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ABSTRACT 

Herein, we demonstrate a combined fluorescent probe/shape encoded hydrogel strategy for the 

fast, sensitive and selective detection of bacterial species via their characteristic enzymes. A 

polyvinyl alcohol (PVA) hydrogel loaded with the fluorescent probe N,N'-(3-oxo-3H-

spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl)bis(2,2,3,3,3-pentafluoropropanamide) (ACS-

HNE) was designed for the detection of elastase, an enzyme produced by Pseudomonas 

aeruginosa. Likewise, a chitosan-derived hydrogel was loaded with the fluorescent probe 4-

methylumbelliferyl-α-D-glucopyranoside (MUD) by entrapment for the selective detection of α-

glucosidase, an enzyme produced by Staphylococcus aureus. For an observation time of 60 

minutes, limits of detection (LOD) of ≤ 20 nM for elastase and ≤ 30 pM for α-glucosidase were 

obtained, which in the latter case is three orders of magnitude better than related chitosan 

systems with covalently coupled substrate. To illustrate the potential utility of these highly 

sensitive sensor hydrogels as a simple point-of-care test system, shaped hydrogel slabs 

representing the letters P and S were manufactured to detect Pseudomonas aeruginosa and 

Staphylococcus aureus, respectively. These shapes were shown to provide an additional unique 

color code under UV illumination corresponding to the characteristic enzyme produced by the 

corresponding bacteria. This study shows potential for the future development of an effective and 

simple point-of-care test for the rapid identification of bacterial species that can be operated by 

non-specialists. 
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INTRODUCTION 
 

Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are two 

clinically relevant multi-drug resistant (MDR) pathogenic bacteria that pose a significant threat 

to public health due to the lack of therapeutic alternatives.1 P. aeruginosa is responsible for a 

variety of healthcare-associated infections, including pneumonia, bloodstream infections, urinary 

tract infections, and surgical site infections, and is particularly dangerous for 

immunocompromised patients. 2  In the United States alone, 51,000 healthcare-associated P. 

aeruginosa infections have been documented, with roughly 400 deaths each year attributed to 

MDR P. aeruginosa.3 S. aureus is a leading cause of bacteremia and infective endocarditis, as 

well as osteoarticular, skin and soft tissue, pleuropulmonary, and device-related infections and 

food poisoning.4,5,6 Methicillin-resistant S. aureus (MRSA) is resistant to numerous antibiotics, 

and as such causes life-threatening bloodstream infections, pneumonia, and surgical site 

infections.7 Nearly 20,000 deaths were caused by infections with S. aureus in 2017 in the United 

States.8  

The alarming increase in reports on antibiotic resistance clearly highlights the urgent need for the 

development of new and effective therapeutics capable of treating such infections. Similarly, 

new diagnostic platforms capable of rapidly and selectively detecting pathogens are in increasing 

demand to limit the use of antibiotics and offer a targeted treatment tailored to the needs of 

affected patients. 

To date, the most common methods for bacterial detection involve direct or indirect counting of 

bacteria, molecular diagnostic techniques (i.e. polymerase chain reaction, PCR) and 

immunology-based assays. The latter approaches are based on DNA analysis and antigen–

antibody interactions, respectively.9,10,11 While they offer high sensitivity, these methods are 
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time-consuming and require qualified personnel and specialized equipment. Additionally, certain 

methods, such as indirect counting and PCR, cannot discriminate between viable and non-viable 

cells.12,13,14 

Recently, fast, sensitive, selective and reliable bacterial detection methods have been developed 

based on dedicated laboratory-based equipment or by combining existing methods. These 

approaches include PCR-enzyme-linked immunosorbent assays, 15  secondary electrospray 

ionization tandem or matrix assisted laser desorption/ionization-time of flight mass 

spectrometry, 16 , 17   and confocal laser scanning microscopy equipped with white light laser 

technology. 18  However, these newer approaches are usually complicated, expensive, require 

training of personnel, and are therefore not suitable for application in non-laboratory settings. 

Hence the development of point-of-care diagnostic devices, which are cost-effective, accurate, 

rapid and easy-to-use, also for application in remote areas without appropriate electricity or 

climate control, etc., has received considerable attention. For instance, Suaifan et al. reported a 

paper-based biosensor, which is able to produce a signal within one minute and which possesses 

corresponding limits of detection (LOD) as low as 7, 40, and 100 CFU/mL for pure broth 

cultures of S. aureus, S. aureus inoculated in food matrices and S. aureus in environmental 

samples, respectively.19 In this approach, magnetic nanobeads carrying a S. aureus protease 

specific peptide substrate were attached on a gold sensor platform. A visible color change was 

observed after dissociation of the magnetic nanobead moieties due to the proteolytic activity of 

