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Abstract 23 

Purpose: Visual cues from a speaker’s face may benefit perceptual adaptation to degraded speech, 24 

but current evidence is limited. We aimed to replicate results from previous studies to establish the 25 

extent to which visual speech cues can lead to greater adaptation over time, extending existing 26 

results to a real-time adaptation paradigm (i.e., without a separate training period). A second aim 27 

was to investigate whether eye gaze patterns towards the speaker’s mouth were related to better 28 

perception, hypothesising that listeners who looked more at the speaker’s mouth would show 29 

greater adaptation.  30 

Method: A group of listeners (N=30) were presented with 90 noise-vocoded sentences in audiovisual 31 

format while a control group (N=29) were presented with the audio signal only. Recognition 32 

accuracy was measured throughout and eye tracking was used to measure fixations towards the 33 

speaker’s eyes and mouth in the audiovisual group. 34 

Results: Previous studies were partially replicated: the audiovisual group had better recognition 35 

throughout and adapted slightly more rapidly, but both groups showed an equal amount of 36 

improvement overall. Longer fixations on the speaker’s mouth in the audiovisual group were related 37 

to better overall accuracy. An exploratory analysis further demonstrated that the duration of 38 

fixations to the speaker’s mouth decreased over time.  39 

Conclusions: The results suggest that visual cues may not benefit adaptation to degraded speech as 40 

much as previously thought. Longer fixations on a speaker’s mouth may play a role in successfully 41 

decoding visual speech cues, however this will need to be confirmed in future research to fully 42 

understand how patterns of eye gaze are related to audiovisual speech recognition. All materials, 43 

data, and code are available at https://osf.io/2wqkf/. 44 

Key words: Speech perception, audiovisual speech, perceptual adaptation, eye tracking  45 
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Eye Gaze and Perceptual Adaptation to Audiovisual Degraded Speech 47 

Human communication often takes place in suboptimal listening conditions such as in noisy 48 

environments, listening to a distorted phone or video signal, or encountering unfamiliar speech such 49 

as a foreign accent. Most listeners are adept at dealing with such difficult conditions by rapidly 50 

adapting to them – that is, undergoing a period where they learn and ‘tune in’ to the acoustic and 51 

perceptual differences in the particular listening condition. This perceptual adaptation to degraded 52 

or unfamiliar speech has been consistently and empirically demonstrated for a variety of adverse 53 

conditions, such as noise-vocoded (M. H. Davis et al., 2005; Hervais-Adelman et al., 2008), accented 54 

(Adank & Janse, 2010; Banks et al., 2015a, 2015b), and time-compressed speech (Peelle & Wingfield, 55 

2005; Sebastian-Galles & Mehler, 2000). Artificially degrading the speech through noise-vocoding 56 

(Shannon et al., 1995) is particularly useful in such experiments due to the level of control that it 57 

offers the experimenter, particularly with regards to intelligibility (e.g., Dorman et al., 1997; Faulkner 58 

et al., 2000). Noise-vocoding distorts the spectral structure of speech while preserving the temporal 59 

structure, creating a speech signal that contains enough detail to be intelligible but with significantly 60 

less spectral, specifically harmonic, detail than the original (M. H. Davis et al., 2005). The relative 61 

intelligibility of the signal is associated with the number of channels initially used to divide the 62 

acoustic signal, with more channels resulting in higher levels of intelligibility (Loizou et al., 1999). 63 

Listeners can adapt to noise-vocoded sentences after relatively short exposure; for example, Davis et 64 

al. (2005) report a steady linear increase in recognition performance after listening to 30 sentences 65 

noise-vocoded into six channels, with participants improving from ~20% of words correctly reported 66 

to ~60%. Distortions such as noise-vocoding can reflect particularly challenging conditions that we 67 

might encounter in modern digital communication. However, the processes and individual strategies 68 

used during perceptual adaptation are still not fully understood, particularly the role of visual speech 69 

cues, as although we often communicate face-to-face with a speaker, the majority of research into 70 

perceptual adaptation of degraded speech has only examined auditory perception.  71 
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It is well established that access to visual cues from a speaker’s face substantially improves 72 

speech recognition in difficult listening conditions; this audiovisual benefit has been demonstrated, 73 

for example, in the presence of background noise or with a distorted speech signal (Erber, 1975; 74 

MacLeod & Summerfield, 1987; Sommers et al., 2005; Sumby & Pollack, 1954). Listeners benefit 75 

from viewing articulatory cues, particularly from a speaker’s mouth, integrating them with auditory 76 

cues and thus enhancing the overall speech signal and improving recognition (Summerfield, 1987). 77 

Attending to visual speech cues may thus improve or speed up the adaptation process required to 78 

adapt to unfamiliar or degraded speech, leading to greater improvements in speech recognition.  79 

A handful of studies have investigated the benefits of visual speech cues in perceptual 80 

adaptation to degraded (noise-vocoded) speech, but with varying types of linguistic stimuli. At the 81 

syllable level, Bernstein, Auer, Eberhardt & Jiang (2013) found that the presence of visual speech 82 

cues leads to greater perceptual adaptation of noise-vocoded syllables. Kawase et al., (2009) 83 

extended this finding to individual noise-vocoded words, comparing perceptual adaptation with and 84 

without audiovisual speech cues (i.e., with and without the speaker’s face visible), finding that 85 

listeners adapted a greater amount when visual speech cues were available to listeners compared to 86 

when they were not. However, listening to individual syllables or words, without any additional 87 

linguistic context, is not representative of everyday communication. Pilling and Thomas (2011) 88 

therefore tested auditory recognition of degraded sentences. Participants listened to 3 blocks of 76 89 

noise-vocoded sentences, whereby the middle block was a training condition with either 90 

audiovisual, audio-only or non-degraded sentences. They observed a greater improvement in 91 

performance after training with visual cues compared to without (i.e., after exposure to audiovisual 92 

compared to audio-only sentences during training). Wayne & Johnsrude (2012) also assessed the 93 

contribution of training with visual speech information, comparing several training conditions during 94 

adaptation to noise-vocoded sentences. They found that training with audiovisual cues resulted in 95 

no more adaptation than training with non-degraded feedback – i.e., training where the listener 96 

heard the sentences both with and without noise-vocoding. However, the paradigm did not directly 97 
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compare adaptation to noise-vocoded speech with and without visual speech cues as in Pilling & 98 

Thomas (2011), and it is therefore impossible to ascertain the amount of improvement that visual 99 

cues contributed to adaptation over and above the auditory signal alone. Moreover, if one is 100 

listening to speech in adverse conditions (e.g., a degraded phone or video signal) it is not always 101 

possible to obtain the type of clear (i.e. non-degraded) feedback as used in the training conditions by 102 

Wayne & Johnsrude, and visual cues may thus provide a more readily accessible source of 103 

perceptual information that can help listeners adapt to difficult listening conditions.  104 

Both Pilling & Thomas (2011), and Wayne & Johnsrude (2012), used a training paradigm 105 

whereby adaptation was measured by testing participants after being exposed to audiovisual 106 

speech; however, adaptation to unfamiliar or degraded speech most likely occurs in real time – that 107 

is, we adapt to the listening conditions we are exposed to at the time, integrating useful visual cues 108 

as we adapt. Furthermore, the sentences used in both Pilling & Thomas (2011) and Wayne & 109 

