as a function of coupling strength, calculated using the
path integral (circles), the additive theory (dash-dot line), and the
variational method (solid line) for T = 0.1.

We show in Fig. 7 that the variational theory gives a
good quantitative approximation to the mean heat trans-
fer at low temperature, T = 0.1, with the best agreement
at weak coupling. At higher temperatures of the order of
T = 1 and above, we find that the approximation breaks
down completely because the renormalization of the tun-
neling amplitude is overestimated, leading to values �′ �
�. This failure is presumably due to the neglect of ther-
mally activated transitions generated by Ĥ ′I , which become
relevant at temperatures β�′ � 1. On the other hand,
Fig. 7 shows that the additive ansatz given by Eq. (49)
performs worse than the variational theory across all the
coupling range.

At very strong coupling, the variational theory performs
well at all temperatures. In this regime, strong correla-
tions with the bath lead to an almost maximally mixed
equilibrium state of the spin, corresponding to a vanishing
tunneling rate in the variational frame,�′ → 0. As a result,
the heat transfer for an initial state |�0〉 = |↑〉 reduces to
the bare reorganization energy, Er. This behavior is shown
in the inset of Fig. 5, where the solid curve converges to
〈Q〉 ≈ Er to a good approximation. The dynamics of the
heat transfer is correspondingly fast in this regime since it
depends only on the bath cutoff scale, ωC.

C. Heat fluctuation-dissipation relation in the
spin-boson model

As a final demonstration of our method, we study the
temperature dependence of the heat fluctuations in the
spin-boson model. Figure 8 shows the asymptotic vari-
ance of the heat distribution at long times, starting from
the initial state |ψ(0)〉 = |↑〉. We see that the fluctua-
tions increase with temperature, and grow approximately
linearly with T at high temperature.

This linear behavior of 〈〈Q2〉〉∞ can be understood as a
manifestation of the FDR that is well known in the context
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FIG. 8. Variance of the heat distribution as a function of tem-
perature in the spin-boson model for both weak (α = 0.1) and
strong (α = 1.5) coupling starting from the initial state |ψ(0)〉 =
|↑〉. The parameters are ωC = 5, K� = 5, and � = 0.01, with
p = 100 and u = 0.005 for α = 1.5, and p = 120 and u = 0.01
for α = 0.1.

of nonequilibrium work distributions. If the distribution
of work W is Gaussian, the Jarzynski equality directly
implies the FDR [64] 〈W〉 −�F = β〈〈W2〉〉/2, where �F
is the equilibrium free-energy change. In the case of the
independent-boson model, heat is identical to work since
Ĥ S is a conserved quantity, while�F = 0 because the pro-
cess is cyclic. It follows that we can write an equivalent
FDR for the heat distribution:

〈〈Q2〉〉 = 2T〈Q〉. (56)

At high temperature, this relation holds at all times in the
independent-boson model, as can be seen by comparing
Eqs. (45) and (47) in the limit βωC � 1.

In the spin-boson model, we no longer have equal-
ity between work and heat since �U �= 0. Nevertheless,
we find numerically that FDR (56) approximately holds
at high temperatures, βωC � 1, as shown in Fig. 9. This
behavior stems from the fact that the spin’s contribution to
the heat fluctuations is limited by its finite energy splitting
�, whereas the contribution of the spin-boson interaction
energy can grow arbitrarily large. The heat fluctuations are
thus dominated by independent-boson physics at high tem-
perature. For strong coupling, where the spin energy scale
� is negligible compared to the reorganization energy Er,
we show in Fig. 9 that the heat fluctuations are essentially
identical in the spin-boson and independent-boson models
at all temperatures. One limitation encountered in the cal-
culation of the data shown in Fig. 9 is that the TEMPO
algorithm is not able to compute the variance up to equi-
librium time for very low temperatures. Indeed, the lowest
temperature shown is T = 0.4. Exploring the validity of
the heat FDR in other scenarios, e.g., multipartite open
quantum systems, is an interesting avenue for future work.

FIG. 9. Asymptotic ratio of the variance to the mean heat as
a function of temperature, showing the validity of the FDR for
T � ωC. Dash-dot and solid lines are the numerical results for
the spin-boson (SB) model for the values of α indicated. The
figure shows a comparison with the analytical solution for the
independent-boson model, which is independent of α (triangles).
The FDR value of 〈〈Q2〉〉∞/T〈Q〉∞ = 2 is shown by the black
dashed line. The parameters are the same as in Fig. 8.