S. aureus proteases on the specific peptide substrate. In related work, Xu and co-workers 

developed a sensitive multiple loop-mediated isothermal amplification and lateral flow nucleic 

acid biosensor to sense P. aeruginosa with a LOD as low as 20 CFU/mL. The results could be 

read out by bare eye within 50 min.20  
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Hydrogels, due to their specific functionality, have also been used for the detection of bacteria 

and bacterial infections.21,22 For example, Mirani et al. reported a multifunctional pH sensitive 

hydrogel-based dressing for the detection of P. aeruginosa and S. aureus infections via color 

changes, caused by the pH change after pathogenic infection. The dressing also released drugs at 

the wound site.23  

As an alternative colorimetric approach, we have recently reported on autonomously sensing 

chitosan hydrogels equipped with covalently coupled chromogenic substrates, such as N-

succinyl-tri-L-alanine 4-nitroanilide and the fluorescent probe 4-methylumbelliferyl α-D-

glucopyranoside (MUD), to detect and differentiate neat bacterial enzymes (elastase and α-

glucosidase). This approach also worked with supernatants collected from P. aeruginosa (PAO1) 

and S. aureus (AGR+, AGR-).24 The LOD values for an observation time of 1 hour were <45 nM 

for elastase and <20 nM for α-glucosidase.24 In all these cases, bacterial enzymes were utilized as 

a detection target for diagnostic platforms.  

Most clinical P. aeruginosa strains produce elastase, which is a major virulence factor in P. 

aeruginosa. As metallopeptidase the enzyme hydrolyzes elastin and thus causes immense 

damage to the connective tissue during the pathogenesis of infections.25,26 ,27  Meanwhile, S. 

aureus strains produce α-glucosidase, an exoglycosidase, which hydrolyses terminal, non-

reducing (1->4)-linked α-D-glucose residues resulting in the release of α-D-glucose.24 

The improvement of the sensitivity of these autonomous reporting hydrogels can be pursued by 

developing novel fluorescent probes and by optimizing the hydrogel properties. For instance, 

novel fluorescent probes showed excellent performance in staining, classification or 

differentiation of bacteria species. 28 , 29 , 30 , 31  The bacteria Gram-positive orange (BacGO) 

fluorescent probe was successfully applied for the detection of low numbers of bacteria of S. 
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aureus among P. aeruginosa in vivo due to its selectivity and high sensitivity for Gram-positive 

bacteria.32 Additionally, the phosphorylated fluorescent probe 2-hydroxychalcone (HCAP) was 

utilized in both aqueous and solid phase (by conjugation of the fluorescent probe with an 

adhesive cationic polymer) for the detection of Escherichia coli and S. aureus.33 

In this work reported here, we focused on the improvement of the LOD of hydrogel-based 

colorimetric reporter systems, and the implementation of an easy readout for the rapid detection 

and differentiation of P. aeruginosa and S. aureus also in cultures via both color and shape. The 

novel rhodamine-based fluorescent probe ACS-HNE34 and the known probe MUD, which allow 

for selective detection of elastase and α-glucosidase, respectively, were loaded by entrapment 

into optimized hydrogel matrices. The performance of the hydrogels was systematically studied 

in vitro and a simple point-of-care test system, manufactured as shaped hydrogel slabs 

representing the letters P and S, which code for Pseudomonas aeruginosa and Staphylococcus 

aureus, respectively, was developed and successfully tested with bacterial cultures. 

 

EXPERIMENTAL 

Materials. Silicon (100) wafers (P/Boron type, manufactured by OKMETIC, Finland), 

transparent plastic films (Kopier-Folien CE 6088, Germany) and TC Plate 96 Well (transparent 

and black, Sarstedt, Germany) were used as supporting substrates. Polydimethylsiloxane 

(PDMS) prepolymer and curing agent (Sylgard 184) were purchased from Dow Corning. 

Chitosan (medium molar mass, 190−310 kDa, 75−85% deacetylated), succinic anhydride, 

phosphate-buffered saline (PBS, tablet), α-glucosidase from Saccharomyces cerevisiae (16.13 

units/mg protein, E.C. 3.2.1.20; type I), Elastase from porcine pancreas (7 units/mg, E.C. 

3.4.21.36), dimethyl sulfoxide (DMSO, 99%), Poly(vinyl alcohol) (Mw = 89,000 - 98,000 g/mol) 
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were purchased from Sigma-Aldrich. Acetone (99%, VWR), Sodium hydroxide (98.8%, 

Chemsolute), 4-Methylumbelliferyl α-D-glucopyranoside (MUD, Roth) were purchased from 

listed suppliers. Milli-Q water obtained from Millipore Direct Q 8 system (Millipore, 

Schwalbach, Germany) with a resistivity of 18 MΩ cm was used for preparation of all aqueous 

media. 

Fluorescence spectroscopy. Measurements were carried out either with a Varian Cary Eclipse 

spectrometer (Mulgrave, Victoria, Australia) or with microplate readers (Tecan SAFIRE, Tecan, 

Switzerland; SPECTROstar Omega, BMG LABTECH, Germany) at 25°C. Fluorescence spectra 

obtained with the Varian Cary Eclipse spectrometer were measured at a scan rate of 

120 nm/minute and a resolution of 5 nm for the excitation and emission, using a 1 mm path-

length quartz cell (SUPRASIL, Hellma Analytics, Germany). Using the microplate reader 

fluorescence intensities were recorded using 96 well plates (black, polystyrene, flat bottom, 

Sarstedt, Germany) as sample holder with a sealing film (Greiner Bio-One, Austria). A 

bandwidth of 12 nm was applied for both excitation and emission. The gain parameter was 

manually set to 70 for the Tecan SAFIRE.  

Preparation of fluorescent probe loaded hydrogel. 