Johnsrude (2012) were relatively simple in terms of vocabulary and structure. Such sentences may 110 

be relatively easy to perceive and adapt to compared to more challenging and less predictable 111 

sentences; for example, the more challenging IEEE sentences (e.g., ‘Sickness kept him home the 112 

third week’, ‘The hog crawled under the high fence’; Rothauser et al., 1969) result in poorer 113 

recognition than the BKB sentences (e.g., ‘A cat sits on the bed’, ‘The ice cream was pink’; Bench et 114 

al., 1979) used by Pilling & Thomas (2011), when presented in fluctuating masking (Schoof & Rosen, 115 

2015). It is therefore possible that an equivalent audiovisual benefit to perceptual adaptation may 116 

not be present for different linguistic stimuli.      117 

The benefit gained from visual speech cues has potential applications for listeners adapting 118 

to a variety of difficult listening conditions – whether these originate from the environment (for 119 

example background noise or a distorted phone line) or from listeners themselves in the form of a 120 

hearing impairment (Mattys et al., 2012). Nevertheless, current evidence of an audiovisual benefit to 121 

adaptation using naturalistic stimuli (i.e., sentences) comes essentially from a single study (Pilling & 122 

Thomas, 2011). The first aim of the present study was thus to replicate and extend the finding by 123 
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Pilling and Thomas (2011) that visual speech cues improve perceptual adaptation to degraded 124 

sentences, using a more naturalistic and real-time (i.e., continuous) adaptation paradigm whereby 125 

participants were continually exposed to noise-vocoded sentences with and without visual speech 126 

cues, and where recognition was measured throughout the task, rather than after a period of 127 

training. Additionally, we used the IEEE sentences (Rothauser et al., 1969), which are more complex 128 

than the BKB sentences, and thus potentially more challenging for listeners to integrate the auditory 129 

and visual signals, to more strongly test the effects of visual speech cues.  130 

A second aim of the present study was to examine the role of eye gaze in comprehending 131 

and adapting to audiovisual degraded speech. Interest in listeners’ eye gaze during speech 132 

perception has seen a recent increase (e.g., Barenholtz et al., 2016; Birulés et al., 2020; Lusk & 133 

Mitchel, 2016; Morin-Lessard et al., 2019; Wang Jianrong et al., 2020; Worster et al., 2018), with 134 

some studies suggesting a link between where and how listeners view a speaker’s face and their 135 

resulting comprehension (Lusk & Mitchel, 2016; Worster et al., 2018). Adult listeners normally show 136 

a preference for looking at a speaker’s eyes during communication (Morin-Lessard et al., 2019; 137 

Yarbus, 1967), which is likely for social reasons (Birmingham & Kingstone, 2009). Indeed, speech 138 

recognition studies employing eye-tracking have shown that in optimal listening conditions (i.e., in 139 

quiet and with a clear auditory signal), adults look more towards a speaker’s eyes than the mouth 140 

(Buchan et al., 2007, 2008; Vatikiotis-Bateson et al., 1998). However, when listening conditions are 141 

challenging, e.g., when background noise is present, listeners look more often at a speaker’s mouth 142 

(Buchan et al., 2007, 2008; Lansing & McConkie, 2003; Vatikiotis-Bateson et al., 1998). This pattern 143 

has also been found for artificial (Lusk & Mitchel, 2016) and non-native language (Barenholtz et al., 144 

2016; Birulés et al., 2020). Indeed, the more challenging the condition (e.g., as background noise 145 

increases), the more frequently listeners look towards a speaker’s mouth (Vatikiotis-Bateson et al., 146 

1998) and the more attentional weighting is given to visual over auditory cues (Hazan et al., 2010). 147 

Although some useful speech cues can be gained from extra-oral areas such as the upper face and 148 

eye region (e.g., Preminger et al, 1998; Scheinberg, 1980), visible mouth movements are 149 
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considerably more important for successful audiovisual speech comprehension in challenging 150 

listening conditions (Thomas & Jordan, 2004). Thus, in such conditions, listeners likely shift their 151 

attention (and thus their eye gaze) more frequently towards the speaker’s mouth to benefit from 152 

the most useful visual cues (i.e., articulatory mouth movements), potentially to improve lexical 153 

segmentation (Lusk & Mitchel, 2016; Mitchel & Weiss, 2014). These observations fit well with the 154 

cognitive relevance framework of visual attention (Henderson et al., 2009), which stipulates that the 155 

weight allocated to a particular visual feature is dependent on the cognitive needs of the perceiver. 156 

Accordingly, gaze patterns towards facial features during audiovisual speech perception have been 157 

shown to vary depending on the task (Buchan et al., 2007; Malcolm et al., 2008) and the type of 158 

stimuli presented (Lansing & McConkie, 2003; Vo et al., 2012). 159 

Observations that listeners look more towards the speaker’s mouth in adverse listening 160 

conditions would suggest a direct relationship between listeners’ patterns of eye gaze and successful 161 

recognition of audiovisual degraded speech – i.e., listeners’ performance. Indeed, in both deaf and 162 

hearing children, the amount of time spent looking at a speaker’s mouth has been related to better 163 

speech-reading (i.e., lip-reading) accuracy (Worster et al., 2018), although the same relationship was 164 

not observed in normal-hearing adults (Lansing & McConkie, 2003; Wilson, Alsius, Pare, & Munhall, 165 

2016). Perception of the McGurk effect has also been related to listeners’ patterns of eye gaze, 166 

whereby significantly more time is spent looking at a speaker’s mouth in trials when it is perceived 167 

(Stacey et al., 2020), and stronger perceivers of the effect spend overall more time looking at the 168 

speaker’s mouth than their eyes (Gurler et al., 2015). Nevertheless, the relevance of the McGurk 169 

illusion to audiovisual speech recognition is unclear (Alsius et al., 2018), and an equivalent 170 

relationship between patterns of eye gaze and audiovisual speech recognition has still not been 171 

found.  172 

Two studies have reported correlational analyses between measurements of eye gaze and 173 

audiovisual speech recognition (Buchan et al., 2007; Everdell et al., 2007), but no significant 174 

correlations were observed. However, these analyses were not the main aim of the above studies, 175 
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and certain aspects of their methodology may explain the lack of observed correlations, namely 176 

ceiling effects in recognition accuracy which likely reduced variability in the measure. Furthermore, 177 

different measures of eye gaze have been used between studies; while some have focused on the 178 

length of time spent fixating on the eyes and mouth (Worster et al., 2018), others have measured 179 

the number of fixations (Lansing & McConkie, 2003) or trials (Buchan et al., 2007) spent looking at 180 

the speaker’s mouth, or even left-right asymmetry of eye gaze on the eyes and mouth (Everdell et 181 

al., 2007), so it is unclear if one particular pattern of eye movements is particularly important during 182 

speech perception.   183 

More recently, Lusk & Mitchell (2016) demonstrated that, after a period of familiarisation, 184 

better speech segmentation of an artificial language (i.e., strings of non-words) was related to 185 

greater shifts in attention between the eyes and mouth during familiarisation – however, these 186 

shifts took place in either direction (i.e., participants looked more or less at the mouth over time), so 187 

it is unclear if a particular eye gaze strategy was directly related to learning the new language. 188 

