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Abstract

We investigate the dimension and structure of four fractal families: inhomogeneous at-

tractors, fractal projections, fractional Brownian images, and elliptical polynomial spi-

rals. For each family, particular attention is given to the relationships between different

notions of dimension. This may take the form of determining conditions for them to

coincide, or, in the case they differ, calculating the spectrum of dimensions interpolating

between them. Material for this thesis is drawn from the papers [6, 7, 8, 9, 10].

First, we develop the dimension theory of inhomogeneous attractors for non-linear and

affine iterated function systems. In both cases, we find natural quantities that bound

the upper box-counting dimension from above and identify sufficient conditions for these

bounds to be obtained. Our work improves and unifies previous theorems on inhomoge-

neous self-affine carpets, while providing inhomogeneous analogues of Falconer’s seminal

results on homogeneous self-affine sets.

Second, we prove that the intermediate dimensions of the orthogonal projection of a

Borel set E ⊂ Rn onto a linear subspace V are almost surely independent of the choice

of subspace. Similar methods identify the almost sure value of the dimension of Borel

sets under index-α fractional Brownian motion. Various applications are given, including

a surprising result that relates the box dimension of the Hölder images of a set to the

Hausdorff dimension of the preimages.

Finally, we investigate fractal aspects of elliptical polynomial spirals; that is, planar

spirals with differing polynomial rates of decay in the two axis directions. We give

a full dimensional analysis, computing explicitly their intermediate, box-counting and

Assouad-type dimensions. Relying on this, we bound the Hölder regularity of maps that

deform one spiral into another, generalising the ‘winding problem’ of when spirals are bi-

Lipschitz equivalent to a line segment. A novel feature is the use of fractional Brownian

motion and dimension profiles to bound the Hölder exponents.
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Chapter 1

Foundations

1.1 Motivation

Natural forms often exhibit a complexity and detail that lies outside the scope of classical

geometry. Imagine the the rugged outline of mountain landscapes, the self-similarity of

branching trees, or the intricate structure of the central nervous system. Mathematically,

we view shapes such as these and their abstract analogues in higher dimensions as subsets

of Euclidean space.

Fractal geometry provides a framework for the rigorous study of such sets and gained

momentum in the twentieth century due to the popular works of Mandelbrot [52, 53].

Its development as a mathematical field has been fuelled by numerous connections with

other domains, such as dynamical systems, number theory and stochastic processes [17].

Across wider science, applications have been found in areas from financial modelling and

computer graphics, to cosmology and the study of fluid turbulence [17, 27, 40].
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Several prominent strands run through the literature on fractals, and those of particular

relevance to this thesis include the theory of attractors and iterated function systems,

their associated self-similar and self-affine sets, and projection. Common to the study of

all is the concept of ‘fractal dimension’ that associates a positive number d ≥ 0 with a

set F ⊂ Rn and quantifies the irregularity of F at small scales. It is a natural way to

classify fractals and a useful invariant when considering problems such as bi-Lipschitz

equivalence. There is not, however, a unique definition of dimension and a variety of

notions exist, each sensitive to different geometric properties. Consequently, two notions

of dimension may take distinct values for complex sets.

Understanding the structural properties of sets that lead to disparities between dimen-

sions often provides a feedback loop of information; we learn more about the sets in

question, and, in certain circumstances, the dimensions themselves. These relationships

are the unifying theme that runs throughout our study of four families of fractals: in-

homogeneous attractors, fractal projections, fractional Brownian images, and elliptical

polynomial spirals. We consider when dimensions coincide or probe the manner in which

they differ via the emerging field of dimension interpolation. In the next section, we

elaborate on these questions and provide a macroscopic overview of each chapter.

1.2 Overview

The remaining sections of this chapter introduce foundational material, such as formal

definitions of fractal dimension and dimension interpolation. The start of each subse-

quent chapter begins with an introduction to that topic, surveying relevant literature and

setting the scene with topic-specific definitions and notation. Throughout, we highlight

related open questions and suggest potential lines of enquiry.

Chapter 2 is derived from the papers [6, 10] and considers the class of inhomogeneous

attractors, introduced in 1985 independently by Barnsley [4] and Hata [41]. The di-
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mension theory of these sets is well understood for iterated function systems containing

similarities, and we develop a theory for nonlinear and affine systems. The central ques-

tion explored in recent literature asks in what circumstances do the Hausdorff and box-

counting dimensions coincide. To answer this question in the nonlinear case we introduce

a quantity termed upper Lipschitz dimension that bounds the box-counting dimension

from above. Further conditions determine when this upper bound is sharp and coincides

with the Hausdorff dimension. In the affine case, we prove that the affinity dimension

of Falconer [14] plays a similar role. This unifies previous results on inhomogeneous self-

affine carpets, while providing inhomogeneous analogues of Falconer’s seminal results on

homogeneous self-affine sets.

Chapter 3 revisits classical theorems on the dimensions of projections and stochastic

images for the intermediate dimensions that interpolate between the Hausdorff and box-

counting dimensions. Theorems on projection have a long history, dating back to seminal

work on the Hausdorff dimension of projections by Marstrand in 1954 [54]. This was

extended to the box-counting dimensions by Falconer and Howroyd [23] through the in-

troduction of ‘dimension profiles’, which in turn lead Xiao [68] to adapt the methodology

to study the dimensions of fractional Brownian images, forming a link between the two

topics.

We generalise these results by proving that the intermediate dimensions of orthogonal

projections are almost surely independent of the choice of linear subspace. Then, follow-

ing the tradition of Xiao, we show how similar methods identify the almost sure value of

the intermediate dimensions of fractional Brownian images.

Our approach is based on a capacity theoretic formulation of dimension profiles, building

on recent work of Falconer [18, 19] that re-examined the box-counting dimensions of

projections and stochastic images using this methodology. By adapting the strategy of
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Falconer for a new family of kernels, we show that the intermediate dimensions and their

associated profiles may be defined in terms of capacities, a significant step towards our

main results.

To conclude the chapter we consider a few applications. This includes bounds on the

dimensions of exceptional sets and a surprising result that relates the box-counting di-

mensions of a Hölder image to the Hausdorff dimension of the preimage. Of course, this

applies to projections and fractional Brownian images, yet more generally too.

In Chapter 4 we investigate fractal aspects of elliptical polynomial spirals; that is, pla-

nar spirals with differing polynomial rates of decay in the two axis directions. These

generalise traditional polynomial spirals, as recently studied in [31]. We give a full di-

mensional analysis of these spirals, computing explicitly their intermediate, box-counting

and Assouad-type dimensions, which turn out to be typically distinct. Together, these

calculations provide a complete and continuous spectrum between the two extremes of

the dimensional repertoire. An exciting feature is that these spirals exhibit two phase

transitions within the Assouad spectrum, the first natural class of fractals known to have

this property. The location of these phase transitions points to a surprising and subtle

interaction between the two parameters controlling the rates of decay.

The final part of this chapter applies dimensional information to obtain bounds on the

Hölder regularity of maps that deform one spiral into another, generalising the ‘winding

problem’ of when spirals are bi-Lipschitz equivalent to a line segment. A novel feature

is the use of fractional Brownian motion and dimension profiles to bound the Hölder

exponents.
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1.3 Fractal dimensions

In this section we lay the groundwork for later chapters by stating the formal definitions of

various fractal dimensions. However, we expect a basic familiarity with fractal geometry,

and direct the reader to the classic text [17] for a thorough introduction.

Throughout, let F ⊂ Rn be bounded and non-empty. The Hausdorff dimension of F may

be defined in terms of Hausdorff measure in a natural way. For 0 ≤ s ≤ n and δ > 0, the

s-dimensional δ-approximate Hausdorff measure of F is

Hsδ(F ) = inf

{ ∞∑
i=1

|Ui|s : F ⊆
∞⋃
i=1

Ui, 0 < |Ui| < δ

}
,

where |U | denotes the diameter of a set U ⊂ Rn, and

Hs(F ) = lim
δ→0
Hsδ(F )

is the s-dimensional Hausdorff measure. Then, the Hausdorff dimension of F , denoted

dimH F , may be expressed as

dimH F = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞}.

In other words, the Hausdorff dimension of a set is the critical value of s at which a phase

transition occurs in the s-dimensional Hausdorff measure.

A coarser notion of dimension, known as the box-counting dimension is also common in

the literature on fractals. Comparatively simplistic in nature, the box-counting dimension

is derived from the growth rate of the size of covers of F as the diameter of the covering

sets tends to 0.
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Formally, the upper and lower box-counting dimensions are defined as

dimBF = lim sup
δ→0

logNδ(F )

− log δ
(1.3.1)

and

dimBF = lim inf
δ→0

logNδ(F )

− log δ
, (1.3.2)

respectively, where Nδ(F ) denotes the minimum cardinality of a cover of F by hypercubes

of diameter δ. Equivalently, Nδ(F ) may defined in terms of covers by hypercubes of

sidelength δ or balls of diameter δ. We use these different formulations interchangeably

depending on which is most convenient in a given context. If (1.3.1) and (1.3.2) coincide

we say the set has box-counting dimension equal to the common value and denote this

by dimB F . Such a definition applies equally well in the setting of general metric spaces

(X, d) that we will meet in Chapter 2.

While the Hausdorff and box-counting dimensions describe the average local irregularity

of a set, it may also be desirable to quantify the extremal irregularity. This is done by

the more obscure Assouad-type dimensions that have been gaining popularity in recent

years, see [33] for an overview. The Assouad dimension of F , denoted dimA F , is defined

as

dimA F = inf
{
α ≥ 0 : ∃ C > 0 such that, ∀ 0 < r < R < 1 and x ∈ F ,

Nr

(
B(x,R) ∩ F

)
≤ C(R/r)α

}
,

where B(x,R) denotes the ball centred at x of radius R. This notion of dimension has

seen a wide array of applications in fields such as embedding theory, number theory,

probability and functional analysis [33]. We shall see the Assouad dimension feature in

our work on elliptical polynomial spirals, where we compute it by way of the Assouad

spectrum, a form of dimension interpolation.
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1.4 Dimension interpolation

An emerging new perspective within dimension theory seeks to interpolate between di-

mensions [32]. Rather than viewing the existing notions of dimension as discrete entities,

we embed them within a unifying framework.

Suppose you are given two notions of dimension dimX and dimY with dimX F ≤ dimY F

for all F ⊂ Rn. An interpolation between dimX and dimY is a continuum of dimensions,

parametrised by θ ∈ [0, 1] and denoted dimθ, such that

dimX F = dim0 F ≤ dimθ F ≤ dim1 F = dimY F

for all F ⊂ Rn. Dimension interpolation provides finer geometric information than

dimension alone, such as increasing discriminatory power when studying the bi-Lipschitz

equivalence of two sets.

It is immediate from the definitions that for bounded F ⊂ Rn

dimH F ≤ dimBF ≤ dimA F,

and this ordering gives rise to the two interpolations we consider. The first inequality

gives rise to the intermediate dimensions, and the second to the Assouad spectrum.

Intermediate dimensions were introduced by Falconer, Fraser and Kempton in [21] to

interpolate between the Hausdorff and box-counting dimensions. The lower and upper

intermediate dimensions of a set F ⊂ Rn are denoted dim θF and dim θF , respectively.

Like other notions of dimension they may be defined using covers, and the parameter

θ ∈ [0, 1] plays of the role of determining which covers are permissible. Through this

dependence on θ, they reflect the range of diameters of sets needed to construct efficient

covers at different scales.
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Formally, for bounded F ⊂ Rn and 0 < θ ≤ 1, the lower intermediate dimension of F

may be defined as

dim θF = inf
{
s ≥ 0 : for all ε > 0 and all r0 > 0, there exists

0 < r ≤ r0 and a cover {Ui} of F such that (1.4.1)

r1/θ ≤ |Ui| ≤ r and
∑
|Ui|s ≤ ε

}
,

and the corresponding upper intermediate dimension by

dim θF = inf
{
s ≥ 0 : for all ε > 0, there exists r0 > 0 such that

for all 0 < r ≤ r0, there is a cover {Ui} of F (1.4.2)

such that r1/θ ≤ |Ui| ≤ r and
∑
|Ui|s ≤ ε

}
.

When θ = 0 we take (1.4.1) and (1.4.2) with no lower bounds on the diameters of covering

sets, recovering the Hausdorff dimension in both cases. If (1.4.1) and (1.4.2) coincide we

say the set has θ-intermediate dimension equal to the common value and denote this

by dimθ F . When θ = 1 all covering sets are forced to have the same diameter and

we recover the lower and upper box-counting dimensions, respectively. Note that, for

0 < θ ≤ 1, it is often convenient to use an equivalent definition based on the restriction

r ≤ |U | ≤ rθ.

Various properties of intermediate dimensions are established in [21]. In particular dim θF

and dim θF are monotonically increasing in θ ∈ [0, 1], are continuous except perhaps at

θ = 0, and are invariant under bi-Lipschitz mappings. Intermediate dimensions are of

interest for sets which have differing Hausdorff and box-counting dimensions, such as

sequence sets of the form {0} ∪ {n−p : n = 1, 2, . . . } for p > 0, self-affine carpets, and

many other examples. Since their initial development, they have seen further attention

in a variety of contexts, see [2, 7, 8, 9, 20, 51, 65].
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Alongside the intermediate dimensions, we also consider the Assouad spectrum in Chap-

ter 4, a family of dimensions indexed by θ ∈ [0, 1) and introduced in [39]. The limit

of the Assouad spectrum as θ → 1 is known as the quasi-Assouad dimension and often

coincides with the Assouad dimension. In such instances, the Assouad spectrum may

be thought of as providing a genuine interpolation between the upper box-counting and

Assouad dimensions. This is proven to be the case for elliptical polynomial spirals in

Chapter 4, Theorem 4.2.7.

Formally, the Assouad spectrum is the function θ 7→ dimθ
A F defined by

dimθ
A F = inf

{
α ≥ 0 : ∃ C > 0 such that, for all 0 < r < 1 and x ∈ F ,

Nr

(
B(x, rθ) ∩ F

)
≤ C(rθ/r)α

}
. (1.4.3)

One of the key motivations for this definition is that, in contrast to the Assouad di-

mension, an explicit formula in terms of θ provides information on which set of scales

0 < r < R witness the maximum exponential growth rate of Nr(B(x,R) ∩ F ). For a

thorough treatment of its properties and applications, we direct the reader to [33, 39].
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Chapter 2

Inhomogeneous attractors

2.1 Introduction

Let (X, d) be a compact metric space. A map S : X → X is a contraction on X if there

exists a c ∈ (0, 1) such that

d(S(x), S(y)) ≤ cd(x, y)

for all x, y ∈ X, and a similarity with ratio c if ≤ may be replaced with =. We call a finite

collection I = {Si}Ni=1 of contractions on X an iterated function system (IFS). In practice,

further conditions are often put on the maps Si to establish various subcategories of IFS.

In this chapter, we deal with two varieties of IFS. In Section 2.2 we consider general

bi-Lipschitz mappings, that is, those contractions for which there also exists a c′ > 0

with

d(S(x), S(y)) ≥ c′d(x, y)

for all x, y ∈ X. In Section 2.3, we consider systems that contain affine mappings,

a family of IFS that has received significant attention since seminal work of Bedford,
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McMullen and Falconer in the 1980s [5, 14, 15, 59]. When dealing with affine systems

we specialise to a compact subset of the metric space Rn equipped with the Euclidean

norm. Recall that a map S : Rn → Rn is affine if it can be written

S(x) = Ax+ b

for some A ∈ GL(R, n) and translation vector b ∈ Rn. Bedford and McMullen pioneered

a grid based approach resulting in affine carpets, while we follow the tradition of Falconer

and consider systems containing generic affine maps.

The connection to fractal geometry comes from the study of sets that are in some sense

invariant under an IFS and often exhibit fine local geometry. The existence of such sets

follows from a classic application of Banach’s contraction mapping theorem, which shows

there is a unique non-empty compact set F , called a homogeneous attractor, such that

F =

N⋃
i=1

Si(F ).

Our focus is a related family of fractals known as inhomogeneous attractors that were

introduced independently by Barnsley [4] and Hata [41] in 1985. If we fix a compact set

C ⊆ X, then there exists a unique non-empty compact set FC such that

FC =
N⋃
i=1

Si(FC) ∪ C.

FC is called an inhomogeneous attractor with condensation set C [4]. In the affine setting,

we say FC is an inhomogeneous self-affine set.

It is possible to express FC in a more explicit way with some symbolic notation. Hereafter,

let I = {Si}Ni=1 denote an IFS and I = {1, . . . , N}. We write Si = Si1 ◦ · · · ◦ Sik for

11



i = (i1, i2, . . . , ik) ∈ Ik. Furthermore, let

I∗ =
∞⋃
k=1

Ik

denote the set of finite words over I. An elegant formula for FC , seen in [4, 61], is

FC = F∅ ∪ O,

where F∅ is the homogeneous attractor corresponding to C = ∅, and O is the orbital set

defined by

O = C ∪
⋃
i∈I∗

Si(C).

Intuitively, O is the union of all images of C built via composition of maps from I.

Since their introduction in 1985, inhomogeneous attractors have received further atten-

tion in, for example, [1, 6, 29, 30, 46, 61, 64]. A natural question explored in recent work

concerns the relationship between the dimensions of FC , C and F∅. In particular, one

may wonder in what situations

dimFC = max {dimF∅,dimC} , (2.1.1)

where dim denotes some notion of dimension. For dimensions satisfying countable sta-

bility, such as the Hausdorff or packing dimensions, this is immediate. Consequently,

the recent focus has been on if or when the box-counting dimension, a popular example

of a dimension that is not countably stable, satisfies (2.1.1) and so coincides with the

Hausdorff dimension. In the case of lower box-counting dimension, (2.1.1) fails to hold

generally even for self-similar systems satisfying the strong separation condition [29].

Thus, subsequent works have focussed solely on the upper box-counting dimension.
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In [1, 29, 61, 64], (2.1.1) is proven to hold in various situations for the upper box-

counting dimension in the case when I consists of similarity mappings. However, (2.1.1)

may still fail for self-similar sets with overlaps [1] and specific self-affine settings [30]. In

the nonlinear setting, we provide bounds on dimBFC for systems containing arbitrary

bi-Lipschitz maps in Section 2.2. Corollaries of this result establish (2.1.1) for some low-

dimensional affine systems and those satisfying bounded distortion, such as conformal

systems (see [24] for definitions). We then consider affine systems of arbitrary dimension

in Section 2.3.

The typical strategy used to approach (2.1.1), introduced in [29], is to establish bounds

of the form

max
{

dimBF∅,dimBC
}
≤ dimBFC ≤ max

{
s,dimBC

}
, (2.1.2)

where s ∈ R is a natural estimate for dimBF∅, such as similarity dimension in the self-

similar case [29]. This exploits existing literature on the equality of s and dimBF∅, which

may then determine precise conditions for equality depending on context. In the first

of our two settings, we introduce a quantity that arises in various forms throughout the

literature to serve as s, which we call upper Lipschitz dimension. For affine systems, one

may suspect the affinity dimension of Falconer [14] is a sensible choice of s, and we prove

this to be the case in Theorem 2.3.4. Since the affinity dimension springs up in both the

non-linear and affine sections, we conclude this section with its definition.

