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Abstract

In this thesis we study the statistical physics of social dynamics and spreading phenomena.
We first demonstrate how the formation of regional dialects in birdsong can be related to
the physical process of magnetic domain formation and coarsening. We show that the death
rate of the species is analogous to the thermodynamic temperature in physical systems, and
compute the death rate at which dialects cannot form due to a transition to a disordered state.
We then investigate interface motion in a two dimensional lattice model of opinion spread.
In our model sites have memories for the states of their neighbours and change state when
this memory reaches a threshold. We consider the impact of surface roughening on the rate
of spread and construct multiple approximation techniques to understand how varying the
configuration of site thresholds can control the speed of the interface. We then investigate the
motion of an opinion wave spreading via threshold dynamics in a one dimensional random
network. We present a method for enumerating site connections and understanding what
causes the wave to become arrested, and how long we expect to wait for this to occur. Our
method makes use of martingale stopping sequences, and provides upper bounds on the time
until the wave stops. We also develop a coarse-grained cluster method for estimating the
expected stopping time. This is analogous to the well known (n,m) cluster approximation,
but may be systematically derived from our dynamics. Finally we claim that this system of
one dimensional spread is analogous to a branching and coalescing random walk process and
we formulate mean field equations to describe this.
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Chapter 1

Brief Introduction

Over recent decades, models and techniques from statistical physics [9–12] have been
adapted and applied to study interdisciplinary problems in biology and social systems [13–
18]. In these applications the atomic constituents of the model are not physical particles,
but human or animal agents, and we are interested in the macroscopic behaviour of very
large communities. Statistical physics is an appropriate tool to use in this context, because
macroscopic behaviour is often insensitive to fine details of the microscopic interactions
which drive it.

Many of these social phenomena that we can observe in the real world involve copying,
imitating or influencing people and these conformist effects lead to areas or regions in space
where groups of people have aligned behaviours. Such behaviours where these effects are
noticable include dialects, word choices and even political opinions. Where two differently
aligned groups meet there is very often a well defined border with an observable and sharp
transition between behaviours as you cross it. These borders between regions of alignment
are called interfaces and examples are presented in figures (1.1) and (1.2). In the first example
there is a clear interface across the middle of England and as you cross that boundary the
way in which the local population pronounces the word ‘butter’ significantly changes and
likewise in the second example there are clearly defined regions in the United States where
one choice of word for ‘soda’ is preferred and sharp transitions between them.

What makes this subject so interesting is that these interfaces are not exclusive to humans.
Figure (1.3) shows the formation of yellowhammer dialects in the Czech Republic and
once again there are clear regions in which one song is incredibly dominant. As explained
above, the fact that these interfaces arise in humans and animals suggests that there are
some universal explanations that go beyond the microscopic behaviours and tendencies of
individual agents and thus, a statistical physics approach is justified.
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Fig. 1.1 A depiction of the local pronunciation for the word butter across England. Purple
circles represent an ‘oo’ vowel sound such as the one that in the words hood and wood
whereas red circles represent a defined ‘u’ sound such at the one in the words cut or bun.
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Fig. 1.2 A map of the United States of America highlighting the difference in word choices
for the same item; in this case a carbonated beverage [1].

Fig. 1.3 A volunteer map for much of the Czech territory with different colour circles
representing different dialects with some clear domain formations [2].
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There are many questions that one can ask about these interfaces and the regions which
they separate. These could include asking how interfaces form assuming an originally
randomised setup, where the interfaces are likely to form in space and how these interfaces
move over time. Throughout the body of this thesis we attempt to address these questions by
utilising a variety of approaches and techniques.

Our work is divided into three parts, each of which studies the common theme of
interfaces between domains in a different context.

Domain Walls and Birdsong

A major area of study in statistical physics is the existence of phase transitions from spatially
disordered states, to stable and ordered domains [12, 13, 19]. Our first focus in this thesis is
the existence and dynamics of domain walls in the social systems of birds, which are known
to have regional dialects [4, 20, 21]. We make an analogy between dialect boundaries and
domain walls, and show that the dialect patterns of a particular species - the Puget Sound
White Crowned Sparrow [6] - are analogous to the formation of stripe states in high aspect
ratio physical systems [22]. We achieve this by viewing the Sparrow’s processes of song
learning as analogous to spin alignment in the Ising model. By modelling the reproductive
behaviour of the birds, along with the majority rule process of song selection, we can calculate
analytical estimates for the critical death rate at which dialects can appear. We also show that
the spatial structure of the dialect domains observed along the Pacific coast are predictable
from the geometry of their habitat zone [23].

Motion of Interfaces

Our second focus is on the motion of interface fronts [24–26] in systems where an opinion
or behaviour is spreading through a population of agents. These agents have fixed length
memories for the opinions of their neighbours, and a threshold at which they change state
[17, 27]. Interface fronts have been used when investigating spreading effects in multiple
fields ranging from models in physics to sociology and biology. While our first focus was
primarily regarding stability and stationary behaviour, in this second part of the project we are
interested in the relationship between interface shape and speed, and the effects of disorder.
We examine the impact of wave front shapes and surface roughening on the surface area of
an interface, and investigate how this increases the spreading potential. We observe these
effects on lattice structures with differing thresholds and resistances and provide a series of
analytical approximations for the wave speed. Our most successful technique approximates
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interface motion and shape on a disordered lattice by comparing it to the interface in a system
formed from a single repeating tile.