Synthesis of N-succinyl-chitosan (NSC). NSC was prepared by ring-opening reaction using 

succinic anhydride in DMSO) according to literature.35,36 Briefly, chitosan (2.0 g) was added to 

40 mL DMSO containing succinic anhydride (2.0 g) and stirred for 24 hours at 60 °C. The 

resultant mixture was filtered (Whatman no. 5 qualitative filter paper), and the obtained solid 

was washed with alternative rounds of ethanol and acetate before further filtration. Afterwards, 

the precipitate was dispersed into 100 mL Milli-Q water. A clear suspension was obtained via 

adjusting the pH to 10-12 by using NaOH solution (1 M). The solution was filtered twice, and 
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the filtrate was re-precipitated in acetone. The final product was washed with ethanol and 

acetone and dried under vacuum at 50°C. 

Preparation of MUD loaded NSC hydrogels. Aqueous NSC (1.4% (w/v), PBS pH 7.4) was 

mixed with MUD (0.2, 1.0, 2.0, 5.0mM, V(DMSO): V(PBS)=1:49) and deposited into 96 well plates 

(V(NSC): V(MUD) = 1, 100 µL, black). NSC hydrogels with various MUD loading were applied for 

the determination of values of the LOD. For hydrogels supported in silicon wafers, 108 µL of a 

solution containing equal volumes of aqueous NSC solution (4.2% (w/v), PBS pH 7.4) and MUD 

solution (2 mM, V(DMSO): V(PBS)=1:49) was deposited on a cleaned silicon wafer (wafer size: 0.9 × 

1.2 cm2). Hydrogel layers were formed after drying in a clean hood for 24 hours.  

Preparation of ACS-HNE loaded PVA hydrogels. Aqueous PVA solution (20% (w/v)) mixed 

with ACS-HNE solution (10 µM, V(DMSO): V(PBS)=1:49) was deposited into 96 well plates (V(PVA): 

V(ACS-HNE) = 1:100 µL, black) or on a cleaned silicon wafer (V(PVA): V(ACS-HNE) = 1:108 µL, wafer 

size: 0.9 × 1.2 cm2). Hydrogel layers were formed after drying in a clean hood for 24 hours.  

Preparation of patterned samples 

PDMS mask preparation. The PDMS mask was prepared according to literature.37 The PDMS 

prepolymer and curing agent (Sylgard 184) were mixed in a 10:1 ratio (by weight). After 

degassing for 30 min, the clear solution was poured into a polystyrene petri dish and cured for 1 

hour in an oven at 70°C. After cooling to ambient temperature, cured PDMS was chiseled to 

form P- and S-shaped holes (16 mm in length and 2.8 mm in thickness). 

Preparation of patterned hydrogels loaded with fluorescent probe. Four of each P and S-shaped 

PDMS masks were attached on a cleaned transparent plastic film (2.6 × 7.6 cm2, Kopier-Folien 

CE 6088, Germany) into two columns. Aqueous PVA solution (20% (w/V)) mixed with ACS-

HNE (10 µM, V(DMSO): V(PBS)=1:49) was deposited into each P-shaped hole (V(PVA): V(ACS-HNE) = 
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1, 100 µL) and aqueous NSC solution (1.4% (w/v), PBS, pH 7.4) mixed with MUD (2 mM, 

V(DMSO): V(PBS)=1:49) was deposited into each S-shaped hole (V(NSC): V(MUD)=1, 100 µL). 

Hydrogel layers were formed after drying in a clean hood for 24 hours. 

Enzymatic Reactions. 

Enzymatic reactions in the hydrogels in 96 well plates.  

Varying concentrations of elastase and α-glucosidase (100 µL, PBS, pH 7.4) were added to wells 

containing their corresponding fluorescent probe-loaded hydrogels. The plate was immediately 

covered with a sealing film and the fluorescence intensity was measured in a microplate reader. 

The details of the measurement parameters are mentioned in the captures of corresponding 

Figures. 

Enzymatic reactions in the hydrogels on silicon substrate. An elastase or α-glucosidase sensing 

hydrogel formed on a silicon substrate was inserted into 1 mm path-length quartz cell. The quartz 

cell was closed with Parafilm after the addition of buffered elastase (10 µM, 150 µL, PBS, pH 

7.4) or α-glucosidase (1 µM, 150 µL, PBS, pH 7.4) enzyme solution. The fluorescence spectra 

were recorded via a spectrometer immediately. The details of the measurement parameter are 

mentioned in the captions of corresponding results (Figure 2a and 4a). 

Enzymatic reactions in the patterned hydrogels. To both elastase and α-glucosidase sensing 

hydrogels in 96-well plates, individual buffered enzyme solutions (PBS, pH 7.4) of α-

glucosidase (1 μM, 80 μL) or elastase (10 μM, 80 μL) were added into each well of the 1st or 2nd 

row of the 96-well plate, respectively. 80 L of a mixture of buffered enzyme solution (40 L 

each of α-glucosidase solution, 2 µM, and elastase solution, 20 μM) was dropped in each well in 

the 3rd row. As the blank, PBS was added into each well in the 4th row. The color change in the 

patterned areas were recorded during the enzymatic reaction with an iSight camera (iPhone 5s) 
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under UV illumination with a hand-held standard UV lamp ( = 365 nm) in front of a black 

background. 

Determination of the Limit of Detection (LOD). 

