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ABSTRACT

The study of the large-scale structure of the Universe is an integral part of modern cosmo-
logy, which is entering a golden era with the arrival of new generations of ambitious cosmo-
logical surveys. This thesis examines different cross-sections of the interface where theoretical
predictions are confronted with observational measurements, and proposes a number of novel
methodologies that can improve the constraints of cosmological models from the large-scale
clustering of galaxies tracing the underlying matter distribution:

1) a hybrid-basis Fourier analysis approach, which balances the accuracy required formod-
elling the anisotropic galaxy distribution in wide and deep surveys against the computational
cost of processing an unprecedented amount of cosmological data;

2) forwardmodelling frommeasurements of the tracer luminosity function to constraints
on the amplitude of relativistic corrections, which can give rise to scale-dependent modifica-
tions to clustering statistics on scales close to the Hubble horizon;

3) statistical techniques within the existing survey analysis framework to mitigate the im-
pact on cosmological inference fromnon-Gaussian likelihoods and the parameter dependence
of covariance matrices.

A special focus in designing these new techniques for galaxy clustering analysis is the detec-
tion of local primordial non-Gaussianity 𝑓NL, which parametrises initial conditions of struc-
ture formation as set by inflationary models and imprints a scale-dependent signature in the
bias of tracers on very large scales. These new approaches to analysing large-scale structure ob-
servations are also broadly applicable to constraining other standard cosmological parameters
and should be particularly beneficial to forthcoming galaxy surveys such as the Dark Energy
Spectroscopic Instrument and the Euclid mission, the scientific objectives of which include
drastically tighter bounds on primordial non-Gaussianity as well as the test of gravitational
theories on cosmological scales.





“ I design to speak of the Physical, Metaphysical and Mathematical—of the
Material and SpiritualUniverse:—of its Essence, its Origin, its Creation, its

Present Condition and its Destiny. I shall be so rash, moreover, as to challenge the
conclusions, and thus, in effect, to question the sagacity, of many of the greatest and
most justly reverenced of men.

”
Edgar Allan Poe, Eureka: A Prose Poem
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Notations

This is an exhaustive list of notations appearing in this thesis, most of which have broadly con-
sistent usage in the literature; however, universalmathematical notations and notations locally
defined, such as placeholder variables, may not be included. Note that the bullet point ‘•’ is
a placeholder for a generic quantity, and a caron ‘ˇ’ (not to be confused with a breve ‘˘’) is
sometimes used to denote a transformed quantity. Some symbols may have more than one
usage, which can be inferred unambiguously from the context.

〈•〉 (angle brackets/delimited Guillemets for) ensemble expectation
•̆ (a breve for) value in a fiducial cosmological model
p

• (a wide hat/circumflex for) estimator/estimate for a quantity (only
used when it needs to be distinguished from the quantity itself )

¤• (an overdot for) cosmic-time derivative (𝜕 •/𝜕𝑡 )
s

• (an overbar/macron for) background/mean/averaged quantity
r

• (a tilde for) filtered/windowed quantity
•0 (a subscript ‘0’ for) value at the current redshift 𝑧 = 0
•𝑠 (a subscript ‘𝑠 ’ for) redshift-space quantity
𝛿 • (a letter ‘𝛿 ’ for) perturbation quantity
•′ (a thin prime for) derivative of a function with respect to its argument
•′ (a thick prime for) conformal-time derivative (𝜕 •/𝜕𝜏 )
𝑎 scale factor
𝐴s primordial scalar power spectrum amplitude
𝛼 ratio of the weighted number count of the survey galaxy catalogue to

that of the synthetic random catalogue
𝛼AP AP dilation parameter
𝛼∥ line-of-sight AP scaling parameter
𝛼⊥ transverse AP scaling parameter
𝐵 bispectrum
𝑏 (Eulerian) bias
𝑏1 linear/scale-independent (Eulerian) bias
𝑏e evolution bias

𝑏 (L)1 linear Lagrangian bias
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𝑐 speed of light in vacuum
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𝐷KL(𝑓 ‖𝑔) Kullback–Leibler divergence of the PDF𝑔 from the PDF 𝑓
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𝐷M transverse comoving distance
𝐷𝜇 SFB clustering mode
𝐷𝜎 fingers-of-God damping factor
𝛥 comoving density contrast
𝛿 over-density

𝛿
𝑎𝑏

Kronecker delta tensor
𝛿c (spherical-collapse) critical over-density

𝛿 (D) Dirac delta distribution
𝛿 (K) Kronecker delta function
𝛿m matter density contrast
𝔼 expectation

𝜖AP AP deformation parameter
erfc complementary error function
𝑓 linear growth rate
𝐹2 1 ordinary hypergeometric function
𝑓NL (local-type) primordial non-Gaussianity parameter
𝑓sky (effective) survey sky fraction
𝛷 Bardeen potential
𝜙 radial selection function/luminosity function
𝜑 spherical azimuthal angle
𝐺 gravitational constant
𝑔
𝑎𝑏

metric tensor
𝐺
𝑎𝑏

Einstein tensor/trace-reversed Ricci curvature tensor
𝛤 gamma function
𝛤𝑑 multivariate gamma function
𝐻 (physical) Hubble parameter
ℎ reduced Hubble parameter of today

H conformal Hubble parameter
𝜂
𝑎𝑏

Minkowski metric tensor
J Jacobian matrix
𝑗ℓ spherical Bessel function of the first kind of order ℓ
𝐾 spatial curvature
𝒌 Fourier-space coordinates/comoving wavevector
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𝜘 condition number
L likelihood function
L ℓ Legendre polynomial of degree ℓ
𝛬 cosmological constant
𝑀 halo mass
𝑚 absolute magnitude
𝑚̄ absolute-magnitude threshold
𝜇 cosine of the angle between a wavevector and the line of sight
𝑛 number density
s𝑛 background/mean number density
𝑛h halo mass function/UMF
𝒏̂ global line of sight
𝑛s primordial scalar spectral index
𝜈 peak height/significance (with respect to field variance)
𝛺𝐼 density parameter for matter–energy component 𝐼
𝑃 power spectrum/pressure
𝑃ℓ power spectrum multipole of degree ℓ
𝑃m matter power spectrum
𝑃𝑁 𝑁 th-order polyspectrum
𝑝 tracer-dependent parameter for scale-dependent bias due to PNG (see

eq. 1.60)
𝑃shot shot noise power
𝜋 prior (probability density)
P posterior (probability density)
ℙ probability
𝕡 probability density
𝛹 Bardeen potential
𝑅 Ricci curvature scalar
𝒓 configuration-space coordinates/real-space comoving

coordinates/comoving separation vector
𝑅
𝑎𝑏

Ricci curvature tensor
𝜌 density
𝜌c critical density
𝑆 bispectrum shape function
𝒔 redshift-space comoving coordinates/redshift-space comoving

separation vector
𝑠 magnification bias (not to be confused with redshift-space

separation 𝑠 = |𝒔 |)
𝜎8 root-mean-square linear density fluctuation within 8 h−1Mpc radius
𝜎p pairwise line-of-sight velocity dispersion
𝜎𝑣 one-dimensional velocity dispersion
𝑇 transfer function
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𝑡 cosmic time
𝑇
𝑎𝑏

energy–momentum tensor
𝜏 conformal time
𝛩 Heaviside function
𝜃 (set of ) (cosmological) model parameter(s)
𝜗 spherical polar angle
𝑢 H −1𝑣, comoving radial RSD displacement
𝒗 peculiar velocity

Var variance
𝑊 window function
𝑤 (clustering) weight/equation-of-state parameter
𝜉 correlation function
𝜉𝑁 𝑁 -point correlator
𝑌ℓ𝑚 spherical harmonic function of degree ℓ and order𝑚
𝑧 redshift
𝜁 uniform-density curvature perturbation
𝜁𝑁 connected 𝑁 -point correlator
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Introduction

The study of the large-scale structure (LSS) of the Universe is a firm cornerstone of modern
cosmology. By recording the angular position of galaxies in the sky andmeasuring the redshift
of their electromagnetic spectrum, one could build a three-dimensional map of cosmic struc-
ture on the largest accessible scales. Looking back to a century ago, the beginning of this field
seemed rather humble, when the phrase ‘the large-scale distribution ofmatter’ was understood
merely in the context of theMilkyWay galaxy and its stars [10]. Yet to date, millions of galaxies
spanning over billions of years of cosmic history have been observed, notably by the recently
completed Baryon Oscillation Spectroscopic Survey (BOSS) and its extension eBOSS, both
of which are part of the Sloan Digital Sky Survey (SDSS) [11]. The rapid technological ad-
vances in observational capabilities and ongoing developments in the theoretical foundation
have led some cosmologists to refer to the current period as ‘the golden age of cosmology’ [12].

The objective of LSS cosmology, however, is not to simply catalogue all the observable
galaxies, for that might lead to accusations of ‘stamp collecting’.¹ Instead, with the Universe
itself being the ultimate laboratory, its quest is to solve, in some sense, an initial value problem:
What were the initial conditions, most likely of a quantum nature, for structure formation?
With gravity being the dominant long-range fundamental force, what are the physical processes
governing structure formation?

To contextualise LSS within modern cosmology, one could not fail to connect it to the
so-called ‘standard model’, known as Lambda cold dark matter (ΛCDM), which assumes Ein-
stein’s theory of general relativity (GR) with the matter–energy content of the Universe at
present divided into three major components: dark energy (DE), which is associated with the
cosmological constant 𝛬, occupies around 70 %; cold dark matter accounts for about 25 %;
and ordinary baryonic matter only 5 % [14].² Other components include a negligible amount
of radiation and particle species such as neutrinos. The cosmological principle, which states
that the spatial distribution of matter–energy is statistically homogeneous and isotropic on

¹  “All science is either physics or stamp collecting.” A quote attributed to Ernest Rutherford (and often
misattributed to William Thomson, Lord Kelvin) [13].
² Strictly speaking, baryonic matter is solely composed of quarks. In astronomy, the term is used loosely to
describe normal atomic matter.
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large scales, also underpins this standard model; under these assumptions, the background
space-time is described by the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, al-
lowing for a universewith an evolving physical size aswell as non-zero spatial curvature [15–19].
Moreover, the theory of inflation, which postulates a brief period of exponential expansion in
the very early Universe [20], is commonly incorporated into the standard model, as it offers a
plausible mechanism for seeding the observed classical, macroscopic structure with quantum
fluctuations.

Astronomical experiments in the past few decades have been undeniably fruitful in produ-
cing evidence supporting the ΛCDMmodel, whose predictions give a remarkably concordant
account, with a minimal set of just six cosmological parameters, for some key observations:

■ the existence and properties of the cosmic microwave background (CMB) [21, 22],
which exhibits an exquisite black-body spectrum, as confirmed and measured by mul-
tiple generations of space missions including theCosmic Background Explorer (COBE),
theWilkinsonMicrowave Anisotropy Probe (WMAP) and Planck;

■ the large-scale distribution of galaxies (i.e. LSS), with a preferred clustering scale at the
wavelength of baryon acoustic oscillations (BAOs) at the photon–baryon decoupling
epoch, as first detected by SDSS and the 2-degree Field Galaxy Redshift Survey (2dF-
GRS) [23, 24];³

■ the accelerating recession of distant galaxies as measured with standardisable Type Ia
supernovæ (SNe) [26, 27]; and

■ the abundance of light elements produced in the primordialUniverse throughBig Bang
nucleosynthesis (BBN) [28–31].

In particular, LSS clustering observations offer strong evidence, both complementary to and
independent of CMB anisotropy and polarisation as well as SNe, for the existence of dark en-
ergy and dark matter [23, 32, 33]. They also paint a picture of dominantly adiabatic, Gaussian
initial fluctuations which favour an inflationary origin of cosmic structure passively formed
through gravitational instability, as opposed to an active, causal mechanism [34–36]. In com-
bination with other probes, the use of BAOs as a ‘standard ruler’ as well as galaxy–void cross-
correlation can also break degeneracy amongst ΛCDM model parameters and thus drastic-
ally improve cosmological constraints [37]. In Figure 1.1, an example of cosmic concordance
amongst different probes is shown for the joint constraints on the dark energy and matter
density parameters, which are discussed in detail in appendix A.

Yet with the arrival of precision cosmology that has achieved model constraints near the
1 % level, discordance has recently become more apparent and tantalising, as demonstrated
by current tensions in the Hubble parameter 𝐻0 and the matter density fluctuation para-
meter 𝜎8 [see e.g. 38–40]. This all adds to the existing unsolved mysteries in the ΛCDM
paradigm, which perhaps could be categorised, with the view of LSS as an initial value problem,
as follows—

■ initial conditions: How close are primordial fluctuations to beingGaussian? What type
of primordial non-Gaussianity (PNG) couldprecisionLSSmeasurements reveal? PNG
is crucial in differentiating models of the very early Universe and probing high-energy
physics at scales forever beyond the reach of terrestrial experiments.

³ There were hints in earlier results reported by 2dFGRS [25].
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Figure 1.1. Cosmic concordance: marginalised constraints on the matter and dark energy dens-
ity parameters, 𝛺m and 𝛺𝛬, at the current epoch. Each set of contours shows the 68 % and 95 %
credible regions from the following cosmological probes: Planck temperature and 𝐸-mode polar-
isation (purple contours); Pantheon SNe (blue contours); BOSS galaxy BAO (green contours),
voids (grey contours), and the combination of the two (orange contours). Figure taken from
Fig. 4 in ref. [37] (credit: S Nadathur et al.).

■ matter–energy contents and space-time geometry: What is the material nature of dark
energy or dark matter, and is dark energy dynamical or really a cosmological constant?
How strong is the evidence for, or against, the cosmological principle? What more
could be learnt about exotic particle species, includingmassive neutrinos, and their con-
tributions to structure formation?

■ gravitational evolution: Are there any discernible deviations fromEinstein’s GR on cos-
mological scales? Could modified gravity theories supplant the need for dark energy,
and how do they alter the evolution of cosmic structure?

In the so-called ‘big data’ era, LSS possesses some unique advantages in helping answer
some of these questions: its data sets are intrinsically three-dimensional, in contrast to the case
of CMB which is a two-dimensional surface; they also span a wide redshift range, with a pool
of various tracers including low-redshift galaxies, luminous red galaxies (LRGs), emission line
galaxies (ELGs), the Lyman-alpha (Ly-α) forest and quasi-stellar objects (QSOs), also known
as quasars. WithCMBmeasurements gradually saturating the cosmic variance bound, LSS of-
fers some powerful probes such as the Alcock–Paczyński (AP) test [41], closely related to the
BAO measurements, and redshift-space distortions (RSDs) [42], which arise as the peculiar
motion of galaxies affects their apparent distance converted from spectral redshift from the
observer. In particular, the BAO and AP probes yield cosmological distance measurements,
which trace the expansion history of the late-time Universe and place constraints on cosmo-
logical parameters; redshift-space distortions, a seemingly unwelcome observational effect at
first glance, actually provide an indispensable tool for measuring the growth of structure and
constraining the matter density parameter [42, 43], and thus qualify as an important test of
gravity [see e.g. 44–46].A·lex

Rakow·ski
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•

Having given a broad overview of LSS and made emphatic arguments for its rôle in modern
cosmology, this introductory chapter will now lay down some theoretical background for the
focus of this thesis: anisotropic galaxy clustering on very large scales and the statistical infer-
ence of cosmological parameters. The following sections will discuss the statistics of cosmic
random fields, anisotropies in the observed galaxy distribution, the LSS signature of primor-
dial non-Gaussianity, and lastly, parameter estimation from cosmological likelihoods.

Probability and statistical theory, linear algebra and mathematical methods in general are
prerequisites for this thesis, and some familiarity with quantum field theory is helpful but not
necessary. The reader is also assumed to have basic knowledge of general relativity, especially in
the context of the FLRW space-time; however, many results quoted in the text can be referred
to in the appendices, which contain more detailed discussions and derivations.

1.1 Statistics of cosmic random fields

Although cosmologists are privileged to have the cosmos as the ultimate laboratory, there is
inherent stochasticity in the observations of ourUniverse, which only arises as a particular real-
isation in an infinite ensemble of possibilities due to the probabilistic nature of its quantum
origin. This means that cosmological measurements are susceptible to cosmic variance and a
statistical interpretation is essential, no matter how well-designed the experiment might be.⁴
At the same time, there is a growing demand for sophisticated statistical methods for data
compression and transformation, as large data sets now steer the progress of modern precision
cosmology.

Cosmological observables are usually modelled as (three-dimensional) random fields, a
map that assigns a random variable to each point 𝒓 in configuration space.⁵ Catalogues of
galaxies gradually built up in the last century have shown that their distribution is not entirely
random in the Universe,T·om

Calling·ham but instead it weaves out an intricate web of interconnected struc-
tures with a pattern of over- and under-densities such as haloes and voids. Therefore a key
cosmological observable in LSS is the over-density field 𝛿 for the galaxy number density 𝑛,

𝛿 (𝒓) = 𝑛(𝒓) − s𝑛

s𝑛
, (1.1)

where the background number density s𝑛 = 〈𝑛〉 is the ensemble expectation 〈•〉 of the number
density. By the cosmological principle, s𝑛 is spatially invariant; and by definition, the expecta-
tion of the over-density field is identically zero, 〈𝛿〉 = 0.

Gaussian randomfields. Since the simplest inflationarymodels predictGaussian initial per-
turbations, which under linear evolution preserve their Gaussian statistics, cosmic random

⁴  “If your experiment needs statistics, you ought to have done a better experiment.” A quote again attributed
to Ernest Rutherford with a few variants, none of which though has a verifiable source.
⁵ A random variable is not a variable per se, but a map from an event (a set of outcomes) to a value (usually the
real numbers). This technical distinction is not made in this thesis for simplicity, and a ‘random variable’ also
refers to the value it takes.
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fields are often treated as Gaussian random fields (GRFs) on large, linear scales [47, 48]. For
any number𝑁 of points at {𝒓𝑖}𝑁𝑖=1 in aGRF𝛿 , the distribution of

(
𝛿 (𝒓1), . . . , 𝛿 (𝒓𝑁 )

)
is always

multivariate normal.⁶ The field itself has the following probability density (PDF),

𝕡[𝛿] = 𝐴−1/2 exp
[
−1
2

∫
d3𝒓1 d

3𝒓2 𝛿 (𝒓1) 𝜉 (𝒓1, 𝒓2)−1 𝛿 (𝒓2)
]
, (1.2)

where 𝜉 is the correlation function,

𝜉 (𝒓1, 𝒓2) = 〈𝛿 (𝒓1) 𝛿 (𝒓2)〉 , (1.3)

and the normalisation constant is given by

𝐴 1/2 =
∫

D𝛿 exp

[
−1
2

∫
d3𝒓1 d

3𝒓2 𝛿 (𝒓1) 𝜉 (𝒓1, 𝒓2)−1 𝛿 (𝒓2)
]
. (1.4)

Here D𝛿 = lim𝑁→∞
∏𝑁
𝑖=1d𝛿 (𝒓𝑖)

/
(2π)𝑁 is the Wiener measure, and𝐴 can be regarded as

the determinant of 𝜉−1 as an operator over the field configurations of 𝛿 [49].

Correlators. The notion of a correlation function can be generalised to the 𝑁-point correl-
ator by considering higher-order moments of a random field 𝛿 ,

𝜉𝑁 (𝒓1, . . . , 𝒓𝑁 ) = 〈𝛿 (𝒓1) · · · 𝛿 (𝒓𝑁 )〉 , (1.5)

which can be decomposed into a connected, or irreducible, component 𝜁𝑁 (with 〈•〉 labelled by
a subscript ‘c’) and lower-order moments,

𝜉𝑁 (𝒓1, . . . , 𝒓𝑁 ) = 〈𝛿 (𝒓1) · · · 𝛿 (𝒓𝑁 )〉c︸                ︷︷                ︸
𝜁𝑁 (𝒓1,...,𝒓𝑁 )

+
∑
S𝑁

∏
𝑆 𝑗∈S𝑁

𝜁 |𝑆 𝑗 | . (1.6)

Here the sum is over all non-trivial partitions S𝑁 of {𝒓𝑖}𝑁𝑖=1, and 𝜉𝑁 or 𝜁𝑁 is totally symmetric
in its arguments [10, 48]. In Figure 1.2, a schematical representation of the decomposition for
the case with 𝑁 = 4 is shown. Sometimes, the 𝑁 -point correlator is instead defined as 1 +
𝜉𝑁 (𝒓1, . . . , 𝒓𝑁 ) =

〈∏𝑁
𝑖=1 [1 + 𝛿 (𝒓𝑖)]

〉
, and 𝜁𝑁 is known as the reduced 𝑁 -point correlator [e.g.

47]. It is evident from the PDF (eq. 1.2) that the correlation function 𝜉 completely specifies
the probability distribution of a GRF 𝛿 ; indeed, any 𝜁𝑁 vanishes identically, a result of Isserlis’
theorem [50].⁷ By expressing 𝜉 in terms of the number densities, one finds the probability of
having a pair of galaxies at 𝒓1 and 𝒓2 to be

〈𝛿𝑁1 𝛿𝑁2〉 = [1 + 𝜉 (𝒓1, 𝒓2)]s𝑛2 𝛿𝑉1 𝛿𝑉2 , (1.7)

where𝛿𝑁1,2 = 𝑛
(
𝒓1,2

)
𝛿𝑉1,2 is theprobability of having a galaxy in an infinitesimal volume𝛿𝑉1,2

at 𝒓1,2. Therefore 𝜉 could be interpreted as the excess probability of finding a pair of galaxies
at two locations when there is clustering, compared to the case where galaxies are uniformly
randomly distributed, i.e. 〈𝛿𝑁1 𝛿𝑁2〉 = s𝑛2 𝛿𝑉1 𝛿𝑉2 [10].

⁶ A subtle distinction is made between the words ‘Gaussian’ and ‘normal’ in this thesis: the former is used as a
descriptive statistical property or refers to the shape of a function in its parameter space; and the latter is solely
reserved for probability distributions.
⁷ Perhaps more commonly quoted in cosmology isWick’s theorem, which is an analogous result proved for the
normal ordering of quantum operators [51].
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〈𝛿𝛿𝛿𝛿〉 = + + + +

+ + + + +

+ + + + +

Figure 1.2. A schematic representation of the decomposition of an𝑁-point correlator (in either
configurationorFourier space) into connected lower-order components for the case of𝑁 = 4 (see
eq. 1.6). Each node represents the field at a given location; a connected component is a connected
graph; and each summand is a product of connected graphs. Figure concept taken from Fig. 4 in
ref. [48] (credit: F Bernardeau et al.).

Homogeneity and isotropy. If the cosmological principle applies to the random field 𝛿 ,
its statistical properties must satisfy homogeneity and isotropy. This means that any 𝑁 -point
correlator 𝜉𝑁 must be invariant under spatial translation and rotation, which severely restricts
its form. Though nominally a function of𝑁 coordinates, 𝜉𝑁 depends on only (𝑁 −1) of them
effectively; to see this, one could note that once one vertex of an𝑁 -gon is fixed by translation,
its shape and size are then determined by just (𝑁 − 1) sides. For the correlation function 𝜉 ,
one would then find that it only depends a single scalar by rotational invariance,

𝜉 (𝒓1, 𝒓2) ≡ 𝜉 (𝒓2 − 𝒓1) ≡ 𝜉 (𝑟12) , (1.8)

where 𝑟12 = |𝒓2 − 𝒓1 | is the pairwise separation. Analogous to equation (1.7), if one considers
the conditional probability of finding a second galaxy given the first, then (1 + 𝜉) could be
interpreted as the probability density profile of galaxies around a given galaxy.

Fourier modes. Just as in music theory where a sound can be decomposed into tones at dif-
ferent pitches, cosmological perturbations such as the over-density field 𝛿 can also be decom-
posed into Fourier modes with different wavevectors 𝒌 by performing the Fourier transform,

𝛿 (𝒌) =
∫

d3𝒓 e−i𝒌 ·𝒓 𝛿 (𝒓) , (1.9)

where the inverse mode wavenumber 𝑘−1 corresponds to the spatial scale of the fluctuation.
Here the same notation 𝛿 is used to denote both the function 𝛿 (𝒓) and its Fourier trans-
form 𝛿 (𝒌), and any ambiguity is dispelled by the context or the explicit argument. There
are several advantages of a Fourier-space description of random fields, both mathematical and
physical: for instance, the behaviour of the field at different scales can be decomposed and
understood on a mode-by-mode basis, an idea related to the study of harmonic analysis; in re-
lation to inflation and quantumfield theory in general, the degrees of freedom of free fields de-
couple into simple harmonic oscillators in momentum space, which is the Fourier space dual
to the position space. To recover the field value in configuration space, the inverse Fourier
transform is used,

𝛿 (𝒓) =
∫

d3𝒌
(2π)3 e

i𝒌 ·𝒓 𝛿 (𝒌) . (1.10)
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In principle, the domain of integration in the Fourier transform above is the entire configur-
ation space; in practice, however, one can only observe a patch of the Universe or run simu-
lations in a finite volume. Therefore the periodic boundary condition is often imposed on a
cubic volume𝑉 of side length 𝐿. The Fourier modes are then discretised and the inverse Four-
ier transform becomes a series expansion,

𝛿 (𝒓) = 𝐿−3
∑
𝒌

𝛿 (𝒌)e i𝒌 ·𝒓 , (1.11)

where the summation is over all wavevectors 𝒌 whose componentsmust be integermultiples of
the fundamentalwavenumber𝑘f = 2π/𝐿 . The set of planewaves

{
e i𝒌 ·𝒓

}
𝒌 formanorthogonal

basis in the field space; theDirac delta distribution𝛿 (D) and theKronecker delta function𝛿 (K)

are represented by

𝛿 (D) (𝒓) = 𝐿−3
∑
𝒌

e i𝒌 ·𝒓 and 𝛿 (K)𝒌1𝒌2
= 𝐿−3

∫
𝑉
d3𝒓 e−i (𝒌1−𝒌2)·𝒓 . (1.12)

Although the periodic boundary condition provides a convenient set-up especially for running
𝑁 -body simulations, it must be emphasised that the Universe is not expected to be periodic
in reality: indeed, periodic boundary conditions may introduce artefacts such as edge effects
(e.g. the Gibbs phenomenon when there is a discontinuity at the boundary [52, 53]) as well as
deviation from the inverse-square force law on large scales comparable to the period [e.g. 54].
Therefore the periodic volume should be set much larger than the scales of interest to mitigate
these artefacts.

Polyspectra. Similar to correlation functions in configuration space, one could consider the
𝑁 -point correlator 〈𝛿 (𝒌1) · · · 𝛿 (𝒌𝑁 )〉 in Fourier space. Since the Fourier transform is a linear
integral transform, the Gaussianity of the field 𝛿 (𝒓) also holds for its Fourier mode 𝛿 (𝒌), and
again by Isserlis’ theorem, 〈𝛿 (𝒌1) · · · 𝛿 (𝒌𝑁 )〉 either vanishes identically for odd 𝑁 or can be
reduced into two-point correlators for even 𝑁 . More significant is the constraint imposed
by homogeneity: the wavevectors must obey

∑𝑁
𝑖=1 𝒌𝑖 = 0 if 〈𝛿 (𝒌1) · · · 𝛿 (𝒌𝑁 )〉 is non-zero,

which follows from the fact that the phase factor exp
(
−i𝒂 · ∑𝑁

𝑖=1 𝒌𝑖
)
introduced by any global

translation, 𝒓 ↦→ 𝒓 + 𝒂, must be unity. This means that in general,

〈𝛿 (𝒌1) · · · 𝛿 (𝒌𝑁 )〉 = (2π)3 𝛿 (D) (𝒌1 + · · · + 𝒌𝑁 ) 𝑃𝑁 (𝒌1, . . . , 𝒌𝑁 ) , (1.13)

where 𝑃𝑁 is the 𝑁 th-order polyspectrum. The power spectrum 𝑃 (𝒌) for 𝑁 = 2 is the Fourier
transform of the correlation function 𝜉 (𝒓),⁸

𝑃 (𝒌) =
∫

d3𝒓 e−i𝒌 ·𝒓 𝜉 (𝒓) , 𝜉 (𝒓) =
∫

d3𝒌
(2π)3 e

i𝒌 ·𝒓 𝑃 (𝒌) , (1.14)

which follows from their definitions or the Wiener–Khinchin theorem [55, 56]. If the Fourier
modes are discretised under the periodic boundary condition imposed on a cubic volume𝑉 ,
then

𝑃 (𝒌) = 𝑉 −1〈𝛿 (𝒌) 𝛿∗(𝒌)〉 .⁹ (1.15)

⁸ Note that despite the same notation, the coordinate variable 𝒓 in the correlation function 𝜉 denotes the separ-
ation vector between a galaxy pair and not the configuration-space coordinates. Formally, this 𝒓 belongs to the
affine space associated with the configuration space under homogeneity.
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Either statistic, 𝜉 or 𝑃 , encodes all the information in a GRF. Under statistical isotropy,
𝑃 (𝒌) ≡ 𝑃 (𝑘) depends only on a wavenumber—this homogeneous and isotropic power spec-
trum is what an inflationary model typically predicts and specifies as the initial condition for
the growth of perturbations during structure formation.

Ergodicity. The idealised notion of an ensemble of possible universes mentioned earlier al-
ludes to a frequentists’ view of probability where independent observations could be repeated,
which is far removed from the reality of a single observable Universe. Thanks to the ‘fair
sample’ hypothesis which assumes that cosmic random fields are ergodic, well-separated re-
gions in theUniverse unlikely to have had any causal contact could be regarded as independent
samples of an ensemble [10, 47]. As a result, the ensemble expectation of a quantity 𝟋 depend-
ent on the random field 𝛿 ,

〈 𝟋 〉 =
∫

D𝛿 𝕡 [𝛿] 𝟋[𝛿] , (1.16)

may be replaced by its volume average,

s𝟋 =
∫
𝑉
d3𝒓 𝟋[𝛿 (𝒓)] , (1.17)

as long as the volume𝑉 provides a fair sample of the field 𝛿 . Fortunately, a homogeneous GRF
possesses the ergodicity property if its power spectrum is continuous [57].

Point processes. To make the final connection between a continuous random field and the
discrete galaxies one observes in the sky, a point process is needed. Thebasicmodel used inLSS
is the Poisson point process, where the number of galaxies in any region follows the Poisson dis-
tribution and disjoint regions aremutually independent. For simplicity, one could consider an
over-density field𝛿 without intrinsic clustering andwithmean number density s𝑛. The number
of galaxies 𝑁 in any volume𝑉 has the Poisson PDF,

𝕡(𝑁 ) =
s𝑁𝑁

𝑁 !
e−

s𝑁 with s𝑁 = s𝑛𝑉 . (1.18)

Naïvely, one would expect the power spectrum for such a random field to be constant, given
the absence of any preferred clustering scale. To prove this, one could note that the Fourier
mode 𝛿 (𝒌) for a discrete set of galaxies at {𝒓𝑖 ∈ 𝑉 }𝑁𝑖=1 is simply a sum of Dirac delta contribu-
tions,

𝛿 (𝒌) = 1
s𝑛

𝑁∑
𝑖=1

e−i𝒌 ·𝒓𝑖 −𝑉𝛿 (K)𝒌0 . (1.19)

Since 𝒓𝑖 is uniformly randomly distributed for a homogeneousPoissonpoint process, it follows
that for any wavevector 𝒌 ≠ 0, the mode expectation is 𝔼[𝛿 (𝒌)] = 0 and its variance is
Var[𝛿 (𝒌)] = 𝑁

/
s𝑛2 from 𝔼

[
sin2(𝒌 · 𝒓𝑖)

]
= 𝔼

[
cos2(𝒌 · 𝒓𝑖)

]
= 1/2 . The power spectrum is

thus a constant,

𝑃shot =
var[𝛿 (𝒌)]

𝑉
=
1
s𝑛

(1.20)

⁹ Often in the literature, the discrete Fourier mode is defined as 𝛿𝒌 which includes a volume normalisation
factor so that themode itself is dimensionless. In such a convention, 𝑃 (𝒌) = 𝑉

〈
|𝛿𝒌 |2

〉
, but𝑃 still has the physical

dimension of volume.
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Figure 1.3. Poisson sampling of a continuous number density field (left column) produces a field
of discrete tracers (right column). For homogeneous Poisson point processes, this adds a layer of
constant shot noise, which is inversely proportional to the tracer number density, to the power
spectrum.

—this is the Poisson shot noise. In general, for any point process that generates a discrete set of
tracers froma continuous number density field, the shot noise powerwill add to the underlying
clustering power spectrum. As a concrete example, suppose 𝑛(𝒓) is the number density of a
tracer which has a constant bias𝑏 with respect to the underlyingmatter density field 𝜌 (𝒓) (see
appendix C for detailed discussion of tracer bias); that is to say, the tracer over-density field as
defined by equation (1.1) is 𝛿 (𝒓) = 𝑏 𝛿m(𝒓) ≡ 𝑏 [𝜌 (𝒓)/s𝜌 − 1], where 𝛿m is the matter density
contrast and s𝜌 = 〈𝜌〉 is the backgroundmatter density. In any small volume𝛿𝑉 3 𝒓 , the tracer
number count is 𝑛(𝒓) 𝛿𝑉 and follows the Poisson distribution,

𝑛(𝒓) 𝛿𝑉 ∼ Poisson[s𝑛 𝛿𝑉 (1 + 𝛿 (𝒓))] (1.21)

(see Fig. 1.3 for an illustration). The clustering power spectrum for this tracer is given by𝑃 (𝒌) =
𝑏2 𝑃m(𝒌)+s𝑛−1, where𝑃m is thematter power spectrum(see also appendixB). It is interesting to
point out that there is a different argument for the results above albeit in configuration space,
where one imagines the volume 𝑉 divided into a large number of microcells with a binary
occupation number 𝑁cell = 0 or 1. By exchanging discrete sums and continuous integrals and
noting that 𝑁 2

cell = 𝑁cell, one arrives at

〈𝑛(𝒓1)𝑛(𝒓2)〉 = s𝑛2 [1 + 𝜉 (𝒓2 − 𝒓1)] + s𝑛 𝛿 (D) (𝒓1 − 𝒓2) , (1.22)

where the second term, the self-contribution from a single point, corresponds the shot noise
power in Fourier space [10, 58]. The natural connection between the two arguments is that the
Poisson distribution can be obtained as a large-number limit from the binomial distribution.

•

The rest of this thesis will rely on the basic assumption that the underlying large-scale distribu-
tion of tracers such as galaxies can bemodelled as a discretely Poisson-sampled GRF satisfying
homogeneity and isotropy, and the power spectrum will be the key observable used to probe
the physics of galaxy clustering. Undoubtedly, there are numerous caveats to this assumption,
some of which go beyond the scope of this thesis: the fact that 𝛿 (𝒓) ⩾ −1 by definition, so
the GRF model might be better replaced by, for instance, a log-normal model [e.g. 59]; non-
Gaussianity from non-linear clustering [see e.g. 47, 48]; non-Poissonian shot noise due to halo
exclusion and non-linear clustering [see e.g. 60–62]; and many other complications in both
modelling and simulations.



INTRODUCTION 11

1.2 Anisotropic galaxy clustering

In the idealised picture where the observer has access to the exact three-dimensional coordin-
ates of galaxies in an instantaneous snapshot, clusteringmeasurements could almost be directly
comparedwith predictions ofmatter density fluctuations from cosmologicalmodels.¹⁰ In real-
ity, the observer is passive and has to wait for distant photons to reach the telescope, and only
then by measuring their redshift can a three-dimensional map of galaxies be constructed with
their inferred coordinates in the observed volume. This map of detected galaxies does not
depict a single snapshot but a past light cone, where matter flows towards the centres of grav-
itational wells amidst the expansion of the Universe; the measured large-scale distribution of
galaxies, supposedly homogeneous and isotropic, would have been distorted by various phys-
ical effects that perturb the cosmological redshift of the photons as they traverse the cosmic
web.

As a starting point, one could make the following connection between the galaxy over-
density field 𝛿 and the matter density contrast 𝛿m at the same redshift 𝑧,

𝛿 (𝒓, 𝑧) = 𝑏 (𝑧) 𝛿m(𝒓, 𝑧) , (1.23)

where the galaxy bias 𝑏 is scale-independent on large, linear scales (see appendix B for the dis-
cussion of the evolution of matter density contrast 𝛿m). Since any detected galaxies lie on the
past light cone from the observer, the comoving position 𝒓 and redshift 𝑧 are not independent
coordinates but are rather related through the comoving distance–redshift relation, 𝑟 = 𝜒 (𝑧)
(see appendix A for discussions of the cosmological redshift and distances). Moreover, for in-
complete galaxy survey observations due to instrumental sensitivity limit and sample selection
effects, the homogeneous background number density s𝑛(𝑧) is modulated by spatial variations,
and the observable mean number density is

s𝑛(𝒓, 𝑧) =𝑊 (𝒓) s𝑛(𝑧) , (1.24)

where𝑊 is the survey window function; for a full-sky survey with no angular variations, the
window function is simply the radial selection function,𝑊 (𝒓) = 𝜙 (𝑟 ). The observed number
density field in the survey is thus

𝑛(𝒓, 𝑧) =𝑊 (𝒓) s𝑛(𝑧) [1 + 𝑏 (𝑧) 𝛿m(𝒓, 𝑧)] (1.25)

following equation (1.1).
Apparent distortions in the observed galaxy distribution can arisewhen one converts a red-

shift measurement to a distance one: the cosmological redshift associated with the Hubble ex-
pansionmay be altered by the peculiar motion of the source galaxy, an effect known as redshift-
space distortions; the underlying cosmological model used to convert between the two, i.e. the
fiducial distance–redshift relation, may not match the true cosmology, leading to the import-
antAlcock–Paczyński test. These two effects, which are discussed below in detail, induce aniso-
tropies around the line of sight in the measured galaxy distribution, since radial and angular
distances are affected differently.

¹⁰ This is barring the issue of tracer bias—galaxies do not faithfully trace the underlying matter distribution, but
instead have a tendency to form in local density peaks such as haloes and thus cluster differently.
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1.2.1 Redshift-space distortions

For a galaxy that is moving relative to the background expansion of the Universe, its observed
redshift 𝑧obs differs from the cosmological redshift 𝑧 owing to the Doppler effect,

1 + 𝑧obs = (1 + 𝑧) (1 + 𝒗 · 𝒓) , (1.26)

where 𝒗 is the peculiar velocity.¹¹ The observed redshift-space coordinates 𝒔 are mapped from
the real-space coordinates 𝒓 along the radial direction by

𝑠 = 𝜒 (𝑧obs) = 𝑟 + 𝑢 with 𝑢 = H −1𝑣 (1.27)

to linear order, where H is the conformal Hubble parameter.
To obtain the relation between the redshift-space over-density and the real-space one, the

local number conservation law 𝑛𝑠 (𝒔, 𝑧) d3𝒔 = 𝑛(𝒓, 𝑧) d3𝒓 is employed with equations (1.25)
and (1.27):

s𝑛𝑠 (𝒔, 𝑧) [1 + 𝛿𝑠 (𝒔, 𝑧)] = |det J𝒔 (𝒓) |−1 s𝑛(𝒓, 𝑧) [1 + 𝛿 (𝒓, 𝑧)] , (1.28)

where •𝑠 denotes a redshift-space quantity. Here J𝒔 is the Jacobian matrix for the real- to
redshift-space coordinate mapping, the inverse absolute determinant of which can be expan-
ded to linear order,

|det J𝒔 (𝒓) |−1 =
(
1 + 𝑢

𝑟

)−2 (
1 + d𝑢

d𝑟

)−1
' 1 − 2𝑢

𝑟
− d𝑢

d𝑟
, (1.29)

provided |𝑢 | < 𝑟 , as |d𝑢/d𝑟 | = O (𝛿m) < 1 is already satisfied in linearised theory. Using the
linearised continuity equation (B.21) and equation (1.23), one can then derive

𝛿𝑠 (𝒔, 𝑧) = [𝑏 (𝑧) + 𝑓 (𝑧)D𝑟 ] 𝛿m(𝒓, 𝑧) , (1.30)

where 𝑓 is the linear growth rate,

D𝑟 = 𝜕
2
𝑟∇−2 +

[
2 + 𝜕 ln s𝑛(𝒓 , 𝑧)

𝜕 ln 𝑟

]
𝜕𝑟
𝑟
∇−2 (1.31)

is the RSD integro-differential operator, and 𝛿𝑠 (𝒔, 𝑧) = 𝛿𝑠 (𝒓, 𝑧) in linearised theory [63].¹²
To calculate the Fourier modes of redshift-space galaxy clustering, one could simply Four-

ier transform equation (1.30) and use the inverse Fourier transform for the matter density con-
trast 𝛿m,

𝛿𝑠 (𝒌, 𝑧) = 𝑏 (𝑧) 𝛿m(𝒌, 𝑧) + 𝑓 (𝑧)
∫

d3𝒒

(2π)3 𝑅(𝒒, 𝒌) 𝛿m(𝒒, 𝑧) , (1.32)

where the Fourier kernel

𝑅(𝒒, 𝒌) =
∫

d3𝒓 e i (𝒒−𝒌)·𝒓
{
(𝒒̂ · 𝒓)2 − i

[
2 + 𝜕 ln s𝑛(𝒓, 𝑧)

𝜕 ln 𝑟

]
𝒒̂ · 𝒓
𝑞𝑟

}
(1.33)

¹¹ Recall that the speed of light in vacuum is set to 𝑐 = 1 in natural units, and here the Doppler effect is taken to
be non-relativistic for 𝑣 � 𝑐 .
¹² On large scales, velocity bias between galaxies and dark matter is assumed to be negligible [63].
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couples different clustering modes [64]. The complexity of this mode-coupling Fourier kernel
poses computational challenges in modelling redshift-space clustering, but considerable sim-
plification could be achieved if the distant-observer limit, |𝑢 |/𝑟 → 0, holds—this condition
translates to 𝑣 � H 𝑟 , meaning the peculiar velocity is far slower than theHubble flow, which
is the case for distant galaxies.¹³ Consequently, the second part of the integro-differential op-
eratorD𝑟 proportional to (𝜕𝑟/𝑟 )∇−2, which corresponds to 𝑢/𝑟 , can be neglected, and

𝑅(𝒒, 𝒌) →
∫

d3𝒓
(2π)3 (𝒒̂ · 𝒓)2e i (𝒒−𝒌)·𝒓 . (1.34)

Besides the distant-observer limit, the global plane-parallel approximation needs to bemade to
further simplify RSD modelling—if there exists a global line of sight 𝒏̂ such that 𝜇𝒌 = 𝒌̂ · 𝒏̂,
the cosine of the angle between a mode wavevector and the line of sight, is constant, then

𝑅(𝒒, 𝒌) → 𝜇2𝒌 𝛿
(D) (𝒒 − 𝒌) . (1.35)

Therefore there is no longer a mode-coupling effect,

𝛿𝑠 (𝒌, 𝑧) =
[
𝑏 (𝑧) + 𝑓 (𝑧)𝜇2𝒌

]
𝛿m(𝒌, 𝑧) , (1.36)

and the redshift-space clustering power spectrum is simply

𝑃𝑠 (𝒌, 𝑧) =
[
𝑏 (𝑧) + 𝑓 (𝑧)𝜇2𝒌

]2
𝑃m(𝒌, 𝑧) . (1.37)

It is worth mentioning that a distinction is made here between the distant-observer and the
global plane-parallel approximations, since they are two separate mathematical procedures. In
some literature they are regarded as interchangeable, since for galaxy pairs at a given separation
(inotherwords, numberdensity fluctuations at a particular scale), the farther they are, the smal-
ler the angular variations amongst the different lines of sight pointing towards them. However,
this understanding could lead to confusion over the meaning of the so-called ‘wide-angle ef-
fect’, which is taken to mean the consequence of the plane-parallel approximation, rather than
that of neglecting the mode-coupling RSD effect, when the galaxy survey has a large angu-
lar coverage and the line of sight could vary significantly. Although wide-angle effects will be
discussed in more detail later, the reader is also referred to e.g. ref. [67] for clarification.