Motion in One-Dimension

Our final focus is on opinion spread through random networks in one dimensional systems.
This primarily regards information transfer between nodes and the core of our work revolves
around calculations of expected travel distance. We adapt martingale techniques used to study
stopping sequences in coin toss experiments to study the behaviour of network configurations.
Using this martingale approach we calculate the expected distance an opinion will travel
through the random network until connection density becomes too sparse for it to continue.
These distances may also be viewed as the sizes of percolation clusters [9, 16]. We also
derive a coarse grained clustering approach in order to reduce connection complexity and
find that our method results in the (n,m) cluster approximation [28]. This model has some
clear connections to percolation theory [9]; although the system does not strictly possess a
percolation transition because it is one dimensional, it does exhibit percolation-like effects
due to the quasi-two dimensional nature of the system when interactions become longer
range.



Chapter 2

Preliminaries

In this chapter we introduce some fundamental models and concepts in statistical physics that
we utilise later in our research. We begin by introducing the Ising model, a classic example
system for understanding phase transitions which we refer back to in our research on the
formation of bird song dialects in chapter (3). We outline the basics of percolation theory
which describes the behaviour of connected clusters in a random graph which pertains to all
chapters of our research. Lastly we introduce integrodifference equations, a technique used
to model the spread of an invading wave when reproduction and dispersal occur at discrete
intervals, which relates to our final work in chapter (5).

2.1 Ising Model

The Ising model is a mathematical model of ferromagnetism in statistical physics, created
by Wilhelm Lenz and named after his student Ernst Ising, that uses discrete variables to
represent magnetic dipoles of atomic spins in one of two states. In particular, it is worth
mentioning that Ising has solved the model in one dimension in his thesis [29]. This Ising
model is a classic statistical physical model due to its applications and comparisons to real
world behaviour and is a well researched and known area [9, 30]. For a simple exposition on
the Ising model we refer the reader to [10]. The spins are placed into a structure and allowed
to interact with their neighbours. The two dimensional Ising model is one of the simplest
models that shows a phase transition in the absence of an external field as the temperature of
the system is raised or lowered around a critical point. In the Ising model we calculate the
partition function, from which we can calculate other relevant quantities. Many of the early
results we derive are not directly utilised in the main body of the thesis, however some of the
results that they lead to are fundamental.
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We begin by looking at a two dimensional lattice comprised of N = L×L sites, each with
spin si ∈ {−1,1}, with i ∈ {1,2, . . . ,N}. In the case of a ferromagnet this would represent
the magnetic states of atoms at locations on the crystal structure but can be used to represent
many other things in different fields. The spin at any given site can be interpreted as an
alignment direction in space. We are concerned with the relationship between spins at
neighbouring positions i and j, with the pairing denoted as ⟨i, j⟩, that can interact with one
another. An energy is then assigned to each pairing in the system, either −J for a pair of the
same spins or J for a pair of opposing spins, with J > 0, and thus the total internal energy in
the system is

Eint =−J ∑
⟨i, j⟩

sis j (2.1)

with the sum running over all neighbouring pairs in the entire system.
The Ising model can also have an external field, H, applied to every spin in the system.

Similarly to the internal interactions, a spin of opposing direction to the field has energy of
|H| and a spin of the same direction has energy −|H|. Therefore the energy for each spin
due to the external field is −Hsi for i ∈ {1,2, . . . ,N} and the total energy contributed to the
system from the external field is

Eext =−H
N

∑
i=1

si. (2.2)

We can therefore combine the internal and external energy contributions to get the total
energy for a system of N spins, that is, a Hamiltonian that we denote by

Etot = H =−H
N

∑
i=1

si − J ∑
⟨i, j⟩

sis j. (2.3)

From these definitions of the model it is evident that for the system to lower the internal
energy the neigbouring spins would need to align parallel. We discover the behaviour of the
system as a function of temperature, T > 0 which defines an energy scale kBT , where kB

is the Boltzmann constant. In a model with no external field, H = 0, and low temperature,
kBT ≪ J, the neighbouring spin interactions are relatively strong and the system will align
parallel to reduce the system’s energy. Conversely in the case of high temperature, kBT ≫ J

the neighbouring spins are relatively weak, and thus the system effectively has random spin
orientations.



2.1 Ising Model 8

We use the bold s to denote {s1,s2, . . . ,sN}, the microscopic orientation of all sites at a
given time. The temporal mean of an observable is a weighted ensemble average, ⟨A⟩, over
all possible microstates. We let ps denote the probability of the lattice being in a given state s
with observable As having ensemble average

⟨A⟩= ∑
s

psAs, (2.4)

where the sum runs over all 2N configurations.
In the canonical ensemble, the system is in equilibrium with fixed volume and temperature.