The affinity dimension is derived from Falconer’s singular value function that was intro-

duced in [14]. The singular values of A ∈ GL(R, n) are written αj(A) (or simply αj) and

correspond to the lengths of the mutually perpendicular principal axes of A(B), where

B denotes a ball of unit diameter in Rn [14]. Alternatively, they are the positive square

roots of the eigenvalues of AAT . We adopt the convention 1 > α1 ≥ α2 ≥ · · · ≥ αn > 0.
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For 0 ≤ s ≤ n, the singular value function of A ∈ GL(R, n) is given by

φs(A) = α1(A)α2(A) · · ·αm(A)s−m+1,

where m ∈ Z satisfies m− 1 < s ≤ m. As in [14], we define φs(A) = (detA)s/n for s > n

and set φs(S) = φs(A), where A is the linear component of an affine map S.

Then, for each k ∈ N, define sk to be the solution of

∑
i∈Ik

φsk(Si) = 1,

for which the corresponding limit

s := lim
k→∞

sk

exists and is known as the affinity dimension associated with I.

2.2 Nonlinear iterated function systems

Throughout this section, let I = {Si}Ni=1 be an IFS consisting of bi-Lipschitz maps and

C ⊆ X be compact. To obtain (2.1.2) for general classes of maps we first construct an

appropriate analogue of similarity dimension. For S : X → X, let

Lip+(S) = sup
x,y∈X
x 6=y

d(S(x), S(y))

d(x, y)

and

Lip−(S) = inf
x,y∈X
x 6=y

d(S(x), S(y))

d(x, y)

denote the upper and lower Lipschitz constants respectively. Since S is a bi-Lipschitz

contraction, recall that 0 < Lip−(S) ≤ Lip+(S) < 1.

14



We proceed in a similar way as for the affinity dimension, but instead define sk to be the

solution of ∑
i∈Ik

Lip+(Si)
sk = 1 (2.2.1)

for each k ∈ N. We then call the corresponding limit,

s = lim
k→∞

sk,

the upper Lipschitz dimension. A similar, but not identical, construction may be found

in work of Edgar and Golds [12]. The existence of this limit follows by considering the

pressure function P (t) = lim
k→∞

Pk(t) where

Pk(t) =
1

k
log
∑
i∈Ik

Lip+(Si)
t.

Subadditivity and Fekete’s lemma imply P (t) exists for all t ≥ 0. Moreover, it is well

known P is continuous, monotonically decreasing and has a unique zero. Since Pk → P

pointwise, it follows that the upper Lipschitz dimension exists and is equal to the zero

of P . For further details on pressure functions and techniques from thermodynamic

formalism we direct the reader to [16, Chapter 5] and the references therein.

2.2.1 Dimension

Our main result of this section establishes bounds on the upper box-counting dimen-

sion of FC for general IFSs consisting of bi-Lipschitz contractions. The methodology of

Fraser relies heavily on the multiplicativity of the pressure function for similarities, which

presents complications in the general case. To overcome this, we show that dimension

is invariant under passing to a derived system that may be chosen to have desirable

properties relating to the quantity s1 defined above.
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Lemma 2.2.1. For all k ∈ N, the IFS given by Ik = {Si}i∈Ik satisfies

dimBFC = dimBF
k
C ,

where F kC denotes the inhomogeneous attractor associated with Ik and C.

Proof. Fix k ∈ N and observe that

F∅ =
⋃
i∈I

Si(F∅) =
⋃
i1∈I

⋃
i2∈I

Si1(Si2(F∅)) = · · · =
⋃
i∈Ik

Si(F∅)

and so F∅ = F k∅ , where F k∅ denotes the unique homogeneous attractor associated with

Ik. Recall that FC = F∅ ∪ O and O = C ∪
⋃

i∈I∗
Si(C). Hence,

FC = F∅ ∪ C ∪
⋃
i∈I∗

Si(C)

and

F kC = F∅ ∪ C ∪
⋃

i∈(Ik)∗
Si(C),

where (Ik)∗ denotes all finite concatenations of length k words over I. Thus, by finite

stability of box-counting dimension, it suffices to show

dimB

⋃
i∈I∗

Si(C) ≤ dimB

⋃
i∈(Ik)∗

Si(C), (2.2.2)

since the opposite inequality follows immediately by monotonicity. Observe

dimB

⋃
i∈I∗

Si(C) = max
t=1,...,k

dimB

⋃
i∈I∗
|i|=nk+t
n≥0

Si(C),
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and let m be the value of t that realises the maximum. First, note that

dimBC = dimBSi(C) ≤ dimB

⋃
i∈(Ik)∗

Si(C) (2.2.3)

for all i ∈ I∗, since Si is bi-Lipschitz.

Hence

dimB

⋃
i∈I∗

Si(C) = dimB

∞⋃
n=0

⋃
i∈I∗

|i|=nk+m

Si(C)

= dimB

⋃
j∈Im

Sj(C) ∪
⋃

i∈(Ik)∗
(Sji(C))


= dimB

⋃
j∈Im

Sj

C ∪ ⋃
i∈(Ik)∗

(Si(C))


= max

j∈Im
dimBSj

C ∪ ⋃
i∈(Ik)∗

(Si(C))


≤ max{dimBC,dimB

⋃
i∈(Ik)∗

Si(C)}

≤ dimB

⋃
i∈(Ik)∗

Si(C)

by (2.2.3).

This has the following corollary that is fundamental to our approach. In the following

few results, recall the definition of sk given by (2.2.1).

Corollary 2.2.2. For t > max{s, dimBC}, there exists a K ∈ N such that t > sk for all

k > K, and each IFS given by Ik = {Si}i∈Ik satisfies

dimBFC = dimBF
k
C .
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Proof. Since sk → s, there exists K ∈ N such that |s − sk| ≤ t−s
2 for all k > K. The

result then follows immediately from Lemma 2.2.1.

The next Lemma is analogous to [29, Lemma 3.2] and illustrates the motivation for

Corollary 2.2.2.

Lemma 2.2.3. If t > s1, then there exists a constant bt such that

∑
i∈I∗

Lip+(Si)
t = bt <∞.

Proof. Observe that t > s1 implies

∑
i∈I

Lip+(Si)
t < 1.

Hence

∑
i∈I∗

Lip+(Si)
t =

∞∑
k=1

∑
i∈Ik

Lip+(Si)
t

≤
∞∑
k=1

(∑
i∈I

Lip+(Si)
t

)k
<∞,

by convergence of the geometric series.

A natural way to construct efficient δ-covers is to consider the finite set of cylinders Si(X)

such that Lip+(Si) < δ and Lip+(Sip) ≥ δ for any prefix ip of i. For i = (i1, ..., ik) ∈ I∗

we let i− = (i1, ..., ik−1) and write |i| to denote the length of the string i. If δ ∈ (0, 1], we

define the δ-stopping, denoted I(δ), by

I(δ) = {i ∈ I∗ : Lip+(Si) < δ ≤ Lip+(Si−)},
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and assume for convenience that Lip+(Sω) = 1, where ω denotes the empty word. If

i ∈ I∗ satisfies Lip+(Si) < δ, then it is clear there exists a prefix ip such that ip ∈ I(δ).

To establish a bound on |I(δ)| in our next lemma, it is useful to set

Lmin = min
i∈I

Lip−(Si) > 0.

Lemma 2.2.4. If t > s1, then

|I(δ)| ≤ btL−tminδ
−t

for all δ ∈ (0, 1].

Proof. For i ∈ I(δ), we have

Lip+(Si) ≥ Lip+(Si−)Lmin ≥ δLmin > 0. (2.2.4)

Hence

bt ≥
∑

i∈I(δ)

Lip+(Si)
t ≥

∑
i∈I(δ)

(δLmin)t = |I(δ)|(δLmin)t

and the desired inequality follows immediately.

This yields an alternative and succinct proof of the well-known result that the dimension

of the homogeneous attractor is bounded above by the upper Lipschitz dimension.

Lemma 2.2.5. dimBF∅ ≤ s, where s denotes the upper Lipschitz dimension of I.

Proof. Fix δ ∈ (0, 1] and let t > s be arbitrary. By Corollary 2.2.2, we may assume

t > s1 without loss of generality. This is because F∅ may be replaced with a set of equal
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dimension F k∅ for some sufficiently large k with sk < t. The result then follows from

Lemma 2.2.4, since the cylinder sets {Si(X) : i ∈ I(δ)} form a δ-cover of F∅, and so

Nδ(F∅) ≤ |I(δ)| ≤ btL−tminδ
−t.

For clarity in our later calculation, we provide one further lemma.

Lemma 2.2.6. For δ ∈ (0, 1], we have

⋃
i∈I∗

Lip+(Si)<δ

Si(C) ⊆
⋃

i∈I(δ)

Si(X).

Proof. If

x ∈
⋃
i∈I∗

Lip+(Si)<δ

Si(C)

there exists some i = (i1, i2, . . . , in) ∈ I∗ with Lip+(Si) < δ and a c ∈ C such that

x = Si(c). Let ip = (i1, i2, . . . , ip) denote the prefix of i with ip ∈ I(δ), then x =

Sip(S(ip+1,ip+2,...,in)(c)) ∈ Sip(X), as required.

Theorem 2.2.7. Let (X, d) be a compact metric space and I = {Si}Ni=1 denote an IFS

consisting of bi-Lipschitz maps with compact condensation set C ⊆ X. We have

max{dimBF∅, dimBC} ≤ dimBFC ≤ max
{
s,dimBC

}
,

where s is equal to the upper Lipschitz dimension.

Proof. Monotonicity of upper box-counting dimension implies

max{dimBF∅, dimBC} ≤ dimBFC ,
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since F∅∪C ⊆ F∅∪O = FC . Moreover, by finite stability of upper box-counting dimension

we have

dimBFC ≤ max{dimBF∅, dimBO}.

Hence, since dimBF∅ ≤ s by Lemma 2.2.5, it suffices to show

dimBO ≤ max{s, dimBC},

where s denotes the upper Lipschitz dimension.

Let t > max{s, dimBC}. By Corollary 2.2.2, since our interest is in dimBFC , we can

assume hereafter that t > s1 by passing to a derived system FKC with t > sK for some

sufficiently large K ∈ N, without loss of generality.

The definition of box-counting dimension implies that there exists a constant ct such that

Nδ(C) ≤ ctδ−t (2.2.5)

for all δ ∈ (0, 1]. Further, since X is compact, N1(X) is a finite constant that does not

depend on t. Hence

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si(C)

)

≤ Nδ(C) +Nδ

 ⋃
i∈I∗

Lip+(Si)≥δ

Si(C)

+Nδ

 ⋃
i∈I∗

Lip+(Si)<δ

Si(C)


≤ Nδ(C) +

∑
i∈I∗

Lip+(Si)≥δ

Nδ(Si(C)) +Nδ

 ⋃
i∈I(δ)

Si(X)

 (by Lemma 2.2.6)

≤ Nδ(C) +
∑
i∈I∗

Lip+(Si)≥δ

Nδ(Si(C)) +
∑

i∈I(δ)

Nδ(Si(X))
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≤ Nδ(C) +
∑
i∈I∗

Lip+(Si)≥δ

Nδ/Lip+(Si)
(C) +

∑
i∈I(δ)

Nδ/Lip+(Si)
(X)

≤ ctδ−t +
∑
i∈I∗

Lip+(Si)≥δ

ct(δ/Lip+(Si))
−t +

∑
i∈I(δ)

N1(X)

≤ ctδ−t + ctδ
−t
∑
i∈I∗

Lip+(Si)
t + |I(δ)|N1(X)

≤ ctδ−t + ctδ
−tbt + btL

−t
minδ

−tN1(X) (by Lemmas 2.2.3 and 2.2.4)

≤ δ−t(ct + ctbt + btL
−t
minN1(X)).

If we make a few further assumptions we are able to obtain some stronger corollaries in

popular contexts, such as conformal and low dimensional affine systems. For example, we

may wish to consider applications in which s = dimBF∅, that is, where (2.1.1) is satisfied.

One such scenario involves the notion of bounded distortion. An IFS I = {Si}Ni=1 satisfies

the property of bounded distortion if there exists some uniform constant L > 1 such that

Lip+(Si)

Lip−(Si)
< L,

for all i ∈ I∗. Lemma 2.2.5 and a simple modification of [17, Proposition 9.7] imply that

bounded distortion together with the SOSC force s = dimBF∅. This immediately yields

the following corollary of Theorem 2.2.7.

Corollary 2.2.8. Let (X, d) be a compact metric space and I = {Si}Ni=1 denote an IFS

satisfying bounded distortion with compact condensation set C ⊆ X. If I satisfies the

SOSC, then

dimBFC = max
{

dimBF∅, dimBC
}
.
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Moreover, Theorem 2.2.7 provides an extremely succinct proof of (2.1.2) with s equal

to the affinity dimension if s ≤ 1. This is because, if the affinity dimension is less than

or equal to one, then it coincides with the upper Lipschitz dimension, since Lip+(S)

corresponds to the largest singular value of the linear component of S.

Corollary 2.2.9. Let I = {Si}Ni=1 be an affine IFS with compact condensation set C ⊆ X

and affinity dimension s. If s ≤ 1, then

max
{

dimBF∅,dimBC
}
≤ dimBFC ≤ max

{
s,dimBC

}
.

In particular, Corollary 2.2.9 implies that if the affinity dimension is less than or equal

to one and equals dimBF∅, then (2.1.1) is satisfied. Falconer shows in [14] that the

affinity and upper box-counting dimensions coincide almost surely upon randomizing

the translations, even if the SOSC fails, and it follows from recent results of Bárány,

Hochman and Rapaport [3] that mild assumptions are sufficient to force equality in the

plane. For a more detailed discussion, see [10]. However, it is worth noting that (2.1.1)

does not always hold in the affine setting. In particular, from the results of Fraser [30],

it is possible to construct simple examples of inhomogeneous self-affine sets with affinity

dimension s < 1 satisfying

max
{

dimBF∅,dimBC
}
< dimBFC < max

{
s,dimBC

}
.

2.2.2 Measure

It has been of historical interest (e.g. [17]) to compute Ht(F ) when t = dimH F . It

may well be zero, finite or infinite. Recall that countable stability and monotonicity of

23



Hausdorff dimension [17] readily imply that

dimH FC = max{dimH F∅, dimHC},

and we investigate Ht(FC) in each case. Although we omit the details, the following re-

sults extend to any family of measures satisfying the scaling property and their associated

dimension, such as packing measures.

It turns out similar methods to those in the last section may be used. First, we prove

two technical lemmas that mirror the strategy Lemma 2.2.2 allowed for dimension.

Lemma 2.2.10. Let t ≥ 0 and suppose Ht(C) < ∞. For all K ∈ N and 1 ≤ a, b ≤ K,

we have

Ht
 ∞⋃
n=0

⋃
i∈Ia+nK

Si(C)

 <∞ ⇐⇒ Ht
 ∞⋃
n=0

⋃
i∈Ib+nK

Si(C)

 <∞.

Proof. Fix K ∈ N and let

Lk = max
i∈Ik

Lip+(Si)

for k ∈ N. If 0 < a, b ≤ K are distinct, we have

Ht
 ∞⋃
n=0

⋃
i∈Ia+nK

Si(C)


≤ Ht

 ⋃
u∈Ia

Su(C) ∪
∞⋃
n=0

⋃
i∈IK−b+a

⋃
j∈Ib+nK

Sij(C)


≤
∑
u∈Ia

Ht(Su(C)) +
∑

i∈IK−b+a
Ht
Si

 ∞⋃
n=0

⋃
j∈Ib+nK

Sj(C)


≤ NaLtaHt(C) +NK−b+aLtK−b+aHt

 ∞⋃
n=0

⋃
j∈Ib+nK

Sj(C)

 ,
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by numerous applications of the scaling property of Hausdorff measure. The result follows

since a and b were arbitrary and may be interchanged.

Lemma 2.2.11. Let t ≥ 0 and suppose Ht(C) <∞. Then Ht(O) is finite if and only if

Ht
 ∞⋃
n=1

⋃
i∈InK

Si(C)


is finite for some K ∈ N.

Proof. Let K ∈ N and observe

Ht(O) = Ht
C ∪ K⋃

m=1

∞⋃
n=0

⋃
i∈InK+m

Si(C)


≤ Ht(C) +

K∑
m=1

Ht
 ∞⋃
n=0

⋃
i∈InK+m

Si(C)

 ,

and so if

Ht
 ∞⋃
n=0

⋃
i∈InK+K

Si(C)

 = Ht
 ∞⋃
n=1

⋃
i∈InK

Si(C)

 <∞,

then Lemma 2.2.10 implies Hs(O) is also finite. The opposite implication follows by

monotonicity.

Note that if Ht(C) = 0 or Ht(C) = ∞, then Ht(FC) = Ht(F∅) and Ht(FC) = ∞,

respectively, recalling that t = dimH FC . Thus, our main theorem deals with the case

where Ht(C) is positive and finite. For the problem to be tractable, some separation

conditions are required. A natural choice is the condensation open set condensation

(COSC), a modification of the SOSC adapted for the inhomogeneous case, as utilised in

[10, 46, 61, 64].
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An IFS satisfies the COSC if there exists an open set U with

C ⊂ U \
N⋃
i=1

Si(U),

such that Si(U) ⊂ U for i = 1, . . . , N , and i 6= j =⇒ Si(U) ∩ Sj(U) = ∅.

Theorem 2.2.12. Let (X, d) be a compact metric space and I = {Si}Ni=1 denote an

IFS with compact condensation set C ⊆ X and upper Lipschitz dimension s. Suppose

t = dimBFC and 0 < Ht(C) <∞. It follows that

i) if t > s, then 0 < Ht(FC) <∞;

ii) if I satisfies the COSC, then

Ht(FC) ≥ Ht(F∅) +Ht(C)

1 +
∞∑
k=1

(∑
i∈I

Lip−(Si)
t

)k
and

Ht(FC) ≤ Ht(F∅) +Ht(C)

1 +
∞∑
k=1

(∑
i∈I

Lip+(Si)
t

)k .

Proof. Let I = {Si}Ni=1 be an IFS and C ⊆ X be compact.

(i) We first note that

Ht(F∅) = 0,

since s < t implies dimH F∅ ≤ dimBF∅ ≤ s < t. Hence,

Ht(FC) ≤ Ht(F∅) +Ht(O) = Ht(O).
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Thus, it suffices to show that

Ht
 ∞⋃
n=1

⋃
i∈InK

Si(C)

 <∞

for some K ∈ N by Lemma 2.2.11. Since t > s, it is possible to choose K ∈ N such that

t > sK (see (2.2.1)), implying

∑
i∈IK

Lip+(Si)
t <

∑
i∈IK

Lip+(Si)
sK = 1.

It follows that

Ht
 ∞⋃
n=1

⋃
i∈InK

Si(C)

 ≤ ∞∑
n=1

∑
i∈InK

Ht (Si(C))

≤ Ht(C)

∞∑
n=1

∑
i∈InK

Lip+(Si)
t

≤ Ht(C)
∞∑
n=1

∑
i∈IK

Lip+(Si)
t

n

which is a convergent geometric series and so finite, as required.

