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Cellular/Molecular

Dynamics of Elongation Factor 2 Kinase Regulation in
Cortical Neurons in Response to Synaptic Activity

Justin W. Kenney,1 Oksana Sorokina,2 Maja Genheden,1 Anatoly Sorokin,3 J. Douglas Armstrong,2

and X Christopher G. Proud1

1University of Southampton, Centre for Biological Sciences, Southampton, SO17 1BJ, United Kingdom, 2University of Edinburgh, School of Informatics,
Edinburgh, EH8 9AB, United Kingdom, and 3Institute of Cell Biophysics, Pushchino, 142290, Russia

The rapid regulation of cell signaling in response to calcium in neurons is essential for real-time processing of large amounts of infor-
mation in the brain. A vital regulatory component, and one of the most energy-intensive biochemical processes in cells, is the elongation
phase of mRNA translation, which is controlled by the Ca 2�/CaM-dependent elongation factor 2 kinase (eEF2K). However, little is known
about the dynamics of eEF2K regulation in neurons despite its established role in learning and synaptic plasticity. To explore eEF2K
dynamics in depth, we stimulated synaptic activity in mouse primary cortical neurons. We find that synaptic activity results in a rapid, but
transient, increase in eEF2K activity that is regulated by a combination of AMPA and NMDA-type glutamate receptors and the mitogen-
activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1)
pathways. We then used computational modeling to test the hypothesis that considering Ca 2�-coordinated MEK/ERK, mTORC1, and
eEF2k activation is sufficient to describe the observed eEF2K dynamics. Although such a model could partially fit the empirical findings,
it also suggested that a crucial positive regulator of eEF2K was also necessary. Through additional modeling and empirical evidence, we
demonstrate that AMP kinase (AMPK) is also an important regulator of synaptic activity-driven eEF2K dynamics in neurons. Our
combined modeling and experimental findings provide the first evidence that it is necessary to consider the combined interactions of
Ca 2� with MEK/ERK, mTORC1, and AMPK to adequately explain eEF2K regulation in neurons.
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Introduction
The fast and dynamic regulation of cell signaling cascades by
Ca 2� in neurons is integral for a variety of neurophysiological
processes (Bading, 2013), such as the modulation of the machin-
ery involved in protein synthesis (Costa-Mattioli et al., 2009).
Protein synthesis involves three phases, initiation, elongation,
and termination, with the elongation phase being regulated by
the Ca 2�/calmodulin (CaM)-dependent elongation factor 2 ki-
nase (eEF2K; Kenney et al., 2014), thus making it the step most
directly regulated by Ca 2�. eEF2K phosphorylates eEF2 at T56,

which impairs its ability catalyze ribosomal translocation,
thereby slowing overall rates of elongation (Nairn and Palfrey,
1987; Price et al., 1991). Moreover, eEF2K has been implicated
recently in a variety of neuronal functions, such as synaptic plas-
ticity, learning and memory, cytoprotection, and ischemia (Park
et al., 2008; Im et al., 2009; Gildish et al., 2012; Romero-Ruiz et al.,
2012; Leprivier et al., 2013). Although previous work has found
that stimuli that increase Ca 2� influx in neurons, such as elevated
synaptic activity, can result in an increase in eEF2 phosphoryla-
tion (Lenz and Avruch, 2005; Verpelli et al., 2010; Heise et al.,
2014), the complex dynamics of eEF2K regulation have not been
explored.

In addition to positive regulation by Ca 2�/CaM, a number of
signaling pathways have been found to negatively regulate eEF2K
activity, such as the mammalian target of rapamycin complex 1
(mTORC1) and mitogen-activated protein kinase (MEK)/extra-
cellular signal-regulated kinase (ERK) pathways (Kenney et al.,
2014). In neuronal preparations, the mTORC1 pathway has been
studied extensively as a negative regulator of eEF2K in neurons
(Carroll et al., 2004; Inamura et al., 2005; Weatherill et al., 2011),
whereas the MEK/ERK pathway has received comparatively little
attention (Belelovsky et al., 2005; Kanhema et al., 2006) but has
been studied more thoroughly in non-neuronal preparations
(Wang et al., 2001; Wang and Proud, 2002). Importantly, synap-
tic activity-induced stimulation of mTORC1 and MEK/ERK in
neurons requires Ca 2� influx (Lenz and Avruch, 2005; Wang et
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al., 2007), suggesting that elevated Ca 2� can result in both the
activation and inhibition of eEF2K activity. However, it is not
known whether Ca 2�-orchestrated mTORC1 and MEK/ERK
pathway activation is sufficient to describe the effects of increased
synaptic activity on eEF2K dynamics.

We find that elevating synaptic activity in cortical neurons
results in a rapid and transient increase in eEF2 phosphorylation
that depends on AMPA and NMDA-type glutamate receptors
(GluRs) and a decrease that depends on the MEK/ERK and
mTORC1 pathways. We then used an ordinary differential equa-
tion (ODE) model to test the hypothesis that Ca 2�-coordinated
regulation of eEF2K, MEK/ERK, and mTORC1 would be suffi-
cient to explain the observed eEF2K dynamics. This initial model
captured much of eEF2K dynamics; however, it also indicated
that an additional regulatory element was necessary. We used the
model to predict the activation profile of the missing regulator.
We found that synaptic activity-induced AMP kinase (AMPK)
activation fits the prediction and that AMPK is indeed a positive
regulator of eEF2K in neurons. Overall, we provide the first evi-
dence that synaptic activity-driven eEF2K dynamics in neurons
arises from Ca 2�-coordinated interactions of eEF2K with the
MEK/ERK, mTORC1, and AMPK pathways.

Materials and Methods
Reagents. Neurobasal medium, B27, and L-glutamine were obtained from
Life Technologies. Papain was from Worthington Biochemical. Bovine
serum albumin (BSA), soybean trypsin inhibitor (STI), L-cysteine, D-2-
amino-5-phosphonopetanoic acid (APV), EGTA, nifedepine,
2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX),
�-methyl-(4-carboxyphenyl)glycine (MCPG), and bicuculline were
from Sigma. MycoZap was from Lonza. Rapamycin was from Millipore,
AZD6244 [6-(4-bromo-2-chlorophenylamino)-7-fluoro-N-(2-hy-
droxyethoxy)-3-methyl-3H-benzo[d]imidazole-5-carboxamide] was
from Selleck Chemicals, and A769662 [6,7-dihydro-4-hydroxy-3-(2�-
hydroxy[1,1�-biphenyl]-4-yl)-6-oxo-thieno[2,3-b]pyridine-5-carboni-
trile] was from Tocris Bioscience. The anti-phosphorylated (p) eEF2
(T56) antibody was custom made by Eurogentec. Antibodies for eEF2
(catalog #2332), p-ERK T202/Y204 (catalog #4370), p-ribosomal protein
S6 (p-S6) S240/244 (catalog #2215), p-acetyl-CoA carboxylase (ACC;
catalog #3661), p-AMPK T172 (catalog #2535), and AMPK (catalog
#2532) were purchased from Cell Signaling Technologies; antibodies for
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; catalog #G8795)
and tubulin (catalog #T6199) were from Sigma. The antibody for total S6
was from either Cell Signaling Technologies (catalog #2317) or Santa
Cruz Biotechnology (catalog #sc-74459).