Lewkowicz & Hansen-Tift (2012) demonstrated that infants shift their eye gaze more towards a 189 

speaker’s mouth when learning to speak, but look more at the eyes at a later stage of development 190 

when they have become more proficient, indicating that looking at a speaker’s mouth is important 191 

during language acquisition. Conversely, Birulés, Bosch, Pons & Lewkowicz (2020) demonstrated that 192 

non-native adult listeners look more at a speaker’s mouth than native speakers regardless of their 193 

language proficiency, suggesting that eye gaze towards the mouth is not necessarily linked to 194 

learning or performance. In summary, evidence in support of a relationship between eye gaze 195 

patterns and language learning are mixed, and nevertheless, the mechanisms of learning a language 196 

(as investigated in the above studies), may differ from the mechanisms of adapting to unfamiliar 197 

speech in one’s native language.  198 

The following questions therefore remain unanswered with regards to eye gaze and 199 

perception of audiovisual degraded speech: first, are measures of eye gaze on a speaker’s mouth 200 

related to i) listeners’ speech recognition accuracy, and ii) amount of adaptation to the unfamiliar 201 
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speech? Secondly, if such a relationship exists, is there a particular pattern of eye gaze on the 202 

speaker’s mouth (for example, longer or more frequent fixations) that is related to better speech 203 

recognition and adaptation? Using eye tracking to investigate patterns of eye gaze towards a 204 

speaker’s eyes and mouth during a relatively challenging speech recognition task, that avoids ceiling 205 

effects and where performance has room to improve over time, may reveal a direct relationship 206 

between eye gaze towards a speaker’s mouth and audiovisual speech recognition.     207 

The current study therefore had two aims: 1) To replicate and extend previous findings that 208 

the presence of visual speech cues improves perceptual adaptation to degraded speech, and 2) to 209 

examine the relationship between eye gaze on a speaker’s mouth and speech recognition, as well as 210 

amount of adaptation (i.e., improvements in speech recognition over time). To address these aims, 211 

we measured recognition of degraded sentences in a real-time adaptation paradigm (i.e., where 212 

adaptation occurs during continuous exposure rather than after a training period), with and without 213 

visual speech cues. We recorded audiovisual sentences spoken from a single speaker and degraded 214 

these sentences using noise-vocoding; thus, we could create a relatively challenging speech 215 

recognition task that would avoid the ceiling and floor effects found in previous studies.  216 

In a between-subjects design, we exposed a test group to audiovisual degraded speech 217 

stimuli, and a control group to audio-only degraded speech stimuli, using eye-tracking to measure 218 

participants’ eye gaze. The control group was included to allow for direct comparison of speech 219 

recognition with and without visual speech cues. For consistency in our methods, we carried out eye 220 

tracking in both conditions, but presented the audio-only group with a static image of the speaker’s 221 

face, therefore offering no dynamic visual cues that could be used to benefit speech recognition (see 222 

Methods for full details). To analyse eye gaze patterns during audiovisual speech recognition, we 223 

selected two commonly used eye-tracking variables in line with previous studies of audiovisual 224 

speech recognition: fixation duration and percentage fixations (Buchan et al., 2007; Everdell et al., 225 

2007; Lansing & McConkie, 2003). Fixations (i.e., any period of time when eye gaze is relatively still; 226 

see Methods for full details) reflect the perceiver’s foveal field of vision and thus the area of greatest 227 
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visual acuity. The frequency and duration of fixations can indicate where and to what extent a 228 

perceiver’s visual attention is primarily directed at any given time (Christianson et al., 1991), and so 229 

are a good indicator of when listeners are attending to visual speech cues. 230 

We predicted that perceptual adaptation would be greater when visual speech cues were 231 

visible – that is, recognition of the noise-vocoded speech would improve more in the audiovisual 232 

group compared to the audio-only group. Secondly, we predicted that recognition accuracy and 233 

adaptation in the audiovisual group would be related to the percentage and duration of fixations to 234 

the speaker’s mouth, with more and longer fixations on the mouth relating to better performance 235 

(i.e., higher accuracy and a greater amount of improvement over time).  236 

Method 237 

Participants 238 

Seventy young adults (10 male, Mdn = 23 years, age range 19-30 years) were initially 239 

recruited from the University of Manchester to participate in the study, which was approved by the 240 

university ethics committee. All participants were native British English speakers with no history of 241 

neurological, speech or language problems (self-declared), and gave their written informed consent. 242 

Participants were included if their corrected binocular vision was 6/6 or better using a reduced 243 

Snellen chart, and their stereoacuity was at least 60 seconds of arc using a TNO test. Participants’ 244 

hearing was measured using pure-tone audiometry for the main audiometric frequencies of speech 245 

(0.5, 1, 2, and 4 kHz) in each ear separately. Any participant with a hearing threshold level greater 246 

than 20dB for more than one frequency in either ear was excluded from participation. Eleven 247 

participants in total (one male) were excluded; two based on the hearing criteria, two based on the 248 

visual criteria, five due to data loss during the eye tracking procedure (see Data Analysis for full 249 

details), one due to poor eye tracking calibration, and one due to technical failure. 59 participants 250 

(nine male, Mdn = 23 years, age range 19-30 years) were thus included in the final analyses reported 251 

here. Our sample size was based on the expected effect size for the audiovisual benefit to 252 

adaptation. Pilling & Thomas (2011) observed a ‘benefit’ of 12% accuracy for adaptation to 253 
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audiovisual compared to audio-only degraded sentences using a similar measure of keywords to the 254 

present study, although insufficient statistics were reported to obtain an effect size. Bernstein et al. 255 

(2013) observed a large effect size of d = 1.21 for adaptation to degraded syllables; as our task was 256 

more challenging, we predicted a medium-sized effect. Brysbaert & Stevens (2018) recommend a 257 

minimum of 1600 observations per cell for linear mixed effect models detecting medium-sized 258 

effects, which we achieved with 60 keywords per testing block, and at least 29 participants per 259 

group (i.e., we had at least 1740 observations per cell). 260 

Materials 261 

Experimental materials are available at https://osf.io/2wqkf/. Our stimuli consisted of 91 randomly 262 

selected Institute of Electrical and Electronics Engineers Harvard sentences (IEEE; Rothauser et al., 263 

1969). As we wanted to compare our adaptation results as far as possible to Pilling & Thomas (2011), 264 

we selected 4 keywords per sentence to score participant accuracy. These were content and 265 

function words, selected by the experimenters, that were considered important to the meaning of 266 

each sentence. A list of the sentences and keywords used is available as supplemental materials at 267 

the above link. Recordings were carried out in a soundproofed laboratory using a Shure SM58 268 

microphone and a High Definition Canon HV30 camera. A 26-year-old female native British English 269 

speaker recited the sentences, and was asked to look directly at the camera, to remain still, and to 270 

maintain a neutral facial expression throughout the recordings to minimise head movement. Video 271 

recordings were imported into iMovie 11 running on an Apple MacBook Pro, as large (960 x 540) 272 

high-definition digital video (.dv) files. Recordings were edited to create individual video clips for 273 

each sentence. These were checked by the experimenter and any that were not deemed suitable 274 