The results derived above in linearised theory are known as the Kaiser RSD model, first
introduced in ref. [42];¹⁴ towards quasi-linear scales, this model no longer suffices, and in par-
ticular, there is a secondary RSD effect known as ‘the fingers of God’, which is not due to co-
herent peculiar motions under the influence of the local gravitational potential but rather the
virialised random motions of galaxies. Figure 1.4 gives an illustration of both RSD effects. In
Fourier space, one could introduce a phenomenological factor that accounts for the damping
of the power spectrum due to the smearing of structure on smaller scales,

𝑃𝑠 (𝒌, 𝑧) = 𝐷𝜎 (𝑘, 𝜇𝒌)
[
𝑏 (𝑧) + 𝑓 (𝑧)𝜇2𝒌

]2
𝑃m(𝒌, 𝑧) , (1.38)

¹³ Assuming peculiar velocity 𝑣 ≲ O
(
103

)
km s−1 [65, 66], galaxies with redshift 𝑧 � 0.003 are considered to be

sufficiently distant.
¹⁴ Though the notion of redshift-space distortions and its use for probing thematter density parameter had been
suggested even earlier by ref. [43].
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Figure 1.4. A simulated galaxy distribution in real space (left column) and in redshift space (right
column) including theKaiser effect and fingers ofGod. Filaments appear denser along directions
transverse to the line of sight of the observer at the centre, and voids appear emptier due to the
Kaiser effect. Fingers of God smear the galaxy distribution radially. Figure adapted from the
original online source at  feldman.ku.edu (credit: H Feldman).

where the damping factor 𝐷𝜎 depends on a velocity dispersion parameter 𝜎 and has several
possibilities: for instance, the Gaussian (velocity distribution) model [68],

𝐷𝜎
(
𝑘, 𝜇𝒌 ;𝜎p

)
= exp

[
−1
2

(
𝑘𝜎p𝜇𝒌

)2] ; (1.39a)

the Lorentzian model (with exponential pairwise velocity distribution) [69–71],

𝐷𝜎
(
𝑘, 𝜇𝒌 ;𝜎p

)
=

[
1 + 1

2

(
𝑘𝜎p𝜇𝒌

)2]−1 ; (1.39b)

or the exponential (velocity distribution) model [72, 73],

𝐷𝜎
(
𝑘, 𝜇𝒌 ;𝜎𝑣

)
=

[
1 + 1

2

(
𝑘𝜎𝑣𝜇𝒌

)2]−2
. (1.39c)

Here 𝜎p is the pairwise line-of-sight velocity dispersion and 𝜎𝑣 the one-dimensional velocity
dispersion of a single galaxy,¹⁵ both ofwhich have the dimension of inverse length after normal-
isationby theHubble parameter andmayhave to be empirically determined inpractice [47, 63].
These phenomenological forms are not actually physical, but could be formalised in streaming
models where one considers the configuration-space over-density field convolved with a prob-
ability distribution for the random velocities of galaxies along the line-of-sight direction [see
e.g. 74].

In recent years, many improved non-linear RSD models have been proposed (e.g. the
Taruya–Nishimichi–Saitomodel [75, 76]),J·ohnLedger and the discussion above is far from exhaustive; for
a recent detailed study, the reader may refer to e.g. ref. [77]. Regardless of the choice of mod-
els, it is clear that the presence of redshift-space distortions breaks any underlying homogeneity
and isotropy of the galaxy distribution in observations: the former is lost as the observer is loc-
ated at a special position; and the latter is reduced to only the rotational symmetry about the

¹⁵ There seems tobe some confusion andmisattribution in the literature between theLorentzian and exponential
models. Note also the difference in the overall power. If the velocity correlation between a galaxy pair is zero,
then 𝜎p =

√
2𝜎𝑣 [70, 71].

https://feldman.ku.edu
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observer and azimuthal symmetry around the line of sight [78]. Generally, the redshift-space
clustering power spectrum depends on two Fourier-space coordinates,

𝑃𝑠 (𝒌) ≡ 𝑃𝑠 (𝑘, 𝜇) , (1.40)

and thus may be decomposed into multipoles of the Legendre polynomials L ℓ (𝜇),

𝑃ℓ (𝑘) =
2ℓ + 1
2

∫ 1

−1
d𝜇 L ℓ (𝜇) 𝑃𝑠 (𝑘, 𝜇) , (1.41)

where the redshift variable 𝑧 and the subscript ‘𝒌 ’ for 𝜇 are omitted for brevity. The 𝜇-
dependence in the linear Kaiser RSD model means that only the first three even power spec-
trum multipoles—the monopole, quadrupole and hexadecapole—are non-zero,

𝑃0(𝑘) =
(
𝑏2 + 2

3
𝑏𝑓 + 1

5
𝑓 2

)
𝑃m(𝑘) , (1.42a)

𝑃2(𝑘) =
(
4
3
𝑏𝑓 + 4

7
𝑓 2

)
𝑃m(𝑘) , (1.42b)

𝑃4(𝑘) =
8
35
𝑓 2 𝑃m(𝑘) . (1.42c)

Thesemultipoles have become the key summary statistics for anisotropic galaxy clustering ana-
lyses in recent surveys such as 2dFGRS, BOSS and eBOSS (see Fig. 1.5 for the BOSS Data
Release 12 results as an example) [e.g. 24, 79, 81, 82].

1.2.2 TheAlcock–Paczyński effect

The rescaling of radial and transverse distances by a fiducial distance–redshift relation, which
does not necessarily match the true cosmology, is another cause for anisotropic distortions

https://www.sdss.org/science/final-bao-and-rsd-measurements
https://www.sdss.org/science/final-bao-and-rsd-measurements
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in the observed galaxy distribution—this is the Alcock–Paczyński effect, which was origin-
ally proposed as an observational test for a non-zero cosmological constant in ref. [41]. From
the comoving line element (eq. A.6a), it follows that the rescaling factors of line-of-sight and
transverse comoving distances are given by

𝛼∥ (𝑧)−1 =
𝜒 ′(𝑧)
𝜒 ′(𝑧) and 𝛼⊥(𝑧)−1 =

𝑆𝑘 (𝑧)
𝑆𝑘 (𝑧)

(1.43)

respectively, where a breve •̆ denotes a quantity evaluated in a fiducial cosmological model
and a thin prime •′ denotes the derivative of a function with respect to its argument. This is
effectively a coordinate transformation,

𝒓 ↦→ 𝒓 = A𝒓 and 𝒌 ↦→ 𝒌̆ = A−1𝒌 with A = diag
(
𝛼−1∥ , 𝛼

−1
⊥ , 𝛼

−1
⊥

)
, (1.44)

where the coordinate vectors have been separated into parallel and transverse componentswith
respect to the line of sight in the plane-parallel picture. The resulting three-dimensional power
spectrum is

𝑃
(
𝑘∥, 𝒌̆⊥

)
= |A| 𝑃

(
𝛼−1∥ 𝑘∥, 𝛼

−1
⊥ 𝒌̆⊥

)
, (1.45)

where |A| is the Jacobian determinant. Using equation (1.37) and

𝑘∥ = 𝑘𝜇 , 𝑘⊥ = 𝑘
√
1 − 𝜇2 , etc., (1.46)

one can derive the anisotropic power spectrum in the distorted coordinates,

𝑃
(
𝑘, 𝜇

)
= 𝛼−1∥ 𝛼

−2
⊥ 𝑃 (𝑘, 𝜇) , (1.47)

where the true coordinates 𝑘 and 𝜇 are related to the fiducial ones by

𝑘 = 𝑘
[
𝛼−2⊥ +

(
𝛼−2∥ − 𝛼

−2
⊥

)
𝜇2

] 1/2
, (1.48a)

𝜇 =
𝜇

𝛼∥

[
𝛼−2⊥ +

(
𝛼−2∥ − 𝛼

−2
⊥

)
𝜇2

]−1/2
. (1.48b)

The rescaling relations above were first derived by ref. [70], and nowadays it is common to
rewrite the factors 𝛼∥ and 𝛼⊥ as

𝛼∥ (𝑧) =
𝐻̆ (𝑧)
𝐻 (𝑧) and 𝛼⊥(𝑧) =

𝐷M(𝑧)
𝐷̆M(𝑧)

, (1.49)

since d𝜒/d𝑧 ∝ 𝐻−1 and 𝑆𝑘 ∝ 𝐷M by equations (A.17a), (A.17b) and (A.18), where 𝐷M is
the transverse comoving distance. It is also equivalent to define 𝛼∥ and 𝛼⊥ using the Hubble
distance 𝐷H or the angular diameter distance 𝐷A; and for BAO analyses, these factors are
sometimes anchored to the the sound horizon 𝑟d of the photon–baryon fluid at the drag
epoch 𝑧 = 𝑧d.¹⁶ This parametrisation anchored to the BAO scale set by 𝑟d is helpful for break-
ing the degeneracy between theAP effect andRSD, since both give rise to anisotropies around
the line of sight. In particular, the dilation and deformation parameters

𝛼AP =
(
𝛼∥𝛼

2
⊥
) 1/3 and 𝜖AP =

(
𝛼∥
𝛼⊥

) 1/3
− 1 (1.50)

¹⁶ This refers to the Compton drag arising from the difference in the bulk velocities between photons and bary-
ons. After the drag epoch, baryons are essentially released from photon pressure [83].
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measure the stretching and warping of the BAO feature in the two-point correlators, and can
in turn constrain cosmological distances [84].¹⁷

•

For the rest of this thesis, the linearised theory of RSD is assumed but not necessarily in the
distant-observer limit with the plane-parallel approximation. Since the AP effect can be read-
ily incorporated into anisotropic models of galaxy clustering via appropriate rescaling, it is
neglected except where relevant.

1.3 Primordial non-Gaussianity signature

Although GRFs describe cosmic fluctuations in the observable Universe very well and form
the basis of most cosmological analyses, a certain level of non-Gaussianity still exists, not only
because of non-linear gravitational interactions but also due to primordial non-Gaussianity
in the initial conditions of structure formation. In fact, the existence of PNG is predicted by
inflationary theories including even the simplest single-field slow-roll model—this is due to
the ‘gravitational floor’ imposed by minimal coupling of the inflaton field to gravity [85]—
though the amplitude of PNG is generally expected to be small.

Whilst all GRFs are very similar, deviations from Gaussianity could take a multitude of
forms.¹⁸ One way to categorise the different types of non-Gaussianity is by considering the tri-
angular configuration of Fourier mode wavevectors, (𝒌1, 𝒌2, 𝒌3) with

∑3
𝑖=1 𝒌𝑖 = 0, for which

the bispectrum 𝐵(𝑘1, 𝑘2, 𝑘3),¹⁹ the leading-order non-Gaussian statistic, is enhanced. Com-
mon types of PNG include the squeezed, equilateral and orthogonal configurations, chiefly
parametrised by 𝑓NL (with appropriate labels for different types), which arise from different
classes of inflationary models. For example, in multi-field models, a subdominant spectator
field additional to the inflaton can generate curvature perturbations leading to 𝑓 localNL ≳ 1,
which corresponds to the squeezed configuration; in single-field models with non-standard
kinetics, one might expect 𝑓 equilNL ≳ 1 for the equilateral configuration; many models may
have other distinctive features, e.g. a folded bispectrum or running 𝑓NL [86, 87]. As such, PNG
opens up a unique window onto the dynamics and interactions of fields in the very early Uni-
verse, and could help distinguish different classes of inflationary models. The most stringent
constraints on some of the PNG parameters currently come from Planck, which has reported
latest measurements of 𝑓 localNL = −0.9 ± 5.1, 𝑓 equilNL = −26 ± 47 and 𝑓 orthoNL = −38 ± 24 at the
68 % uncertainty level [88].

The local-type PNG 𝑓 localNL , which is suppressed by the slow-roll parameters and thus al-
most negligible in the simplest single-field slow-roll models, is the focus of the discussion here,
and thereafter the superscript ‘local’ shall be omitted for brevity. Themotivation for 𝑓NL comes
from considering additional non-linear local terms of a Gaussian Bardeen potential𝛷G [89],

¹⁷ Sometimes the parameters ‘𝐷𝑉 ’ and ‘𝐹AP’ are used, which are essentially the same as 𝛼AP and 𝜖AP [see e.g. 81].
¹⁸  “All happy families are alike; each unhappy family is unhappy in its own way.” A (translated) quote from
Anna Karenina by Leo Tolstoy.
¹⁹ The triangle can be completely specified by three side lengths, since the orientation of the triangle does not
matter.
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starting at the quadratic order,

𝛷 (𝒙) = 𝛷G(𝒙) + 𝑓NL
(
𝛷G(𝒙)2 −

〈
𝛷2
G

〉)
+O

(
𝛷3
G

)
. (1.51)

Thequadratic termbecomes a convolution inFourier space, and thus the three-point correlator
for𝛷 (𝒌), the bispectrum, is given by

〈𝛷 (𝒌1)𝛷 (𝒌2)𝛷 (𝒌3)〉

= (2π)3𝑓NL
∫

d3𝒒1
(2π)3

d3𝒒2
(2π)3 𝛿

(D) (𝒒1 + 𝒒2 − 𝒌3)
[
〈𝛷G(𝒌1)𝛷G(𝒌2)𝛷G(𝒒1)𝛷G(𝒒2)〉

− 〈𝛷G(𝒌1)𝛷G(𝒌2)〉〈𝛷G(𝒒1)𝛷G(𝒒2)〉
]
+ · · ·

= (2π)3𝑓NL
∫

d3𝒒1
(2π)3

d3𝒒2
(2π)3 𝛿

(D) (𝒒1 + 𝒒2 − 𝒌3)
[
〈𝛷G(𝒌1)𝛷G(𝒒1)〉〈𝛷G(𝒌2)𝛷G(𝒒2)〉

+ 〈𝛷G(𝒌1)𝛷G(𝒒2)〉〈𝛷G(𝒌2)𝛷G(𝒒1)〉
]
+ · · ·

= (2π)3 𝛿 (D) (𝒌1 + 𝒌2 + 𝒌3)
× 2𝑓NL [𝑃𝛷 (𝑘1) 𝑃𝛷 (𝑘2) + 𝑃𝛷 (𝑘2) 𝑃𝛷 (𝑘3) + 𝑃𝛷 (𝑘3) 𝑃𝛷 (𝑘1)] , (1.52)

where Isserlis’ theoremhas been applied and ellipses indicate contributions from the remaining
cyclic permutations of 𝒌1, 𝒌2 and 𝒌3. Akin to the definition of kurtosis, one could consider
the shape function of the bispectrum obtained after normalisation by the power spectrum,

𝑆 (𝑘1, 𝑘2, 𝑘3) =
𝐵(𝑘1, 𝑘2, 𝑘3)

[𝑃𝛷 (𝑘1) 𝑃𝛷 (𝑘2) 𝑃𝛷 (𝑘3)] 2/3
. (1.53)

The basic single-field slow-roll model predicts an almost scale-invariant primordial scalar
power spectrum, so that 𝑃𝛷 (𝑘) ∝ 𝑘−3;²⁰ hence by equation (1.52),

𝑆 (𝑘1, 𝑘2, 𝑘3) ∝ 𝑓NL
(
𝑘21
𝑘2𝑘3

+
𝑘22
𝑘3𝑘1

+
𝑘23
𝑘1𝑘2

)
, (1.54)

which has an enhanced amplitude in the squeezed limit, e.g. 𝑘3 � 𝑘1, 𝑘2. However,
𝐵(𝑘1, 𝑘2, 𝑘3) is still suppressed by slow-roll parameters which enter 𝑃𝛷 [91]. In Figure 1.6, the
shape function 𝑆 for the bispectrum in the squeezed triangular configuration for local PNG is
shown.

At first glance, and very naturally, it would seem that to uncover PNG, one would have to
resort to high-order statistics solely and carefully disentangle from PNG any non-Gaussianity
due to late-time non-linear gravitational evolution. However, in recent years there has been
a breakthrough which has shown and verified with 𝑁 -body simulations that PNG leaves a
scale-dependent signature in the large-scale halo bias [93–95]. To see this, one could consider a
peak–background split where background fluctuations are of long wavelengths and virialised
haloes form from density peaks corresponding to small-scale perturbations [96, 97]. Taking

²⁰ The scalar spectral index has been set to 𝑛s = 1 here assuming perfect scale invariance; otherwise, one can
obtain a consistency relation for 𝑛s and 𝑓NL, which provides a test of single-field inflation [see e.g. 85, 90]. The
primordial scalar power spectrum is evaluated at horizon exit for each Fourier mode, and on super-horizon scale,
𝛷 is conserved. See also appendix B.
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𝒌2
𝒌3

𝒌1

Figure 1.6. The squeezed triangular configuration 𝑘3 � 𝑘1, 𝑘2 (left column) and the shape func-
tion 𝑆 (𝑘1, 𝑘2, 𝑘3) of the bispectrum (right column) for local PNG. Figure adapted from Fig. 1 in
ref. [92] (credit: T Takahashi).

the non-Gaussian Bardeen potential field𝛷i described above at some initial epoch of structure
formation (labelled with the subscript ‘i’),H·arry

Ay·ton one could write the Gaussian part as𝛷G = 𝛷l +𝛷s,
so that

𝛷i = 𝛷l + 𝑓 2NL𝛷l + (1 + 2𝑓NL𝛷l)𝛷s + 𝑓 2NL𝛷2
s + · · · , (1.55)

where the subscripts ‘l’ and ‘s’ denote long- and short-wavelength contributions separately, and
the ellipsis contains constant and higher-order terms. From the Friedmann equation (A.13a),
the Poisson equation (B.10) and the discussions in appendix B about the linear growth
factor 𝐷1 and the transfer function 𝑇 ,²¹ one can express the long-wavelength Fourier mode
of matter density contrast as

𝛿m,l(𝑘, 𝑧) = M (𝑘, 𝑧)𝛷l(𝑘) with M (𝑘, 𝑧) = 2
3

C
(
𝛺m,0

)−1𝐷1(𝑧)𝑇 (𝑘)
𝛺m,0𝐻 2

0

𝑘2 , (1.56)

where 𝐻0 and𝛺m,0 are the Hubble and matter density parameters of today, and the factor C

comes from the normalisation convention 𝐷1(0) = 1 for today instead of 𝐷1(𝑧) = 𝑎(𝑧) in
the matter-dominated era (see eq. B.19). Meanwhile, the short-wavelength Fourier mode is
identified as

𝛿m,s(𝑘, 𝑧) = M (𝑘, 𝑧) [1 + 2𝑓NL𝛷l(𝑘)]𝛷s(𝑘) , (1.57)

and it is evident that the effect of 𝑓NL is a modulation of small-scale fluctuations by the long-
wavelength background fluctuations. From the discussion of (proto-)halo bias in appendix C,
it follows that this is equivalent to changing the local field variance,

𝜎2𝑀 ↦→ q𝜎2𝑀 = (1 + 2𝑓NL𝛷l)2𝜎2𝑀 , (1.58)

so that it depends on long-wavelength modes; consequently, a bias modification is introduced
to the scale-independent linear bias 𝑏1 for haloes,

Δ𝑏 (𝑘, 𝑧) = 2𝑓NL
M (𝑘, 𝑧)

𝜕 ln𝑛h
𝜕 ln𝜎𝑀

= C
(
𝛺m,0

)
𝑓NL

3𝛺m,0𝐻
2
0𝛿c

𝐷1(𝑧)𝑇 (𝑘)
𝑏1(𝑧) − 1

𝑘2
, (1.59)

²¹ This transfer function links the Newtonian gravitational potential to the primordial Bardeen potential 𝛷;
𝑇 (𝑘) ' 1 for 𝑘 � 𝑘eq, where 𝑘eq corresponds to the comoving horizon scale at matter–radiation equality [98].
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Figure 1.7. Scale-dependent signature of PNG in the clustering power spectrum at redshift𝑧 = 0
with 𝑓NL = 0,±50. The scale-independent linear bias is fixed at𝑏1 = 2 andPlanck 2018 cosmology
is adopted with

(
ℎ,𝛺b,0, 𝛺CDM,0

)
= (0.674, 0.0493, 0.264) [101]. The vertical dashed line marks

the horizon scale at𝑘 = 𝐻0. Thedip in the power spectrum for negative 𝑓NL occurswhen (𝑏1+Δ𝑏)
changes sign.

where 𝑛h is the halo mass function, and equations (1.56), (C.16) and (C.19) have been used.
Since𝑇 (𝑘) tends to a constant as 𝑘 → 0, it follows that on large scales, Δ𝑏 is enhanced by the
𝑘−2 factor—this is the scale-dependent PNG signature in halo bias.²² The scale-independent
linear bias 𝑏1 is sometimes termed the ‘Gaussian’ bias, and the modification Δ𝑏 or the total
bias 𝑏 = 𝑏1 + Δ𝑏 is known as the ‘non-Gaussian’ bias. In Figure 1.7, the effect of 𝑓NL = 0,±50
on the clustering power spectrum at redshift 𝑧 = 0 is shown for a fixed linear bias 𝑏1 = 2
and Planck 2018 cosmology with

(
ℎ,𝛺b,0, 𝛺CDM,0

)
= (0.674, 0.0493, 0.264). For 𝑓NL < 0,

the bias modification Δ𝑏 is negative and (𝑏1 + Δ𝑏) changes sign at some intermediate 𝑘 , thus
leaving a dip in the power spectrum (as shown in the figure for 𝑓NL = −50), which is a feature
of the scale-dependent bias prediction.

Whilst this scale-dependent signature was demonstrated for haloes initially, tracers such
as galaxies and quasars which reside in haloes are expected to exhibit similar behaviour in their
bias in the presence of PNG. The precise calculation above for the amplitude of the bias modi-
fication is performed assuming a universal mass function s𝑛h; more generally, it is described
by

Δ𝑏 (𝑘, 𝑧) = 2𝑓NL𝛿c
M (𝑘, 𝑧) (𝑏1 − 𝑝) , (1.60)

where 𝑝 is a tracer-dependent parameter. For instance, for quasars that reside in haloes which
have formed through mergers, 𝑝 = 1 + 𝛿−1c ≈ 1.6 is appropriate [95]; for a galaxy sample
selected by stellar mass, 𝑝 ∈ [0.4, 0.7] might be expected [102].

Owing to the relative ease ofmeasuring and computing the clustering power spectrum, the
scale-dependent tracer bias offers a promising avenue for detecting PNG in large-scale struc-
ture. Indeed, its constraint on local PNG is currently tighter than those from the galaxy bis-

²² Besides the local-type PNG considered here, it has also been shown for other types of PNG that there is
similarly a scale-dependent bias modification, though the dependence is weaker than 𝑘−2 for the local-type and
thus harder to detect [e.g. 99, 100].
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pectrum measurements, as the modelling of the latter is computationally challenging and suf-
fers from the non-linearity of the late-time gravitational evolution of density perturbations.
The most recent measurements by eBOSS using the scale-dependent quasar bias have repor-
ted −81 < 𝑓NL < 26 at the 95 % uncertainty level [103]. Current and upcoming surveys, such
as the Dark Energy Spectroscopic Instrument (DESI) and the Euclid mission, can reach un-
certainty levels around 𝜎𝑓NL = 5 and bring competitive results in comparison with the CMB
constraints, which may soon saturate the cosmic variance bound [104–106].

•

Local PNGappearing in large-scale tracer bias will serve as an important test parameter for val-
idating novel approaches to the analysis of large-scale galaxy clustering proposed in this thesis.
Although the modelling of its signature is relatively straightforward, survey systematics and
other physical effects, such as relativistic corrections, may hamper its detection—these will be
central to the discussions in chapters 3–5.

1.4 Cosmological likelihood inference

While LSS cosmology is described as an initial value problem earlier in this chapter, its probab-
ilistic nature has also been made apparent by the preceding discussions. Therefore, LSS could
also be framed as an inverse problem of statistical inference: given some clustering measure-
ments, what could one learn about the underlying cosmological model, as parametrised by a
set of parameters?

The philosophical interpretation of probability chiefly falls into two schools of thought,
which take conceptually different approaches to statistical inference:²³

■ in the frequentists’ framework, the underlying model parameters are unknown but
fixed, and by constructing an appropriate estimator from the data, one would expect
that with repeated sampling, the estimator should yield increasingly tighter confidence
bounds enclosing the true value of model parameters;

■ in the Bayesian framework, the underlying model parameters are random variables
themselves, and any new information about them is encoded in their probability dis-
tributions conditional on the existing data.

Either of the two approaches has its own advantages and shortcomings, and in practice, a prag-
matic cosmologist should take an agnostic position and adapt to the problem at hand with
versatility.²⁴ However, in recent decades, the Bayesian framework has found wide application
and success in the field of cosmology, not least because of the limited repeatability of many
cosmological observations.²⁵ Using Bayes’ theorem, which is a basic yet profound result in
probability theory, one can find the posterior probabilityP of some cosmological model para-
meter(s) 𝜃 given the measurement data𝑿 ,

P(𝜃 |𝑿) = 𝜋 (𝜃 )
𝕡(𝑿 ) L(𝜃 ;𝑿 ) . (1.61)

²³ Many of the following discussions are based on textbook materials such as refs. [107–109] and reviews, e.g.
refs. [110–112].
²⁴  “Black cat or white cat, if it can catch mice, it’s a good cat.” A (translated) quote by Deng Xiaoping.
²⁵ This alludes to the issue of cosmic variance in particular.
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Here the likelihood functionL is given by the PDF of the data random variables conditional
on the model parameters,

L(𝜃 ;𝑿 ) = 𝕡(𝑿 |𝜃) ; (1.62)

the PDF 𝜋 (𝜃 ) specifies the prior distribution of the parameters; and the PDF of the data mar-
ginalised over all model parameters, 𝕡(𝑿 ), is sometimes known as the evidence and acts to
normalise the posterior. It is worth emphasising here that although the likelihood is formed
from the PDF of the data, it should be viewed as a function of the model parameters 𝜃 with
the data variables 𝑿 fixed at the observed values. In either the frequentists’ or the Bayesian
framework, the likelihood plays a central rôle in classical parameter inference.

In principle, both the prior distribution and the likelihood should ideally bemotivated by
the underlying theoretical model and physical processes that generate the measurement data,
e.g. the Poisson distribution for the galaxy number count as described in section 1.1; however,
this may not be always possible. In the absence of a theoreticallymotivated prior, an uninform-
ative prior distributionmay be used, e.g. the uniform prior for a location parameter such as the
mean, or the Jeffreys prior for a scale parameter like the variance.²⁶ For the likelihood distri-
bution, one could appeal to asymptotic normality when the data variable itself is the sum of
𝑁 independent random variables as 𝑁 → ∞; one example is the power spectrum averaged
in some wavenumber interval from many independent Fourier modes. Asymptotic normal-
ity as a universality law is warranted by the (generalised) central limit theorem, which states
that the sum of a large number of independent random variables converges in distribution to a
normal distribution regardless of their individual distributions, provided reasonable regularity
conditions are met.

As such, it is common in LSS analyses to assume the Gaussian likelihood, which refers
to the normal distribution of the data rather than the Gaussian shape of the likelihood in the
model parameter space.²⁷ If one takes the estimatedpower spectrumatbinnedwavenumbers𝑘𝑖
as the data vector, 𝑿 = p𝑷 =

(
p𝑃 (𝑘𝑖)

)
, then the Gaussian likelihood for some cosmological

parameter(s) 𝜃 takes the following form:

L
(
𝜃 ; p𝑷

)
= 𝕡

(
p𝑷
��𝜃 ) = 1√

|2πΣ |
exp

{
−1
2

[
p𝑷 − 𝑷 (𝜃 )

]⊺
Σ−1

[
p𝑷 − 𝑷 (𝜃 )

]}
. (1.63)

Here a hat p

• distinguishes an estimate from the underlying quantity itself, and 𝑷 (𝜃 ) is the
mean vector given by model predictions. All that is required for likelihood evaluation is then
the covariance matrix of the power spectrum,

Σ = cov
[
p𝑷
]
=

〈
p𝑷 p𝑷⊺

〉
−

〈
p𝑷
〉〈

p𝑷⊺
〉
. (1.64)

SinceΣ is a four-point correlator of the over-density field, analytic expressions for it are not
always available; even in the linear perturbative regimewhere thefield isGaussian andΣ canbe
decomposed into two-point correlators, the correlation between Fouriermodes introduced by

²⁶ More generally, one could subscribe to the principle of maximum entropy [see e.g. 109, 113].
²⁷ The term ‘Gaussian likelihood’, commonly used in astronomy, is regarded as a possiblemisnomer in this thesis;
it may have come from the misconception of equality as identity between the likelihood and the underlying data
distribution. See the discussion under equation (1.62) and also footnote 6 on page 6.
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the survey window can still pose significant challenges to its modelling.²⁸ Therefore in galaxy
survey analyses, it is usually more reliable to estimate the covariance matrix from𝑁mock(� 1)
mock catalogues,

pΣ =
1

𝑁mock − 1
𝑁mock∑
𝑗=1

(
p𝑷 𝑗 − s𝑷

) (
p𝑷 𝑗 − s𝑷

)⊺
, (1.65)

where the averaged power spectrum of the mock catalogues is

s𝑷 =
1

𝑁mock

𝑁mock∑
𝑗=1

p𝑷 𝑗 . (1.66)

Thenumber ofmocks,𝑁mock, should satisfy𝑁mock > 𝑑+2where𝑑 is the dimensionof thedata
vector 𝑿 = p𝑷 [116]. For typical galaxy survey analyses, 𝑁mock = O

(
103

)
(e.g. 𝑁mock = 1000

in recent eBOSS analyses [81, 82]).
With the replacement of the unknown underlying covariance matrixΣ by its estimate pΣ,

two key issues arise:
1) Σ appears in equation (1.63) as its inverse, the precision matrix Ψ = Σ−1, but

𝔼
[

pΣ−1
]
≠ 𝔼

[
pΣ
]−1, i.e. pΣ−1 is not an unbiased estimate of Ψ ;

2) pΣ is intrinsically noisy, which could introduce additional statistical uncertainty into
any estimates of 𝜃 .

With regard to the first point, ref. [117] noted that the conditional distribution of pΣ−1
��Σ−1

is inverse Wishart [118], and a multiplicative factor is needed to obtain an unbiased estimate
of Ψ ,

pΨ =
𝑚 − 𝑑 − 1

𝑚
pΣ−1 , (1.67)

where𝑚 = 𝑁mock − 1. As for the second point, refs. [116, 119, 120] have shown by means
of Taylor expansions in the covariance matrix and parameter errors that, to account for the
uncertainty in covariance estimation, the square uncertainties of the parameter estimates need
to be corrected by a multiplicative factor of

𝜎2
𝜃
(with pΣ)

𝜎2
𝜃
(withΣ)

=
1 + 𝐵(𝑑 − 𝑝)

1 +𝐴 + 𝐵(𝑝 + 1) , (1.68a)

with the factors𝐴 and 𝐵 given by

𝐴 =
2

(𝑚 − 𝑑) (𝑚 − 𝑑 − 3) and 𝐵 =
𝑚 − 𝑑 − 1

(𝑚 − 𝑑) (𝑚 − 𝑑 − 3) , (1.68b)

where 𝑝 is the number of parameters being estimated.
Recently, Sellentin & Heavens have employed a Bayesian approach to propagating covari-

ance estimationuncertainties to the estimated parameters, where the unknown true covariance
matrixΣ is treated as a random variable to be marginalised over [121, hereafter SH].²⁹ First,

²⁸ Nonetheless, significant progress has been made recently in deriving analytic covariance matrices; see e.g.
refs. [114, 115].
²⁹ This approach has been considered before [see e.g. 120], but SH has found a prior whichmakes the calculation
feasible.
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one recalls that the conditional distribution of pΣ
��Σ is Wishart with the PDF [118]

𝕡
(

pΣ
��Σ)

=
2−𝑚𝑑/2

𝛤𝑑 (𝑚/2)

��
pΣ
�� (𝑚−𝑑−1)/2
|Σ/𝑚 |𝑚/2

exp
[
−𝑚
2
tr

(
Σ−1 pΣ

)]
, (1.69)

where the multivariate gamma function is given by

𝛤𝑑 (𝑥) = π 𝑑 (𝑑−1)/4
𝑑∏
𝑖=1

𝛤
(
𝑥 − 𝑖−1

2

)
. (1.70)

If one specifies the Jeffreys prior forΣ,

𝜋 (Σ) ∝ |Σ |−(𝑑+1)/2 , (1.71)

then by equation (1.61), the posterior forΣ is given by the PDF of the inverse Wishart distri-
bution,

P
(
Σ

��
pΣ
)
=

2−𝑚𝑑/2

𝛤𝑑 (𝑚/2)

��𝑚 pΣ
��𝑚/2

|Σ | (𝑚+𝑑+1)/2
exp

[
−𝑚
2
tr

(
Σ−1 pΣ

)]
. (1.72)

Bymarginalising equation (1.63) over this posterior distribution, one thenobtains themodified
Student’s 𝑡 -distribution likelihood,

L
(
𝜃 ; p𝑷 , pΣ

)
=

∫
dΣ 𝕡

(
p𝑷
��𝜃,Σ)

P
(
Σ

��
pΣ
)

= (𝑚π)−𝑑/2
𝛤
(𝑚+1

2

)
𝛤
(
𝑚−𝑑+1

2

) �� pΣ
��−1/2 [1 + (

p𝑷 − 𝑷
)⊺

pΣ−1

𝑁 − 1
(
p𝑷 − 𝑷

)]−(𝑚+1)/2
. (1.73)

In comparisonwith the originalGaussian likelihood (eq. 1.63), the evaluationof themodified-𝑡
likelihood is no more computationally expensive. To gauge the amount of uncertainty intro-
duced by covariance estimation, Sellentin & Heavens use the Fisher information marginalised
over the estimated covariance matrix pΣ as a barometer, and considers the corresponding sys-
tematic loss of information through the volume change in the credibility regions of the pos-
terior distributionP as well as the figure of merit for the model parameters 𝜃 [122].

•

Despite the wide applicability of theGaussian likelihood, there are inevitably situations where
it should not be used: when one considers the binned power spectrum on very large scales,
the number of contributing Fourier modes is small, and thus the central limit theorem does
not apply. In those circumstances, it is imperative to consider non-Gaussian likelihoods, i.e.
non-normal underlying distributions of the data. Moreover, the discussion so far has neglected
the possibility that the covariance matrix itself may depend on the model parameters being es-
timated, i.e. Σ ≡ Σ (𝜃 ) in equations (1.63) and (1.64). These are the focal issues explored
in chapter 3; however, in situations where non-Gaussian likelihoods and parameter depend-
ence of the covariance matrix are not of concern, the results presented in this section remain
applicable.
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1.5 Motivation and outline

As primary CMB probes gradually saturate the cosmic variance bound, LSS probes such as
BAO and RSD will become ever more indispensable. Their statistical power lies within the
large three-dimensional data sets to be gathered by upcoming galaxy surveys such as DESI
andEuclid, which will map out unprecedented cosmic volumes and tighten cosmological con-
straints sensitive to clustering measurements on large scales; these include signatures of PNG
and relativistic effects, which are respectively important for inflationary model selection and
testing the nature of gravity on ultra-large scales [93–95, 123–130].

Although the study of galaxy clustering is now an established discipline, techniques for
analysing large galaxy surveys are still being constantly improved and updated. In order to fur-
ther motivate the research underlying this thesis, chapter 2 will review the current framework
of galaxy clustering analyses, where one constructs estimators of the power spectrum multi-
poles, which are compatible with fast Fourier transform (FFT) algorithms, out of a weighted
over-density field formed from the galaxy catalogue and a high-density, high-fidelity mock
catalogue. Chapters 3–5 will explore the different cross-sections of the confrontation between
theoretical modelling and data analysis of LSS observations on large, linear scales—

1) The issues of non-Gaussian likelihoods and parameter-dependent covariance matrices
mentioned in section 1.4 are addressed in chapter 3 (based on Paper I). Two new tech-
niques are proposed to resolve them: Gaussianisation of the data variable, and the res-
caling of covariance matrices for different cosmological models through the variance–
correlation decomposition;

2) In chapter 4 (based on Paper II), a forward-modelling approach is employed to propag-
atemeasurements of the tracer luminosity function to constraints of the relativistic bias
parameters, which crucially determine the amplitude of relativistic corrections to the
over-density field, and thus their scale-dependentmodifications of clustering statistics,
on scales close to the Hubble horizon;

3) A hybrid-basis Fourier analysis framework is introduced in chapter 5 (based on Pa-
per III), where the computational edge of the conventional power spectrum analysis is
combinedwith advantages of a spherical Fourier analysis that is more suited to realistic
survey geometry. The spherical Fourier analysis can circumvent the distant-observer
and plane-parallel approximations discussed in section 1.2, and by constructing its like-
lihood function directly from the over-density field, it does not require covariance es-
timation.

For reasons elaborated in section 1.3, local PNG 𝑓NL will be the primary parameter considered
for cosmological inference from large-scale galaxy clustering, as it serves as a natural test para-
meter for the methodologies presented in this thesis. It is also a key scientific objective for
next-generation large galaxy surveys such as DESI and Euclid. Finally, chapter 6 summarises
the results from these novel approaches to galaxy clustering analysis, points out new direc-
tions for future investigations, and concludes with an optimistic outlook for what may come
to fruition in the golden age of cosmology.



2

Galaxy Clustering Analysis

The common framework of galaxy clustering analysis has evolved over the last two decades
from the Feldman–Kaiser–Peacock (FKP) formalism originally outlined in ref. [58, hereafter
FKP]: the galaxy over-density field is first calculated fromthe survey galaxy catalogue anda syn-
thetic random catalogue, the latter essentially Monte Carlo sampling the background galaxy
number density as modulated by survey geometry and selection effects; at the same time, a
general weighting scheme can be applied to individual galaxies, which seeks to minimise the
variance of the summary statistics (most commonly the power spectrum multipoles binned
in wavenumbers). Based on this weighted galaxy over-density field, different estimators of
the summary statistics can be constructed, and the choice appropriate for a particular survey
analysis depends on the required accuracy and precision as well as the computational cost as-
sociated with the estimator. Finally, in a typical likelihood analysis where models are fitted to
the data, onemust also computemodel predictions for the chosen summary statistics, account-
ing for the survey geometry, selection effects and any other data transformations involved in
processing the raw catalogue data into the summary statistics.

Throughout this chapter, the Fourier analysis of galaxy clustering statistics is performed in
redshift space, so the subscript ‘𝑠 ’ denoting redshift-space quantitieswill be omitted for brevity;
in any case, the ambiguity between real- and redshift-space quantities can be eliminated by the
context or the coordinates explicitly used.

2.1 The Feldman–Kaiser–Peacock formalism

Given a survey catalogue of 𝑁g galaxies, one needs to synthesise a random catalogue with the
same geometry and selection effects as those of the survey catalogue, which should contain
a large number of galaxies, 𝑁s. The ratio of the number counts (or the mean number densit-
ies), 𝛼 = 𝑁g

/
𝑁s � 1, is chosen to be small to reduce the shot noise contribution from the

synthetic random catalogue. The FKP weighted over-density field is then given by

𝐹 (𝒔) = 𝑤 (𝒔)
𝐼 1/2
[𝑛(𝒔) − 𝛼 𝑛s(𝒔)] , (2.1)
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where 𝑛 and 𝑛s are the number densities of the survey and synthetic catalogues, 𝑤 represents
some weighting scheme,

𝐼 =
∫

d3𝒔𝑤 (𝒔)2 s𝑛(𝒔)2 (2.2)

is a normalisation factor, and s𝑛(𝒔) is the modulated background number density (recall from
eq. 1.24).