Primary neuronal cell culture. Primary cultures of cortical neurons
were isolated as described previously (Wong et al., 2005). Cortices were
isolated in ice-cold HBSS from P0 or P1 C57BL/6J mice of either sex. All
procedures involving mice were done in accordance with United King-
dom Animals (Scientific Procedures) Act 1986. Tissue was gently minced
and digested in Neurobasal medium containing papain (20 U/mL) and
0.32 mg/mL L-cysteine at 37°C for 20 min, followed by 31°C for an
additional 20 min. Tissue was then washed once in Neurobasal medium
containing 1 mg/mL each of BSA and STI and then incubated at 37°C for
2 min in Neurobasal medium containing 10 mg/mL each of BSA and STI.
The dissociated tissue was then washed once in Neurobasal medium and
triturated with fire-polished glass pipettes. Cells were then washed in
Neurobasal medium and passed through a 40 �m cell strainer, after
which they were plated onto poly-D-lysine-coated culture dishes at high
density (1500 –2000 cells/mm 2). After 1 h, overlying medium was re-
moved and replaced with Neurobasal medium containing 2% B27 sup-
plement, 0.5 mM L-glutamine, and either 100 U/mL penicillin/
streptomycin or 1� MycoZap. One-half of the medium was replaced
with fresh medium every 3– 4 d. Cells were used in experiments at 10 –12
DIV.

Drugs were added to neuronal cultures by diluting into 500 �l of
overlying medium before addition to the culture plate to ensure rapid

and even diffusion. APV (100 �M), nifedepine (5 �M), MCPG (100 �M),
and NBQX (10 �M) were added 20 –30 min before bicuculline (50 �M)
stimulation unless otherwise noted. AZD6244 (10 �M) was added 30 min
and rapamycin (100 nM) and A769662 (100 �M) 60 min before the indi-
cated treatments. EGTA (5 mM) was applied for 10 min.

SDS-PAGE. The overlying medium was removed, and cells were lysed
via addition of 95°C 1� Laemmli’s sample buffer. Cell lysates were vor-
texed vigorously for 10 s and centrifuged for 15 min at 20,000 � g. After
boiling for 5 min, equal amounts of each sample were resolved on 12.5%
polyacrylamide gels and transferred to a nitrocellulose membrane (0.45
�m pore size) via electroblotting. Membranes were blocked in 5% nonfat
dry milk or 2% BSA in either PBS containing 0.1% Tween (PBST) or
Tris-buffered saline containing 0.1% Tween (TBST) at room tempera-
ture for 45 min, washed, and then incubated with primary antibody in
PBST or TBST containing 2% BSA for 1 h at room temperature or over-
night at 4°C. After washing, membranes were incubated with appropriate
secondary antibodies in PBST and 2% BSA and imaged using the LI-COR
Odyssey infrared imaging system.

Statistical analyses. Immunoblot data were quantified using LI-COR
Odyssey software (version 3.0), and experimental treatments were ex-
pressed relative to cells that received no treatment. Data were analyzed
using one-way ANOVAs or two-way ANOVAs as appropriate and fol-
lowed up by Dunnett’s post hoc t tests with untreated neurons as the
comparison group. If only two groups were compared, independent
samples t tests were performed. SPSS version 20.0.0 (IBM) was used for
all statistical analyses.

Modeling. The model was developed in Systems Biology Toolbox 2
(SBTOOLBOX2; version Rev1176, R2012a) for MATLAB (version
7.11.1, R2010) and fitted with simplex and simulated annealing optimi-
zation algorithms from the SBPD package in SBTOOLBOX2 (Schmidt
and Jirstrand, 2006; Banks et al., 2008). Throughout the model, Michaelis–
Menten kinetics was used to describe the enzymatic reactions of phos-
phorylation and dephosphorylation, and the law of mass action was used
to describe protein binding and unbinding. A more detailed account of
the modeling is available as supplemental material.

The model included three conceptual building blocks: (1) an ERK
module, (2) an mTORC1 module, and (3) an eEF2K module. Interac-
tions in the model were built based on known interactions of the different
module components with the MEK/ERK and mTORC1 modules provid-
ing combined inhibitory action on eEF2K with no feedback. We started
by fitting parameters for the frame model (MEK/ERK and mTORC1
modules only) in response to the application of bicuculline. During the
procedure, parameters were allowed to change within biologically plau-
sible ranges provided by literature when available. The frame model was
fitted simultaneously to time series curves for p-ERK and p-S6 kinase 1
(S6K1; p-S6 240/244 data were used as an indicator of S6K1 activity).
After adding eEF2K to the model, the parameters for the MEK/ERK and
mTORC1 modules were not allowed to vary �50% from their initial
values and were fitted again to the same set of experimental data, now
including three readouts (p-ERK, p-S6K1, and p-eEF2). During this sec-
ond fitting, only parameters for eEF2K were allowed to change in the
biologically plausible range. A third round of fitting included the unper-
turbed and perturbed experimental conditions (i.e., with and without
AZD6244 or rapamycin); thus, five experiments were finally fitted simul-
taneously while parameters were allowed to change within 50% of their
previously obtained values.

MEK/ERK submodel. Because the MEK/ERK pathway has been an at-
tractive target for modelers for many years, we made use of an existing
MEK/ERK model from the BioModels Database (identification number
BIOMDB0000000084; Hornberg et al., 2005). We chose this model be-
cause it has a compact pathway that matched the detail used in our overall
model. We modified the original model to explicitly include protein
phosphatase 2A (PP2A)-dependent dephosphorylation of MEK and ERK
based on the fact that PP2A is known act on both this pathway (Alessi et
al., 1995) and eEF2 (Redpath et al., 1993). Although Ca 2�-stimulated
phosphatases, such as calcineurin, would have fit well into our Ca 2�-
coordinated model, calcineurin has limited substrate specificity and is
not known to dephosphorylate any of the components considered in the
model (Li et al., 2011). We also included a competitive mechanism for
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inhibition of MEK by AZD6244 (Huynh et al., 2007). Finally, in the most
recent version of the model, the cascade was updated based on the study
by Caloca et al. (2003) in which we substituted receptor “R” in the Horn-
berg model to Ras activation by RasGRP in response to elevated Ca 2�.

mTORC1 submodel. We did not attempt to describe the overall com-
plexity of the mTORC1 pathway in the model, because there are numer-
ous crosstalking pathways. An overly detailed description would
invariably result in the inclusion of a large number of parameters for
which we lack exact information and reduce biological plausibility of the
model. Given the specific hypothesis under consideration and the exper-
imental data available, we identified key elements in the mechanism that
allowed for an accurate reproduction of experimental data with minimal
details. Thus, mTORC1 was modeled as being activated by elevated
Ca 2�/CaM based on previous findings (Lenz and Avruch, 2005; Gulati et
al., 2008), followed by activation of the complex by phosphorylation. We
also included the activation of mTORC1 by the MEK/ERK pathway and
mTORC1-stimulated activation of S6K1 and suppression of PP2A (Hui
et al., 2005). Inhibition of mTORC1 by rapamycin was modeled as bind-
ing to mTORC1 and preventing its kinase function (Ballou and Lin,
2008).