V. CONCLUSIONS

A better understanding of dissipation in open quantum
systems is a fundamental goal of quantum thermodynamics
as well as being crucial for quantum device engineer-
ing. We have shown that this goal can be successfully
addressed by an extension of the TEMPO algorithm [81]
to evaluate the characteristic function of the heat distribu-
tion. We have demonstrated the validity and flexibility of
our approach by calculating the mean and variance of the
heat transfer in the spin-boson model over a range of tem-
peratures and system-bath coupling strengths. Our results
clearly demonstrate the importance of system-environment
correlations at low temperatures. Even at high tempera-
ture and weak coupling, we find significant contributions to
the heat statistics from the system-environment interaction
energy that are not captured by the standard weak-coupling
master equation. This indicates that system-reservoir inter-
actions are an important source of dissipation that must be
accounted for when designing thermodynamic protocols
[82–87], even in the weak-coupling regime.

Our approach to calculating heat statistics can be
extended in several promising directions. It is straight-
forward to adapt the method to situations with a time-
dependent system Hamiltonian, which would enable the
characterization of heat statistics for driven open systems.
This problem, which is theoretically challenging even
for Markovian environments outside of the slow-driving
regime, has numerous applications in quantum control,
such as quantum information processing [88] and era-
sure [89], enhanced engine cycles through thermodynamic
shortcuts [33,90], and tailored quantum light sources [31,
91]. It is also possible to incorporate multiple baths within
our framework by combining the corresponding influence
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functionals together. This would allow the study of the full
counting statistics of quantum heat transport in nonequilib-
rium steady states [55], including highly non-Markovian
regimes. In general, we expect that the method presented
here will facilitate further research into the nonequilib-
rium quantum thermodynamics of strongly coupled open
systems.
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APPENDIX A: SUPEROPERATOR METHODS FOR
THE CALCULATION OF THE MODIFIED

INFLUENCE FUNCTIONAL

Let K̂ be a superoperator acting on the space of bounded
operators B(H) on a Hilbert space H. Then two superop-
erators labeled left, K̂L, and right, K̂R, can be defined by
their actions on a density matrix operator ρ ∈ B(H):

K̂Lρ = K̂ρ, (A1)

K̂Rρ = ρK̂ . (A2)

Similarly, the superoperators K̂+ and K̂− can be defined as

K̂+ρ = K̂Lρ + K̂Rρ = {K̂ , ρ}, (A3)

K̂−ρ = K̂Lρ − K̂Rρ = [K̂ , ρ], (A4)

with inverse transformations

K̂Lρ = 1
2 (K̂

+ + K̂−)ρ = 1
2 [K̂ , ρ]+ 1

2 {K̂ , ρ}, (A5)

K̂Rρ = 1
2 (K̂

+ − K̂−)ρ = 1
2 {K̂ , ρ} − 1

2 [K̂ , ρ]. (A6)

In order the evaluate the exponential in Eq. (26), it is con-
venient to rewrite the modified interaction Hamiltonian
H̃I (t, u) = eiĤBu/2H̃I (t)e−iĤBu/2 as

H̃I (t, u) = Ŝz

∑

j

gj cos
(

u
2
ωj

)
(aj e−iωj t + a†

j eiωj t)

− iŜz

∑

j

gj sin
(

u
2
ωj

)
(aj e−iωj t − a†

j eiωj t),

(A7)

and defining

B1(t, u) =
∑

j

gj cos
(

u
2
ωj

)
(aj e−iωj t + a†

j eiωj t), (A8)

B2(t, u) = −i
∑

j

gj sin
(

u
2
ωj

)
(aj e−iωj t − a†

j eiωj t), (A9)

we have

H̃I (t, u) = ŜzB1(t, u)+ ŜzB2(t, u). (A10)

The interaction Hamiltonian has thus been divided into the
sum of the two Hamiltonians

HI ,1(t, u) = ŜzB1(t, u), (A11)

HI ,2(t, u) = ŜzB2(t, u). (A12)