(for example due to mispronunciation) were re-recorded. The audio tracks for each clip were 275 

extracted as audio (.wav) files, then normalised by equating the root mean square amplitude, 276 

resampled at 22 kHz in stereo, cropped at the nearest zero crossings at voice onset and offset, and 277 

vocoded using Praat speech processing software (Boersma & Weenink, 2018). Speech recordings 278 

were noise-vocoded (Shannon et al., 1995) using four frequency bands (cut-offs: 50 Hz → 369 Hz → 279 

https://osf.io/2wqkf/
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1160 Hz → 3124 Hz → 8000 Hz), selected to represent equal spacing along the basilar membrane 280 

(Greenwood, 1990). In the audio-only (control) condition, a static image of the speaker’s face with 281 

the mouth in different “speaking” positions was displayed congruently with the audio files so that a 282 

visual component was also present in this condition, but with no useful linguistic information. Static 283 

faces have previously been used as a control condition for analysing speech perception in dynamic 284 

faces (e.g., Calvert & Campbell, 2003; C. Davis & Kim, 2004; Jerger Susan et al., 2018). Using a static 285 

face as a control allowed us to assess the contribution of visible articulatory cues to speech 286 

recognition, whilst controlling for visual attention towards any salient features of the speaker’s face, 287 

and also allowing for eye tracking to be conducted in both groups for consistency. To create the still 288 

images (one image per trial), screen shots saved as TIFF files were taken from the videos of the 289 

speaker displaying a variety of mouth positions, to make the mouth visually salient and to make it 290 

evident that she was speaking. The still images, video files and the noise-vocoded audio files were 291 

imported into Experiment Builder software (SR Research, Ontario, Canada) to create the 292 

experimental stimuli. In the audio-only condition, the still images of the speaker were displayed for 293 

the exact length of each audio file, and for the audiovisual condition the audio and video files were 294 

played congruously. 295 

Procedure and apparatus 296 

Data were collected in a soundproofed booth in a single test lasting approximately 40 297 

minutes. Participants were randomly allocated into either the audiovisual (N=30) or audio-only 298 

(N=29) control group. In both conditions, participants sat facing the screen approximately 50 cm 299 

from the monitor, with their chin on a chin-rest. They were asked not to move their head during the 300 

experiment and to look continuously at the screen. Before starting the experiment, the eye-tracker 301 

was calibrated for each participant (see ‘Data analysis’ for details). Participants first listened to one 302 

practice sentence (a clear version and a noise-vocoded version) that was not included in the 303 

experiment, to prepare them for hearing the unusual distortion. They then completed 90 trials with 304 

the remaining noise-vocoded sentences. Participants triggered the start of the experiment and each 305 
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subsequent trial by pressing the space bar on the keyboard; there were no structured breaks and all 306 

90 trials were presented in a single continuous session. All stimuli were presented through 307 

Sennheiser HD 25-SP II headphones. The experimenter set the volume for all stimuli at a 308 

comfortable level for the first participant, and kept it at the same level for all participants thereafter. 309 

A Panasonic lapel microphone attached to the chin-rest recorded their verbal responses.  310 

To measure speech recognition, we asked participants to repeat out loud as much of each 311 

sentence as they could. The experimenter retrospectively scored participants’ responses according 312 

to how many keywords they correctly repeated out of a maximum of four. Responses were scored 313 

as correct despite incorrect suffixes (such as -s, -ed, -ing) or verb endings; however if only part of a 314 

word (including compound words) was repeated this was scored as incorrect (Dupoux & Green, 315 

1997; Golomb et al., 2007).  316 

We used a desktop-mounted Eyelink 1000 eye-tracker with Experiment Builder software (SR 317 

Research, Ontario, Canada) to present all stimuli, and to record participants’ eye movements. The 318 

pupil and corneal reflection of each participant’s right eye were tracked at a sample rate of 1000 Hz, 319 

with a spatial resolution of 0.01° RMS and average accuracy of 0.25°–0.5°. Calibration was carried 320 

out for each participant before the experiment using a standard nine-point configuration, and again 321 

five minutes after the experiment began. Each calibration was validated for accuracy, and accepted 322 

if the average error was <1° and the maximum error was <1.5°. A drift check preceded each trial 323 

using a fixation point presented in the centre of the screen, and if the error between the computed 324 

fixation position and the on-screen target was >1.5°, calibration was repeated to correct this drift. 325 

Data analysis 326 

The dependent variables were recognition accuracy, fixation duration, and percentage 327 

fixations. Recognition accuracy was calculated as the percentage of keywords correctly repeated in 328 

each trial. To analyse recognition accuracy over time, we divided all consecutive trials into six blocks 329 

of 15 trials, and calculated mean percentage accuracy per testing block based on the number of 330 
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correctly repeated keywords1. Fixations were defined as any period that was not a saccade 331 

(saccades were defined as eye movements with velocity >30°/sec, acceleration >8000°/sec2, and 332 

motion >0.1°). Fixations were evaluated in relation to one of two regions of interest (ROIs). For each 333 

video clip, we created two elliptical ROIs (see Figure 1) based on the first video frame. These 334 

comprised the eye area (extending from just below the speaker’s eyebrows to the tip of the nose) 335 

and the mouth area (from the septum to just below the bottom lip). Fixation duration and 336 

percentage fixations in these regions were then analysed to compare patterns of eye gaze between 337 

the two ROIs. We also created a third interest area that surrounded the speaker’s face that was used 338 

to verify the proportion of eye gaze directed to the speaker’s face rather than peripheral areas of 339 

the screen. Fixation duration was calculated as the mean duration of fixations in milliseconds. 340 

Percentage fixations was calculated as the percentage of all fixations in a trial falling in the current 341 

ROI. We selected these variables to indicate where listeners were allocating their attention at 342 

particular time points. Measurements of eye gaze were computed using Data Viewer (SR Research, 343 

Ontario, Canada), and we calculated the mean of each variable per testing block, and per interest 344 

area. 345 

Data were analysed using linear mixed effects hierarchical regression models in the lmerTest 346 

package (Kuznetsova et al., 2017), which uses the lme4 package, running in R v3.4.1. All models 347 

included the random effect of participant to account for individual differences in baseline speech 348 

recognition. Fixed effects of group, ROI and testing block (i.e., time) were tested by comparing 349 

models pairwise using likelihood ratio tests and Bayes Factors calculated using the BIC (e.g., 350 

Wagenmakers, 2007). For effects of individual predictors within the model, beta (B) coefficients and 351 

estimated p-values are reported. The variable of fixation duration was rescaled (ms/1000) to make 352 

the coefficient more interpretable; estimates of this variable are therefore expressed in seconds. 353 

 354 

                                                           
1 Trials were only divided into testing blocks during data analysis –  i.e., participants were not aware of the 
testing blocks during the procedure. 
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Figure 1. Image of the speaker with regions of interest (‘mouth’ and ‘eyes’). 355 