(ii) Suppose I satisfies the COSC, then

Ht(Si(C) ∩ Sj(C)) = 0 (2.2.6)

and

Ht(F∅ ∩ Si(C)) = 0

for every i 6= j ∈ I∗. Hence

Ht(FC) = Ht(F∅) +Ht(O)
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= Ht(F∅) +Ht(C) +

∞∑
k=1

∑
i∈Ik
Ht(Si(C))

≥ Ht(F∅) +Ht(C)

1 +
∞∑
k=1

∑
i∈Ik

Lip−(Si)
t


≥ Ht(F∅) +Ht(C)

1 +

∞∑
k=1

(∑
i∈I

Lip−(Si)
t

)k ,

and the corresponding inequality with Lip+(Si) follows similarly.

Theorem 2.2.12 yields a pleasing closed form expression for inhomogeneous self-similar

sets, as studied in [29, 46, 64].

Corollary 2.2.13. Let (X, d) be a compact metric space and I = {Si}Ni=1 denote an IFS

consisting of similarities satisfying the COSC with compact condensation set C ⊆ X and

similarity dimension s. If t = dimH FC > s and 0 < Ht(C) <∞, then

Ht(FC) =
Ht(C)

1−
∑
i∈I

Lip(Si)t
.

Proof. For a similarity S, we have Lip+(S) = Lip−(S), and the result follows immediately

from Theorem 2.2.12 (ii), since the upper Lipschitz and similarity dimensions coincide.

We hope the above may prompt future work. In particular, it would be interesting to

discover alternative conditions to the COSC that control the sensitive interaction between

F∅ and O while yielding similar results.
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2.3 Affine iterated function systems

The purpose of this section is to establish (2.1.2) for affine systems with s equal to

the affinity dimension and establish settings where (2.1.1) holds, drawing on work from

[10]. This improves and unifies previous results on inhomogeneous self-affine carpets

[30], and may be considered an inhomogeneous analogue of Falconer’s seminal result on

homogeneous self-affine sets. Throughout this section, we fix a compact ball B ⊂ Rn

such that Si(B) ⊂ B for i = 1, . . . N and C ⊆ B. Such a ball always exists and without

loss of generality, we may assume that B has unit diameter.

In Section 2.2 we saw that if the affinity dimension s is less than or equal to one and

coincides with dimBF∅, then

dimBFC = max
{

dimBF∅, dimBC
}
. (2.3.1)

This is an immediate corollary of Theorem 2.2.7. Otherwise, if the affinity dimension is

greater than one it is elementary to see that it is strictly less than the upper Lipschitz

dimension. Thus, establishing (2.1.2) for affinity dimension constitutes a natural and

strictly improved bound for affine systems in comparison to the universal bound from

Section 2.2.

We begin some technical lemmas, starting with a minor variation on Lemma 2.2.6. Here,

and throughout, we require the definition of m-δ-stoppings that generalise δ-stoppings to

the affine setting. For each 1 ≤ m ≤ n and δ ∈ (0, 1], define the m-δ-stopping to be

Im(δ) = {i ∈ I∗ : αm(Si) < δ ≤ αm(Si−)},

where i− = (i1, . . . , ik−1) for i = (i1, . . . , ik).
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Lemma 2.3.1. For δ ∈ (0, 1] and 1 ≤ m ≤ n, we have

⋃
i∈I∗

δ>αm(Si)

Si(C) ⊆
⋃

i∈Im(δ)

Si(B). (2.3.2)

Proof. For

x ∈
⋃
i∈I∗

δ>αm(Si)

Si(C),

there exists some i = (i1, . . . , ik) ∈ I∗ such that x ∈ Si(C) and δ > αm(Si). Since

δ > αm(Si), there also exists some prefix ip of i with ip ∈ Im(δ), and so let us consider

the concatenation i = ipj. If j = ∅, then i ∈ Im(δ). Else, there exists some c such that

x = Si(c) = Sip(Sj(c)) ∈ Sip(B) as required.

Figure 2.1: Covering a cuboid of sidelengths a > b > c in R3 with cubes of sidelength b.

For our next lemma, the following simple geometric observation may aid the reader less

familiar with the classical arguments on self-affine sets found in [14] or [17]. Consider an

ellipsoid E with principal axes of lengths l1, . . . , ln. For dimension calculations, we are

interested in obtaining an estimate of the number of hypercubes of a given sidelength

required to cover such ellipsoids. Constants are typically inconsequential, so often a

coarse estimate suffices. The minimum number of hypercubes of sidelength lm required
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to cover E is at most

(
l1
lm

+ 1

)
· · ·
(
lm−1
lm

+ 1

)
≤ 2n

l1
lm

l2
lm
· · · lm−1

lm
= 2nl1l2 · · · lm−1l−m+1

m . (2.3.3)

This can be seen by first covering E by a minimal hypercuboid of sidelengths equal

to the principal axes of E and then covering this optimally. Figure 2.1 illustrates this

for a cuboid of sidelengths a > b > c in R3. Specifically, we see that 2a/b cubes of

sidelength b would suffice, whereas we would require a single cube of sidelength a or at

most 22(a/c)(b/c) cubes of sidelength c.

Lemma 2.3.2. Fix 1 ≤ m ≤ n and let i ∈ I∗ be such that αm(Si) < δ. Then

Nδ(Si(B)) ≤ 2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)
.

Proof. First note that Si(B) is an ellipsoid with principal axes having lengths equal to

the singular values of Si. The result then follows follows immediately from the geometric

observation described by equation (2.3.3).

Lemma 2.3.3. Let dimBC ≤ t ≤ n and m ∈ Z be the integer satisfying m− 1 < t ≤ m.

If i ∈ I∗ is such that αm(Si) ≥ δ, then

Nδ(Si(C)) ≤ 2nAtδ
−tφt(Si),

where At is a constant depending only on t.

Proof. The image under Si of a cover of C by balls of diameter δ/αm(Si) is a cover of

Si(C) by ellipsoids with the m largest principal axes of lengths

αi(Si)

(
δ

αm(Si)

)
= δ

αi(Si)

αm(Si)
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for i = 1, . . . ,m, the smallest of which has length δ. Each such ellipsoid can be covered

by at most

2δ α1(Si)
αm(Si)

δ

2δ α2(Si)
αm(Si)

δ
· · ·

2δαm−1(Si)
αm(Si)

δ
≤ 2n

α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

hypercubes of sidelength δ. Hence

Nδ(Si(C)) ≤ Nδ/αm(Si)(C)

(
2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

)
≤ At

(
δ

αm(Si)

)−t(
2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

)
= 2nAtδ

−tφt(Si)

as required.

This prepares us to state and prove our main result of this section. It may be considered

an inhomogeneous analogue of Falconer’s result on homogeneous self-affine sets [14] that

established the affinity dimension as an upper bound on dimBF∅.

Theorem 2.3.4. Let FC ⊂ Rn be an inhomogeneous self-affine set with compact con-

densation set C ⊂ Rn. Then

max
{

dimBF∅, dimBC
}
≤ dimBFC ≤ max

{
s,dimBC

}
,

where s is the affinity dimension associated with the underlying IFS.

Proof. Let I = {Si}Ni=1 be an affine IFS and C ⊆ B be compact. Denote the affinity

dimension of I by s and assume s ≤ n, since if s > n the result is trivial. It follows

immediately from the definition of box-counting dimension that for t > dimBC there
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exists a constant At satisfying

Nδ(C) ≤ Atδ−t (2.3.4)

for all δ ∈ (0, 1]. In addition, if t > s, then

Bt :=
∑
i∈I∗

φt(Si) <∞ (2.3.5)

by [14, Proposition 4.1 (c)], where Bt depends only on t. We fix a constant b ∈ R

satisfying

0 < b < min
i=1,...,N

αn(Si) < 1,

and note for any δ ∈ (0, 1], 1 ≤ m ≤ n and i ∈ Im(δ), we have

δ ≥ αm(Si) ≥ αm(Si−)b ≥ δb. (2.3.6)

Monotonicity and finite stability of upper box-counting dimension imply

max
{

dimBF∅,dimBC
}
≤ dimBFC ≤ max

{
dimBF∅,dimBO

}
and so it suffices to show that

dimBO ≤ max
{
s, dimBC

}
,

since it is well known (see [17, Theorem 9.12]) that s ≥ dimBF∅. Fix δ ∈ (0, 1] and

t > max{s,dimBC}. If max{s, dimBC} ≥ n then the result is trivial, so we may assume

t ≤ n. For m ∈ Z satisfying m− 1 < t ≤ m, we have

δtNδ(O) = δtNδ

(
C ∪

⋃
i∈I∗

Si(C)

)
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≤ At + δtNδ

 ⋃
i∈I∗

αm(Si)≥δ

Si(C)

+ δtNδ

 ⋃
i∈I∗

αm(Si)<δ

Si(C)

 (using (2.3.4))

≤ At + δt
∑
i∈I∗

αm(Si)≥δ

Nδ(Si(C)) + δt
∑

i∈Im(δ)

Nδ (Si(B)) (by Lemma 2.3.1)

≤ At + δt
∑
i∈I∗

αm(Si)≥δ

2nAtδ
−tφt(Si)

+ δt
∑

i∈Im(δ)

2n
α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)
(by Lemmas 2.3.2 and 2.3.3)

≤ At + 2nAt
∑
i∈I∗

αm(Si)≥δ

φt(Si)

+ 2n
∑

i∈Im(δ)

α1(Si)

αm(Si)

α2(Si)

αm(Si)
· · · αm−1(Si)

αm(Si)

αm(Si)
t

bt
(using (2.3.6))

≤ At + 2nAt
∑
i∈I∗

αm(Si)≥δ

φt(Si) +
2n

bt

∑
i∈Im(δ)

φt(Si)

≤ At + 2nBt
(
At + b−t

)
(using (2.3.5)).

Hence,

logNδ(O)

− log δ
≤ t+

log
(
At + 2nBt

(
At + b−t

))
− log δ

,

from which the result follows as δ → 0.

The following corollary is immediate.

Corollary 2.3.5. Let FC ⊂ Rn be an inhomogeneous self-affine set with compact con-

densation set C ⊂ Rn and let s be the associated affinity dimension. Then

1. if dimBF∅ = s, then dimBFC = max
{

dimBF∅, dimBC
}

,

2. if dimBC ≥ s, then dimBFC = dimBC.
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Establishing precise conditions for the affinity dimension to coincide with dimBF∅ is a

major open problem in fractal geometry and has been the focus of considerable amounts of

work, for example [3, 14, 15, 28, 30, 35, 43, 45]. Therefore there are numerous explicit and

non-explicit situations where Corollary 2.3.5 provides a precise result, and an affirmative

solution to (2.1.1) in the self-affine setting. For example, a well-known result by Falconer

[14] states that s = dimBF∅ = dimH F∅ almost surely if one randomises the translation

vectors associated with the affine maps, provided the linear parts all have norm strictly

bounded above by 1/2, see also [45]. Falconer proved in a subsequent paper that if

F∅ ⊂ R2 satisfies some separation conditions and contains a connected component not

contained in a straight line, then s = dimBF∅ holds, see [15, Corollary 5]. In addition,

the aforementioned result of Bárány, Hochman and Rapaport [3] proves s = dimBF∅ =

dimH F∅ in the planar case assuming only strong separation, together with mild non-

compactness and irreducibility assumptions on the linear components of the maps Si.

The next result explores the case where dimBFC > max{dimBF∅, dimBC}, that is when

(2.1.1) fails. This is an exploration of conditions under which C compensates for dimen-

sion drop between s and dimBF∅.

Theorem 2.3.6. Let I = {Si}Ni=1 denote an affine IFS with affinity dimension s ≤ n

and condensation set C ⊂ Rn satisfying the COSC. If dimBC ≥ n − 1 and there exists

κ > 0 such that for all δ ∈ (0, 1] and i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(B)),

then

dimBFC = max
{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s,dimBC

}
.
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Proof. Fix δ ∈ (0, 1) and recall that s denotes the affinity dimension of I. It is stated in

[15] that for t < s there exists ct > 0 with

∑
In(δ)

φt(Si) ≥ ct (2.3.7)

for some constant ct that does not depend on δ. This follows immediately from [14,

Proposition 4.1 (a)]. Since we assume dimBC ≥ n − 1, if s ≤ n − 1, then Theorem

2.3.4 implies that dimBFC = dimBC = max{s, dimBC}, and also dimBFC ≥ dimBC =

max{s, dimBC}. Thus, henceforth we assume that n− 1 < t < s ≤ n.

Let U denote the open set satisfying the COSC. Compactness of C implies that there

exists some constant η > 0 with

inf

{
|x− y| : x ∈ C, y ∈

N⋃
i=1

Si(U) ∪ (Rn \ U)

}
= 2η.

Let B(C, η) denote a closed η-neighborhood of C and E be a hypercube of sidelength δ

in a minimal δ-cover of O. For i ∈ In(δ), we have Si(B(C, η)) is a neighborhood of Si(C)

satisfying

Si(B(C, η)) ∩ FC = Si(C)

and

inf{|x− y| : x ∈ Si(C), y /∈ Si(B(C, η))} ≥ αn(Si)η > bδη,

implying

inf{|x− y| : x ∈ Si(C), y ∈ Sj(C) such that i, j ∈ In(δ), i 6= j} > 2bδη.

Let Vn denote the constant such that the volume of an n-sphere of radius 2bηδ is Vnδ
n.

For the sets in {Si(C) : i ∈ In(δ)} that intersect E we can associate pairwise disjoint open

sets in E of volume at least Vnδ
n/2n (with this lower bound obtained at the vertices)
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and it therefore follows by a simple volume argument that E can intersect at most

δn

1
2nVnδ

n
= (2−nVn)−1

of the sets {Si(C) : i ∈ In(δ)}.

Hence

Nδ(O) ≥ 2−nVn
∑

i∈In(δ)

Nδ(Si(C)). (2.3.8)

Our assumption on C implies that for i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(B))

≥ κbnNbδ(Si(B))

≥ κbnNαn(Si)(Si(B))

≥ κbncα1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
(2.3.9)

for some constant c > 0 only depending on n. This yields

Nδ(O) ≥ 2−nVn
∑

i∈In(δ)

Nδ(Si(C)) (using (2.3.8))

≥ 2−nVn
∑

i∈In(δ)

κbnc
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
(using (2.3.9))

= κbnc2−nVn
∑

i∈In(δ)

φt(Si)αn(Si)
−t

≥ κbnc2−nVnδ−t
∑

i∈In(δ)

φt(Si)

≥ κbnc2−nVnctδ−t (by (2.3.7)).

Hence dimBO ≥ t, from which it follows that dimBFC ≥ dimBFC ≥ dimBO ≥ s, proving

the theorem.

37



Note that the condition of the theorem is independent of the choice of ball B, although

the constant κ may change. The fact that we only get bounds for the lower box-counting

dimension of FC should not come as a surprise and one should not expect to be able to

improve these bounds in general, see [29]. Note that if, in the setting of Theorem 2.3.6,

the box-counting dimension of C exists, then so does the box-counting dimension of FC .

The assumption in Theorem 2.3.6 arises in quite natural circumstances. For example,

the setting of the following proposition, an inhomogeneous analogue of Falconer’s [15,

Proposition 4], requires only that C be in some sense robust under projection onto

subspaces. Let Lk denote k-dimensional Lebesgue measure and Pk denote the set of

orthogonal projections onto k-dimensional subspaces of Rn.

Proposition 2.3.7. Let FC ⊂ Rn be an inhomogeneous self-affine set with compact

condensation set C ⊂ Rn satisfying the COSC and let s ≤ n be the associated affinity

dimension. If

inf
π∈Pn−1

Ln−1(πC) > 0,

then

dimBFC = max
{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s,dimBC

}
.

Proof. Let I = {Si}Ni=1 denote an affine IFS with compact condensation set C ⊂ Rn

satisfying the COSC. Moreover, suppose

inf
π∈Pn−1

Ln−1(πC) > 0.

By Theorem 2.3.6 it suffices to show that there exists κ > 0 such that for all δ > 0 and
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i ∈ In(δ) we have

Nδ(Si(C)) ≥ κNδ(Si(B)).

Therefore, in order to reach a contradiction, assume that for arbitrarily small κ > 0 we

can find δ > 0 and i ∈ In(δ) such that

Nδ(Si(C)) < κNδ(Si(B)) ≤ κ2n
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
,

where the final inequality comes from Lemma 2.3.2. Let {Ej}j be an optimal cover

of Si(C) by hypercubes of sidelength δ and place each Ej inside a ball Bj of diameter

√
nδ and consider {S−1i Bj}j , which is a cover of C by ellipsoids with axes of length

√
nδ/α1(Si), . . . ,

√
nδ/αn(Si). Note that, for all j, the longest axes of each of these

ellipsoids are all parallel (by the singular value decomposition theorem, for example) and

let π denote projection onto the (n−1)-dimensional hyperplane orthogonal to the common

direction of the longest axes of the ellipsoids {S−1i Bj}j . It follows that {πS−1i Bj}j is a

cover of π(C) by sets, each of which is easily seen to have (n− 1)-volume at most

n(n−1)/2
δ

α1(Si)

δ

α2(Si)
· · · δ

αn−1(Si)

and therefore we can bound the (n− 1)-volume of π(C) above by

κ2n
α1(Si)

αn(Si)

α2(Si)

αn(Si)
· · · αn−1(Si)

αn(Si)
× n(n−1)/2 δ

α1(Si)

δ

α2(Si)
· · · δ

αn−1(Si)

≤ κ2nn(n−1)/2b−(n−1),

using (2.3.6). This contradicts the assumption that inf
π∈Pn−1

Ln−1(πC) > 0 since we can

choose κ arbitrarily small.

The robustness assumption on C in Proposition 2.3.7 forces dimBC ≥ n − 1 and so

this result only yields new information when s > n − 1. Moreover, observe that the
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projection of a connected set in R2 which is not contained in a line onto a line contains

an interval with length uniformly bounded away from 0. This observation yields the

following corollary of Proposition 2.3.7.

Corollary 2.3.8. Let FC ⊂ R2 be an inhomogeneous self-affine set with compact con-

densation set C ⊂ R2 satisfying the COSC and affinity dimension s ≤ 2. If C has a

connected component not contained in a line, then

dimBFC = max
{
s, dimBC

}
and

max {s, dimBC} ≤ dimBFC ≤ max
{
s,dimBC

}
.

The reader may find it interesting to notice the parallels between this result and Falconer’s

[15, Corollary 5], which concerns the equality of dimBF∅ and s under similar conditions

concerning the robustness of connected components under projection. In some sense our

inhomogeneous analogue is easier to use than the homogeneous result of Falconer. Our

result requires a connectedness condition on C, which is given, whereas the homogeneous

result requires one to check a connectedness condition on F∅, which depends delicately

on the IFS. Moreover, the separation assumption makes it difficult for F∅ to be connected

at all. For example, the strong separation condition forces F∅ to be totally disconnected,

but our result can still apply in this setting.

The above results provide new families of inhomogeneous attractors where (2.1.1) fails

for the upper (and lower) box-counting dimension. We illustrate this by example. Let

n = 2 and I = {S1, S2}, where S1, S2 are the linear maps associated with the matrices

1/2 0

1/2 1/2

 ,
1/2 1/2

0 1/2


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respectively. It is clear that the affinity dimension of this system is strictly greater than

one and that F∅ is just a single point at the origin. Let C be the boundary of a circle

centred at (3/4, 3/4) with radius 1/5. It is also clear that the COSC is satisfied by taking

U = (0, 1)2 and that C is connected but not contained in a line, see Figure 2.2. It follows

from Corollary 2.3.8 that

dimBFC = dimBFC = s > 1 = max {dimB F∅, dimBC} .