The number density fields can be evaluated as sums ofDirac delta contributions from each
galaxy in the catalogue, so the Fourier modes of the weighted over-density field are calculated
to be

𝐹 (𝒌) = 1

𝐼 1/2

𝑁g∑
𝑖=1

𝑤 (𝒔𝑖)e−i𝒌 ·𝒔𝑖 −
𝛼

𝐼 1/2

𝑁s∑
𝑖=1

𝑤 (𝒔𝑖)e−i𝒌 ·𝒔𝑖 , (2.3)

where the normalisation factor can be expressed as

𝐼 = 𝛼
𝑁s∑
𝑖=1

𝑤 (𝒔𝑖)2 s𝑛(𝒔𝑖) , (2.4)

and to ensure that 〈𝐹 〉 = 0, the number count ratio is recalculated to be

𝛼 =

∑𝑁g

𝑖=1𝑤 (𝒔𝑖)∑𝑁s
𝑖=1𝑤 (𝒔𝑖)

. (2.5)

For later convenience, one could define a series of integrals given by

𝐺𝑎,𝑏 (𝒌) = 𝐼−𝑎/2
∫

d3𝒔 e−i𝒌 ·𝒔 𝑤 (𝒔)𝑎 s𝑛(𝒔)𝑏 , 𝑎, 𝑏 ∈ ℕ , (2.6)

which is discretely evaluated as

𝐺𝑎,𝑏 (𝒌) = 𝛼
𝑁s∑
𝑖=1

𝑤 (𝒔𝑖)𝑎 s𝑛(𝒔𝑖)𝑏−1e−i𝒌 ·𝒔𝑖 . (2.7)

In practice, evaluation of each Fourier mode by direct summation can be prohibitively slow
for a large data set; to utilise FFT algorithms, galaxies are instead interpolated on a regular
cubic grid, and then Fouriermodes of the over-density field can be computedwith appropriate
multiplicative corrections to compensate for the amplitude change due to the interpolation
window [131]. The use of discrete Fourier transform alsomeans that there are aliasing effects in
the sampled Fourier modes, which are non-trivial to remove; however, this is only significant
for Fourier wavenumbers close to the Nyquist wavenumber, 𝑘N = 𝑁grid𝑘f

/
2, where 𝑁grid is

the grid number in each dimension and𝑘f is the fundamental wavenumber (recall from §1.1).¹
In Fourier space, it follows from equation (2.1) that〈

|𝐹 (𝒌) |2
〉
=

∫
d3𝒒

(2π)3
��𝐺1,1(𝒌 − 𝒒)

��2 𝑃 (𝒒) +𝐺2,1(0) , (2.8)

where the second term is the shot noise contribution. In the original FKP analysis of the In-
frared Astronomical Satellite (IRAS) survey, the window function𝐺1,1(𝒌) is very localised, so
given the choice of the normalisation factor 𝐼 in equation (2.2), it follows that〈

|𝐹 (𝒌) |2
〉
≈ 𝑃 (𝒌) + 𝑃shot . (2.9)

¹ See also ref. [132] which introduces the interlacing method for eliminating the odd-parity aliasing images.
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Therefore an estimator for the power spectrum without shot noise is given by

p𝑃 (𝒌) = |𝐹 (𝒌) |2 − 𝑃shot , (2.10)

where the shot noise power is calculated discretely by

𝑃shot =
1
𝐼

𝑁g∑
𝑖=1

𝑤 (𝒔𝑖)2 +
𝛼2

𝐼

𝑁s∑
𝑖=1

𝑤 (𝒔𝑖)2 . (2.11)

If one is only concernedwith the information in some isotropic bandpower spectrumobtained
by averaging in spherical shells of thickness Δ𝑘 ,

s𝑃 (𝑘) = 1
𝑉𝑘

∫
𝑞∈𝑆𝑘

d3𝒒 𝑃 (𝒒) , (2.12)

where the shell 𝑆𝑘 = [𝑘 − Δ𝑘/2, 𝑘 + Δ𝑘/2) centred at wavenumber 𝑘 has volume

𝑉𝑘 = 4π𝑘2Δ𝑘

[
1 + 1

12

(
Δ𝑘

𝑘

)2]
, (2.13)

then the estimator p𝑃 (𝒌) can be binned,

p𝑃 (𝑘) = 1
𝑁𝑘

∑
𝑞∈𝑆𝑘

p𝑃 (𝒒) , (2.14)

where 𝑁𝑘 is the number of wavevectors 𝒌 sampled within the shell.
To derive the FKP weighting scheme, one starts by considering the covariance between

Fourier modes,

〈𝐹 (𝒌1) 𝐹 ∗(𝒌2)〉 =
∫

d3𝒒

(2π)3 𝐺1,1(𝒌1 − 𝒒)𝐺∗1,1(𝒌2 − 𝒒) 𝑃 (𝒒)

+ (1 + 𝛼)𝐺2,1(𝒌1 − 𝒌2) . (2.15)

If the window function𝐺1,1(𝒌) is assumed to be localised (i.e. with sufficiently compact sup-
port), the covariance is non-vanishing only for small Δ𝒌 = 𝒌2 − 𝒌1,

〈𝐹 (𝒌1) 𝐹 ∗(𝒌2)〉 ≈ 𝐺2,2(Δ𝒌) 𝑃 (𝒌1) + (1 + 𝛼)𝐺2,1(Δ𝒌) . (2.16)

With 𝐹 being a GRF, the covariance of the power spectrum estimator is then

cov
[
p𝑃 (𝒌1), p𝑃 (𝒌2)

]
≈ |〈𝐹 (𝒌1) 𝐹 ∗(𝒌2)〉|2

≈
��𝐺2,2(Δ𝒌) 𝑃 (𝒌1) + (1 + 𝛼)𝐺2,1(Δ𝒌)

��2 . (2.17)

For sufficiently large width Δ𝑘 of the aforementioned spherical shells, the variance of the iso-
tropic band power spectrum estimator p𝑃 (𝑘) can be expressed as

𝜎2
p𝑃
(𝑘) ≈ 1

𝑉𝑘

∫
d3𝒒

��𝐺2,2(𝒒) s𝑃 (𝑘) + (1 + 𝛼)𝐺2,1(𝒒)
��2 , (2.18)
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and the fractional variance is thus

𝜎2
p𝑃
(𝑘)

/
s𝑃 (𝑘)2 ≈ (2π)

3

𝑉𝑘𝐼 2

∫
d3𝒔𝑤 (𝒔)4 s𝑛(𝒔)4

[
1 + 1

s𝑛(𝒔) s𝑃 (𝑘)

]
. (2.19)

By considering its functional variation with respect to the weight𝑤 and the stationary point
satisfying

𝛿

𝛿𝑤

(
𝜎2

p𝑃

/
s𝑃2

)
= 0 , (2.20)

one finally obtains the FKP weight (taking 𝛼 ≈ 0),

𝑤 (𝒔;𝑘) = 1

1 + s𝑛(𝒔) s𝑃 (𝑘)
. (2.21)

This weight is explicitly dependent on the wavenumber 𝑘 of the band power spectrum one
attempts to estimate; in practice, it suffices to set it to a constant value typical of the power
spectrum in the range of scales of interest, e.g. s𝑃 = 10000h3Mpc−3 set in the BOSS Data
Release 12 analysis by ref. [79], or s𝑃 = 30000h3Mpc−3 for the PNG analysis with the eBOSS
QSO sample in ref. [103].

The arguments presented above follow from the original work of FKP; subsequently,
ref. [133] extended the FKPweighting scheme to account for luminosity dependence in galaxy
clustering, and ref. [134] has formulated a more general and formal derivation of FKP-style
weights. Additional weights accounting for observational systematics such as redshift failure
and fibre collision can also be incorporated [e.g. 135, 136]. However, the redshift dependence
of power spectrum estimators has so far only been treated rather simplistically. Since galaxies
of different redshifts and weights may contribute to the same power spectrum measurement,
it is only sensible to define an effective redshift for a given catalogue sample [e.g. 79],

𝑧eff =

∑𝑁g

𝑖=1𝑤 (𝒔𝑖)𝑧𝑖∑𝑁g

𝑖=1𝑤 (𝒔𝑖)
. (2.22)

For two-point function measurements, ref. [137] argues for a different definition through a
Taylor expansion around the stationary redshift point,

𝑧eff =

∑𝑁g

𝑖=1𝑤 (𝒔𝑖)2𝑧𝑖∑𝑁g

𝑖=1𝑤 (𝒔𝑖)2
; (2.23)

there are alternative definitions quadratic in weights, but their differences are negligible given
the current level of statistical uncertainties [138]. This ambiguity in the effective redshift is
a motivation for non-tomographic analyses, e.g. the spherical Fourier analysis discussed in
chapter 5. It is also worth noting that from the FKP derivation, an approximate diagonal cov-
ariance matrix for the band power spectrum estimator emerges,

cov
[
p𝑃
(
𝑘 𝑗

)
, p𝑃 (𝑘𝑚)

]
≈ 𝑉c
𝑉𝑘 𝑗

𝑃
(
𝑘 𝑗

)
𝑃 (𝑘𝑚)𝛿 (K)𝑗𝑚 , (2.24)

where the coherence volume factor is given by

𝑉c(𝑘) =
(2π)3
𝐼 2

∫
d3𝒔𝑤 (𝒔)4 s𝑛(𝒔)4

[
1 + 1

s𝑛(𝒔) s𝑃 (𝑘)

]
. (2.25)

However, this covariance matrix does not account for the correlation between wavenumber
bins as introduced by the survey window, selection and weighting scheme.
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𝒔1

𝒔2

(1 − 𝜆)𝒔
𝜆𝒔

𝒅

Figure 2.1. Geometric configuration of the local plane-parallel picture. For a galaxy pair at po-
sitions 𝒔1 and 𝒔2 separated by 𝒔 = 𝒔2 − 𝒔1, any lines of sight 𝒅 in between (i.e. 𝜆 ∈ [0, 1]) are
considered equivalent.

2.2 Local plane-parallel estimators

Whilst the FKP formalismandweighting scheme enjoywide applicability, the power spectrum
estimator (eq. 2.10) presented earlier, which assumes a localised window function for narrow,
pencil beam–like surveys, is not suitable for wide-area surveys. Moreover, as one recalls from
section 1.2, galaxy clustering in redshift space is anisotropicwith the key observables prescribed
in the global plane-parallel limit. However, the assumption of a global line of sight is an invalid
one for large surveys, since the line of sight to each galaxy varies in direction significantly. This
poses the question as to whether the global plane-parallel power spectrum 𝑃 (𝑘, 𝜇), or equival-
ently its multipoles 𝑃ℓ (𝑘), can actually be recovered from clustering measurements.

One attempt to address this problem, introduced by Yamamoto et al. [139], is to adopt
the local, or pairwise, plane-parallel approximation, whereby the power spectrum multipole is
estimated by

p𝑃ℓ (𝑘) = (2ℓ + 1)
∫

d2𝒌̂
4π

∫
d3𝒔1 e

i𝒌 ·𝒔1
∫

d3𝒔2 e
−i𝒌 ·𝒔2 L ℓ

(
𝒌̂ · 𝒅

)
𝐹 (𝒔1) 𝐹 (𝒔2) (2.26)

with a pairwise line of sight,

𝒅 = 𝜆𝒔1 + (1 − 𝜆)𝒔2 (0 ⩽ 𝜆 ⩽ 1) , (2.27)

for two galaxies located at positions 𝒔1 and 𝒔2 that contribute to the clustering signal (see
Fig. 2.1 for a diagram) [78]. For any value of 𝜆 ∈ [0, 1], 𝒅 lies between 𝒔1 and 𝒔2 and is con-
sidered equivalent, i.e. locally parallel. The advantage of this estimator, hereafter referred to
as the Yamamoto estimator, stems from the exploitation of the remaining rotational symmetry
around the observer, despite anisotropies around the line of sight induced byRSDs and theAP
effect. It works effectively when the clustering scale of interest is small in comparison with the
typical distance to a pair of galaxies. However, it is evident that the Yamamoto estimator can-
not match the global plane-parallel limit perfectly; to see this, one could note that the choice
of 𝜆 = 0 or 1 above breaks the exchange symmetry in a galaxy pair, and the resulting estimate
will be different from that with, for instance, 𝜆 = 1/2 . The discrepancy between the expect-
ation

〈
p𝑃ℓ

〉
(with any choice of 𝜆 ∈ [0, 1]) and the global plane-parallel 𝑃ℓ is the so-called
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‘wide-angle effect’, which motivates the spherical (or hybrid-basis) Fourier analysis discussed in
chapter 5.

To unravel the relationship between theYamamoto estimator and the global plane-parallel
prediction, it is instructive to consider the so-called ‘local power spectrum’,

𝑃 (𝒌, 𝒅; 𝜆) =
∫

d3𝒔 e−i𝒌 ·𝒔
〈
𝛿
(
𝒅 − (1 − 𝜆)𝒔

)
𝛿
(
𝒅 + 𝜆𝒔

)〉
, (2.28)

where 𝒔 = 𝒔2−𝒔1 is the separation vector [140]. By expressing𝛿 as an inverse Fourier transform
and changing variables, one arrives at

𝑃 (𝒌, 𝒅; 𝜆) =
∬

d3𝒒

(2π)3
d3𝒑

(2π)3 e
i (𝒒+𝒑)·𝒅 〈𝛿 (𝒒) 𝛿 (𝒑)〉

∫
d3𝒔 e−i𝒌 ·𝒔 e−i (1−𝜆)𝒒·𝒔 e i𝜆𝒑·𝒔

=
∫

d3𝒒

(2π)3 e
i (𝒌+𝒒)·𝒅/𝜆

〈
𝛿 (𝒒) 𝛿

(
−𝒒 + 𝒌+𝒒

𝜆

)〉
=

∫
d3𝒒

(2π)3 e
i𝒒·𝒅 〈𝛿 (𝒌 + (1 − 𝜆)𝒒) 𝛿 (−𝒌 + 𝜆𝒒)〉 , (2.29)

where the Fourier representation and the scaling property of the Dirac delta distribution have
been used in the second and third lines respectively. In the last line, the Fourier-space two-
point correlator does not reduce to the usual power spectrum, since homogeneity and trans-
lational invariance are broken by anisotropy. However, in the global plane-parallel limit,
the two-point correlator collapses to become diagonal,

〈
𝛿
(
𝒌 + (1 − 𝜆)𝒒

)
𝛿
(
−𝒌 + 𝜆𝒒

)〉
→

(2π)3 𝛿 (D) (𝒒) 𝑃 (𝒌), so that one recovers 𝑃 (𝒌, 𝒅; 𝜆) → 𝑃 (𝒌). If one instead considers a finite
survey volume and averages over all possible lines of sight, then

1
𝑉s

∫
d3𝒅 𝑃 (𝒌, 𝒅; 𝜆) = 𝛿 (K)𝒒0

〈
𝛿
(
𝒌 + (1 − 𝜆)𝒒

)
𝛿
(
−𝒌 + 𝜆𝒒

)〉
= 〈𝛿 (𝒌) 𝛿∗(𝒌)〉 , (2.30)

where equation (1.12) has been used. This suggests that the volume average of the local power
spectrum is equivalent to the two-point auto-correlator. With the inclusion of the Legendre
polynomials, an analogous result holds for the Yamamoto estimator (with any choice of 𝜆 ∈
[0, 1]; label omitted hereafter) [78],〈

p𝑃ℓ (𝑘)
〉
=
2ℓ + 1
𝑉s

∫
d3𝒅

∫
d2𝒌̂
4π

L ℓ
(
𝒌̂ · 𝒅

)
𝑃 (𝒌, 𝒅) = 1

𝑉s

∫
d3𝒅 𝑃ℓ (𝑘, 𝑑) , (2.31)

where the following Legendre expansion holds,

𝑃 (𝒌, 𝒅) =
∑
ℓ

L ℓ
(
𝒌̂ · 𝒅

)
𝑃ℓ (𝑘, 𝑑) . (2.32)

If one considers the local correlation function analogously defined in configuration space,

𝜉 (𝒔1, 𝒔2) ≡ 𝜉 (𝒔, 𝒅) =
∑
ℓ

𝜉ℓ (𝑠, 𝑑) L ℓ
(
𝒔 · 𝒅

)
, (2.33)

where each multipole 𝜉ℓ (𝑠, 𝑑) admits a wide-angle expansion of the form

𝜉ℓ (𝑠, 𝑑) =
∑
𝑖

( 𝑠
𝑑

)𝑖
𝜉 (𝑖)ℓ (𝑠) , (2.34)
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then the multipole 𝑃ℓ (𝑘, 𝑑) can be obtained by a Hankel transform,

𝑃ℓ (𝑘, 𝑑) = 4π i−ℓ
∫

𝑠2 d𝑠 𝑗ℓ (𝑘𝑠) 𝜉ℓ (𝑠, 𝑑) , (2.35)

where 𝑗ℓ is the spherical Bessel function of the first kind. The coefficients 𝜉 (𝑖)ℓ of thewide-angle
expansion (eq. 2.34) depend on the choice of the line of sight, and they are formed from the
correlation function multipoles 𝜉ℓ (𝑠) derived in the global plane-parallel limit. For detailed
derivation of the wide-angle expansion and these coefficients, the reader may refer to refs. [78,
141, 142].² Thekeypoint here is that, as it is evident now, theYamamoto estimator as the volume
average of the local power spectrum 𝑃ℓ (𝑘, 𝑑) contains wide-angle corrections at all orders to
the global plane-parallel limit [142].

When the Yamamoto estimator (eq. 2.26) was first introduced with 𝜆 = 1/2 , it was con-
sidered computationally expensive to evaluate because of the nested doubled integral. How-
ever, with the endpoint line-of-sight choice (𝜆 = 0 or 1), refs. [140, 145] recognised that the
double integral becomes separable and is compatible with FFT algorithms. If one considers
the transformation

𝐹𝑛 (𝒌) =
∫

d3𝒔 e−i𝒌 ·𝒔
(
𝒌̂ · 𝒔

)𝑛
𝐹 (𝒔) , (2.36)

then by writing each Legendre polynomial as a sum of monomials,

L ℓ (𝜇) = 2−ℓ
bℓ/2c∑
𝑛=0
(−1)𝑛

(
ℓ

𝑛

) (
2ℓ − 2𝑛
ℓ

)
𝜇ℓ−2𝑛 , (2.37)

one can obtain the Yamamoto estimator as

p𝑃ℓ (𝑘) =
2ℓ + 1
2ℓ

bℓ/2c∑
𝑛=0
(−1)𝑛

(
ℓ

𝑛

) (
2ℓ − 2𝑛
ℓ

) ∫
d2𝒌̂
4π

𝐹 ∗0 (𝒌) 𝐹ℓ−2𝑛 (𝒌) . (2.38)

Here 𝐹𝑛 (𝒌) can be calculated using (𝑛 + 1)(𝑛 + 2)/2 = O
(
𝑛2

)
FFTs of the form∫

d3𝒔 e−i𝒌 ·𝒔𝑠𝑖1 · · · 𝑠𝑖𝑛 𝐹 (𝒔) , (2.39)

where𝑠𝑖 𝑗 is the 𝑖 𝑗 thCartesian component (𝑖 𝑗 ∈ {1, 2, 3}) of 𝒔;³ for a givenpower spectrummul-
tipole of degree ℓ , the total number of FFTs is thusO

(
ℓ3

)
; for all ℓs up to some maximum de-

gree ℓmax, the total remainsO
(
ℓ3max

)
as 𝐹𝑛 does not need to be recomputed for each ℓ . Ref. [140]

has suggested a method to reduce the number of FFTs by breaking down higher-degree Le-
gendre polynomials, for instance L4, into powers of L2 which may be redistributed between a
pair of 𝛿s in equation (2.26); however, this method was found to increase the variance of the
estimator. Instead, ref. [146] has improved this algorithm by noting that it is more natural to
decompose Legendre polynomials into orthogonal spherical harmonics𝑌ℓ𝑚 ,

L ℓ
(
𝒌̂ · 𝒔

)
≡ 4π

2ℓ + 1
ℓ∑

𝑚=−ℓ
𝑌ℓ𝑚

(
𝒌̂
)
𝑌 ∗ℓ𝑚 (𝒔) , (2.40)

² Note that the use of the notation 𝜉 (𝑖)ℓ agrees with that in ref. [142] but is reserved for a different yet related
quantity in ref. [78]. Many of the formulæ contained in these references have been originally derived for various
wide-angle estimators for the correlation function; see e.g. refs. [143, 144].
³ The number of FFTs here is equal to the number of unique terms in a trinomial expansion, since

(
𝒌̂ · 𝒔

)𝑛 is a
power of trinomials in three dimensions.
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so one can instead compute

𝐹ℓ (𝒌) =
4π

2ℓ + 1
ℓ∑

𝑚=−ℓ
𝑌ℓ𝑚

(
𝒌̂
) ∫

d3𝒔 e−i𝒌 ·𝒔 𝑌 ∗ℓ𝑚 (𝒔) 𝐹 (𝒔) (2.41)

by 2ℓ + 1 = O (ℓ) FFTs, and thus obtain the Yamamoto estimator by

p𝑃ℓ (𝑘) = (2ℓ + 1)
∫

d2𝒌̂
4π

𝐹 ∗0 (𝒌) 𝐹ℓ (𝒌) . (2.42)

The total number of FFTs for all ℓs up to ℓmax is therefore onlyO
(
ℓ2max

)
.

The FFT-based Yamamoto estimator is currently the standard summary statistics for
galaxy clustering analysis; it was adopted in the most recent eBOSS analyses such as refs. [81,
103, 147].⁴

2.3 Window convolution of models

It was shown earlier in equation (2.8) or (2.15) that in general, the two-point correlator of the
weighted over-density field 𝐹 is related to the underlying power spectrum𝑃 but convolvedwith
the function |𝐺1,1 |2 and layered with shot noise𝐺2,1. Whilst the shot noise is additive and can
be either subtracted from the Yamamoto estimator or included inmodel predictions (possibly
as a nuisance parameter to be marginalised over), the convolution with a window function
changes both the amplitude and shape of the power spectrum and is thus more difficult to be
undone. Ref. [149] argues that deconvolution, an inversion process, generally amplifies statist-
ical noise, and hence a forward-modelling approach is more desirable. However, the convolu-
tion of amodel power spectrumnaïvely evaluated as a Riemannian integral by FFTs is not only
slow but may also suffer from discrete sampling effects such as aliasing. Although these issues
also affect power spectrum measurements on smaller scales, FFTs are only performed once; in
contrast, convolution needs to be repeated whenever the base model changes, and the mixing
of wavenumbers exacerbates any discrete sampling effects. Furthermore, Cartesian grids used
for FFTs do not provide a regular sampling of the angular variable 𝜇 of the anisotropic power
spectrum.

In light of these challenges, ref. [149] has devised a technique for the window convolution
of power spectrum models albeit performed in configuration space. To avoid cluttered nota-
tion, here the FKP galaxy over-density field is simply written as

𝐹 (𝒔) =𝑊 (𝒔) 𝛿 (𝒔) , (2.43)

where the generalised window function𝑊 encompasses the survey window (eq. 1.24), the
weighting scheme𝑤 and any normalisation factors. In configuration space, the windowed cor-
relation function is

r𝜉 (𝒔) = 〈𝐹 (𝒙) 𝐹 (𝒙 + 𝒔)〉 = 𝑄 (𝒔) 𝜉 (𝒔) , (2.44)

⁴ Some previous analyses have also considered power spectrum ‘wedges’ [148], i.e. the anisotropic power spec-
trum 𝑃 (𝑘, 𝜇) binned in 𝜇, which allow certain anisotropic modes affected by survey systematics to be removed.
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where the tilder

• denotes awindowed quantity, and the function𝑄 is given as a volume average,

𝑄 (𝒔) =
∫

d3𝒙𝑊 (𝒙)𝑊 (𝒙 + 𝒔) =
∫

d3𝒌
(2π)3 e

i𝒌 ·𝒔 |𝑊 (𝒌) |2 , (2.45)

by invoking ergodicity (see §1.1).⁵,⁶ Decomposing r𝜉 and𝑄 into Legendre multipoles defined
for the cosine of the angle between the pairwise line of sight and the separation vector, 𝜇𝒔 =
𝒅 · 𝒔, one finds

r𝜉ℓ (𝑠) =
2ℓ + 1
2

∬
d𝜇𝒔

d𝜑𝒔
2π

L ℓ (𝜇𝒔)
∑
ℓ1

𝑄ℓ1 (𝑠) L ℓ1 (𝜇𝒔)
∑
𝐿

𝜉𝐿 (𝑠) L𝐿 (𝜇𝒔) , (2.46)

where𝜑𝒔 is the azimuthal angle of the separation vector 𝒔 around the line of sight 𝒅 . By further
decomposing products of Legendre polynomials as

L ℓ (𝜇𝒔) L𝐿 (𝜇𝒔) =
∑
ℓ2

𝐴ℓ2ℓ𝐿 L ℓ2 (𝜇𝒔) , (2.47)

one obtains

r𝜉ℓ (𝑠) = (2ℓ + 1)
∑
𝐿

[∑
ℓ1

1
2ℓ1 + 1

𝐴ℓ1ℓ𝐿𝑄ℓ1 (𝑠)
]
𝜉𝐿 (𝑠) . (2.48)

The coefficients𝐴ℓ1ℓ𝐿 can be found from the identity

L ℓL𝐿 ≡
min{ℓ,𝐿}∑
ℓ ′=0

2ℓ + 2𝐿 − 4ℓ ′ + 1
2ℓ + 2𝐿 − 2ℓ ′ + 1

𝐶ℓ−ℓ ′𝐶ℓ ′𝐶𝐿−ℓ ′

𝐶ℓ+𝐿−ℓ ′
L ℓ+𝐿−2ℓ ′ , (2.49)

where 𝐶ℓ = (2𝑝 − 1)!!/𝑝! ≡ (2𝑝 − 1)(2𝑝 − 3) · · · 1/𝑝! [150]. For the monopole, quadru-
pole and hexadecapole with ℓ = 0, 2, 4 in the Kaiser RSD model (see §1.2), the results can be
written as a matrix multiplication [79, 149],

©­­«
r𝜉0
r𝜉2
r𝜉4

ª®®¬ =
4∑
𝑖=0

𝑄2𝑖M2𝑖

©­­«
𝜉0
𝜉2
𝜉4

ª®®¬ , (2.50)

where the matricesM2𝑖 areM0 = I3 (the identity matrix) and

M2 =
©­­«
0 1/5 0
1 2/7 2/7
0 18/35 20/77

ª®®¬ , M4 =
©­­«
0 0 1/9
0 2/7 100/693
1 20/77 162/1001

ª®®¬ ,
M6 =

©­­«
0 0 0
0 0 25/143
0 45/143 20/143

ª®®¬ , M8 =
©­­«
0 0 0
0 0 0
0 0 490/2431

ª®®¬ .
(2.51)

To link the windowed correlation function to the expectation of the Yamamoto estimator
(eq. 2.26), one may use the plane wave expansion

e−i𝒌 ·𝒔 ≡
∑
ℓ

(2ℓ + 1) i−ℓ 𝑗ℓ (𝑘𝑠) L ℓ (𝒌 · 𝒔) (2.52)

⁵ Note that𝑊 itself is non-stochastic, and𝑄 =𝑊 2 is analogous to the function𝐺1,1 in equation (2.8).
⁶ No volumenormalisation factor is neededhere if the FKPnormalisation factor 𝐼 (eq. 2.2) is included, inwhich
case the physical dimension of the generalised window𝑊 is [𝑊 ] = L−3/2, and thus [𝑄] = 1.
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to write〈
p𝑃ℓ (𝑘)

〉
=
2ℓ + 1
2

∑
ℓ1

(2ℓ1 + 1) i−ℓ1
∬

d𝜇𝒌
d𝜑𝒌
2π

∫
d3𝒙

∫
d3𝒔 𝑗ℓ1 (𝑘𝑠)

× L ℓ1

(
𝒌̂ · 𝒔

)
L ℓ

(
𝒌̂ · 𝒅

)
𝑊 (𝒙)𝑊 (𝒙 + 𝒔)

∑
𝐿

𝜉𝐿 (𝑠) L𝐿
(
𝒔 · 𝒅

)
= (2ℓ + 1) i−ℓ

∫
d3𝒔 𝑗ℓ (𝑘𝑠)

∑
𝐿

𝜉𝐿 (𝑠)
∑
ℓ2

𝐴ℓ2ℓ𝐿

∫
d3𝒙𝑊 (𝒙)𝑊 (𝒙 + 𝒔)L ℓ2

(
𝒔 · 𝒅

)
= 4π i−ℓ

∫
𝑠2 d𝑠 𝑗ℓ (𝑘𝑠)(2ℓ + 1)

∑
𝐿

𝜉𝐿 (𝑠)
[∑
ℓ2

1
2ℓ2 + 1

𝐴ℓ2ℓ𝐿𝑄ℓ2 (𝑠)
]

= 4π i−ℓ
∫

𝑠2 d𝑠 𝑗ℓ (𝑘𝑠) r𝜉ℓ (𝑠) , (2.53)

where to derive the second line, the orthogonality condition for Legendre polynomials and
equation (2.47) are used; to derive the third line, the definition of the multipole 𝑄ℓ is used;
and to derive the last line, equation (2.48) is used.

The derivation above suggests the following procedure for convolving any model of the
power spectrum multipoles 𝑃ℓ with the window function𝑄 =𝑊 2:

1) perform the inverse spherical Bessel transform (commonly referred to as the Hankel
transform) of 𝑃ℓ into the correlation function multipoles,⁷

𝜉ℓ (𝑠) = 4π iℓ
∫

𝑘2 d𝑘 𝑗ℓ (𝑘𝑠) 𝑃ℓ (𝑘) ; (2.54)

2) couple the multipoles 𝜉ℓ with the window function using equation (2.48), and thus
obtain the windowed correlation function multipoles r𝜉ℓ ;

3) perform the spherical Bessel transform of r𝜉ℓ into the windowed model of power spec-
trum multipoles,

r𝑃ℓ (𝑘) = 4π i−ℓ
∫

𝑠2 d𝑠 𝑗ℓ (𝑘𝑠) r𝜉ℓ (𝑠) . (2.55)

There are two technicalities in the procedure above. Thefirst is the computationof thewindow
function multipoles𝑄ℓ (𝑠). These can be determined by a pair counting approach used in cor-
relation function measurements [151], as suggested by ref. [149]. Alternatively, one could still
employ the FFT-basedYamamoto estimator to determine𝑄ℓ (𝑘) bymeasuring the power spec-
trum of a synthetic random catalogue, which possesses the same geometry, sample selection
and weighting as the survey catalogue, and is embedded in a large and finely spaced Cartesian
grid for better determination at both low and high wavenumbers (compared to the funda-
mental and Nyquist wavenumbers respectively). This FFT procedure only needs to be per-
formed once, and by a spherical Bessel transform,𝑄ℓ (𝑠) can then be readily computed [142].
The second technicality concerns the numerical implementation of the spherical Bessel, or
Hankel, transform, which may suffer from poor accuracy due to the oscillatory behaviour of
spherical Bessel functions 𝑗ℓ . However, a FFT algorithm based on logarithmically-spaced co-
ordinate grid addresses this problem [152], which is numerically implemented by codes such
as fflog [153] and cfi.

⁷ The actual Hankel transform, also known as the Fourier–Bessel transform, is defined in terms of the Bessel
function of the first kind, 𝐽ℓ , with a slightly different measure.
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Before one could substitute the power spectrummultipoles p𝑃ℓ measured by theYamamoto
estimator and the window-convolved model r𝑃ℓ into a likelihood function, there is one final is-
sue which needs to be considered in conjunction with the window function: an integral con-
straint due to the estimation of the background galaxy number density [154]. Since the back-
ground galaxy number density is unknown, the mean number density of the survey catalogue
is used as a proxy, and by construction, the measured weighted over-density field q𝐹 is shifted
from the actual value 𝐹 ,

q𝐹 (𝒔) = 𝐹 (𝒔) − 𝑊 (𝒔)∫
d3𝒙𝑊 (𝒙)

∫
d3𝒙 𝐹 (𝒙) , (2.56)

so that
∫
d3𝒔 q𝐹 (𝒔) = 0. In Fourier space, this becomes

q𝐹 (𝒌) = 𝐹 (𝒌) − 𝑊 (𝒌)
𝑊 (𝒌 = 0) 𝐹 (𝒌 = 0) . (2.57)

It is evident that the integral constraint forces the zero-wavenumber Fourier mode to vanish,
q𝐹 (𝒌 = 0) = 0, and with the window function, this mode attenuation propagates to Fourier
modes at other wavenumbers, in particular at large scales. Therefore one needs to correct the
window-convolved model of power spectrum multipoles by [79, 142, 149, 154, 155]

r𝑃ℓ (𝑘) ↦→ r𝑃ℓ (𝑘) −
𝑄ℓ (𝑘)

𝑄ℓ (𝑘 = 0)
r𝑃0(0) . (2.58)

This is actually an approximate prescription merely to ensure that lim𝑘→0 r𝑃ℓ (𝑘) = 0, and
a more general scheme for integral constraint corrections valid in the local plane-parallel ap-
proximation is provided by ref. [156], which also accounts for the fact that the radial selection
function may be determined from the survey catalogue as well. Finally, it is worth comment-
ing here that the FKP normalisation factor 𝐼 (eq. 2.2) ensures that𝑄0(𝑠 = 0) = 1; therefore,
if one neglects the factor 𝐼 when measuring the weighted over-density field, a simple method
to ensure that any convolved power spectrum multipoles have the correct amplitude is by nor-
malising the window function multipoles to the value 𝑄0(𝑠 = 0) = 1. Similarly, for the in-
tegral constraint correction, one could also normalise the window function multipoles to the
value𝑄0(𝑘 = 0) = 1.



3

Power SpectrumGaussianisation and
Covariance Decomposition

At the interface of the confrontation between theoretical models and observational measure-
ments is the probabilistic interpretation connecting the two. Efforts to expand data sets and
refine analytic models would thus be in vain if the underpinning probability distribution as-
sumed in a cosmological likelihood analysis is inadequate or outright wrong. In section 1.4, it
is discussed how, in the absence of any theoretically motivated probability distributions, one
might appeal to asymptotic normality or the principle of indifference to prescribe a normal
distribution for cosmological data sets, which are often compressed or ‘binned’ from many
independent data points.

The clustering of galaxies as biased tracers of the underlying matter distribution, as dis-
cussed in chapter 1, provides important probes of the large-scale structure of the Universe. On
large scales where cosmic density fluctuations are described byGRFs, the power spectrum con-
tains all of the information in the galaxy distribution.¹ In practice, the galaxy clustering power
spectrum can only be sampled at discrete wavenumbers and measured in wavenumber bands.
Except at scales close to the size of the galaxy survey, the band power spectrum is the average
square amplitude of many independent clustering modes and hence, by the central limit the-
orem, can bemodelled by themultivariate normal distribution. This has served as the common
basis for most galaxy survey analyses in the past [e.g. 79–82, 147]. As discussed in section 1.4,
given a theoretical model for the data, the remaining ingredient of a multivariate normal dis-
tribution is its covariance matrix, and in the past, many efforts have been devoted to the accur-
ate estimation of covariance matrices subject to limited computational resources. Unbiased
covariance matrix estimates are often made from a set of mock catalogues synthesised using
algorithms ranging from fast but approximate perturbation theory computations to slow yet
detailed 𝑁 -body simulations, or combinations of the two [157–159] (see also refs. [160–162]
for a comprehensive comparison of these methods). One could further reduce the computa-

¹ Of course, a non-zero value of PNG means this is not exactly true, though the level of PNG is expected to be
small and its main manifestation is in the clustering amplitude change; see the discussion in section 1.3.
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tional burden and enhance the precision of covariance matrix estimates through techniques
such as the shrinkage method, which essentially interpolates between empirical estimates and
theoretical models [163], or the covariance tapering method [164, 165].

However, as already discussed in section 1.4, there are numerous caveats to using a Gaus-
sian likelihood with an estimated covariance matrix; they are not just limited to the possible
need to de-bias the precision matrix and the requirement to account for covariance estima-
tion uncertainties in the inferred parameter constraints. In a frequentists’ framework, a Gaus-
sian approximation for the underlying probability distribution may be sufficient when one is
primarily interested in the maximum likelihood point with the associated uncertainties given
by the curvature of the likelihood in its neighbourhood. However, when asymptotic normal-
ity does not apply and one needs to adopt a Bayesian perspective for parameter inference, the
overall shape of the probability distribution matters. In this case, even an arbitrarily precise
covariance matrix estimate does not guarantee accurate parameter inference owing to non-
negligible higher moments in the non-normal distribution [166]. Moreover, as mock cata-
logues are computationally expensive, they are usually produced at a fixed fiducial cosmolo-
gical model, whereas in reality, the covariance matrix can depend on the underlying cosmolo-
gical parameters and therefore must vary with the model being tested; this has adverse implic-
ations for likelihood analysis, as demonstrated by ref. [167] in the context of cosmic shear. In
summary, failure to account for either the full shape of the likelihood distribution (and thus
the posterior distribution) or the parameter dependence of the covariance matrix may dimin-
ish the potential of future surveys, which are promised to deliver more accurate and precise
cosmological constraints.

There have been recent efforts to go beyond the Gaussian likelihood approximation in
various contexts: refs. [166, 168] have considered the likelihood for non-Gaussian fields;² mo-
tivated by constraints imposed by non-negativity of the power spectrum, refs. [169–171] have
found a transformation that improves the data normality for the bounded configuration-space
correlation functionwhich has a non-normal distribution; ref. [172] has considered the gamma
distribution for the power spectrum multipoles and the log-normal plus Gaussian approxim-
ation, and assessed their effects on parameter estimation in comparison with the Gaussian
approximations; for the three-dimensional power spectrum, ref. [173] has rederived the prob-
ability distribution of single clustering modes for GRFs, and compared the resulting posterior
distribution with approximations inspired by similar studies of the CMB [e.g. 174–177]. How-
ever, these earlier works are either limited to univariate or bivariate distributions, or have neg-
lected the window function due to survey geometry and selection effects which can correlate
independent clustering modes.

In this chapter, we focus on the power spectrum monopole as the summary statistic of a
galaxy clustering analysis in the FKP framework (see §2), though our methodology trivially
generalises to other power spectrum multipoles, or indeed any linear combinations of quad-
ratic amplitudes of Gaussian clustering modes.³ The underlying non-normal probability dis-

² These considerations concern the quasi-linear scales which are beyond the scope of this thesis, and are men-
tioned here as part of a broader context.
³ Although the Gaussianisation technique proposed in this chapter also works with other types of data such as
thebispectrum, theprecise formof theGaussianising transformation required is non-trivial toderive anddifferent
from the case of two-point statistics considered here.
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tribution is rederived for thewindowed galaxy clustering power spectrumof a Poisson sampled
GRF, though it is analytically too complex for practical evaluations. Therefore themultivariate
normal distribution is reinstated through a Gaussianising transformation, orGaussianisation,
which improves the data normality. We also propose the variance–correlation decomposition
to capture the cosmological dependence of the covariance matrix in the linear perturbative re-
gimeusing a rescalingmethod. It isworth emphasising that thedataGaussianisationprocedure
is a non-linear transformation, so the expectation value of the resulting data vector is not equal
to the same transformation applied to the original model for the untransformed power spec-
trummeasurements; instead, the procedure is simply designed to give a likelihood possessing a
Gaussian form with respect to the data vector. To test the new methodology and demonstrate
its advantages over the standard likelihood treatments, we consider the problem of inferring
the local PNG parameter 𝑓NL and compare the different posterior distributions with the true
one for simulated data sets.

3.1 Distribution of power spectrummeasurements

As elaborated in both chapters 1 and 2, clusteringmeasurements are usuallymade for the power
spectrum multipoles in a galaxy survey analysis. As seen from equation (2.26), the Yamamoto
estimator p𝑃ℓ for power spectrum multipoles has a functional form that is quadratic in the clus-
tering mode 𝛿 . Barring the issue of mode coupling due to RSD, i.e. assuming the distant-
observer limit in redshift space, 〈𝛿𝛿∗〉 is diagonal; p𝑃ℓ (𝑘) is then essentially a linear combin-
ation of the quadratic amplitudes |𝛿 (𝒒) |2 of clustering modes. For simplicity without loss of
generality, we shall consider measurements of the power spectrum monopole or equivalently
the spherically averaged band power, r𝒀 =

(
p𝑃0(𝑘𝑎)

)𝑑
𝑎=1, which include the effect of the survey

window (and any weighting schemes etc.) and are thus denoted with a tilde. The data vector r𝒀

in effect comes from a linear transformation,

r𝒀 = B𝒀 , (3.1)

whereB ∈ ℝ𝑑×𝑑 ′ is the mixing matrix, and the random vector 𝒀 =
(
|𝛿 (𝒒𝑖) |2

)𝑑 ′
𝑖=1 consists of

quadratic amplitudes of independent clustering modes that can be sampled on a FFT grid, i.e.
measurements of the underlying mode power in the absence of window effects. The mixing
matrix is in nature a representation of the window function: by considering the discrete form
of equation (2.8), one can see that the elements of the mixing matrix are

(B)𝑎𝑖 =
1

𝑉𝑁𝑘𝑎

∑
𝒌∈𝑆𝑘𝑎

��𝐺1,1(𝒌 − 𝒒𝑖)
��2 , (3.2)

where𝑉 is the volume of a rectangular domain on which the periodic boundary condition is
applied (see §1.1), and 𝑁𝑘𝑎 is the number of clustering modes sampled in a spherical shell 𝑆𝑘𝑎
at the 𝑎th band wavenumber 𝑘𝑎 (see also §2.1). To account for the Poisson shot noise power
(see §1.1), one simply adds a random vector 𝝇 so that

r𝒀 = B(𝒀 + 𝝇) . (3.3)

For a single Fourier mode of a GRF, its real and imaginary parts independently follow
the same normal distribution, Re𝛿 (𝒒), Im𝛿 (𝒒) ∼ N(0,𝑉 𝑃 (𝒒)/2). By considering the rela-
tion 𝛿 (𝒒) ≡ Re𝛿 (𝒒) + i Im𝛿 (𝒒) ≡ |𝛿 (𝒒) | exp[−i arg𝛿 (𝒒)] as a transformation of variables,
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one can readily derive the PDF for the mode amplitude |𝛿 (𝒒) | which follows the Rayleigh
distribution,

𝕡( |𝛿 (𝒒) |) = 2|𝛿 (𝒒) |
𝑉𝑃 (𝒒) exp

[
− |𝛿 (𝒒) |

2

𝑉𝑃 (𝒒)

]
. (3.4)

The same derivation also shows that the phase of the Fourier mode, arg𝛿 , follows a uniform
random distribution. The power spectrum estimated from the amplitude of a single clustering
mode, p𝑃 = 𝑉 −1 |𝛿 |2, is therefore described by the exponential distribution with the PDF

𝕡
(
p𝑃
)
= 𝑃−1 exp

(
−p𝑃

/
𝑃
)
. (3.5)

Before the probability distributionof the power spectrumdata vectorr𝒀 canbederived, the
distribution of the shot noise power 𝝇 also needs to be determined. Following the argument
of ref. [154], one could consider 𝑁 galaxies randomly located at positions {𝒙 𝑗 }𝑁𝑗=1 in some
volume. The over-density field in Fourier space is then (see also eq. 1.19)

𝛿 (𝒒) = 1
𝑁

𝑁∑
𝑗=1

e i𝒒·𝒙 𝑗 (𝒒 ≠ 0) , (3.6)

which, by the central limit theorem, converges in distribution to a normal random variable
in the large number limit 𝑁 → ∞ regardless of the distribution of individual summands
exp

(
i𝒒 · 𝒙 𝑗

)
where

{
𝒙 𝑗

}
are independent. Therefore shot noise also behaves like a GRF, and

each component of 𝝇 follows an exponential distribution with mean value 𝑃shot by the argu-
ment above.

Since both the clustering mode power and the shot noise power are exponentially distrib-
uted, components of the band power spectrum data vector r𝒀 are linear combinations of expo-
nential random variables by equation (3.3); to determine the probability distribution of these
components, it is then instructive to consider generic independent exponential random vari-
ables

{
𝑋 𝑗 ∼ Exp

(
𝜆 𝑗

)}𝑁
𝑗=1 with the PDF

𝕡 𝑗
(
𝑋 𝑗

)
= 𝜆 𝑗 exp

(
−𝜆 𝑗𝑋 𝑗

)
, (3.7)

and derive the distribution of the sum 𝑋 =
∑
𝑗 𝑋 𝑗 . Here 𝜆−1𝑗 = 𝔼

[
𝑋 𝑗

]
is the mean, and

𝜆 𝑗 is also the inverse of the scale parameter 𝛽 𝑗 .⁴ By considering the characteristic function of
probability distributions, it follows that the PDF of the sum𝑋 is the convolution of individual
exponential PDFs,

𝕡(𝑋 ) = (𝕡1 ∗ · · · ∗ 𝕡𝑁 ) (𝑋 ) =
𝑁∑
𝑗=1

𝕡 𝑗 (𝑋 )
𝑁∏
𝑚≠ 𝑗
𝑚=1

𝜆𝑚
𝜆𝑚 − 𝜆 𝑗

, (3.8)

where the second equality can be established using proof by induction. This is an example of
the hypo-exponential distribution, sometimes also referred to as the generalised Erlang distri-
bution [178]. One should note the particular case where 𝜆𝑚 = 𝜆 𝑗 for some𝑚 ≠ 𝑗 , when

⁴ A family of probability distributions can sometimes be parametrised by a scale parameter, which determines
the dispersion or spread of the probability distribution. If 𝛽 is a scale parameter, then the cumulative distribution
function 𝐹 (𝑥 ; 𝛽) satisfies 𝐹 (𝑥 ; 𝛽) ≡ 𝐹 (𝑥/𝛽 ; 1). For exponential distributions, the mean is the scale parameter;
the gamma distribution, which is discussed later, is also commonly parametrised with a scale parameter.
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two random variables 𝑋𝑚 and 𝑋 𝑗 are identically distributed. By the result above, in the limit
Δ𝜆 = 𝜆𝑚 − 𝜆 𝑗 → 0, the PDF of𝑋𝑚𝑗 = 𝑋𝑚 + 𝑋 𝑗 is

𝕡
(
𝑋𝑚𝑗

)
= lim

Δ𝜆→0

𝜆𝑚 (𝜆𝑚 − Δ𝜆)
Δ𝜆

e−𝜆𝑚𝑋𝑚𝑗

(
1 − e𝑋𝑚𝑗Δ𝜆

)
= 𝜆2𝑚𝑋𝑚𝑗 e

−𝜆𝑚𝑋𝑚𝑗 , (3.9)

which one recognises as the PDF of a gamma distribution Γ
(
2, 𝜆−1𝑚

)
in the shape–scale para-

metrisation. By this general derivation, it is now clear that components of the data vector r𝒀 ,
which are exponential mixtures, follow the hypo-exponential distribution with the PDF

𝕡
(
r𝑌𝑎; {𝛽𝐼 }

)
=

∑
𝐼

(∏
𝐼 ′≠𝐼

1
1 − 𝛽𝐼 ′/𝛽𝐼

)
𝛽−1𝐼 exp

(
−𝛽−1𝐼 r𝑌𝑎

)
(3.10)

parametrised by the positive scale parameters

𝛽𝐼 ∈ {𝐵𝑎𝑖 𝑃 (𝒒𝑖), 𝐵𝑎𝑖𝑃shot : 𝑖 = 1, . . . , 𝑑 ′} , (3.11)

which are thewindowed contributions of the underlying clusteringmodepower and shot noise
power to the 𝑎th band. It is understood that a well-defined limit is taken above in the case
𝛽𝐼 = 𝛽𝐼 ′ . By the central limit theorem, when the number of modes 𝛿 (𝒒𝑖) contributing to
the 𝑎th band power (with 𝐵𝑎𝑖 ≠ 0) is large, the hypo-exponential variable r𝑌𝑎 converges in
distribution to a normal variable—this is the basis for the normality assumption often used
in power spectrum analyses. However, on the largest scales in a survey where the number of
clustering modes is the fewest, the underlying hypo-exponential distribution deviates from
the normal distribution, and hence it would be erroneous to use the Gaussian likelihood for
cosmological parameter inference.