 356 

Results 357 

Perceptual adaptation to noise-vocoded speech 358 

Figure 2 shows mean recognition accuracy for the noise-vocoded speech across the six 359 

testing blocks for each group. We first tested for group effects against the baseline random effect of 360 

participant. Recognition was overall significantly better in the audiovisual group (M = 54%, SD = 361 

2.0%) compared to the audio-only group (M = 35%, SD = 1.6%), B = 19.48, SE = 2.53, p < 0.001; χ2 = 362 

41.02, p <.001, BF10 = 42952865. We then added a group * testing block interaction to the model to 363 

test whether the audiovisual group improved more over the six testing blocks than the audio-only 364 

group. The comparison was significant, χ2 = 145.45, p <.001, and the large Bayes Factor indicated 365 

strong evidence in favour of including the interaction in the model, BF10 = 6.911289e+18. However, 366 

across the whole experiment (i.e., between block 1 and block 6), recognition accuracy increased 367 

equally in both groups by approximately 19%, B = 18.68, SE = 1.56, p < .001.  368 

Exploratory Analysis: Rate of Adaptation 369 

Although we observed a group*testing block interaction, results of the mixed effects model 370 

described above indicated that the only significant difference in adaptation occurred between block 371 

1 and block 5, where the audiovisual group adapted by 18.47% compared to 12.51% in the audio-372 

only group, B = 6.69, SE = 3.08, p = 0.031. This suggested that listeners adapted more rapidly in the 373 

audiovisual group. To examine the rate of adaptation across the experiment in more detail, we 374 

conducted exploratory analyses of the amount of adaptation between groups for each consecutive 375 
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pair of testing blocks. Figure 3 shows that the rate of adaptation was not consistent between blocks 376 

or groups. Most adaptation occurred during exposure to the first 30 sentences, when both groups 377 

showed ~9% improvement in recognition accuracy. Between blocks 2-5 adaptation slowed in both 378 

groups, but the audiovisual group consistently adapted slightly faster, improving by approximately 379 

9% compared to only 2% in the audio-only group. However, between blocks 5 and 6 the audio-only 380 

group adapted more than the audiovisual group, improving by 6.4% compared to <1% in the 381 

audiovisual group. 382 

We conducted exploratory Bayesian hierarchical regression analyses of adaptation to 383 

quantify the evidence for group differences in adaptation rate between consecutive testing blocks. 384 

We used forward difference coding whereby a contrast variable was calculated for each pair of 385 

consecutive blocks (e.g., B1-B2, B2-B3 etc.), representing differences in recognition accuracy 386 

between each pair of blocks. The resulting five coded variables were added as fixed effects to a 387 

baseline model that also included group as a main fixed effect, and participant as a random effect. 388 

The interaction between each coded variable and group (e.g., B1-B2*group, which represents group 389 

differences in adaptation between blocks 1 and 2) was added individually and compared to the 390 

baseline model to test for group differences in adaptation at different time points. As these were 391 

exploratory analyses we report Bayes Factors and effect sizes only (see Table 1). The baseline model 392 

of adaptation between each consecutive pair of testing blocks, and a main effect of group, 393 

accounted for approximately 46% variance in recognition accuracy. Bayes factors indicated that 394 

there was either no evidence (BF < 0.3), or inconclusive evidence (BF > 0.3 <1), of a difference in 395 

adaptation between groups for each consecutive pair of testing blocks, and indeed, adding the 396 

interaction variables increased the explained variance by a maximum of just 0.3% (for the B2-397 

B3*Group interaction).  398 

  399 
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Figure 2. Mean recognition accuracy per testing block, per group. Error bars show ±1SE. 400 

 401 

 402 

Figure 3. Adaptation (amount of improvement) between consecutive testing blocks per group. Error 403 

bars show ±1SE.  404 

 405 

  406 
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Table 1. Exploratory Bayesian hierarchical regression analyses of group differences in adaptation 407 

rate.  408 

 409 

 410 

 411 

  412 

 413 

 414 

 415 

 416 
Note. R2m = marginal R2 (fixed effects only); ∆R2 indicates change in marginal R2 based on difference 417 
between baseline model and the addition of the model interaction. BF10 = Bayes Factor indicating 418 
evidence of a difference between groups in the amount of adaptation between each consecutive 419 
pair of testing blocks. 420 
 421 

Patterns of Eye Gaze 422 

We first examined overall patterns of eye gaze in both groups, to establish whether our eye 423 

tracking methods and stimuli had successfully replicated the patterns of eye gaze frequently seen in 424 

studies of audiovisual speech perception and when viewing static faces; particularly, to confirm that 425 

there were no unusually salient features in our stimuli that attracted viewer’s visual attention. In the 426 

audiovisual group, 99% of all fixations fell on the speaker’s face and 98% fell on the eyes and mouth. 427 

In line with previous studies of audiovisual speech recognition in difficult listening conditions 428 

(Buchan et al., 2007, 2008; Lansing & McConkie, 2003; Vatikiotis-Bateson et al., 1998), fixations on 429 

the speaker’s mouth (M = 984.32ms, SD = 405ms) were significantly longer than fixations on the 430 

eyes (M = 363.37ms, SD = 164ms), χ2 = 350.83, p < .001, BF10 = 8.024141e+74, B = 0.621, SE = 0.02, 431 

confirming that, as expected, listeners attended more to the speaker’s mouth than the eyes. 432 

However, there was no difference in percentage fixations on the mouth (M = 49%, SD = 18%) and 433 

eyes (M = 49%, SD = 18%), χ2 = 0, p = .988, BF10 = 0.05.  434 

Model BF₁₀ R2m ∆R2 Interpretation 

Baseline model - .458 - - 

B1-B2*Group 0.12 .459 .001 No group difference 

B2-B3*Group 0.59 .462 .003 Inconclusive 

B3-B4*Group 0.23 .460 .001 No group difference 

B4-B5*Group 0.08 .459 .000 No group difference 

B5-B6*Group 0.08 .459 .000 No group difference 
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In the audio-only group, 83% of fixations were located on the speaker’s face, with 74% on 435 

the eyes and mouth. The duration of fixations on the eyes (M = 443.46ms, SD = 179ms) and mouth 436 

(M = 443.30ms, SD = 189ms) did not differ, χ2 = 0, p = .980, BF10 = 0.05. However, a higher 437 

percentage of fixations fell on the eyes (M = 65%, SD = 21%) than on the mouth (M = 18% SD = 17%), 438 

χ2 = 315.59, p < .001, BF10 = 1.818774e+67, B = -0.47, SE = 0.02, p < 0.001, in line with previous 439 

results from viewing static faces (e.g., Birmingham & Kingstone, 2009). As there were no useful 440 

visual cues available in the audio-only group that could benefit speech recognition, and the stimuli 441 

was not dynamic, we did not analyse this data in relation to speech recognition; however all data is 442 

available as supplemental material here: https://osf.io/2wqkf/. 443 

Are audiovisual speech recognition and perceptual adaptation related to patterns of eye gaze? 444 

