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Abstract— Deep convolutional networks have been the most 

competitive method in remote sensing scene classification.  Due to 
the diversity and complexity of scene content, remote sensing scene 
classification still remains a challenging task. Recently, the second-
order pooling method has attracted more interest because it can 
learn higher-order information and enhance the non-linear 
modeling ability of the networks. However, how to effectively learn 
second-order features and establish the discriminative feature 
representation of holistic images is still an open question.  In this 
Letter, we propose a first and second-order information fusion 
networks (FSoI-Net) that can learn the first-order and second-
order features at the same time, and construct the final feature 
representation by fusing the two types of features. Specifically, a 
self-attention-based second-order pooling (SaSoP) method based 
on covariance matrix is proposed to extract second-order features, 
and a fusion loss function is developed to jointly train the model 
and construct the final feature representation for the classification 
decision. The proposed networks have been thoroughly evaluated 
on three real remote sensing scene datasets and achieved better 
performance than the counterparts. 
 

Index Terms— Deep learning, second-order pooling, self-
attention mechanism, information fusion, scene classification.  
 

I. INTRODUCTION 
CENE classification is a classic research content of computer 
vision. Its purpose is to divide images into different 

categories according to their content [1]. Thus, scene 
classification provides an alternative solution to complete the 
land use and land cover (LULC) classification task using high-
spatial-resolution (HSR) imagery. In this scheme, the basic 
processing unit becomes the scene image instead of pixels. 
Therefore, it is suitable to process HSR images with abundant 
spatial and structural patterns but few spectral features. In the 
past few years, scene classification has attracted wide attention 
in the field of remote sensing, and has been applied in different 
real-world applications, such as LULC classification [2], 
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semantic annotation [3]. However, due to some common 
phenomena in remote sensing scene images, such as complex 
structure and diverse scales, it is still a challenge to classify 
remote sensing scenes with accuracy.  

The core of scene classification is to build robust feature 
representations of images. The rise of deep learning has brought 
a milestone breakthrough in computer vision, and this has a 
transformative impact on remote sensing scene classification. 
Especially for convolutional neural networks (CNN), it has 
achieved impressive performance in various applications. 
Inspired by ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) , many state-of-the-art CNN models have 
been designed to challenge the object classification and 
detection on hundreds of categories and millions of images [4]. 
These models based on constantly improving network 
architectures yielded more accurate results for image 
recognition, and they are also widely used in the field of remote 
sensing image processing. Due to the limited training samples 
available for remote sensing scene classification, many pre-
trained CNN models instead of fully trained new models from 
scratch are used as feature extractors or fine-tuned to complete 
the classification tasks [5]. Some research also attempted to use 
few-shot learning to address the issue of insufficient samples 
[6]. To handle the specific characteristics of remote sensing 
scenes, such as complex structure, various scales, and irregular 
rotation and scaling, some research has focused on extracting 
multi-scale features and employing order-less feature coding 
methods to overcome these issues [7]. However, such kind of 
methods often involve multiple processes, and cannot be trained 
end-to-end. This inevitably increases the computational 
complexity of the algorithm. Moreover, the pattern that 
separates the feature extraction and classification processes is 
challenging to apply to large-scale remote sensing image 
classification as a big data problem in remote sensing 
community. Therefore, it is crucial and of necessity to develop 
advanced network architecture to address remote sensing scene 
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classification task in an intelligent fashion. 
Recently, the construction of deep neural networks that can 

learn higher-order statistical features for image representations 
has attracted significant interest. Several second-order pooling 
methods are proposed to capture the second-order information 
of the final convolutional features. The pioneering work was 
bilinear CNN with excellent performance in fine-grained image 
recognition [8]. However, the bilinear pooling method 
produced very high-dimensional features, which led to a huge 
increase in model parameters. Another idea for modeling 
second-order features is to use covariance matrix of the final 
convolutional features. Some second-order pooling methods 
based on covariance matrix have been developed and achieved 
state-of-the-art results in various vision tasks, such as object 
recognition [9], action recognition[10] and fine-grained 
recognition [11]. For remote sensing scene classification, a few 
studies have also attempted to build a second-order pooling 
CNN model based on the covariance matrix, which directly 
uses the upper triangle elements of the covariance matrix as 
second-order features [12-14]. These methods obtained better 
results compared with the baseline CNN models. However, 
they still suffer from high pooling feature dimension and 
insufficient use of convolutional feature information. Although 
the second-order pooling CNN has successful in different tasks, 
many existing methods are proposed only for specific domains. 
How to effectively build higher-order feature representations 
for remote sensing scenes is still an open problem. Besides, 
existing methods pay too much attention to the construction of 
higher-order features, but ignore the comprehensive utilization 
of various features. 