eEF2K submodel. eEF2K was modeled as being activated by fully occu-
pied Ca 2�/CaM and dephosphorylation of eEF2 and eEF2K as regulated
by PP2A (Redpath et al., 1993). For the inhibition of eEF2K by p-S6K1
and p-ERK, we considered two possible mechanisms: (1) p-ERK and
p-S6K1 phosphorylate the eEF2K/Ca 2�/CaM-bound complex, which
then turns eEF2K to an inactive state; or (2) phosphorylation of eEF2K by
p-ERK and p-S6K1 prevent binding of eEF2K to Ca 2�/CaM. The second
mechanism was unable to reproduce experimental curves, even when the
frame parameters were allowed to change in a wide, biologically plausible
range (data not shown). Thus, we made use of the first mechanism de-
scribed above in building the eEF2K module.

Ca2�/CaM interaction. The temporal profile and shape of the
bicuculline-induced changes in Ca 2� influx were modeled as an event
when intracellular Ca 2� is elevated based on experimental evidence
(Bengtson et al., 2013). Both mTORC1 and eEF2K are modeled as acti-
vated by Ca 2�/CaM complex binding. Initially, we used a one-step stoi-
chiometric reaction for Ca 2�/CaM binding resulting in a shared pool of
Ca 2�/CaM for activation of both pathways. Although this resulted in an
accurate fit of some time series data for the framework model, it was
insufficient when including eEF2K and experiments using AZD6244 and
rapamycin because the mTORC1 and eEF2K systems competed for the
restricted pool of Ca 2�/CaM. Considering that the two lobes of CaM
have distinct Ca 2� affinities (Faas et al., 2011), we used a two-step bind-
ing of Ca 2� to CaM in which half-bound (i.e., two ions per CaM mole-
cule) and fully bound (i.e., four ions) CaM have different interaction
targets. With respect to our model, this means that, at a low concentra-
tion of Ca 2�, the ions would tend to occupy the two high-affinity binding
sites at the C terminus, whereas during continuous bicuculline treat-
ment, the level of intracellular Ca 2� remains high for 60 min, which
allows the full occupation of all four CaM binding sites, including its
low-affinity N-terminal lobes. The modeling suggests that half-bound
CaM preferentially binds mTORC1, whereas fully bound CaM preferen-
tially binds eEF2K.

AMPK pathway. The AMPK subsystem was added to the initial model
to generate a refined model. We used a mechanism in which binding
of Ca 2�/CaM to Ca 2�/CaM-dependent protein kinase kinase-�
(CaMKK�) is followed by AMPK phosphorylation and activation (Haw-
ley et al., 2005; Woods et al., 2005). As in the case of RasGRP, we allowed
both stoichiometric forms of Ca 2�/CaM to contribute to AMPK phos-
phorylation and activation with their own constants. The model was
built such that p-AMPK activates eEF2K via phosphorylation, leading to
increased eEF2 phosphorylation. Activated AMPK is also known to in-
hibit mTORC1, so an appropriate additional inhibitory term was added
to the process describing mTORC1 activation.

Initial conditions. One unique aspect of our fitting approach was in our
treatment of initial conditions. We assumed that, before treatments, cells
were in homeostasis and thus the model has to be in a steady-state con-
dition. In this case, any parameter modifications would change the
steady-state concentrations of the system, and initial concentrations

were adjusted accordingly. To account for this, we modified the source
code of the optimization part of the SBPD package in such a way that, for
each parameter set, first the steady state of the original model was calcu-
lated, and its stationary concentrations were used as initial conditions for
their respective numerical experiments. The modified code is available
on request.

Optimization. To ensure that the parameter set used in the models here
is a global minimum of the optimization process, we used a multi-start
method in which we repeated the fitting procedure of the final model
1000 times using initial parameter sets distributed uniformly over the
entire biologically plausible range. All of these parameter sets resulted in
cost functions at least an order of magnitude worse than our result.
However, this multi-start method is known to have several weaknesses
(Moles et al., 2003). To further test optimization, the 10 best parameter
sets from the multi-start method were chosen as initial points for simu-
lated annealing optimization. Although the result of the simulated an-
nealing tests was considerably better than the multi-start method alone,
no parameter set yielded a cost function better than our results, suggest-
ing that our set of final parameters are likely to be the global minimum.

Sensitivity analysis. We performed global sensitivity analysis to deter-
mine to what degree different modeling parameters contributed to
model behavior. We used partial rank correlation coefficients (Marino et
al., 2008) in the SBPD package with modifications similar to the optimi-
zation protocol (i.e., forcing the algorithm to recalculate the steady state
for each parameter set; modified code is available on request), ensuring
consistency between the fitting and the sensitivity analysis.

Results
Bicuculline-induced eEF2 phosphorylation is rapid
and dynamic
To understand the dynamic regulation of eEF2K phosphoryla-
tion by synaptic activity in cortical neurons, primary neuronal
cultures were stimulated with bicuculline, a GABA receptor an-
tagonist. Bicuculline was chosen as the stimulus because it is
known to increase synaptic activity through disinhibition of en-
dogenous neuronal activity present in cultures, whereas direct
GluR stimulation of nonsynaptic receptors triggers cell death
pathways (Hardingham et al., 2002; Lee et al., 2005; Hardingham
and Bading, 2010). Continuous bicuculline treatment resulted in
a rapid but transient increase in eEF2 phosphorylation that de-
cayed to baseline levels after �20 min of stimulation (Fig. 1A).
Given that eEF2K is known to be regulated by the mTORC1 and
MEK/ERK pathways (Wang et al., 2001; Carroll et al., 2004; Ina-
mura et al., 2005), we also examined the phosphorylation of
ERK1/2 and ribosomal protein S6 at S240/244, readouts of MEK/
ERK and mTORC1 pathways, respectively. We chose the phos-
phorylation of S6 at S240/244 instead of S235/236 as our readout
of the mTORC1 pathway given that S240/244 is specifically reg-
ulated by mTORC1, whereas S235/236 is also regulated via
p90 RSK, which is downstream of ERK (Pende et al., 2004). Con-
tinuous bicuculline treatment resulted in a rapid and sustained
increase in ERK phosphorylation and a slower but sustained in-
crease in S6 phosphorylation in cortical neurons (Fig. 1B,C). The
initial round of model development indicated that the first cou-
ple of minutes of bicuculline administration were the most im-
portant for adequate parameter value determination, so we
repeated the first 10 min of the time course but with the inclusion
of a 30 s time point. This revealed that eEF2, but not ERK, phos-
phorylation was elevated after 30 s of bicuculline stimulation
(Fig. 1E–H).