To test this hypothesis, we analysed speech recognition data from the audiovisual group, 445 

first establishing a baseline model of adaptation with testing block as a predictor; compared to a 446 

random effects model of participants’ baseline accuracy, there was strong evidence for the baseline 447 

model of adaptation to the noise-vocoded speech: χ2 = 84.53, p < .001, BF10 = 5.22229e+12. We then 448 

compared this baseline model to four experimental models, each of which included one of the 449 

following eye tracking measures as a predictor variable: 1) duration of fixations on the mouth; 2) 450 

duration of fixations on the eyes; 3) percentage fixations on the mouth, and 4) percentage fixations 451 

on the eyes (see Table 2 for models and corresponding R2 values). Only the model including duration 452 

of fixations on the mouth was significantly different to the baseline model, χ2 = 5.47,  p = 0.019; 453 

longer fixations on the speaker’s mouth were related to better recognition of the noise-vocoded 454 

sentences, B = 7.68, SE = 3.21, p = 0.018, however, evidence in support of this relationship was 455 

relatively weak (BF10 = 1.15). We then tested for an interaction between testing block and the 456 

duration of fixations on the mouth to ascertain whether the duration of fixations could predict 457 

adaptation. The results did not support the presence of an interaction, χ2 = 9.17, p = 0.102, BF10 = 458 

0.0002, indicating that there was no overall relationship between eye gaze and adaptation over the 459 

course of the experiment. 460 

https://osf.io/2wqkf/


AUTHOR ACCEPTED MANUSCRIPT 

Table 2. Hierarchical mixed model comparisons for the audiovisual group predicting overall speech 461 

recognition by each measure of eye gaze. 462 

Model R2 p-value BF10 

Testing Block (baseline                   
model of adaptation) 

0.20 <.001** 5.22229e+12 

Testing Block + Duration of 
Fixations on Mouth 

0.25 .019* 1.15 

Testing Block + Duration of 
Fixations on Eyes 

0.20 .805 0.08 

Testing Block + Percentage 
Fixations on Mouth 

0.20 .496 0.09 

Testing Block + Percentage 
Fixations on Eyes 

0.20 .613 0.08 

Testing Block * Duration of 
Fixations on Mouth (interaction) 

0.20 1.00 0.07 

Note: All models contain the random effect of participant. We report marginal R2 representing the 463 
variance explained by fixed effects only. 464 
* p < .05; ** p < .001 465 

  466 

Exploratory Analyses: Changes in Eye Gaze Over Time 467 

As speech recognition and adaptation rate varied across the time course of the experiment, 468 

we conducted exploratory analyses to examine whether patterns of eye gaze in the audiovisual 469 

group, as well as their relationship with speech recognition, varied over time. As before, we used 470 

Bayesian hierarchical linear mixed effects models, comparing the inclusion of each experimental 471 

predictor to a baseline model with participant as a random effect. As these were exploratory 472 

analyses we report descriptive statistics, effect sizes and Bayes Factors only. Figure 4 shows the 473 

mean duration of fixations and percentage fixations over the time course of the experiment. There 474 

was strong evidence that the duration of fixations on the mouth decreased over time by an average 475 

of 268.77ms between block 1 and block 6 (BF10 = 7522.16, B = -0.26877, SE = 0.04256, marginal R2 = 476 
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0.05). There was no evidence that the duration of fixations on the eyes changed over time (BF10 = 477 

0.0002, marginal R2 = 0.01), nor percentage fixations on the mouth (BF10 = 0.0003, marginal R2 = 478 

0.01) or the eyes (BF10 = 0.0004, marginal R2 = 0.01).  479 

Based on the variability in speech recognition, amount of adaptation and the duration of 480 

fixations on the speaker’s mouth over time, it was possible that longer fixations on the speaker’s 481 

mouth were more useful at particular time points of the experiment than others, for example during 482 

earlier testing blocks. We therefore explored whether the duration of fixations on the speaker’s 483 

mouth were related to speech recognition in early (blocks 1-2), middle (blocks 3-4) or late (blocks 5-484 

6) testing blocks. For each time period, we compared a model including the duration of fixations on 485 

the mouth to the baseline random effects model. We found evidence for a relationship between 486 

speech recognition and the duration of fixations on the mouth for middle testing blocks (blocks 3-4) 487 

only, BF10 = 19.90, B = 18.08, SE = 5.42, marginal R2 = 0.21; conversely, we found evidence against a 488 

relationship between speech recognition and the duration of fixations on the mouth in early (blocks 489 

1-2: BF10 = 0.13, marginal R2 = 0.001), and late blocks (blocks 5-6: BF10 = 0.18, marginal R2 = 0.02).   490 

 491 

Figure 4. Duration of fixations (left panel) and percentage fixations (right panel) on the mouth and 492 

eyes, per testing block in the audiovisual group. Error bars ±1SE. 493 

 494 

  495 
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Discussion 496 

We investigated perceptual adaptation to noise-vocoded speech with and without visual speech 497 

cues, aiming to replicate and extend previous findings (Bernstein et al., 2013; Kawase et al., 2009; 498 

Pilling & Thomas, 2011) that being able to view a speaker’s face can lead to greater improvement in 499 

recognition over time. We used a real-time (i.e., continuous) adaptation paradigm to better reflect 500 

real-life adaptation, and eye tracking to investigate eye gaze patterns during audiovisual speech 501 

recognition. We tested the relationship between performance and the duration and percentage of 502 

fixations on the speaker’s eyes and mouth, predicting that looking more at the speaker’s mouth 503 

would be related to better recognition accuracy and greater adaptation. 504 

We partially replicated previous studies which found an audiovisual benefit to perceptual 505 

adaptation, but our observations are somewhat more complex. There was a clear overall benefit to 506 

speech recognition from the visual speech cues, with accuracy in the audiovisual group consistently 507 

~20% better than in the audio-only group. However, we found no overall difference in the amount of 508 

adaptation between groups as expected – by the final testing block (i.e., after exposure to all 90 509 

sentences), both groups had improved by ~19% accuracy overall. Instead, we only observed a 510 

difference between blocks 1 and 5 (after exposure to 75 sentences). Exploratory analyses suggested 511 

that the rate of adaptation between blocks varied across the experiment, with the greatest amount 512 

of adaptation within the first 30 trials in both groups, who initially adapted at an equal rate despite 513 

different baseline levels of accuracy. After this point, the audiovisual group adapted slightly faster 514 

until testing blocks 5 and 6, when the audio-only group improved more quickly. However, in 515 

Bayesian terms, there was no evidence for group differences in adaptation rate between most 516 

blocks, although evidence was inconclusive between testing blocks 2 and 3. Overall, the benefit from 517 

visual speech cues to adaptation to degraded speech in our data is smaller and less clear than 518 

expected; particularly, we expected the audiovisual group to adapt more overall than the audio-only 519 

group.   520 
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Our findings are in contrast to studies which found a clear audiovisual benefit to adaptation 521 

for noise-vocoded syllables (Bernstein et al., 2013), words (Kawase et al., 2009), and sentences 522 

(Pilling & Thomas, 2011); these studies all found greater overall adaptation when the speaker’s face 523 

was visible compared to when it was not. However, there is some similarity between our findings 524 

and those of Pilling & Thomas (2011); we found that adaptation was greater in our audiovisual group 525 

following exposure to 75 sentences (testing block 5), while Pilling & Thomas observed the same  526 

effect after a similar amount of exposure (76 sentences) during an audiovisual training period. 527 