We note that, given the cosine and sine functions in the
interaction parts dependent on the counting field, Eqs.
(A8) and (A9), it holds that HI ,1(t,−u) = HI ,1(t, u) and
HI ,2(t,−u) = −HI ,2(t, u). In light of this new notation, the
Liouvillian operator defined in Eq. (22) is

LI (t, u) = −i[H−I ,1(t, u)+ H+I ,2(t, u)], (A13)

where we have used Eqs. (A3) and (A4). The exponent of
the modified influence functional in Eq. (26) can then be
written as

〈LI (t′, u)LI (t′′, u)〉B
= −〈H−I ,1(t

′, u)H−I ,1(t
′′, u)〉B − 〈H+I ,2(t

′, u)H+I ,2(t
′′, u)〉B

− 〈H−I ,1(t
′, u)H+I ,2(t

′′, u)〉B − 〈H+I ,2(t
′, u)H−I ,1(t

′′, u)〉B.
(A14)

Using the decomposition defined in Eqs. (A11) and
(A12), and rules (A3)–(A6), we can write H±I ,j (t, u) =
[ŜzBj (t, u)]L ± [ŜzBj (t, u)]R with j = 1, 2. Applying the
properties (AB)L = ALBL and (AB)R = ARBR, it is possible
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to separate the superoperator acting on the system opera-
tors from those acting on the reservoir operators. Each term
in Eq. (A14) can then be calculated explicitly:

〈H−I ,1(t
′, u)H+I ,2(t

′′, u)〉B = 1
4 Ŝ−z [Ŝ+z 〈B+1 (t′, u)B+2 (t

′′, u)〉B
+ Ŝ−z 〈B+1 (t′, u)B−2 (t

′′, u)〉B],
(A15)

〈H+I ,2(t
′, u)H−I ,1(t

′′, u)〉B = 1
4 Ŝ+z [Ŝ+z 〈B+2 (t′, u)B−1 (t

′′, u)〉B
+ Ŝ−z 〈B+2 (t′, u)B+1 (t

′′, u)〉B],
(A16)

〈H−I ,1(t
′, u)H−I ,1(t

′′, u)〉B = 1
4 Ŝ−z [Ŝ+z 〈B+1 (t′, u)B−1 (t

′′, u)〉B
+ Ŝ−z 〈B+1 (t′, u)B+1 (t

′′, u)〉B],
(A17)

〈H+I ,2(t
′, u)H+I ,2(t

′′, u)〉B = 1
4 Ŝ+z [Ŝ+z 〈B+2 (t′, u)B+2 (t

′′, u)〉B
+ Ŝ−z 〈B+2 (t′, u)B−2 (t

′′, u)〉B].
(A18)

It can be noted that, given the definition in Eq. (25),
for any two superoperators α and β, it holds that
〈α−β±〉B = TrB{[α,β±ρ̃B(0)]} = 0. Therefore, the super-
operators B−1 (t

′, u) and B−2 (t
′, u) in Eqs. (A15)–(A18)

produce null terms, B(t, u) being the only operator that
contains degrees of freedom of the bath B. Evaluat-
ing the non-null correlations 〈B+m(t′, u)B+n (t

′′, u)〉B and
〈B+m(t′, u)B−n (t

′′, u)〉B with m, n = 1, 2 is straightforward
when using the definitions in Eqs. (A8) and (A9) and the
properties of the bosonic operators. The results are

〈B+m(t′, u)B+n (u, t′′)〉B = (−1)m4 Re[C(t′, t′′, u)], (A19)

〈B+m(t′, u)B−n (t
′′, u)〉B = (−1)m4i Im[C(t′, t′′, u)], (A20)

for m �= n, m, n = 1, 2, and

〈B+m(t′, u)B+m(t
′′, u)〉B = 4 Re[Am(t′, t′′, u)], (A21)

〈B+m(t′, u)B−m(t
′′, u)〉B = 4i Im[Am(t′, t′′, u)], (A22)

where

C(t′, t′′, u) = i
∫ ∞

0
dωJ (ω) cos

(
u
2
ω

)
sin

(
u
2
ω

)

× sinh[iω(t′ − t′′)− β0ω/2]
sinh(β0ω/2)

, (A23)

A1(t′, t′′, u) =
∫ ∞

0
dωJ (ω) cos2

(
u
2
ω

)

× cosh[iω(t′ − t′′)− β0ω/2]
sinh(β0ω/2)

, (A24)