Varying concentrations of α-glucosidase and elastase and (100 µL, PBS, pH 7.4) were added to 

wells containing their corresponding fluorescent probe-loaded hydrogels. The kinetics of the 

enzymatic reactions was recorded at a fixed wavelength of 365 nm for α-glucosidase-sensing 

hydrogels and 496 nm for elastase-sensing hydrogels. The baseline was recorded from a control 

well, which contained the fluorescent probe-loaded hydrogel and 100 μL of PBS solution. 

To determine the LOD for the enzymes, the kinetics of the α-glucosidase/elastase-catalyzed 

reaction were recorded by sequential IF measurements at λmax = 450 nm (α-glucosidase-sensing 

hydrogel) or λmax =527 nm (elastase-sensing hydrogel) using λex = 365 nm (α-glucosidase-

sensing hydrogel) or λex = 496 nm (elastase-sensing hydrogel), respectively. The initial apparent 

reaction rate was defined as the slope in the first 10 minutes (α-glucosidase-sensing hydrogel) or 

30 minutes (elastase-sensing hydrogel) in the kinetics plot and was obtained from a linear least 

squares fit. As reported in previously published work,34, 38  the LODs for the liberated 4-

methylumbelliferone (4-MU) and rhodamine 110 (RH 110) are 0.1 µmol/L and 1.7 nmol/L, and 

the value of the lowest detectable signal for microplate reader at 25°C were equal to 21 a.u. and 

19 a.u., respectively. Hence, the LODs of α-glucosidase / elastase could be estimated as the 

lowest concentration of α-glucosidase / elastase, for which IF reaches the lowest detectable signal 

corresponding to a concentration of 0.1 µmol/L of the liberated 4-MU and 1.7 nmol/L of the 

liberated rhodamine 110 after different reaction times. 

Detection of defined bacterial cultures. 

One colony of S. aureus H560 (obtained from Ampli Phi Biosciences, UK)39 ; MSSA6940 , 
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eMRSA940 and MRSA37840 (isolated from John Radcliffe Hospital, Headington, Oxford, OX3 

9DU, UK) and P. aeruginosa PAO1/ATCC 15692 (purchased from Ampli Phi Bioscience, 

UK)41,42,43 and PA887 (isolated from a chronic wound) were transferred from agar plates to a 15 

mL reaction tubes with 5 mL LB medium and incubated at 37°C and 200 rpm for 18 hours. The 

bacterial suspensions used for MUD loaded NSC hydrogels were cultured under 150 rpm for 18 

hours. Afterwards, the bacterial suspensions were diluted 1:100 in LB and incubated for a further 

24 hours at 37°C. Finally, 100 µL of each bacterial suspension was added both elastase and α-

glucosidase sensing hydrogels in 96-well plates and fluorescence intensity over time was 

measured (n = 3, technical triplicates). Each bacterial isolate was enumerated to determine viable 

bacterial cells by calculating the colony forming units per milliliter (CFU/mL), as outlined by 

Miles et al..44 The detailed information about the relevant bacteria is provided in Table 1. 
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Table 1. The detailed information about the relevant bacteria. 

 

  

Species Strain Source 

Inoculum applied 
 (× 109 CFU/mL) 

References in  
elastase 
sensing 

hydrogels 

 in  
α-glucosidase 

sensing 
hydrogels 

S. aureus  

H560 

obtained from 

Ampli Phi 

Biosciences, UK 

5 (±1) 1.6 (± 0.1)  39 

MSSA69 
isolated from 

John Radcliffe 

Hospital, 

Headington, 

Oxford, OX3 

9DU, UK 

2.2 (±0.8) 1.9 (± 0.5) 40  

eMRSA9 3 (± 2) 12.1 (± 0.8) 40   

MRSA378 4 (± 3) 0.6 (± 0.1) 40   

P. aeruginosa  

PAO1 

ATCC 15692; 

purchased from 

Ampli Phi 

Bioscience, UK 

4 (± 3) 4.7 (± 0.9) 41,42,43  

PA887 

isolated from a 

chronic wound; 

acquired from 

Ampli Phi 

Biosciences, UK                          

7.7 (± 0.9) 3 (± 1)   
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RESULTS AND DISCUSSION 

 

In order to rapidly and selectively detect either P. aeruginosa or S. aureus, the enzyme-sensing 

hydrogel must detect characteristic bacterial enzymes for each of the species. This work focused 

on the detection of elastase for P. aeruginosa and α-glucosidase for S. aureus, as shown 

schematically in Figure 1.  

The novel fluorescent probe (ACS-HNE) and the commercially available fluorescent probe 

MUD were loaded by entrapment into PVA and chitosan-based hydrogels, respectively. These 

hydrogels were subsequently shaped into the letters P and S, respectively, on a transparent plastic 

film using a PDMS mask. For P. aeruginosa detection, the elastase secreted by the bacteria 

cleaves peptide bonds in ACS-HNE, resulting in the fluorescence of rhodamine 110 in the P-

shaped hydrogel. Conversely, most S. aureus strains express α-glucosidase45, hence for S. aureus 

detection α-glucosidase cleaves the glyosidic bond in MUD, liberating the fluorescent 4-

methylumbelliferone (4-MU) in the S-shaped hydrogel. Additionally, due to the distinct 

differences in emission wavelength of the two dyes, the liberated dyes can be differentiated 

under UV illumination using a hand-held lamp (λex = 365 nm), which provides further distinction 

among the two bacterial species under investigation. 
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Figure 1. Schematics of the shape-encoded hydrogel sensors for detection and differentiation of 