Figure 2.2: A bouquet of ovals: the condensation set together with the two images of
the open rectangle U = (0, 1)2 (left) and the corresponding inhomogeneous self-affine set
(right).

This is the first counter example to (2.1.1) where F∅ is a single point and the OSC is

satisfied. Moreover, it was shown in [1, Corollary 4.9] that for planar inhomogeneous

self-similar sets one always has

dimBFC ≤ max

{
dimBC, dimBF∅ + dimBC −

dimBF∅dimBC

s

}
,

where s is the similarity dimension. In particular this shows that when dimBF∅ = 0 the

formula (2.1.1) cannot fail. The example presented above shows that this phenomenon

does not extend to the self-affine case. It was also shown in [1, Corollary 4.8] that, in the
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self-similar setting, if max{dimBF∅,dimBC} < s, then dimBFC < s. The above example

also demonstrates that this does not extend to the self-affine setting.

The assumption in Proposition 2.3.7 is by no means necessary, and advancements in the

homogeneous setting may illuminate further the capacity for C to mitigate dimension

drop. Excitingly, we suggest the natural interplay between these questions may allow

further study of inhomogeneous attractors to translate into novel conditions relating to

dimension drop in the homogeneous case.
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Chapter 3

Projections and fractional

Brownian images

3.1 Introduction

Theorems on dimensions of projections of fractals in Euclidean space have a long history.

In 1954 Marstrand [54] proved that the Hausdorff dimension of the orthogonal projections

of a Borel set E ⊂ R2 onto linear subspaces was almost surely constant. More specifically,

dimH πVE = min{dimHE, 1},

for almost all one-dimensional subspaces V , where πV denotes orthogonal projection

onto V . Kaufman gave a potential-theoretic proof of Marstrand’s result [49], and in 1975

Mattila extended it to Borel sets E ⊂ Rn and almost-all subspaces V in the Grassmannian

G(n,m) with respect to the natural invariant probablity measure [55]. These seminal

results set in motion a sustained interest in the behaviour of dimension under projections,

see [17, 56] for basic expositions and [22, 58, 63] for recent surveys.
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It is natural to seek projection results for the various other dimensions that occur through-

out fractal geometry. For example, Järvenpää showed that for the box-counting dimen-

sion an exact analogue of the Marsrand-Mattila result could not hold [44]. However, in

1997 Falconer and Howroyd showed that the upper and lower box-counting dimensions

of the projections of a set are almost surely constant and given by what they termed a

‘dimension profile’ [23, 42], reflecting how a set in Rn appears when viewed from an m-

dimensional perspective for m ∈ {1, . . . , n}. The link to stochastic processes then came

from Xiao [68], who used dimension profiles almost immediately after their introduction

to consider the almost-sure value of the dimensions of fractional Brownian images, a

connection also explored in [18, 50].

However, the dimension profiles were, in their original form, implicitly defined and some-

what awkward to work with, leading to a recent re-working of the theory using a potential-

theoretic approach [18, 19]. In this chapter, we build on the methodology of [18, 19] to

study the intermediate dimensions (see Section 1.4), first to give a definition of these

dimensions in terms of capacities with respect to certain kernels, and then to consider

projections and fractional Brownian images using the associated dimension profiles. To

conclude, some observations and applications are given.

3.2 Capacities and dimension profiles

In this section we introduce a notion of dimension derived from capacities that is closely

related to the intermediate dimensions and which is amenable to studying projections

and fractional Brownian images. The first step in defining potential theoretic concepts

such as the capacity of a set is to choose an appropriate kernel. Throughout, let θ ∈ (0, 1]

and 0 < t ≤ n.
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For 0 ≤ s ≤ t and 0 < r < 1, define the potential kernels

φs,tr,θ(x) =


1 0 ≤ |x| < r(
r
|x|
)s

r ≤ |x| < rθ

rθ(t−s)+s

|x|t rθ ≤ |x|

(x ∈ Rn). (3.2.1)

When s = t, this becomes

φt,tr,θ(x) =


1 0 ≤ |x| < r(
r
|x|
)t

r ≤ |x|
(x ∈ Rn), (3.2.2)

and so corresponds to the kernel φtr(x) used in [18, 19] in the context of box-counting

dimension if t ∈ N. As one would expect, this kernel is also recovered when θ = 1

where φs,tr,θ is independent of s. Note that φs,tr,θ(x) is continuous in x and monotonically

decreasing in |x|. Letting M(E) denote the set of Borel probability measures supported

on E, we say that the energy of µ ∈M(E) with respect to φs,tr,θ is

∫ ∫
φs,tr,θ(x− y) dµ(x)dµ(y)

and the potential of µ at x ∈ Rn is

∫
φs,tr,θ(x− y) dµ(y).

We define the capacity Cs,tr,θ(E) of E to be the reciprocal of the minimum energy achieved

by probability measures on E, that is

Cs,tr,θ(E) =

(
inf

µ∈M(E)

∫ ∫
φs,tr,θ(x− y) dµ(x)dµ(y)

)−1
.

Since φs,tr,θ(x) is continuous in x, strictly positive and E is compact, Cs,tr,θ(E) is positive
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and finite. For bounded sets that are not closed, we take the capacity to be that of the

closure.

A measure that obtains the infimum in the definition of capacity is known as an equilib-

rium measure. The existence of such measures and the relationship between the minimal

energy and the corresponding potentials is standard in classical potential theory. We state

this in a convenient form; it is easily proved for continuous kernels, see, for example, [19,

Lemma 2.1].

Lemma 3.2.1. Let E ⊂ Rn be compact, 0 < t ≤ n, 0 ≤ s ≤ t, θ ∈ (0, 1] and 0 < r < 1.

Then there exists an equilibrium measure µ ∈M(E) such that

∫ ∫
φs,tr,θ(x− y)dµ(x)dµ(y) =

1

Cs,tr,θ(E)
=: β.

Moreover, ∫
φs,tr,θ(x− y)dµ(y) ≥ β

for all x ∈ E, with equality for µ-almost all x ∈ E.

As we will see, these capacities are closely related to the sums considered in Section 3.3.

The following lemma, which parallels Lemma 3.3.1, enables us to define ‘intermediate

dimension profiles’.

Lemma 3.2.2. Let E ⊂ Rn be compact, 0 < t ≤ n, θ ∈ (0, 1] and E ⊂ Rn. If 0 < r < 1,

then for all 0 ≤ s′ ≤ s ≤ t,

−(s− s′) ≤
(

logCs,tr,θ(E)

− log r
− s
)
−
(

logCs
′,t
r,θ (E)

− log r
− s′

)
≤ −θ(s− s′). (3.2.3)

Moreover, there is a unique s ∈ [0, t] such that lim inf
r→0

logC
s,t
r,θ(E)

− log r = s and a unique s ∈ [0, t]

such that lim sup
r→0

logCs,tr,θ(E)

− log r = s.
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Proof. By comparison of the kernels it is easily checked that, for 0 ≤ s′ ≤ s ≤ t,

φs,tr,θ(x) ≤ φs
′,t
r,θ (x) ≤ r(s′−s)(1−θ)φs,tr,θ(x) (x ∈ Rn).

Using the definition of capacity and that an equilibrium measure on E for the kernel φs,tr,θ

is a candidate for an equilibrium measure for φs
′,t
r,θ and vice-versa, we obtain

Cs,tr,θ(E) ≥ Cs
′,t
r,θ (E) ≥ r(s−s′)(1−θ)Cs,tr,θ(E).

Taking logarithms and rearranging gives (3.2.3).

The inequalities (3.2.3) remain true on taking lower limits of the quotients, so

lim inf
r→0

logCs,tr,θ(E)

− log r
− s

is strictly monotonic decreasing and continuous in s ∈ [0, t].

Next, we show

lim inf
r→0

logCt,tr,θ(E)

− log r
− t ≤ 0,

or, equivalently,

Ct,tr,θ(E) ≤ cr−t (3.2.4)

for some fixed c > 0 depending only on E and t. Let 0 < r < 1 and µ be the equilibrium

measure associated with φt,tr,θ. Since E is bounded, there exists a constant B > 1 such

that

|x− y| ≤ B

for all x, y ∈ E.
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Then, directly from the definition,

φt,tr,θ(x− y) =


1 0 ≤ |x− y| < r(

r
|x−y|

)t
r ≤ |x− y|

≥ B−trt

for all x, y ∈ E. Hence,

∫ ∫
φt,tr,θ(x− y) dµ(x)dµ(y) ≥ B−trt,

from which (3.2.4) follows.

Since the kernels are bounded above by 1, C0,t
r,θ(E) ≥ 1, so

lim inf
r→0

logC0,t
r,θ(E)

− log r
− 0 ≥ 0.

We conclude that there is a unique s ∈ [0, t] such that lim inf
r→0

logC
s,t
r,θ(E)

− log r = s, and similarly

argue for the upper limits and s.

Thus, for t ∈ (0, n], we define the lower intermediate dimension profile of E ⊂ Rn as

dimt
θE =

(
the unique s ∈ [0, t] such that lim inf

r→0

logCs,tr,θ(E)

− log r
= s

)
(3.2.5)

and the upper intermediate dimension profile as

dim
t
θE =

(
the unique s ∈ [0, t] such that lim sup

r→0

logCs,tr,θ(E)

− log r
= s

)
. (3.2.6)

When the context is clear, we may write lower dimension profile and upper dimension

profile, for brevity.
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Lemma 3.2.3. The intermediate dimension profiles are increasing in m, that is, for

compact E, θ ∈ (0, 1] and 1 ≤ t1 ≤ t2 ≤ n

dimt1
θE ≤ dimt2

θE and dim
t1
θE ≤ dim

t2
θE.

Proof. This follows immediately noting that the kernels φs,tr,θ(x) are clearly decreasing in

t.

The next section concerns the relationship between the intermediate dimensions of a set

E, defined in terms of the sums over restricted covers of E, and intermediate dimension

profiles, defined in terms of capacities. We will see that the dimension profiles recover

the intermediate definitions when t = n, that is dim θE = dimn
θE for E ⊂ Rn.

3.3 Capacities and intermediate dimensions

For our purposes it is convenient to work with equivalent definitions of the intermediate

dimensions in terms of limits of logarithms of sums over covers. For bounded and non-

empty E ⊂ Rn, θ ∈ (0, 1] and s ∈ [0, n], define

Ssr,θ(E) := inf
{∑

i

|Ui|s : {Ui}i is a cover of E with r ≤ |Ui| ≤ rθ for all i
}
. (3.3.1)

We claim

dim θE =

(
the unique s ∈ [0, n] such that lim inf

r→0

logSsr,θ(E)

− log r
= 0

)
(3.3.2)

and

dim θE =

(
the unique s ∈ [0, n] such that lim sup

r→0

logSsr,θ(E)

− log r
= 0

)
. (3.3.3)
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It is easy to see from (1.4.1) and (1.4.2) that dim θE and dim θE are the infima of s for

which these lower and upper limits equal 0; that there are unique such values follows

from the following lemma.

Lemma 3.3.1. Let θ ∈ (0, 1] and E ⊂ Rn. For each 0 < r < 1,

−(s− t) ≤
logSsr,θ(E)

− log r
−

logStr,θ(E)

− log r
≤ −θ(s− t) (0 ≤ t ≤ s ≤ n). (3.3.4)

Moreover, there is a unique s ∈ [0, n] such that lim inf
r→0

logS
s
r,θ(E)

− log r = 0 and a unique s ∈

[0, n] such that lim sup
r→0

logSsr,θ(E)

− log r = 0.

Proof. For a cover {Ui} of E satisfying r ≤ |Ui| ≤ rθ and 0 ≤ t ≤ s ≤ n,

∑
i

|Ui|trs−t ≤
∑
i

|Ui|s ≤
∑
i

|Ui|trθ(s−t).

Taking infima over all such covers yields

rs−tStr,θ(E) ≤ Ssr,θ(E) ≤ rθ(s−t)Str,θ(E),

from which (3.3.4) follows. These inequalities carry over on taking lower limits of the

quotients, so in particular

lim inf
r→0

logSsr,θ(E)

− log r

is strictly monotonically decreasing and continuous for s ∈ [0, n]. Since S0
r,θ(E) is

bounded below by the box-counting number of E at scale rθ, it follows that

lim inf
r→0

logS0
r,θ(E)

− log r
≥ θ dimBE ≥ 0.
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Also, Snr,θ(E) is bounded above by the n-dimensional volume of a ball containing E, so

lim inf
r→0

logSnr,θ(E)

− log r
≤ 0.

Continuity now gives a unique s ∈ [0, n] such that lim inf
r→0

logS
s
r,θ(E)

− log r = 0. A similar

argument holds for upper limits.

Next, we see how to characterise the intermediate dimensions of sets E ⊂ Rn in terms of

dimension profiles which we have defined in terms of capacities Cs,nr,θ (E) with respect to

the kernels φs,nr,θ . We begin with two lemmas that relate the capacity of a set to sums over

restricted covers. Throughout, we may assume that E is compact since the intermediate

dimensions are stable under taking closures for θ > 0, see [21].

Lemma 3.3.2. Let E ⊂ Rn be compact, θ ∈ (0, 1], 0 < r < 1 and 0 ≤ s ≤ n. Then

rsCs,nr,θ (E) ≤ Ssr,θ(E). (3.3.5)

Proof. By Lemma 3.2.1 there exists an equilibrium measure µ ∈ M(E) and a set E0

with µ(E0) = 1 such that

∫
φs,nr,θ (x− y)dµ(y) =

1

Cs,nr,θ (E)
=: β

for all x ∈ E0. Let r ≤ δ ≤ rθ and x ∈ E0. Then

β =

∫
φs,nr,θ (x− y)dµ(y) ≥

∫ (r
δ

)s
1B(0,δ)(x− y)dµ(y) ≥

(r
δ

)s
µ(B(x, δ)). (3.3.6)

Let {Ui}i be a finite cover of E by sets of diameters r ≤ |Ui| ≤ rθ and define I = {i :

Ui ∩ E0 6= ∅}. Then for each i ∈ I, there exists xi ∈ Ui ∩ E0 so that Ui ⊂ B(xi, |Ui|).
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Hence

1 = µ(E0) ≤
∑
i∈I

µ(Ui) ≤
∑
i∈I

µ(B(xi, |Ui|)) ≤ r−sβ
∑
i∈I
|Ui|s

by (3.3.6), and so ∑
i

|Ui|s ≥ rsCs,nr,θ (E),

which yields the desired result upon taking the infimum over all such covers. Note that

Cs,tr,θ(E) ≤ Cs,nr,θ (E) for t ≤ n, so (3.3.5) implies rsCs,tr,θ(E) ≤ Ssr,θ(E).

In the next proof, we use potential estimates to find a Besicovitch cover of E by balls

of relatively large measure. The Besicovitch covering lemma gives a bounded number

of families of disjoint such balls with their union covering E. The balls with diameters

between r and rθ, together with covers of any larger balls by balls of diameters at most

rθ, provide efficient covers for estimating the sums Ssr,θ(E).

Lemma 3.3.3. Let E ⊂ Rn be compact, 0 ≤ s ≤ n and θ ∈ (0, 1]. If there exists a

measure µ ∈M(E) and β > 0 such that

∫
φs,nr,θ (x− y)dµ(y) ≥ β (3.3.7)

for all x ∈ E, then there is a number r0 > 0 such that for all 0 < r ≤ r0,

Ssr,θ(E) ≤ andlog2(|E|/r) + 1er
s

β

where the constant an depends only on n. In particular,

Ssr,θ(E) ≤ andlog2(|E|/r) + 1eCs,nr,θ (E)rs.

Proof. To avoid ambiguity we will assume that θ ∈ (0, 1), though the proof is virtually

the same when θ = 1, essentially by taking M = 0; this ‘box-counting dimension’ case is
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also covered in [19].

Let D = dlog2(|E|/r)e and let M be the integer satisfying

2M−1r < rθ ≤ 2Mr. (3.3.8)

We choose r0 sufficiently small to ensure that 2 ≤ M ≤ D − 2 for all 0 < r ≤ r0. For

x ∈ E, using (3.3.7) and estimating the kernel φs,nr,θ (x−y) given by (3.2.1) over consecutive

annuli B(x, 2kr) \B(x, 2k−1r) (1 ≤ k ≤ D),

β ≤
∫
φs,nr,θ (x− y)dµ(y)

≤ µ(B(x, r)) +
D∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

φs,nr,θ (x− y)dµ(y)

≤ µ(B(x, r)) +
M∑
k=1

∫
B(x,2kr)\B(x,2k−1r)

2−(k−1)sdµ(y)

+

D∑
k=M+1

∫
B(x,2kr)\B(x,2k−1r)

rθ(n−s)+s(2k−1r)−ndµ(y)

≤
M−2∑
k=0

2sµ(B(x, 2kr))2−ks +
M∑

k=M−1
2sµ(B(x, 2kr))2−ks

+ r(θ−1)(n−s)
D∑

k=M+1

µ(B(x, 2kr))2−(k−1)n.

Hence, for each x ∈ E, there exists some integer 0 ≤ k(x) ≤ D such that one of the above

summands is at least the arithmetic mean of the sum. There are three cases. We will

use that there are numbers dn depending only on n such that every ball of radius ρ in

Rn may be covered by at most λ−ndn balls of diameter λρ for all 0 < λ ≤ 1 (dn = 3nnn/2

will certainly do).

53



(i) If 0 ≤ k(x) ≤M − 2 then

β

D + 1
≤ 2sµ(B(x, 2k(x)r))2−k(x)s = 4sµ(B(x, 2k(x)r))|B(x, 2k(x)r)|−srs,

so

|B(x, 2k(x)r)|s ≤ (D + 1)β−14srsµ(B(x, 2k(x)r)); (3.3.9)

(ii) if M − 1 ≤ k(x) ≤M then

β

D + 1
≤ 2sµ(B(x, 2k(x)r))2−k(x)s

≤ µ(B(x, 2k(x)r))2s2−(M−1)s

≤ µ(B(x, 2k(x)r))22sr(1−θ)s,

so

4ndn r
θs ≤ 4n22s(D + 1)β−1dnr

sµ(B(x, 2k(x)r)); (3.3.10)

(iii) if M + 1 ≤ k(x) ≤ D then

β

D + 1
≤ r(θ−1)(n−s)µ(B(x, 2k(x)r))2−(k(x)−1)n,

so

dn2k(x)nr(1−θ)n ≤ 2n(D + 1)β−1dnr
s(1−θ)µ(B(x, 2k(x)r)). (3.3.11)

The cover of E by the balls B = {B(x, 2k(x)r) : x ∈ E} is a Besicovitch cover, that is

each point of E is at the centre of some ball in the collection. The Besicovitch covering

theorem, see for example [55, Theorem 2.7], allows us to extract subcollections C1, . . . , Ccn

of disjoint balls from B where cn depends only on n and such that E ⊂
⋃
i

⋃
B∈Ci

B. Let

Ei = {B(x, 2k(x)r) ∈ Ci : M − 1 ≤ k(x) ≤M}
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and

Fi = {B(x, 2k(x)r) ∈ Ci : M + 1 ≤ k(x) ≤ D}.