Although the hypo-exponential distribution is the correct description of power spectrum
measurements, it is difficult to manipulate as it involves many scale parameters 𝛽𝐼 instead of
just a few summary parameters. A robust approximation is the exponentially modified gamma
distribution which has one shape parameter 𝑅 and two scale parameters (𝜂1, 𝜂2) [179], but
determining these parameters involves solving a cubic algebraic equation, which is still numer-
ically cumbersome. We suggest an even simpler approximation using the gamma distribution
with the PDF

𝕡Γ

(
r𝑌𝑎;𝑅, 𝜂

)
=
𝜂−𝑅

𝛤 (𝑅)
r𝑌𝑅−1𝑎 exp

(
− r𝑌𝑎

/
𝜂
)
, (3.12)

where by matching the mean and variance of the hypo-exponential distribution, the effective
shape and scale parameters,

𝑅 =
𝔼
[
r𝑌𝑎

]2
var

[
r𝑌𝑎

] =
(∑𝐼 𝛽𝐼 )2∑

𝐼 𝛽
2
𝐼

and 𝜂 =
var

[
r𝑌𝑎

]
𝔼
[
r𝑌𝑎

] =

∑
𝐼 𝛽

2
𝐼∑

𝐼 𝛽𝐼
, (3.13)

can be determined. In place of the mean and variance parameters of a normal distribution
N

(
𝑅𝜂, 𝑅𝜂2

)
with the PDF

𝕡N
(
r𝑌𝑎;𝑅𝜂, 𝑅𝜂2

)
=

1√
2π𝑅𝜂2

exp

[
−

(
r𝑌𝑎 − 𝑅𝜂

)2
2𝑅𝜂2

]
, (3.14)
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the shape–scale parameters (𝑅, 𝜂) determine the non-normal distribution of band power spec-
trummeasurements. They have a natural interpretation in this context: the shape parameter𝑅
is the effective number of independent clustering modes contributing to the wavenumber
band, and the scale parameter 𝜂 is the effective windowed power in that band including shot
noise. In the limiting case that there is only a single clustering mode in a wavenumber band
(e.g. pure shot noise), the gamma distribution coincides with the hypo-exponential distribu-
tion, both of which reduce to the exponential distribution. Henceforth, we shall assume com-
ponents of the power spectrum data vector r𝒀 follow the gamma distribution with shape–scale
parameters (𝑅𝑎, 𝜂𝑎) for the 𝑎th component. In principle, the shape–scale parameters (𝑅, 𝜂)
can be calculated for eachwavenumber band using analyticalmodels of the band power expect-
ation 𝔼

[
r𝑌𝑎

]
and variance var

[
r𝑌𝑎

]
with knowledge of the mixing matrixB and FFT-sampled

wavevectors 𝒒𝑖 , though these quantities are not always available. In practice, window convo-
lution of power spectrum models is often performed in configuration space and then Hankel
transformed back into Fourier space (see §2.3), and the covariance matrix for power spectrum
measurements is estimated from mock catalogues.

Even with the simplifying approximation for the univariate distribution of band power
measurements as a gamma distribution, the full multivariate distribution for the data vector r𝒀

remains intractable, since its components are not independent as a result of the mixing of clus-
tering modes. One might consider 𝒀 B↦−→ r𝒀 as a transformation of random vectors with the
Jacobian determinant det

(
BB

⊺) 1/2 , where the distribution function of 𝒀 is just the product
of independent exponential components. However, the mixing matrix B is generally non-
square (𝑑 < 𝑑 ′), and expressing the transformed probability distribution explicitly in terms
of the band power data vector r𝒀 requires the inversion of B. One could perhaps introduce
(𝑑 ′ − 𝑑) ‘helper’ components in r𝒀 and pad B into a square matrix before eventually mar-
ginalising out these additional helper components. Unfortunately, the linear transformation
induced by the padded square matrix would map the domain of the random vector 𝒀 from
ℝ𝑑 ′
+ to a different domain in ℝ𝑑 : whereas the random vector 𝒀 spans the positive orthant (a

higher-dimensional quadrant) as its components being the mode power are non-negative, the
transformed random vector generally spans an irregularly-shaped domain, which makes the
marginalisation over the helper components difficult and susceptible to ‘the curse of dimen-
sionality’, especially when 𝑑 � 𝑑 ′ for massive data compression.

3.2 Beyond standardGaussian likelihoods

3.2.1 Data Gaussianisation

Instead of attempting to determine the exact full multivariate distribution for the windowed
power spectrum measurements r𝒀 , we subscribe to a component-wise Gaussianisation strategy
and reinstate the multivariate normality assumption for the Gaussianised data vector 𝒁 ←� r𝒀 .
The reasoning behind this is two-fold. First, each component of the random vector 𝒁 is now
certainly univariate normal, as should be the case for a bona fide multivariate normal distri-
bution. Secondly, if the covariance matrix of the data vector has a narrow-band structure and
the cross-correlation between components is weak, then univariate Gaussianisation is approx-
imately equivalent to multivariate Gaussianisation; this can be achieved with a suitable bin-
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ning strategy where the wavenumber bandwidths are chosen to be greater than the correlation
length of the Fourier-space window. Although sophisticated full Gaussianisation schemes ex-
ist [e.g. 180], they are often based on the empirical data at hand and iterative in nature, and
thus may not be appropriate for forward modelling of theoretical predictions; therefore we
leave more advanced multivariate Gaussianisation methods for future considerations.

In the case of univariate Gaussianisation, it is possible to find the precise transforma-
tion r𝑌 ↦→ 𝑍 where r𝑌 ∼ Γ(𝑅, 𝜂) is a gamma random variable and𝑍 ∼ N(0, 1) is the standard
normal random variable (vector indices are irrelevant and thus suppressed for notational brev-
ity). This requires the matching of their cumulative distribution functions,∫

r𝑌

0
d𝑦 𝕡Γ (𝑦 ;𝑅, 𝜂) =

∫ 𝑍

−∞
d𝑧 𝕡N(𝑧; 0, 1) , (3.15)

which leads to the error function transformation,

𝑍 = −
√
2 erfc−1

[
2
𝛾
(
𝑅, r𝑌

/
𝜂
)

𝛤 (𝑅)

]
, (3.16)

where erfc−1 is the inverse complementary error function and𝛾 is the lower incomplete gamma
function. However, similar to the cause of the AP effect, the true cosmology underlying the
band power measurement r𝑌 is unknown and thus 𝑅 and 𝜂 determined in a fiducial cosmolo-
gical model may not result in perfect Gaussianisation. This then necessitates the recalculation
of the mean and variance of the supposedly standard normal random variable 𝑍 for each cos-
mological model to be fitted to the data, which involves computationally intensive numerical
integrations.

We instead propose a simple Gaussianisation scheme which has been applied to cosmolo-
gical analyses before in e.g. refs. [181, 182] though implemented differently in different contexts:
we define the Box–Cox transformation [183] to be

𝑍 = r𝑌 𝜈 , (3.17)

where the transformation parameter 𝜈 is positive to ensure regularity.⁵ This transformation
achieves approximateGaussianisation by essentially suppressing higher-order moments of the
data; in our case, the transformation involves the shape–scale parameters

(
𝑅̆, 𝜂

)
of the gamma

distribution, which are denoted with a breve as their values are determined by the fixed power
spectrum model 𝑃 , including Poisson shot noise, in a fiducial cosmological model with para-
meters 𝜃 = 𝜃 . The PDF of the Gaussianised random variable𝑍 is

𝕡
(
𝑍 ; 𝑅̆, 𝜂

)
=

��J𝑍 (
r𝑌
) �� 𝜂−𝑅̆
𝛤
(
𝑅̆
) r𝑌 𝑅̆−1 exp

(
− r𝑌

/
𝜂
)
, (3.18)

where J𝑍
(
r𝑌
)
= 𝜈r𝑌 𝜈−1 is the Jacobian determinant of the transformation. The 𝐾th moment

of𝑍 is given by

𝔼
[
𝑍𝐾

]
=
𝛤
(
𝑅̆ + 𝐾𝜈

)
𝛤
(
𝑅̆
) 𝜂𝐾𝜈 , (3.19)

⁵ Note that the letters𝑅, 𝜈 here and the letters𝐾, 𝜇 below denote different physical quantities outside the scope
of this chapter.
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Figure 3.1. Solution of the Box–Cox transformation parameter 𝜈 as a function of the fiducial
gamma distribution shape parameter 𝑅̆. The numerical solution to equation (3.21) (solid line)
is compared with the fitting formula (eq. 3.24) (dash-dotted line) in the top panel. The relative
error of the fitting formula (dashed line) is shown in the bottompanel. Figure adapted fromFig. 1
in Paper I.

and thus its mean and variance are

𝜇𝑍
(
𝑅̆, 𝜂

)
=
𝛤
(
𝑅̆ + 𝜈

)
𝛤
(
𝑅̆
) 𝜂𝜈 (3.20a)

and 𝜎2𝑍
(
𝑅̆, 𝜂

)
=
𝛤
(
𝑅̆ + 2𝜈

)
𝛤
(
𝑅̆
)
− 𝛤

(
𝑅̆ + 𝜈

)2
𝛤
(
𝑅̆
)2 𝜂2𝜈 . (3.20b)

To determine the transformation parameter 𝜈, one demands the third central moment of
𝑍 to vanish,

0 = 𝔼
[
𝑍 3] − 3𝔼[

𝑍 2] 𝔼[𝑍 ] + 2𝔼[𝑍 ]3
=

{
𝛤
(
𝑅̆ + 3𝜈

)
𝛤
(
𝑅̆
) − 3

𝛤
(
𝑅̆ + 2𝜈

)
𝛤
(
𝑅̆
) 𝛤

(
𝑅̆ + 𝜈

)
𝛤
(
𝑅̆
) + 2

[
𝛤
(
𝑅̆ + 𝜈

)
𝛤
(
𝑅̆
) ]3}

𝜂3𝜈 . (3.21)

The numerical solution of𝜈 as a function of 𝑅̆ is shown in Figure 3.1. The observed asymptotic
behaviour, namely 𝜈 → 1/3 as 𝑅̆ → ∞, can be understood by considering the expansion of
the gamma function ratio [184]

𝛤 (𝐴 + 𝐵)
𝛤 (𝐴) ∼ 𝐴𝐵

[
1 + (𝐵 − 1)𝐵

2
𝐴−1 + (3𝐵 − 1)(𝐵 − 2)(𝐵 − 1)𝐵

24
𝐴−2 + · · ·

]
, (3.22)

so as 𝑅̆ →∞ with 𝑅̆𝜂 < ∞ (i.e. finite mean), equation (3.21) becomes

𝑅̆−2(3𝜈 − 1)𝜈3 = 0 . (3.23)

The non-trivial solution is indeed 𝜈 = 1/3 . For the purpose of Gaussianisation, however, the
precise value of 𝜈 matters less as 𝑅̆ becomes large owing to the suppression factor 𝑅̆−2 in the
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third central moment—this is essentially a manifestation of asymptotic normality. It is useful
to present an empirical fitting formula for the numerical solution to equation (3.21):

𝜈 ≈ 1
3
+ 0.042

[
1 − exp

(
0.85

/
𝑅̆0.85

) ]
. (3.24)

Comparison of this fitting formula to the numerical solution in Figure 3.1 shows that it per-
forms well, being accurate to sub-percent levels. In fact, adopting the fixed value 𝜈 = 1/3
works well in realistic situations, which indicates that our Gaussianisation scheme is robust to
variation in 𝜈 and thus 𝑅̆, so that it possesses the desirable property of being insensitive to the
choice of fiducial cosmology.

It is worth noting that our Gaussianisation scheme differs from the approaches taken in
some CMB studies in that they usually seek an approximation to the probability distribution
or likelihood function at themaximumpoint: for instance, ref. [185] makes a Gaussian approx-
imation to the likelihood function by employing the Fisher information matrix in place of the
curvaturematrix around the peak; ref. [174] combines a log-normal likelihoodwith aGaussian
one by adding them logarithmically; ref. [177] writes the log-likelihood as a quadratic form in
a variable that is a non-linear transformation of the data; interestingly, ref. [176] proposes a
power-law transformation of the estimated angular power spectrum with the exponent being
1/3—this should be seen as an analogue to the limiting case of our Gaussianisation scheme
with 𝜈 = 1/3, where the likelihood is only weakly non-Gaussian when the shape parameter 𝑅
is large. In contrast to the motivation behind all these approaches, our Gaussianising trans-
formation targets the overall shape of the distribution by suppressing higher-order moments
instead of seeking a local approximation.

3.2.2 Covariance treatment

The second issue to be addressed in standard likelihood analyses is the neglection of cosmo-
logical parameter dependence of the covariance matrix. Because of the reliance on mock cata-
logues for covariance estimation, it is computationally expensive to produce covariancematrix
estimates that vary with the cosmological model being fitted. However, if one were able to sep-
arate and analytically predict the cosmologically varying part of the covariancematrix, then its
estimate could be rescaled accordingly with the cosmological model.

A generic covariance matrixΣ can be decomposed into a variance part and a correlation
part,

Σ = ΛCΛ , (3.25)

where the diagonalmatrixΛ consists of standarddeviations, (Λ)𝑎𝑎 = (Σ )
1/2
𝑎𝑎 , andC is the cor-

relationmatrix. This decomposition offers the following insight: for power spectrummeasure-
ments on large scales, whether Gaussianised or not, the off-diagonal correlation in C is solely
induced by window effects as manifested by the mixing matrix B, which should not depend
on the cosmological model being tested through the power spectrum.⁶ This insight makes the
variance–correlation decomposition particularly useful, for the decomposition intoΛ andC is
precisely the separation of cosmological dependence from the cosmology-independent part in

⁶ A minor caveat is that in redshift space, the window function may be slightly dependent on the fiducial cos-
mology overall because, for instance, the survey boundary is defined by a maximum redshift.



46 GAUSS IANISAT ION & COVARIANCE DECOMPOS IT ION

the covariance matrixΣ. Therefore one may obtain a covariance matrix estimate pΣf = Λ̆ pCΛ̆

from mock catalogues produced at fiducial cosmological parameters 𝜃 = 𝜃 with the fiducial
power spectrum model 𝑃 , and rescale this estimate using the diagonal matrix Λ to allow for
varying cosmological models,

pΣ (𝜃 ) = Λ(𝜃 )Λ̆−1 pΣf Λ̆
−1Λ(𝜃 ) . (3.26)

For instance, for the Gaussianised power spectrum measurements 𝒁 at cosmological paramet-
ers 𝜃 , the entries of the diagonal matrix Λ are

(Λ(𝜃 ))𝑎𝑎 = var[𝑍𝑎] = 𝜎2𝑍 (𝑅𝑎, 𝜂𝑎) (3.27)

as given by equation (3.20), where the gamma distribution shape–scale parameters (𝑅𝑎, 𝜂𝑎) for
each component depend on cosmological parameters 𝜃 through the power spectrum model
(see eqs. 3.11 and 3.13).

As one recalls from section 1.4, covariance matrices estimated from mock catalogues
are inherently random. Instead of directly substituting the estimated covariance in a likeli-
hood function, a more principled Bayesian approach is to marginalise out the unknown un-
derlying covariance matrix [121, SH], which changes the Gaussian likelihood based on the
normal distribution to a likelihood based on the modified Student’s 𝑡 -distribution given by
equation (1.73). Fortuitously but unsurprisingly, our covariance decomposition and rescaling
method to account for parameter dependence does not alter the derivation of SH’s modified
𝑡 -distribution likelihood. This is a consequence of the invariance property of Wishart and in-
verse Wishart distributions W𝑑 and W−1

𝑑
(of data dimension 𝑑): given a non-singular matrix

A ∈ ℝ𝑑×𝑑 , ifW ∼ W𝑑 (V ,𝑚), then A⊺WA ∼ W𝑑
(
A
⊺
V A,𝑚

)
; ifW ∼ W−1

𝑑

(
V −1,𝑚

)
,

thenA⊺WA ∼ W−1
𝑑

(
A
⊺
V −1A,𝑚

)
[118]. Here the random matrixW could be either the co-

variance matrix estimate (the former case) or the precision matrix estimate (the latter case);
the corresponding scale matrix V is then either the true covariance matrix or the true preci-
sion matrix; the number of degrees of freedom,𝑚 = 𝑁mock − 1, is given by the number of
mock catalogues, 𝑁mock, used in the estimation. In addition to the stochasticity introduced
by covariance matrix estimation for the Gaussianised data 𝒁 , if one estimates the gamma dis-
tribution shape–scale parameters (𝑅𝑎, 𝜂𝑎) (see eq. 3.13) from the fiducial covariance matrix
estimate of the un-Gaussianised data r𝒀 , then these parameters are also random and should
be treated jointly with the covariance matrix estimate in SH’s approach. However, as Monte
Carlo tests in the next section will show, this is not an issue in practice since the scatter in the
estimated covariance matrix dominates over the uncertainties of the estimated shape and scale
parameters.

3.2.3 A novel likelihood function

With data Gaussianisation, covariance estimate rescaling via the variance–correlation decom-
position, and SH’s covariance matrix marginalisation approach, we suggest the following like-
lihood function for galaxy clustering power spectrum measurements:

L
(
𝜃 ;𝒁 , 𝝁𝒁 , pΣf

)
= 𝑐𝑑,𝑚

��� pΣ (𝜃 )
���−1/2 [1 +𝑚−1 𝜒2 (𝒁 ; 𝝁𝒁 (𝜃 ), pΣ (𝜃 )

)]−(𝑚+1)/2
, (3.28)
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where the normalisation constant is

𝑐𝑑,𝑚 = (𝑚π)−𝑑/2𝛤
(
𝑚 + 1
2

)/
𝛤

(
𝑚 − 𝑑 + 1

2

)
, (3.29)

the usual chi-square is given by

𝜒2
(
𝒁 ; 𝝁𝒁 (𝜃 ), pΣ (𝜃 )

)
= [𝒁 − 𝝁𝒁 (𝜃 )]

⊺
pΣ (𝜃 )−1 [𝒁 − 𝝁𝒁 (𝜃 )] , (3.30)

the components of themeanvector𝝁𝒁 are givenby equation (3.20), and the cosmology-varying
covariance matrix estimate pΣ (𝜃 ) is related to the fiducial estimate pΣf by equation (3.26).

This likelihood function is the key result of this chapter. In the next section, we shall test
our likelihood treatments usingMonteCarlo simulationsmatched to the typical specifications
of future survey data.

3.3 Testing withMonte Carlo simulations

In order to test the proposed likelihood function, we simulate power spectrum measure-
ments with Monte Carlo sampling. Exponential random variables representing clustering
mode power and shot noise are generated and then convolved with a survey window be-
fore forming the power spectrum data vectors. Given the survey volume and the largest
scales accessible for upcoming missions such as DESI and Euclid, we consider wavenumbers
𝑘 ∈

[
1.58 × 10−3, 1.58 × 10−2

]
hMpc−1 covering an order ofmagnitude,⁷ and sample cluster-

ing mode wavevectors 𝒒 in this range using an inverse-volume distribution 𝕡(𝒒) ∝ |𝒒 |3. The
Fourier-space window |𝐺1,1 |2 is chosen to be a centred, normalised Gaussian function with
full width at half maximum being 1.88 × 10−3 hMpc−1, and we leave it unnormalised when
computing the mixing matrixB (eq. 3.2) for simplicity. The wavenumbers 𝑘𝑎 are divided into
𝑑 = 9 bands (or bins) so that the cross-band correlation is weak under this window function.
Given an input cosmological model, the band power spectrum is predicted as follows:

1) The underlying galaxy clustering power spectrum is calculated using the Eisenstein–
Hu matter transfer function [186], with the large-scale linear bias fixed at 𝑏1 = 1.87
and other cosmological parameters set to Planck 2018 values [101];

2) The Poisson shot noise power 𝑃shot = 1/s𝑛 is calculated using a pessimistic number
density s𝑛 = 5 × 10−4 h3Mpc−3, though the number densities forDESI andEuclid are
predicted to be likely higher [e.g. 187];

3) The convolution of the underlying clustering mode power and shot noise is performed
using equation (3.3), where elements of the mixing matrix are given by equation (3.2).

3.3.1 Testingmultivariate normality and covariance estimate rescaling

In Figure 3.2, the sample distribution of 40000 simulated power spectrum measurements for
the wavenumber band centred at 𝑘 ≈ 0.0024 hMpc−1 is compared with the gamma distribu-
tion approximation (eq. 3.12) and the normal distribution assumption (eq. 3.14), which have

⁷ The lowest wavenumber roughly corresponds to a cubic box of side length 4 h−1 Mpc, or comoving radius at
redshift 𝑧 ≈ 2.5.
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Figure 3.2. Sample distribution of 40000 simulated power spectrummeasurements in the lowest
wavenumber band centred at 𝑘 ≈ 0.0024 hMpc−1 (grey histogram) compared with the gamma
distribution approximation (solid blue line) and the normal distribution assumption (dashed
red line) with the same mean and variance. Figure originally appearing as Fig. 2 in Paper I and
reproduced here with re-simulated data sets.

the same mean and variance. The gamma distribution used has a shape parameter 𝑅 ≈ 4,
as calculated from the underlying power spectrum model and the mixing matrix using equa-
tions (3.11) and (3.12). This suggests that thewavenumber bin has very few effectively independ-
ent clustering modes for which the central limit theorem certainly does not hold. Indeed, the
peak of the normal distribution fitted is shifted from the underlying hypo-exponential distri-
bution that describes the sample; in contrast, the gamma distribution approximation matches
both the peak and the tails well.

One might wish to quantify the improvement in multivariate normality that our compo-
nent-wiseGaussianising transformation can bring to power spectrummeasurements. A key de-
fining property of amultivariate normal variable𝑿 is that any projection𝑿 ↦→ 𝒕⊺𝑿 ∈ ℝwith
a vector 𝒕 should result in a univariate normal variable. Hence as a simple multivariate normal-
ity test, given a sample {𝒙𝑖} for the random vector𝑿 , one could randomly choose some direc-
tion 𝒕 and test the univariate normality of the projected sample

{
𝒕⊺𝒙𝑖

}
[188]. Herewe perform

the D’Agostino–Pearson normality test [189] on 10000 random projections of 40000 samples
of the band power data vector r𝒀 , which returns the 𝑝-value that characterises how unlikely
the sample realisations are under the null hypothesis that the underlying distribution is indeed
normal. The 𝑝-value itself is not a meaningful indicator of normality, as it varies depending
on the sample size; rather it is the comparison of the 𝑝-values with the same sample that signi-
fies the relative departure from normality. We find 𝑝 = 0.01 for r𝒀 without Gaussianisation;
after Gaussianisation r𝒀 ↦→ 𝒁 with the Box–Cox transformation parameter 𝜈𝑎 computed us-
ing the fitting formula (eq. 3.24) for each data vector component, the 𝑝-value is increased to
𝑝 = 0.08 for the same sample, suggesting our Gaussianisation scheme does improve the mul-
tivariate normality of power spectrum measurements.

To test the covariance estimate rescaling method using the variance–correlation decom-
position proposed in section 3.2.2, we generate one set of 40000 band power data realisations
at the ‘true’ cosmological model with the Hubble parameter set to 𝐻0 = 67.4 km s−1Mpc−1
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Figure 3.3. Comparison between directly sampled covariance matrices and rescaled fiducial es-
timates from 40000 simulations of the band power data vector either without Gaussianisation
(top panel) or Gaussianised (bottom panel). Covariance matrices sampled at the ‘true’ cosmolo-
gical model with 𝐻0 = 67.4 km s−1Mpc−1 are shown in the left column, and the middle column
shows the covariancematrix estimates at the ‘fiducial’ value𝐻0 = 73.2 km s−1Mpc−1, which have
been rescaled to match the ‘true’ cosmology. The residuals between the directly sampled covari-
ance matrices and the rescaled fiducial estimates are shown in the right column. Figure originally
appearing as Fig. 3 in Paper I and reproduced here with re-simulated data sets.

(Planck 2018 cosmology), and an additional set of 40000 ‘fiducial’ realisations generated with
𝐻0 = 73.2 km s−1Mpc−1. The former set gives a directly sampled covariance matrix estim-
ate pΣwhereas the latter gives a fiducial estimate pΣf which is then rescaledusing equation (3.26)
to match the true cosmology. For both the band power r𝒀 without Gaussianisation and the
Gaussianised band power𝒁 , Figure 3.3 shows that the differences between the directly sampled
true covariance matrices and the rescaled covariance matrix estimates are small; this validates
the variance–correlation decomposition as an accurate method to include cosmological de-
pendence of the covariance matrix.

3.3.2 Testing likelihoods for parameter inference

Tosummarise, wehavemade the followingproposals in obtaining the improvednew likelihood
function (eq. 3.28), which can be tweaked in our Monte Carlo simulation tests to isolate their
effects in a likelihood analysis—

1) Gaussianisation: the data vector can remain as r𝒀 without Gaussianisation, Gaussian-
ised as 𝒁1/3 with a fixed Box–Cox parameter 𝜈 = 1/3 , or Gaussianised as 𝒁𝜈 with a
variable parameter 𝜈 given by the fitting formula (eq. 3.24);

2) Covariance estimate rescaling: the covariance matrix estimate can either remain fixed
at the fiducial value pΣf , or be rescaled to pΣ (𝜃 ) using equation (3.26) to account for
parameter dependence;

3) Covariancematrixmarginalisation: one could either substitute the de-biased precision
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Table 3.1. Different forms of the likelihood function for power spectrummeasurements with or
without data Gaussianisation and/or covariance matrix marginalisation and estimate rescaling.
For each likelihood function, the covariance matrix estimate pΣ is understood to be defined for
the corresponding data vector, so any additional labels (such as a subscript ‘𝒁𝜈’) are omitted for
notational brevity.

Data variable Distribution Fiducial estimate Rescaled estimate

No Gauss. Modified 𝑡 L𝑡
(
𝜃 ; r𝒀 , pΣf

)
L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
𝜈 = 1/3

Gaussian – LG
(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
With Gauss.

Modified 𝑡 L𝑡
(
𝜃 ;𝒁1/3, pΣf

)
L𝑡

(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
Variable 𝜈 Modified 𝑡 L𝑡

(
𝜃 ;𝒁𝜈, pΣf

)
L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
matrix estimate directly into the Gaussian likelihood (see eq. 1.63 in §1.4), or adopt the
SHmarginalisationprocedure anduse themodified 𝑡 -distribution likelihood (eq. 1.73).

Different combinations of these choices give the likelihood function forms tabulated in
Table 3.1 which are to be tested. For notational brevity, we do not label covariance matrix
estimates pΣ by the data vector with respect to which they are defined (e.g. labelled as pΣ

r𝒀 ),
since they invariably appear in conjunction with the corresponding data vector in a likelihood
function. The key test of our novel likelihood treatments for power spectrummeasurements is
the inference of cosmological parameters, and all these likelihood functions can be compared
with the exact true likelihood, which is inaccessible in a realistic survey but can be construc-
ted simply as a product from the exponentially distributed clustering power and shot noise
generated in our Monte Carlo simulations in the absence of window effects,

Ltrue(𝜃 ; 𝒀 ) =
𝑑 ′∏
𝑖=1

e−𝑌𝑖/𝑃𝑖 − e−𝑌𝑖/𝑃shot

𝑃𝑖 − 𝑃shot
. (3.31)

Since our methodology mainly concerns power spectrum measurements on the largest
survey scales, where asymptotic normality does not apply to the few clusteringmodes available
and theoretical models are in the linear perturbative regime, the local PNG parameter 𝑓NL is a
well-motivated test parameter [172, 173]. PNG enters the galaxy clustering power spectrum by
modifying the large-scale tracer bias on large scales as described by equation (1.60) (recall from
section 1.3), where the cosmological parameters are set to Planck 2018 values as above and the
tracer-dependent parameter is set to 𝑝 = 1. Hereafter the generic cosmological parameter 𝜃 is
identified with 𝑓NL and the two notations are used interchangeably. To leading order in 𝑓NL,
which is small as constrained by themost recentPlanckCMBmeasurements [88], we continue
to treat galaxy over-density as a GRF.

To properly examine the ensemble behaviour of the different likelihood functions listed
in Table 3.1, we have produced 250000 Monte Carlo realisations of the band power data vec-
tor at some ‘true’ input cosmology, and a fixed set of 𝑁mock = 1000 mock catalogues simu-
lated at the fiducial cosmology with 𝑓NL = 0 and other parameters being the same as in the
true input model. The mock catalogues provide covariance matrix estimates for both the un-
Gaussianised band power r𝒀 and the Gaussianised data vector𝒁 . The prior is set to be uniform



GAUSS IANISAT ION & COVARIANCE DECOMPOS IT ION 51

10 7

10 6

10 5

10 4

10 3

10 2

(f N
L)

true( ; Y)
t( ; Z , ( ))
t( ; Y, f)

200 100 0 100 200
fNL

2.5

0.0

2.5

lg

Figure 3.4. Comparison of the exact true likelihood Ltrue(𝜃 ; 𝒀 ) (dotted black line), the mod-
ified-𝑡 likelihood L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
with data Gaussianisation and covariance estimate rescaling

(dashed blue line), and the modified-𝑡 likelihoodL𝑡
(
𝜃 ; r𝒀 , pΣf

)
without Gaussianisation and res-

caling (solid red line) for 𝜃 ≡ 𝑓NL, all marginalised over 250000 data realisations produced at
𝑓NL = 0 (marked by vertical dotted lines) (top panel). The bottom panel shows the deviations of
the likelihoods from the true oneLtrue. Note the logarithmic scale of the vertical axes and that
lg ≡ log10.

with 𝑓NL ∈ [−250, 250], and the posterior PDFs are sampled by scanning through this range
with a resolution ofΔ𝑓NL = 0.05. This prior range is chosen to be wide in order to fully sample
the tails of the posterior distribution, since a key improvement in our likelihood treatments
comes from the use of the full shape of non-normal distributions.

Direct likelihood form comparison

As an intuitive comparison, we show in Figure 3.4 the logarithms of the exact true likeli-
hood Ltrue(𝜃 ; 𝒀 ), the modified-𝑡 likelihood L𝑡

(
𝜃 ; r𝒀 , pΣf

)
without data Gaussianisation and

covariance estimate rescaling, and the novel likelihoodL𝑡
(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
derived using our full

methodology with a fitted Box–Cox transformation parameter 𝜈, all marginalised over data
realisations produced at 𝑓NL = 0. In addition, we also show the comparison for some indi-
vidual data realisations in Figure 3.5, for each of which the new likelihood is a closer match in
shape to the true likelihood. Although throughout this chapter we focus on the inference of
𝑓NL as a well-motivated test parameter, the novel likelihood also performs well when tested
on other cosmological parameters; for instance, in Figure 3.6 we also infer the 𝐻0 parameter
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Figure 3.5. Comparison of the exact true likelihood Ltrue(𝜃 ; 𝒀 ) (dotted black line), the mod-
ified-𝑡 likelihood L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
with data Gaussianisation and covariance estimate rescaling

(dashed blue line), and the modified-𝑡 likelihoodL𝑡
(
𝜃 ; r𝒀 , pΣf

)
without Gaussianisation and res-

caling (solid red line) for 𝜃 ≡ 𝑓NL for four individual data realisations produced at 𝑓NL = 0.

from the same ensemble of data realisations. All these comparisons demonstrably show that
our novel likelihood is a far superior approximation to the exact true likelihood when com-
pared to the standard likelihood with a fixed fiducial covariance estimate which also fails to
account for the non-normal distribution of power spectrum measurements.

Point estimation comparison

For different ‘true’ 𝑓NL input values and the same fiducial cosmological model at 𝑓NL = 0, we
compare the performance of both frequentists’ and Bayes estimators calculated from the like-
lihoods Ltrue(𝜃 ; 𝒀 ), L𝑡

(
𝜃 ; r𝒀 , pΣf

)
, L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
, L𝑡

(
𝜃 ;𝒁𝜈, pΣf

)
and L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
(see

Table 3.1 for reference), with reported results having been marginalised over all data realisa-
tions.

Themaximum likelihood estimator is a common frequentists’ estimator given by

p𝜃 = argmaxL(𝜃 ) . (3.32)

The estimates are compared in Table 3.2 with uncertainties given by the standard deviations
estimated from the ensemble of data realisations.
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Figure 3.6. Comparison of the exact true likelihood Ltrue(𝜃 ; 𝒀 ) (dotted black line), the mod-
ified-𝑡 likelihood L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
with data Gaussianisation and covariance estimate rescaling

(dashed blue line), and the modified-𝑡 likelihoodL𝑡
(
𝜃 ; r𝒀 , pΣf

)
without Gaussianisation and res-

caling (solid red line) for 𝜃 ≡ 𝐻0 marginalised over 𝑓NL = 0 data realisations produced at
𝐻0 = 67.4 km s−1Mpc−1 (marked by vertical dotted lines) (top panel). The bottom panel shows
the deviations of the likelihoods from the true oneLtrue. Note the logarithmic scale of the ver-
tical axes and that lg ≡ log10.

Table 3.2. Maximum likelihood estimates of 𝑓NL from likelihood functions Ltrue(𝜃 ; 𝒀 ), L𝑡
(
𝜃 ;

r𝒀 , pΣf

)
,L𝑡

(
𝜃 ;𝒁𝜈, pΣf

)
,L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
andL𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
(see Table 3.1 for reference), margin-

alised over 250000 data realisations with different true 𝑓NL inputs and the same fiducial cosmo-
logical at 𝑓NL = 0. The reported uncertainties are the estimated standard deviations from the
ensemble of data realisations.

Input
𝑓NL

Maximum likelihood estimates

Ltrue(𝜃 ; 𝒀 ) L𝑡
(
𝜃 ; r𝒀 , pΣf

)
L𝑡

(
𝜃 ;𝒁𝜈, pΣf

)
L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
50 49 ± 42 49 ± 44 51 ± 42 42 ± 44 48 ± 42
10 9 ± 39 9 ± 39 11 ± 39 2 ± 41 8 ± 40
0 −1 ± 39 −2 ± 38 1 ± 38 −8 ± 41 −2 ± 39

−10 −12 ± 38 −12 ± 38 −10 ± 37 −18 ± 40 −12 ± 38
−50 −52 ± 35 −52 ± 37 −50 ± 34 −58 ± 36 −52 ± 35
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Table 3.3. Posteriormedian estimates of 𝑓NL from likelihood functionsLtrue(𝜃 ; 𝒀 ),L𝑡
(
𝜃 ; r𝒀 , pΣf

)
,

L𝑡
(
𝜃 ;𝒁𝜈, pΣf

)
, L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
and L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
(see Table 3.1 for reference), marginalised

over 250000 data realisations with different true 𝑓NL inputs and the same fiducial cosmological at
𝑓NL = 0. The reported uncertainties correspond to the equal-tailed 68.3 % credible interval.

Input
𝑓NL

Posterior median estimates

Ltrue(𝜃 ; 𝒀 ) L𝑡
(
𝜃 ; r𝒀 , pΣf

)
L𝑡

(
𝜃 ;𝒁𝜈, pΣf

)
L𝑡

(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
50 53+43−39 46+33−35 51+39−38 48+40−35 53+43−38
10 13+41−36 6+36−39 11+38−38 8+38−32 13+40−35
0 3+40−36 −5+37−40 1+38−37 −2+38−32 3+40−35

−10 −7+39−35 −15+37−41 −9+38−37 −12+37−31 −7+39−34
−50 −46+36−31 −56+41−44 −49+37−37 −52+35−28 −46+36−30

With uniform priors, the posterior P(𝜃 |𝑿) of a cosmological parameter 𝜃 given any
data𝑿 is simply the likelihoodL(𝜃 ;𝑿 ) suitably normalised. Common Markov chain Monte
Carlo (MCMC) analyses usually return the posterior median or mean as the Bayes estim-
ate [110, 190], and here we choose the absolute loss function

loss(𝜆;𝜃 ) = |𝜆 − 𝜃 | (3.33)

and minimise its expectation over the posterior of 𝜃 to obtain the posterior median estim-
ator [191]

p𝜃 = argmin
𝜆

𝔼𝜃 |𝑿 [loss(𝜆;𝜃 )] . (3.34)

As the name suggests, this estimator is simply the median point of the posterior distribution.
The corresponding uncertainties can be quoted as the equal-tailed 68.3 % credible interval. For
the same likelihood functions considered above, we show the results in Table 3.3.

It is evident that overall the novel likelihoodL𝑡
(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
performs the best in produ-

cing parameter estimates as well as uncertainty bounds close to those from the exact true likeli-
hood, whether a frequentists’ or a Bayes estimator is used. We have found thatGaussianisation
with a fixed transformation parameter 𝜈 = 1/3 gives similar results to Gaussianisation with a
variable 𝜈 given by the fitting formula (eq. 3.24); likewise, assuming a wrong fiducial cosmolo-
gical model for Gaussianisation, even when it deviates significantly from the true cosmology,
has negligible impact on recovered parameters. This demonstrates that our Gaussianisation
scheme is robust to variations of the fiducial cosmological model.

To get a sense of how the 𝑓NL posteriors vary with each data realisation, in Figure 3.7 we
show the normalised histograms of the posteriormedian estimates and 68.3 % credible bounds
produced from the exact true likelihood Ltrue(𝜃 ; 𝒀 ), the standard likelihood L𝑡

(
𝜃 ; r𝒀 , pΣf

)
without data Gaussianisation and covariance estimate rescaling, and the novel likelihood
L𝑡

(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
over the ensemble of 𝑓NL = 0 data realisations. Because of the relatively

large uncertainty in 𝑓NL, the posterior median estimates given by these likelihoods are statist-
ically consistent. Nevertheless, it is apparent that the standard likelihood without Gaussian-
isation or covariance estimate rescaling tends to negatively shift the credible bounds on 𝑓NL,
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Figure 3.7. Normalised histograms of the posteriormedian estimates (middle panel) and 68.3 %
credible bounds (top and bottom panels) produced from the exact true likelihood Ltrue(𝜃 ; 𝒀 )
(shaded), the standard likelihoodL𝑡

(
𝜃 ; r𝒀 , pΣf

)
without data Gaussianisation and covariance es-

timate rescaling (in red), and the novel likelihoodL𝑡
(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
(in blue) over the ensemble of

𝑓NL = 0 data realisations.

whereas the novel likelihood is in excellent agreement with the exact true likelihood. Again,
this reflects the fact that away from the peak of the posterior distribution, our methodology
produces a superior likelihood approximation to the true one in terms of the overall shape of
the distribution and in particular its tails.

Posterior shape comparison

A graphical comparison of probability distributions is the quantile–quantile (Q–Q) prob-
ability plot [192]. Figure 3.8 shows the 𝑓NL percentiles inferred from likelihood functions
listed in Table 3.1 except LG

(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
against 𝑓NL percentiles of the exact true likeli-

hood Ltrue(𝜃 ; 𝒀 ), where we contrast no Gaussianisation against Gaussianisation, and fixed
covariance estimates against rescaled covariance estimates. There are two trends that match
our expectation: 1) posterior distributions of the Gaussianised data 𝒁 match the shape of the
true posterior better than those of the un-Gaussianised data r𝒀 , especially away from the peak
and near the tails of the distribution; 2) not accounting for parameter dependence of the cov-
ariance matrix by the rescaling method also noticeably distorts the shape of the posterior dis-
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Figure 3.8. Q–Q plots comparing 𝑓NL posterior distributions obtained from the different likeli-
hood functions without or with data Gaussianisation and/or covariance estimate rescaling (see
Table 3.1 for reference). The top panel shows the inferred 𝑓NL percentiles from the different like-
lihood functions against the true 𝑓NL percentiles, all marginalised over 250000 data realisations
at 𝑓NL = 0, and the bottom panel shows residuals of the 𝑓NL percentiles. The right column shows
the cases with covariance estimate rescaling and the left column the cases without. The unit-slope
lines are reference lines showing no deviation from the exact true likelihood, and the dotted ver-
tical lines mark the 𝑓NL posterior median estimate and the equal-tailed 68.3 % credible interval
from the exact true likelihood. Figure adapted from Fig. 5 in Paper I.

tribution. Again we have found that Gaussianisation with a fixed Box–Cox transformation
parameter𝜈 = 1/3 produces nearly indistinguishable results fromGaussianisation with a vari-
able 𝜈.

Another quantitative measure of the ‘statistical distance’ between a probability density
function 𝑓 (𝜃 ) and an approximate one𝑔(𝜃 ) is theKullback–Leibler (KL) divergence [193]

𝐷KL(𝑓 ‖𝑔) =
∫

d𝜃 𝑓 (𝜃 ) ln 𝑓 (𝜃 )
𝑔(𝜃 ) . (3.35)

For instance, if one takes 𝑓 to be the posterior of the exact true likelihood against which the
posterior𝑔 of the various likelihood functions is compared, then the KL divergence marginal-
ised over the entire ensemble of data realisations could quantify the ‘information loss’ due to
the replacement of the exact true likelihood with the approximate ones. Table 3.4 shows the
posterior KL divergence values with respect to the exact true likelihood for all likelihood func-
tions inTable 3.1 exceptLG

(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
, with the results having been averaged over all data

realisations generated at each true 𝑓NL input. As before, the novel likelihoodL𝑡
(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
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Table 3.4. KL divergence values with respect to the true 𝑓NL posterior for posteriors of vari-
ous likelihood functions (see Table 3.1 for reference). Results have been marginalised over
250000data realisationswith different true 𝑓NL inputs and the samefiducial cosmology at 𝑓NL = 0.

𝐷KL from the true posterior

Input 𝑓NL 50 10 0 −10 −50

L𝑡
(
𝜃 ; r𝒀 , pΣf

)
0.35 0.18 0.17 0.17 0.23

L𝑡
(
𝜃 ;𝒁1/3, pΣf

)
0.05 0.04 0.05 0.05 0.10

L𝑡
(
𝜃 ;𝒁𝜈, pΣf

)
0.05 0.04 0.05 0.05 0.09

L𝑡
(
𝜃 ; r𝒀 , pΣ (𝜃 )

)
0.12 0.11 0.10 0.10 0.11

L𝑡
(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
0.02 0.02 0.02 0.02 0.03

L𝑡
(
𝜃 ;𝒁𝜈, pΣ (𝜃 )

)
0.02 0.02 0.02 0.02 0.03

with both data Gaussianisation and covariance estimate rescaling is the closest to the true like-
lihood, and Gaussianisation with 𝜈 = 1/3 fixed produces very similar results.