A2(t′, t′′, u) =
∫ ∞

0
dωJ (ω) sin2

(
u
2
ω

)

× cosh[iω(t′ − t′′)− β0ω/2]
sinh(β0ω/2)

. (A25)

Here β0 is the inverse temperature of the bath at the ini-
tial time and J (ω) its spectral density. The correlation
functions introduced in Eqs. (27)–(29) are calculated as
ηα(t, u) = ∫ t

0 dt′
∫ t′

0 dt′′α(t′, t′′, u) with α = C,A1,A2. The
exponent in the influence functional defined in Eq. (26)
is calculated from its form in Eq. (A14) by using the
analytical results obtained in Eqs. (A19)–(A22).

APPENDIX B: CHARACTERISTIC FUNCTION
FOR THE INDEPENDENT-BOSON MODEL

In this appendix, we detail the calculation of the charac-
teristic function for the independent-boson model, defined
by Eqs. (38)–(40) with � = 0. The Hamiltonian is diago-
nalized by the transformation

P̂ = exp
[

Ŝz

∑

j

gj

ωj
(âj − â†

j )

]
, (B1)

leading to P̂†HP̂ = Ĥ 0 − 1
2 Er, where Ĥ 0 = Ĥ S + Ĥ B is

the free Hamiltonian. The reorganization energy shift pro-
portional to Er leads to an irrelevant global phase that
will be neglected henceforth. Using this transformation, we
write the unitary time evolution operator as

Û(t) = P̂e−iĤ0tP̂†

= e−iĤ0t[eiĤ0t/2P̃(t/2)P̃†(−t/2)e−iĤ0t/2], (B2)

where the tilde denotes an operator in the interaction
picture with respect to Ĥ 0, i.e.,

P̃(t) = eiĤ0tP̂e−iĤ0t

= exp
[

Ŝz

∑

j

gj

ωj
(e−iωj tâj − eiωj tâ†

j )

]
. (B3)

Using the Baker-Campbell-Hausdorff formula, eAeB =
exp(A+ B+ 1

2 [A, B]+ · · · ), and neglecting an irrelevant
phase factor, we obtain Û(t) = Û0(t)ÛI (t), where Û0(t) =
e−iĤ0t is the free propagator and

ÛI (t) = exp
[

2Ŝz

∑

j

[αj (t)â
†
j − α∗j (t)âj ]

]
(B4)
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is the interaction-picture propagator, which describes a
spin-dependent displacement for each mode of magnitude

αj (t) = gj

2ωj
(1− eiωj t). (B5)

Note that Eq. (B4) can also be derived directly using the
Magnus expansion of the time-ordered exponential [92].

We now substitute our expression for Û(t) into Eq. (14)
to obtain χ(u) = 〈V̄†

−u(t)V̄u(t)〉0, taking the average at time
t = 0, and where V̄u(t) = eiuĤB/2ÛI (t)e−iuĤB/2 is the modi-
fied interaction-picture evolution operator, given explicitly
by

V̄u(t) = |↑〉〈↑| ⊗
∏

j

D̂(αj eiωj u/2)

+ |↓〉〈↓| ⊗
∏

j

D̂†(αj eiωj u/2) (B6)

with D̂(x) = exâ†−x∗â the displacement operator for each
bosonic mode. We therefore obtain χ(u) = p↑χ↑(u)+
p↓χ↓(u), where p↑ = 〈↑|ρ̂S(0)|↑〉 and p↓ = 〈↓|ρ̂S(0)|↓〉
denote the initial spin occupations and

χ↑(u) =
∏

j

〈D̂†(αj e−iωj u/2)D̂(αj eiωj u/2)〉0, (B7)

χ↓(u) =
∏

j

〈D̂(αj e−iωj u/2)D̂†(αj eiωj u/2)〉0. (B8)

These can be evaluated using the property D̂(x)D̂(y) =
eiIm(xy∗)D̂(x + y) and the thermal average 〈D̂(x)〉 =
exp[− 1

2 |x|2 coth(βω/2)]. We find that χ↑(u) = χ↓(u) and
therefore χ(u) is independent of the spin populations. The
final result for χ(u) is quoted in Eq. (43), from which the
nth cumulant of the heat distribution can be derived via the
formula

〈〈Qn〉〉 = (−i)n
dn

dun lnχ(u)
∣∣∣∣
u=0

. (B9)

Explicitly, we obtain

〈〈Q2l−1〉〉 = 1
2

∫ ∞

0
dω J (ω)ω2l−3[1− cos(ωt)], (B10)

〈〈Q2l〉〉 = 1
2

∫ ∞

0
dω J (ω)ω2l−2[1− cos(ωt)] coth

(
βω

2

)
,

(B11)

for integers l > 0. We see that all cumulants are positive
and only the even cumulants depend on temperature.