Nevertheless, we did not predict that the audiovisual benefit to adaptation would only be limited to 528 

the fifth testing block, and this finding could therefore be due to chance.  529 

There are several possible conclusions from our data. First, that providing a specific 530 

audiovisual training period (as in Pilling & Thomas, 2011) is more effective than real-time 531 

adaptation; this may, for example, be due to participants attending more to audiovisual speech cues 532 

during a separate period of training, in comparison to continuous exposure which may result in 533 

lessened attention or fatigue; indeed, the rate of adaptation slowed considerably for our audiovisual 534 

group between the final two testing blocks. Second, the amount of benefit to adaptation gained 535 

from visual speech cues may depend on the type of stimuli, whereby a greater benefit is possible 536 

with simpler and more predictable linguistic items, or from particular speakers (Blackburn et al., 537 

2019). Indeed, using the linguistically more complex IEEE sentences, we observed less improvement 538 

in our audiovisual condition (19%) than with the BKB sentences used by Pilling & Thomas (26%) even 539 

after greater exposure, although this difference could also be explained by the different speakers 540 

used in each study. Lastly, visual speech cues may in fact lead to faster adaptation rather than 541 

greater overall improvement; that is, without visual cues listeners can still adapt equally well but 542 

require more exposure to do so, as was the case for our audio-only group. Our exploratory analyses 543 

of adaptation rate seem to support this, as speech recognition rapidly improved in both groups 544 

initially, but then slowed in the audio-only condition; however, this group difference was small, and 545 

the Bayesian evidence from our data didn’t support a clear difference in adaptation rate. The 546 
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amount of adaptation observed may thus depend on exactly when it is measured, and how much 547 

exposure participants have had to the degraded speech.  548 

Overall, our results indicate that the benefits of visual speech cues to adaptation are not as 549 

great or clearcut as results from previous studies suggest. Instead, the benefits potentially depend 550 

on factors such as the linguistic items used (i.e., the specific linguistic characteristics of the stimuli 551 

such as length, syntactic complexity or semantic predictability), speaker, and amount of exposure, 552 

and the contribution of these factors will need to be confirmed in future studies. The small 553 

advantage to adaptation in the audiovisual group during middle testing blocks suggests that benefits 554 

from visual cues could further be related to participants’ attention or energy levels, whereby visual 555 

cues are particularly beneficial to learning at points where attention and motivation are low – such 556 

as in the middle of a challenging laboratory experiment. The benefits of visual cues in real-life 557 

contexts may thus depend on the type of communication taking place; while these cues do not 558 

necessarily lead to greater adaptation early on, they may be particularly useful in contexts where 559 

longer periods of sustained adaptation are required, for instance, listening to a lecture or when 560 

participating in a longer conversation. The interaction between use of visual speech cues and 561 

attention or fatigue may thus be an interesting line for future research into speech recognition in 562 

adverse listening conditions. Nevertheless, the small audiovisual benefit that we observed during 563 

middle testing blocks could just have been an anomaly – i.e., it could have occurred by chance.  564 

It should be noted that recognition of noise-vocoded sentences (with or without visual cues) 565 

varies considerably between studies. We observed mean performance of 35% accuracy in our audio-566 

only condition, but similar studies have found differing levels of performance. For example, using 4-567 

band noise-vocoding and the IEEE sentences (as in the present study), McGettigan et al., (2014) 568 

observed approximately 40% mean accuracy for recognition of only 10 sentences; however, this was 569 

following exposure to 70 noise-vocoded BKB sentences, perhaps accounting for the higher level of 570 

accuracy than in the present study. In comparison, using 6-band noise-vocoding, Paulus et al. (2020) 571 
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observed approximately 60% accuracy after exposure to 48 IEEE sentences. Using the simpler BKB 572 

sentences, Scott et al., (2006) observed approximately 40% accuracy using 4-band noise-vocoding, 573 

but after exposure to only 16 sentences, while Rosen et al., (1999) observed 64% mean accuracy 574 

after exposure to 112 sentences also vocoded with 4 channels. Thus, recognition of noise-vocoded 575 

speech can vary greatly depending on the amount of exposure, the type of linguistic stimuli, and the 576 

exact vocoding transformation. In the present study, we specifically chose to use the IEEE sentences 577 

and 4-band noise-vocoding to create a more challenging task (and particularly to prevent ceiling 578 

effects in the audiovisual condition). Nevertheless, the intelligibility of our stimuli may also have 579 

been affected by the speaker we used (e.g., Bradlow & Bent, 2008). Indeed, specific acoustic-580 

phonetic features (namely vowel space dispersion and mean energy in mid-range frequencies) can 581 

account for differing levels of intelligibility between speakers for noise-vocoded speech, although 582 

these features do not necessarily impact listeners’ amount of adaptation (Paulus et al., 2020). 583 

Furthermore, the amount of benefit that visual cues can provide also varies between speakers 584 

(Blackburn et al., 2019). As changing speakers can interfere with adaptation (e.g., Dupoux & Green, 585 

1997), we used the same speaker throughout our study. However, we note that a limitation of the 586 

current findings is that we cannot confirm whether mean levels of performance in either condition, 587 

or indeed the benefit that listeners obtained from the speaker’s visual cues, would be the same for 588 

other speakers. 589 

The second aim of our study was to examine patterns of eye gaze during adaptation to 590 

audiovisual degraded speech, and specifically to test whether there is a direct relationship between 591 

eye gaze towards a speaker’s mouth movements and speech recognition. We found that longer 592 

fixations on the speaker’s mouth were related to better recognition, but not to the amount of 593 

adaptation. This supports findings from speechreading (Worster et al., 2018) which found that 594 

longer time spent fixating the speaker’s mouth was related to better speechreading in both deaf and 595 

normal-hearing children. Two previous studies have also directly tested the relationship between 596 

eye gaze patterns and speech recognition (Buchan et al., 2007; Everdell et al., 2007), but found no 597 
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significant relationship. However, methodological differences can potentially account for the 598 

different results reported here. First, audiovisual speech recognition was at ceiling in both studies, 599 

i.e., 86% (Buchan et al., 2007) and 90% (Everdell et al., 2007), compared to 41-61% in the present 600 

study. Second, neither study analysed the duration of fixations (as in the present study), or time 601 

spent fixating the speaker’s mouth (as in Worster et al., 2018). Everdell et al. (2007) analysed an 602 

index of left-right asymmetry of eye gaze on the eyes and mouth, while Buchan et al. (2007) 603 

analysed percentage trials spent looking at the speaker’s mouth, but neither observed correlations 604 

between these measures and speech recognition. Current evidence thus suggests that 605 

measurements of the time spent fixating a speaker’s mouth is indicative of effective use of visual 606 

speech cues, rather than the frequency or proportion of fixations; indeed, we found no correlation 607 

between percentage fixations on the speaker’s mouth and speech recognition, similar to Lansing & 608 

McConkie (2003) who found no relationship between the number of fixations on the mouth and 609 

speechreading. More recently, Lusk & Mitchell (2016) observed a positive relationship between 610 

changes in the amount of eye gaze on a speaker’s mouth during passive listening to an artificial 611 

language, and subsequent segmentation of non-words from this language. However, note that Lusk 612 