GluR involvement in the bicuculline-induced increase in
eEF2 phosphorylation
To determine the processes required for the increase of eEF2
phosphorylation during both the initial and sustained increase of
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synaptic activity, we examined GluR involvement both immedi-
ately (1 min) and a short time (10 min) after the administration
of bicuculline. Ten minutes of bicuculline treatment resulted in
an increase in eEF2 phosphorylation that was prevented by the
previous application of the NMDA receptor (NMDAR) antago-
nist APV or the AMPA receptor (AMPAR) antagonist NBQX
(Fig. 2A). Neither the L-type voltage-gated calcium channel (L-
VGCC) antagonist nifedipine nor the metabotropic GluR
(mGluR) antagonist MCPG prevented the bicuculline-induced
increase in eEF2 phosphorylation after 10 min of treatment. We
also examined the receptor dependence of the bicuculline-
induced increase in ERK phosphorylation and found that this
increase is also regulated via NMDA and AMPA-type GluRs (Fig.
2A). Interestingly, after 1 min of bicuculline treatment, the syn-

aptic activity-induced increase in eEF2
phosphorylation was found to be insensi-
tive to the application of either APV or
NBQX alone (Fig. 2B). Furthermore,
combining APV with nifedipine was also
ineffective, but the combined application
of APV, NBQX, and nifedipine was capa-
ble of preventing the bicuculline-induced
increase in eEF2 phosphorylation after 1
min of stimulation, suggesting that the
rapid increase in eEF2 phosphorylation is
dependent on combined ion channel sig-
naling. In contrast, the bicuculline-
induced increase in ERK phosphorylation
after 1 min was sensitive to the blocking of
NMDARs and/or L-VGCCs (Fig. 2B).
These data suggest that, under basal con-
ditions, eEF2K may be very sensitive to
small increases in Ca 2� levels that can oc-
cur independently via NMDARs or
calcium-permeable AMPARs (Fig. 2B).
However, after 10 min of stimulation,
eEF2K activation requires greater Ca2� in-
flux through both NMDARs and AMPARs
(Fig. 2A), suggesting that eEF2K is less active
in response to relatively small increases in
intracellular Ca2�.

To determine whether an influx of
extracellular Ca 2� is necessary for the
bicuculline-induced increase in p-eEF2
and p-ERK, we applied a calcium chelator,
EGTA, immediately before the adminis-
tration of bicuculline for 1 or 10 min.
EGTA resulted in a significant reduction
in the bicuculline-induced increase in
both p-eEF2 and p-ERK (Fig. 2C).

Involvement of mTORC1 and ERK in
the regulation of eEF2K
Increased synaptic activity results in a
rapid initial increase in eEF2 phosphor-
ylation that is followed by decay back to
baseline levels. The decrease in eEF2
phosphorylation back to baseline dur-
ing prolonged bicuculline stimulation
could potentially be attributable to two
factors: (1) a decrease in the levels of
intracellular calcium resulting in de-
creased eEF2K activation or (2) an ac-

tive inhibition of eEF2K by other cell signaling cascades.
To determine whether there are functionally elevated, physi-

ologically active, calcium levels after a prolonged increase in syn-
aptic activity, we observed that ERK phosphorylation remains
elevated after 60 min of bicuculline stimulation and that, at early
time points, the bicuculline-induced increase in ERK phosphor-
ylation is prevented by blocking calcium-permeable NMDARs
and L-VGCCs (Fig. 2). This suggests that elevated levels of cal-
cium influx may maintain the increase in ERK phosphorylation
after 60 min of bicuculline administration, which would indicate
functionally elevated levels of calcium at this time point that
could also activate eEF2K. To test this hypothesis directly, APV
and nifedipine were administered for the last 10 min of 60 min of
bicuculline administration (Fig. 3A), resulting in a reversal of the
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Figure 1. Increasing synaptic activity results in the rapid and dynamic regulation of eEF2 phosphorylation. A–C, The effect of
continuous bicuculline administration on p-eEF2, p-ERK, and p-S6 (240/244). One-way ANOVAs revealed effects of stimulation on
p-eEF2 (F(7,27) � 21.1, p � 0.001), p-ERK (F(7,27) � 33.1, p � 0.001), and p-S6 (F(7,27) � 17.4, p � 0.001); n � 4 –5. D,
Representative Western blots for A–C. E–G, Replication of the effect of continuous bicuculline administration on p-eEF2, p-ERK,
and p-S6 (240/244) over 10 min including a 30 s time point. One-way ANOVAs revealed effects of stimulation time on p-eEF2 (F(4,23) �
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bicuculline-induced increase in ERK phosphorylation (Fig. 3B).
Furthermore, chelating extracellular calcium via EGTA adminis-
tration during the last 10 min of a 60 min application of bicucul-
line also reversed the increase in ERK phosphorylation (Fig. 3C).
These data suggest that functionally elevated levels of calcium are
present after 60 min of bicuculline administration and that the
decrease in eEF2 phosphorylation at this time point is most likely
attributable to an active inhibition of eEF2K activity by other
signaling pathways and not a decrease in intracellular Ca 2�.

Both the mTORC1 and MEK/ERK pathways are known to be
negative regulators of eEF2K activity (Wang et al., 2001; Carroll et
al., 2004; Inamura et al., 2005), and both pathways are stimulated
in response to bicuculline administration in cortical neurons
(Fig. 1). To determine whether these signaling pathways are in-
volved in returning eEF2K activity to baseline levels during pro-
longed bicuculline administration, either an MEK inhibitor
(AZD6244) or an mTORC1 inhibitor (rapamycin) was adminis-
tered before 20 or 60 min of bicuculline administration. Inhibi-
tion of either mTORC1 or MEK/ERK prevented the decrease in
eEF2 phosphorylation after 60 min of bicuculline-stimulated
synaptic activity (Fig. 3D). Furthermore, administration of
AZD6244 alone resulted in a trend toward an increase in eEF2
phosphorylation, whereas rapamycin alone was without effect.
This suggests that, at both basal and elevated levels of synaptic
activity, the MEK/ERK pathway maintains tight regulation of
eEF2K, whereas the mTORC1 pathway is only important during
prolonged synaptic activity in cortical neurons. We also exam-
ined the regulation of S6 and ERK phosphorylation in this exper-
iment and found that, although rapamycin had no effect on ERK
phosphorylation (Fig. 3E), AZD6244 administration resulted in a
modest inhibition of S6 phosphorylation (Fig. 3F). This suggests
that the mTORC1 pathway is downstream of the MEK/ERK
pathway in cortical neurons, as has been reported previously in
some cell types, such as hippocampal neurons, but not others
(Kelleher et al., 2004; Roux et al., 2004; Ma et al., 2005; Fonseca et
al., 2011).