From (3.3.8) each B ∈ Ci \ (Ei ∪ Fi) has diameter at most rθ. Also, for each B =

B(x, 2k(x)r) ∈ Ei let DB denote a collection of at most (2Mr/rθ)ndn ≤ 2ndn balls of

diameter rθ that cover B, and for each B = B(x, 2k(x)r) ∈ Fi let DB denote a collection

of at most
(
2k(x)r/rθ

)n
dn balls of diameter rθ that cover B.

For each i = 1, . . . , cn, we consider the cover

C̃i :=
(
Ci \ (Ei ∪ Fi)

)
∪

⋃
B∈Ei∪Fi

DB

of
⋃
B∈Ci

B. Then using (3.3.9) - (3.3.11),

∑
B∈Ci\(Ei∪Fi)

|B|s +
∑
B∈Ei

∑
B′∈DB

|B′|s +
∑
B∈Fi

∑
B′∈DB

|B′|s

≤ 4s(D + 1)
rs

β

∑
B∈Ci\(Ei∪Fi)

µ(B) +
∑
B∈Ei

4ndn r
θs

+
∑
B∈Fi

dn

(
2k(x)r

rθ

)n
rθs

≤ 4s(D + 1)
rs

β
+
∑
B∈Ei

4n22s(D + 1)dn
β

rsµ(B)

+
∑
B∈Fi

2n(D + 1)dn
β

rs(1−θ)rθsµ(B)

≤ 4s(D + 1)
rs

β
+

4n22s(D + 1)dn
β

rs
∑
B∈Ei

µ(B)

+
2n(D + 1)dn

β
rs
∑
B∈Fi

µ(B)

≤ (4n + 2 · 42ndn)(D + 1)
rs

β
,
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where we have used that Ci is a disjoint collection of balls. Hence, writing C =
⋃
i C̃i,

Ssr,θ(E) ≤
∑
B∈C
|B|s ≤ cn(4n + 2 · 42ndn)(D + 1)

rs

β
= andlog2(|E|/r) + 1er

s

β

on setting an = cn(4n + 2 · 42ndn).

In the next section, Lemma 3.3.3 will be important when considering intermediate di-

mensions of projections and fractional Brownian images. We summarise the previous

two results in the following proposition.

Proposition 3.3.4. Let E ⊂ Rn be compact, θ ∈ (0, 1], and 0 ≤ s ≤ n. Then there is a

number r0 > 0 such that for all 0 < r ≤ r0,

rsCs,nr,θ (E) ≤ Ssr,θ(E) ≤ andlog2(|E|/r) + 1ersCs,nr,θ (E), (3.3.12)

where the number an depends only on n. Consequently

lim inf
r→0

logSsr,θ(E)

− log r
= −s+ lim inf

r→0

logCs,nr,θ (E)

− log r
(3.3.13)

and

lim sup
r→0

logSsr,θ(E)

− log r
= −s+ lim sup

r→0

logCs,nr,θ (E)

− log r
. (3.3.14)

Proof. The left hand inequality of (3.3.12) follows from Lemma 3.3.2 and the right hand

inequality from Lemma 3.3.3. Then, (3.3.13) and (3.3.14) are obtained by re-arranging

and taking appropriate limits.

The fruit of this labour is now apparent; when the parameter of our dimension profile

is equal to the topological dimension of the ambient space, they simply recover the

intermediate dimensions.
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Theorem 3.3.5. Let E ⊂ Rn be bounded and θ ∈ (0, 1]. Then

dim θE = dimn
θE

and

dim θE = dim
n
θE.

Proof. This is an immediate consequence of Proposition 3.3.4, together with the defini-

tions (3.3.2), (3.3.3), (3.2.5) and (3.2.6).

3.4 Projections and fractional Brownian images

In this section, we will see how the profiles may be thought of as viewing a set E from

an m-dimensional viewpoint for m ∈ {1, . . . , n}, and more generally provide information

on the intermediate dimensions of fractional Brownian images.

Let us begin by briefly recalling the definition of index-α fractional Brownian motion (0 <

α < 1), which we denote Bα : Rn → Rm for m ≤ n. In particular, Bα = (Bα,1, . . . , Bα,m),

where for each Bα,i : Rn → R:

i) Bα,i(0) = 0;

ii) Bα,i is continuous with probability 1;

iii) the increments Bα,i(x) − Bα,i(y) are normally distributed with with mean 0 and

variance |x− y|2α for all x, y ∈ Rn.

It immediately follows that, for Borel A ⊂ R,

P(Bα,i(x)−Bα,i(y) ∈ A) =
1√
2π

1

|x− y|α

∫
t∈A

exp

(
−t2

2|x− y|2α

)
dt. (3.4.1)
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As a stochastic process, it enjoys many of the same properties as standard Brownian

motion. For example, the process is self-affine, meaning the scaled processes c−αBα(ct)

have the same statistical distribution as Bα(t) for c > 0 [17]. The reader may enjoy the

classical text of Kahane [47] for a more detailed account of index-α fractional Brownian

motion.

Our first result establishes an upper bound on the intermediate dimensions of Hölder im-

ages using dimension profiles, motivated by the fact index-α fractional Brownian motion

is almost surely (α− ε)-Hölder for all ε > 0, while projection is 1-Hölder.

Theorem 3.4.1. Let E ⊂ Rn be compact, θ ∈ (0, 1), m ∈ {1, . . . , n} and f : E → Rm.

If there exists c > 0 and 0 < α ≤ 1 such that

|f(x)− f(y)| ≤ c|x− y|α (3.4.2)

for all x, y ∈ E, then

dim θf(E) ≤ 1

α
dimmα

θ E

and

dim θf(E) ≤ 1

α
dim

mα
θ E.

Proof. To prove Theorem 3.4.1 we use Lemma 3.3.3. Intermediate dimension is invariant

under scaling and thus we may assume the Hölder constant c in (3.4.2) equals one. First,

note

rs

|x− y|αs
≤ rθ(m−s)+s

|x− y|αm

for |x− y| ≤ rθ/α. It then follows from the definition of φs,mr,θ that

φs,mr,θ (f(x)− f(y)) = min

{
1,

rs

|f(x)− f(y)|s
,

rθ(m−s)+s

|f(x)− f(y)|m

}
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≥ min

{
1,

rs

|x− y|αs
,
rθ(m−s)+s

|x− y|αm

}

=


1 |x− y| < r1/α(
r1/α/|x− y|

)sα
r1/α ≤ |x− y| ≤ rθ/α

(r1/α)θ(mα−sα)+sα/ (|x− y|)mα |x− y| > rθ/α

= φsα,mα
r1/α,θ

(x− y).

By Lemma 3.2.1, for each 0 ≤ s ≤ m there exists a measure µ ∈M(E) such that for all

x ∈ E

1

Csα,mα
r1/α,θ

(E)
≤
∫
φsα,mα
r1/α,θ

(x− y)dµ(y)

≤
∫
φs,mr,θ (f(x)− f(y))dµ(y)

≤
∫
φs,mr,θ (f(x)− w)d(fµ)(w),

where fµ ∈ M(E) is defined by
∫
g(w)d(fµ)(w) =

∫
g(f(x))dµ(x) for all continuous

functions g and by extension. This verifies that f(E) supports a measure satisfying the

condition of Lemma 3.3.3. Hence, for sufficiently small r > 0,

Ssr,θ(f(E)) ≤ amdlog2(|E|/r) + 1ersCsα,mα
r1/α,θ

(E)

for all 0 ≤ s ≤ m. This implies

lim inf
r→0

Ssr,θ(f(E))

− log r
≤ −s+ lim inf

r→0

Csα,mα
r1/α,θ

(E)

−α log r1/α
,

and so

α lim inf
r→0

Ssr,θ(f(E))

− log r
≤ −sα+ lim inf

r→0

Csα,mα
r1/α,θ

(E)

− log r1/α
. (3.4.3)
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Recall,

1

α
dimmα

θ E ≤ 1

α
mα = m,

and thus we may set sα = dimmα
θ E. It follows from the definition (3.2.5) and replacing

sα by dimmα
θ E in (3.4.3) that

lim inf
r→0

S
1
α
dimmαθ E

r,θ (f(E))

− log r
≤ 0,

implying

dim θf(E) ≤ 1

α
dimmα

θ E.

The inequality for dim θf(E) follows by using a similar argument and taking upper limits.

It is interesting to note how the Hölder exponent dictates which profile appears in the

bound. This would not have been immediately clear had we only considered the setting

of projections, where the profile appearing in the upper-bound is determined solely by

the topological dimension of the codomain, since projection is 1-Hölder.

Establishing non-trivial absolute lower bounds is not possible in general, but for certain

families of mappings we are able to obtain almost-sure lower bounds. For this, we need

to introduce a probability space (Ω,F , τ). Here, each ω ∈ Ω corresponds to a σ({F ×B :

F ∈ F , B ∈ B})-measurable function fω : Rn → Rm, where B denotes the Borel subsets

of Rn. However, in order for this problem to be tractable some further conditions must

be placed on the set of functions. Specifically, we need to assume that

∫
1[0,r](|fω(x)− fω(y)|)dτ(ω) = τ ({ω : |fω(x)− fω(y)| ≤ r}) (3.4.4)

is bounded above by the kernels (3.2.1), see (3.4.6).
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A consequence of this assumption relates to a set of modified kernels, denoted φ̃sr,θ :

Rm → R for 0 < r < 1, θ ∈ (0, 1] and 0 ≤ s ≤ m, that are defined by

φ̃sr,θ(x) =


1 |x| < r(
r
|x|
)s

r ≤ |x| ≤ rθ

0 rθ < |x|

(x ∈ Rm). (3.4.5)

The motivation for these kernels is that whilst φ̃sr,θ is of the same form as φs,tr,θ in the

key region |x| ≤ rθ, integrating φ̃sr,θ(fω(x) − fω(y)) over the probability space gives a

kernel approximately bounded above by our original kernels. This is made precise in the

following lemma, which is a critical component of why the profiles of higher dimensional

sets relate to lower dimensional images.

Lemma 3.4.2. Let E ⊂ Rn be compact, θ ∈ (0, 1], γ > 0, m ∈ {1, . . . , n} and 0 ≤ s <

m ≤ n. If {fω : E → Rm, ω ∈ Ω} is a set of continuous σ({F × B : F ∈ F , B ∈ B})-

measurable functions such that there exists c > 0 satisfying

τ ({ω : |fω(x)− fω(y)| ≤ r}) ≤ cφm/γ,m/γrγ ,θ (x− y) (3.4.6)

for all x, y ∈ E and r > 0, then there exists Cs,m > 0 such that

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω) ≤ Cs,mφs/γ,m/γrγ ,θ (x− y).

Proof. Let θ ∈ (0, 1]. To ease notation, define

φ
m/γ
rγ (x− y) := φ

m/γ,m/γ
rγ ,θ (x− y) =


1 |x− y| < rγ(

rγ

|x−y|

)m/γ
|x− y| ≥ rγ

,

since φs,tr,θ takes the same form on [r, rθ] and (rθ,∞) when s = t.
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First, suppose |x| ≤ r. Then,

srs
rθ∫

u=r

1[0,u](|x|)u−(s+1)du+ rs(1−θ)1[0,rθ](|x|) = srs
[
u−s

−s

]rθ
r

+ rs(1−θ)

= rs(−r−θs + r−s) + rs(1−θ)

= 1. (3.4.7)

On the other hand, if r ≤ |x| ≤ rθ, then

srs
rθ∫

u=r

1[0,u](|x|)u−(s+1)du+ rs(1−θ)1[0,rθ](|x|)

= srs

 |x|∫
u=r

1[0,u](|x|)u−(s+1)du+

rθ∫
u=|x|

u−(s+1)du

+ rs(1−θ)

= srs
[
u−s

−s

]rθ
|x|

+ rs(1−θ)

=

(
r

|x|

)s
. (3.4.8)

Finally, if |x| > rθ, then clearly

srs
rθ∫

u=r

1[0,u](|x|)u−(s+1)du+ rs(1−θ)1[0,rθ](|x|) = 0. (3.4.9)

Hence, by (3.4.7), (3.4.8) and (3.4.9),

φ̃sr,θ(x) = srs
rθ∫

u=r

1[0,u](|x|)u−(s+1)du+ rs(1−θ)1[0,rθ](|x|).
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Consider this formula for the increment fω(x)− fω(y). Integrating both sides yields

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω) = srs

rθ∫
u=r

u−(s+1)

[∫
1[0,u](|fω(x)− fω(y)|)dτ(ω)

]
du

+ rs(1−θ)
∫

1[0,rθ](|fω(x)− fω(y)|)dτ(ω),

by an appication of Fubini’s theorem. From (3.4.6),

∫
1[0,u](|fω(x)− fω(y)|)dτ(ω) ≤ cφm/γuγ (x− y) (3.4.10)

and ∫
1[0,rθ](|fω(x)− fω(y)|)dτ(ω) ≤ cφm/γ

rθγ
(x− y). (3.4.11)

Hence

1

c

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω) ≤ srs

rθ∫
u=r

u−(s+1)φ
m/γ
uγ (x− y) du+ rs(1−θ)φ

m/γ

rθγ
(x− y),

which must be evaluated in three cases.

Case 1: suppose |x− y| ≤ rγ .

Then

φ
m/γ
uγ (x− y) = 1

for all r ≤ u ≤ rθ, and

φ
m/γ

rθγ
(x− y) = 1.

Hence

1

c

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω) ≤ srs

rθ∫
u=r

u−(s+1)φ
m/γ
uγ (x− y) du+ rs(1−θ)φ

m/γ

rθγ
(x− y)
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= srs
rθ∫

u=r

u−(s+1) du+ rs(1−θ)

= 1.

Case 2: suppose rγ ≤ |x− y| ≤ rθγ .

Then

φ
m/γ

rθγ
(x− y) = 1.

Moreover, for r ≤ u ≤ |x− y|1/γ we have

φ
m/γ
uγ (x− y) =

um

|x− y|m/γ

while

φ
m/γ
uγ (x− y) = 1

for |x− y|1/γ ≤ u ≤ rθ.

Hence

1

c

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω)

≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x− y) du+ rs(1−θ)φ

m/γ

rθγ
(x− y)

= srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x− y) du+ rs(1−θ)

= srs
|x−y|1/γ∫
u=r

u−(s+1) um

|x− y|m/γ
du+ srs

rθ∫
u=|x−y|1/γ

u−(s+1) du+ rs(1−θ)

≤
(

s

m− s
+ 1

)(
rγ

|x− y|

)s/γ
.
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Case 3: suppose |x− y| ≥ rθγ .

Then

φ
m/γ

rθγ
(x− y) =

rθm

|x− y|m/γ

and

φ
m/γ
uγ (x− y) =

um

|x− y|m/γ

for r ≤ u ≤ rθ. Hence

1

c

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω)

≤ srs
rθ∫

u=r

u−(s+1)φ
m/γ
uγ (x− y) du+ rs(1−θ)φ

m/γ

rθγ
(x− y)

= srs
rθ∫

u=r

u−(s+1) um

|x− y|m/γ
du+ rs(1−θ)

rθm

|x− y|m/γ

=

(
s

m− s
+ 1

)
(rγ)θ(m/γ−s/γ)+s/γ

|x− y|m/γ
.

To conclude, we deduce from Case 1, Case 2 and Case 3 that

1

c

∫
φ̃sr,θ(fω(x)− fω(y))dτ(ω)

≤


1 |x− y| < rγ(

s
m−s + 1

)(
rγ

|x−y|

)s/γ
rγ ≤ |x− y| ≤ rγθ(

s
m−s + 1

)
(rγ)θ(m/γ−s/γ)+s/γ

|x−y|m/γ rγθ < |x− y|

≤
(

s

m− s
+ 1

)
φ
s/γ,m/γ
rγ ,θ (x− y),

as required.
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This is analogous to the upper bound in Matilla’s result [56, Lemma 3.11], which covers

the special case where θ = 0, fω denote orthogonal projections and Ω = G(n,m), the

Grassmanian of m dimensional subspaces of Rn. Before obtaining a lower bound, we

require one further lemma which is a variant of Lemma 3.3.2 for the modified kernels

φ̃sr,θ.

Lemma 3.4.3. Let E ⊂ Rn be compact, θ ∈ (0, 1], 0 < r < 1 and 0 ≤ s ≤ n. If there

exists µ ∈M(E) and a Borel set F ⊂ E such that

∫
φ̃sr,θ(x− y)dµ(y) ≤ β

for all x ∈ F , then

µ(F )rsβ−1 ≤ Ssr,θ(E),

where Ssr,θ(E) is given by (3.3.1).

Proof. As in Lemma 3.3.2,

β ≥
∫
φ̃sr,θ(x− y)dµ(y) ≥

(r
δ

)s
µ(B(x, δ))

for all x ∈ F and r ≤ δ ≤ rθ. Let {Ui}i be a cover of F by sets with r ≤ |Ui| ≤ rθ. We

may assume that for each i there is some xi ∈ F ∩ Ui, so that Ui ⊂ B(xi, |Ui|). Hence

µ(F ) ≤
∑
i

µ(Ui) ≤
∑
i

µ(B(xi, |Ui|)) ≤ r−sβ
∑
i

|Ui|s,

so taking infima over all such covers,

Ssr,θ(E) ≥ Ssr,θ(F ) ≥ µ(F )rsβ−1.
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The machinery is now in place for us to state and prove an almost-sure lower bound

that will coincide with the upper bounds for both projections and fractional Brownian

images.

Theorem 3.4.4. Let E ⊂ Rn be compact, θ ∈ (0, 1], γ ≥ 1 and m ∈ {1, . . . , n}. If

{fω : E → Rm, ω ∈ Ω} is a set of continuous σ({F × B : F ∈ F , B ∈ B})-measurable

functions such that there exists c > 0 satisfying

τ({ω : |fω(x)− fω(y)| ≤ r}) ≤ cφm/γ,m/γrγ ,θ (x− y) (3.4.12)

for all x, y ∈ E and r > 0, then

dim θfω(E) ≥ γdim
m/γ
θ E

and

dim θfω(E) ≥ γdim
m/γ
θ E

for τ -almost all ω ∈ Ω.

Proof. Let E ⊂ Rn be compact, θ ∈ (0, 1], γ ≥ 1, m ∈ {1, . . . , n} and 0 ≤ s < m. Choose

a sequence (rk)k∈N such that 0 < rk < 2−k and

lim sup
k→∞

Cs,m
rγk ,θ

(E)

− log rγk
= lim sup

r→0

Cs,mr,θ (E)

− log r
. (3.4.13)

Moreover, define a sequence of constants βk by

βk :=
1

C
s/γ,m/γ

rγk ,θ
(E)

=

∫ ∫
φ
s/γ,m/γ

rγk ,θ
(x− y)dµk(x)µk(y),

where, using Lemma 3.2.1, µk is an equilibrium measure on E associated with φ
s/γ,m/γ

rγk ,θ
.
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Hence, by (3.4.12) and Lemma 3.4.2 we have

∫ ∫ ∫
φ̃srk,θ(fω(x)− fω(y))dτ(ω)dµk(x)dµk(y)

≤ Cs,m
∫ ∫

φ
s/γ,m/γ

rγk ,θ
(x− y)dµk(x)dµk(y)

≤ Cs,mβk.

