
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Version accepted for publication in IEEE Systems, Man, and Cybernetics Magazine.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/437429113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Self-Organizing Software Models for the Internet of
Things

Damian Arellanes

Abstract—The Internet of Things (IoT) envisions the integra-
tion of physical objects into software systems for automating
crucial aspects of our lives, such as healthcare, security, agri-
culture, and city management. Although the vision is promising,
with the rapid advancement of hardware and communication
technologies, IoT systems are becoming increasingly dynamic,
large, and complex to the extent that manual management be-
comes infeasible. Thus, it is of paramount importance to provide
software engineering foundations for constructing autonomic IoT
systems. In this paper, we introduce a novel paradigm referred to
as self-organizing software models in which IoT software systems
are not explicitly programmed, but emerge in a decentralized
manner during system operation, with minimal or without human
intervention. We particularly present an overview of these models
by including their definition, motivation, research challenges, and
potential directions.

Index Terms—Self-organization, Internet of Things, Cyber-
Physical Systems, Self-Composition of Software, Autonomous
Systems.

I. INTRODUCTION

THE Internet of Things (IoT) is a novel paradigm, con-
sidered the next Industrial Revolution, that promises the

integration of every physical object for the automation of
essential concerns of our modern lives such as healthcare,
security, agriculture, and city management. Unlike traditional
enterprise systems, IoT systems are moving towards environ-
ments full of complex interactions, as a consequence of the
overwhelming number of objects available worldwide [1]–[3].
Currently, there are over 17 billion connected objects, and it is
estimated that this number will increase exponentially in the
coming years [4]. Hence, scalability and complexity become
a significant challenge for the full realization of IoT.

Most IoT research has extensively focused on hardware
and network issues so that early IoT systems operate in
closed environments and integrate relatively few static soft-
ware components. Contrastingly, future software-intensive IoT
systems will be deployed in open environments (i.e., software
ecosystems [5]) where billions of (off-the-shelf) components
will abstract the functionality of an immense number of
connected physical objects [4], [6]. Such environments will
be highly dynamic and uncertain due to disturbances caused
by external perturbations (e.g., change in requirements and
increasing workloads) and unforeseeable internal situations
(e.g., system failures and sub-optimal behaviors) [4], [7].

Autonomicity represents the most viable solution to manage
complex IoT systems that both integrate an ultra-large num-
ber of software components and operate in highly dynamic,

D. Arellanes is with the School of Computing and Commu-
nications, Lancaster University, Lancaster LA1 4YW, UK (e-mail:
damian.arellanes@lancaster.ac.uk).

uncertain environments. This is because that property enables
the adaptation of computational behaviors with minimal or
no human intervention. Research on autonomic software has
produced significant results, especially in the area of self-
adaptive software [7]. However, existing solutions are mainly
centralized, and it has been proven over many years that cen-
tralized approaches do not scale and are therefore unsuitable
to tackle complexity [8].

In this paper, we present self-organizing software models
which are a new kind of abstractions that allow the construc-
tion of autonomous software systems, in which computational
behaviors are not predefined but emerge during system opera-
tion to dynamically accommodate a given context. Emergence
is achieved from the individual interactions of the constituent
software components (not hardware devices), without the need
of a central authority. The main role of these models is to
remove or reduce the role of a programmer in the composition,
maintenance and evolution processes of a software system.

II. WHAT IS A SELF-ORGANIZING SOFTWARE MODEL?

Self-organization is the bottom-up process by which com-
plex behaviors emerge from the decentralized interactions of
participant components (e.g., molecules or insects), in order
to collectively achieve a global system goal (e.g., foraging).
In contrast to top-down processes, self-organization is a well-
known technique to deal with uncertainty, scale, dynamism,
and complexity [8], [9]. Self-organization is not a new concept.
It has been studied in diverse areas from distinct points of
view, from biological systems (e.g., flock of birds, school of
fish, and ant colonies) to artificial systems (e.g., traffic light
ensembles, networking, and swarm robotics). Just recently,
self-organization has captured the attention of the software
engineering community to study it as an inherent property of
software models.