APPENDIX C: NUMERICAL EFFICIENCY OF
THE MODIFIED TEMPO METHOD

1. Numerical derivative and counting field value

It has been discussed in Sec. II B that in order to evalu-
ate the statistical moments of the heat exchange, one needs
to evaluate the derivative of the characteristic function at
point u = 0. Some symmetries of χ(u) prove to be use-
ful in this numerical calculation. Specifically, from the
definition in Eq. (13), it is clear that

χ∗(u) = χ(−u), (C1)

since the probability distribution P(Q) is a real function.
This implies that the real and imaginary parts of χ(u) have
the symmetries

Re[χ(u)] = Re[χ(−u)],

Im[χ(u)] = −Im[χ(−u)], (C2)

and are shown in Fig. 10 for both the independent-boson
and spin-boson models. Note that in Fig. 10 it is not com-
putationally possible to evaluate the characteristic function
up to equilibrium time for values of u higher than those
represented. In the case of the spin-boson model, t = 9.53
is the maximum time the TEMPO algorithm is able to
reach for u = 3.

In our method we perform a numerical differentiation in
order to calculate the first and second moments of the heat
distribution, as shown in Eq. (12). In order to do that, we
have to choose a suitable value of u. Note however that the
counting field is not a numerical parameter of the TEMPO
algorithm, but a variable of the characteristic function. For
the mean heat,

〈Q〉 = −i
d Re[χ(u)]

du

∣∣∣∣
u=0
+ d Im[χ(u)]

du

∣∣∣∣
u=0

, (C3)

and it is clear from Fig. 10 that d Re[χ(u)]/du|u=0 = 0,
which can also be deduced from the symmetry properties
in Eq. (C2).

Since χ(0) = 1, then Im[χ(0)] = 0 and the numerical
derivative on the right-hand side of Eq. (C3), evaluated for
a small enough value uε , is

〈Q〉 = Im[χ(uε)]
uε

+O(uε). (C4)

We find that the mean heat depends only on the imaginary
part of the characteristic function and is given by the lin-
ear slope of the function depicted in Fig. 10 in an interval
[0, uε], with an error of the order O(uε). The value uε must
be such that, within the interval it defines, the real part of
the characteristic function can still be approximated by a
constant function, and the slope of the imaginary part is lin-
ear. The value of uε will depend on the model, as shown by
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Re[χ(u)], t = 1

Im[χ(u)], t = 1
Re[χ(u)], t = 10
Im[χ(u)], t = 10

Re[χ(u)], t = 1
Im[χ(u)], t = 1
Re[χ(u)], t = 9.53
Im[χ(u)], t = 9.53

FIG. 10. Top: independent-boson model. Bottom: spin-boson
model. Real (dashed line) and imaginary (solid line) parts of the
characteristic function, as a function of the counting field param-
eter u. We evaluated χ(u) for both a small time t = 1 (blue)
and equilibrium times t = 10 for the IB model and t = 9.53
for the SB model (purple). The temperature is set to T = 1
and the coupling strength to α = 0.1. The parameters control-
ling the numerical accuracy are ωC = 5, K� = 5,� = 0.01, and
p = 100. The sampling of the function is taken at intervals of
δu = 0.2.

comparing the two figures in Fig. 10, and on the physical
parameters α, T, and ωC. Indeed, Fig. 2 shows for exam-
ple that while for α = 0.1 it is sufficient to take u = 0.01,
for stronger coupling such as α = 1.5, it is necessary to set
u = 0.005 to achieve the same precision.

We have found that, in order to achieve a function 〈Q〉
that is constant in the long-time limit for the parame-
ters considered in this work, the value of uε cannot be
greater than uε = 0.01. In general, decreasing the value of
uε below uε = 0.005 will increase the computational time
but not significantly improve the precision of the result.