Development of a kinetic model for the regulation of eEF2K
To test the hypothesis that Ca 2�-coordinated MEK/ERK,
mTORC1, and eEF2K regulation is sufficient to describe the ob-
served eEF2K dynamics, we developed a kinetic model (Fig. 4).
We restricted our initial model to major regulatory components
with the aim of determining whether their known interactions
would be sufficient to reproduce the empirical observations. We
built the ordinary differential equation model based on current
knowledge about the structure of MEK/ERK, mTORC1, and
eEF2K interactions and their regulation by intracellular Ca 2�

influx (Fig. 4, colored squares). The initial model had three mod-
ules: (1) an MEK/ERK module (Fig. 4, red), the core of which was
adopted from Hornberg et al. (2005) as presented in the BioMod-
els Database; the model of Hornberg et al. was modified by the
inclusion of PP2A as an explicit enzyme for MEK dephosphory-
lation (Alessi et al., 1995) and receptor activation at the top of the
cascade, which was modeled as direct Ca 2�/CaM-dependent Ras
protein activation by the GDP/GTP exchange factor RasGRP
(Caloca et al., 2003); (2) a module for mTORC1/S6K1 phosphor-
ylation based on the mechanism described by Lenz and Avruch
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Figure 2. Elevated synaptic activity increased eEF2 phosphorylation via ionotropic recep-
tors. A, B, The effects of pretreating neurons with receptor inhibitors before bicuculline (Bic)
stimulation for 10 (A) or 1 (B) min on p-eEF2 and p-ERK with representative Western blots
below the graphs. One-way ANOVAs revealed effects of treatment at both 10 min (p-eEF2,
F(7,34)�3.5, p�0.001;p-ERK,F(7,34)�7.4, p�0.001; n�4 –7)and1min(p-eEF2,F(7,41)�9.6,
p � 0.001; p-ERK, F(7,41) � 8.7, p � 0.001; n � 4 – 8). C, The effect of administering EGTA
immediately before bicuculline stimulation on p-eEF2 and p-ERK with representative Western
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4

p-ERK, F(1,14) � 14.0, p � 0.002) and 10 min of bicuculline administration and EGTA (p-eEF2,
F(1,14) � 5.2, p � 0.039; p-ERK, F(1,14) � 41.7, p � 0.001); n � 2– 4. Data represent mean 	
SEM; *p � 0.05 compared with untreated neurons (NT), p̂ � 0.05.

3038 • J. Neurosci., February 18, 2015 • 35(7):3034 –3047 Kenney et al. • Regulation of eEF2K in Neurons



(2005) and Gulati et al. (2008), in which Ca 2�/CaM formation
results in mTORC1 activation (Fig. 4, brown); and (3) an eEF2K
module in which all inputs and crosstalks converge to control the
regulation of eEF2K-catalyzed eEF2 phosphorylation (Fig. 4,
dark green).

To build the model, we assembled the modules in the follow-
ing way. (1) Both p-ERK and p-S6K1 inhibit eEF2K in response
to intracellular Ca 2� influx. p-ERK is a result of stimulation of
the Ras/Raf/MEK pathway, and the phosphorylation of S6K1 is
mediated by activation of mTORC1 by Ca 2�/CaM (Hornberg et

al., 2005; Lenz and Avruch, 2005; Gulati et
al., 2008). (2) p-ERK also stimulates the
mTORC1 pathway, resulting in phos-
phorylation of S6K1 (based on Fig. 4C and
Kelleher et al., 2004; Fonseca et al., 2011).
(3) Dephosphorylation in the model is
regulated mainly via PP2A, which in turn
is a substrate for inhibition by activated
mTORC1 (Narayanan et al., 2007). (4)
eEF2K is activated by an increase in intra-
cellular Ca 2� via its interaction with
Ca 2�/CaM (Ryazanov et al., 1988). (5) In
the model, eEF2K is phosphorylated by
ERK and S6K1, which leads to an inacti-
vation of Ca 2�/CaM-bound eEF2K
(Wang et al., 2001). We also considered an
alternative mechanism for the inactiva-
tion of eEF2K by ERK and S6K1 in which
phosphorylation of eEF2K by these ki-
nases results in decreased affinity of
eEF2K for Ca 2�/CaM. However, the
model was unable to reproduce the exper-
imental data under this assumption, so we
built the model assuming that phosphor-
ylation of eEF2K results in an inactivation
of the kinase with no effect on Ca 2�/CaM
binding. Several simplifying assump-
tions were made for modeling purposes.
As a result, known biochemical interac-
tions were not explicitly modeled but
are subsumed in specific parameters.
For example, the activation of p90 RSK by
ERK that then directly phosphorylates
eEF2K (Wang et al., 2001) is not explic-
itly included. Rather, it is represented
by parameters describing ERK/eEF2K
interactions.

To directly test the hypothesis that the
observed MEK/ERK and mTORC1 acti-
vation profiles would be sufficient to ex-
plain the dynamic nature of eEF2K
regulation in neurons, the parameters for
the ERK and mTORC1 modules were ini-
tially set by fitting to the empirical data
(Fig. 5A). Only after these parameters
were set was an attempt made at fitting the
model to the eEF2 phosphorylation data.
The model was fit to time series curves
from five experiments [long- and short-
term bicuculline (Fig. 1) and bicuculline
with and without inhibitors (Fig. 3)]. A
combination of local and global optimiza-
tion algorithms were used for the fitting

process (for details, see Materials and Methods).
The model successfully reproduced the behavior of ERK and

S6 phosphorylation over the entire experimental time course and
was mostly able to capture eEF2 phosphorylation dynamics (Fig.
5B). However, our initial model was unable to describe to the
same level of accuracy the effects of inhibiting the MEK/ERK and
mTORC1 pathways. Inclusion of differential binding of Ca 2�/
CaM to different interacting partners based on the level of occu-
pancy of CaM by Ca 2� (Faas et al., 2011; for details, see Materials
and Methods) resulted in a better fit to the combined bicuculline
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p-S6 (F(4,37) � 4.9, p � 0.003); n � 5–7. G, Representative Western blots for data presented in D–F. Data represent mean 	
SEM; *p � 0.05, †p � 0.10 compared with untreated neurons (NT).
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and AZD6244 or rapamycin and reduced the value for a least-
squares fit cost function for p-ERK, p-S6, and p-eEF2 by 60%
(Fig. 5C,D).

Involvement of AMPK in the regulation of eEF2K
Our computational model demonstrated that the combined ac-
tivity of the MEK/ERK and mTORC1 pathways is sufficient to
explain the short-term dynamics of eEF2K regulation in response
to elevated synaptic activity (10 –20 min after bicuculline admin-
istration (Fig. 5B). However, the longer-term dynamics (i.e., at
40 – 60 min) were not fully captured, because the model predicted
significantly lower levels of eEF2 phosphorylation than was ob-
served experimentally (Fig. 5B). Intuitively, this could be inter-
preted as though an additional positive regulator of eEF2K, with
sustained activity up to 60 min, was lacking from the model.
Thus, we considered two known positive regulators of eEF2K: (1)
protein kinase A (PKA) and (2) AMPK (Redpath and Proud,
1993; Horman et al., 2003; Browne et al., 2004). Previous work
has found that cAMP, a key upstream effector of PKA, does not
increase in response to bicuculline, membrane depolarization, or
glutamate application in neurons (Pokorska et al., 2003), whereas
AMPK is known to be activated by CaMKK� (Hawley et al., 2005;
Woods et al., 2005). Therefore, we focused on AMPK as the miss-
ing positive regulator.