Sources of error in parameter inference

Although two major sources of error in parameter inference, namely the Gaussian likelihood
assumption and the neglection of parameter dependence of the covariance matrix, have been
identified and mitigated by Gaussianisation and variance–correlation rescaling of the covari-
ance matrix respectively, there are other sources of error which we now consider.

The first concern is how the correlation between band powermeasurementsmay adversely
affect the univariate Gaussianisation scheme we have adopted for simplicity. Univariate Gaus-
sianising transformations are expected to work the best when the off-diagonal elements of the
correlationmatrix are comparatively small, and hence for a given window function, one would
ideally choose broader wavenumber bins for band power measurements. For future surveys
with both wider coverage and greater depth, this will be easier as the Fourier-space window
function will be narrower. However, broadening the wavenumber bins also means that relat-
ively more clustering modes contribute to each band power, thus making the data variables
more Gaussian. The limit to how broad wavenumber bins should be will depend on whether
there are sufficiently many bins to retain the cosmological information in the survey data.

The second concern is that when one cannot directly calculate the mixing matrix, the
gammadistribution shape–scale parametersmay have to be estimated frommock catalogues as
part of covariance matrix estimation; this can bring additional statistical scatter to likelihood
inference. Ideally the shape–scale parameters need to be marginalised out together with the
unknown true covariance matrix in the SH procedure, but this unfortunately makes the likeli-
hood function analytically intractable after Gaussianisation (see also the discussion in §3.2.2).
We investigate this issue with Monte Carlo simulations as before and compare the impact on
the posterior shape resulting from covariance matrix estimation and the evaluation of gamma
distribution shape–scale parameters (𝑅, 𝜂) using the estimated band power variance. Both es-
timations are made with the same ensemble of mock catalogues; for 25000 data realisations,
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we have generated one ensemble of 𝑁mock = 1000 mock catalogues for each data realisation.
In a second Q–Q probability plot (Fig. 3.9) for the posteriors of likelihood functions of the
Gaussianised data 𝒁 with a fixed Box–Cox parameter𝜈 = 1/3 and rescaled covariance matrix
estimates, we consider three scenarios:

1) The de-biased and rescaled precision matrix estimate is directly substituted into the
Gaussian likelihoodLG

(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
;

2) The SH marginalisation procedure is performed and thus the modified-𝑡 likelihood
L𝑡

(
𝜃 ;𝒁1/3, pΣ (𝜃 )

)
is used;

3) A high-precision covariance matrix estimate is used as a proxy for the exact covariance
matrix in the Gaussian likelihoodLG

(
𝜃 ;𝒁1/3,Σ (𝜃 )

)
.

For each of these scenarios, we further compare the case where the parameters (𝑅, 𝜂) are ana-
lytically calculated (using the mixing matrix and the fiducial power spectrum including shot
noise) against the case where they are obtained from estimated band power variance. In ad-
dition, we also vary the size of the mock catalogue ensemble to differentiate between these
multiple scenarios.

The results in Figure 3.9 indicate that the SHmarginalisation procedure (i.e. themodified-
𝑡 likelihood) indeed accounts for the statistical scatter due to covariance matrix estimation.
The impact of covariance matrix estimation appears to be subdominant to that of band power
variance estimation used for evaluating (𝑅, 𝜂) if the ensemble size of mock catalogues is large,
e.g. with 𝑁mock = 1000 in the left column of the figure, where the residual lines fall into two
distinctive groups depending on whether (𝑅, 𝜂) are estimated or exact. In contrast, when the
ensemble size of mock catalogues is small, e.g. 𝑁mock = 50 in the bottom right panel, the
impact of covariance estimation seems to be the greater of the two. However, by comparing
with Figure 3.8, it is evident that the impact from these estimations is far less significant than
the naïve Gaussian likelihood assumption and the neglection of the cosmological dependence
of the covariance matrix, which are the focal problems addressed in this work. In particular,
the errors due to these estimations with 𝑁mock = 1000, which is a typical number of mock
catalogues required for upcoming surveys such as DESI and Euclid, are approaching the er-
rors inherent in our gamma distribution approximation and univariate Gaussianisation in any
case. In light of these results, we recommend using the SH marginalisation procedure for the
covariance matrix estimate, i.e. adopting the modified-𝑡 likelihood, even when the gamma dis-
tribution parameters are estimated and cannot be marginalised out in a similar fashion.

3.4 Likelihood construction for survey application

For the benefit of the reader who wishes to apply the methodology proposed in this work to
cosmological inference with future survey data, we now present a straightforward pipeline for
constructing the likelihood function.

Gammadistribution approximation. Measurements of the band power spectrum aremod-
elled as gamma random variables. Given band power measurements p𝑷 at binned wavenum-
bers 𝑘𝑎 , the gamma distribution shape and scale parameters are determined from the power
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Figure 3.9. Q–Qplots of 𝑓NL posterior distributions for comparing the relative impact of covari-
ance matrix estimation and the evaluation of gamma distribution parameters (𝑅, 𝜂) using estim-
ated band power variance. All likelihood functions compared are of the Gaussianised data 𝒁1/3
with the covariance matrix estimate rescaled for varying cosmological models. The covariance
matrix is either estimatedwithout applying the SHmarginalisationprocedurewhich corresponds
to the Gaussian likelihoodsLG

(
𝜃 ; pΣ (𝜃 )

)
(dashed lines), or has been marginalised using the SH

procedure which corresponds to the modified-𝑡 likelihoodsL𝑡
(
𝜃 ; pΣ (𝜃 )

)
(dash-dotted lines), or

an ‘exact’ covariance matrix is used which corresponds to the Gaussian likelihoodsLG(𝜃 ;Σ (𝜃 ))
(dotted lines). The gamma distribution parameters are either estimated (lines with ‘+’ markers)
or exact (lines without markers). Similar to Figure 3.8, the top panel shows the inferred 𝑓NL pos-
terior percentiles for the different likelihood functions against posterior percentiles of the exact
true likelihood Ltrue(𝜃 ; 𝒀 ), with results having been averaged over 25000 data realisations pro-
duced at the fiducial cosmological model with 𝑓NL = 0. The bottom panel shows the residuals
of 𝑓NL posterior percentiles with respect to the exact true likelihood. The left column shows the
case where 𝑁mock = 1000 mock catalogues per data realisation have been used for estimation,
whereas the right column shows the case with 𝑁mock = 50. The dotted vertical lines mark the 𝑓NL
posterior median estimate and the equal-tailed 68.3 % credible interval from the exact true likeli-
hood. Note that the vertical axes in the bottom left and right panels have different scales. Figure
adapted from Fig. 6 in Paper I.
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spectrum and its variance at a fiducial cosmological model with parameters 𝜃 ,

𝑅̆𝑎 =
𝔼
[
p𝑃𝑎

]2
var

[
p𝑃𝑎

] and 𝜂𝑎 =
var

[
p𝑃𝑎

]
𝔼
[
p𝑃𝑎

] . (3.36)

If the power spectrum variance could not be predicted analytically, it should be replaced by a
fiducial estimate xvar

[
p𝑃𝑎

]
calculated from mock catalogues.

Data Gaussianisation. The Box–Cox transformation is applied to Gaussianise the band
power data vector p𝑷 univariately,

p𝑃𝑎 ↦→ 𝑍𝑎 = p𝑃 𝜈𝑎𝑎 , (3.37)

where the transformation parameter 𝜈𝑎 is either calculated using the fitting formula (eq. 3.24)
with the fiducial shape–scale parameters

(
𝑅̆𝑎, 𝜂𝑎

)
, or simply fixed at 𝜈𝑎 = 1/3 which has been

shown to perform equally well. After the transformation, the mean 𝜇𝑎 (𝜃 ) and variance 𝜎2𝑎 (𝜃 )
of the Gaussianised random variable 𝑍𝑎 at any cosmological parameters 𝜃 are given by equa-
tion (3.20).

Covariance estimate rescaling. For any cosmological model to be tested, the parameter-
dependent covariance matrix estimate pΣ (𝜃 ) can be rescaled from a fiducial estimate pΣf using
equation (3.26), where entries of the diagonal matrix Λ are given by 𝜎𝑎 (𝜃 ).

Likelihood evaluation. Themodified-𝑡 likelihood (eq. 3.28) is evaluated with theGaussian-
ised data vector 𝒁 , the mean vector 𝝁𝒁 with entries being the transformed mean 𝜇𝑎 (𝜃 ), and
the rescaled covariancematrix estimate pΣ (𝜃 ). Standard Bayesian inference techniques such as
MCMC can be readily employed to extract cosmological parameter estimates and associated
uncertainties from the posterior distribution in a multidimensional parameter space.

3.5 Summary and discussion

In preparation for next-generation galaxy surveys such as DESI and Euclid measuring large-
scale cosmic fluctuations never probed before, we have revisited the Gaussian likelihood as-
sumption commonly found in galaxy clustering power spectrum analyses, whichmay adversely
impact cosmological parameter inference from measurements limited by the number of clus-
tering modes on the largest survey scales. Extending previous work by ref. [169–173], we have
carefully derived the underlying distribution of windowed power spectrum measurements for
GRFs. To deal with the non-normal probability distribution and the cosmological parameter
dependence of the covariance matrix, we have

1) devised a univariate Gaussianisation scheme using the Box–Cox transformation to im-
prove data normality;

2) proposed a variance–correlation decomposition of the covariance matrix to allow for
varying cosmological models;

3) synthesised a simple pipeline for straightforward application of the newmethodology.
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In conclusion, parameter dependence of the covariance matrix can give rise to significant sys-
tematic effects if unaccounted for in likelihood inference, as it is an integral part of the shape
of the posterior distribution. Our rescalingmethod for the covariancematrix is valid in the lin-
ear perturbative regime and correctly includes this parameter dependence. Recognising and
mitigating the non-normality of the underlying distribution of power spectrummeasurements
is equally crucial; although asymptotic normality may be valid for measurements made from
a large number of clustering modes below the largest survey scales, we still recommend the use
of our Gaussianisation scheme because of its simplicity.

By testing with Monte Carlo simulations, we have shown that the novel likelihood
(eq. 3.28) derived with our proposed methodology closely matches the shape of the exact true
likelihood that is inaccessible in realistic surveys. When applied to the inference of the local
PNG parameter 𝑓NL whose constraint is sensitive to large-scale clustering measurements, the
novel likelihood outperforms the standard Gaussian likelihood without data Gaussianisation
or covariance estimate rescaling in both frequentists’ and Bayes estimations. Although the
numerical tests performed in this work have focused on the isotropic power spectrum in real
space, as explained in section 3.1, the new methodology also applies to redshift-space power
spectrum multipoles measured in the local plane-parallel approximation with the Yamamoto
estimator. Yet an all-encompassing framework for galaxy clustering power spectrum analysis
is still out of reach. Towards the quasi-linear regime where clusteringmodes of the galaxy over-
density field are no longer independent but coupled due to non-linear gravitational evolution,
the GRF description is no longer valid and the power spectrum covariance structure is funda-
mentally more complex, though these considerations are beyond the scope of this work.



4

Impact of Relativistic Effects in
Large-Scale Clustering

Despite the relativistic nature of gravitational theories governing structure formation, theNew-
tonian description of fluctuations in the observed distribution of galaxies is usually adequate as
relativistic effects are suppressed below the Hubble horizon scale. In the past, the full relativ-
istic modelling of galaxy clustering has been unnecessary to obtain cosmological parameter
constraints, as cosmic variance dominates over any corrections. With the next generation
of galaxy surveys probing far wider and deeper cosmic volumes, however, such approximate
prescriptions might no longer be sufficient to attain unbiased constraints. The necessary re-
lativistic corrections for galaxy clustering observations have been derived by refs. [123–125].
Many subsequent works have demonstrated their importance for constraining cosmological
parameters, in particular local PNG 𝑓NL, as its scale-dependent signature on large scales may
be disguised as relativistic effects [126–130, 194–197]. At the same time, the investigation of
relativistic corrections is itself a valuable exercise, as it offers tests of relativistic gravitational
theories on cosmological scales [198, 199], including the equivalence principle [200]. Future
galaxy surveys like DESI are forecast to deliver the first detections of these relativistic correc-
tions [201].

One crucial aspect of relativistic corrections is that their total amplitude does not only de-
pend on the cosmological and gravitational models, but also on the background number dens-
ity of the tracer population being examined through its redshift evolution and sensitivity to the
luminosity threshold of observations, as respectively captured by parameters known as evolu-
tion bias 𝑏e and magnification bias 𝑠 . Previous works have mostly only considered relativistic
effects in Fisher forecasts for 𝑓NL by assuming fiducial values of𝑏e and 𝑠 , but the exact depend-
ence of these parameters on redshift and the luminosity threshold, as well as how their uncer-
tainties propagate to the observed power spectrum, remainsmuch less clear. In this chapter, we
concretise these considerations for quasars, which are an ideal tracer for detecting 𝑓NL thanks
to their high redshift range and bias. The next section first reviews linear-order general relativ-
istic corrections to galaxy clustering, including contributions from evolution bias𝑏e and mag-
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nification bias 𝑠 which shall be formally introduced. This motivates the need for determining
the tracer luminosity function (LF), and based on the previous work by Palanque-Delabrouille
et al. [202, hereafter PD2016], we fit the quasar luminosity function with eBOSS QSO meas-
urements before deriving constraints on 𝑏e, 𝑠 and thus relativistic corrections. We then com-
pare scale-dependentmodifications to the quasar clustering power spectrum due to relativistic
corrections and due to 𝑓NL at different redshifts for two different magnitude thresholds. The
chapter concludes by emphasising the need to include luminosity function constraints in for-
ward modelling of relativistic clustering statistics for future galaxy surveys.

4.1 Relativistic effects in galaxy clustering

Whilst the Newtonian description of galaxy clustering is appropriate for observations on sub-
horizon scales, as the clustering scale 𝑘−1 approaches the horizon scale H −1, the observed
galaxy over-density field 𝛿 receives relativistic corrections ofO (H /𝑘) or higher that are other-
wise suppressed [123–125],

𝛿 (𝒓, 𝑧) = 𝑏1(𝑧) 𝛿m(𝒓 , 𝑧) −
𝒓 · 𝜕𝑟𝒗
H (𝑧)

− 𝑔1(𝑧)𝒓 · 𝒗 − [𝑏e(𝑧) − 3]H (𝑧)∇−2∇ · 𝒗

+ 𝛷
′(𝒓, 𝑧)

H (𝑧) − [2 − 5 𝑠 (𝑧)]𝛷 (𝒓, 𝑧) +𝛹 (𝒓, 𝑧) + 𝑔1(𝑧)𝛹 (𝒓, 𝑧) + · · · . (4.1)

Here𝛷 and𝛹 are the Bardeen potentials (recall from appendix B); a thick prime denotes a
conformal-time derivative; 𝑏1 is the scale-independent bias with respect to the matter density
contrast𝛿m in comoving synchronous gauge;𝒗 is the peculiar velocity in theNewtonian gauge;
and𝑔1 is a dimensionless quantity given by

𝑔1 =
H ′

H 2 +
2 − 5𝑠
H 𝜒

+ 5𝑠 − 𝑏e . (4.2)

The quantities 𝑏e and 𝑠 are the evolution and magnification biases: a priori they do not neces-
sarily follow from a cosmological model but are rather derived at a given redshift from

𝑏e(𝑧) = −
𝜕 ln s𝑛(𝑧;< 𝑚̄)
𝜕 ln(1 + 𝑧) and 𝑠 (𝑧) = 𝜕

𝜕𝑚

����
𝑚̄

lg s𝑛(𝑧;<𝑚) (4.3)

with lg ≡ log10, where s𝑛(𝑧;<𝑚) is the background comoving number density of the tracer
population below a given absolute magnitude𝑚, and 𝑚̄ is the absolute-magnitude threshold
of any given tracer sample.

In equation (4.1), the first line is the familiar Newtonian redshift-space over-density field,
which includes the linear RSD contribution albeit in the distant-observer limit; the second
and third lines are relativistic corrections. These relativistic corrections do not indicate the fun-
damental behaviour of gravity is any different on cosmological scales (cf. the comoving dens-
ity contrast𝛥 defined in appendix B); rather, they arise as the observed coordinates of galaxies
do not reflect their true spatial positions because of geometric distortions, as the redshift and
propagation of the photon and the observed comoving volume are perturbed. The second
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line in equation (4.1) encapsulates Doppler-like terms associated with the peculiar velocity 𝒗;
interestingly, the first term actually provides the mode-coupling RSD term ignored in the
distant-observer limit (see eq. 1.31)—it corresponds to the term (2 − 5𝑠)/(H 𝜒) in 𝑔1 [199].
The third line contains potential terms, which include the effect of gravitational redshift; the
ellipsis encompasses contributions from lensing magnification, time delay and the integrated
Sachs–Wolfe (ISW) effect, which are omitted here since they are integrated terms involving
the Bardeen potentials and cannot be easily included in a Cartesian power spectrum model.
All of these corrections may affect cosmological parameter inference, as shown by recent stud-
ies of their relative importance in observable statistics such as the angular power spectrum or
correlation function [195, 197, 203–205]. For the full derivation of relativistic corrections to
first order, which takes into account the photon trajectory from the source to the observer,
the reader is referred to refs. [123–125].

The evolution and magnification biases𝑏e and 𝑠 both modulate part of the relativistic cor-
rections. Withoutmagnification, galaxies with intrinsic brightness below the thresholdwould
not appear in the observed sample; with magnification or de-magnification, however, galaxies
fainter or only slightly brighter than the threshold may enter or fade out of the sample, and
the resulting change to the measured number count is thus described by a non-zero magni-
fication bias 𝑠 . The effect of evolution bias 𝑏e can also be understood intuitively: relativistic
perturbations change the photon redshift along its trajectory, leading to amisestimation of the
background number density at the source redshift and thus altering the observed galaxy over-
density field, unless the background number density happens to be independent of redshift,
i.e. 𝑏e = 0.

In this work, we shall focus on the Doppler-like terms involving the peculiar velocity and
the local potential terms only (i.e. all the terms shown explicitly in equation (4.1)), and con-
sider their scale-dependent signature in the global plane-parallel limit where 𝜇 = 𝒌̂ · 𝒓 = 𝒌̂ · 𝒏̂
does not vary for a fixed global line of sight 𝒏̂ (see §1.2). Using the background and linearised
Einstein field equations (A.13) and (B.9) for a flat ΛCDM universe written in the following
form,

𝒗 = −iH
𝑘
𝑓 𝛿m𝒌̂ , (4.4a)

𝛷 = −3
2

(
H

𝑘

)2
𝛿m , (4.4b)

H −1𝛷′ =

(
H ′

H 2 − 1
) (

H

𝑘

)2
𝑓 𝛿m −𝛷 , (4.4c)

where𝛷 =𝛹 in the absence of anisotropic stress [126, 127, 194], equation (4.1) can be recast as

𝛿 (𝒌) =
[
𝑏1 + 𝑓 𝜇2 + i

H

𝑘
𝑔1𝑓 𝜇 +

(
H

𝑘

)2
𝑔2

]
𝛿m(𝒌) , (4.5)

where redshift dependence is implicit, and a second dimensionless quantity has been intro-
duced,

𝑔2 = −(𝑏e − 3) 𝑓 +
(

H ′

H 2 − 1
) [
𝑔1 + 𝑓 − (2 − 5𝑠)

]
. (4.6)
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By employing the Friedman equations (A.13) with negligible radiation, one can rewrite

H ′

H 2 = 1 − 3
2
𝛺m ; (4.7)

the dimensionless quantities parametrising relativistic corrections are thus

𝑔1 =

(
3 − 𝑏e −

3
2
𝛺m

)
− (2 − 5𝑠)

(
1 − 1

H 𝜒

)
(4.8a)

and 𝑔2 =

(
3 − 𝑏e −

3
2
𝛺m

)
𝑓 − 3

2
𝛺m [𝑔1 − (2 − 5𝑠)] . (4.8b)

These quantities depend not only on the cosmological model parameters through the acceler-
ating background expansion but also on the tracer sample in question through its evolution
and magnification biases.

Therefore to determine the relativistic corrections in equation (4.1) or (4.5), two in-
gredients are needed: a background cosmological model and the tracer luminosity func-
tion (LF) 𝜙 (𝑚, 𝑧) from which the underlying comoving number density

s𝑛(𝑧;< 𝑚̄) =
∫ 𝑚̄

−∞
d𝑚𝜙 (𝑚, 𝑧) (4.9)

below some absolute-magnitude threshold 𝑚̄ can be derived.

4.2 Luminosity functionmodel fitting

Determining the tracer luminosity function is not only important for modelling relativistic
corrections; it may also be a significant source of uncertainty for constraining PNG. In this
work, we examine quasars as a single tracer for detecting 𝑓NL thanks to their high tracer bias
and redshift range, for which the scale-dependent signature in its large-scale bias should be
enhanced (see eq. 1.60). By measuring the quasar evolution and magnification biases from
the luminosity function, one can then derive relativistic corrections to the power spectrum
multipoles as well as their uncertainties.¹

To this end, we consider the eBOSSQSOLFmeasurements reported inPD2016 (Tab.A.1
therein) for the redshift range 0.7 < 𝑧 < 4.0, which are corrected for observational systemat-
ics such as completeness and bandpass redshifting of spectra (also known as the𝐾 -correction).
One of the currently adopted empirical quasar luminosity function models is the pure lumin-
osity evolution (PLE) model [202, 207, 208],

𝜙 (𝑚, 𝑧) = 𝜙∗
100.4(𝛼+1) [𝑚−𝑚∗ (𝑧)] + 100.4(𝛽+1) [𝑚−𝑚∗ (𝑧)]

, (4.10)

which is a double power lawwith bright- and faint-end indices𝛼 and 𝛽 thatmay differ depend-
ing on the redshift𝑧 relative to the pivot redshift𝑧p = 2.2. Here𝜙∗ is the overall normalisation
constant, and

𝑚∗(𝑧) =𝑚∗
(
𝑧p

)
− 5
2

[
𝑘1(𝑧 − 𝑧p) + 𝑘2(𝑧 − 𝑧p)2

]
(4.11)

¹ The same procedure also applies to tracers other than quasars, as long as one could determine their luminosity
function; for instance, ref. [206] provides empirical luminosity functions for Hα emitters, which could be used
to constrain their evolution and magnification biases by propagating the fitted luminosity function parameters.
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is the characteristic absolute magnitude, where 𝑘1 and 𝑘2 are redshift evolution parameters
that can also differ between low redshift 𝑧 < 𝑧p and high redshift 𝑧 > 𝑧p. Therefore this is a
parametric model with 10 parameters, 𝜃 = {𝜙∗,𝑚∗(𝑧p), 𝛼l, 𝛽l, 𝑘1l, 𝑘2l, 𝛼h, 𝛽h, 𝑘1h, 𝑘2h}, where
subscripts ‘l’ and ‘h’ denote ‘low redshift’ and ‘high redshift’ respectively.²

4.2.1 Luminosity function likelihood

Without re-performing the iterative LFfitting procedure adopted by PD2016 on the rawQSO
number count data, we take the likelihood inference approach outlined in ref. [206] for sim-
plicity. For absolute magnitude and redshift bins (𝑚𝑖, 𝑧𝑖) indexed by 𝑖 , the quasar number
count p𝑁𝑖 follows the Poisson distribution with variance var

[
p𝑁𝑖

]
= 𝑁𝑖 , which has the logar-

ithmic PDF

lnℙ
(

p𝑁𝑖
��𝑁𝑖 ) = p𝑁𝑖 ln𝑁𝑖 − 𝑁𝑖 − ln 𝛤

(
p𝑁𝑖

)
. (4.12)

The expected number count is given by

𝑁𝑖 =
〈

p𝑁𝑖
〉
=

∬
𝑖th bin

d𝑧
d𝑉 (𝑧)
d𝑧

d𝑚𝜙𝜃 (𝑚, 𝑧) , (4.13)

where 𝜙𝜃 (𝑚, 𝑧) is the PLE LF (eq. 4.10) with model parameters 𝜃 ,

d𝑉 (𝑧) = 4π𝑟 2
d𝑟
d𝑧

d𝑧 (4.14)

is the differential comoving volume, and the radial comoving distance is given by 𝑟 = 𝜒 (𝑧).
To obtain an approximate likelihood for the parametric LF model, one notes that the

binned LF p𝜙 ∝ p𝑁 and thus an estimate for the uncertainty on ln p𝜙 is p𝑁 −1/2. Expanding
the PDF (eq. 4.12) around its maximum, one obtains the quadratic form

lnL(𝜃 ) − lnLmax ' −
1
2

∑
𝑖

𝜍2𝑖
p𝜎2𝑖
, (4.15)

where p𝜎2𝑖 = 1
/

p𝑁𝑖 and

𝜍2𝑖 (𝜃 ) = −2
[
1 − 𝜙𝜃 (𝑚𝑖, 𝑧𝑖)

p𝜙𝑖
+ ln 𝜙𝜃 (𝑚𝑖, 𝑧𝑖)

p𝜙𝑖

]
> 0 . (4.16)

Therefore the appropriate approximate likelihood for inferring the best-fitting LF model is
given by

lnL(𝜃 ) =
∑
𝑖

1

p𝜎2𝑖

[
1 − 𝜙𝜃 (𝑚𝑖, 𝑧𝑖)

p𝜙𝑖
+ ln 𝜙𝜃 (𝑚𝑖, 𝑧𝑖)

p𝜙𝑖

]
, (4.17)

where an additive normalisation constant has been omitted.

² Note that the letter 𝛼 has a different usage outside the scope of this chapter, and except for the letter 𝑘 with
the subscripts specified here, 𝑘 generally denotes a wavenumber.
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Table 4.1. Posterior median estimates of the PLE model parameters for the eBOSS QSO LF
measurements from PD2016.

Parameters lg𝜙∗ 𝑚∗(𝑧p) 𝛼 𝛽 𝑘1 𝑘2

𝑧 ∈ [0.68, 2.2)
−26.20+0.21−0.20 −5.76+0.09−0.08

−3.27+0.17−0.19 −1.40+0.06−0.06 −0.10+0.08−0.09 −0.40+0.06−0.06
𝑧 ∈ [2.2, 4.0] −2.57+0.08−0.09 −1.21+0.10−0.09 −0.37+0.09−0.09 −0.01+0.06−0.06

4.2.2 Best-fittingmodels

By sampling the model parameters from the posterior of the LF likelihood function (4.17)
with the MCMC sampler s [209],³ we have re-fitted the PLE model for the eBOSS QSO
measurements. Because of the exchange symmetry between the power-law indices 𝛼 and 𝛽 in
equation (4.10), the constraint 𝛼 < 𝛽 has been imposed in the MCMC sampling to avoid a
multimodal posterior distribution. The PLE model parameters are estimated by the posterior
medians and reported in Table 4.1, with a reduced chi-square value of 105/77 ≈ 1.36 per
degree of freedom.

We note that there appears to be some discrepancy between our fitted model paramet-
ers and the results in PD2016. In Figure 4.1, both best-fitting models are compared with the
eBOSS QSO measurements. In all redshift bins, the two fitted models evaluated at the cent-
ral redshift are in reasonable agreement with measurements, and are virtually indistinguish-
able across a wide magnitude range. Noticeable differences only appear either at the very faint
end below the limiting absolute magnitude corresponding to the𝑔-band apparent-magnitude
cut𝑔 = 22.5,⁴ which is not constrained by any measurements, or at the very bright end, where
uncertainties are comparatively large owing to smaller QSO sample size. Such discrepancies
may be attributed to the fact that PD2016were able to fit the rawQSOnumber countswhereas
here we have only fitted the binned LF reported in their final results.⁵ As the next section will
show, constraints on the relativistic corrections propagated from these best-fitting LF mod-
els are broadly statistically consistent and have no significant impact on the findings of our
analysis.

4.3 Constraints on relativistic corrections

Havingdetermined theQSOLF,wenowproceed to constrain relativistic corrections toquasar
clustering statistics by propagating the sampled LF parameters in the form of MCMC chains
to evolution andmagnification biases. To do so, we specify thePlanck 2015 cosmologywith (ℎ,
𝛺𝛬,0, 𝛺m,0) = (0.6790, 0.6935, 0.3065) [211], which is a choice consistent with PD2016. We

³ The code is publicly available at  github.com/minaskar/zeus.
⁴ The 𝑔-band apparent magnitude is converted to the absolute magnitude by 𝑚̄(𝑧) = 𝑔 − 𝜇 (𝑧) − [𝐾 (𝑧) −
𝐾 (𝑧 = 2)], where 𝜇 is the distance modulus,𝐾 is the𝐾 -correction function, and the normalisation redshift 𝑧 =
2.0 is close to the median redshift of the eBOSS QSO sample in PD2016. Note that the letters 𝜇 and 𝐾 denote
different quantities outside the scope of the discussion here.
⁵ It is also worth mentioning that recently ref. [210] noted a possible error in the 𝐾 -correction applied to the
eBOSS QSO data sets by PD2016, which could have an impact on the fitted LF model.

https://github.com/minaskar/zeus
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Figure 4.2. Derivedmeasurements of the quasar comovingnumber density s𝑛 below the absolute-
magnitude threshold 𝑚̄ = −25.0 as a function of redshift 𝑧 from the best-fitting eBOSS QSO LF
in this work (see Table 4.1). Data points with error bars are measurements within the 68 % cred-
ible interval for the eBOSS QSO redshift bins. The shaded grey regions show the 95 % credible
interval. The vertical dotted line marks the pivot redshift 𝑧p = 2.2. Figure taken from Fig. 2 in
Paper II.

also specify a fiducial absolute-magnitude threshold 𝑚̄ = −25.0 based on the highest eBOSS
QSO redshift bin.

4.3.1 Constraints on relativistic biases

To first compute the quasar comoving number density s𝑛, equation (4.9) is numerically integ-
rated with our best-fitting LF model 𝜙𝜃 (𝑚, 𝑧) up to the absolute-magnitude threshold 𝑚̄. In
Figure 4.2, the derived measurements of s𝑛 from sampled LF parameters within the 95 % cred-
ible interval across the redshift range 0.7 < 𝑧 < 4.0 are shown; for the eBOSS QSO redshift
bins, measurements of s𝑛 with error bars corresponding to the 68 % credible interval are also
shown. The small apparent discontinuity in s𝑛 corresponds to the pivot redshift 𝑧p, which di-
vides some subsets of the combined eBOSS QSO data [PD2016]. The presence of the pivot
redshift 𝑧p is also a common feature of the empirical models currently used for the quasar lu-
minosity function, where the model parameters can suddenly change. This may have possible
links to the physics of quasar formation around that epoch in history and/or the fact that the
double power-law form assumed for the quasar luminosity function is no longer adequate at
higher redshifts, where it is more poorly constrained by current data [210, 212].

Next, evolutionbias𝑏e andmagnificationbias𝑠 are computedbynumerical differentiation
with redshift step size Δ𝑧 = 0.001 (see eq. 4.3). We have found that, based on the eBOSS
QSO LF measurements, 𝑏e can be an order of magnitude larger than 𝑠 , although both appear
in relativistic corrections at the same orders in equation (4.8). One interesting comparison one
might make for 𝑏e is with the analytic prediction from the universal mass function (UMF) of
halos (see also appendix C), although the validity of this approach is only limited to tracer
sample selection that is insensitive to halo merger history. The evolution bias predicted from
the UMF is given by

𝑏e(𝑧) = 𝛿c 𝑓 (𝑧) [𝑏1(𝑧) − 1] , (4.18)
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Figure 4.3. Derived measurements of evolution bias 𝑏e and magnification bias 𝑠 at the absolute-
magnitude threshold𝑚̄ = −25.0 from the best-fitting eBOSSQSOLF in thiswork (seeTable 4.1).
Data points with error bars are measurements within the 68 % credible interval for the eBOSS
QSO redshift bins. The shaded grey regions show the 95 % credible interval. The vertical dotted
lines mark the pivot redshift 𝑧p = 2.2. The cause of the discontinuities at 𝑧p in both 𝑏e and 𝑠 is
unclear and could be attributed to unknown systematics in the high-redshift QSO sample [221].
Figure taken from Fig. 3 in Paper II.

where𝛿c ≈ 1.686 is the critical over-density of spherical collapse (recall fromappendixC) [127].
Here we consider a simple redshift evolution model for the quasar linear bias 𝑏1(𝑧) =
1.2/𝐷1(𝑧) , the value of which increases from 1.7 to 4.7 almost linearly in the eBOSS QSO
redshift range 0.7 < 𝑧 < 4.0. This bias model is based on the DESI baseline survey and
does not account for possible luminosity dependence [213]. Based on power-law fitting to the
observed quasar clustering amplitudes, studies have found that the luminosity dependence of
quasar bias appears to be ratherweak, at least at low and intermediate redshifts possibly because
quasars reside in a broad range of halos of different masses [214–216]. However, some current
models and observations hint at a greater level of luminosity dependence at higher redshifts
and luminosity ranges, but such quasars are rare and the luminosity dependence of their bias
can only be better constrained with larger data sets in the future [217–220].

In Figure 4.3, the derivedmeasurements of𝑏e and 𝑠 for 0.7 < 𝑧 < 4.0within the 95 % cred-
ible interval and in eBOSSQSO redshift binswith 68 % level uncertainties are shown together
with the UMF prediction. Similar to the constraints on comoving number density s𝑛, uncer-
tainties of 𝑏e and 𝑠 at each redshift are derived from sample values calculated from MCMC
chains of the luminosity function parameters (which may differ on different sides of the pivot
redshift 𝑧p). It is apparent that, although theUMF prediction is in reasonable agreement with
the measurements at high redshifts, it does not capture the behaviour of the negative evolu-
tion bias values below redshift 𝑧 ' 2. This is perhaps unsurprising given the limitation of the
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Figure 4.4. Constraints on evolution bias 𝑏e and magnification bias 𝑠 at redshift 𝑧 = 2.0 for
absolute-magnitude threshold𝑚̄ = −25.0 from the eBOSSQSOLFmeasurements under thePLE
model. The solid green contours show the 68 % and 95 % credible regions of the joint posterior
distribution sampled from the likelihood function (eq. 4.17) (‘this work’). The dashed purple
contours are from the same samples except shifted to coincide with the best-fitting PLE model
parameters fromPD2016 (‘shifted samples’). The shaded regions in the top and right panels show
the 68 % credible intervals of the marginal posterior distributions. Figure taken from Fig. 4 in
Paper II.

UMF prediction and the simplicity of the quasar bias model we have used. As is the case for
comoving number density, there is an apparent discontinuity at the pivot redshift 𝑧p = 2.2 in
both 𝑏e and 𝑠 . However, these discontinuities are now large enough that even the 95 % uncer-
tainty bounds are inconsistent across the pivot redshift. Unfortunately, we have checked that
this problem persists with the LFs fitted by PD2016 and ref. [210], so it is not due to the differ-
ent fitting procedures. Although the cause of these discontinuities has been attributed to the
form of the empirical luminosity function, the largeness of the discrepancies may indicate un-
known systematics in the eBOSS QSO sample at high redshifts, as noted by ref. [221]. Again,
future survey data may hopefully be able to resolve this issue.

In section 4.2.2, we have also noted that our best-fitting LF under the PLE model is some-
what discrepant from that of PD2016 for the same underlying eBOSS QSO sample (possibly
affected by unknown systematics), although their model parameter estimates have similar un-
certainties. To investigate the impact of this on the measured relativistic bias parameters, we
shift the MCMC chains of sampled LF parameters so that the shifted posterior median estim-
ates coincide precisely with the best-fitting PLE parameters in PD2016. The shifted parameter
samples are then propagated to constraints on 𝑏e and 𝑠 . Figure 4.4 shows that the joint 𝑏e–𝑠
constraints from our original parameter samples and the shifted samples, for instance at red-
shift 𝑧 = 2.0, are broadly consistent. This is especially the case for evolution bias 𝑏e, which
dominates the relativistic corrections over magnification bias 𝑠 . We have also checked that the
joint 𝑏e–𝑠 constraints from the original and shifted samples are consistent at other redshifts,
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Figure 4.5. Derived measurements of the relativistic correction parameters 𝑓 𝑔1 and 𝑔2 (see
eq. 4.8) at the absolute-magnitude threshold 𝑚̄ = −25.0 from the best-fitting eBOSS QSO LF
in this work (see Table 4.1). The data points with error bars are measurements within the 68 %
credible interval for the eBOSS QSO redshift bins, and the shaded region shows the 95 % cred-
ible interval. For comparison, the dashed red lines show the results with (𝑏e, 𝑠) = (0, 0) and
the dash-dotted blue lines with (𝑏e, 𝑠) = (0, 2/5 ). The vertical dotted line marks the pivot red-
shift 𝑧p = 2.2. Figure taken from Fig. 5 in Paper II.

e.g. 𝑧 = 0.87 and 3.75 which correspond to the lowest and highest eBOSS QSO redshift bins
respectively.

4.3.2 Constraints on relativistic correction parameters

In section 4.1, it is shown that relativistic corrections atO (H /𝑘) andO
(
H 2/𝑘2

)
to the galaxy

over-density field at different redshifts and scales are modulated by the parameters 𝑓 𝑔1 and𝑔2
respectively, which can be constrained from the relativistic bias measurements obtained above
under a given cosmological model. Figure 4.5 shows the derived bounds on 𝑓 𝑔1 and𝑔2 within
the 95 % credible interval and theirmeasurements in eBOSSQSOredshift binswith 68 % level
uncertainties. The discontinuities in the derived 𝑔1 and 𝑔2 have the same origin as those dis-
cussed previously. Both𝑔1 and𝑔2 as well as their uncertainties are dominated by contributions
from evolution bias 𝑏e, which can be an order of magnitude larger than magnification bias 𝑠 ,
as shown in Figure 4.3. To assess the relative importance of 𝑏e and 𝑠 , we show in Figure 4.5
two particular fiducial cases: 1) (𝑏e, 𝑠) = (0, 0), i.e. no account of the redshift evolution and
luminosity dependence of the quasar number density; 2) (𝑏e, 𝑠) = (0, 2/5 ), i.e. the comoving
number density is constant and the common factor (2 − 5𝑠) in various relativistic correction
terms vanishes, corresponding to the so-called ‘diffuse background’ scenario where the effects
of lensing magnification and volume distortions partly cancel [127]. Comparisons with these
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cases demonstrate that evolution bias 𝑏e drives relativistic corrections at both low and high
redshifts; unless (2−5𝑠) vanishes, terms containing the (H 𝜒)−1 factor are also important and
increasingly so at lower redshift, especially towards 𝑧 = 0 beyond the redshift range shown in
the figures. This highlights the importance of including both𝑏e and 𝑠 accurately in modelling
relativistic corrections to galaxy clustering.

Having propagated quasar luminosity function measurements through to constraints on
relativistic corrections, we shall investigate in the following sectionhow theymodify the quasar
clustering power spectrum multipoles on large scales.

4.4 Scale-dependent modifications

In section 1.3, it is shown that in the presence of local primordial non-Gaussianity 𝑓NL, the
linear tracer bias 𝑏1 receives a scale-dependent modification

Δ𝑏 (𝑘, 𝑧) = 3𝑓NL [𝑏1(𝑧) − 1.6]
1.27𝛿c𝛺m,0𝐻

2
0

𝑐2𝑘2𝑇 (𝑘) 𝐷1(𝑧)
, (4.19)

where the speed of light 𝑐 is restored, the tracer-dependent parameter is set to a fiducial value
of 𝑝 = 1.6 here for quasars, and the numerical factor arising from normalisation of the linear
growth factor is C

(
𝛺m,0

)
≈ 1.27 for the Planck 2015 ΛCDM cosmology (cf. eq. 1.60). As

𝑘 → 0, the transfer function𝑇 (𝑘) → 1 and Δ𝑏 ∝ 𝑘−2, so the scale-dependent modification
is enhanced on large scales.

It is also shown in section 1.2 that the global plane-parallel anisotropic power spectrum in
the Kaiser RSD model is given by

𝑃 (K) (𝑘, 𝜇) =
(
𝑏 + 𝑓 𝜇2

)2
𝑃m(𝑘) , (4.20)

which is equivalent to the combination of its Legendre multipoles of degrees ℓ = 0, 2 and
4. With the total bias 𝑏 now inclusive of both the scale-independent bias 𝑏1 and the scale-
dependent modification Δ𝑏 ∝ 𝑘−2, the standard Kaiser multipoles 𝑃 (K)ℓ receive the following
modifications,

Δ𝑃0(𝑘) =
[(
2𝑏1 +

2
3
𝑓

)
Δ𝑏 + Δ𝑏2

]
𝑃m(𝑘) , (4.21a)

Δ𝑃2(𝑘) =
4
3
𝑓 Δ𝑏𝑃m(𝑘) . (4.21b)

In contrast to the quadrupole which only receives a modification proportional to 𝑘−2, the
monopole receivesmodifications proportional to both𝑘−2 and𝑘−4 when 𝑓NL ≠ 0, whereas the
hexadecapole receives no modifications as it does not depend on the tracer bias (see eq. 1.42).

In the case of relativistic corrections, it is shown in section 4.1 that they similarly leave a
scale-dependent signature in the over-density field. By considering the two-point correlator of
the Fourier clustering mode in equation (4.5), one sees that relativistic corrections change the
Kaiser monopole and quadrupole by

Δ𝑃0(𝑘) =
[(
2𝑏1𝑔2 +

2
3
𝑓 𝑔2 +

1
3
𝑓 2𝑔21

) (
H

𝑘

)2
+ 𝑔22

(
H

𝑘

)4]
𝑃m(𝑘) (4.22a)
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Figure 4.6. Quasar clustering power spectrum monopole 𝑃0 and quadrupole 𝑃2, without and
with scale-dependent modifications, at redshift 𝑧 = 0.87 (left column) and 𝑧 = 3.75 (right column)
with the absolute-magnitude threshold 𝑚̄ = −25.0. The Kaiser RSDmodel is shown by the solid
black lines. The effect of relativistic corrections without local PNG 𝑓NL is shown by the dashed
red lines with the shaded red regions showing the 95 % credible interval derived from the best-
fitting eBOSS QSO LF in this work (see Table 4.1). The effect of 𝑓NL = 1 (fiducial value) without
relativistic corrections is shown by the dash-dotted blue lines. The vertical dotted lines mark the
wavenumber 𝑘 = H at horizon scale. Figure adapted from Fig. 6 in Paper II.

and Δ𝑃2(𝑘) =
2
3

(
2𝑓 𝑔2 + 𝑓 2𝑔21

) (H

𝑘

)2
𝑃m(𝑘) . (4.22b)

By comparing equations (4.21) and (4.22), it is evident that relativistic corrections can mimic
the effect of 𝑓NL in both the power spectrum monopole and quadrupole on large scales; the
extent to which relativistic corrections can wash out the 𝑓NL signal depends on the precise
amplitudes of the relativistic correction parameters𝑔1 and𝑔2.

With the constraints on 𝑔1 and 𝑔2 obtained in the previous section, we can now make
a concrete comparison between the power spectrum multipole modifications due to 𝑓NL and
due to relativistic corrections. To this end, we consider a fiducial value 𝑓NL = 1 at which
level different classes of inflation models can be distinguished [85, 86]; as before, the fiducial
cosmology is the Planck 2015 ΛCDM model, the absolute-magnitude threshold remains 𝑚̄ =
−25.0 for the eBOSS QSO sample, and 𝑏1(𝑧) = 1.2/𝐷 (𝑧) for the DESI baseline survey,
which is used earlier in the UMF prediction for evolution bias 𝑏e, remains the fiducial bias
model.