In this Letter, we pay much attention to the use of both first 
and second-order information to construct the feature 
representation of the remote sensing scene images. For this 
purpose, a self-attention-based second-order pooling (SaSoP) 
method based on covariance matrix is proposed to construct 
second-order features with low feature dimensions. Thereafter, 
a fusion cross-entropy loss is developed to train the first and 
second-order information fusion networks (FSoI-Net). This 
model can be used as an independent block plugged at the end 
of a network and trained end-to-end with entire network. 

II. PROPOSED METHOD 

A.  Position-wise Attention Mechanism 
For remote sensing scene images, many land use categories 

have complex structures such as industrial, school, commercial. 
Besides, they are extracted from different images covering a 
variety of areas with distinct spatial resolution, scale, rotation 
and scene size. Therefore, some key features that are invariant 
to scale, rotation and size play a pivotal role in identifying the 
category of scene images. To highlight these important features, 
and to integrate the importance of these features when 
constructing the covariance matrix, the position-wise attention 
features are designed based on attention mechanism, and then 
these features are used to construct the covariance matrix. As 
shown in Figure 1, the convolutional features extracted by the 
CNN backbone layers have firstly reduced the dimension using 

1 × 1  convolution kernel. After the low-dimensional 
convolution features are obtained, a position-wise attention 
weight map is calculated based on the low-dimensional 
convolution features to emphasize the importance of depth 
features at each location for representing the scene image. 
Specifically, for convolutional features after dimension 
reduction Z ∈ ℝℎ×𝑤𝑤×𝑐𝑐, we first aggregate channel information 
of Z across the channel using average-pooling and max-pooling 
operations, and acquire two different descriptors: Zavg ∈
ℝℎ×𝑤𝑤×1 and Zmax ∈ ℝℎ×𝑤𝑤×1 , representing the importance of 
each position of the convolutional features respectively. The 
descriptors are then concatenated and convolved by a 
convolution operation with a size of 3 × 3, generating a 2D 
map. Finally, the sigmoid activation function is followed to 
obtain the weight of different positions. The position-wise 
attention weight map is derived as: 

S =  σ(ℱ(Zavg; Zmax))                                    (1) 

Where S is the weight map, ℱ denotes a convolution operation, 
and σ represents the sigmoid function. The position-wise 
attention weight map describes the spatial distribution of 
important features. To use this information for final 
classification decision, the weight map is used to weight the 
convolutional features by position via a Hadamard product, 
which is expressed as follows: 

Zout = FHp(Z, S)=X ⨀ S                           (2) 

Where Zout is the weighted convolutional features. 

B. Self-attention-based Second-order Pooling Block 
The traditional CNN models usually extract the first-order 

statistical convolutional features as image representations right 
at the end of deep networks, such as ResNet [15]. To better 
characterize complex categories and build discriminative image 
representations, one solution is to learn high-order feature 
representations to enhance nonlinear modeling capabilities of 
the CNN model [16]. In this study, we propose a second-order 
pooling method based on self-attention mechanism. When a 
pre-trained CNN model is selected as the backbone, the feature 
map outputs at the final convolutional layer can be used as the 
input tensor of the SaSoP block. Such an input tensor can be 
expressed as X ∈ ℝh×w×c, where h and w are spatial height and 
width and c is the number of channels of the convolutional 
features respectively. To compute the covariance matrix of X, 
it is reshaped into a two-dimensional feature matrix X′ ∈ ℝd × c, 
where d = h × w. Thus, the covariance matrix can be calculated 
by equation (1). 

Cov =  X′T Î X′                               (3) 

Î = �1
d
− 1� �I − 1

d
i iT�                         (4) 

Where I is a d × d  identify matrix, and 𝐢𝐢  is a d-dimensional 
column vector, all elements are set as 1. 

The covariance matrix Cov is a symmetric matrix of size c ×
c , which has a clear physical meaning. Each row of the 
covariance matrix represents the statistical correlation between 
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one channel and all channels. Because it contains the mutual 
information between the convolutional features of different 
channels, higher-order information can be captured by the 
covariance matrix. Nevertheless, if the covariance matrix is 
used directly as the final feature representation of the scene 
image for classification, it will have a very high dimensionality 
even if half of the elements of the symmetric matrix are 
selected. In this research, a one-dimensional group convolution 
process is performed on the covariance matrix in the row 
direction to generate learning features of the covariance matrix, 
and these learning features are used to represent the higher-
order information in the covariance matrix. Specifically, for j-
th row of the covariance matrix, a convolution kernel is defined 
as<Wj, bj>, where Wj ∈ ℝc×1is the learnable weight, bj is the 
bias value. Thus, the convolution operation of j-th row of the 
covariance matrix (Covj,∶) is defined as, 