A software model is an abstract system representation that
describes software components and their composition [10]. A
software component (e.g., a web service or a generic port-
based component) is a self-contained unit of composition that
provides some computational functionality. In traditional soft-
ware engineering, composition is the design-time process of
combining the functionality of two or more software compo-
nents, and it is performed manually by system engineers [10],
[11]. As manual composition is unsuitable to tackle the immi-
nent challenges that future IoT systems pose (i.e., dynamicity,
complexity, and scale), we envision that such an approach will
eventually be obsolete. Instead, composition will be a run-time
process performed by the model itself (i.e., autonomously), in
which complex computational behaviors emerge in the form of



2

complex composite components. These emergent composites
can further self-organize to define even more complex compo-
sites. Emergence occurs from the decentralized interactions of
the available autonomous components (potentially developed
independently by different stakeholders), with no or minimal

“A self-organizing software model
is a computational abstraction
whose software components com-
ply with self-organization rules,
so complex composite components
are not explicitly programmed
but (autonomously) emerge from
the decentralized interactions of
the available, independent software
components. Its overall goal is to
accommodate perturbations in a
system operating environment.”

human intervention and according to a
set of self-organization rules. As emergent
composites cannot be expressed as a simple
summation of the composed components,
emergent computational behaviors cannot
be predicted just by knowing the available
components.

Our vision of self-organizing software
models is depicted in Figure 1. Although
we use a port-based composite for illustra-
tive purposes, other software compositions
can emerge as a result of self-organizing
component interactions, such as service-
oriented workflows [12], [13] or algebraic
compositions [14], [15]. In any case, emergent composites lie
on top of a three-layer IoT view, physical objects (known
as things) are situated at the bottom and self-organizing
interactions occur in the middle. This conceptual three-layer
view shall be referred to as self-organizing IoT.

The idea of self-organizing software contrasts with that of
self-adaptive systems. This is because the latter often require
adaptation managers to control the entire adaptation process
outside a software model [7]. We refer to this process as
exogenous adaptation. By contrast, in our vision, adaptation is
achieved through self-organization, and it therefore occurs in a
pure decentralized manner without the need of any central au-
thority, external controllers, or leaders. We refer to this process

Things

(Physical World)
Thing A

Thing C

Thing D

Thing B

Emergent Composite

(Virtual World)

Available 

Components

(Virtual World)
A

B

C

D

Fig. 1. Self-organizing IoT.

as endogenous adaptation. Unlike self-adaptive software, in
self-organizing software models there is no notion of managed
system or managing system since components, which belong
to the system itself, collaboratively realize adaptation by the
emergence of computational behaviors. Like self-adaptive

software, there are adaptation triggers to
initiate the emergence of composite com-
ponents upon detecting perturbations in the
internal or the external system operating
environment. Perturbations in the internal
environment include system failures and
sub-optimal performance. Perturbations in
the external environment include change in
stakeholder requirements, run-time scaling
(i.e., component addition/removal), envi-
ronmental changes, and increasing work-
loads [4], [7].

To illustrate how self-organizing soft-
ware components deal with open environ-

ments, let us consider the example depicted in Figure 2. At
time t0, four components interact to meet the requirements
R1, R2, and R3. In this case, the result of self-organization
is a composite assembling A, B, and C. Suddenly, at time t1,
the requirement R3 is no longer needed, and component E
becomes available. As requirements changed and component
E offers better performance than B, the existing components
self-organize to connect C with D and replace B with E. Note
that component C has mutated by adding a new port, in order
to fulfill the requirements R1 and R2. Finally, in the last time
window, the requirements R1, R2, and R3 become obsolete
since a new specification is defined. So, components self-
organize once again to compose an entirely new computational
structure. In any time window, composite components emerge
without any central controller or leader.

B

A B

C

R1

R2 R3

D

Replaced

Added

A E

C

R1

R2 R3

Fig. 2. An example of a self-organizing software model.