Then, for each ε > 0,

∫ ∫ ∫
β−1k rεkφ̃

s
rk,θ

(fω(x)− fω(y))dτ(ω)dµk(x)dµk(y) ≤ Cs,mrεk

from which Fubini’s theorem implies

∫ ∞∑
k=1

(∫ ∫
β−1k rεkφ̃

s
rk,θ

(fω(x)− fω(y))dµk(x)dµk(y)

)
dτ(ω) ≤ Cs,m

∞∑
k=1

rεk <∞

since |rεk| ≤ 2−kε. Hence, for τ -almost all ω ∈ Ω, there exists Mω > 0 such that

∫ ∫
β−1k rεkφ̃

s
rk,θ

(t− u)dµkω(t)dµkω(u) ≤Mω <∞

for all k, where µkω is the image of µk under fω. Thus,

∫ ∫
φ̃srk,θ(t− u)dµkω(t)dµkω(u) ≤Mωβkr

−ε
k

for all k. Hence, for each k there exists a set Fk ⊂ fω(E) with µkω(Fk) ≥ 1/2 and

∫
φ̃srk,θ(t− u)dµkω(t) ≤ 2Mωβkr

−ε
k

for all u ∈ Fk. Hence, by Lemma 3.4.3,

Ssrk,θ(fω(E)) ≥ 1

2
(2Mωβk)

−1rs+εk = (4Mωβk)
−1rs+εk ,
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and so

lim sup
k→∞

logSsrk,θ(fω(E))

− log rk
≥ lim sup

k→∞

log rs+εk (4Mωβk)
−1

− log rk

= lim sup
k→∞

log rs+εk C
s/γ,m/γ

rγk ,θ
(E)

− log rk

= −(s+ ε) + lim sup
k→∞

logC
s/γ,m/γ

rγk ,θ
(E)

− log rk
.

Hence

1

γ
lim sup
k→∞

logSsrk,θ(fω(E))

− log rk
≥ −s+ ε

γ
+ lim sup

k→∞

logC
s/γ,m/γ

rγk ,θ
(E)

− log rγk
.

This is true for all ε > 0, so using (3.4.13),

1

γ
lim sup
r→0

logSsr,θ(fω(E))

− log r
≥ − s

γ
+ lim sup

r→0

logC
s/γ,m/γ
r,θ (E)

− log r

for all s ∈ [0,m). Since the expressions on both sides of this inequality are continuous

for s ∈ [0,m] by Lemma 3.3.1 and Lemma 3.2.2, the inequality is valid for s ∈ [0,m] and

consequently s/γ ∈ [0,m/γ]. Hence, for s/γ = dim
m/γ
θ E

lim sup
r→0

logSsr,θ(fω(E))

− log r
≥ 0,

implying dim θfω(E) ≥ s = γdim
m/γ
θ E. The argument for dim θfωE is similar, although

it suffices to set rk = 2−k.

To apply these results to projection, we first must recall a result of Mattila [56, Lemma

3.11]. The following version differs slightly from the original, which does not explicitly

state the lower bound.
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Lemma 3.4.5. For m ∈ {1, . . . , n − 1}, there exist constants cn,m, dn,m > 0 depending

only on n and m such that for all x ∈ Rn and r ∈ (0, 1),

cn,mφ
m
r (x) ≤

∫
1[0,r](|πV x|)dγn,m(V ) ≤ dn,mφmr (x).

Proof. The right-hand inequality is given in [56, Lemma 3.11]. The left-hand inequality

is obvious when |x| ≤ r. Otherwise, we may adapt the proof of [56, Lemma 3.11] by

using the estimate

σn−1
({

y ∈ Sn−1 :
( n∑
i=m+1

y2i

)1/2
≤ r
})

≥ α(n)−1Ln ({y ∈ Rn : |yi| ≤ 1/2 for i ≤ m, |yi| ≤ r/n for i > m}) ,

where σn−1 denotes the normalised surface measure on Sn−1, α(n) is the volume of the

unit ball in Rn and Ln is n-dimensional Lebesgue measure.

This shows that the family of projections indexed by V ∈ G(n,m) (viewed as a probability

space) satisfies the conditions of Lemma 3.4.2 and thus Theorem 3.4.4, obtaining an

almost-sure lower bound. Since projection is Lipschitz and so 1-Hölder, Theorem 3.4.1

establishes the corresponding upper bound.

Theorem 3.4.6. Let E ⊂ Rn be bounded. Then, for all V ∈ G(n,m)

dim θπVE ≤ dimm
θ E and dim θπVE ≤ dim

m
θ E (3.4.14)

for all θ ∈ (0, 1]. Moreover, for γn,m-almost all V ∈ G(n,m),

dim θπVE = dimm
θ E and dim θπVE = dim

m
θ E (3.4.15)

for all θ ∈ (0, 1].
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Proof. This follows immediately from Theorem 3.4.1, Lemma 3.4.2, Lemma 3.4.5 and

Theorem 3.4.4. Note that for the second part, it suffices to prove the a priori weaker

result where we first fix θ ∈ (0, 1] and then establish the result for almost all V . We can

do this because the intermediate dimensions are continuous in θ ∈ (0, 1] and are therefore

determined by their values on the rationals.

It is similarly straightforward to apply Theorem 3.4.1 and Theorem 3.4.4 to fractional

Brownian motion, by using (3.4.1) to establish (3.4.12).

Theorem 3.4.7. Let θ ∈ (0, 1], Bα : Rn → Rm be index-α fractional Brownian motion

(0 < α < 1) and E ⊂ Rn be compact. Then

dim θBα(E) =
1

α
dimmα

θ E

and

dim θBα(E) =
1

α
dim

mα
θ E

almost surely.

Proof. Let θ ∈ (0, 1] and 0 < ε < α < 1. By [18, Corollary 2.11] there exists, almost

surely, M > 0 such that

|Bα(x)−Bα(y)| ≤M |x− y|α−ε (3.4.16)

for all x, y ∈ E. In addition,

P(|Bα(x)−Bα(y)| ≤ r) ≤ P(|Bα,i(x)−Bα,i(y)| ≤ r for all 1 ≤ i ≤ m)

≤

 1√
2π

1

|x− y|α

∫
|t|≤r

exp

(
−t2

2|x− y|2α

)
dt


m
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≤

 1

|x− y|α

∫
|t|≤r

1 dt


m

= 2m

(
r1/α

|x− y|

)mα
(3.4.17)

= 2nφ
m/γ,m/γ
rγ ,θ (x− y)

for all x, y ∈ E and r > 0, where γ = 1/α. By applying Theorem 3.4.4 and Theorem

3.4.1,

1

α
dimmα

θ E ≤ dim θBα(E) ≤ 1

α− ε
dim

m(α−ε)
θ E ≤ 1

α− ε
dimmα

θ E

and

1

α
dim

mα
θ E ≤ dim θBα(E) ≤ 1

α− ε
dim

m(α−ε)
θ E ≤ 1

α− ε
dim

mα
θ E

almost surely, with the last inequality in each case holding since the profiles are mono-

tonically increasing. Letting ε→ 0, the result follows.

3.5 Observations and applications

One of the most natural questions concerning the intermediate dimensions is that of

continuity at θ = 0, since they are known to be continuous elsewhere, see Section 1.4 or

[21]. In such cases the intermediate dimensions form a complete continuous interpolation

between the Hausdorff and box-counting dimensions, and we seek to identify classes of

sets that witness this behaviour. For example, this was demonstrated in [21, Proposition

4.1] for Bedford-McMullen self-affine carpets, despite the absence of a precise formula for

the intermediate dimensions. Theorem 3.4.6 yields another class of examples by showing

continuity at 0 implies continuity at 0 for the projections almost surely.
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Corollary 3.5.1. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0.

If V ∈ G(n,m) is such that dimH πVE = min{m,dimHE}, then dim θπVE is continuous

at θ = 0. In particular, dim θπVE is continuous at θ = 0 for γn,m-almost all V ∈ G(n,m).

A similar result holds for the upper intermediate dimensions.

Proof. If m ≤ dimHE, then the result is immediate and so we may assume that m >

dimHE. Then, for θ ∈ (0, 1), using (3.4.14), Lemma 3.2.3, Theorem 3.3.5, and the

assumption that dim θE is continuous at θ = 0, we get

dimHE ≤ dimH πVE ≤ dim θπVE ≤ dimm
θ E ≤ dimn

θE = dim θE → dimHE

as θ → 0, which proves continuity of dim θπVE at θ = 0. The final part of the result,

concerning almost sure continuity at 0, follows from the above result together with the

Marstrand-Mattila projection theorems for Hausdorff dimension.

Results in this vein also hold for fractional Brownian images and Bedford-McMullen

carpets.

Corollary 3.5.2. Let E ⊂ Rn be bounded and Bα : Rn → Rm denote index-α fractional

Brownian motion. If dim θE is continuous at θ = 0, then dim θBα(E) is almost surely

continuous at θ = 0. Moreover, the analagous result holds for upper dimensions.

Proof. From [47, Corollary, pp. 267],

dimHBα(E) =
1

α
dimHE

almost surely, and so

dimHE ≤ αdim θBα(E) ≤ α 1

α
dimmα

θ E ≤ dimn
θE = dim θE
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by monotonicity of the profiles. Hence, as θ → 0, continuity of dim θBα(E) at θ = 0

is established, since dim θE → dimHE by definition. The proof for upper dimensions is

similar.

Corollary 3.5.3. Let E ⊂ R2 be a Bedford-McMullen carpet associated with a regular

a × b grid for integers b > a ≥ 2. Then dim θπVE and dim θπVE are continuous at

θ = 0 for γ2,1-almost all V ∈ G(2, 1). Moreover, if log a/ log b /∈ Q, then dim θπVE and

dim θπVE are continuous at θ = 0 for all V ∈ G(2, 1).

Proof. The almost sure result follows immediately from Corollary 3.5.1 and [21, Proposi-

tion 4.1]. The upgrade from almost all to all follows by applying [25, Theorem 1.1], which

proved there are no exceptions to Marstrand’s projection theorem for Bedford-McMullen

carpets of ‘irrational type’, apart from possibly the projections onto the coordinate axes.

However, the coordinate projections are both self-similar sets and therefore the interme-

diate dimensions are automatically continuous at 0.

The converse implication in Corollary 3.5.1 does not necessarily hold, since continuity at

0 for all of the projections of E does not guarantee continuity at 0 for E. For example,

let E be a set in the plane with dimHE = 1 that satisfies dim θE = 2 for all θ ∈ (0, 1]

and place it inside a circle. The existence of such an E follows easily from the following

consequence of [21, Proposition 2.4]. Our capacity approach yields a simple proof, which

we include for completeness.

Corollary 3.5.4. If E ⊂ Rn is bounded and satisfies dimBE = n, then dim θE =

dim θE = n for all θ ∈ (0, 1]. Similarly, if dimBE = n, then dim θE = n for all θ ∈ (0, 1].

Proof. Observe that

lim inf
r→0

logCn,nr,θ (E)

− log r
= dimBE = n
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and so by (3.2.5) and Theorem 3.3.5 it follows dim θE ≥ dim θE = dimn
θE = dimBE = n.

The result concerning dim θE alone follows similarly.

The following counter-intuitive result follows by piecing together Corollaries 3.5.1 and

3.5.4. This gives a concrete application of the intermediate dimensions to a question

concerning only the box and Hausdorff dimensions.

Corollary 3.5.5. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0.

Then

dimBπVE = m

for γn,m-almost all V ∈ G(n,m) if and only if

dimHE ≥ m.

A similar result holds for upper dimensions by replacing dim θE and dimBE with dim θE

and dimBE, respectively.

Proof. One direction is trivial, and holds without the continuity assumption, since, if

dimHE ≥ m, then

m ≥ dimBπVE ≥ dimH πVE ≥ m

for γn,m-almost all V ∈ G(n,m). The other direction is where the interest lies. Indeed,

suppose dimBπVE = m for γn,m-almost all V ∈ G(n,m) but dimHE < m. Then

Corollary 3.5.4 implies that dim θπVE = m for γn,m-almost all V ∈ G(n,m) and all

θ ∈ (0, 1]. Applying the Marstrand-Mattila projection theorem for Hausdorff dimension,

it follows that for γn,m-almost all V ∈ G(n,m) dim θπVE is not continuous at θ = 0,

which contradicts Corollary 3.5.1.
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To motivate Corollary 3.5.5 we give a couple of simple applications. If E ⊂ R2 is a

Bedford-McMullen carpet satisfying dimHE < 1 ≤ dimBE, then

dimBπVE < 1 = min{dimBE, 1}

for γ2,1-almost all V ∈ G(2, 1). This surprising application seems difficult to derive

directly, noting that there is very little known about the box dimensions of projections

of Bedford-McMullen carpets, aside from them being almost surely constant. Another,

more accessible, example is provided by the sequence sets Fp = {n−p : n ≥ 1} for fixed

p > 0. It is well-known that dimB Fp = 1/(1 + p) and therefore

dimB(Fp × Fp) = 2/(1 + p) (3.5.1)

which is at least 1 for p ≤ 1 and approaches 2 as p approaches 0. Continuity at θ = 0 for

dim θFp was established in [21, Proposition 3.1] and it is straightforward to extend this

to dim θ(Fp × Fp). Therefore, since dimH(Fp × Fp) = 0 < 1, we get

dimBπV (Fp × Fp) < 1

for γ2,1-almost all V ∈ G(2, 1). This is most striking when p is very close to 0 and (3.5.1)

is close to 2. A direct calculation, which we omit, in fact reveals that for all V ∈ G(2, 1)

apart from the horizontal and vertical projections,

dimBπV (Fp × Fp) = 1−
(

p

p+ 1

)2

.

An entertaining formula that we would not have come across if Corollary 3.5.5 had not

lead us to it, see also [34, Proposition 5.1].
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Furthermore, Theorem 3.4.1 together with Corollary 3.5.2 also have a surprising appli-

cation to the box and Hausdorff dimensions of sets with continuity at θ = 0. In the

following, we use the notation

dimnα
B E = dimnα

1 E,

for α ∈ [0, 1], since our profiles extend the lower box-counting dimension profiles dimm
B of

Falconer [19] to non-integer values of m when θ = 1 (and similarly for upper dimensions).

Corollary 3.5.6. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0.

If α > 1
n dimHE, then

1

α
dimnα

B E < n.

On the other hand, if α ≤ 1
n dimHE, then

1

α
dimnα

B E = n.

The analogous results hold for the upper box-counting dimension profiles.

Proof. Let E ⊂ Rn be such that dim θE is continuous at θ = 0, and let Bα : Rn → Rn

denote index-α fractional Brownian motion where

α >
dimHE

n
.

Hence, by [47, Corollary, pp. 267],

dimHBα(E) =
1

α
dimHE < n (3.5.2)

almost surely. Then, in order to reach a contradiction, suppose that 1
αdimnα

B E = n. This
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implies dimBBα(E) = n almost surely by Theorem 3.4.7. Then, by [8, Corollary 6.3],

dim θBα(E) = n

almost surely for all θ ∈ (0, 1]. By Corollary 3.5.2, dim θBα(E) is continuous at θ = 0

which implies dimHBα(E) = n, a contradiction to (3.5.2). The case for α ≤ 1
n dimHE

follows easily from [47, Corollary, pp. 267] and Theorem 3.4.7.

In particular, since dimHE ≤ dimBE, the first part of Corollary 3.5.6 shows us that

dimnα
B E is strictly less than the trivial upper bound of nα implied by Lemma 3.2.2 for

α ∈
(

dimHE

n
,
dimBE

n

)
,

and similarly for dim
nα
B E and dimBE. Furthermore, Corollary 3.5.6 may immediately be

translated into the context of fractional Brownian motion by Theorem 3.4.7.

Corollary 3.5.7. Let E ⊂ Rn be a bounded set such that dim θE is continuous at θ = 0

and Bα : Rn → Rn denote index-α Brownian motion. If α > 1
n dimHE, then

dimBBα(E) < n.

almost surely. On the other hand, if α ≤ 1
n dimHE, then

dimBBα(E) = n.

almost surely. The analogous results hold for the upper box-counting dimension profiles.

It may be of interest to see how Corollary 3.5.7, which deals with box-counting dimension,

differs from the related classical result of Kahane on the Hausforff dimensions of Brownian

images [47, Corollary, pp. 267].
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A further implication of Theorem 3.4.7 is that an inequality derived from a slight modi-

fication of the proof allows us to show that the dimension profiles are continuous for any

Borel set E ⊂ Rn. It is worth noting that this does not follow from Lemma 3.2.2, which

describes how
logCs,tr,θ(E)

− log r
− s

changes in s and not how the root varies with t as r → 0.

Corollary 3.5.8. Let E ⊂ Rn be bounded and θ ∈ (0, 1]. The functions f, g : (0, n) →

[0, n] defined by

f(t) = dimt
θE

and

g(t)→ dim
t
θE

are continuous in t.

Proof. Let 0 < s < n and θ ∈ (0, 1]. Fix α > 0 such that nα = s. Since E is bounded,

there exists B > 1 such that

|x− y| < B

for all x, y ∈ E. Let ε > 0 be such that n(α + ε)/(1 − ε) < n, and choose Cε ≥

Bε(1+α)/(1−ε). Observe

Cε ≥ |x− y|ε(1+α)/(1−ε)

=
|x− y|(α+ε)/(1−ε)

|x− y|α
(3.5.3)

for all x, y ∈ E. Then, consider Bα : Rn → Rn. By (3.4.17) and (3.5.3),

P(|Bα(x)−Bα(y)| ≤ r) ≤ 2n min

{
1,

(
r1/α

|x− y|

)nα}
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≤ 2nCnε min

1,

(
r(1−ε)/(α+ε)

|x− y|

)nα+ε
1−ε


= 2nCnε φ
n/γ,n/γ
rγ ,θ (x− y)

for all x, y ∈ E and r > 0, where γ = (1 − ε)/(α + ε). Hence, from Theorem 3.4.1 and

Theorem 3.4.4, we have

1− ε
α+ ε

dim
n(α+ε)/(1−ε)
θ E ≤ dim θBα(E) ≤ 1

α− ε
dim

n(α−ε)
θ E

almost surely. The profiles are monotonically increasing, and so

1− ε
α+ ε

dims
θE ≤

1− ε
α+ ε

dim
n(α+ε)/(1−ε)
θ E ≤ 1

α
dims

θE ≤
1

α− ε
dim

n(α−ε)
θ E ≤ 1

α− ε
dims

θE

almost surely, since

n(α+ ε)

1− ε
> s > n(α− ε).

This holds for arbitrary sequences of sufficiently small positive ε tending to zero and so

establishes continuity from above and below. The proof for dim
s
θ is similar.

One final application concerns the Hausdorff dimension of the set of exceptional sets in the

projection setting. The proof is based on an application of Theorem 3.4.4, which allows

the proof of [19, Theorem 1.2 (ii), (iii)] to be generalised from box-counting dimension

(the case where θ = 1) to all intermediate dimensions.

Theorem 3.5.9. Let E ⊂ Rn be compact, m ∈ {1, . . . , n} and 0 ≤ λ ≤ m. Then

dimH{V ∈ G(n,m) : dim θπVE < dim
λ
θE} ≤ m(n−m)− (m− λ). (3.5.4)

The analagous results holds for dim θπVE and dimλ
θE.