Covj
′ = Covj,∶ ∗ Wj + bj                         (5) 

After processing the convolutional operation on each row of 
the covariance matrix, the learning features Cov′ =
[Cov1

′ , Cov2
′ ,⋯ , Covc

′  ]𝑇𝑇  are obtained. Cov′ is the feature 
representation of the covariance matrix, and contains higher-
order information of the input tensor. Our proposed self-
attention uses the learning features Cov′  as the attention 
weights, and the output of our SaSoP block is aggregated via a 
Hadamard product according to the following form: 

Y = FHp(X, Cov′)=X ⨀ σ( Cov′)                 (6) 

Where Y is the output tensor that has the same size as X, ⨀ 
denotes the Hadamard product, and σ is the sigmoid function. 
Followed by this process, the global average pooling (GAvP) 
method is used to generate the final second-order feature 
representation 

C. Fusion Loss Function 
For common deep CNN models, the first-order statistics (i.e., 

mean vector or fully-connected features) extracted by the global 
average pooling (GAvP) or fully-connected layer are often used 
as the final image representations for classification. We propose 
to make full use of first and second-order information to 

describe the holistic image context, and the first and second-
order features are learned together in our proposed module and 
determine the category of the input image jointly. Specifically, 
the first-order feature are summarized by GAvP, and the 
second-order feature are extracted by our proposed SaSoP 
block. In this case, a fusion loss function is established to fuse 
the first and second-order features and train the proposed model 
jointly. As shown in equation (7), the loss fusion contains three 
input variables x1, x2, y, representing the first-order features, 
second-order features and corresponding category label. It is a 
cross-entropy loss function with two inputs, where j is the 
sample index in each mini-batch. 

loss(x1, x2, y) = −log � exp(x1[y])
∑ exp(x1[j])j

� − log � exp(x2[y])
∑ exp(x2[j])j

�     (7) 

As shown in Eq. (7), the first and second-order features share 
the same role in the model training process. The outputs of the 
two streams are fused through addition as the decision rule to 
decide the final category. 

D. Networks Implementation 
Summarized as Fig.1, the proposed convolutional network 

model consists of four parts: (a) CNN backbone architecture, as 
the backbone of the network to complete convolution feature 
extraction; (b) the first-order feature extractor based on GAvP 
layer; (c) the proposed position-wise attention SaSoP block to 
construct second-order feature representation for classification; 
(d) the fusion loss function integrates first and second-order 
features for joint training. Our work focuses on the final three 
steps to enhance the nonlinear representation ability of the CNN 
model. Thus, the pre-trained CNN models can be used as the 
backbone architecture in this study. Here, ResNet-50 and 
ResNet-101 [15] are employed as the backbone architecture of 
the proposed network. For this purpose, all layers after the final 
convolutional layer are removed to construct a convolution 
process module, which is used to extract the convolutional 
features of the input scene images.  We reduce the number of 
channel (C) into 128 for both CNN backbone architectures by 
the 1 × 1 convolution operation. If the input size is changed, the 
output size of dimension reduction block, and position-wise 
attention will be changed accordingly. 

 Fig.1. Example architecture of the first and second-order information fusion networks. 

III. EXPERIMENTS AND DISCUSSION  

A.  Experimental Datasets and Setup 
In this study, three real remote sensing scene image data sets 

were used to test the proposed method. The first data is the UC 
Merced (UCM) data set [17], which is extracted from aerial 
remote sensing images. This data set is an early open data set 
containing 21 categories, each category contains 100 scene 
images with a fixed size of 256×256×3. 
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Another data set, the Aerial Image Dataset (AID) [5], was 
generated using satellite images from Google Earth. It is a large 
data set containing 100000 images with a size of 600×600×3, 
which were divided into 30 categories. In addition, the sample 
size of each category ranges from 220 to 420, and the spatial 
resolution of the scene images is varied, since they were 
captured by different satellite sensors. 

The last data set is the NWPU-RESISC45 (NWPU) [18]. It 
is a large data set widely used as the large-scale benchmark data 
for testing deep learning methods. Similar to AID data set, this 
data set collected 31500 scene images (size of 256×256×3) 
from Google Earth, including 45 categories. Each category 
contains the same number of scene images in this data set. 