2. TEMPO memory depth

In Sec. III B we discussed the finite memory depth K
of the TEMPO algorithm that allows it to efficiently prop-
agate the ADT. In this subsection of the appendix we
show how the memory depth affects the convergence of the
mean heat and the variance of the heat distribution studied
throughout this work.

The form of the correlation functions in Eqs. (27)–(29)
sets the minimum value of K� needed. Indeed, K� has

T = 5, α = 1.5

T = 1, α = 1.5

T = 1, α = 0.1

T = 0.1, α = 0.1

T = 5, α = 1.5

T = 1, α = 1.5

T = 1, α = 0.1

T = 0.1, α = 0.1

FIG. 11. Top: asymptotic mean heat for the independent-
boson model as a function of K . Bottom: asymptotic variance
of the heat distribution for the independent-boson model as a
function of K . Triangles represent the analytical solution given
by Eq. (45) (top) and Eq. (47) (bottom) in the long-time limit.
The figures are plotted for different values of the temperature and
coupling strength. The remaining parameters are set to ωC = 5,
� = 0.01, p = 100, and u = 0.01.

to be large enough to so that the discretized correlation
functions are zero. Preliminary calculations have shown
that, for the values of temperature and coupling strength
considered, this requirement is satisfied around the value
K� = 5. Figure 11 shows that in the independent-boson
model, for a fixed value of �, both the mean heat and
the variance of the heat distribution reach the predicted
asymptotic value for K > 300 for all the values of T and
α depicted. For values K < 100, however, the asymptotic
TEMPO result diverges greatly from the predicted one.
This clearly shows how our method, which is able to oper-
ate at high values of the memory depth, has a much greater
accuracy than other methods that operate in the region
K < 100.

APPENDIX D: VARIATIONAL THEORY OF HEAT
TRANSFER

In this appendix, we give details of the varia-
tional approach to describing heat transfer at low
temperature [77]. Applying the transformation in Eq. (42),
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we arrive at P̂†Ĥ P̂ = Ĥ ′0 + Ĥ ′I , where

Ĥ ′0 = �′Ŝx +
∑

j

ωj â†
j âj +

∑

j

fj (fj − 2gj )

4ωj
, (D1)

Ĥ ′I = �[(B̂− B)Ŝ++H.c.]+ Ŝz

∑

j

(gj − fj )(âj + â†
j ).

(D2)

Here, we have defined the renormalized tunneling ampli-
tude �′ = �B, where B = 〈B̂〉Ĥ ′0 ≡ Tr[B̂e−βĤ ′0 ]/Z ′0 with

Z ′0 = Tr[e−βĤ ′0] and

B̂ =
∏

j

exp
[

fj
ωj
(â†

j − âj )

]
, (D3)

while Ŝ+ = (Ŝx + iŜy)/2 is the spin raising operator. Car-
rying out the thermal average explicitly, we find that

B = exp
[
− 1

2

∑

j

f 2
j

ω2
j

coth
(
βωj

2

)]
. (D4)

The variational parameters {fj } are determined by mini-
mizing the Feynman-Bogoliubov upper bound on the free
energy, F = −T ln Tr[e−βĤ ], given by

F ≤ FB = −T ln Z ′0 + 〈Ĥ ′I 〉Ĥ ′0 + O(〈Ĥ ′2I 〉Ĥ ′0). (D5)

Since 〈Ĥ ′I 〉Ĥ ′0 = 0 by construction, we find that

FB =
∑

j

fj (fj − 2gj )

4ωj
− T ln

[
2 cosh

(
β�′

2

)]
, (D6)

where we have neglected higher-order terms in Ĥ ′I since
these are small by assumption. The minimum defined
by ∂FB/∂fj = 0 is then easily found to be fj = gjφ(ωj ),
where φ(ω) is given by Eq. (53). Substituting this result
into Eq. (D4) yields the renormalized tunneling matrix
element in Eq. (54).

Using these results in Eq. (D2) also shows self-
consistently that Ĥ ′I = O(�). Equation (D5) can thus be
interpreted as a formal expansion in powers of �/ωc. That
is, the variational approach treats the spin Hamiltonian Ĥ S
as a small perturbation with respect to the independent-
boson Hamiltonian Ĥ B + Ĥ I , and becomes exact in the
limit �→ 0.
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