3

III. WHY SELF-ORGANIZING SOFTWARE MODELS?

With the rapid advancement of hardware and communica-
tion technologies, IoT systems are becoming increasingly dy-
namic, functionally large, and extremely complex to the extent
that manual management becomes infeasible. Dynamism,

“Self-organizing software models
allow the evolution of large-scale
IoT software systems which operate
in environments with a high degree
of uncertainty, complexity, and dy-
namism.”

or churn [4], makes things (and their soft-
ware components) to constantly appear
and disappear in completely uncertain net-
work environments [13]. This can be a
consequence of mobility, failures, or poor
network connections. Functional scalabi-
lity [4] is another problem, which arises
from the fact that the functionality of one thing can be
virtualized by more than one software component, and there
are plenty of things available. In fact, the more components
available, the more possible computational behaviors (po-
tentially leading to a combinatorial explosion problem [14],
[15]). Last but not least, complexity refers to the number of
interactions between software components [2], [8], [11], and
it is closely related to functional scalability since the more
software components composed, the more complex a system
is. To tackle these imminent challenges, it is therefore of
paramount importance to provide software engineering theory
that facilitates the construction of autonomic IoT software
systems.

Most of the research done in the field of autonomic com-
puting is built upon centralized adaptation managers (e.g.,
MAPE-K control loop [16]). However, due to the law of
requisite variety [17], which refers to an explosion in the
number of system states, such top-down autonomic solutions
are unsuitable for dealing with realistic, open environments
like IoT [18], [19].

Since self-organization is a well-known bottom-up approach
that deals with precisely the challenges that IoT faces [9],
some preliminary endeavors have been done to apply self-
organization principles in the IoT realm. However, most of this
work has been done from the perspective of general systems
engineering (e.g., [18]) rather than from a software engineering
viewpoint. Just a few works have been devised in the context
of self-organizing software models [12], [13], [19]–[22].

Because IoT systems are becoming increasingly software-
intensive, we need to define self-organization rules in the se-
mantics of software components. Otherwise, self-organization
does not occur among software components but among some-
thing else (e.g., network nodes [23] or robots [24]). We need to
leverage the flexibility and manageability that software offers
versus hardware (cf., software-defined networks [25]) in order
to adapt IoT systems to different operation contexts. In the end,
it is software that controls embedded systems in things, and
it is because of this that self-organization always originates in
the virtual world. Embedded systems are just interfaces to the
physical reality.

As they provide the mechanisms to compose/emerge com-
plex computational behaviors on the fly without any central
adaptation entity, we see self-organizing software models as
an important contribution to the field of autonomic computing.

IV. RESEARCH CHALLENGES AND POTENTIAL
DIRECTIONS

Due to its non-deterministic nature, the main challenge of
self-organization is to emerge meaningful functionality from
decentralized interactions. As the concept of meaningful varies

from one domain to another, goal models
(e.g., RELAX [26] and KAOS [27]) can be
used to specify expected system-wide be-
haviors in the form of requirements@run-
time (which must be met without any cen-
tral reasoner). In addition to goal models,
run-time verification/testing techniques can
be integrated to prove the correctness of

emergent computational behaviors. All of this without sac-
rificing systems’ operation. Apart from dealing with non-
determinism and correctness, other challenges are as follows:

• Incompleteness. Due to their decentralized nature, soft-
ware components cannot always have a complete, consis-
tent view of their operating environment (e.g., knowledge
about other available components or knowledge about
running composition structures). This is especially true
in IoT ecosystems with a large number of IoT software
components. So, How to efficiently disseminate know-
ledge to maintain an accurate representation of the world
under highly dynamic environments?

• Self-explanation. Transparency of decision-making is a
must in approaches lacking human intervention, since
users may require an explanation of the emergence of
certain computational behavior. So, How to provide self-
explanation in self-organizing software models, espe-
cially when the participant components are completely
autonomous and operate in different administrative do-
mains?

• Measurement. To date, there is a huge body of research
on self-organizing systems in which plenty of different
evaluation metrics have been proposed, e.g., entropy,
fragility, and stability [18]. Are these metrics suitable
to evaluate computational emergence in self-organizing
software models? If not, what are the most suitable
metrics for the software engineering domain?