In Figure 4.6, the Kaiser power spectrum multipoles for 𝑘 ∈ [10−4, 10−1]hMpc−1 are
shown with the aforementioned scale-dependent modifications at two redshifts, 𝑧 = 0.87 and
3.75, which correspond to the lowest and highest eBOSS QSO redshift bins respectively. At
the lower redshift, relativistic effects dominate over the 𝑓NL signal and obscure the PNG signa-
ture. At the higher redshift, although the relativistic modification is almost comparable to the
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Figure 4.7. Scale-dependent modifications Δ𝑃ℓ to the quasar clustering power spectrummono-
pole and quadrupole as a fraction of the Kaiser RSD model 𝑃 (K)ℓ at wavenumber 𝑘 = 0.001
hMpc−1 with the absolute-magnitude threshold 𝑚̄ = −25.0 (left column) or 𝑚̄ = −22.0 (right-
hand column). Relativistic corrections without local PNG 𝑓NL are shown by the dashed red lines
with the shaded red regions showing the 95 % credible interval derived from the best-fitting
eBOSSQSOLF in thiswork (seeTable 4.1). Modifications due to 𝑓NL = 1 (fiducial value)without
relativistic corrections are shown by the dash-dotted blue lines. Figure adapted from Fig. 7 in Pa-
per II.

effect of 𝑓NL in the quadrupole, the 𝑓NL signal is larger in themonopole. This offers a hint that,
at least for the QSO sample, extending the upper redshift range may help mitigate some po-
tential contamination of the 𝑓NL signal from part of the relativistic corrections; however, we
caution that lensing convergence and non-local potential terms have not been included in our
analysis, and these integrated contributions might hamper the detection of local PNG again
at higher redshifts [197, 203, 204].

To compare how the relative amplitudes of relativistic andPNGmodifications evolvewith
redshift, in Figure 4.7 we show the resultant changes in power spectrum multipoles, Δ𝑃ℓ , as a
fraction of the standard Kaiser multipoles 𝑃 (K)ℓ without scale-dependentmodifications, across
the eBOSS QSO redshift range 0.7 < 𝑧 < 4.0 at a fixed wavenumber 𝑘 = 10−3 hMpc−1—
this is close to the largest scale which DESI and Euclid may probe [213, 222]. In addition to
the fiducial absolute-magnitude threshold 𝑚̄ = −25.0, we also consider a less conservative
threshold at 𝑚̄ = −22.0, which is the limiting magnitude of the lowest eBOSS QSO redshift
bin. The discontinuities seen in the figure again have the same origin as those found in relativ-
istic bias constraints in the previous section. The key findings from Figure 4.7 are:

1) For both monopole and quadrupole, relativistic corrections dominate over the effect
of 𝑓NL at low redshifts 𝑧 ≲ 1, and values of Δ𝑃ℓ due to relativistic effects and due
to 𝑓NL reach parity at some intermediate redshift below 𝑧 ≈ 1.5. The dominance of
relativistic effects at lower redshifts is mainly driven by the large evolution bias 𝑏e (see
Fig. 4.3) and the geometric factor (H 𝜒)−1 when 𝑠 ≠ 2/5 . If 𝑏e = 0 and 𝑠 = 2/5 (the
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diffuse background scenario), relativistic effects would be much smaller than the 𝑓NL
signal overall;

2) Although relativistic corrections are comparable to the effect of 𝑓NL in the quadrupole
at most redshifts, the 𝑓NL signal is stronger at higher redshifts in the monopole, mainly
because of the redshift evolution of the scale-independent tracer bias 𝑏1 and the fact
that Δ𝑃0 due to 𝑓NL contains contributions proportional to 𝑏21. If the tracer bias is
constant, for instance 𝑏1 = 2, then at higher redshifts, relativistic effects with 𝑏e ≠ 0
and 𝑠 ≠ 2/5 will wash out the 𝑓NL signal, and can slightly reduce the 𝑓NL signal even
with 𝑏e = 0 and 𝑠 = 2/5 ;

3) Raising the absolute-magnitude threshold tends to reduce the relativistic corrections at
all redshifts: wehave found that both evolution andmagnificationbiases decrease in ab-
solute values with increasing magnitude threshold, suggesting that future surveys with
sensitivity to detect more faint objects may also help with constructing tracer samples
with subdued relativistic effects.

So far our comparison has focused on the relative strength of the PNG and relativistic
signals, when on large scales cosmic variance may dominate both because of the small num-
ber of clustering modes. Depending on the size and maximum redshift of the survey, this can
make the detection of either effect difficult though not entirely impossible [124, 125]. Nev-
ertheless, if any excess power on large scales is measured, the analysis above is still useful for
disentangling relativistic effects from the scale-dependent bias. Moreover, if one considers a
multi-tracer approach where different samples with overlapping volumes are cross-correlated,
then the impact of cosmic variance may be significantly reduced, making a clear detection
much easier [223, 224]. The relativistic effects shown in the power spectrum above could in
principle serve as a consistency test for relativistic gravitational theories: if all relativistic cor-
rection terms, including lensing and other integral contributions, are included in the model-
ling, the evolution and magnification biases can be fitted as free parameters and compared
with the constraints obtained from a well-determined tracer luminosity function, although
this is challenging in practice not least because the empirical luminosity function models are
far fromperfect as we saw in section4.2. Thedipole of the cross–power spectrumbetween two
tracer samples is a more promising statistic, which also includes the relativistic bias terms con-
strained in thiswork: by parametrising the deviation from theEuler equation (see appendixB),
one could use this technique to test the equivalence principle with surveys such asDESI in the
near future [199–201].

Finally, it is worth mentioning that in the limit 𝑘 → 0, ref. [225] has recently argued
that the full relativistic corrections actually vanish as a consequence of the equivalence prin-
ciple, and thus they do not contaminate the PNG signature; the apparent divergence inΔ𝑃ℓ as
𝑘 → 0 in equation (4.22) is due to the exclusion of non-local contributions as well as contri-
butions at the observer position. For finite clustering scales accessible to galaxy surveys, these
relativistic effects do exist and should still be taken into account in a PNG analysis.

4.5 Summary and discussion

Motivated by recent studies of relativistic effects in LSS observations and the prospect of con-
straining PNG through galaxy redshift surveys to the level of precision competitivewithCMB
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experiments in the near future, we have sought to quantify relativistic corrections to the ob-
served clustering statistics of quasars on very large scales. These corrections do not only depend
on the cosmological expansion history, but also on the redshift evolution of the underlying
quasar number density and its sensitivity to the luminosity threshold, which are parametrised
by evolution bias 𝑏e and magnification bias 𝑠 . We have thus refitted the eBOSS QSO LF and
derived measurements on both 𝑏e and 𝑠 , before propagating their constraints to relativistic
corrections to the power spectrum multipoles. Our assessment of the impact of relativistic ef-
fects on the 𝑓NL signature affirms the results of previous works mentioned at the beginning of
the chapter, but this agreement is reached after a more realistic treatment for evolution and
magnification bias contributions and in particular their uncertainties.

Indeed, relativistic corrections have been found to mimic scale-dependent bias modifica-
tions induced by 𝑓NL, especially at low redshifts and in the power spectrum quadrupole. By
using tracer samples at higher redshifts or with a fainter luminosity threshold, relativistic ef-
fects can be reduced to some extent. We have also found that, at least for the quasar popula-
tion, the impact of evolution bias𝑏e and its uncertainties on clustering statistics is greater than
that of magnification bias 𝑠 . However, the latter also appears in lensing contributions to the
observed galaxy over-density field, which have been neglected in this work along with other
integrated terms involving the gravitational potential; these contributions can be important es-
pecially at higher redshifts and are best studied in future works with alternative statistics such
as the angular power spectrum. Similarly, the plane-parallel limit for power spectrum multi-
poles has been taken to simplify our arguments, but wide-angle effects due to variation of the
line of sight have been shown to be critical on very large scales [143, 144, 226, 227]. Therefore
in a practical analysis, wide-angle corrections need to be included perturbatively [78, 142], or a
spherical Fourier analysis could prove advantageous [3, 49, 228, 229], as the following chapter
will demonstrate. Meanwhile, we have only considered quasars as a single tracer for detecting
relativistic effects and the PNG signature; to extract maximal information from future LSS
probes, a multi-tracer approach may prove beneficial as it can enhance the signal-to-noise ra-
tio of certain cosmological parameters such as 𝑓NL [223, 224].

Our findings have implications for future clustering measurements of the DESI QSO
sample, whichhas an apparent-magnitude limit similar to theone considered in thiswork [213].
The forecast relativistic corrections can be an order ofmagnitude larger than themodifications
induced by 𝑓NL = 1 at wavenumbers𝑘 = O

(
10−3

)
hMpc−1 at lower redshifts 𝑧 ≲ 1; at higher

redshifts 𝑧 ≳ 2, relativistic corrections remain comparable to or larger than the 𝑓NL = 1modi-
fication in the power spectrum quadrupole for absolute-magnitude thresholds up to𝑚̄ = −22
at least. As seen in section 4.3, potential systematics in the quasar luminosity function can
affect the relativistic bias parameters, and therefore the accurate determination of tracer lu-
minosity functions is crucial to constraining relativistic corrections. We suggest that forward
modelling from the tracer luminosity function to relativistic corrections should be fully in-
cluded in future LSS analyses. For this purpose, we have made the code implemented in this
work publicly available as a Python package, HoioGRo.



5

Hybrid-Basis Fourier Analysis of
Anisotropic Clustering

In linear cosmological perturbation theory, cosmic fluctuations are well described byGaussian
randomfields if the initial conditions are also Gaussian. As one recalls from section 1.1, all stat-
istical information is then encoded either in configuration space by the correlation function 𝜉
or in Fourier space by the power spectrum 𝑃 . Although the underlying matter distribution
is expected to be spatially homogeneous and isotropic on large scales under the cosmological
principle, the observed clustering of galaxies is not, since their spatial positions have to be in-
ferred from the measured redshift and angular coordinates in the sky; this process can be af-
fected by both RSDs and the AP effect, with apparent anisotropies induced around the line
of sight in the observed galaxy distribution. In the seminal Kaiser RSD model introduced in
section 1.2, the information contained in clusteringmeasurements is then compressed into the
anisotropic power spectrum 𝑃 (𝑘, 𝜇) or equivalently its Legendre multipoles 𝑃ℓ (𝑘), which are
defined with respect to a fixed line of sight 𝒏̂ in the distant-observer and global plane-parallel
approximations; these summary statistics, as well as the underlying assumptions, continue to
be adopted in extended non-linear RSD models.

Although such treatments have been justified for past surveys with small sky coverage,
or for the analysis of 𝑁 -body simulations confined to a Cartesian box which can be placed
arbitrarily far away from the idealised observer, the intrinsic geometry of survey observations
is spherical. For future large galaxy surveys such as DESI andEuclid covering almost a third of
the sky (approximately 14000 and 15000 square degrees respectively [213, 222]), the observer
is at the centre of the much wider cosmic volume being probed—it is impossible to directly
measure the global plane-parallel 𝑃 (𝑘, 𝜇) or 𝑃ℓ (𝑘). As discussed in section 2.2, discrepancies
exist between the global plane-parallel predictions and the local plane-parallel estimators, the
latter dependent on the choice of the pairwise line of sight𝒅 which can vary considerably across
the survey volume. Such discrepancies, known as the wide-angle effect, can be a significant
systematic on large scales and degrade constraints on cosmological parameters [67, 142, 230]. It
has recently been shown that even for BOSS-like data sets, wide-angle effects coupled to the
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survey window can contribute up to 5 % uncertainties in the even power spectrummultipoles,
anddominate the oddmultipoleswhich are important to the search for relativistic effects [142].

To deal with this critical issue, new estimators for the two-point correlation function have
been proposed, e.g. using expansions in bi-polar or tri-polar spherical harmonics in configura-
tion space [143, 144, 226], which are valid for wide angular separations and also account for the
mode-coupling term in the RSD operator (eq. 1.31) that is usually ignored; in Fourier space,
perturbative wide-angle corrections have also been derived recently [78, 141, 142]. Yet despite
these efforts, theCartesian power spectrumanalysis still encounters challenges on other fronts.
For instance, the analysis is tomographic, which requires fine-tuned binning in redshift [e.g.
231, 232]; the covariance matrix, essentially a four-point function, is typically intractable ana-
lytically, so a large number of mock catalogues are needed for estimation, but this is computa-
tionally costly and often does not take cosmological dependence into account [1, 167], and in-
troduces additional uncertainty into cosmological analyses (see §1.4). At a more fundamental
level, the power spectrum analysis is based on the plane wave basis tied to a Cartesian coordin-
ate system. Given much of the physics affecting galaxy clustering besides RSD (e.g. relativistic
and light-cone effects) is along the radial line-of-sight direction, and many observational sys-
tematics also separate into radial and angular components (e.g. redshift errors and angular
variations), a natural question arises as to whether there is an alternative approach to analysing
anisotropic clustering on large scales that respects the symmetries of the problem [78].

Indeed, such an approach has been proposed before: the spherical Fourier analysis, also
knownas spherical harmonic analysis, was first laid down in refs. [49, 228, 233] and subsequently
applied to the IRAS Point Source Catalog Redshift (PSCz) Survey [234–236], the 2-Micron
All-Sky Redshift Survey (2MASS) [237, 238], and the final catalogue of the 2dFGRS [239]. The
analysis procedure is in general more complex and computationally expensive, and thus less
economical for past surveys covering a small sky fraction. In recent years, there has been re-
newed interest in this approach [e.g. 229, 240–245] due to the need for a methodology suited
for future wide surveys that can probe much larger cosmological scales for studying PNG and
relativistic effects. However, because of the computational cost and the difficulty in formulat-
ing non-linear galaxy clustering models in the spherical Fourier analysis, the Cartesian power
spectrum analysis aided by the FFT is usually favoured.

Inspired by the use of hybrid estimators in CMB studies [177, 185, 246–250], we set out to
investigate whether a hybrid-basis approach to likelihood inference from clustering measure-
ments is viable; this is akin toPlanck’s hybrid likelihoods, where the low-ℓ likelihood is directly
built from map pixels and the high-ℓ likelihood is based on the compressed pseudo-𝐶ℓ estim-
ator [251–253]. We propose a Fourier analysis that uses spherically decomposed statistics to de-
scribe anisotropic clustering on the largest scales in the survey, and switches to the Cartesian
power spectrum analysis on comparatively smaller scales. The key advantage of this approach
is that while the computational edge of the FFT is utilised when the clustering modes are nu-
merous, the spherically decomposed clustering statistics can also faithfully capture physical
and observational effects parallel and transverse to the line of sight without making any geo-
metric approximations, which impact on measurements on very large scales in particular.

The following section will first introduce the spherical Fourier analysis extended from the
earlier works ofHeavens&Taylor [49] and Fisher et al. [228]. The readermay refer to chapter 2
for a review of the standard Cartesian power spectrum analysis. In the subsequent section, the
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steps involved in constructing the likelihood function in the hybrid-basis analysis are laid out,
and the technical aspects of likelihood evaluation are discussed. The applicability of the new
methodology is then demonstrated by inferring the local PNG parameter 𝑓NL from 𝑁 -body
simulations.

Throughout this chapter, the analysis of clustering statistics is performed in redshift space,
so the subscript ‘𝑠 ’ denoting redshift-space quantities will be omitted for brevity; in any case,
the ambiguity between real- and redshift-space quantities can be eliminated by the context or
the coordinates explicitly used.

5.1 Spherical Fourier analysis

5.1.1 Spherical Fourier–Bessel transform

The notion of Fourier transforms can be generalised to harmonic analysis, which describes a
field 𝑓 (𝒓) by its decomposition in an orthogonal basis of eigenfunctions of the Laplacian ∇2.
Instead of adopting the Cartesian plane wave basis {|𝒌〉} with 〈𝒓 |𝒌〉 = e i𝒌 ·𝒓 in the bra–ket
notation, one could decompose clustering measurements in spherical coordinates 𝒓 ≡ (𝑟, 𝒓)
using the spherical Fourier–Bessel (SFB) transform,

𝑓ℓ𝑚 (𝑘) =
∫

d3𝒓 𝑗ℓ (𝑘𝑟 ) 𝑌 ∗ℓ𝑚 (𝒓) 𝑓 (𝒓) , (5.1a)

with the inverse transform given by

𝑓 (𝒓) = 2
π

∑
ℓ𝑚

∫
d𝑘 𝑘2 𝑗ℓ (𝑘𝑟 ) 𝑌ℓ𝑚 (𝒓) 𝑓ℓ𝑚 (𝑘) . (5.1b)

The normalisation convention here differs slightly from that adopted in refs. [49, 78, 228, 233,
242]; in refs. [229, 240, 243, 245], the basis functions are chosen to be orthonormal with respect
to an inner product integral with a one-dimensionalmeasure; however, in practice, these defin-
itions of the SFB transform are equivalent. If the Dirichlet boundary condition 𝑓 (𝒓) = 0 is
imposed on a sphere at radius 𝑟 = 𝑅, the wavenumbers are then discretised,

𝑘ℓ𝑛 =
𝑢ℓ𝑛
𝑅
, (5.2)

where 𝑢ℓ𝑛 is the 𝑛th positive root of the spherical Bessel function 𝑗ℓ . The associated tuple
(ℓ,𝑚ℓ , 𝑛ℓ ) shall be referred to as the spherical degree, order and depth (though often with the
subscript ‘ℓ ’ suppressed for brevity), where ℓ ∈ ℕ, 𝑛 ∈ ℕ>0 and𝑚 = 0,±1, . . . ,±ℓ .

Therefore akin to the discrete Fourier transformover a regularCartesian gridwithperiodic
boundary conditions, a field 𝑓 that vanishes outside somemaximum radius𝑅 can be expanded
in the SFB basis

{
|𝜇〉 ≡

��ℓ𝜇,𝑚𝜇, 𝑛𝜇
〉}

,

𝑓 (𝒓) =
∑
𝜇

𝜅𝜇 𝑓𝜇 〈𝒓 |𝜇〉 with 〈𝒓 |𝜇〉 = 𝑗𝜇 (𝑟 ) 𝑌𝜇 (𝒓) , (5.3)

where the normalisation coefficient is given by

𝜅ℓ𝑛 =
2
𝑅3

𝑗ℓ+1(𝑢ℓ𝑛)−2 , (5.4)
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𝑓𝜇 = 𝑓ℓ𝜇𝑚𝜇 (𝑘ℓ𝜇𝑛𝜇 ), 𝑗𝜇 (𝑟 ) ≡ 𝑗ℓ𝜇 (𝑘ℓ𝜇𝑛𝜇𝑟 ), and 𝑌𝜇 (𝒓) ≡ 𝑌ℓ𝜇𝑚𝜇
(𝒓). In this basis, the Dirac and

Kronecker delta functions are respectively represented by

𝛿 (D) (𝒓1 − 𝒓2) =
∑
𝜇

𝜅𝜇 〈𝒓1 |𝜇〉〈𝜇 |𝒓2〉 and 𝛿 (K)𝜇𝜈 = 𝜅𝜇

∫
|𝒓 |<𝑅

d3𝒓 〈𝜇 |𝒓〉〈𝒓 |𝜈〉 . (5.5)

5.1.2 Spherical decomposition of clustering statistics

Since the SFB transform does not require the calculation of transverse distances from the an-
gular position of galaxies, the RSD and AP effects can be modelled jointly by considering the
redshift-space radial coordinate (cf. eq. 1.27)

𝑠 = 𝜒 (𝑧obs) = 𝑟 + 𝛾𝑢 , (5.6)

wherewe recall that a breve •̆ denotes a fiducial comoving distance–redshift relation, 𝑟 = 𝜒 (𝑧),
and the function

𝛾 (𝑧) = d𝜒

d𝜒
= 𝐻

d𝜒

d𝑧
(5.7)

measures the rescaling of the differential comoving distance compared to the true cosmo-
logy [244].

Similar to the derivation of the Kaiser RSD model in section 1.2, by using the number
conservation law 𝑛(𝒓, 𝑧) d3𝒓 = 𝑛(𝒔, 𝑧) d3𝒔 and equations (1.23)–(1.25), the SFB coefficient of
the redshift-space number density 𝑛(𝒔, 𝑧) can be written as

𝑛𝜇 =
∫

d3𝒔𝑤 (𝑠) 𝑗𝜇 (𝑠) 𝑌 ∗𝜇 (𝒔) 𝑛(𝒔, 𝑧)

=
∫

d3𝒓 𝑤 (𝑠) 𝑗𝜇 (𝑠) 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝜙 (𝑟 ) s𝑛(𝑧)
[
1 + 𝑏𝑘 (𝑧) 𝐷1(𝑧) 𝛿m,0(𝒓)

]
, (5.8)

where we recall that a subscript ‘0’ denotes the value of a quantity at the current redshift 𝑧 = 0.
Here we assume the survey window function,𝑊 = 𝑀𝜙 , to be separable into the angular
mask𝑀 and the radial selection function 𝜙 , and that the weighting scheme𝑤 is radial. If the
angular mask𝑀 is simply a veto mask, then

𝑓sky =
∫

d2𝒓
4π

𝑀 (𝒓) (5.9)

is the fraction of the sky observed, but more generally𝑀 can include completeness variations
and angularweights, and 𝑓sky becomes an effective sky fraction. The radial selection function𝜙
may be normalised to the total number of galaxies in the survey volume,

𝑁g = 4π 𝑓sky

∫
𝑟 2 d𝑟 𝜙 (𝑟 ) s𝑛(𝑧) , (5.10)

so that it is dimensionless. The subscript ‘𝑘 ’ in the large-scale bias parameter 𝑏𝑘 indicates that
it may include scale-dependent modifications due to, for example, local PNG (see eq. 1.60).
For a survey with maximum redshift 𝑧max, the observed number density field vanishes outside
𝑅 = 𝜒 (𝑧max) and thus the wavenumbers are discretised. Using equation (5.6), one can expand

𝑤 (𝑠) ' 𝑤 (𝑟 ) + 𝛾𝑢 𝑤′(𝑟 ) and 𝑗𝜇 (𝑠) ' 𝑗𝜇 (𝑟 ) + 𝛾𝑢 𝑗 ′𝜇 (𝑟 ) (5.11)
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to first-order derivative terms, which are complete in linear perturbation theory as the expan-
sion parameter is proportional to𝑢. By considering the SFB expansion

𝛿m,0(𝒓) =
∑
𝜇

𝜅𝜇 𝑗𝜇 (𝑟 ) 𝑌𝜇 (𝒓)
(
𝛿m,0

)
𝜇 (5.12)

as well as the linearised continuity equation (B.21) written as

𝑢 = −𝑓 𝒓 · ∇∇−2𝛿m , (5.13)

one can recast

𝑛𝜇 =
∫

d3𝒓 𝑤 (𝑟 ) 𝑗𝜇 (𝑟 ) 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝜙 (𝑟 ) s𝑛(𝑧)

+
∫

d3𝒓 𝑤 (𝑟 ) 𝑗𝜇 (𝑟 ) 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝜙 (𝑟 ) s𝑛(𝑧) 𝐷1(𝑧)
∑
𝜈

𝜅𝜈 𝑗𝜈 (𝑟 ) 𝑌𝜈 (𝒓) 𝑏𝑘𝜈 (𝑧)
(
𝛿m,0

)
𝜈

+
∫

d3𝒓 (𝑤𝑗𝜇)′(𝑟 ) 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝜙 (𝑟 ) s𝑛(𝑧) 𝛾 (𝑧)

× 𝑓 (𝑧) 𝐷1(𝑧)
∑
𝜈

𝜅𝜈
𝑘2𝜈

𝑗 ′𝜈 (𝑟 ) 𝑌𝜈 (𝒓)
(
𝛿m,0

)
𝜈 . (5.14)

This is a sum of three contributions, namely the background piece, the real-space perturbation
piece and theRSDpiece. By introducing the angular, radial andRSDcoupling coefficients [49,
228, 242],

𝑀𝜇𝜈 =
∫

d2𝒓 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝑌𝜈 (𝒓) , (5.15a)

𝛷𝜇𝜈 = 𝜅𝜈

∫
𝑟 2 d𝑟 𝑤 (𝑟 ) 𝑗𝜇 (𝑟 ) 𝑗𝜈 (𝑟 ) 𝜙 (𝑟 ) s𝑛(𝑧)

𝑏𝑘𝜈 (𝑧)
𝑏𝑘𝜈 (0)

𝐷1(𝑧) , (5.15b)

𝛶𝜇𝜈 =
𝜅𝜈
𝑘2𝜈

∫
𝑟 2 d𝑟 (𝑤𝑗𝜇)′(𝑟 ) 𝑗 ′𝜈 (𝑟 ) 𝜙 (𝑟 ) s𝑛(𝑧) 𝛾 (𝑧) 𝑓 (𝑧)

𝑓 (0) 𝐷1(𝑧) , (5.15c)

one obtains a more compact expression,

𝑛𝜇 = s𝑛𝜇 +
∑
𝜈

𝑀𝜇𝜈𝛷𝜇𝜈 (𝑏0)𝜈
(
𝛿m,0

)
𝜈 +

∑
𝜈

𝑀𝜇𝜈𝛶𝜇𝜈 𝑓0
(
𝛿m,0

)
𝜈 , (5.16)

where (𝑏0)𝜇 ≡ 𝑏𝑘𝜇 (0), 𝑓0 ≡ 𝑓 (0) and

s𝑛𝜇 =
∫

d3𝒓 𝑤 (𝑟 ) 𝑗𝜇 (𝑟 ) 𝑌 ∗𝜇 (𝒓)𝑀 (𝒓) 𝜙 (𝑟 ) s𝑛(𝑧) . (5.17)

This shows that redshift-space galaxy clustering statistics in linear perturbation theory can
be decomposed into spherical Fourier modes,

𝐷𝜇 = 𝑛𝜇 − s𝑛𝜇 =
∑
𝜈

𝑀𝜇𝜈

[
(𝑏0)𝜈𝛷𝜇𝜈 + 𝑓0𝛶𝜇𝜈

] (
𝛿m,0

)
𝜈 , (5.18)

which satisfy
〈
𝐷𝜇

〉
= 0 with the two-point correlator〈

𝐷𝜇𝐷
∗
𝜈

〉
=

∑
𝜆

𝑀𝜇𝜆𝑀
∗
𝜈𝜆

[
(𝑏0)𝜆𝛷𝜇𝜆 + 𝑓0𝛶𝜇𝜆

] [
(𝑏0)𝜆𝛷𝜈𝜆 + 𝑓0𝛶𝜈𝜆

]
𝜅−1𝜆 𝑃m,0(𝑘𝜆) +

〈
𝜖𝜇𝜖
∗
𝜈

〉
, (5.19)
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where the second term〈
𝜖𝜇𝜖
∗
𝜈

〉
= 𝑀𝜇𝜈

∫
𝑟 2 d𝑟 𝑗𝜇 (𝑟 ) 𝑗𝜈 (𝑟 )𝑤 (𝑟 )2 𝜙 (𝑟 ) s𝑛(𝑧) (5.20)

accounts for the shot noise contribution [49, 228, 244]. It is worth commenting here that the
SFB clustering mode 𝐷𝜇 is constructed from fluctuations in the galaxy number density field
directly, and it is not necessarily equivalent to the SFB coefficient of the observed over-density
field 𝛿 , because the latter is defined as a fraction of the background number density whichmay
have been spatiallymodulated. For the underlyingmatter density contrast𝛿m at a fixed epoch𝑧
in real space, however, this is not an issue since it is statistically homogeneous.

5.1.3 Comparisons with the Cartesian power spectrum analysis

To motivate the hybrid-basis approach to galaxy clustering analysis in the next section, it is
worth making connections as well as comparisons between the spherical and Cartesian clus-
tering modes𝐷𝜇 and 𝛿 (𝒌) as well as the corresponding Fourier analyses.

First of all, both𝐷𝜇 and 𝛿 (𝒌) depend on galaxy bias with respect to the underlyingmatter
distribution and capture anisotropic clustering due to the RSD andAP effects on linear scales.
However, no geometric approximations have been made in obtaining 𝐷𝜇 , and the SFB coup-
ling coefficients 𝛶𝜇𝜈 explicitly mix clustering modes at different wavenumbers as a reflection
of RSDs; in contrast, 𝛿 (𝒌) obtained in the distant-observer limit ignores the mode-coupling
term in the Jacobian of the mapping from real space to redshift space (see eq. 1.31). That said,
the preceding derivationof the anisotropic clusteringmodel in the SFBbasis is limited to linear
perturbation theory, and the extension to non-linear clustering, though possible, is consider-
ably more complex than the modelling of the Cartesian power spectrum.

Secondly, the clear distinction between angular and radial components in the spherical
Fourier analysis offers a number of advantages:

■ There is no ambiguity in the definition of the line of sight, which is free to vary across
the entire sky, so wide-angle corrections are not needed (see §§1.2 and 2.2);

■ Relativistic and light-cone effects, which affect galaxy clustering along the line of sight,
can be more easily included (see also §4) [229]. Indeed, redshift evolution in the back-
ground number density, clustering amplitude, bias and growth rate is fully captured by
the SFB couplings𝛷 and 𝛶 (eqs. 5.15b and 5.15c), where redshift dependence is integ-
rated radially via the distance–redshift relation;

■ It allows easier joint analyses with other probes such as the CMB, weak lensing and the
ISW effect [e.g. 242, 254–256];

■ The separation of angular and radial survey systematics allows individual clustering
modes to be treated in isolation in analysis [78, 257].

Thirdly, theCartesian power spectrum analysis is tomographic, i.e. it requires binning and
averaging in redshift, with models of the power spectrum evaluated at some effective redshift
in each bin (see §2.1). If the redshift bins are too narrow, large clustering modes along the line-
of-sight can bemissed and the level of shot noise is higher; too wide, then the effective redshift
cannot capture any redshift evolutionwithin the bin. Indeed, the spherical Fourier analysis has
been shown to be more robust and optimal in this regard [e.g. 245, 257].
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Lastly, the spherical Fourier analysis is based on individual clustering modes of the over-
density field, whereas the Cartesian power spectrum analysis is based on the two-point correl-
ator compressed from many clustering modes. This is an important distinction with several
implications:

■ In the case of the former, the distribution of SFB clustering modes 𝐷𝜇 is exactly Gaus-
sian as long as cosmic fluctuations can be described byGRFs. Although an over-density
fieldwithnon-zeroPNGis not exactlyGaussian, the deviation is constrained tobe small
by current CMB measurements [88], and any signature of PNG will be reflected more
in the amplitude of clustering statistics rather than the detailed probability distribution.
Therefore, the GRF assumption serves as a useful null hypothesis for the detection of
any non-Gaussianity. In the spherical Fourier analysis, all the cosmological information
is encoded in the covariancematrix which is the two-point correlator (eq. 5.19) and ana-
lytically tractable. However, without the benefit of FFT algorithms, the computational
cost of a spherical Fourier analysis can be considerable, not least because angular integ-
ration over spherical harmonics and radial integration over spherical Bessel functions
need to be performed repeatedly for all the SFB couplings in equation (5.15) for differ-
ent cosmological models. The next section will provide a more detailed account of the
computational complexity of the spherical Fourier analysis;

■ In contrast, the distribution of measured power spectrum multipoles is only approx-
imately Gaussian when the number of clustering modes is large enough for the central
limit theorem to hold. Models of the power spectrum, as well as measurements com-
pressed from individual Cartesian clustering modes, can be efficiently computed using
the Hankel transform and FFTs. However, the covariance matrix is now a four-point
function, which usually has to be estimated from ideally 103–104 realistic mock cata-
logues and poses a significant computational challenge (see §1.4).

Despite some of these apparent differences between the spherical Fourier and Cartesian
power spectrum analyses, in the simplest scenarios there are straightforward connections
between the clustering modes𝐷𝜇 and 𝛿 (𝒌) thanks to the orthogonality of the SFB and plane
wave bases. If the angular mask𝑀 (𝒓) = 1, then the angular coupling coefficients (eq. 5.15a)
reduce to 𝑀𝜇𝜈 = 𝛿 (K)ℓ𝜇ℓ𝜈

𝛿 (K)𝑚𝜇𝑚𝜈
; if in addition, there are no radial selection, weighting, AP ef-

fects or redshift evolution (i.e. a fixed redshift is considered), then𝑀𝜇𝜈𝛷𝜇𝜈 = 𝛿
(K)
𝜇𝜈 . Therefore,

in the absence of RSDs (i.e.𝛶𝜇𝜈 = 0), the SFB two-point correlator reduces from an infinite
series (eq. 5.19) to being diagonal,

𝜅𝜇𝜈

s𝑛2
〈
𝐷𝜇𝐷

∗
𝜈

〉
= 𝛿 (K)𝜇𝜈

[
𝑏2𝑘𝜇 𝑃m

(
𝑘𝜇

)
+ 1

s𝑛

]
, (5.21)

which is essentially the isotropic power spectrum plus the Poisson shot noise. This also hints
at a convergence check for the SFB coupling integrals (eq. 5.15) and the SFB two-point correl-
ator series (eq. 5.19). Finally, for the sake of completeness, it is worth commenting here that
under less restrictive assumptions than the ones above, the SFB two-point correlator can also
be related to the tomographic angular power spectrum 𝐶ℓ , but the reader is referred to e.g.
refs. [78, 229, 245] for more detail.
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5.1.4 Computational complexity

To determine how many discrete SFB clustering modes up to a given maximum wavenum-
ber 𝑘max are present in a survey volume with boundary radius 𝑅, one needs to know the num-
ber of positive zeros𝑢ℓ𝑛 of the spherical Bessel function 𝑗ℓ that satisfy𝑢ℓ𝑛 ⩽ 𝑘max𝑅. Using the
asymptotic expansion𝑢ℓ1 ∼ ℓ as ℓ →∞, the maximum spherical degree is estimated to be

ℓmax ' 𝑘max𝑅 . (5.22)

By considering another asymptotic expansion 𝑢ℓ𝑛 ∼ (𝑛 + ℓ/2 − 1/4)π for a fixed spherical
degree ℓ as 𝑛 →∞ [258], one can estimate the maximum spherical depth by

𝑛max,ℓ '
𝑘max𝑅

π
− ℓ
2
+ 1
4
⩽
𝑘max𝑅

π
+ 1
4
. (5.23)

Since for each spherical degree there are (2ℓ + 1) equivalent spherical orders𝑚 = −ℓ, . . . , ℓ ,
the total number of SFB clustering modes is bounded above by

𝑁mode =
ℓmax∑
ℓ=0
(2ℓ + 1)𝑛max,ℓ ⩽

(
𝑘max𝑅

π
+ 1
4

)
(𝑘max𝑅 + 1)2 ∼

(𝑘max𝑅)3
π

, (5.24)

but this bound is in general far from being saturated.
For SFB transforms of the survey and synthetic catalogues, if one constructs the clustering

modes by direct summation, the number of computations is simply (1 + 𝛼−1)𝑁g𝑁mode where
each unit of computation is an evaluation of the spherical Bessel and harmonic functions. The
calculation of the SFB couplings (eq. 5.15) is more laborious: the number of angular coupling
coefficients is [

ℓmax∑
ℓ=0
(2ℓ + 1)

]2
∼ (𝑘max𝑅)4 , (5.25)

but this can be reduced by employing symmetry relations between the spherical harmonics;
on the other hand, for both radial and RSD couplings, the number of coupling coefficients is(

ℓmax∑
ℓ=0

𝑛max,ℓ

)2
⩽

[
(ℓmax + 1)

(
𝑘max𝑅

π
+ 1
4

)]2
∼ (𝑘max𝑅)4

π2 , (5.26)

and the number of shot noise integrals (eq. 5.20) is similar. Finally, the infinite series (eq. 5.19)
requires at least 𝑁mode terms for convergence, each of which is itself a product of the SFB
coupling coefficients and the linear matter power spectrum.

Although the computational cost of angular coupling coefficients 𝑀𝜇𝜈 seems to be the
highest, like shot noise they are independent of the cosmological model and thus need to be
calculated only once for a given survey. In contrast, the radial and RSD couplings can change
with the cosmological model if redshift evolution is to be taken into account, so their evalu-
ations are likely to be the most expensive steps in a full analysis.

5.2 Hybrid-basis likelihood inference

Having laid out the different aspects of spherical and Cartesian Fourier analyses based on the
SFB and plane wave bases, we propose a hybrid-basis approach to cosmological parameter in-
ference from galaxy clustering measurements:
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■ Since the survey geometry and other observational systematics have the biggest impact
on the relatively few Fourier modes on the largest scales, one could use the spherical
Fourier analysis to faithfully capture the physics of anisotropic galaxy clustering in lin-
ear perturbation theory, and construct from the SFB clustering modes 𝐷𝜇 the cosmo-
logical likelihood directly, which is exactly multivariate normal provided cosmic fluctu-
ations are well described by GRFs. In this case, the covariance matrix is the two-point
correlator, which contains all the cosmological information and can be computed ana-
lytically;

■ On comparatively smaller scales, one could use the Yamamoto estimator p𝑃ℓ for power
spectrum multipoles as the summary statistics (see §2.2), which can be efficiently com-
puted using FFTs. Since p𝑃ℓ is compressed from a large number of clustering modes on
these scales, its probability distribution is very close to being Gaussian by the central
limit theorem;

■ By combining the probability distributions of𝐷𝜇 and p𝑃ℓ , one can then obtain a hybrid-
basis likelihood for cosmological parameters.

This idea of adopting different statistics, either uncompressed or compressed from indi-
vidual modes of fluctuations depending on the physical scale considered, is inspired by the use
of hybrid estimators in CMB studies [249, 250]: one approach is to evaluate the likelihood
function from the CMB map pixels directly, either searching for a quadratic or maximum
likelihood estimator of the angular power spectrum [185, 246, 247] or Monte Carlo sampling
the posterior surface [259–261]; another is to compress the map pixels into pseudo-𝐶ℓ estimat-
ors of the angular power spectra based on which an approximate likelihood can be construc-
ted [177, 248]. This strategy has then been successfully applied by Planck to its cosmological
likelihoods, which consist of a low-ℓ part (ℓ ⩽ 29) based on the CMB temperature and polar-
isation map pixels, and a high-ℓ part (ℓ ⩾ 30) based on the pseudo-𝐶ℓ estimator [251–253]. As
far as we are aware, this approach has not been applied in any LSS settings before, which are ar-
guably more nuanced as LSS data sets are intrinsically three-dimensional. This section will set
out the basic steps involved in constructing the likelihood functions L(𝜃 ) for cosmological
parameters 𝜃 from𝐷𝜇 and p𝑃ℓ , which are split at the hybridisation wavenumber 𝑘hyb analogous
to the ℓ split in Planck likelihoods, i.e. the SFB wavenumbers are restricted to 𝑘𝜇 ⩽ 𝑘hyb and
the power spectrum wavenumbers to 𝑘hyb < 𝑘 < 𝑘max, where 𝑘max is the overall maximum
wavenumber in the analysis.

Spherical-basis likelihood. The data vector of SFB clustering modes, 𝑫 = (𝐷𝜇), is calcu-
lated from the survey and synthetic catalogues by direct summation over weightedDirac delta
contributions from each galaxy (cf. eq. 2.3),

𝐷𝜇 =
𝑁g∑
𝑖=1

𝑤 (𝑠𝑖) 𝑗𝜇 (𝑠𝑖) 𝑌 ∗𝜇 (𝒔𝑖) − 𝛼
𝑁s∑
𝑖=1

𝑤 (𝑠𝑖) 𝑗𝜇 (𝑠𝑖) 𝑌 ∗𝜇 (𝒔𝑖) . (5.27)

Here the vector index 𝜇 can be ordered either ‘naturally’ by the tuple (ℓ𝜇,𝑚𝜇, 𝑛𝜇), or ‘spec-
trally’ by the wavenumber 𝑘𝜇 and the spherical order𝑚𝜇 . Under the GRF assumption for
large-scale fluctuations in the galaxy distribution, and since the SFB transform is linear in the
field, the spherical-basis data vector follows the circularly-symmetric complex normal distribu-
tion [262, 263], 𝑫 ∼ Nℂ(0,S), where all cosmological parameter dependence is in the covari-
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ance matrix S(𝜃 ) = cov[𝑫] whose entries (S)𝜇𝜈 =
〈
𝐷𝜇𝐷

∗
𝜈

〉
are precisely the SFB two-point

correlator (eq. 5.19).¹ Therefore the spherical-basis likelihood is given by

Lsph(𝜃 ;𝑫) =
exp

[
−𝑫†S(𝜃 )−1𝑫

]
|πS(𝜃 ) | . (5.28)

though there are a few technicalities in its practical evaluation:
■ Based on the symmetry of the spherical harmonics, 𝑌 ∗ℓ−𝑚 (𝒔) = (−1)𝑚 𝑌ℓ𝑚 (𝒔), al-

most half of the SFB clustering modes 𝐷𝜇 can be calculated simply using 𝐷ℓ−𝑚𝑛 =
(−1)𝑚𝐷∗ℓ𝑚𝑛;

■ In order to evaluateS accurately, the infinite series (eq. 5.19)must numerically converge.
This may require additional SFB clustering modes with wavenumbers 𝑘𝜆 > 𝑘hyb to be
included in the sum, and the appropriate truncation point in the series may need to be
determined empirically, e.g. using the diagonal SFB two-point correlator 〈|𝐷𝜇 |2〉 (see
eq. 5.21) as a diagnostic quantity;

■ Since the data vector 𝑫 ∈ ℂ𝑁mode consists of 𝑁mode uncompressed SFB clustering
modes, dimensions of the covariance matrix S ∈ ℂ𝑁mode×𝑁mode can be prohibitively
large that the inversion of S becomes numerically unstable when it is not diagonal, i.e.
when the SFB clustering modes are correlated. In this case, some eigenvalues of S can
be very close to zero, and with imperfect numerical precision the inverted matrix S−1

may acquire large negative eigenvalues, posing a significant challenge to the sampling
of the posterior distribution from Lsph. A possible remedy to this problem is to ap-
ply a compression matrixR ∈ ℂ𝑁 ′mode×𝑁mode to both the data vector and the covariance
matrix before evaluating Lsph, i.e. by replacing 𝑫 ↦→ R𝑫 and S ↦→ RSR⊺ , where
𝑁 ′mode < 𝑁mode andRR⊺ = I is the identity matrix. One such compression method
to ensure numerical stability is introduced below.