P. aeruginosa and S. aureus. a) Chemical structures of fluorogenic substrates and hydrogel 

matrices. b) The fluorescence output in the form of the shape-encoded letters P (green) and S 

(blue) is defined by the corresponding target enzymes secreted from P. aeruginosa and S. 

aureus, respectively. 
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Hydrogel-based sensors and enzymatic reactions 

The enzymatic reactions of the enzyme-sensing hydrogels were studied in neat buffered enzyme 

solutions (PBS, pH 7.4) and bacterial cultures of P. aeruginosa PAO1 and P887 or S. aureus 

MSSA69, MRSA378, eMRSA9 and H560 in LB medium. The fluorescent dyes RH110 (green) 

and 4-MU (blue) were formed during the corresponding enzymatic reaction. Fluorescence 

spectra of the enzymatic reaction occurring in enzyme-sensing hydrogels on silicon wafers were 

recorded in front-face illumination in a fluorescence spectrometer. Additionally, the apparent 

kinetics of the reaction was recorded using a microplate reader, in which the fluorescence 

intensity was measured in reflection from the top. 

Enzymatic reaction of the elastase-sensing hydrogels. The enzymatic reaction of the elastase-

sensing hydrogel on a silicon wafer was performed in neat buffered elastase solution (PBS, pH 

7.4) and was recorded by fluorescence spectroscopy (Figure 2a). After the addition of elastase 

(150 µL, 10 µmol/L, PBS, pH 7.4), RH110 was liberated due to the enzymatic cleavage of the 

fluorescent probe ACS-HNE loaded into the PVA hydrogel. A monotonic increase of the 

fluorescence emission intensity (IF) at λem = 527 nm was observed as a function of time (Figure 

2b). The initial apparent rate in the first 30 min of the enzymatic reaction was found to be 0.79 

min−1. 
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Figure 2. a) Fluorescence spectra (fluorescence spectrometer) of RH110 produced during the 

enzymatic reaction in the elastase-sensing PVA hydrogel on silicon ([ACS-HNE] = 5 µM; 

[Elastase] = 10 µM, PBS, pH 7.4, measurement repeat: 3 min, λex = 496 nm, 25°C). b) Plot of 

fluorescence emission intensity at λmax = 527 nm of RH110 in panel (a) versus time. 

 

The kinetics of the enzymatic reaction in the hydrogel in a 96-well plate format with various 

concentration of elastase was recorded by sequential IF measurements at λmax. Plots of the IF 

versus time are shown in Figure 3a. The initial apparent reaction rate (t ≤ 30 min) was found to 

depend linearly on the initial enzyme concentration. An apparent rate constant of 18 (± 2) 

min−1µM-1 was obtained (Figure 3b). Compared to the elastase-catalyzed reaction in ACS-HNE 

solution at the same substrate concentration,34 the obtained initial apparent rate constant 

observed here is 3.3 times smaller, which is likely caused by slower diffusion of the enzyme into 

the hydrogel.46 Although the use of the hydrogel slightly reduces the reaction rate, it helps to 

immobilize and handle / apply the fluorescent probe, which has limited water solubility. 
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Figure 3. Kinetics of the elastase-catalyzed cleavage of ACS-HNE that produces RH110 in the 

elastase-sensing PVA hydrogel. The fluorescence data obtained were used to calculate the LOD 

for the detection of the enzyme. a) IF (λmax = 527 nm) for RH110 formed in the reporter 

hydrogels incubated with various concentrations of enzyme solution versus time (blank-

subtracted baseline: Kinetics of elastase-sensing PVA hydrogel in PBS solution. [ACS-HNE] = 

5 µM, PBS solution (pH 7.4), measurement repeat: 1 min, λex = 496 nm, 25°C). b) Plot of 

apparent reaction rate for the first 30 min from panel a) versus elastase concentration (R2 = 

0.9678, n = 3, the error bars show the standard deviation). 

 

Additionally, to prove that the released RH110 was formed exclusively by enzymatic cleavage of 

the ACS-HNE inside the enzyme sensing hydrogel in the presence of elastase, the stability of the 

elastase-sensing hydrogel in neat PBS solution (pH 7.4) was tested as well as an enzymatic 

reaction using α-glucosidase, which is known not to catalyze the cleavage34. For these controls, 

the IF at 527 nm increased by less than 7 % (relative to the same condition with 10 µM of 

elastase) after 6 hours (Figure S1a, S2a). Therefore, the elastase-sensing hydrogel can be utilized 

for the selective detection of elastase and differentiation from other enzymes, i.e. α-glucosidase. 
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Enzymatic reactions in α-glucosidase sensing hydrogels. The enzymatic reaction of the α-

glucosidase-sensing hydrogel on silicon wafers was performed in neat buffered α-glucosidase 

solution (PBS, pH 7.4) and was recorded using a fluorescence spectrometer (Figure 4a). The 

change in the emission spectra after the addition of α-glucosidase (0.2 µM, in PBS) was caused 

by the conversion of the fluorescent probe MUD, loaded inside the NSC hydrogel, to the 

coumarin derivative 4-MU. The fluorescence emission peaks for MUD and 4-MU are located at 

about 375 nm and 450 nm, respectively, when excited at a wavelength λex of 325 nm. A 

remarkably large increase in IF at 450 nm and decrease in IF at 375 nm was observed after the 

addition of α-glucosidase (0.2 µM, in PBS) over a period of 1.5 hours (Figure 4b). The initial 

apparent rate for the formation of 4-MU was found to be 9.3 min-1 in the first 30 min of the 

enzymatic reaction in the hydrogel. 