• Uncertainty quantification. Since IoT systems operate in
environments full of aleatoric and epistemic uncertainty,
it is impossible to predict the space of complex programs
that arise from dynamically appearing and disappearing
software components. To control the construction of such
spaces, uncertainty quantification approaches can be used
for defining trustworthy decision-making mechanisms
that proactively adjust the way components interact. What
are the semantic constructs that allow software compo-
nents to collaboratively solve uncertainty quantification
problems?

• Dynamic evolution of self-organization rules. Self-
organization rules can be predefined at design-time.
However, in certain scenarios, the rules might not be
enough to achieve global system goals. So, Is it pos-
sible to define decentralized learning techniques (e.g.,
collaborative/multi-agent reinforcement learning) for dy-



4

namically evolving self-organization rules without human
intervention?

• Evolution reasoning. Self-organizing software models
are always evolving at run-time, so it becomes neces-
sary to reason about dynamics. Modeling evolution in
traditional self-organizing systems can be done using
process algebra, temporal logic, or Petri Nets. But are
these techniques suitable to reason about self-evolving
software? If not, which reasoning techniques could be
more appropriate?

• Software semantics and self-organization rules. Defining
generic self-organization rules for autonomously com-
posing software in different IoT domains is challenging.
This raises the question of what are the most suitable
self-organization rules for IoT software models? Can
we embed those rules in the semantics of a (universal)
component model? Can we take inspiration from self-
organizing biological systems to define bio-inspired com-
ponent models?

V. CONCLUSION

Although the dream of removing the tasks performed by
software engineers is far from reality, self-organization offers
an encouraging route towards the next generation of software
systems in which software is not explicitly programmed, but
emerges without any central controller to meet the needs of a
given context at run-time. We refer to this class of abstractions
as self-organizing software models. In this paper, we presented
the definition, motivation, challenges and future directions of
these abstractions.

To date, self-organizing software models are still in their
infancy and their challenges hinder the development of a self-
organizing software solution applicable to a wide variety of
IoT domains. We envision that this nascent field will be of
great relevance in the coming years to deal with the inherent
scale, uncertainty, dynamism, and complexity that IoT systems
are increasingly posing.

REFERENCES

[1] C. Janiesch, A. Koschmider, M. Mecella, B. Weber, A. Burattin,
C. Di Ciccio, G. Fortino, A. Gal, U. Kannengiesser, F. Leotta,
F. Mannhardt, A. Marrella, J. Mendling, A. Oberweis, M. Reichert,
S. Rinderle-Ma, E. Serral, W. Song, J. Su, V. Torres, M. Weidlich,
M. Weske, and L. Zhang, “The Internet of Things Meets Business Pro-
cess Management: A Manifesto,” IEEE Systems, Man, and Cybernetics
Magazine, vol. 6, no. 4, pp. 34–44, 2020.

[2] D. Arellanes and K.-K. Lau, “Analysis and Classification of Service
Interactions for the Scalability of the Internet of Things,” in IEEE ICIOT,
2018, pp. 80–87.

[3] G. Fortino, “Agents Meet the IoT: Toward Ecosystems of Networked
Smart Objects,” IEEE Systems, Man, and Cybernetics Magazine, vol. 2,
no. 2, pp. 43–47, 2016.

[4] D. Arellanes and K.-K. Lau, “Evaluating IoT service composition
mechanisms for the scalability of IoT systems,” Future Generation
Computer Systems, vol. 108, pp. 827–848, 2020.

[5] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Käbisch,
D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente, “Enabling
IoT Ecosystems through Platform Interoperability,” IEEE Software,
vol. 34, no. 1, pp. 54–61, 2017.

[6] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”
Computer, vol. 48, no. 1, pp. 28–35, 2015.

[7] D. Weyns, “Software Engineering of Self-adaptive Systems,” in Hand-
book of Software Engineering, S. Cha, R. N. Taylor, and K. Kang, Eds.
Cham: Springer, 2019, pp. 399–443.

[8] F. Heylighen and C. Gershenson, “The Meaning of Self-organization in
Computing,” IEEE Intelligent Systems, pp. 1–6, 2003.