80



Proof. First, define

A = {V ∈ G(n,m) : dim θπVE < dim
λ
θE}

and suppose, with the aim of deriving a contradiction, that

dimHA > m(n−m)− (m− λ).

By Frostman’s lemma, there exists a measure µ supported on a compact set B ⊆ A and

c > 0 such that

µ(BG(V, r)) ≤ crm(n−m)−(m−λ)

for all V ∈ G(n,m) and r > 0, where BG is a ball defined via the natural metric of

dimension m(n−m) on G(n,m). Hence, using [57, Inequality (5.12)] yields

µ({V ∈ G(n,m) : |πV x− πV y| < r}) ≤
(

r

|x− y|

)m(n−m)−(m−λ)−m(n−m−1)

=

(
r

|x− y|

)λ
≤ φλ,λr,θ (x− y).

Thus, the condition of Theorem 3.4.4 is satisfied with Ω = G(n,m), τ = µ and γ = m/λ.

Hence

dim θπVE ≥ dim
λ
θE (3.5.5)

for µ almost-all V ∈ G(n,m). Since µ is supported on A, this is a contradiction, as it

implies the existence of V ∈ A satisfying (3.5.5). The proof for dim θ follows similarly.

Recall that dim
λ
θE and dimλ

θE decrease as λ decreases. Thus, Theorem 3.5.9 tells us

that the there is a stricter upper bound on the dimension of the exceptional set the
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larger the drop in dimension from the expected value. We conclude by posing a slightly

different question which is a mild strengthening of Theorem 3.5.9, an analogy of which

was considered in [19, Theorem 1.3 (ii), (iii)].

Question 3.5.10. Let 0 ≤ γ ≤ n−m. What are the optimum upper bounds for

dimH{V ∈ G(n,m) : dim θπVE < dim
m+γ
θ E − γ}

and

dimH{V ∈ G(n,m) : dim θπVE < dimm+γ
θ E − γ}?

The method in [18] for box-counting dimensions relied on Fourier transforms and approx-

imating the potential kernels by a Gaussian with a strictly positive Fourier transform.

However, the natural family of kernels appropriate for working with intermediate dimen-

sion have a more complex shape, which complicates matters. A significantly different,

but perhaps interesting, approach may be required.
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Chapter 4

Elliptical polynomial spirals

4.1 Introduction

An infinitely wound spiral is a subset of the complex plane

S(φ) = {φ(t) exp(it) : 1 < t <∞}, (4.1.1)

where φ : [1,∞)→ (0,∞), known as a winding function, is continuous, strictly decreasing

and tends to zero as t→∞. Such forms arise throughout science and the natural world,

from α-models of fluid turbulence and vortex formation to the structure of galaxies

[27, 53, 60, 66, 67]. The self-similarity present within these spirals makes them natural

candidates for fractal analysis, and one may wish to examine the fine local structure

present at the origin [11, 31]. This may be quantified via a suitable notion of fractal

dimension such as box-counting dimension [69].

The isotropic classical definition (4.1.1) may be too restrictive for the modelling of gen-

eral natural or abstract phenomena. Most naturally occurring spirals are anisotropic,
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developing in systems with inherent asymmetry, such as elliptical whirlpools forming in

a flowing body of water. Another simple example arises in Newtonian mechanics: sup-

pose a weight attached to an elastic band is rotated about an axis parallel to the ground.

At high velocities the centripetal force dominates gravity and the orbit is circular. How-

ever, if the system is allowed to decelerate, the weight will follow a spiral trajectory that

will become increasingly elongated in the vertical direction as the relative contribution

of gravitational force grows.

To account for these scenarios, flexibility may be introduced by controlling rate of con-

traction in each axis and introducing an additional functional parameter. Thus, for two

winding functions φ, ψ : [1,∞)→ (0,∞), we define the associated elliptical spiral to be

S(φ, ψ) = {φ(t) cos t+ iψ(t) sin t : 1 < t <∞}. (4.1.2)

Our results concern the family of elliptical polynomial spirals Sp,q = S(t−p, t−q), where

0 < p ≤ q, although our arguments apply more generally. If p = q, then we write

Sp,p = Sp and (4.1.2) recovers the generalised hyperbolic spirals. Spirals such as these

with polynomial winding functions typically arise in systems with an underlying dy-

namical process. On the other hand, spirals emerging from static settings are generally

logarithmic with winding functions of the form exp(−ct) for c > 0 [31].

Figure 4.1: An elliptical polynomial spiral Sp,q with p = 0.7 and q = 0.75.
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This chapter serves two purposes. First, we offer a dimensional analysis of the family

of elliptical polynomial spirals. This involves calculating the intermediate, box-counting

and Assouad-type dimensions. Together, our results show the intermediate dimensions

and the Assouad spectrum provide a continuous interpolation between the two extremes

of the dimensional repertoire, as illustrated in Figure 4.2. One exciting outcome of

this analysis was that Assouad spectrum of Sp,q turned out to contain two points of

non-differentiability, or phase transitions (see Theorem 4.2.7). The elliptical polynomial

spirals are the first natural example to exhibit this behaviour, found before only as the

product of delicate constructions.

Figure 4.2: A plot of dimθ Sp,q against θ (x-axis) for θ ∈ [0, 1] and dimθ−1
A Sp,q against θ

for θ ∈ [1, 2]. In this example, p = 0.1 and q = 0.8.

The second focus is to determine permissible α such that there may exist an α-Hölder

function f : Sp,q → Sr,s that deforms one elliptical polynomial spiral into another. Recall

a function f : X → Y is α-Hölder (0 < α ≤ 1) if there exists c > 0 such that

|f(x)− f(y)| ≤ c|x− y|α (x, y ∈ X).

Such maps may play a role within dynamical systems where spirals form and evolve

over time. The Hölder exponent characterises the regularity of f by quantifying the

degree of distortion at local scales. A number of related questions on regularity have
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been explored over the past few decades for different categories of spirals that arise from

winding functions of various canonical forms. Katznelson, Nag and Sullivan show that

the logarithmic spiral satisfies the bi-Lipschitz winding problem [48]. That is, it may be

constructed as the image of a bi-Lipschitz homeomorphism on the unit interval. However,

if φ decays sub-exponentially, i.e.

log φ(t)

t
→ 0 (t→∞),

then no such bi-Lipschitz homeomorphism exists [26]. This led Fraser [31] to investigate

Hölder solutions to the winding problem for generalised hyperbolic spirals.

Our methodology is based on the dimension profiles we saw in Chapter 3. Of course, if

there is an α-Hölder map between Sp,q and Sr,s we immediately obtain

α ≤ dimSp,q
dimSr,s

, (4.1.3)

where dim denotes Hausdorff or box-counting dimension, since

dim f(E) ≤ 1

α
dimE

for E ⊂ Rn and α-Hölder f : Rn → Rn. However, the upper dimension profiles (3.2.6)

provide a strictly sharper bound on α by use of the formula

α ≤ dim
2α
θ Sp,q

dimθ Sr,s
, (4.1.4)

derived from Falconer [18, Theorem 2.6] in the case θ = 1 and Theorem 3.4.1 for θ ∈ [0, 1].

Of course, we could analogously obtain an estimate using the lower dimension profiles

(3.2.5), too.
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While this approach seems promising at first sight, the definition of the profiles is

potential-theoretic and rather challenging to compute in the case of Sp,q. This difficulty

is circumvented by instead using the relationship to their fractional Brownian images

given by Theorem 3.4.7. In fact, the method employed here may be used more generally

to estimate the Hölder regularity of a function between any two sets for which the box

or intermediate dimensions of the fractional Brownian images may be estimated from

above.

In preparation for the main proofs, we conclude this introduction by setting notation and

making a useful geometric observation that is applied frequently in our arguments.

Dimension concerns limiting processes for which fixed multiplicative constants are typi-

cally of little consequence. Therefore, we often write x . y when it is clear there exists

a uniform constant c > 0 not depending on x and y such that x ≤ cy. Naturally, we

analogously define &, and write x ≈ y if x . y and x & y. In circumstances where c is

not uniform but depends on certain parameters, say t1, t2, . . . , we write .t1,t2,..., &t1,t2,...

and ≈t1,t2,... to make this clear.

A useful trick is to decompose Sp,q into a countable disjoint union of full turns. In

particular, we define

Sp,q :=
⋃
k≥1

Skp,q, (4.1.5)

where

Skp,q = {t−p cos t+ it−q sin t : 2πk ≤ t < 2π(k + 1)}.

Note that, for arithmetic convenience, we have removed the part of Sp,q corresponding to

1 < t < 2π in the definition (4.1.2) without meaningful loss of generality. The following

geometric observation estimates the sum of the 1-dimensional Hausdorff measures, or

length, over a collection of consecutive turns using standard number theoretic estimates.
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Lemma 4.1.1. Let 0 < p ≤ q. For k ≥ 1,

H1(Skp,q) ≈p k−p (4.1.6)

Moreover, for sufficiently large integers N,M ∈ N with M < N ,

N∑
k=M

H1(Skp,q) ≈p


N1−p −M1−p if p < 1

logN − logM if p = 1

M1−p −N1−p if p > 1

. (4.1.7)

Proof. By comparing H1(Skp,q) with the perimeter of a square of sidelength 2(2kπ)−p

centred on the origin we may deduce

(2kπ)−p ≤ H1(Skp,q) ≤ 8(2kπ)−p,

from which (4.1.6) follows immediately. (4.1.7) may then be deduced in a standard way.

Letting btc denote the integer part of t ∈ R, observe that for p 6= 1,

N∑
k=M

H1(Skp,q) ≈p
N∑

k=M

k−p =

N∑
k=M

k+1∫
k

buc−p du ≈p
1

1− p
(N1−p −M1−p).

The case for p = 1 follows similarly.

4.2 Dimensions

For 0 < p ≤ q, the Hausdorff and packing dimensions satisfy

dimH Sp,q = dimP Sp,q = 1,
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due to the countable stability of these dimensions and the decomposition (4.1.5). We

present the remaining dimensions of Sp,q, beginning with the intermediate dimensions.

It is convenient to start by proving an upper bound in the wider context of images of

elliptical spirals under Hölder transformations. As we shall see, this becomes especially

relevant in Section 4.3 when considering fractional Brownian images and dimension pro-

files, since index-α fractional Brownian motion is almost surely (α − ε)-Hölder for all

ε > 0.

Lemma 4.2.1. Let 0 < p ≤ q, θ ∈ [0, 1] and f : Sp,q → R2 be α-Hölder (0 < α ≤ 1). If

p < 1, then

dim θf(Sp,q) ≤


2 0 < α ≤ 1/2

p+q+2θ(1−p)
α(p+q)+θ(1−p) 1/2 < α ≤ 1

.

Otherwise, if p ≥ 1, then

dim θf(Sp,q) ≤


2 0 < α ≤ 1/2

1
α 1/2 < α ≤ 1

.

Proof. Let 0 ≤ s ≤ 2 and 0 < δ < 1. To aid readability when dealing with particularly

complicated exponents, we write t = − log δ.

If 0 < α ≤ 1/2, the bound is trivial. Thus, hereafter assume 1/2 < α ≤ 1.

Choose M ∈ N to be the smallest integer satisfying

M ≥ exp

(
t(s− (1/α) + θ(2− s))

1− p+ α(p+ q)

)
, (4.2.1)

and note that by (4.1.6) from Lemma 4.1.1,
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Nδ1/α(Skp,q) .p
k−p

δ1/α
. (4.2.2)

Let the uniform constant associated with the Hölder property of f be c > 0. Then, for

k ≤ M , by considering the image of a cover satisfying (4.2.2) under f , we may obtain a

cover of f(Skp,q) by

≈p
k−p

δ1/α

balls of diameter c2α/2δ. It the follows that there exists a constant dc,p,α, depending only

on c, p and α, such that we may cover f(Skp,q) by

dc,p,α
k−p

δ1/α
≈c,p,α

k−p

δ1/α

balls of diameter δ. The remaining region will be covered by balls of diameter δθ. For

k > M ,

⋃
k>M

f(Skp,q) ⊂ f([−M−p,M−p]× [−M−q,M−q])

⊆ [−cM−pα, cM−pα]× [−cM−qα, cM−qα],

and such a rectangle may be covered by

≈c
M−(p+q)α

δ2θ

balls of diameter δθ. Summing over this cover, that we denote {Ui}i, gives

∑
|Ui|s ≈c,p,α

(
M−α(p+q)

δ2θ

)
δθs + δs

M∑
k=1

k−p

δ1/α
. (4.2.3)
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If p ≤ 1, then (4.2.1) and (4.2.3) imply

∑
|Ui|s ≈c,p,α M−α(p+q)δθs−2θ +M1−pδs−(1/α)

≈c,p,α 2 exp

(
−ts(α(p+ q) + θ(1− p))− (p+ q + 2θ(1− p))

1− p+ α(p+ q)

)
. (4.2.4)

Hence,
∑
|Ui|s → 0 as δ → 0 providing

s >
p+ q + 2θ(1− p)
α(p+ q) + θ(1− p)

,

and so

dimθf(Sp,q) ≤
p+ q + 2θ(1− p)
α(p+ q) + θ(1− p)

.

Note that if p = 1 this bound equals 1/α, as required. On the other hand, if p > 1, then

(4.2.3) implies

∑
|Ui|s ≈c,p,α M−α(p+q)δθs−2θ + δs−(1/α)

≈c,p,α exp

(
−ts(α(p+ q) + θ(1− p))− (p+ q + 2θ(1− p))

1− p+ α(p+ q)

)
+ δs−(1/α).

Clearly,

1− p+ α(p+ q) ≥ 1− p+
1

2
(p+ p) = 1,

and so the left-hand term converges to 0 as δ → 0 if

s >
p+ q + 2θ − 2pθ

α(p+ q) + θ − pθ
,

while the right hand term requires s > 1/α. Hence

dimθf(Sp,q) ≤ max

{
p+ q + 2θ − 2pθ

α(p+ q) + θ − pθ
,

1

α

}
=

1

α
.
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The exact value of the intermediate dimensions may then be derived by applying Lemma

4.2.1 to the identity map, along with a lower bound that we obtain using the mass

distribution principle for intermediate dimensions [21, Proposition 2.2]. Since this version

of the mass distribution principle is less well-known, we include it below for convenience.

Proposition 4.2.2. [21, Proposition 2.2] Let F be a Borel subset of Rn and let 0 ≤ θ ≤ 1

and s ≥ 0. Suppose that there are numbers a, c, δ0 > 0 such that for all 0 < δ ≤ δ0 we

can find a Borel measure µ0 supported on F with µ0(F ) ≥ a, and

µδ(U) ≤ c|U |s

for all Borel sets U ⊆ Rn with δ ≤ |U | ≤ δθ. Then dim θF ≥ s. Moreover, if measures µδ

with the above properties can be found only for a sequence of δ → 0, then the conclusion

is weakened to dim θF ≥ s.

We also make use of ellipses to help bound the distance between consecutive turns of Sp,q

in the upper half plane. So, let us define

Er = {r−p cos t+ ir−q sin t : 0 ≤ t < 2π} (4.2.5)

for each m ∈ N and r = mπ, which corresponds to the ellipse centred on the origin with

major axis 2r−p and minor axis 2r−q .

Theorem 4.2.3. Let θ ∈ [0, 1] and 0 < p ≤ q. If p < 1, then

dimθ Sp,q =
p+ q + 2θ(1− p)
p+ q + θ(1− p)

.

Otherwise, if p ≥ 1, then

dimθ Sp,q = 1.
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Proof. The upper bound follows from Lemma 4.2.1 applied to the identity mapping. If

p ≥ 1, the upper bound coincides with the trivial lower bound, and so it suffices to

assume 0 < p < 1. Let 0 < δ < 1, and define M ∈ N to be the smallest integer satisfying

M ≥ exp

(
t(s− 1 + θ(2− s))

1 + q

)
,

recalling t = − log δ. Moreover, for the lower bound, it suffices by monotonicity of the

intermediate dimensions to consider S+
p,q = Sp,q ∩ U , where U is the upper half-plane.

The turns associated with S+
p,q are denoted S+,k

p,q .

Next, define

s =
p+ q + 2θ(1− p)
p+ q + θ(1− p)

,

and construct a measure µδ supported on S+
p,q by

µδ = δs−1
M∑
k=1

H1
∣∣
S+,k
p,q
, (4.2.6)

where H1
∣∣
S+,k
p,q

denotes the restriction of 1-dimensional Hausdorff measure to S+,k
p,q .

It is easy to see that

µδ(S
+
p,q) = δs−1

M∑
k=1

H1(S+,k
p,q ) &p δ

s−1
M∑
k=1

k−p ≈p M1−pδs−1 ≈p 1,

with the final calculation similar to that which obtained (4.2.4).

Next, in order to apply the mass distribution principle for intermediate dimensions, we

must estimate µδ(U) for arbitrary Borel sets U satisfying δ ≤ |U | ≤ δθ. This requires us

to consider the spacing between consecutive turns of the spiral. Specifically, we wish to
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estimate the quantity

Dp,q(k − 1, k) = inf{|x− y| : x ∈ S+,k−1
p,q , y ∈ S+,k

p,q }.

It suffices to bound the distance between the pair of ellipses E2kπ−π and E2kπ that lie

between S+,k−1
p,q and S+,k

p,q in the upper half plane, as illustrated by Figure 4.3.

Figure 4.3: A plot illustrating the two ellipses E2kπ−π and E2kπ (violet) that lie between

S+,k−1
p,q and S+,k

p,q (black). In this example, p = 0.8, q = 1.5 and k = 3.

To do this, we consider the transformation of E2kπ−π and E2kπ under the affine map

φ((x, y)) = ((2kπ)p−qx, y). This gives

E′2kπ−π := φ(E2kπ−π) =

{(
2kπ

2kπ − π

)p
(2kπ)−q cos t+ i(2kπ − π)−q sin t : 0 ≤ t ≤ π

}

and

E′2kπ := φ(E2kπ) =
{

(2kπ)−q cos t+ i(2kπ)−q sin t : 0 ≤ t ≤ π
}
.

The distance between E′2kπ−π and E′2kπ on the horizontal axis is given by

(2kπ)−q
(

2kπ

2kπ − π

)p
− (2kπ)−q.

Moreover, this is the minimal distance between E′2kπ−1 and E′2kπ, which by can seen by

noting p ≤ q implies (
2kπ

2kπ − 1

)p
− 1 ≤

(
2kπ

2kπ − 1

)q
− 1,
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and

(2kπ)−q
(

2kπ

2kπ − π

)p
− (2kπ)−q =

((
2kπ

2kπ − π

)p
− 1

)
(2kπ)−q

≤
((

2kπ

2kπ − π

)q
− 1

)
(2kπ)−q

= (2kπ − π)−q − (2kπ)−q.

Then, by considering the appropriate Taylor expansions, observe that we may choose

k0 > 0 such that (
2kπ

2kπ − π

)p
− 1 ≥ p

2q

((
2kπ

2kπ − π

)q
− 1

)
for k > k0. Hence

(2kπ)−q
(

2kπ

2kπ − π

)p
− (2kπ)−q ≥ p

2q

((
2kπ

2kπ − π

)q
− 1

)
(2kπ)−q

=
p

2q

(
(2kπ − π)−q − (2kπ)−q

)
.