For the proposed network, the size of the input image is 
flexible. In order to reduce the computational burden in model 
training, the images in UCM and NWPU data sets are adjusted 
to 224 × 224 × 3, and the images in AID data set are adjusted 
to 299 × 299 × 3 . In the training phase, the networks are 
optimized using stochastic gradient decent (SGD) with a 
momentum of 0.9, a weight decay rate of 10-4 and a mini-batch 
of 32. The initial learning rate is set to 0.005, and the cosine 
annealing schedule is used to set the learning rate of each 
parameter group, and the maximum number of iterations is set 
to 10. Finally, the networks are trained with a total of 45 epochs. 
The networks were developed on PyTorch, and all the 
experiments were performed on a 64 bits Intel Xeon silver 4114 
machine with 64GB RAM memory and a single GeForce GTX 
1080ti GPU. 

To evaluate the proposed networks, different training ratios 
(Tr) are set to test the models, and two metrics of overall 
accuracy (OA) and Kappa coefficient (κ) are used to measure 
the classification accuracy. 

B. Experimental Results and Analysis 
Two types of statistic features describing first and second-

order information are considered in the constructed networks. 
When evaluating the fusion networks, other networks based on 
first-order or second-order features are also evaluated 
accordingly. 

We first test the 50-layer and 101-layer plain nets (ResNet-
50/101), as well as the second-order pooling networks (ResNet-
50/101+SaSoP) and the fusion nets (ResNet-50/101+FSoI-
Net1/2) on the UCM dataset. ResNet-50/101+FSoI-Net1 does 
not use the position-wise attention mechanism, and ResNet-
50/101+FSoI-Net2 is the fused networks with the position-wise 
attention. The results listed in Table I show that ResNet-101 has 
higher classification accuracy than the shallower ResNet-50. 
When the second-order pooling method is used to model the 
holistic image, the performances have been further increased 
for ResNet-50+SaSoP with Tr=50%, while other results have 
declined. For the ResNet-50/101+FSoI-Net1, the first and 
second-order features are fused for holistic image modeling, the 
highest classification accuracy is obtained. This indicates that 
second-order pooling based on covariance matrix has the 
advantage of improving the modeling performance. In addition, 
we have two major observations from Table I. First, second-
order features extracted by second-order pooling block can 

provide different statistical information, but they do not 
necessarily have obvious advantages compared with first-order 
features. Second, the fusion of first and second-order features 
has obvious superimposing advantages, which demonstrated 
that both first and second-order features contribute to enhancing 
the feature representation ability of images. When the position-
wise attention block is inserted, the classification accuracy of 
the fusion networks is increased further. This shows the 
importance of position, which is helpful to enhance the 
representation capability of second-order features. 

The results of experiments performed on the other two 
datasets are shown in Tables II and III, respectively. From the 
reports in Table II, in most cases, the plain net ResNet-50 
inserted by the second-order pooling block has slightly higher 
accuracy than the original, but the result of ResNet-101 is the 
opposite. However, compared with first-order features or 
second-order features alone, the fusion networks FSoI-Net 
brings clear improvements in the experiments on the AID 
dataset. For the NWPU dataset, similar experimental results 
were obtained, as shown in Table III. These results suggest that 
the two kinds of features (first and second-order features) are 
complementary, and fusion of the two can improve the 
generalization capability of the networks. 

TABLE I 
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE UCM DATASET 

Method Tr=50% Tr=80% 
OA (%) κ OA (%) κ 

ResNet-50 97.59±0.65 0.975 98.97±0.77 0.989 
ResNet-101 98.03±0.95 0.979 99.37±0.14 0.993 

ResNet-50+SaSoP 97.84±0.57 0.977 98.81±0.71 0.988 
ResNet-101+ SaSoP 97.68±0.55 0.976 98.73±0.27 0.987 

ResNet-50+FSoI-Net1 98.67±0.17 0.986 99.68±0.27 0.997 
ResNet-101+FSoI-Net1 98.92±0.31 0.989 99.37±0.27 0.993 
ResNet-50+FSoI-Net2 98.51±0.40 0.984 99.68±0.14 0.997 

ResNet-101+FSoI-Net2 98.70±0.43 0.986 99.60±0.12 0.996 

TABLE II 
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE AID DATASET 

Method Tr=20% Tr=50% 
OA (%) κ OA (%) κ 

ResNet-50 94.26±0.16 0.941 96.50±0.31 0.964 
ResNet-101 94.73±0.44 0.945 96.68±0.10 0.966 

ResNet-50+SaSoP 94.52±0.21 0.943 96.55±0.11 0.964 
ResNet-101+ SaSoP 94.64±0.30 0.944 96.77±0.11 0.967 