[9] W. R. Ashby, “Principles of the Self-Organizing System,” in Principles
of Self-Organization, H. Von Foerster and G. W. Zopf, Eds. London,
UK: Pergamon Press, 1962, pp. 255–278.

[10] K.-K. Lau and S. Di Cola, An Introduction to Component-based Software
Development, 1st ed. Singapore: World Scientific, 2017.

[11] M. Lehman, “Software’s future: managing evolution,” IEEE Software,
vol. 15, no. 1, pp. 40–44, 1998.

[12] H. Ben Mahfoudh, G. Di Marzo Serugendo, N. Naja, and N. Ab-
dennadher, “Learning-based coordination model for spontaneous self-
composition of reliable services in a distributed system,” International
Journal on Software Tools for Technology Transfer, vol. 22, no. 4, pp.
417–436, 2020.

[13] N. Chen, N. Cardozo, and S. Clarke, “Goal-Driven Service Composition
in Mobile and Pervasive Computing,” IEEE Transactions on Services
Computing, vol. 11, no. 1, pp. 49–62, 2018.

[14] D. Arellanes and K.-K. Lau, “Exogenous Connectors for Hierarchical
Service Composition,” in International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, 2017, pp. 125–132.

[15] D. Arellanes and K.-K. Lau, “Workflow Variability for Autonomic IoT
Systems,” in International Conference on Autonomic Computing (ICAC).
IEEE, 2019, pp. 24–30.

[16] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[17] W. R. Ashby, “Requisite Variety and Its Implications for the Control of
Complex Systems,” Cybernetica, vol. 1, no. 2, pp. 83–99, 1958.

[18] C. Gershenson, “Guiding the Self-Organization of Cyber-Physical Sys-
tems,” Frontiers in Robotics and AI, vol. 7, pp. 1–41, 2020.

[19] I. Georgiadis, J. Magee, and J. Kramer, “Self-organising software
architectures for distributed systems,” in ACM SIGSOFT Workshop on
Self-Healing Systems (WOSS). ACM, 2002, pp. 33–38.

[20] T. Bures, F. Plasil, M. Kit, P. Tuma, and N. Hoch, “Software Abstractions
for Component Interaction in the Internet of Things,” Computer, vol. 49,
no. 12, pp. 50–59, 2016.

[21] N. Cardozo, “Emergent software services,” in International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward!). ACM, 2016, pp. 15–28.

[22] J. Dowling and V. Cahill, “Self-managed decentralised systems using
K-components and collaborative reinforcement learning,” in ACM SIG-
SOFT Workshop on Self-Managed Systems (WOSS). ACM, 2004, pp.
39–43.

[23] M. Mamei, A. Roli, and F. Zambonelli, “Emergence and control of
macro-spatial structures in perturbed cellular automata, and implications
for pervasive computing systems,” IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans, vol. 35, no. 3, pp.
337–348, 2005.

[24] G. Baldassarre, V. Trianni, M. Bonani, F. Mondada, M. Dorigo, and
S. Nolfi, “Self-Organized Coordinated Motion in Groups of Physically
Connected Robots,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part B (Cybernetics), vol. 37, no. 1, pp. 224–239, 2007.

[25] E. E. Hayek, I. G. Ben Yahia, D. Arellanes, and K.-K. Lau, “Analysis
of component-based approaches toward componentized 5G,” in Interna-
tional Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN). IEEE, 2018, pp. 1–5.

[26] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J.-M. Bruel,
“RELAX: a language to address uncertainty in self-adaptive systems
requirement,” Requirements Engineering, vol. 15, no. 2, pp. 177–196,
2010.

[27] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing conflicts in
goal-driven requirements engineering,” IEEE Transactions on Software
Engineering, vol. 24, no. 11, pp. 908–926, 1998.

Damian Arellanes (damian.arellanes@lancaster.ac.uk) is an Assistant Profes-
sor in Computer Science at the School of Computing and Communications,
Lancaster University, UK. He received his PhD degree in Computer Science
from the University of Manchester, UK. His research interests lie at the in-
tersection of models of computation, Cyber-Physical Systems, and autonomic
computing, with a particular emphasis on self-organizing software models.