Moreover, since φ−1 is expanding and increases distances, the minimum distance between

E2kπ−π and E2kπ is also bounded below by

p

2q

(
(2kπ − π)−q − (2kπ)−q

)
for k > k0. On the other hand, there must exist some c > 0 such that the minimum

distance between E2kπ−π and E2kπ is bounded below by

c
(
(2kπ − π)−q − (2kπ)−q

)
.

for 2 ≤ k ≤ k0, since each distance is strictly positive and there are finitely many such k.
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Hence, we conclude

Dp,q(k − 1, k) ≥ Cp,q
(
(2kπ − π)−q − (2kπ)−q

)
≈p,q (2kπ − π)−q − (2kπ)−q, (4.2.7)

where Cp,q = min{c, p/(2q)}. An application of the mean value theorem to f(x) = x−q

then gives

f (2kπ − π)− f (2kπ) = (2kπ − π)−q − (2kπ)−q = −qc−q−1(−1) (4.2.8)

for some 2kπ − π ≤ c ≤ 2kπ. Together, (4.2.7) and (4.2.8) imply

Dp,q(k − 1, k) &p,q (2kπ − π)−q − (2kπ)−q

&p,q
1

(2Mπ)1+q

≈p,q
1

M1+q

for 2 ≤ k ≤ M . It follows that a set U satisfying δ ≤ |U | ≤ δθ may intersect at most

|U |M1+q turns that contain mass, up to a constant depending only on p and q. Moreover,

for each turn it intersects, U may cover a region of mass at most δs−1 multiplied by the

circumference of a ball of diameter U . Hence

µδ(U) .p,q (|U |δs−1)(|U |M1+q)

= |U |2δs−1δ−s+1−θ(2−s)

= |U |2δθ(s−2)

= |U |2|U |s−2 (since s < 2 and |U | ≤ rθ)

= |U |s.

The lower bound then follows from the mass distribution principle for intermediate di-

mensions, see Proposition 4.2.2.
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Figure 4.4: A plot of dimθ Sp,q against θ (x-axis) for p = 0.4 and q = 0.7, along with
dashed horizontal lines that indicate dimH Sp,q = 1 and dimB Sp,q = (2 + q − p)/(1 + q).

It is worth remarking that measures of a form similar to (4.2.6) could be useful for a

wide range of sets E with a spiral structure. For example, we might consider the image

of a spiral under a map f that distorts the local geometry while preserving the general

form. If it were the case that dimH f(Skp,q) = t for all k ∈ N, then measures of the form

µδ = δs−t
M∑
k=1

Ht
∣∣
f(Skp,q)

(4.2.9)

may be good candidates for use with Proposition 4.2.2.

By setting θ = 1, Theorem 4.2.3 also offers the box-counting dimensions of elliptical

polynomial spirals.

Corollary 4.2.4. Let θ ∈ [0, 1] and 0 < p ≤ q. If 0 < p < 1, then

dimB Sp,q =
2 + q − p

1 + q
= 1 +

1− p
1 + q

.

Otherwise, if p ≥ 1, then

dimB Sp,q = 1.
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In the special case p = q, Theorem 4.2.3 may be applied to determine the intermediate

dimensions of generalised hyperbolic spirals, which have also been obtained independently

by Tan [65].

Corollary 4.2.5. Let θ ∈ [0, 1]. If 0 < p < 1, then

dimθ Sp =
2p+ 2θ(1− p)
2p+ θ(1− p)

.

Otherwise, if p ≥ 1, then

dimθ Sp = 1.

As we saw in previous chapters, a question of interest within the literature on interme-

diate dimensions has been the classification of sets that are continuous at θ = 0 [8, 21].

Theorem 4.2.3 confirms that the elliptical polynomial spirals are within this class.

Corollary 4.2.6. Let 0 < p ≤ q. The function θ → dimθ Sp,q is continuous on [0, 1].

Next, we move on into the realm of Assouad-type dimensions. As illustrated in Figure 4.5,

the following theorem gives the value of dimθ
A Sp,q for all θ ∈ (0, 1] and establishes the ex-

istence of two phase transitions, that is, points where the spectrum is non-differentiable.

Moreover, these phase transitions are genuine in the sense that their left and right deriva-

tives are necessarily distinct.

Theorem 4.2.7. Let 0 < p ≤ q. If 0 < p < 1, then

dimθ
A Sp,q =



2+q−p
(1+q)(1−θ) if 0 ≤ θ < p/(1 + q)

2+q−θ(1+q)
(1+q)(1−θ) if p/(1 + q) ≤ θ < q/(1 + q)

2 if q/(1 + q) ≤ θ < 1

.
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Otherwise, if p ≥ 1, then

dimθ
A Sp,q =



p−θ(p−1)
p(1−θ) if 0 ≤ θ < p/(1 + q)

2+q−θ(1+q)
(1+q)(1−θ) if p/(1 + q) ≤ θ < q/(1 + q)

2 if q/(1 + q) ≤ θ < 1

.

Figure 4.5: A plot of dimθ
A Sp,q against θ (x-axis) for p = 1.1 and q = 1.8.

Proof. If p = q, then the result is [31, Theorem 4.4], so let 0 < p < q. For each 0 < δ < 1,

define Lp, Lq ∈ N to be the largest integers such that

δ ≤ 1

(π + 2πLp)p
− 1

(π + 2π(Lp + 1))p
(4.2.10)

and

δ ≤ 1

(3π2 + 2πLq)q
− 1

(3π2 + 2π(Lq + 1))q
. (4.2.11)

Geometrically, Lp and Lq are the maximal indices k, such that Skp,q is separated on the

horizontal and vertical axes by at least δ, respectively. In addition, define the integers lp

and lq to be the minimal k such that Skp,q intersects the ball B(0, δθ) on the horizontal

and vertical axes, respectively. In particular,

(π + 2πlp)
−p ≤ δθ < (π + 2π(lp − 1))−p
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and (
3π

2
+ 2πlq

)−q
≤ δθ <

(
3π

2
+ 2π(lq − 1)

)−q
.

Figure 4.6 illustrates the geometric significance of the quantities Lp and lp through an

example. Of course, Lq and lq may be understood similarly by considering the vertical,

rather than horizontal, axis. Throughout, we use the fact that

Sp,q ∩B(0, δθ) ⊆
∞⋃
k=lq

Skp,q ∩B(0, δθ).

Figure 4.6: A plot illustrating the quantities lp and Lp. Recall that lp is the minimal k
such that Skp,q intersects B(0, δθ) on the horizontal axis, and Lp is the maximal index k

such that Skp,q is separated from neighbouring turns on the horizontal axis by at least δ.
The size of δ is indicated pictorially, to scale, by a line segment in the legend.

The ordering of Lp, Lq, lp and lq depends on θ, and gives rise to phase transitions within

the spectrum. To determine the order based on a value of θ, first note that

lt ≈t δ−θ/t (4.2.12)

for t ∈ {p, q}. Then, analogously to (4.2.8), for t ∈ {p, q}, it follows from an application
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of the mean value theorem applied to f(x) = x−t that

t

(k + 1)1+t
≤ 1

kt
− 1

(k + 1)t
≤ t

k1+t
.

This, along with the fact Lp and Lq are the maximal integers satisfying (4.2.10) and

(4.2.11), respectively, implies

Lt ≈t δ−
1

1+t . (4.2.13)

It is immediate that lp &p,q lq and Lp &p,q Lq for all θ ∈ [0, 1) since p < q, but we must

divide into cases to learn more. By continuity of the Assouad spectrum [39, Corollary

3.5] and [39, Corollary 3.6], it suffices to consider θ in the ranges 0 ≤ θ < p/(1 + q) and

p/(1 + q) < θ < q/(1 + q). Throughout, we use the estimate

Nδ(Sp,q ∩B(z, δθ)) .p,q Nδ(Sp,q ∩B(0, δθ))

for all z ∈ C. This in intuitively clear, since the origin is the densest part of the set Sp,q.

[39] provides further details on this reduction in the case of Sp and similar arguments

would apply here.

Case 1: suppose p
1+q < θ < q

1+q .

In order to simplify some geometric estimates, it is convenient to adopt an equivalent def-

inition of the Assouad spectrum in this case. Specifically, we consider minimal coverings

of the set D(0, δθ) ∩ Sp,q, where D(0, δθ) is a square centred on the origin of sidelength

2δθ and orientated with the co-ordinate axes. By (4.2.12) and (4.2.13), for sufficiently

small δ > 0,

l−pp < L−pq < l−pq .
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For lq ≤ k ≤ Lq, the set Skp,q ∩D(0, δθ) contains at least one arc A such that

H1(A) ≈ δθ,

and so

Nδ(A) ≈ δθ

δ
.

Turns in the range lq ≤ k ≤ Lq are separated by at least δ on the vertical and horizontal

axes, and thus any square of sidelength δ may intersect at most two of the corresponding

arcs.

It follows that, recalling (4.2.12) and (4.2.13),

Nδ(Sp,q ∩D(0, δθ)) &
Lq∑
k=lq

δθ−1 (4.2.14)

≈p,q δθ−1
(
δ
− 1

1+q − δ−
θ
q

)
&p,q

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

.

Hence

dimθ
A Sp,q ≥

2 + q − θ(1 + q)

(1 + q)(1− θ)
.

On the other hand, observe

∞⋃
k=Lq

Skp,q ∩D(0, δθ) ⊆ [−δθ, δθ]× [−(2πLq)
−q, (2πLq)

−q],

and such a rectangle may be covered by

≈q
δθL−qq
δ2

squares of sidelength δ. The remaining portion may be covered in a similar manner as
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in (4.2.14), and we conclude

Nδ(Sp,q ∩B(0, δθ)) .q
δθL−qq
δ2

+

Lq∑
k=lq

δθ−1

≈p,q
(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

+

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

= 2

(
δθ

δ

) 2+q−θ(1+q)
(1+q)(1−θ)

.

Case 2: suppose 0 ≤ θ < p
1+q .

By (4.2.12) and (4.2.13), for sufficiently small δ > 0,

L−pp < L−pq < l−pp < l−pq ,

with the gaps between the four integers Lp, Lq, lp and lq arbitrarily large. Then, for

k = lp + 1, . . . , Lq, we have

Skp,q ⊂ B(0, δθ),

while the turns in this region are separated by at least δ on the horizontal and vertical

axes. Therefore they should be covered individually by at least

H1(Skp,q)

δ
≈p

k−p

δ

squares of sidelength δ.

Hence

Nδ(Sp,q ∩B(0, δθ)) &p

Lq∑
k=lp

k−p

δ
. (4.2.15)
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This sum may be estimated using Lemma 4.1.1. If p < 1, then

Nδ(Sp,q ∩B(0, δθ)) &p
L1−p
q − l1−pp

δ

≈p,q δ
p−1
1+q
−1

=

(
δθ

δ

) 2+q−p
(1+q)(1−θ)

.

On the other hand, if p = 1, then

Nδ(Sp,q ∩B(0, δθ)) &p
log(Lq)− log(lp)

δ

≈p,q δ−1| log(δ)|

≥
(
δθ

δ

) 1
(1−θ)

. (4.2.16)

Finally, if p > 1, then

Nδ(Sp,q ∩B(0, δθ)) &p
l1−pp − L1−p

q

δ

≈p,q δ
(p−1)θ
p
−1

=

(
δθ

δ

) p−θ(p−1)
p(1−θ)

.

In each case we obtain the desired lower bound.

For the upper bound, we consider a cover of three parts. First, cover turns indexed by

k ≥ Lq by covering the rectangle

[−(2πLq)
−p, (2πLq)

−p]× [−(2πLq)
−q, (2πLq)

−q]

by

≈p,q
L−pq L−qq
δ2
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squares of sidelength δ. The remaining two portions may then be covered as in (4.2.14)

and (4.2.15). Hence

Nδ(Sp,q ∩B(0, δθ)) .p,q
L−pq L−qq
δ2

+

Lq∑
k=lp

k−p

δ
+

lp∑
k=lq

δθ−1.

We now apply Lemma 4.1.1 in each case. If p < 1, then

Nδ(Sp,q ∩B(0, δθ)) .p,q δ
p

1+q
+ q

1+q
−2

+ δ−1(L1−p
q − l1−pp ) + δθ−1(lp − lq)

.p,q

(
δθ

δ

) 2+q−p
(1−θ)(1+q)

.

On the other hand, if p = 1, then

Nδ(Sp,q ∩B(0, δθ)) .p,q δ
p

1+q
+ q

1+q
−2

+ δ−1(logLq − log lp) + δθ−1(lp − lq)

.p,q

(
δθ

δ

) 1
1−θ

.

Finally, if p > 1, then

Nδ(Sp,q ∩B(0, δθ)) .p,q δ
p

1+q
+ q

1+q
−2

+ δ−1(l1−pp − L1−p
q ) + δθ−1(lp − lq)

.p,q

(
δθ

δ

) p−(p−1)θ
(1−θ)p

,

which completes the proof.

The reader familiar with [31] may be surprised to see that the first phase transition

occurs at p/(1 + q), rather than p/(1 + p). Indeed, this shows an unexpected and subtle

interaction between the parameters. Theorem 4.2.7 also shows that elliptical polynomial

spirals have maximal Assouad dimension.

Corollary 4.2.8. For all 0 < p ≤ q, dimA Sp,q = 2.
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Lastly, the relationship between elliptical polynomial spirals and concentric ellipses indi-

cated by the proof of Theorem 4.2.3 is worthy of further comment. Let us define

Cp,q =
⋃
n∈N

E2πn,

where E2πn denotes the ellipse given by (4.2.5). See Figure 4.7 for a visual representation

of Cp,q. It is not surprising that Cp,q is dimensionally equivalent to Sp,q and our arguments

apply equally well to such sets, since it is not too hard to show that the covering number

of Skp,q is equal to that of E2πk up to multiplicative constants depending only on p and q.

Corollary 4.2.9. Theorem 4.2.3 and Theorem 4.2.7 hold with Sp,q replaced by Cp,q.

Proof. This follows immediately upon observing that Sp,q ∩ {z ∈ C : Re(z) < 0} is

bi-Lipschitz equivalent to Cp,q ∩ {z ∈ C : Re(z) < 0}.

Figure 4.7: A family of concentric ellipses Cp,q dimensionally equivalent to Sp,q, where
p = 0.4 and q = 0.6.

4.3 Regularity of spiral deformations

In this section we shall see how dimension theoretic information may be applied to ex-

amine the regularity of Hölder mappings that deform one elliptical polynomial spiral into

another. The behaviour of dimension under Hölder mappings has been widely studied,
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and offers insight into permissible α for which there may exist an α-Hölder map trans-

forming a set X onto a set Y . For example, Corollary 4.2.4 allows us to glean such

information from the box-counting dimensions of Sp,q and Sr,s.

Proposition 4.3.1. Let 0 < p ≤ q and 0 < r ≤ s with r ≤ 1. Suppose f : Sp,q → Sr,s is

α-Hölder. If p ≤ 1, then

α ≤ (2 + q − p)(1 + s)

(2 + s− r)(1 + q)
.

Otherwise, if p > 1, then

α ≤ 1 + s

2 + s− r
.

Proof. Let p ≤ 1. By the standard properties of box-counting dimensions, see [17,

Chapter 2],

2 + s− r
1 + s

= dimB f(Sp,q) ≤
1

α
dimB Sp,q =

1

α

2 + q − p
1 + q

,

from which the first result follows. The case for p > 1 is similar.

Proposition 4.3.1 provides a non-trivial bound on α when dimB Sr,s > dimB Sp,q. How-

ever, it is possible to do better using dimension profiles. In the following lemma, we

bound the 2α-profiles of Sp,q by a quantity strictly less than the dimension for θ > 0,

p < 1 and 1/2 < α < 1. This is depicted in Figure 4.8.

Lemma 4.3.2. Let 0 < p ≤ q and θ ∈ [0, 1]. If p ≤ 1, then

dim
2α
θ Sp,q ≤


2α 0 < α ≤ 1/2

α(p+q+2θ(1−p))
α(p+q)+θ(1−p) 1/2 < α < 1

.

Proof. Recall that index-α fractional Brownian motion is almost surely (α − ε)-Hölder

for all ε > 0 [47].
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Figure 4.8: A plot of the upper bound of dim
2α
θ Sp,q (solid) and dimθ Sp,q (dashed) against

θ (x-axis) for α = 0.7, p = 0.4 and q = 0.6.

Hence, for each ε > 0, Lemma 4.2.1 tells us that

dim θBα(Sp,q) ≤


2 0 < α ≤ 1/2

p+q+2θ(1−p)
(α−ε)(p+q)+θ(1−p) 1/2 < α < 1

almost surely. Then, letting ε→ 0, by Theorem 3.4.7 we have

dim
2α
θ Sp,q = αdim θBα(Sp,q) ≤


2α 0 < α ≤ 1/2

α(p+q+2θ(1−p))
α(p+q)+θ(1−p) 1/2 < α < 1

almost surely. This concludes the proof, since dim
2α
θ Sp,q has no random component.

It is clear from Lemma 4.3.2 that we may produce a bound strictly superior to that from

Theorem 4.3.1 for all parameter configurations with p < 1 using dimension profiles. This

improvement is illustrated in Figure 4.9. For larger p, the two approaches are equivalent.

Theorem 4.3.3. Let 0 < p ≤ q and 0 < r ≤ s. If p ≤ 1, r ≤ 1 and f : Sp,q → Sr,s is

α-Hölder, then

α ≤ p+ q + r + s− pr + qs

(2 + s− r)(p+ q)
.
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Proof. The target bound is strictly greater than 1/2, and so we may assume without loss

of generality that α > 1/2. The discrepancy between the profile and the dimension is

maximised when θ = 1. Thus, set θ = 1, and observe from Theorem 3.4.1, Lemma 4.3.2

and Corollary 4.2.4 that

dim1 Sr,s =
2 + s− r

1 + s
≤ 1

α
dim

2α
1 Sp,q ≤

p+ q + 2(1− p)
α(p+ q) + (1− p)

,

from which the result follows on re-expressing the inequality in terms of α.

Figure 4.9: Bounds on the Hölder exponent of f : Sp,q → Sr,s against the value of q
(x-axis) when p = 0.6, r = 0.2 and s = 0.1. The bounds derived from the dimension
profiles (Theorem 4.3.3) and the box-counting dimension (Proposition 4.3.1) correspond
to the solid and dashed lines, respectively.

Recall that if p = q, then Sp,p = Sp is a generalised hyperbolic spiral. In this case,

Theorem 4.3.3 offers an appealing upper bound on α.

Corollary 4.3.4. Let p > q and f : Sp → Sq be α-Hölder. If p ≤ 1, then

α ≤ p+ q

2p
.

Proof. Apply Theorem 4.3.3 to f : Sp,p → Sq,q.
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In [31], it was seen that the Assouad spectrum provided the most information on Hölder

exponents in the context of the winding problem (mapping a line segment to a spiral).

However, it is easily verified that the same tool, [39, Theorem 4.11], provides only trivial

information in our setting (mapping a spiral to a spiral). Conversely, in the context of the

winding problem, dimension profiles provide no new information. Thus, it is interesting

to see that the regimes are inverted in the context of spiral deformation, with the Assouad

spectrum providing the least information and the dimension profiles the most.
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