ResNet-50+FSoI-Net1 95.43±0.25 0.953 97.03±0.17 0.969 
ResNet-101+FSoI-Net1 95.88±0.26 0.957 97.31±0.28 0.972 
ResNet-50+FSoI-Net2 95.49±0.31 0.953 97.16±0.07 0.971 

ResNet-101+FSoI-Net2 95.91±0.10 0.958 97.42±0.10 0.973 

TABLE III 
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON THE NWPU DATASET 

Method Tr=10% Tr=20% 
OA (%) κ OA (%) κ 

ResNet-50 91.00±0.15 0.908 93.68±0.25 0.935 
ResNet-101 92.28±0.24 0.921 94.18±0.16 0.941 

ResNet-50+SaSoP 91.32±0.34 0.911 93.77±0.15 0.963 
ResNet-101+ SaSoP 91.67±0.38 0.915 94.01±0.06 0.939 

ResNet-50+FSoI-Net1 92.38±0.22 0.942 94.38±0.10 0.943 
ResNet-101+FSoI-Net1 92.83±0.13 0.927 94.74±0.10 0.946 
ResNet-50+FSoI-Net2 92.57±0.10 0.924 94.40±0.21 0.943 

ResNet-101+FSoI-Net2 92.91±0.17 0.926 94.76±0.18 0.946 

TABLE IV 
PARAMETER SIZE AND COMPUTATION COMPLEXITY COMPARISON AMONG 

DIFFERENT METHODS ON THE UCM DATASET 
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Method Parameter size (MB) Flops (G) 
ResNet-50/101 23.55/42.54 4.11/7.83 

ResNet-50/101+SaSoP 23.79/42.78 4.12/7.85 
ResNet-50/101+FSoI-Net1 23.84/42.83 4.12/7.85 
ResNet-50/101+FSoI-Net2 23.84/42.83 4.12/7.85 

Table IV shows a comparison of the parameters and 
computational complexity of different models. The number of 
parameters of ResNet-50/101+SaSoP is comparable to that of 
the vanilla ResNet-50/101. The increased parameters of 
ResNet-50/101+SaSoP are mainly attributed to the group 
convolutional layer. The fusion models also slightly increase 
the number of parameters. For theoretical amount of floating 
point (Flops), the computation of ResNet-50/101+SaSoP 
increased slightly due to the increase of parameters, but there is 
no obvious difference compared with the fused models. 

Here, we compare the FSoI-Net with several related and 
state-of-the-art methods, as shown in Table V.  Siamese 
ResNet-50 is a metric learning method. The skip-connected 
covariance (SCCov) network[12] directly uses covariance 
matrix of different convolution features as the image 
representation. Other works include PANet50 [19], ResNet-
101+EAM [20] and ACNet [21], all focusing on the self-
attention-based fusion strategies to enhance feature 
representations, and have achieved competitive performance. 
Amongst these methods, SCCov, as a typical second-order 
pooling method, cannot achieve better performances than other 
methods. In contrast, our networks that fuse first and second-
order information achieves better performance than other 
networks. This comprehensive comparison demonstrates that 
both first and second-order information can help improve the 
network performance, and the fusion of the two kinds of 
features can enhance the representational learning capability of 
deep networks.  

TABLE V 
ACCURACY COMPARISON OF OUR METHODS WITH OTHER MODELS 

Method OA (%) 
UCM 

(Tr=80%) 
AID 

(Tr=50%) 
NWPU 

(Tr=20%) 
Siamese ResNet-50 [22] 94.29 - 92.28 

SCCov [12] 99.05±0.25 96.10±0.16 92.10±0.25 
PANet50 [19] 99.21±0.18 97.05±0.30 92.61±0.25 

ResNet-101+EAM [20] 99.21±0.26 97.06±0.19 94.29±0.09 
ACNet [21] 99.76±0.10 95.38±0.29 92.42±0.16 

ResNet-50+FSoI-Net2 99.68±0.14 97.16±0.07 94.40±0.21 
ResNet-101+FSoI-Net2 99.60±0.12 97.42±0.10 94.76±0.18 

IV. CONCLUSION 

In this Letter, we explored the effectiveness of various 
feature representation methods to improve network 
performance. By exploiting the first and second-order 
information at the same time, the proposed model can learn 
more discriminative feature representations and achieve the 
highest classification accuracy compared with other methods. 
Besides, our numerical experiments revealed two useful 
findings. First, the first-order and second-order information are 
complementary, and both provide effective expression for 
image recognition. Second, the second-order information has 
nonlinear characteristics and can achieve high accuracy with 
few samples. Therefore, these findings suggest that fusing first 

and second-order information is a better solution to enhance the 
network performance.  
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