Cartesian-basis likelihood. The weighted field 𝐹 (𝒔) is first computed from the survey and
synthetic catalogues and Fourier transformed (see §2.1), from which one can then form the
data vector of power spectrum multipoles, p𝑷 =

(
p𝑃ℓ

(
𝑘 𝑗

) )
, whose components are ordered by

themultipole degree ℓ and then the binnedwavenumber𝑘 𝑗 . Being the two-point correlator of
a GRF, the data vector p𝑷 should follow the hypo-exponential distribution (see §3.1); however,
by the central limit theorem, when the number of clustering modes contributing to p𝑃ℓ

(
𝑘 𝑗

)
is

large, one may assume the multivariate normal distribution, p𝑷 ∼ N
(
s𝑷 ,Σ

)
. The Cartesian-

basis power spectrum likelihood is thus given by

LCart
(
𝜃 ; p𝑷

)
= |2πΣ (𝜃 ) |−1/2 exp

{
−1
2

[
p𝑷 − s𝑷 (𝜃 )

]⊺
Σ (𝜃 )−1

[
p𝑷 − s𝑷 (𝜃 )

]}
. (5.29)

HereΣ (𝜃 ) = cov
[
p𝑷
]
is the covariance matrix, and s𝑷 (𝜃 ) = 𝔼

[
p𝑷
]
is the expectation of the

power spectrum multipole estimator with components

s𝑃ℓ (𝑘 𝑗 ) = r𝑃ℓ (𝑘 𝑗 ) + 𝑃ℓ,shot , (5.30)

¹ In contrast to previous works [e.g. 49], we do not separate the spherical-basis data vector into real and imagin-
ary parts which jointly follow the multivariate normal distribution.
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where r𝑃ℓ (𝑘 𝑗 ) is the window-convolved model of power spectrum multipoles and 𝑃ℓ,shot is the
shot noise contribution (see §2),

𝑃ℓ,shot =
1 + 𝛼
𝐼

∫
d3𝒔 L ℓ

(
𝒌̂ · 𝒔

)
𝑤 (𝑠)2 s𝑛(𝒔) . (5.31)

Similar to the spherical-basis likelihood, there are two technicalities related to the covariance
matrix in evaluating the Cartesian-basis likelihoodLCart:

■ The true covariance matrixΣ is usually analytically intractable, so it has to be replaced
by an estimate pΣ from mock catalogues. SH has shown that the appropriate distribu-
tion to use as the likelihood function is no longer multivariate normal but a modified
Student’s 𝑡 -distribution (see §1.4). However, when the number ofmock catalogues used
to obtain the estimate pΣ far exceeds the dimension of the data vector p𝑷 , the multivari-
ate normal distribution remains an excellent approximation;

■ Because of the high computational cost associated with generating a large number of
mock catalogues, the covariance matrix estimate pΣ is usually produced at fixed fidu-
cial cosmological parameters 𝜃 . To account for any parameter dependence, one could
use the variance–correlation decomposition which allows a parameter-dependent es-
timate pΣ (𝜃 ) to be obtained from the fiducial estimate pΣf by a rescaling (see §3),

pΣ (𝜃 ) = Λ(𝜃 )Λ̆−1 pΣf Λ̆
−1Λ(𝜃 ) . (5.32)

Here Λ(𝜃 ) = diag
(
s𝑃ℓ

(
𝑘 𝑗

) )
is a diagonal matrix with entries given by the window-

convolved power spectrum multipole model, including the shot noise contribution, at
cosmological parameters 𝜃 , and Λ̆ is the same diagonal matrix but evaluated at fiducial
parameters 𝜃 .

Hybrid-basis likelihood. In the idealised scenario where the data vectors𝑫 and p𝑷 are inde-
pendent, the hybrid-basis likelihood is simply the product of the two above,

Lhyb
(
𝜃 ;𝑫, p𝑷

)
= Lsph(𝜃 ;𝑫)LCart

(
𝜃 ; p𝑷

)
. (5.33)

Unfortunately, when clustering modes of different wavenumbers 𝑘 are mixed in the presence
of survey window and RSD effects, this does not necessarily hold. In the Planck likelihood
analyses, the correlation between low-ℓ and high-ℓ components poses a similar issue, and dif-
ferent hybridisation schemes are explored [251–253]; however, their results are not particularly
sensitive to the hybridisation scheme and thus a sharp transition between low-ℓ and high-ℓ
components can be adopted without accounting for their correlation. In this work, we make
a similar assumption that the low-𝑘 spherical-basis and high-𝑘 Cartesian-basis likelihoods can
be directly combined—this is justified if their correlation is weak when the mixing kernel is
sufficiently narrow in 𝑘-space and if the joint probability distribution of 𝑫 and p𝑷 is multivari-
ate normal.² In practice, the correlation between the spherical-basis andCartesian power spec-
trumdata can be estimated frommock catalogues alongside the covariancematrix estimate for
power spectrum multipoles, and one could attempt to de-correlate the combined data vector
or reweight different data components before combining them, e.g. with a Bayesian hyperpara-
metric method [264–266].

² Note that zero correlation does not necessarily imply independence between twomultivariate normal random
variables unless their joint probability distribution is also multivariate normal.
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Spherical-basis data compression. As mentioned above, data compression may be neces-
sary for the spherical Fourier analysis not only because of the high computational cost and but
also for numerical stability. As such, previous applications to galaxy survey catalogues [e.g.
236, 239] had to adopt data compression techniques such as the Karhunen–Loève transform,
which constructs optimal linear combinations of SFB clustering modes [267], to make the
analysis feasible. It has been noted in earlier discussion that when dimensions of a mat-
rix S ∈ ℂ𝑁mode×𝑁mode are large, matrix inversion may not be numerically stable—since one
cannot determine the elements of S arbitrarily precisely, small perturbations to S can lead to
spurious results forS−1. IfS is a covariance matrix, whichmust be positive-definite, the inver-
sionprocedure can introducenegative eigenvalues inS−1 unless it happens tobediagonal. This
can affect both likelihood calculations as well as Fisher forecasts for cosmological parameters,
as noted in refs. [236, 239, 268]. At the root of this phenomenon is the condition number 𝜘(S),
which gauges the sensitivity of precision in numerically inverted S−1 to perturbations in the
elements of S; for a covariance matrix, it is given by

𝜘(S) = 𝜆1
𝜆𝑁mode

, (5.34)

where 𝜆1 > · · · > 𝜆𝑁mode > 0 are its eigenvalues arranged in descending order [269]. For
the covariance matrix S of the SFB clustering modes, its eigenvalues are typically of similar
orders of magnitude when S is close to being diagonal, as they are related to the power spec-
trum (see eq. 5.21). However, when the SFB clustering modes become correlated because of
the SFB coupling coefficients, S is not diagonal and some eigenvalues are repelled towards
zero, which can become unstable upon matrix inversion. This hints at a solution based on the
principal-component analysis, where combinations of SFB modes corresponding to smaller ei-
genvalues are considered to have less cosmological information and thus discarded. A practical
method for data compression is proposed as follows. One first considers the covariance mat-
rix S

(
𝜃
)
evaluated at the fiducial cosmological parameters 𝜃 , with its eigenvalue–eigenvector

pairs (𝜆𝛽, 𝒆𝛽) arranged in descending order by eigenvalue. Next, one sets an acceptable condi-
tion number 𝜘, and find the smallest eigenvalue 𝜆𝛽 = 𝜆𝐵 such that 𝜆1/𝜆𝛽 ⩽ 𝜘. One can then
define the fixed compression matrix

R =
(
𝒆
⊺
1 , . . . , 𝒆

⊺
𝐵

)
∈ ℂ𝐵×𝑁mode . (5.35)

This satisfies the orthonormality conditionRR⊺ = I , and can be used to replace

𝑫 ↦→ R𝑫 and S(𝜃 ) ↦→ RS(𝜃 )R⊺ (5.36)

in the spherical-basis likelihood (eq. 5.28). It is worth noting that the compression method
proposed here, being essentially a principal-component analysis, is conceptually related to the
Karhunen–Loève transform; however, the Karhunen–Loève transform used in e.g. ref. [236]
considers the signal-to-noise eigenmodes of the Fisher information matrix for specific cosmo-
logical parameters, whereas here we are merely considering the eigenvalues of the covariance
matrix indifferent to any particular parameters being estimated, as our main motivation for
compression is to ensure numerical stability.
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5.3 Application toN-body simulations

As an initial application of the hybrid-basis methodology, we focus on the real-space cluster-
ing of haloes in mock catalogues generated from𝑁 -body simulations with both Gaussian and
non-Gaussian initial conditions, and attempt to recover the local PNG parameter 𝑓NL, which
imprints a scale-dependent signature in the tracer bias (see §1.3), from large-scale clustering
measurements. The next subsection describes properties of the mock catalogue and the inter-
mediary quantities needed for likelihood evaluations, such as thewindow function, covariance
matrix estimates and the SFB coupling coefficients; in the subsequent subsection, parameter
constraints on 𝑓NL and the scale-independent linear bias𝑏1 obtained from the hybrid-basis like-
lihood (eq. 5.33) and the Cartesian-basis power spectrum likelihood (eq. 5.29) are compared.

5.3.1 Mock catalogues, data products andmodel ingredients

Our halo mock catalogues are generated from a series of dark matter 𝑁 -body simulations at
a flat ΛCDM cosmology with (ℎ,𝛺𝑚,0, 𝛺𝑏,0, 𝜎8) = (0.70, 0.27, 0.044, 0.80)—this is our fi-
ducial cosmological model. The matter transfer function is first computed with the public
code cb [270], which is then used to calculate initial conditions with the second-order
Lagrangian perturbation theory (2LPT). The simulations are then seeded using the pub-
lic code 2LPTic which can generate initial conditions with the inclusion of non-zero local
PNG [271, 272]. In total, 24 simulations with 𝑓NL = 0 and 20 simulations with 𝑓NL = 100
are produced, each in a 1 h−3 Gpc3 comoving box of 5123 dark matter particles evolved from
redshift 𝑧 = 32 to 𝑧 = 1 using the public code gg-2 [273]. We have not run the sim-
ulations down to redshift 𝑧 = 0 because of computation time; indeed, future galaxy surveys
probing 𝑓NL on very large scales will mostly focus on the 𝑧 > 1Universe. Finally, dark matter
haloes are identified within the mock catalogues using the public code f [274], with at least
36 particles per halo corresponding to a minimum halo mass of𝑀 ≈ 2.0 × 1013 h−1M� .

For this cosmological model, the scale-dependentmodification received by the linear halo
bias 𝑏1 is

Δ𝑏 (𝑘, 𝑧) = 3𝑓NL [𝑏1(𝑧) − 1]
1.3𝛿c𝛺m,0𝐻

2
0

𝑐2𝑘2𝑇 (𝑘) 𝐷1(𝑧)
, (5.37)

where the speed of light 𝑐 is restored, the tracer-dependent parameter is set to 𝑝 = 1 to match
themock catalogues, and the numerical factor arising from normalisation of the linear growth
factor isC

(
𝛺m,0

)
≈ 1.3 (cf. eq. 1.60).

To compare the hybrid-basis and Cartesian power spectrum analyses, two geometric set-
ups are considered: the ‘full-sky’ set-up, in which only haloes within a sphere of comoving
radius 𝑅 = 500 h−1Mpc centred in the 𝑁 -body simulations are used; the ‘partial-sky’ set-
up, where the data sets of haloes are further restricted to the proportions covered by the foot-
print of the BOSS Data Release 12 Constant MASS (CMASS) North Galactic Cap (NGC)
sample within the comoving radius range 100 h−1Mpc ⩽ 𝑟 ⩽ 𝑅. The angular mask func-
tion 𝑀 is constructed from the BOSS CMASS NGC random catalogue with HEALPix
pixelation 𝑁side = 32 [275],³ as shown in Figure 5.1. This angular mask corresponds to a sky

³ The random catalogue is publicly available at  data.sdss.org/sas/dr12/boss/lss/random0_DR12v5_CMASS

_North.fits.gz.

https://data.sdss.org/sas/dr12/boss/lss/random0_DR12v5_CMASS_North.fits.gz
https://data.sdss.org/sas/dr12/boss/lss/random0_DR12v5_CMASS_North.fits.gz
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Figure 5.1. Survey angularmask𝑀 (𝒓) used in the partial-sky set-up. The angularmask function
takes binary values (1 shown by the shaded region and 0 elsewhere) and is constructed from the
BOSSDataRelease 12 (DR12)CMASSNGC random cataloguewithHEALPix pixelation𝑁side =
32. The vertical and horizon axes correspond to the polar and azimuthal angles (𝜗, 𝜑) respectively
in spherical coordinates. Figure taken from Fig. 1 in Paper III.

fraction of 𝑓sky ≈ 0.2 and is simply chosen to demonstrate the hybrid-basis approach with a
realistic survey geometry.

For both full-sky and partial-sky set-ups, the hybrid-basis and Cartesian power spectrum
analyses are performed with maximum wavenumber 𝑘max = 0.08 hMpc−1, which is set to en-
sure that the halo bias remains scale-independent when 𝑓NL = 0, since we have found the halo
bias to be slightly scale-dependent even in the absence of PNG, and have had to set a relatively
highminimumhalomass owing to the limited resolution of our simulations. As no anisotropy
is expected from real-space halo clustering, only the power spectrum monopole is considered,
which is estimated using the Yamamoto estimator (see §2.2) and binned in wavenumber with
uniformwidthΔ𝑘 = 0.01 hMpc−1. For the hybrid-basis analysis, the hybridisation wavenum-
ber is pushed up to 𝑘hyb = 0.04 hMpc−1 for which the computation times of spherical clus-
tering statistics and the spherical-basis likelihood remain reasonable.

The intermediary data products and model ingredients, which are required for likelihood
evaluations in addition to the hybrid-basis and Cartesian power spectrum data vectors 𝑫 and
p𝑷 , include the following:

■ the SFB coupling coefficients𝑀𝜇𝜈 and𝛷𝜇𝜈, which are numerically integrated from the
angular mask𝑀 and the radial selection function 𝜙 (see eq. 5.15);

■ the window function multipoles 𝑄ℓ used to convolve power spectrum models, which
are determined from a synthetic random catalogue (see §2.3);

■ the fiducial covariance matrix estimate pΣf for the binned power spectrum monopole,
which is obtained from a large number of synthetic random catalogues (see eq. 1.65);

■ the compression matrix R needed to reduce the dimensionality of 𝑫 and improve nu-
merical stability in the partial-sky set-up, where the spherical-basis covariance matrix is
non-diagonal.
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Figure 5.2. Convergence check of the normalised SFB autocorrelator,𝜅𝜇𝜇 〈|𝐷𝜇 |2〉
/

s𝑛2, evaluated
at each SFB wavenumber 𝑘𝜇 from the series (eq. 5.19) in the fiducial cosmological model with
𝑓NL = 0 and𝑏1 = 1. The toppanel showspartial sumsof the series truncated at differentwavenum-
bers 𝑘trunc = 0.04, 0.055, 0.06 h−1Mpc, which respectively correspond to 𝑘hyb (dashed red line),
the actual wavenumber cut-off adopted in our analysis (dotted blue line) and the reference case
(solid black line). Thebottompanel shows the relative difference of partial sums compared to the
reference case, with the shaded region marking deviations within ±1 %. Note that oscillations in
the top panel are not due to numerical noise but reflect the behaviour of SFB clustering modes in
the presence of window effects. Figure taken from Fig. 2 in Paper III.

First, while only SFB clustering modes with wavenumbers 𝑘𝜇 ⩽ 𝑘hyb are included in the
data vector 𝑫 , mode coupling in the partial-sky case means that more modes with wavenum-
bers 𝑘𝜇 > 𝑘hyb must be included in the series (eq. 5.19) for convergence, and correspondingly
additional angular and radial SFB coupling coefficients𝑀𝜇𝜈 and𝛷𝜇𝜈 must be calculated. To
check numerical convergence of the series, the normalised SFB autocorrelator𝜅𝜇𝜇 〈|𝐷𝜇 |2〉

/
s𝑛2

is employed as a diagnostic quantity (see eq. 5.21). In Figure 5.2, partial sums of the series
truncated at wavenumbers 𝑘trunc = 0.04, 0.055, 0.06 h−1Mpc are compared, where the fi-
ducial cosmological model is assumed with 𝑓NL = 0 and 𝑏1 = 1; it is worth commenting
that oscillations of the SFB autocorrelator with the wavenumber are not due to numerical
noise but are simply the behaviour of the SFB clustering modes in the presence of window
effects. We have found that 𝑘trunc = 0.055 h−1Mpc is sufficient to ensure numerical con-
vergence at percent levels, which is then adopted as the series cut-off in our spherical Four-
ier analysis. In Figure 5.3, the dimensionless coupling coefficients Re𝑀𝜇𝜈 and 𝛷𝜇𝜈

/
s𝑛 for

wavenumbers 𝑘𝜇 ⩽ 𝑘trunc = 0.055 h−1Mpc are shown as matrices. The angular coupling
coefficients Re𝑀𝜇𝜈 are arranged in the ‘natural’ order by the (ℓ,𝑚) tuple and the radial coup-
ling coefficients𝛷𝜇𝜈 are arranged in the ‘spectral’ order by the wavenumber 𝑘𝜇 . The imaginary
part Im𝑀𝜇𝜈 is not shown since it is close to zero for a binary-valued angular mask [49].

Secondly, the window function multipoles𝑄ℓ are computed using FFTs from a synthetic
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Figure 5.3. Dimensionless angular and radial SFB coupling coefficientsRe𝑀𝜇 𝜈 (left column) and
𝛷𝜇 𝜈

/
s𝑛 (right column) for wavenumbers 𝑘ℓ𝑛 ⩽ 𝑘trunc = 0.055 h−1Mpc in the partial-sky set-up.

Angular coefficients𝑀𝜇 𝜈 are ordered by spherical degree and order (ℓ,𝑚) whereas radial coeffi-
cients𝛷𝜇 𝜈 are ordered by wavenumber 𝑘ℓ𝑛 . Figure taken from Fig. 3 in Paper III.
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Figure 5.4. Window function multipoles 𝑄ℓ as functions of the comoving separation 𝑠 , norm-
alised to 𝑄0(0) = 1, in the full-sky (left column) and partial-sky (right column) set-ups. Each
degree-ℓ multipole is multiplied by (2ℓ + 1) for visual differentiation. Figure adapted from Fig. 4
in Paper III.

random catalogue as described in section 2.3. The number density field of the synthetic cata-
logue is interpolated using the triangular-shaped cloud scheme (see e.g. ref. [131]) on a cubic
grid with side length 𝐿 = 70 h−1Mpc and mesh number 𝑁grid = 768. The large dimensions
of the grid and the highmesh number allow one to compute the power spectrum across a wide
range of scales without significant sample variance on very large scales or aliasing effects on
very small scales. The power spectrum multipoles of the synthetic catalogue are then Hankel
transformed to𝑄ℓ (𝑠). In Figure 5.4, the multipoles𝑄ℓ in both full-sky and partial-sky set-ups
are shown as functions of the comoving separation 𝑠; in practice, only 𝑄0 is needed for our
Cartesian power spectrum analysis since only the monopole is required for real-space cluster-
ing analysis.

Next, with the use of 𝑁rand = 2500 synthetic random catalogues of 50 times the number
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Figure 5.5. Estimated correlation matrices of the power spectrum monopole p𝑃0 in 𝑘-bins up
to 𝑘max = 0.08 hMpc−1 in the full-sky (left column) and partial-sky (right column) set-ups. The
wavenumber representing each bin is the average wavenumber of clustering modes in that bin.
Figure taken from Fig. 5 in Paper III.

density of the halo mock catalogues (i.e. 𝛼 = 0.02), a fiducial covariance matrix estimate pΣf is
obtained for the binned power spectrum monopoles p𝑃0. The use of unclustered random cata-
logues is justified as our analysis is restricted to linear scales, where the correlation between clus-
teringmodes is solely induced by the survey geometry rather than gravitational non-linearities.
In Figure 5.5, the corresponding correlation matrices in the full-sky and partial-sky set-ups are
shown, where the 𝑘-bins are represented by the average clustering mode wavenumber in each
bin.

Finally, in our spherical Fourier analysis, the spherical-basis data 𝑫 consist of 𝑁mode =
456 SFB clustering modes, so the dimensions of the covariance matrix S ∈ ℂ𝑁mode×𝑁mode are
fairly large, whichmay render its inversion numerically unstable and result in divergence of the
spherical-basis likelihood when evaluated along some particular direction in parameter space.
In the full-sky set-up, S is diagonal and well-conditioned; however, this is not the case for
the partial-sky set-up, as SFB clustering modes become coupled. In the partial-sky set-up, the
sky fraction is 𝑓sky ≈ 0.2, and together with the radial selection cut, the catalogue volume
is about 18 % of the full-sky comoving sphere, and hence the effective number of clustering
modes is heuristically only 18 %×𝑁mode ≈ 82. Therefore after the data compression procedure
described in the previous section, we have decided to keep only 80 modes, corresponding to
a conservative condition number 𝜘 ≈ 50 for the compression matrix R. Figure 5.6 shows
the eigenvalue ratio 𝜆1/𝜆𝛽 used as a proxy condition number, where

{
𝜆𝛽

}
are the 𝑁mode =

456 eigenvalues (arranged in descending order by magnitude) of the uncompressed spherical-
basis covariance matrix S̆ evaluated in the fiducial cosmology with 𝑓NL = 0. It is evident that
there are many positive eigenvalues 𝜆𝛽 which are orders of magnitude smaller than the largest
eigenvalue 𝜆1, and almost a third of all eigenvalues are negative. We also check whether the
eigenvalue composition alters significantly if a different covariance matrix S, e.g. evaluated at
𝑓NL = ±100, is considered. The same figure shows that indeed the corresponding eigenvalues
do not change very much except for the largest few and at the location where 𝜆𝛽 switches
sign; the number of negative eigenvalues remains almost the same. This suggests that this data
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Figure 5.6. Proxy condition number 𝜆𝛽/𝜆1 of the spherical-basis covariance matrix with data
compression, as a function of the index 𝛽 for eigenvalues 𝜆𝛽 arranged in descending order by
magnitude. In the top panel, 𝜆𝛽/𝜆1 is shown for eigenvalues of the fiducial covariance matrix S̆
with 𝑓NL = 0 (solid black line) as well as covariance matrices S with 𝑓NL = ±100 (dashed red line
and dotted blue line respectively). In the bottom panel, the relative shift Δ𝜆𝛽 in each eigenvalue
compared to 𝜆𝛽 of the fiducial covariance matrix S̆ is shown. Note the sign change in the eigen-
value around 𝛽 = 305. Figure adapted from Fig. 12 in Paper III.

compression method to stabilise the covariance matrix is robust.

5.3.2 Comparison of hybrid-basis andCartesian power spectrum analyses

To justify the evaluation of the hybrid-basis likelihood as a product of the spherical-basis and
Cartesian-basis likelihoods (eq. 5.33), it is necessary to check whether the correlation between
low-𝑘 spherical-basis data 𝑫 and high-𝑘 Cartesian-basis data p𝑷 is sufficiently weak. To this
end, the cross-correlation corr

[
𝑫, p𝑷

]
is estimated from the aforementioned𝑁rand = 2500 syn-

thetic random catalogues in both the full-sky and partial-sky set-ups, as shown in Figure 5.7.
For SFB clustering modes𝐷ℓ𝑚𝑛 of the same wavenumber 𝑘ℓ𝑛 but different spherical orders𝑚,
the absolute cross-correlation value is averaged over these equivalent clustering modes. The
cross-correlation indeed appears to be weak and there is no discernible evidence that particu-
lar SFB clustering modes are more strongly correlated with the power spectrum monopole in
any particular wavenumber bin. For the full-sky case, the cross-correlation coefficient is con-
sistently below 0.04 and, for the partial-sky case, below 0.06. Therefore we treat 𝑫 and p𝑷 as
being effectively independent under the assumption that the joint distribution of

(
𝑫, p𝑷

)
is

multivariate normal.
With all the data products and model ingredients described in the previous section, for

each of the halo mock catalogues in the full-sky or partial-sky set-up we infer the local PNG
parameter 𝑓NL and the scale-independent linear bias 𝑏1 jointly while keeping the fiducial cos-
mology fixed. Uniform priors for both parameters are chosen so that the posterior distribu-
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Figure 5.7. Estimates of the absolute value of cross-correlation coefficients corr
[
𝑫, p𝑷

]
between

the spherical-basis data 𝑫 at wavenumbers 𝑘ℓ𝑛 ⩽ 𝑘hyb and the Cartesian-basis data p𝑷 (power
spectrummonopole only) in wavenumber bins 𝑘𝑖 > 𝑘hyb in the full-sky (left column) and partial-
sky (right column) set-ups. The shaded grey stripes are of width 0.04 (left column) or 0.06 (right
column) in cross-correlation value. Lines corresponding to the 𝑖th wavenumber bin are shifted
up by 0.1(𝑖 − 1) in cross-correlation value for visual differentiation. Figure taken from Fig. 6 in
Paper III.

tion is simply proportional to the likelihood function. As an example, Figure 5.8 shows the
hybrid-basis posterior and its low-𝑘 and high-𝑘 components in the full-sky case. The results
have been marginalised over 24 halo mock catalogues with 𝑓NL = 0 by taking the average of
the logarithmic posterior probabilities. The different orientations of the low-𝑘 and high-𝑘 pos-
terior contours are mainly due to the different wavenumber ranges rather than differences in
the spherical Fourier and Cartesian power spectrum analyses. In Figure 5.9, we compare the
posterior distribution from the hybrid-basis likelihood with that from the Cartesian power
spectrum likelihood for a few halo mock catalogues with 𝑓NL = 0, showing individual res-
ults for eachmock catalogue realisationwithoutmarginalisation or averaging. The constraints
from the two likelihoods appear to be statistically consistent, though the posterior contours
naturally scatter around 𝑓NL = 0 owing to random data variation. In the rest of this section,
measurements and parameter constraints will simply be presented as the marginalised results
over different sets of mock catalogues rather than the combined results (which would have
smaller uncertainties). This means that any data measurements presented hereafter have been
averaged over equivalent mock catalogues, and so are the logarithmic posterior probabilities.

For the interested reader, here we provide some details of the actual computational cost
involved in the spherical-basis likelihood analysis (see also §5.1.4). For the choice of the hybrid-
isation wavenumber 𝑘hyb = 0.04 hMpc−1, the maximum spherical degree is ℓmax = 15. On a
single processor core, the computation time of each SFB clustering mode𝐷𝜇 by direct summa-
tion (eq. 5.27) is approximately 7 × 10−5 sper halo in themock catalogues, or order of a day per
mode for all galaxies in aDESI-like survey. The spherical coupling coefficients need to be com-
puted once only for wavenumbers up to𝑘trunc = 0.055 hMpc−1, since the background cosmo-
logy has been fixed at the fiducial model; this takes up to half an hour on 100 processor cores,
and almost all the time is spent on the angular coupling coefficients𝑀𝜇𝜈 (eq. 5.15a) evaluated
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Figure 5.8. Joint posterior distribution of the local PNG parameter 𝑓NL and the scale-independ-
ent linear bias 𝑏1 from the hybrid-basis likelihood (eq. 5.33) (dash-dotted blue contours) as well
as its low-𝑘 and high-𝑘 components based on the spherical-basis data 𝑫 (solid green contours)
and the Cartesian-basis data p𝑷 (dashed purple contours). In this example, results have been mar-
ginalised over from 24 halo mock catalogues with 𝑓NL = 0. The inner and outer contours in each
set show the 1𝜎 and 2𝜎 credible regions. Figure taken from Fig. 7 in Paper III.
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Table 5.1. Posterior median estimates of 𝑓NL and 𝑏1 from the hybrid-basis and Cartesian power
spectrum likelihood analyses, marginalised over halo mock catalogues with 𝑓NL = 0 and 𝑓NL =
100 in the full-sky and partial-sky set-ups. Uncertainties in both parameters correspond to the
68 % credible interval of the marginal posterior distribution.

Mock catalogues
Posterior median estimates of (𝑓NL, 𝑏1)

Hybrid-basis analysis Cartesian power spectrum analysis

Full sky
𝑓NL = 0

(
18+53−44 , 3.51+0.08−0.08

) (
6+51−43 , 3.52+0.08−0.08

)
𝑓NL = 100

(
117+63−54 , 3.46+0.09−0.09

) (
89+57−45 , 3.48+0.08−0.08

)
Partial sky

𝑓NL = 0
(
11+146−112 , 3.50+0.20−0.20

) (
−40+136−122 , 3.54+0.22−0.20

)
𝑓NL = 100

(
111+158−120 , 3.46+0.20−0.20

) (
62+134−124 , 3.50+0.20−0.18

)
using the HEALPix pixelation scheme with𝑁side = 256. A single evaluation of the spherical-
basis likelihood (eq. 5.28) takes just under a minute for the partial-sky set-up.⁴ If the hybridisa-
tion wavenumber were extended to 𝑘hyb = 0.05 hMpc−1, there would be 978 SFB clustering
modes with ℓmax = 20; the total computation time of both SFB clustering modes and angu-
lar coupling coefficients would roughly double. However, we caution that these figures are
for reference only: more sophisticated numerical algorithms exist (see the next section), and
implementations in different programming languages may also have varying efficiencies.

In Figure 5.10(a), the full-sky 𝑓NL–𝑏1 constraints are presented, which have beenmarginal-
ised over the 24 halo mock catalogues with 𝑓NL = 0 and 20mock catalogues with 𝑓NL = 100.
The results from the hybrid-basis and Cartesian power spectrum likelihood analyses are in
good agreement. Similarly, in Figure 5.10(b), constraints are shown for the same mock cata-
logues in the partial-sky set-up with the BOSS-like angular mask and the radial selection cut.
As above, results from the hybrid-basis and Cartesian power spectrum analyses are statistically
consistent.

To compare the best-fitting parameters from the different posterior distributions, the pos-
terior median estimates for 𝑓NL and 𝑏1 are tabulated in Table 5.1, with uncertainties given by
the 68 % credible intervals of their marginal posterior distributions. Finally, in Figures 5.11(a)
and 5.11(b), we directly compare the window-convolved models of the power spectrum mono-
pole inferred from the posterior distributions in the hybrid-basis and Cartesian power spec-
trum analyses with themeasurements averaged over the different sets of halomock catalogues.
In both the full-sky and partial-sky set-ups, the recovered models from both analyses are in

good agreement with the measurements, with the 68 % credible intervals of the inferred mod-
els comparable to the measurement uncertainties given by the estimated covariance matrix.
However, it is worth noting that themeasurement uncertainties are derived under the assump-
tion that the power spectrum estimates follow the multivariate normal distribution, whereas
the credible intervals of the inferred models are obtained from the non-normal posterior dis-
tributions of 𝑓NL and 𝑏1.

⁴ For the full-sky set-up where a number of simplifications can be made (see §5.1.3), the covariance matrix S is
diagonal, so the spherical-basis likelihood can be evaluated more quickly.
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Figure 5.10(a). Full-sky 𝑓NL–𝑏1 constraints from the hybrid-basis and Cartesian power spectrum
likelihood analyses of halo mock catalogues with 𝑓NL = 0 (left column) and 𝑓NL = 100 (right
column). In the main panels, 1𝜎 and 2𝜎 credible regions of the joint posterior distribution are
shown by the shaded contours, and the vertical dotted lines mark the true 𝑓NL values. The top
and side panels show the marginal posterior distributions for 𝑓NL and 𝑏1 respectively, with the
shaded regions showing the 1𝜎 credible interval. Hybrid-basis analysis results are coloured in
blue and marked by solid lines, whereas Cartesian power spectrum analysis results are coloured
in red and marked by dashed lines. Figure taken from Fig. 8 in Paper III.
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Figure 5.10(b). Partial-sky 𝑓NL–𝑏1 constraints from the hybrid-basis and Cartesian power spec-
trum likelihood analyses of halo mock catalogues with 𝑓NL = 0 (left column) and 𝑓NL = 100 (right
column). In the main panels, 1𝜎 and 2𝜎 credible regions of the joint posterior distribution are
shown by the shaded contours, and the vertical dotted lines mark the true 𝑓NL values. The top
and side panels show the marginal posterior distributions for 𝑓NL and 𝑏1 respectively, with the
shaded regions showing the 1𝜎 credible interval. Hybrid-basis analysis results are coloured in
blue and marked by solid lines, whereas Cartesian power spectrum analysis results are coloured
in red and marked by dashed lines. Figure taken from Fig. 9 in Paper III.
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Figure 5.11(a). Inferred models of the window-convolved power spectrum monopole r𝑃0 from
the joint posterior distribution of 𝑓NL and 𝑏1 compared to the measurements averaged from halo
mock catalogues with 𝑓NL = 0 (left column) and 𝑓NL = 100 (right column) in the full-sky set-
up. Measurement uncertainties are obtained from the estimated covariance matrix. The shaded
regions show the 68 % credible interval of the inferred models from the hybrid-basis likelihood
(dashed blue lines) and the Cartesian-basis power spectrum likelihood (dotted red lines). Figure
taken from Fig. 10 in Paper III.

0.02 0.04 0.06
k [h/Mpc]

105

6 × 104

2 × 105

P 0
(k

)[
(M

pc
/h

)3 ]

fNL = 0

0.02 0.04 0.06
k [h/Mpc]

105

6 × 104

2 × 105

3 × 105
4 × 105

P 0
(k

)[
(M

pc
/h

)3 ]

fNL = 100

hybrid-basis
Cartesian-basis
measurements

Figure 5.11(b). Inferred models of the window-convolved power spectrum monopole r𝑃0 from
the joint posterior distribution of 𝑓NL and 𝑏1 compared to the measurements averaged from halo
mock catalogues with 𝑓NL = 0 (left column) and 𝑓NL = 100 (right column) in the partial-sky set-
up. Measurement uncertainties are obtained from the estimated covariance matrix. The shaded
regions show the 68 % credible interval of the inferred models from the hybrid-basis likelihood
(dashed blue lines) and the Cartesian-basis power spectrum likelihood (dotted red lines). Figure
taken from Fig. 11 in Paper III.

5.4 Summary and discussion

With access to huge cosmic volumes, future galaxy redshift surveys have the potential to probe
cosmological physics close to the horizon scale. On such large scales, next-generationmissions
such as DESI and Euclid are forecast to provide local PNG with uncertainties 𝜎𝑓NL ≈ 5 com-
petitive to the Planck result, and relativistic effects in galaxy clustering can also be possibly
detected [104–106, 201]. However, various large-scale systematics in the survey, if unaccounted
for in the likelihood analysis, threaten to degrade or bias these parameter constraints.

In chapter 2, we have reviewed redshift-space galaxy clustering that is commonly mod-
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elled by the anisotropic power spectrum 𝑃 (𝑘, 𝜇) or the equivalent Legendre multipoles 𝑃ℓ (𝑘)
derived in the distant-observer and global plane-parallel approximations by assuming a fixed
line of sight 𝒏̂. However, the actual line of sight 𝒅 varies across the survey volume, so the
power spectrum multipoles are commonly estimated with the FFT-based Yamamoto estim-
ator p𝑃ℓ derived in the local plane-parallel approximation. The discrepancy between the global
plane-parallel prediction and the local plane-parallel estimator, known as the wide-angle ef-
fect, makes a significant contribution to systematic errors on large scales when coupled with
the survey window function. Although wide-angle corrections have recently been derived, at
a more fundamental level, the Cartesian power spectrum analysis is based on Fourier modes
decomposed in the plane wave basis, which does not match the spherical geometry of survey
observations.

A more natural description of redshift-space galaxy clustering on large scales is the spher-
ical Fourier analysis based on the discrete SFB clusteringmodes𝐷𝜇 , sincemany of the physical
and observational effects affect clustering measurements parallel and transverse to the line of
sight differently. In this chapter, we have extended previous works (e.g. refs. [49, 228, 244]) to
include theAP effect, redshift evolution and scale-dependent galaxy bias on linear scales coher-
ently; further extensions to ourmodel, such as the inclusion of relativistic corrections (see also
§4) and scale-dependent linear growth rate in modified gravity theories, should be reasonably
straightforward. Although the spherical Fourier analysis offersmany advantages such as a clear
separation between radial and angular components as well as being fully three-dimensional
(i.e. no tomographic binning in redshift 𝑧) as discussed in section 5.1.3, it is computationally
expensive especially when confronted with huge data sets from future surveys and harder to
relate to current models of non-linear galaxy clustering.

Inspired by the hybrid estimator approach used in CMB studies, we have proposed an
analogous hybrid-basis approach to analysing LSS observations: below some hybridisation
wavenumber 𝑘hyb chosen for a given survey, anisotropic galaxy clustering can be accurately
described by a spherical Fourier analysis using SFB modes; above 𝑘hyb, one switches to the
standard Cartesian power spectrum analysis. This approach has some major benefits: no geo-
metric approximations are needed on large scales where a small number of clustering modes
can be particularly affected by the survey geometry, and the likelihood directly constructed
from SFB clustering modes is exactly Gaussian with an analytically tractable covariance mat-
rix; on smaller scales, the large number of clustering modes can be compressed into power
spectrum multipoles, which are computationally fast to evaluate with FFTs and can be related
to non-linear galaxy clustering models (e.g. the TNS model for RSD [75]), while the likeli-
hood is now well approximated by a multivariate normal distribution thanks to the central
limit theorem.

As a first step in demonstrating the applicability of the hybrid-basis approach, we have
analysed real-space clustering statistics of halo mock catalogues from a series of 𝑁 -body simu-
lations with both Gaussian and non-Gaussian initial conditions. By performing likelihood
analysis on the local PNG parameter 𝑓NL and the scale-independent halo bias 𝑏1, we have
found that the hybrid-basis approach yields statistically consistent results with those from the
Cartesian power spectrum analysis. However, one would expect that, when applied to more
realistic scenarios that include RSD and light-cone effects, the hybrid-basis approach will out-
perform the standard analysis for multiple reasons: first, it is in the presence of anisotropic
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clustering around the line of sight that the plane-parallel approximations start to break down,
unless one corrects for wide-angle effects; secondly, when the clustering measurements span
a wide redshift range, the tomographic analysis of power spectrum in multiple redshift bins
is less optimal than the fully three-dimensional spherical Fourier analysis; thirdly, the spher-
ical Fourier analysis is better suited for treating angular systematics in future wide surveys. In
forthcoming works, the hybrid-basis approach shall be extensively tested with data sets that in-
clude RSD and redshift evolution effects, and cosmological parameters other than 𝑓NL, such
as the linear growth rate 𝑓 , will also be included in the likelihood analysis. In these more com-
plex scenarios, we will also need to investigate the sensitivity of the hybrid-basis analysis to the
hybridisation scale 𝑘−1hyb, and whether the low-𝑘 and high-𝑘 components can still be treated as
being effectively independent in the hybrid-basis likelihood; this requires more careful charac-
terisation of the correlation between the low-𝑘 spherical and high-𝑘 Cartesian data, as well as
statisticalmethods for combining the two regimeswhen their correlation cannot be neglected.
Finally, ref. [276] has recently proposed amodified SFB basis that is tailored for evenmore real-
istic survey geometries such as a spherical shell or cap, which can also be implemented in the
hybrid-basis framework.

To serve follow-up studies, we have released our public codeoi as a Python pack-
age designed for both handling catalogue data and modelling clustering statistics in spherical
andCartesian Fourier bases. Optimalweighting schemes for the spherical Fourier analysis [e.g.
49], though not covered in this work, can be readily implemented using the code. In the fu-
ture, more sophisticated computational algorithms that can accelerate the SFB transform may
also be incorporated into this framework [e.g. 240].
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Conclusion

The study of the large-scale structure of the Universe has expanded considerably over the past
century fromcurated galaxy catalogues to thewide- anddeep-field galaxy surveys of the current
era. In 1926, Hubble attempted to test the uniformity of the structure of theUniverse through
merely four hundred ‘extra-galactic nebulae’ [277], and three years later, he was able to observa-
tionally extract the Hubble–Lemaître law [278] that was predicted by Lemaître in 1927 [279].¹
With the Lick catalogue and the Zwicky catalogue [281, 282], which contained tens of thou-
sands of galaxies, Peebles and collaborators were able to demonstrate the power-law behaviour
of the angular two-point correlation function of galaxy clustering in the 1970s [e.g. 283]. How-
ever, three-dimensional clusteringmeasurementswere onlymade possible laterwith systematic
field surveys such as the pioneering Center for Astrophysics (CfA) Redshift Survey [284] and
the IRASmission [285]. The advent of the revolutionarymulti-fibre spectrographs has brought
the 2dFGRS, the 6-degree Field Galaxy Redshift Survey (6dFGRS) and the SDSS to fruition,
with the overall catalogue size in the order of millions including the very recently completed
eBOSS [24, 33, 286]. As discussed in chapter 1, these surveys have already helped establish the
ΛCDM model as the standard model of cosmology by complementing CMB and SN obser-
vations, and in the course of the last two to three decades, the field of LSS cosmology has
steadily matured. With powerful probes such as BAO and RSD and the combination of mul-
tiple tracer species withO

(
107

)
–O

(
108

)
redshiftmeasurements, the eagerly anticipatedDESI

and Euclid surveys will in the coming decade produce constraints on fundamental cosmolo-
gical parameters that are competitive in comparison with CMB measurements as represented
by the Planck results [105, 213, 222, 287].

Needless to say, with great instrumental and statistical power comes great responsibility
to carry out accurate LSS analyses when ever more refined theoretical models are confronted
with increasingly large data sets. As is often discussed in the recent literature, the current cos-
mological tensions may hint at physical processes beyond the standard ΛCDM model [e.g.

¹ UsingHubble’s catalogue from 1926, Lemaître in factmade ameasurement of ‘the coefficient of expansion’ (i.e.
theHubble constant) thoughnoted the large scatter in the results. Heomitted thediscussionof his determination
of the Hubble constant in the translation of his original work into ref. [17] in 1931 [280].
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288–291], but it is crucial to control for systematic effects present in the survey pipeline from
the very source of observational data to the final statistical inference of cosmological models.²
This is indeed the ethos of this thesis, which has reconsidered the different aspects of the pre-
vailing galaxy clustering analysismethodologies; these are reviewed summarily in the following
section before the conclusion over future studies and the outlook of LSS cosmology.

6.1 Summary review

Ideally, systematic errors should be limited to levels below the statistical uncertainties in any
experiment. These ‘systematics’ can come from a number of places in a galaxy survey analysis:
corrupted or incomplete survey data, e.g. due to instrumental limitations such as fibre colli-
sions [e.g. 292–294]; inaccurate modelling of cosmological observables such as the neglection
of relativistic corrections; inappropriate mathematical and statistical prescriptions connecting
measurement data and theoretical predictions, e.g. wrong probability distributions used for
clustering measurements.³ After laying down the theoretical foundation and providing the
broad context in the introductory chapters (§§1 and 2) and a series of appendices, we have ex-
amined in this thesis various assumptions and treatments in the current framework of galaxy
clustering analysis, which may become significant systematics in the future. We have also pro-
posed solutions that address these problems, with a particular focus on the signature of the
local-type primordial non-Gaussianity in galaxy clustering, which parametrises the initial con-
ditions for structure formation and serves as an important discriminant for inflationary mod-
els. Although each methodology proposed in this thesis has been tested and validated with a
focus on the PNG parameter 𝑓NL, they are also applicable to other cosmological parameters
and are especially relevant to clustering analyses on very large scales.

Chapter 3 investigates the issues of the underlying non-Gaussian likelihood for power spec-
trummeasurements and the cosmological parameter dependence of covariancematrices. Like-
lihood fitting to two-point clustering statistics made from galaxy surveys almost invariably as-
sumes amultivariate normal distribution for themeasurements, with justification based on the
central limit theorem given the large number of clustering modes. However, this asymptotic
normality assumption cannot hold on the largest survey scales where the number of modes is
small. At the same time, a fixed covariance matrix estimate made with expensive mock cata-
logues produced at a fiducial cosmological model is typically used in the evaluation of the
likelihood function, but this assumption has too been demonstrated to be inadequate for stat-
istical inference in previous works. We have therefore devised a simple univariate Gaussian-
isation scheme, namely the Box–Cox transformation, that results in an approximately normal
data distribution, with a variance–correlation decomposition of the covariance matrix to ac-
count for its cosmological parameter dependence in linear perturbation theory. By comparing
with the standard likelihood assuming asymptotic normality and fixed covariancematrices, we
have found from Monte Carlo simulations that our novel likelihood derived with the Gaussi-

²  “Cosmologists are often in error but seldom in doubt.” A quote attributed to Lev Landau by Simon Singh
in Big Bang (2004).
³ The classification boundary between these types of systematics is not always clear; for instance, the lack of
consideration for observational effects in measurements may also be regarded as inadequacy in the theoretical
modelling.
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anisation and covariance matrix rescaling procedure gives more accurate constraints on the
local PNG parameter 𝑓NL. This improvement fundamentally comes from the superior approx-
imation aimed to recover the full shape of the true posterior distribution which is inaccess-
ible in realistic survey analyses. A streamlined survey analysis pipeline is then presented for
straightforward applicationof thenewmethodology for forthcoming large galaxy surveys such
as DESI and Euclid.