& Mitchell’s finding only partially supports the current findings, as the relationship was irrespective 613 

of direction – i.e., the shift could involve looking more or less at the mouth. Thus, to our knowledge, 614 

ours is the first study to observe a direct relationship between looking more at a speaker’s mouth 615 

and audiovisual speech recognition. 616 

The results add to a growing body of literature indicating that patterns of eye gaze – that is, 617 

where and how listeners look at a speaker’s face – are important for successfully understanding 618 

unfamiliar or degraded audiovisual speech. Thus, it is not merely the presence of visual speech cues, 619 

but also the particular visual strategies employed by listeners, that relate to successful speech 620 

recognition. As we compared two measures of eye gaze commonly used in eye tracking studies, we 621 

can further conclude that the duration of fixations on a speaker’s mouth are likely more important 622 

than the proportion of fixations. Longer fixations on the mouth likely reflected a greater focus of 623 
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attention on this region, particularly as visual perception is reduced during eye movements (Matin & 624 

Ethel, 1974). Thus, with longer fixations and less eye movement, listeners could better or more 625 

efficiently decode articulatory cues from a speaker’s mouth, improving recognition. The duration of 626 

fixations on a speaker’s mouth is thus potentially a useful measure when assessing the use or 627 

relevance of visual speech cues. Indeed, longer fixations on a speaker’s mouth have indicated 628 

increased use of visual cues in other studies of adverse listening conditions (Buchan et al., 2007, 629 

2008), although the measure has not previously been related to performance. The importance of 630 

this measure was indirectly supported by our exploratory observation that the duration of fixations 631 

on the speaker’s mouth decreased over time, as performance improved (while no such change was 632 

observed for percentage fixations). This decrease would suggest that participants’ use of visual cues 633 

from the speaker’s mouth decreased as they adapted to the degraded speech.  A similar observation 634 

was made by Lusk & Mitchel (2016) who noted a decrease in overall gaze time on a speaker’s 635 

mouth, but not on the eyes or nose, during a period of familiarisation to an artificial language (i.e., 636 

passive listening/viewing), prior to listeners being tested on non-word recognition. The duration of 637 

fixations on a speaker’s mouth may thus be an important indicator of effective use of visual speech 638 

cues when learning or adapting to unfamiliar speech – for example helping word segmentation 639 

(Mitchel & Weiss, 2014); however, we did not observe a correlation between the duration of 640 

fixations and amount of adaptation.  641 

Another interpretation of our finding is that the decrease in fixation durations indicates 642 

changes in attention or effort. After the period of rapid adaptation between testing blocks 1 and 2, 643 

decoding the noise-vocoded speech perhaps no longer required as much cognitive effort, or 644 

attention, from participants. Listening effort (as measured by relative pupil size) is greater during 645 

perception of noise-vocoded speech compared to undegraded speech in quiet (Paulus et al., 2020); 646 

furthermore, it has been shown to decrease during a period of adaptation to unfamiliar accented 647 

speech (Brown et al., 2020), just as the duration of fixations decreased in our study. An 648 

interpretation of our results related to cognitive effort is compatible with those of Birulés et al. 649 
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(2020), who found that listeners looked more towards a speaker’s mouth (measured as proportion 650 

of total gaze time) during recognition of non-native speech than native, regardless of linguistic 651 

ability; that is, the cognitive demands required to understand non-native speech were consistently 652 

greater – indicated by more time spent looking at the speaker’s mouth (and potentially greater 653 

reliance on visual speech cues). Outside of the speech perception literature, changes in eye gaze 654 

patterns have also been associated with cognitive load; for example, fewer and longer fixations 655 

during scene viewing are observed with greater memory loads (Cronin et al., 2020), again suggesting 656 

that greater cognitive demands can influence patterns of eye gaze. Although the present results 657 

cannot confirm this interpretation of our data, they nonetheless offer an interesting avenue for 658 

future research. 659 

Some limitations to the current findings should be noted. First, the evidence for a 660 

relationship between eye gaze and speech recognition was relatively weak in Bayesian terms. 661 

Exploratory analyses suggested that the relationship was in fact only present in middle testing 662 

blocks, but why this would be the case is unclear; the pattern somewhat matches our observation 663 

that audiovisual cues were most beneficial to adaptation during middle testing blocks, rather than in 664 

early or later blocks, and so could indicate a particular reliance on visual cues during this time. Visual 665 

cues from the speaker’s mouth could potentially serve to compensate for decreasing attention or 666 

motivation, resulting in a stronger relationship between longer fixations and performance during 667 

this period. Nevertheless, the results require further testing. A second limitation is that the result 668 

was correlational, and we therefore cannot ascertain whether longer fixations on the speaker’s 669 

mouth resulted in better recognition, or whether participants who performed better looked more 670 

steadily at the speaker’s mouth. Again, this correlational result would benefit from further testing 671 

whereby particular eye gaze strategies are manipulated to observe the effects on performance. 672 

Finally, we note that using a static face as a control condition for the audio-only condition is less 673 

naturalistic than, for example, providing no visual information at all, and thus does not have an exact 674 

‘real-world’ equivalent (except, perhaps, a frozen screen during a video call). Our motivation in 675 
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including this condition was to equate the procedure for both groups as far as possible, including 676 

visual information and eye tracking in both. However, we are confident that performance in this 677 

condition was not significantly worse than would be expected without a visible static face (for an 678 

online replication see Trotter et al., 2020), and thus that it was a valid comparison for speech 679 

adaptation.          680 

We report several exploratory analyses in the current paper to support interpretation of the 681 

findings, and these are intended as hypothesis-generating observations rather than hypothesis-682 

testing, whereby our aim is to open up further lines of enquiry regarding adaptation to unfamiliar 683 

speech and related patterns of eye gaze. For example, the decrease in the duration of fixations 684 

during adaptation may be further investigated by comparing eye gaze during audiovisual speech 685 

recognition to a control condition with non-informative mouth movements, or compared to 686 

measures of listening effort. Furthermore, differences in the rate of adaptation to unfamiliar speech 687 

with and without visual cues should be investigated in more detail to establish the exact parameters 688 

that determine when visual cues offer a clear benefit to listeners. The analyses and observations 689 

presented here will thus be beneficial to the research fields of audiovisual speech perception and, 690 

more broadly, communication in difficult listening conditions.        691 

Conclusion 692 

We have demonstrated that the benefit of visual speech cues to adaptation to degraded (noise-693 

vocoded) speech is more limited than previously thought – potentially resulting in slightly faster 694 

adaptation only after a period of initial exposure and rapid adaptation, but not resulting in an overall 695 

greater amount of improvement after a longer period of exposure. Longer fixations on the speaker’s 696 

mouth were related to better overall recognition accuracy of the audiovisual speech, adding to a 697 

growing body of evidence that patterns of eye gaze are related to effective use of visual speech 698 

cues. Nevertheless, evidence for this relationship was relatively weak and will need further testing to 699 

be fully confirmed and understood. We further observed that the duration of fixations on the 700 
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speaker’s mouth decreased over time; future research will need to determine the relevance of this 701 

finding, as well as whether particular patterns of eye gaze can intentionally bring benefits to 702 

listeners in adverse listening conditions.   703 

  704 
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