The model was extended to include a fourth module that de-
scribes AMPK activation in response to elevated intracellular
Ca 2� that results in additional activation of eEF2K (Fig. 1, or-
ange). In addition, we also incorporated the negative regulation
of mTORC1 by AMPK (Inoki et al., 2003; Kimura et al., 2003).
The now updated model was again fitted to the same set of exper-
imental data as before, but this time only the AMPK and eEF2-
related parameters were free to change while the rest of the
parameters remained constrained. As expected, the addition of
AMPK in the model substantially improved model performance.
The four-pathway model resulted in an excellent fit of eEF2 phos-
phorylation after 40 – 60 min of bicuculline stimulation without
loss of fitting ERK and S6 phosphorylation (Fig. 6A).

We tested experimentally whether bicuculline-induced syn-
aptic activity results in increased AMPK activity via Ca 2� influx
and whether it influences eEF2K activity. Bicuculline administra-
tion resulted in a rapid and sustained increase in the phosphory-
lation of both AMPK (T172) and ACC, a well defined AMPK
substrate (Fig. 6B–D). Furthermore, the observed activation pro-
file of AMPK was qualitatively very similar to that predicted by
the mathematical model (Fig. 6E). To determine whether AMPK
activation alone is sufficient to stimulate eEF2K, we used
A769662, a selective activator of AMPK (Cool et al., 2006; Guigas
et al., 2009). A769662 resulted in an increase in both ACC and
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eEF2 phosphorylation (Fig. 6F,G). A769662 did not alter AMPK
phosphorylation, consistent with A769662 being an allosteric
modulator of AMPK (Göransson et al., 2007; Sanders et al.,
2007), but did result in a decrease in S6 phosphorylation, con-
sistent with AMPK negatively regulating mTORC1 (Inoki et
al., 2003; Kimura et al., 2003). However, it is unlikely that the
effect of A769662 on mTORC1 is responsible for the increase
in eEF2 phosphorylation given that rapamycin administration
alone, which results in a greater decrease in S6 phosphoryla-
tion than A769662, did not affect eEF2 phosphorylation (Fig.
4B). Finally, APV and nifedipine were applied during the last
10 min of a 60 min period of bicuculline stimulation (Fig. 3A).
This reversed the synaptic activity-induced increase in both
AMPK and ACC phosphorylation (Fig. 6H–J ), indicating that
AMPK is regulated by Ca 2� influx through NMDARs and
L-VGCCs in response to elevated synaptic activity in neurons.

Comparison of models with and without AMPK
To further validate the inclusion of AMPK into the model, we
sought a means to directly compare predictions from models
with and without AMPK. In particular, we were interested in
predictions based on conditions in which experimental data had
not been obtained previously and used for model fitting. We
noted that our initial model without AMPK predicted a higher
level of eEF2 phosphorylation after 1 min of bicuculline admin-

istration in the presence of either rapamycin or AZD6244 com-
pared with bicuculline alone (Fig. 5, compare B with C,D). We
then generated a prediction under the same conditions using the
model that includes AMPK. The inclusion of AMPK resulted in a
substantially lower prediction for the levels of bicuculline-
induced eEF2 phosphorylation in the presence of either rapamy-
cin or AZD6244 (Fig. 7A). We tested these two contrasting
predictions experimentally and found that 1 min of bicuculline
administration in the presence of either rapamycin or AZD6244
results in only a very modest increase in eEF2 phosphorylation
over bicuculline alone (Fig. 7B). Furthermore, a comparison of
the predictions of the two models (with and without AMPK) with
the experimental data indicated that the model that includes
AMPK results in a much closer match to the empirical findings
(Fig. 7C).

To determine why the model that included AMPK resulted in
a lower relative increase of p-eEF2 after bicuculline administra-
tion in the presence of AZD6244 or rapamycin than the model
that did not include AMPK, we more closely examined the values
for p-eEF2 during the steady state and in response to bicuculline
in the two models. We found that the discrepancy between the
two models was primarily attributable to differences in baseline
levels of p-eEF2. The model that included AMPK had higher
basal concentrations of p-eEF2 than the model without AMPK
(4.0 vs 0.7 nM). After 1 min of bicuculline administration in the

A B

0 30 60 80 100 120

1

2

3

4

5

6

7

Time (min)

Fo
ld

 N
T

 

p-ERK
p-S6K1

Bicuculline

p-eEF2

p-ERK
p-S6K1

p-eEF2

0 30 60 80 100 120

1

2

3

4

5

6

7

8

Time (min)

Fo
ld

 N
T

 

Rapamycin
Bicuculline

p-ERK
p-S6K1

p-eEF2

0 30 60 80 100 120

1

2

3

4

5

6

7

Time (min)

Fo
ld

 N
T

 

AZD6244
Bicuculline

ERK

eEF2K

mTORC1

Data

Fit model to data

Set ERK & mTORC1
parameters

Set eEF2k 
parameters

Data

Fit model to data

C D

Figure 5. Simulations of experimental data using kinetic modeling. Solid lines correspond to the outcomes of modeling, and dashed lines correspond to experimental data. Line colors correspond
to respective modules outlined in Figure 4. A, Workflow of the model development. ERK and mTORC1 modules were initially fit to experimental data, after which the eEF2K module was then
attempted to be fit to the eEF2 phosphorylation data. B, Simulation of bicuculline application along with experimental data from Figure 1. Bicuculline is added at 60 min (arrow). C, Simulation of
rapamycin treatment before bicuculline administration (data from Fig. 4). Rapamycin is added at time 0, and bicuculline is added at 60 min (arrows). D, Simulation of AZD6244 treatment before
bicuculline administration (data from Fig. 4). AZD6244 was added at 30 min and bicuculline at 60 min (arrows). NT, Not treated.

Kenney et al. • Regulation of eEF2K in Neurons J. Neurosci., February 18, 2015 • 35(7):3034 –3047 • 3041



0 30 60 80 100 120

1

2

3

4

5

6

Time (min)

Time (min)

Time (min)

Fo
ld

 N
T

 

Bicuculline

p-ERK
p-S6K1

p-eEF2

1

2

NT 10 20 30 40 50 60

1

2

NT 10 20 30 40 50 60

p-
A

M
P

K
 (F

ol
d 

N
T)

p-
A

C
C

 (F
ol

d 
N

T)

*
*

*
* * * *

*

*
* *

*†

0 1 2 5 10 20 40 60Min

Bicuculline

p-AMPK

p-ACC

GAPDH
AMPK

p-
A

M
P

K

1

2

NT A769662

p-
E

R
K

1

2

NT A769662

1

2

NT A769662

p-
eE

F2

*

p-
A

C
C

1

2

NT A769662

*

p-
S

6 1

NT A769662

*

p-eEF2 p-ERK

p-S6
S6

Tubulin

eEF2
p-AMPK
p-ACC
AMPK

A7
69

66
2

NT A7
69

66
2

NT

2

1

Bic
APV & Nif

+ +––
– ++–

p-
A

M
P

K
 (F

ol
d 

N
T) *

3

2

1

+ +––
– ++–

p-
A

C
C

 (F
ol

d 
N

T) *

p-AMPK
p-ACC

GAPDH
AMPK

Bic
APV & Nif

+ +––
– ++–

A F

H I

B

C

D

E

Bicuculline

J

G

30 60 80 100 120
0

1

2

Time (min)