 

 

Figure 4. a) Fluorescence spectra (fluorescence spectrometer) of 4-MU released during the 

enzymatic reaction inside the α-glucosidase-sensing NSC hydrogel on silicon ([MUD] = 1 mM; 

[α-Glucosidase] = 1.0 µM, PBS solution (pH 7.4), measurement repeat: 2 min, λex = 325 nm, 

25°C). b) Plot of fluorescence emission intensity at λmax = 376 nm of MUD (initial) and at λmax = 

450 nm of 4-MU (product) in panel a) versus time.  



 19

The kinetics of the enzymatic reaction in the hydrogel in a 96-well plate format with various 

concentrations of elastase was recorded by sequential IF measurements at λmax. The plots of IF 

versus time are shown in Figure 5a. The initial apparent reaction rate (t ≤ 10 min) was found to 

depend linearly on the initial enzyme concentration and an apparent rate constant of 2.1 × 103 (± 

0.1 × 103) min−1µM-1 was obtained (Figure 5b). In order to prove that the formation of 4-MU is 

caused exclusively by catalysis of α-glucosidase, blank experiments were performed in PBS 

solution as well as in elastase solutions. A constant value of IF at 450 nm was observed in the 

hydrogels, when exposed to PBS (Figure S1b) or elastase solution (Figure S2b). This indicates 

that the α-glucosidase-sensing hydrogel can be used for the detection and differentiation of 

α-glucosidase from elastase. 

 

  

Figure 5. Kinetics of the α-glucosidase-catalyzed cleavage of MUD to 4-MU in the α-

glucosidase-sensing NSC hydrogel. The fluorescence data obtained were used to calculate the 

LOD for the detection of the enzyme. a) IF (λmax = 450 nm) for 4-MU formed in the reporter 

hydrogels incubated with various concentrations of enzyme solution versus time (blank-

subtracted baseline: Kinetics of α-glucosidase-sensing NSC hydrogel in PBS solution, [MUD] = 

1 mM, PBS solution (pH 7.4), measurement repeat: 1 min, λex = 365 nm, 25°C). b) Plot of 

a) b) 
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apparent reaction rates for the first 10 min from panel a) versus α-glucosidase concentrations (R2 

= 0.9887, n = 3, the error bars show the standard deviation). 

 

Determination of the limit of detection  

The limit of detection (LOD) for both enzymes is defined here as the lowest concentration of the 

corresponding enzyme that can be detected based on the release of the minimum detectable 

amount of reporter dye. The LOD for the detection of an enzyme can be estimated using the IF 

values corresponding to the LOD for the detection of the dye divided by the value of the rate 

constant (calculated in Figures 4b) and 5b)) multiplied with the observation time. The 

corresponding plots of the LOD for elastase and α-glucosidase are shown in Figure 6 for a fixed 

loading of fluorescent probe in the hydrogels (0.3 µg / 100 µL of ACS-HNE loaded in elastase 

sensing hydrogel; 33.8 µg / 100 µL of MUD loaded in α-glucosidase sensing hydrogel). 

Consequently, the LODs of the enzyme sensing hydrogels for an observation time of 60 min 

using the microplate reader corresponded to enzyme concentrations of elastase and α-glucosidase 

of 17 nM and 0.2 nM, respectively. The elastase sensor here is slightly more sensitive than an 

enzyme substrate modified hydrogel sensor studied before (the LOD of elastase was reported to 

be 45 nM).24 For α-glucosidase, this is an improvement of three orders of magnitude compared to 

the covalently attached fluorescent probe.24 

Additionally, we found that the LOD for the detection of the enzyme was significantly improved 

by increasing the observation time and also by increasing the loading of the fluorescent probe in 

the hydrogel (see Figures S3 and S4 for comparison). Among our tested conditions, the best 

performance of the hydrogel sensor with the lowest LOD value of 27 pM for the detection of α-

glucosidase at an observation time of 60 min was obtained by entrapping a maximum amount of 
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MUD into the NSC. The maximum loading was found to be 12 wt-%. Hence, we are able to 

maximize the sensitivity of the sensor hydrogel by maximizing the concentration of fluorescent 

probe in the hydrogel to reach the optimized detection condition. 

 

 

Figure 6. Plots of the LOD for a) elastase for the elastase-sensing PVA hydrogel, and for b) α-

glucosidase for the α-glucosidase-sensing NSC hydrogel (microplate reader, 96 well plate, 

[ACS-HNE] = 5 µM, [MUD] = 1 mM, 25°C) The data were fitted with: a) LOD(elastase) = 1.1 M 

min t-1; b) LOD(α-glucosidase) = 10 nM min t-1. 

 

Enzyme-sensing hydrogels in bacterial suspensions. 