We have then focused on relativistic modelling of clustering statistics in chapter 4, which
is particularly relevant to the next-generation surveys with access to scales approaching the
Hubble horizon, since relativistic corrections are typically suppressed on sub-horizon scales.
Relativistic effects in clustering observations have been shown to introduce scale-dependent
corrections to the Newtonian galaxy over-density field on large scales, which may hamper the
detection of 𝑓NL through the scale-dependent tracer bias. The amplitude of relativistic correc-
tions depends not only on the cosmological background expansion, but also on the redshift
evolution and sensitivity to the luminosity threshold of the tracer population being examined,
as parametrised by evolution bias 𝑏e and magnification bias 𝑠 . These parameters cannot be ac-
curately predicted in general because of complications such as halo merger history, and thus
an empirical approach to determining their values is required. In this work, we have refitted
the luminosity function for the eBOSS QSO sample, which has a large tracer bias and a high
redshift range that are beneficial to PNGdetection, and propagated the results to𝑏e and 𝑠 . We
have thereby derived constraints on relativistic corrections to the quasar clustering power spec-
trummultipoles, withmore realistic uncertainties compared to previous works assuming fixed
fiducial values for the evolution and magnification bias parameters 𝑏e and 𝑠 . Our results have
shown that, for clustering measurements to be made with the DESI QSO sample at wavenum-
bers 𝑘 = O (10−3) hMpc−1, relativistic corrections can overwhelm the expected 𝑓NL signature
at low redshifts𝑧 ≲ 1 and remain comparable to 𝑓NL ≈ 1 in the power spectrumquadrupole at
redshifts 𝑧 ≳ 2.5. Although one couldmitigate their impact by adjusting the redshift range or
the luminosity threshold of the tracer sample being considered, we suggest that, for future sur-
veys probing large cosmic volumes, relativistic corrections should be forward-modelled from
the tracer luminosity function including its uncertainties.

In chapter 5, we have turned our attention to the mathematical description of cosmic fluc-
tuations observed through the survey window: the choice of Fourier basis for decomposing
clustering statistics that matches the geometry of observations. The Cartesian power spec-
trum analysis of anisotropic galaxy clustering based on the plane wave basis makes a number
of assumptions, including the distant-observer and plane-parallel approximations, that will no
longer be valid on very large scales in future surveys andmay degrade cosmological constraints.
Inspired by the hybrid likelihoods used in CMB studies by Planck, we have proposed an ap-
proach that utilises a hybrid basis: on the largest scales, clustering statistics are decomposed
into spherical Fourier–Bessel modes which respect the natural survey geometry and fully cap-
ture physical and observational effects along the line of sight such as redshift-space distortions
and light-cone effects; on smaller scales with far more clustering modes that are much less
affected by the aforementioned systematics, one retains the computational edge of the FFT-
based power spectrum analysis which also naturally extends to non-linear scales. Thedirect use
of individual clustering modes in constructing the likelihood function on large scales also cir-
cumvents the issues of non-Gaussian likelihoods and covariance matrix estimation. We have
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validated thismethodology by testing on real-space halo clustering in𝑁 -body simulations, and
publicly released our code oi for future investigation and application.

6.2 Future work and outlook

Based on the discussions in the preceding chapters, there are various avenues for further re-
search, which also include ideas that are more explorative in nature.

A unified framework for clustering analyses. In the hybrid-basis approach advocated in
this thesis, we have emphasised the utilisation of the spherical Fourier–Bessel basis for analys-
ing cosmic density fluctuations on the largest scales in wide- and deep-field surveys. Not only
does this eliminate wide-angle effects present in a Cartesian power spectrum analysis, but the
natural separation between radial and angular clustering components also makes it a super-
ior analytic tool for the full modelling of relativistic corrections including the lensing terms
ignored in chapter 4, where the plane-parallel power spectrum multipoles have been adopted
as the observables for simplicity. Indeed, ref. [229] has already made the detailed translation
from relativistic corrections to the SFB clusteringmodes, though in its derivation these modes
are not discretised according to any survey boundary conditions. Therefore one could envis-
age a unified framework for Fourier clustering analyses combining all the methodologies con-
sidered in this thesis: the full relativistic treatment of galaxy clustering with the SFB decom-
position is used on the largest survey scales subject to limited computational resources and the
requirement to have systematic errors below the levels of statistical uncertainties; on interme-
diate linear scales, the Gaussianisation and covariance matrix rescaling strategy is still useful
for constructing a power spectrum likelihood function that reproduces the true cosmological
posterior distribution as closely as possible. Following the work presented in chapter 5, testing
the hybrid-basis methodology with RSD effects included is a natural next step, and the cor-
relation between spherical and Cartesian Fourier clustering measurements, as well as how to
appropriately combine them, also warrants further investigation. Finally, efficient numerical
algorithms, e.g. the implementation of the SFB transform, are worth exploring to reduce the
computational cost of the hybrid-basis approach.

Multi-tracer approach. The potential of next-generation galaxy surveys to detect primor-
dial non-Gaussianity lies with the unprecedented cosmic volume they observewhich avails the
probe of ultra-large-scale fluctuations. Unfortunately, clustering modes on such scales are few
and thus cosmic variance dominates, which diminishes the prospect of detection. Ref. [223]
hasmadeuse of the insight that on large scales thePNGsignature is in thenon-stochastic tracer
bias, and by cross-correlating two or more tracers with contrasting bias values, one can signi-
ficantly reduce the impact of cosmic variance in the underlying matter distribution. The same
idea is also applicable tomeasuring redshift-space distortion parameters such as the ratio 𝑓 /𝑏1
between the linear growth rate 𝑓 and the linear bias 𝑏1 [224]. In addition, as manifested in
equation (4.5), the cross-correlation between clustering modes of two tracers with different
evolution andmagnification biases will have a non-vanishing imaginary part, an insight noted
by ref. [295] and suggested as a method for detecting relativistic effects. However, it should be
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mentioned that to eliminate or reduce cosmic variance, the multiple tracers considered must
have overlapping volume so that their samples trace the same patch of the underlying matter
density field, and ideally the difference in their bias values should be sufficiently large; there
is also the practical challenge that tracers may have different survey systematics. Since these
early works, the multi-tracer technique has spurred a large number of studies involving both
Fisher forecasts and survey measurements, which have shown that it may help reduce the un-
certainties on various parameters by a factor of a few [see e.g. 296, 297]; one such example is the
recently completed eBOSS analysis [298], which has been able to combine the LRG and ELG
samples in the redshift range 0.6 < 𝑧 < 1.0with a significant sky coverage of 9500 deg2. Since
most of these studies have considered the power spectrum or other two-point clustering stat-
istics as the observable, it would be novel and exciting to explore whether this technique can
be embedded in the SFB analysis based on individual, uncompressed clustering modes as elab-
orated in chapter 5. These efforts may ultimately lead to a hybrid-basis multi-tracer Fourier
clustering analysis framework serving future-generation surveys even beyond DESI and Euc-
lid, e.g. the Spectro-Photometer for the History of the Universe, Epoch of Reionization, and
Ices Explorer (SPHEREx) [299].

Application of random matrix theory. The ubiquity of the Gaussian likelihood, as dis-
cussed in chapters 1 and 3, stems from the fact that asymptotic normality is a universality law
as warranted by the central limit theorem. Such universality laws do not only exist for random
variables or vectors, but also for randommatrices as predicted by randommatrix theory, which
was first introduced byWishart [300] and popularised byWigner [301–303]. Typically, univer-
sality laws in random matrix theory state that as the dimensions of a random matrix become
large, the distribution of its eigenvalues converges to some specific spectrum. In cosmology,
random matrix theory has already been applied to the study of multi-field inflation models,
where the Hessian matrix of the field potential can be described as random matrices, and the
dynamics of the system of fields can be analysed even when the number of fields becomes very
large [e.g. 304–306]. Random matrix theory might also be of use for more data-oriented LSS
analyses. For example, the observed galaxy over-density field may be contaminated by sources
of galactic origins such as dust extinction, and foreground removal methods are sometimes
based on the covariance matrix of clustering modes at the map level to remove the contam-
inant components, e.g. mode subtraction or mode de-projection [307–309]. Random matrix
theory may offer alternative methods that could in principle work particularly well when the
number of clustering modes, and thus the dimensions of the covariance matrix, are large; in
this case, eigenvalues of the sample covariance matrix that fall outside the spectrum predicted
by random matrix theory may be regarded as unexpected ‘signals’, i.e. they could be contamin-
ant components. Similar random matrix techniques based on the comparison between a pre-
dicted eigenvalue spectrum and the observed one are common for cleansing estimated covari-
ance matrices in modern portfolio theory in quantitative finance [e.g. 310], though it remains
to be investigated how such methods could be practically utilised for improving covariance
matrix estimation or removing systematic effects from foreground contaminants in clustering
measurements.

•
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The field of large-scale structure studies will undoubtedly be at the forefront in the so-called
‘golden era’ of observational cosmology. Such optimism is founded on the rich data sets that
multiple generations of galaxy surveys have brought and will continue to bring in the future,
and one only needs to look to the history of the cosmic microwave background for further
convincing: from the prediction by Alpher and Hermann in 1948 [21] to the accidental dis-
covery by Penzias andWilson in 1965 [22] and then to the first CMBmap produced byCOBE
in the 1990s, it took nearly four decades; yet in the last two decades,WMAP and Planck have
measured the CMB temperature to exquisite precision, with minuscule fluctuations in CMB
anisotropies and polarisation used to firmly establish the ΛCDM paradigm and constrain cos-
mological parameters to sub-percent levels [14]. Since the groundbreaking work laid down
by Peebles almost half a century ago for which he was awarded the Nobel Prize in 2019 [311],
and after multiple decades of endeavour from countless others, the field of large-scale struc-
ture cosmology too has flourished and is no longer data-starved. Although history is viewed
in retrospect, one could still proclaimwith confidence that the golden era has only just begun.
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Cosmological Background

The materials presented in this appendix are mostly based on refs. [47, 312, 313] except where
referenced otherwise.

•

FLRWmetric. Under the cosmological principle, the background space-time must admit
a metric𝑔

𝑎𝑏
with the line element in the form of

d𝑠2 = 𝑔𝜇𝜈 d𝑋
𝜇 d𝑋𝜈 = − d𝑡2 + 𝑎(𝑡)2 𝛾𝑖 𝑗 d𝑥𝑖 d𝑥 𝑗 , ¹ (A.1)

where the four-vector 𝑋 𝜇 =
(
𝑋 0, 𝒙

)
, 𝑎 is a scale factor evolving with physical time 𝑡 , and

the spatial metric 𝛾𝑖 𝑗 is maximally-symmetric²—it can only describe a spherical, Euclidean or
hyperbolic space with positive, zero or negative constant Gaussian curvature𝐾 respectively,³

𝛾𝑖 𝑗 d𝑥
𝑖 d𝑥 𝑗 =

d𝑟 2

1 − 𝐾𝑟 2 + 𝑟
2 d𝛺2 , (A.2)

where 𝑟 and𝛺 are the radial and solid-angle coordinates. The FLRW line element is thus given
by

d𝑠2 = − d𝑡2 + 𝑎(𝑡)2
(

d𝑟 2

1 − 𝐾𝑟 2 + 𝑟
2 d𝛺2

)
, (A.3)

and by rescaling the length dimension, one may fix 𝑎 = 1 at the current epoch. It is often
instructive to consider the conformal time 𝜏 with

d𝜏 =
d𝑡
𝑎

(A.4)

¹ The metric signature follows the (−, +, . . . ) convention, and natural units are adopted in which the speed
of light in vacuum and the gravitational constant are unity, 𝑐 = 𝐺 = 1. Greek indices 𝜇, 𝜈, . . . indicate tensor
components and Latin indices 𝑎, 𝑏, . . . are abstract indices.
² That is, the spatial metric has the maximum number of Killing vectors as warranted by homogeneity and
isotropy. See e.g. ref. [314] for proof.
³ This curvature is proportional to the Riemannian three-curvature of the spatial submanifold.
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and remove the coordinate singularity in 𝑟 using

d𝜒 =
d𝑟

√
1 − 𝐾𝑟 2

, (A.5)

so that d𝑠2 = 𝑎(𝜏)2
(
− d𝜏2 + d𝛴2

𝐾

)
where

d𝛴2
𝐾 = d𝜒2 + 𝑆𝐾 (𝜒)2 d𝛺2 (A.6a)

measures comoving distances and

𝑆𝐾 (𝜒) =


𝐾−1/2 sin

(
𝐾1/2𝜒

)
(𝐾 > 0)

𝜒 (𝐾 = 0)
|𝐾 |−1/2 sinh

(
|𝐾 |1/2𝜒

)
(𝐾 < 0)

. (A.6b)

In the case of zero spatial curvature, 𝐾 = 0, the FLRW metric is simply conformal to the
Minkowski metric 𝜂

𝑎𝑏
, i.e.𝑔𝜇𝜈 = 𝑎(𝜏)2𝜂𝜇𝜈 .

Redshift and the Hubble expansion. Since there are no cosmic clocks that can directly
measure the time interval between two events, it is more practical to consider the cosmological
redshift 𝑧 of the electromagnetic spectrum of photons travelling from a distant source to the
observer as a proxy temporal coordinate, with the observer at the current epoch 𝑧 = 0. The
cosmological redshift is related to the scale factor by

𝑎 = (1 + 𝑧)−1 , (A.7)

which can be derived by considering the frequency change between emission and reception
of photons travelling along a null geodesic between the source and observer, whose comoving
distance is constant. The expansion of the Universe resulting in this redshift can be measured
using theHubble parameter defined by

𝐻 =
d ln𝑎
d𝑡

=
¤𝑎
𝑎
, (A.8a)

or equivalently, the conformal Hubble parameter

H =
d ln𝑎
d𝜏

=
𝑎′

𝑎
= 𝑎𝐻 . (A.8b)

Here an overdot ¤• denotes a cosmic-time derivative, and a thick prime •′ denotes a conformal-
time derivative. In practice, the reduced Hubble parameter ℎ is often used to report measure-
ments of the Hubble parameter of today,

ℎ = 𝐻0
/ (
100 km s−1Mpc−1

)
, (A.9)

where •0 denotes the value of a quantity at the current redshift 𝑧 = 0.
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Dynamics of aΛCDMuniverse. Themajor components of aΛCDMuniverse are idealised
as perfect fluids without shear or viscosity, whose density 𝜌 and pressure 𝑃 are related by an
equation of state,

𝑃 = 𝑤𝜌 , ⁴ (A.10)

where 𝑤 is a dimensionless parameter; for example, 𝑤 = 0 for pressureless matter, 𝑤 = −1
for dark energy as a cosmological constant 𝛬, and𝑤 = 1/3 for radiation. The corresponding
stress–energy tensor is given by

𝑇𝑎𝑏 = (𝜌 + 𝑃)𝑈𝑎𝑈𝑏 + 𝑃𝑔𝑎𝑏 , (A.11)

where 𝑈 𝑎 is the fluid four-velocity. By energy–momentum conservation, ∇𝑎𝑇
𝑎𝑏

= 0, one
can infer a mass conservation law that is analogous to the first law of thermodynamics for an
adiabatic process,

¤𝜌 + 3𝐻 (𝜌 + 𝑃) = 0 ; (A.12)

thus with the equation of state for a perfect fluid, 𝜌 ∝ 𝑎−3(1+𝑤) . This result also naturally
follows from the Einstein field equation, 𝐺

𝑎𝑏
= 8π𝑇

𝑎𝑏
, since the contracted Bianchi iden-

tity∇𝑎𝐺
𝑎𝑏

= 0 implies energy–momentum conservation.⁵ Indeed, if one considers the purely
temporal and spatial components of the Einstein field equation, the Friedmann equations,

𝐻 2 =
8π
3
𝜌 − 𝐾

𝑎2
, (A.13a)

¥𝑎
𝑎
= −4π

3
(𝜌 + 3𝑃) . (A.13b)

would emerge and lead to equation (A.12). It is evident that the dynamics of the Hubble ex-
pansion depends on thematter–energy contents of theUniverse as parametrised by the critical
density

𝜌c =
3𝐻 2

8π
, (A.14)

which corresponds to the density in the absence of spatial curvature,𝐾 = 0. The density para-
meter𝛺𝐼 for each individual component 𝐼 is given by

𝛺𝐼 =
𝜌𝐼
𝜌c
, with 𝛺𝛬 =

𝛬

3𝐻 2 and 𝛺𝐾 = − 𝐾

𝑎2𝐻 2 . (A.15)

Therefore it is identically true by construction that
∑
𝐼 𝛺𝐼 = 1, and the (first) Friedmann equa-

tion (A.13a) becomes

𝐻 2 = 𝐻 2
0𝐸

2 , where 𝐸2 =
∑
𝐼≠𝐾

𝛺𝐼 ,0𝑎
−3(1+𝑤) + 𝛺𝐾,0

𝑎2
. (A.16)

⁴ Only in this appendix and the next does 𝑃 denote pressure in addition to the power spectrum, though confu-
sion is unlikely to arise.
⁵ The Einstein tensor (also known as the trace-reversed Ricci curvature tensor), 𝐺

𝑎𝑏
= 𝑅

𝑎𝑏
− (𝑅/2 )𝑔

𝑎𝑏
, is

constructed from the Ricci curvature tensor 𝑅
𝑎𝑏

and the Ricci curvature scalar 𝑅 for the metric𝑔
𝑎𝑏

.
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Cosmological distances. There are several distance measures that could have been intro-
duced earlier in the discussion of the FLRW metric, but it is more useful to express them now
in terms of redshift𝑧 and the density parameter(s)𝛺 defined above. The radial, or line-of-sight,
comoving distance is defined by

𝐷C(𝑧) = 𝜒 = 𝐷H,0

∫
0

d𝑧
𝐸 (𝑧) , (A.17a)

and the transverse, ormetric, comoving distance is

𝐷M(𝑧) = 𝑆𝐾 (𝜒) =



𝐷H,0√
𝛺𝐾,0

sin

[√
𝛺𝐾,0

𝐷C(𝑧)
𝐷H,0

]
(𝛺𝐾,0 > 0)

𝐷C(𝑧) (𝛺𝐾,0 = 0)
𝐷H,0√��𝛺𝐾,0�� sinh

[√��𝛺𝐾,0��𝐷C(𝑧)
𝐷H,0

]
(𝛺𝐾,0 < 0)

, (A.17b)

where𝐷H(𝑧) = 𝐻 (𝑧)−1 is theHubble distance. Sometimes, the angular diameter distance and
luminosity distance are also used, which are respectively given by

𝐷A(𝑧) = 𝐷M(𝑧)/(1 + 𝑧) and 𝐷L(𝑧) = (1 + 𝑧) 𝐷M(𝑧) . (A.18)

It is worth noting that, whilst 𝜒 is introduced in equation (A.5) as a spatial coordinate vari-
able that is formally independent of any temporal coordinate variable such as 𝑧, the comoving
distances defined above by considering photon null geodesics with d𝑠2 = 0 relate the two. In
particular, in the case of zero spatial curvature𝐾 = 0, these distance measures as well as the ra-
dial coordinate 𝑟 all reduce to 𝜒 , i.e. 𝜒 = 𝑟 = 𝐷C(𝑧) = 𝐷M(𝑧). As such, 𝜒 is often treated
as a function of redshift, and the relationship 𝑟 = 𝜒 (𝑧) is known as the distance–redshift re-
lation, with 𝑟 now denoting the comoving distance between an observer and a source galaxy
that emits the photons. At low redshift, this reduces to an approximate relation known as the
Hubble–Lemaître law,𝑧 ≈ 𝐻0𝐷 , where𝐷 is the physical distance to a galaxy at redshift𝑧 [278].



B

Linearised Cosmological Perturbations

The materials presented in this appendix are mostly based on refs. [47, 312, 315–317] except
wherever referenced otherwise. Since the spatial-curvature density parameter𝛺𝐾,0 is observed
to be consistent with zero, a flat FLRW background space-time is assumed.

•

Metric perturbations. In general, perturbations to the space-timemetric can be scalars, vec-
tors or tensors, which decouple at linear order. Since vector perturbations correspond to vor-
ticity, which is diluted away with cosmological expansion unless actively sourced, and tensor
perturbations are associated with gravitational waves, the focus here is on scalar perturbations
to the flat FLRW metric which now takes the general form

d𝑠2 = 𝑎(𝜏)2
{
− (1 + 2𝐴) d𝜏2 + 𝐵,𝑖 d𝑥𝑖 d𝜏

+
[
(1 + 2𝐶)𝛿𝑖 𝑗 +

(
𝜕𝑖 𝜕 𝑗 −

1
3
𝛿𝑖 𝑗∇2

)
𝐸

]
d𝑥𝑖 d𝑥 𝑗

}
, (B.1)

where •,𝜇 denotes a partial derivative with respect to the coordinate vector 𝑋 𝜇 , and 𝛿
𝑎𝑏

is the
Kronecker delta tensor. Under a general coordinate transformation,

𝑋 𝜇 ↦→ 𝑋 𝜇 +
(
𝑇, 𝐿,𝑖

)
, (B.2)

the scalar perturbations𝐴, 𝐵,𝐶 and 𝐸 transform as

𝐴 ↦→ 𝐴 −𝑇 ′ −H𝑇 , (B.3a)

𝐵 ↦→ 𝐵 +𝑇 − 𝐿′ , (B.3b)

𝐶 ↦→ 𝐶 −H𝑇 − ∇2𝐿
/
3 , (B.3c)

𝐸 ↦→ 𝐸 − 𝐿 . (B.3d)

The freedom in the choice of a coordinate system means that there are physically equivalent
gauges: in synchronous gaugewith𝐴 = 𝐵 = 0, the time component is unperturbed; in spatially
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flat gauge with 𝐶 = 𝐸 = 0, the spatial components are unperturbed; in longitudinal gauge
with 𝐵 = 𝐸 = 0, the spatial perturbation can be identified with the gravitational potential in
Newtonian gravity, and thus this gauge is also known as the Newtonian gauge. To avoid any
ambiguity, gauge-invariant observables can be constructed: the Bardeen potentials

𝛹 = 𝐴 +H (𝐵 − 𝐸′) + (𝐵 − 𝐸′)′ (B.4a)

and 𝛷 = −𝐶 −H (𝐵 − 𝐸′) + 1
3
∇2𝐸 (B.4b)

are a prime example. In Newtonian gauge, the perturbed flat FLRW metric then takes the
following form:

d𝑠2 = 𝑎(𝜏)2
[
−(1 + 2𝛹) d𝜏2 + (1 − 2𝛷)𝛿𝑖 𝑗𝑥𝑖𝑥 𝑗

]
. (B.5)

Matter perturbations. Similar to the metric perturbations above, the stress–energy tensor
admits scalar perturbations in the form of

𝛿𝑇𝜇𝜈 = (𝛿𝜌+𝛿𝑃) s𝑈𝜇 s𝑈𝜈 +(s𝜌+s𝑃)
(

s𝑈𝜇 𝛿𝑈𝜈 + 𝛿𝑈𝜇 s𝑈𝜈

)
+𝛿𝑃 𝛿𝜇𝜈+

(
𝜕𝑖 𝜕 𝑗 −

1
3
𝛿𝑖 𝑗∇2

)
𝛱 , (B.6)

where s

• denotes a background quantity, 𝛿 • denotes a perturbation quantity and 𝛱 is associ-
ated with anisotropic stress. Since the four-velocity for massive particles satisfies𝑈 𝑎𝑈𝑎 = −1
and the unperturbed s𝑈 𝜇 = 𝑎−1𝛿𝜇0 , the four-velocity perturbation is 𝛿𝑈𝜇 = 𝑎−1(−𝐴, 𝜕𝑖𝑉 )
for some scalar perturbation𝑉 associated with the three-velocity. Under the coordinate trans-
formation (eq. B.2),

𝛿𝜌 ↦→ 𝛿𝜌 −𝑇 s𝜌′ , (B.7a)

𝛿𝑃 ↦→ 𝛿𝜌 −𝑇 s𝑃 ′ , (B.7b)

𝑉 ↦→ 𝑉 + 𝐿′ , (B.7c)

𝛱 ↦→ 𝛱 . (B.7d)

There are two common matter gauges: in uniform-density gauge, 𝛿𝜌 = 𝐵 = 0; and in comoving
gauge,𝑉 = 𝐵 = 0. A gauge-invariant observable can similarly be constructed: the comoving
density contrast is defined as

𝛥 =
𝛿𝜌

s𝜌
+ s𝜌′

s𝜌
(𝑉 + 𝐵) , (B.8)

which is simply the density contrast 𝛿 = 𝛿𝜌/s𝜌 in comoving gauge.¹

Linearised field equation. By equatingmetric andmatter perturbations, the linearised Ein-
stein field equation yields at first order in, for example, Newtonian gauge the following system
of equations:

𝛷 −𝛹 = 𝛱 , (B.9a)

∇2𝛷 = 4π𝑎2s𝜌𝛿 + 3H (𝛷′ +H𝛷) , (B.9b)

¹ Only in this appendix and the next does 𝛿 denote density contrast in general instead of the over-density field
of tracer number counts.
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𝛷′ +H𝛷 = −4π𝑎2
(
s𝜌 + s𝑃

)
𝑉 , (B.9c)

𝛷′′ + 3H𝛷′ + (2H ′ +H 2)𝛷 = 4π𝑎2 𝛿𝑃 . (B.9d)

In particular, the first equation here means the Bardeen potentials are identical in the absence
of anisotropic stress,𝛱 = 0; the second and third equations combine to give the Poisson equa-
tion,

∇2𝛷 = 4π𝑎2s𝜌𝛥 , (B.10)

if the conservation law (eq. A.12) is also employed. The energy–momentum conservation law
∇𝑎𝑇

𝑎𝑏
= 0 yields the continuity and Euler equations,

𝛿′ + (1 +𝑤)(∇ · 𝒗 − 3𝛷′) + 3H (𝑐2s −𝑤)𝛿 = 0 , (B.11a)

𝒗′ +H

(
1 − 3 s𝜌′

s𝜌

)
𝒗 = − 𝑐2s

1 +𝑤∇𝛿 − ∇𝛹 , (B.11b)

where 𝑐s = (𝛿𝑃/𝛿𝜌)1/2 is the speed of sound and 𝒗 = ∇𝑉 the peculiar velocity. However,
not all these equations are independent, since energy–momentum conservation is equivalent
to the contracted Bianchi identity.

Growth ofmatter density perturbations. Equipped with the linearised perturbation equa-
tions above, one can readily derive the equation governing the growth of matter density per-
turbations in the late-time Universe with negligible radiation. Neglecting the pressure per-
turbation, 𝛿𝑃 ≈ 0, since there are no fluctuations in dark energy as a cosmological constant,
equations (B.9d) and (B.10) combine to give

𝛥′′ +H 𝛥′ + (H ′ −H 2)𝛥 = 0 . (B.12)

By changing the time variable from conformal time 𝜏 to the scale factor 𝑎 [318], this equation
becomes

d2(𝛥/𝐻 )
d𝑎2

+ 3d ln(𝑎𝐻 )
d𝑎

d(𝛥/𝐻 )
d𝑎

= 0 . (B.13)

There are two solutions: the decaying one corresponds to𝛥 ∝ 𝐻 which is decreasing, and the
growing solution can be found by integrating the equation above once,

𝛥 ∝ 𝐻
∫
𝑎i

d𝑎

𝑎3𝐻 (𝑎)3
, (B.14)

where the subscript ‘i’ denotes some initial epoch deep in thematter-dominated era. The linear
growth factor𝐷1 simply relates the value of𝛥 (' 𝛿m on sub-horizon scales) at a given epoch to
its value at some initial (or the current) epoch, so it takes the following form:

𝐷1(𝑧) = 𝜆𝐻 (𝑧)
∫ 𝑧i

𝑧

1 + r𝑧

𝐻 (r𝑧)3
dr𝑧 , (B.15)

where 𝜆 is a normalisation factor yet to be determined. Interestingly, deep in the matter-
dominated era,

𝐻 (𝑧)2 = 𝐻 2
0 𝐸 (𝑧)2 ≈ 𝐻 2

0𝛺m,0(1 + 𝑧)3 , (B.16)



L INEAR ISED COSMOLOGICAL PERTURBAT IONS 117

and thus
𝐷1(𝑧) =

2
5

𝜆

𝐻 2
0𝛺m,0

𝑎−3/2
(
𝑎5/2 − 𝑎5/2i

)
≈ 2

5
𝜆

𝐻 2
0𝛺m,0

𝑎 (B.17)

is proportional to the scale factor—as a result, one normalisation convention is 𝜆early =
(5/2)𝐻 2

0𝛺m,0, labelled with the subscript ‘early’, so that 𝐷1(𝑧) = 𝑎(𝑧) in the matter-
dominated era. However, the normalisation convention with 𝐷1(𝑧 = 0) = 1 is sometimes
more convenient. The quadrature solution above evaluates to

𝐷1(0) =
𝜆

𝐻 2
0

[ (1 −𝛺m,0)−3/2
2

(1 + 𝑧)2 𝐹2 1

(
2
3 ,

3
2 ;

5
3 ;−

𝛺m,0

1−𝛺m,0
(1 + 𝑧)3

)]𝑧i
0
, (B.18)

where 𝐹2 1 denotes the ordinary hypergeometric function; by expanding this result as a series
around 𝑧i = ∞ and keeping the leading order, one obtains 𝜆late = C 𝜆early, labelled with the
subscript ‘late’, where the ratio of the two different normalisation factors is

C ≈ 2
5
𝛺−1m,0

[
π−1/2 𝛤

( 5
6

)
𝛤
( 5
3

)
(1 −𝛺m,0)−5/6𝛺−2/3m,0

− 1
2
(1 −𝛺m,0)−3/2 𝐹2 1

(
2
3 ,

3
2 ;

5
3 ;−

𝛺m,0

1−𝛺m,0

)]−1
, (B.19)

and 𝛤 is the gamma function. This normalisation factor is independent of the initial epoch
and, unsurprisingly, dependent on the matter density parameter. Another important quantity
parametrising the evolution of matter density perturbations is the linear growth rate,

𝑓 =
d ln𝐷1

d ln𝑎
, (B.20)

whose measurements self-evidently provide constraints on the matter density parameter. Al-
though a precise formula for 𝑓 can be readily derived from the quadrature solution (eq. B.15),
there are some convenient approximations, e.g. 𝑓 ≈ 𝛺𝛾m for somepower law index𝛾 [10]. With
the introduction of the growth rate 𝑓 , the continuity equation (B.11a) becomes

∇ · 𝒗 = −H 𝑓 𝛿m (B.21)

for pressureless, dust-like matter.

Matter power spectrum. As favoured by current observations, many models of inflation
predict an almost scale-invariant primordial power spectrum for scalar perturbations,

𝑃R (𝑘) =
2π2

𝑘3
𝐴s𝑘

𝑛s−1 , (B.22)

where𝐴s and 𝑛s are the scalar perturbation amplitude and spectral index, and

R = −𝐶 + 1
3
∇2𝐸 −H (𝑉 + 𝐵) (B.23)

is the comoving curvature perturbation.² Sometimes, theuniform-density curvature perturbation

𝜁 = −𝐶 + 1
3
∇2𝐸 +H

𝛿𝜌

s𝜌′
(B.24)

² Scale invariance here refers to the dimensionless power spectrum defined with respect to ln𝑘 rather than 𝑘 ,
and corresponds to 𝑛s = 1. Any pivot scale is absorbed into𝐴s here; see e.g. refs. [14, 101].
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is used as the curvature variable instead ofR . To propagate from the primordial perturbations
to the (linear) matter power spectrum 𝑃m at a late-time epoch, one needs a transfer function𝑇
that encodes intermediate physical processes,³

𝑃m(𝑘, 𝑧) = 𝐷1(𝑧)2𝑇 (𝑘)2𝑃R (𝑘) . (B.25)

Here the linear growth factor𝐷1 is factored in separately from𝑇 , which processes primordial
curvature perturbations into density perturbations at some initial epoch of structure forma-
tion, which then begin scale-independent linear evolution on large scales. The precise compu-
tation of the transfer function is challenging since there is a mixture of massive and relativistic
particles at early times, and different particle species interact through complex scattering pro-
cesses. However, some simplified scale dependence of the transfer function can be derived for
different eras dominated by a single fluid component (e.g. the radiation-dominated or matter-
dominated era) [see e.g. 47, 312], and detailed fitting formulæ exist [e.g. 97, 186]. In general, an
approach based on relativistic kinetic theory is required, and one needs to solve a system of
coupled Einstein–Boltzmann equations numerically, for which there are existing public codes
such as cb [319, 320] and clss [321].

³ Care needs to be taken when referring to a transfer function in a specific context as to what perturbations are
being ‘transferred’.



C

Non-Linear Structure Formation

The materials presented in this appendix are mostly based on refs. [68, 98, 312, 322, 323] except
where referenced otherwise.

•

To understand the issue of galaxy bias, it is imperative to address the environment in which
galaxies reside—haloes, which are stable, gravitationally-bound objects that have collapsed in
over-dense regions and undergone virialisation. This is a highly non-linear process, yet it is still
possible to make reasonable predictions relating the distribution of haloes to the underlying
matter distribution, at least on large scales.

Spherical collapse. In the idealised spherical-collapse scenario of halo formation, one con-
siders a spherical region of physical radius𝑅0 at some initial epoch in a matter-dominated uni-
verse. Perturbations within this spherical region evolve in a fashion independent of the re-
gion outside, a consequence of Birkhoff ’s theorem, the relativistic analogue to Newton’s shell
theorem. It follows that the solution for both the interior and exterior regions has the scalar
factor 𝑎(𝑡) = (3𝐻0𝑡/2)1/2 from the Friedmann equation (A.13a) with matter domination,
and the physical radius 𝑅 and cosmic time 𝑡 are linked by the following parametric solution:

𝑅 = 𝑅0𝐴(1 − cos𝜃 ) , 𝑡 = 𝐵(𝜃 − sin𝜃 ) , (C.1a)

with
𝐴 =

𝛺m,0

2
(
𝛺m,0 − 1

) and 𝐵 =
𝛺m,0

2𝐻0
(
𝛺m,0 − 1

)3/2 . (C.1b)

Expanding both 𝑅 and 𝑡 to first order in parameter 𝜃 , one finds

𝑅 ≈ 𝑅0
𝐴

2

(
6𝑡
𝐵

)2/3 [
1 − 1

20

(
6𝑡
𝐵

)2/3]
, (C.2)

and thus the over-density evolves approximately as

𝛿 ≈ 3
20

(
6𝑡
𝐵

)2/3
. (C.3)
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The critical over-density for spherical collapse is defined when the parametric solution first
reaches 𝑅 = 0 for 𝑡 > 0, i.e. 𝜃 = 2π , so that

𝛿c =
3
20
(12π)2/3 ≈ 1.686 . (C.4)

Naturally, the final condition 𝑅 = 0 is never reached because the linearised solution breaks
down, as clearly indicated by an over-density value 𝛿 > 1. Nonetheless, 𝛿c serves as an indic-
ator when onemight expect a halo to have already collapsed. By employing the virial theorem,
in particular applied to the turn-around point 𝜃 = π when 𝑅 stops expanding and starts con-
tracting, one can deduce that the virialised halo density is 18π2 ≈ 178 times the background
density. The value of the critical over-density above is derived in a matter-dominated universe
and associated with a particular epoch, and more generally it will evolve in redshift with other
cosmological parameters; a common approximation in practice is to extrapolate its value from
above with the linear growth factor𝐷1,

𝛿c(𝑧) ≈
1.686
𝐷1(𝑧)

, (C.5)

though methods to compute 𝛿c(𝑧) in more general cosmological models exist [see e.g. 324].

Halo mass function. In order to associate a spherical region of over-density and a corres-
ponding mass to each point in a random field, one could consider a smoothed matter over-
density field that has been filtered by some isotropic function𝑊 with a characteristic scale 𝑅,

𝛿𝑅 (𝒓) =
∫

d3𝒙𝑊 (𝒓 − 𝒙 ;𝑅) 𝛿 (𝒙) , (C.6)

where the filter is normalised as
∫
d3𝒙𝑊 (𝒙 ;𝑅) = 1. For a homogeneous and isotropicGRF𝛿

with power spectrum 𝑃 , the variance of the smoothed field 𝛿𝑅 is then〈
𝛿2𝑅

〉
=

∫
𝑘2 d𝑘
2π2 𝑊 (𝑘𝑅)

2𝑃 (𝑘) , (C.7)

where convolution becomesmultiplication in Fourier space. An important cosmological para-
meter, 𝜎8, is thereby defined as

𝜎28 =
∫

𝑘2 d𝑘
2π2 𝑊TH(𝑘𝑅)2𝑃lin(𝑘) with 𝑅 = 8 h−1Mpc (C.8)

for the linear power spectrum (labelledwith the subscript ‘lin’), where the filter is a rectangular
function, also known as a ‘top-hat’ filter,

𝑊TH(𝒓 ;𝑅) =
3

4π𝑅3
𝛩 (1 − 𝑟/𝑅 ) (C.9a)

with 𝑊TH(𝑘𝑅) =
3

(𝑘𝑅)3
[sin(𝑘𝑅) − 𝑘𝑅 cos(𝑘𝑅)] , (C.9b)

where𝛩 is theHeaviside function. The𝜎8 parameter thus represents the root-mean-square lin-
ear density fluctuation within an 8 h−1Mpc radius, and acts to normalise the power spectrum.
For a given filter𝑊 , one could also associate a mass to a point,

𝑀 (𝒓 ;𝑅) = 𝑉𝑅
∫

d3𝒙𝑊 (𝒓 − 𝒙 ;𝑅)𝜌 (𝒙) , (C.10)
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where 𝑉𝑅 =
∫
d3𝒙 [𝑊 (𝒙 ;𝑅)/max𝒓𝑊 (r;𝑅) ] = [max𝒓𝑊 (r;𝑅)]−1 is defined as the filter

volume. By the linear relation between 𝛿 and𝑀 , it follows that 𝜎2𝑀 =
〈
𝛿2𝑅

〉
, where

𝜎2𝑀 =
〈𝑀 − 〈𝑀〉〉2

〈𝑀〉2
. (C.11)

For any givenpoint 𝒓 , one could consider𝛿𝑅 (𝒓) as a randomvariable parametrised by𝑅 or equi-
valently𝑀 , i.e. 𝛿𝑅 is described by a continuous stochastic process indexed by 𝑅−1, with 𝑅 = ∞
decreasing to 𝑅 = 0. In the Press–Schechter model, a halo is identified when 𝛿𝑅 first exceeds
the spherical-collapse critical over-density 𝛿c, which has the following conditional probabil-
ity [325]:

ℙ(𝛿𝑅 > 𝛿c |𝑀) =
∫ ∞

𝛿c

d𝜂
1√

2π𝜎2𝑀

exp

(
−1
2

𝜂2

𝜎2𝑀

)
=
1
2
erfc

(𝜈
2

)
, (C.12)

where erfc is the complementary error function, and

𝜈 =
𝛿c
𝜎𝑀

(C.13)

is the peak height, or significance, parameter. One can then translate this into a halo mass func-
tion representing the comoving halo number density per unit mass,

𝑛h(𝑀) = −2
s𝜌

𝑀

d
d𝑀

ℙ(𝛿 > 𝛿c |𝑀) = −
√

2
π
𝜈e−𝜈

2/2 s𝜌

𝑀2

d ln𝜎𝑀
d ln𝑀

, (C.14)

where s𝜌 is the background density (equivalently, the smoothed density in the limit 𝑅 → ∞).
Since this function only depends on redshift, halo mass and generic cosmological parameters,
it is also known as the universal mass function (UMF). The important factor of 2 here was ori-
ginally added ad hoc in ref. [325] to ensure that the halo mass function is appropriately norm-
alised, since the probability (eq. C.12) is not unity in the limit𝜈→ 0, when all regions should
be enclosed in haloes of arbitrarily small masses.¹ However, it can be argued as follows: 𝛿𝑅
may reach 𝛿c at some value of 𝑅−1c but then subsequently drops below, and this has a mirrored
trajectory after 𝑅−1c that is reflected about 𝛿c; physically, this corresponds to an under-dense
region that is inside a collapsed region of a larger radius, and a halo should still be identified.²
This is essentially the argument made in the excursion set formalism [327], which succeeds the
Press–Schechter model.

Halo bias. Given that haloes originate from collapsed density peaks in a background of
fluctuations, it is conceivable that halo clustering behaves differently in comparison with the

¹ However, it should be noted that equation (C.12) in itself is a bona fide distribution function where formally
𝜈 ∈ (−∞, 0) should be allowed for a normal distribution; rather, it is the physical connection to halo formation
that is under scrutiny.
² This argument based on a mirror trajectory is somewhat similar to the coupling technique used to prove e.g.
the convergence theorem of Markov chains [326]; indeed, if the function𝑊 is chosen to be the sharp-𝑘 filter (i.e.
a top-hat filter in 𝑘-space), then 𝛿𝑅 is Markovian [98].
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underlying matter distribution. Therefore it is instructive to consider the ‘peak–background
split’ [96, 97], where one writes the matter over-density field as

𝛿 = 𝛿 l + 𝛿s , (C.15)

a sum of long-wavelength background fluctuations, denoted by the subscript ‘l’, and short-
wavelength peak fluctuations denoted by the subscript ‘s’, which should not affect large-scale
halo clustering. In regions where 𝛿 l is high, the over-density barrier to halo formation is effect-
ively lowered, and correspondingly the peak height 𝜈 is decreased,

𝜈 =
𝛿c
𝜎𝑀
↦→ q𝜈 =

𝛿c − 𝛿 l
𝜎𝑀

. (C.16)

Expanding the halo mass function in 𝛿 l, one would then find

𝑛h(q𝜈) = s𝑛h(𝜈) + 𝛿 l
𝜕𝑛h(q𝜈)
𝜕𝛿 l

����
q𝜈=𝜈
+O

(
𝛿2l

)
, (C.17)

so that the local halo over-density field is

𝛿 (L)h,l =
𝑛h(q𝜈)
s𝑛h(𝜈)

− 1 = 𝑏 (L)1 𝛿 l +O
(
𝛿2l

)
, (C.18)

where the linear Lagrangian bias (denoted with the superscript ‘(L)’) is given by

𝑏 (L)1 =
1
s𝑛h

𝜕s𝑛h
𝜕𝜈

𝜕q𝜈

𝜕𝛿l
=
𝜈2 − 1
𝛿c

. (C.19)

Assuming haloes are comoving with the underlying matter, one can relate the Lagrangian bias
to the usual (Eulerian) bias by local halo number conservation [98],

1 + 𝛿h,l = (1 + 𝛿l)
(
1 + 𝛿 (L)h,l

)
, (C.20)

so to first order, the large-scale linear Eulerian bias for haloes is

𝑏1 = 𝑏
(L)
1 + 1 =

𝜈2 − 1
𝛿c
+ 1 . (C.21)
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