Fo
ld 

NT

 

Figure 6. Modeling and experimental evidence implicate AMPK regulation of eEF2K in cortical neurons. A, Simulation of bicuculline administration in cortical neurons (solid lines)
compared with experimental data (dashed lines) with the inclusion of AMPK in the kinetic model. B, C, The effect of continuous bicuculline administration on p-AMPK (T172) and p-ACC.
One-way ANOVAs revealed effects of stimulation on p-AMPK (F(7,61) � 4.7, p � 0.001) and p-ACC (F(7,62) � 4.7, p � 0.001); n � 8 –9. D, Representative Western blots for data presented
in B and C. E, Comparison of model prediction of p-AMPK (solid line) with experimental data (dashed line). F, The effect of 100 �M A769662 administered for 60 min to cortical neurons
on p-eEF2, p-AMPK, p-ACC, p-S6 (S240/244), and p-ERK. A769662 resulted in an increase in p-eEF2 (t(10) � 3.0, p � 0.012) and p-ACC (t(10) � 3.1, p � 0.011) and a decrease in p-S6
(t(10) � 6.8, p � 0.001) and had no effect on p-AMPK (t(10) � 1.1, p � 0.31) or p-ERK (t(10) � 1.1, p � 0.30); n � 6. G, Representative Western blots for data presented in F. H, I, The
effects of administering APV and nifedipine (Nif) during the last 10 min of a 60 min bicuculline (Bic) stimulation (Fig. 3A) on p-AMPK and p-ACC. The 2 � 2 ANOVAs revealed a main effect
of bicuculline treatment on both p-AMPK (F(1,12) � 10.6, p � 0.007) and p-ACC (F(1,12) � 6.9, p � 0.02), a main effect of APV and nifedipine on p-AMPK (F(1,12) � 19.1, p � 0.001),
a trend toward an effect on p-ACC (F(1,12) � 3.7, p � 0.077), a trend toward an interaction on p-AMPK (F(1,12) � 3.2, p � 0.099), and no interaction for p-ACC (F(1,12) � 1.4, p � 0.27);
n � 4. J, Representative Western blots for data presented in H and I. Data represent mean 	 SEM; *p � 0.05, †p � 0.10 compared with untreated neurons (NT).
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presence of, for example, rapamycin, the model with AMPK pre-
dicted an increase in p-eEF2 to a concentration of 20 nM, whereas
without AMPK the model predicted 5.5 nM. Thus, as would be
expected, the model including AMPK resulted in higher absolute
concentrations of p-eEF2 but lower relative increases after bicu-
culline stimulation in the presence of AZD6244 or rapamycin
(Fig. 7C).

Sensitivity analysis
We performed sensitivity analysis of our final model to determine
which pathways made the greatest contribution to the regulation
of p-eEF2 (see Notes). We found that, although both the MEK/
ERK and mTORC1 pathways significantly contribute to the levels
of p-eEF2, the parameters with the largest influence arose from
the AMPK pathway. This is consistent with our experimental data
in which we find that inhibiting the MEK/ERK or mTORC1 path-
ways in the absence of bicuculline has modest effects on p-eEF2
(Fig. 3D), whereas activating AMPK alone is sufficient to increase
p-eEF2 (Fig. 6F).

Discussion
We find that synaptic activity-induced eEF2K regulation in pri-
mary neurons is both rapid and dynamic. The regulation of
eEF2K depends on Ca 2� influx through ion channels/receptors
and the Ca 2� coordinated regulation of various cell signaling
pathways. We used a data-driven mechanistic model to test the
hypothesis that Ca 2�-coordinated mTORC1 and MEK/ERK reg-

ulation could explain the observed eEF2K dynamics. Initial dis-
crepancies and additional iterations between modeling and
experimental work found that AMPK is also a key determinant of
synaptic activity-induced eEF2K signaling in neurons.

The use of primary neuronal cell cultures to examine the in-
tricacies of cell signaling in the present study has both strengths
and weaknesses. Whereas the vast majority of biochemical stud-
ies of eEF2K, mTORC1, MEK/ERK, and AMPK are performed in
cancer cell lines with stimuli that may have only tangential rele-
vance to neuronal signaling, primary neuronal cultures provide
direct access to an untransformed, mostly homogenous popula-
tion of neurons and the use of neuronally relevant stimuli. How-
ever, given that the brain is actually a heterogeneous mixture of
many cell types and contains well defined circuitry that is unlike
the stochastic connectivity of neurons in culture, care must be
taken when interpreting results from neuronal cultures in the
context of whole-brain function. Nonetheless, the findings from
the present study may shed light on some of the complex findings
regarding the regulation of eEF2K in the brain and neurons. For
example, after the acquisition of a conditioned taste aversion
learning task in mice, there is an increase in eEF2 phosphoryla-
tion in the gustatory cortex (Belelovsky et al., 2005; Gildish et al.,
2012). In contrast, after the acquisition of contextual fear condition-
ing, there is a decrease in eEF2 phosphorylation in the hippocampus
(Im et al., 2009). In addition, differential compartmental regula-
tion of eEF2K has been found in Aplysia sensory neurons in
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Figure 7. Including AMPK in the model results in a more accurate prediction of short-term bicuculline-induced eEF2 phosphorylation in the presence of rapamycin or AZD6244. A, Comparison of
model predictions for levels of p-eEF2 after 1 min of bicuculline (Bic) administration in the presence of AZD6244 or rapamycin. Model 1 corresponds to the initial model (Fig. 5), and model 2
corresponds to the model with the inclusion of AMPK (Fig. 6). B, The effect of stimulating neurons with bicuculline for 1 min in the presence or absence of AZD6244 or rapamycin on p-eEF2 with
representative Western blots shown below. A 2 � 3 (bicuculline � inhibitor) ANOVA revealed a main effect of bicuculline (F(1,65) � 115, p � 0.001) but no main effect of inhibitor (F(2,65) � 1, p �
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which 5-HT application results in a decrease in eEF2 phos-
phorylation in neurites but an increase at the soma (Carroll et
al., 2004; Weatherill et al., 2011), and the application of BDNF
to primary neurons results in a decrease in eEF2 phosphory-
lation (Takei et al., 2009) but BDNF applied to the dentate
gyrus in vivo results in increased eEF2 phosphorylation (Kan-
hema et al., 2006). Finally, eEF2K activity at the synapse has
been found to decrease after evoked synaptic transmissions
but to increase as a result of spontaneous transmission (Sutton
et al., 2007). Our finding that considering only mTORC1 and
MEK/ERK signaling was insufficient to describe eEF2K dy-
namics suggests a possible explanation for many of these dis-
parate findings. Indeed, most studies examining the
regulation of eEF2K in neuronal preparations have focused on
the role of the mTORC1 signaling pathway (Carroll et al.,
2004; Inamura et al., 2005; Weatherill et al., 2011) with scant
attention paid to the MEK/ERK pathway (Belelovsky et al.,
2005; Kanhema et al., 2006) and none to AMPK. Although our
findings make use of whole-cell lysates, in which �95% is
thought to be nonsynaptic in origin (Chang et al., 2012), our
data suggest that an examination of all three of these pathways
in the various preparations is required to adequately assess
eEF2K dynamics. Doing so will likely help explain the appar-
ent differences in eEF2K regulation across different compart-
ments, brain regions, and neuronal preparations.