As a further step to prove the functionality and selectivity of the enzyme-sensing hydrogels, they 

were tested using bacterial suspensions of P. aeruginosa and S. aureus. Bacterial detection using 

the enzyme-sensing hydrogel in vitro was performed by adding bacterial suspension (ca. 109 

CFU/mL) into the wells of a 96 well plate containing the sensing hydrogels. Corresponding 

changes in fluorescence were recorded (Figure 7). 

a) b) 
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Bacteria-induced enzymatic reactions of elastase-sensing hydrogels. In Figure 7a, the monotonic 

increase of IF at about 527 nm (λex of 496 nm) is associated with the formation of RH110 as a 

function of time in the presence of different P. aeruginosa (PAO1 and P887) and S. aureus 

(MSSA69, MRSA378, eMRSA9 and H560) suspensions. The slope (for t < 1 hour) for 

P. aeruginosa suspensions was found to be more than two times larger than that for suspensions 

of S. aureus. This finding is fully consistent with a substantial secretion of elastase by P. 

aeruginosa.47 The increase in signal observed for S. aureus cultures is attributed to the limited 

longtime stability of the ACS-HNE probe, which results in the hydrolysis of the ACS-HNE 

substrate in the hydrogel after the addition of S. aureus, similar to the blank results obtained in 

LB medium (Figure S5a). Here an increase of the IF signal at 527 nm was observed, as is shown 

in Figure S5a, indicating that some RH110 was cleaved from ACS-HNE, in the absence of 

elastase. In addition, we cannot exclude that the increase of the IF signal in case of S. aureus 

might also be caused by secretion products of S. aureus other than elastase. 

Bacteria induced enzymatic reactions of α-glucosidase-sensing hydrogels. In Figure 7b, a 

monotonic increase of IF at 460 nm at 25°C was observed as a function of time during the 

enzymatic reaction of α-glucosidase-sensing hydrogels in suspensions of four different S. aureus 

strains (MSSA69, MRSA378, eMRSA9 and H560). The increase observed in all cases is 

associated to the formation of liberated deprotonated 4-MU. The varying slopes (< 6 hours) show 

different kinetics among the reaction in different S. aureus suspensions, which is likely caused 

caused by different amounts of α-glucosidase produced and secreted during bacterial growth. 

This could be attributed to (i) different growth characteristics of different bacterial strains and (ii) 

different expression of genes in culture.48 On the contrary, the value of IF kept constant after the 

addition of suspensions of two different P. aeruginosa strains (PAO1 and P887), as well as in the 
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control (LB medium, Figure S5b). Hence, the α-glucosidase-sensing hydrogel was shown to 

detect the bacteria and to differentiate S. aureus from P. aeruginosa strains among a broad range 

of different strains. 

The combined results confirm that the enzyme-sensing hydrogels reported here can not only be 

used for the rapid, sensitive and selective bacterial enzyme detection and differentiation, but can 

also be used to differentiate planktonic suspensions of P. aeruginosa from S. aureus. 

 

 

Figure 7. In situ measurement of enzyme-sensing hydrogels in bacterial suspensions using a 

microplate reader. IF of a) RH110 released from the elastase-sensing hydrogel at λmax = 527 nm 

and b) 4-MU released from the α-glucosidase-sensing hydrogel at λex = 460 nm versus time 

during the enzymatic reaction of the hydrogels with suspensions of different P. aeruginosa and 

S. aureus strains (subtracted baseline: Kinetics of enzyme sensing hydrogel in LB medium; 

Measurement repeat: 1 min, 25°C, for a) [ACS-HNE] = 5 µM, λex = 496 nm, for b) [MUD] = 1 

mM, λex = 365 nm). 

Enzymatic Reactions in Patterned Enzyme Sensing Hydrogels. 

Finally, patterned enzyme sensing hydrogels were applied for the rapid detection and 

discrimination of elastase and α-glucosidase. The photograph shown in Figure 8 was taken by a 

a) b) 
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mobile phone camera 1 hour after the addition of the enzyme solution(s). The illumination was 

afforded by a standard hand-held UV lamp (ex = 365 nm). 

After 60 min, significant fluorescence was visible under UV illumination only in the P-shaped 

pattern in the 2nd and 3rd rows in the left column of the elastase-sensing hydrogel (green), 

attributed to the released RH110. Similarly, the blue fluorescence of 4-MU was visible 

exclusively in the 1st and 3rd rows in the right column, where the α-glucosidase-sensing hydrogel 

was exposed to the enzyme solution that contained α-glucosidase. No fluorescence signal was 

observed in the last row, where only PBS solution was added to the enzyme sensing hydrogel as 

a negative control. 

In addition, it was confirmed by independent spectroscopic measurements that the off-target 

enzymes could not break the labile bond in the fluorescent probes and therefore did not result in 

any bare eye visible signal under illumination at 365 nm, as shown in Figure 8 (left pattern in the 

1st row, and right pattern in the 2nd row). Hence, the shape encoded enzyme sensing hydrogels 

afforded a simple and double redundant readout for the bacterial enzyme detection and 

differentiation by bare eye. 
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Figure 8. Photograph of the shape-encoded enzyme sensing hydrogels after enzymatic reactions. 