The rapid regulation of eEF2K by elevated synaptic activity
that we have examined and modeled provides a framework for
a deeper understanding of some of the mechanisms involved
in a variety of synaptic activity-related phenomena, such as
learning and memory, synaptic plasticity, and neuroprotec-
tion. The rapid bicuculline-induced increase in eEF2K activity
in cortical neurons in the present study was found to depend
on NMDA and AMPA-type GluRs, mechanisms known to be
necessary for both memory acquisition and the induction of
long-term potentiation (Abel and Lattal, 2001). Furthermore,
the involvement of the MEK/ERK and mTORC1 pathways in
learning and synaptic plasticity are well documented (Kelleher
et al., 2004; Sweatt, 2004; Costa-Mattioli et al., 2009), and,
more recently, the AMPK pathway has been implicated in both
synaptic plasticity (Potter et al., 2010) and learning (Dagon et
al., 2005; Dash et al., 2006). This suggests that that eEF2K may
be an important downstream effector of these pathways in the
context of learning. The administration of bicuculline to pri-
mary neurons for considerably longer periods than examined
here also results in a modest mGluR-dependent increase in
eEF2 phosphorylation (Verpelli et al., 2010), a mechanism
important for the induction of long-term depression (Park et
al., 2008). This longer-term bicuculline administration more
closely models homeostatic plasticity (Desai, 2003), thereby
suggesting that eEF2K may be involved in multiple forms of
plasticity. Finally, bicuculline-induced synaptic activity is also
known to be neuroprotective (Hardingham et al., 2002; Lee et
al., 2005). AMPK presents an intriguing target for understand-
ing bicuculline-induced neuroprotection given that it is not
only stimulated by Ca 2� but is also a key sensor of energy/ATP
in the cell that makes significant contributions to phenomena
such as ischemia (Ronnett et al., 2009). Given that eEF2K
regulates one of the most energy-consuming processes in cells
and is important for cell survival in non-neuronal cells (Terai
et al., 2005; Leprivier et al., 2013), there may be interesting and
complex relationships between Ca 2� influx, ATP, AMPK, and
eEF2K in regulating neuroprotection that requires additional
study.

The cell signaling network in neurons is large, complex, and
incompletely understood. Although formal mathematical
models are a powerful approach for testing specific hypotheses
about whether a given set of molecular interactions is suffi-
cient to explain empirical findings, such models require a del-
icate balance between including too many and too few
parameters (Di Ventura et al., 2006). In addition, there is little
information regarding the specific concentrations of proteins
and dissociation constants for model development, making it
imperative to minimize the parameter space explored while
simultaneously ensuring that the appropriate network of in-
teractions is maintained. Inclusion of more parameters than
necessary to describe a particular network structure can lead
to overfitting and a loss of biological plausibility. In the pres-
ent study, we circumvented some of these issues by focusing
on pathways in which we had high-quality data and carefully
designed our model to test a specific hypothesis, i.e., can we
explain eEF2K dynamics given the activation profiles of the
mTORC1 and MEK/ERK pathways? By initially fitting the
mTORC1 and MEK/ERK modules of the model to the p-S6
and p-ERK data and only then attempting to fit the eEF2K
module to the p-eEF2 data (Fig. 5A), we directly tested this
hypothesis. Although the initial model only incompletely fit
the eEF2 phosphorylation data, it did yield a strikingly accu-
rate prediction of AMPK activation in response to bicuculline
(Fig. 6E). This approach also resulted in realistic estimates of
[Ca 2�]. Fitting Ca 2�-related parameters to the experimental
data resulted in a value for resting-state [Ca 2�] of 59 nM and a
bicuculline-induced peak of 54 �M, both of which are in line
with empirical observations (Petrozzino et al., 1995; Maravall
et al., 2000). Furthermore, the model including AMPK accu-
rately predicted eEF2 phosphorylation levels under conditions
in which the model was never fit to experimental data (Fig. 7).
Together, these findings support the contention that our
model accurately captures the major features of the signaling
dynamics involved in eEF2K regulation.

Our ODE model clearly captures a high proportion of eEF2K
regulatory dynamics with demonstrated predictive validity, mak-
ing it useful for additional hypothesis generation and experimen-
tal testing. For example, whereas the inhibitory inputs into eEF2K
from the MEK/ERK and mTORC1 pathways were modeled as
phosphorylation events that inactivate eEF2K, the details of this
mechanism require additional exploration. We tested, in silico,
the two most obvious and simple mechanisms of inactivation and
found that phosphorylation-induced inhibition of active Ca 2�/
CaM-bound eEF2K fits the experimental data better than a
mechanism in which phosphorylation of eEF2K prevents its
binding to Ca 2�/CaM. Nonetheless, there are additional ele-
ments that should be considered for the future development of a
more complex model. For example, eEF2K has been reported
recently to be controlled by cyclin-dependent kinase-2 (Hizli et
al., 2013) and undergoes significant regulatory autophosphory-
lation (Pyr Dit Ruys et al., 2012; Tavares et al., 2012). Additional
iterations between modeling and experiments would deter-
mine what role these events and others may play in eEF2K
dynamics, leading to a more sophisticated and nuanced un-
derstanding of the mechanisms underlying eEF2K regulation
in various conditions.

Taken together, the experimental data and modeling in the
present study provide the first in-depth examination of the dy-
namics of eEF2K regulation. Although previous work studying
eEF2K in neurons focused primarily on its regulation by

3044 • J. Neurosci., February 18, 2015 • 35(7):3034 –3047 Kenney et al. • Regulation of eEF2K in Neurons



mTORC1 with some consideration of MEK/ERK, our combined
data and modeling suggest that such an approach is inadequate
for understanding eEF2K regulatory dynamics: AMPK also
makes a substantial contribution of eEF2K regulation in both the
short and intermediate terms. Continuing refinement of the model
and better understanding of the control of eEF2K will provide in-
sights into diverse eEF2K-regulated processes, such as learning and
memory, ischemia, and cell survival (Gal-Ben-Ari et al., 2012;
Romero-Ruiz et al., 2012; Leprivier et al., 2013).

Notes
Supplemental material for this article is available at http://www.inf.ed.ac.
uk/~jda/eEF2k. It includes the following: (1) a supplemental file describ-
ing the model in greater detail, including all equations in the model, a
detailed process diagram of model, and details of the sensitivity analysis
and figures; (2) a table of the model parameters; and (3) the model in
SBML format. This material has not been peer reviewed.
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