The photo was taken after a reaction time of 60 min under UV illumination (hand-held lamp, λex 

= 365 nm) on a black background ([MUD] = 1 mM, [ACS-HNE] = 5 µM, individual enzyme 

solutions [α-Glucosidase] = 1.0 μM, [Elastase] = 10 μM were added in the 1st and 2nd row, 

respectively. A mixed enzyme solution ([α-Glucosidase] = 2.0 μM, [Elastase] = 20 μM with a 

volume ratio of 1:1) was applied in each letter patterns at the 3rd row. PBS was added in the 
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bottom row. The length and thickness of the square PDMS mask are about 1.9 cm and 2.8 mm, 

80 µL of the enzyme solution was applied into each letter area. 

 

The unique shape and color under UV illumination, corresponding to the characteristic bacterial 

enzyme, is the central asset of the demonstrated strategy for the rapid identification of specific 

bacterial species, showcasing the potential utility of this product as an effective point of care test 

that could be simply read by non-specialists. Overall, the sensors developed in this work show 

excellent performance in bacterial enzyme detection and discrimination, by simply entrapping 

fluorescent probes into the hydrogel. Firstly, the sensor hydrogels show extremely low LOD 

values for their target enzyme. When using the same amount of fluorescent probe, the LOD for 

α-glucosidase (27 pM) detected by the hydrogel in this work, is much lower than that in the 

literature (20 nM)24, and also a very recently improved covalent variant (200 pM)38, in which 

MUD was covalently grafted to the hydrogel. The values of the LOD (for the same observation 

time) are improved by increasing the loading with the probe and thereby increasing the rate of 

the enzymatic reaction according to Michaelis-Menten kinetics in both cases. 49  Unlike the 

chemical modification method that was used in studies before, which is inherently limited by the 

corresponding grafting efficiency, the physical entrapment allows one to increase the 

concentration of the fluorescent probe inside the hydrogels. In Figure S6, the apparent rate 

constant is shown to increase with higher loading of MUD in the α-glucosidase-sensing NSC 

hydrogels. Using the same loading for chemical attachment and physical entrapment of MUD (at 

about 33.8 µg, 100 µL), the grafting efficiency is estimated to be approx. 44% by comparing the 

corresponding spectra of this current study with those in the previous work38), the apparent rate 

constant obtained by the physical entrapment technique (~ 2.7 × 103 min-1µM-1, estimated 
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according to the function in Figure S6) is larger than the one observed with grafted probes (~ 1.8 

× 103 min-1µM-1).38 This is likely due to reduced availability of grafted substrates compared to 

the entrapped fluorescent probe in the hydrogel. Larger apparent rate constants consequently 

result in an improved LOD. Hence, the lower LOD observed here is attributed to increased 

loading and thus higher concentration of fluorescent probes in the hydrogel on the one hand, and 

to enhanced availability of physically entrapped fluorescent probes on the other hand. While 

chemical grafting affords a better fixation of fluorescent probes in the hydrogel, and may thus be 

beneficial in long term storage or sterilization, covalent attachment of the probes to the polymers 

limits the attainable loading and may reduce the accessibility and reactivity in the enzymatic 

reaction. Additionally, using the physical entrapment technique explored in this work, the 

loading of the substrate could be easily varied. This was shown by encapsulating a novel 

fluorophore ACS-HNE, previously developed by members of this team,34 into a PVA hydrogel, 

resulting in the selective detection of P. aeruginosa cultures via the detection of elastase. 

 

CONCLUSION 

Shape-encoded hydrogel sensors with physically entrapped fluorescent probes were utilized 

successfully to sensitively and selectively detect and discriminate elastase and α-glucosidase, 

which are secreted by P. aeruginosa and S. aureus, respectively. The elastase-sensing hydrogels, 

which contained the novel fluorogenic elastase substrate ACS-HNE, were shown to detect 

elastase within 60 min using a conventional microplate reader with an improved LOD of 20 nM. 

Compared to previous reports, an LOD of <30 pM for the α-glucosidase-sensing MUD equipped 

hydrogel, constitutes an improvement of three orders of magnitude compared to previously 

published results for chitosan-based sensor hydrogels. This improvement of the LOD was 
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achieved by increasing the amount of loaded fluorescent probe in the hydrogel. In vitro tests with 

bacterial suspensions demonstrated the ability of these hydrogels to detect and differentiate 

among defined P. aeruginosa and S. aureus cultures. The shape and color encoded strategy 

shows potential for the future development of an effective and simple point-of-care test for the 

rapid identification of bacterial species, which can be used by non-specialists.  
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ABBREVIATIONS 

 

ACS-HNE:  N,N'-(3-oxo-3H-spiro[isobenzofuran-1,9'-xanthene]-3',6'-diyl)bis(2,2,3,3,3 

 pentafluoropropanamide)  

DMSO:  Dimethyl sulfoxide 

LB medium:  Luria-Bertani medium 

LOD:  Limit of detection 

MDR:  Multi-drug Resistant 

MRSA:  Methicillin-resistant Staphylococcus aureus 

4-MU:  4-Methylumbelliferone 

MUD:  4-Methylumbelliferyl α-D-glucopyranoside 

NSC:  N-succinyl-chitosan 
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P. aeruginosa: Pseudomonas aeruginosa 

PBS:  Phosphate-buffered saline  

PCR:  Polymerase chain reaction  

PDMS:  Polydimethylsiloxane 

PVA:  Polyvinyl alcohol  

RH110:  Rhodamine 110  

S. aureus:  Staphylococcus aureus 
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