The probability, ps, to find the system in this configuration with total energy Es is given by
the Boltzmann distribution [31], namely

ps =
exp(−βEs)

∑s exp(−βEs)
(2.5)

and thus the ensemble mean of observable As is

⟨A⟩= 1
Z ∑

s
exp(−βEs)As (2.6)

where the denominator is the partition function

Z(T,H,N) = ∑
s

exp(−βEs), (2.7)

and β = 1
kBT is the inverse temperature. The partition function is key to understanding the

nature of the overall system as many fundamental properties and behaviours of the system can
be calculated from it. The partition function acts as a weighted average over all microstates
and links the macroscopic behaviour of the system to the microscopic behaviour of the sites.

Some examples of observable quantities are the total magnetism of the system

Ms =
N

∑
i=1

si (2.8)

leading to the average total magnetism

⟨M⟩= 1
Z ∑

s
exp(−βEs)Ms. (2.9)
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It follows that the average total energy is given by

⟨E⟩= 1
Z ∑

s
exp(−βEs)Es. (2.10)

Thermodynamic entropy can be understood as a measure of the number of possible
microstates of a system in thermodynamic equilibrium that lead to the same macrostate.
That is different microscopic configurations that have the same average magnetism, average
energy per spin and any other observables. The Gibbs entropy formula, developed by J
Willard Gibbs [32], states that for a system in a canonical ensemble the Gibbs entropy S can
be expressed as

S =−kB ∑
r

pr ln pr (2.11)

and using the Boltzmann distribution from equation (2.5) it follows that

S = kB lnZ + ⟨E⟩/T. (2.12)

The fundamental thermodynamic relation states that the free energy of a system, F , is

F = ⟨E⟩−T S. (2.13)

From equations (2.12) and (2.13) we can deduce that

F(T,H) =−kBT lnZ. (2.14)

This total free energy is an extensive property of the system because it is proportional to the
numbers of nodes in the lattice. We would prefer to work with intensive quantities, those
that are unaffected by the scaling of the system, so we look at f = F/N the free energy per
spin, m = ⟨M⟩/N, the average magnetism per spin and e = ⟨E⟩/N, the average energy per
spin. These intensive quantities can be calculated using only the free energy equation and the
partition function which is why the partition function is so important.

As an example the average energy per spin can be shown to be

e(T,H) = f −T
(

∂ f
∂T

)
H
, (2.15)
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where the subscript denotes that f is still a function of H and where the external field H is
fixed. The proof of this is as follows

f −T
(

∂ f
∂T

)
H
=− 1

N
kBT lnZ +

T
N

(
kB lnZ + kBT

1
Z

∂

∂T
Z
)

=
kBT 2

NZ
∂

∂T
Z

=
kBT 2

kBT 2NZ ∑
s

exp(−βEs)Es

=
⟨E⟩
N

. (2.16)

Using the same method we can also show that

m(T,H) =−
(

∂ f
∂H

)
T
, (2.17)

with similar equations existing for entropy per spin and sensitivity per spin to both changes
in external field and temperature.

In our defined system the free energy will be an analytical function and well-defined
everywhere because N is finite and thus the partition function is made up of 2N different
terms, one for each possible permutation of the system. However in the thermodynamic limit
as N → ∞ there is no guarantee that the free energy will remain analytic and thus at certain
temperatures and external fields the thermodynamic properties may be undefined and the
system can undergo a phase transition. We will show by contradiction that in order to have a
phase transition you must have neighbour interactions.

We will assume that our system has no nearest neighbour interactions, that is to say, that
J = 0 in our energy expression, and the system is dependent on H the external field. For this
system of non-interacting spins

Etot =−H
N

∑
i=1

si. (2.18)

From equation (2.13) we see that average energy ⟨E⟩ and entropy S both contribute to the
free energy of the system and the ratio of these contribution is ⟨E⟩/T S ∝ Hβ , where ∝ means
proportional to. From the second law of thermodynamics we get the principle of minimum
energy, stating that the free energy of a system is minimised as it reaches equilibrium. We
can then conclude that if Hβ → 0 then the entropy term is dominant and entropy must be



2.1 Ising Model 11

maximised in order for free energy to be minimised, and thus the microstates consists of
all the spins having random orientations with average energy and magnetisation being zero.
Conversely if Hβ → ∞ then the average energy term is dominant and in order for the free
energy to be minimised we need the total energy in equation (2.18) to be minimised. This
consists of two options, either all spins up or all spins down depending on the orientation of
H. In this case ⟨M⟩=±N and ⟨E⟩=−N|H|.

Since all of the thermodynamic quantities can be calculated using the partition function
we begin by calculating

Z(T,H,N) = ∑
s

exp(−βEs)

= ∑
s

exp(βH
N

∑
i=1

si)

= ∑
s

exp(βHs1)exp(βHs2) · · ·exp(βHsN)

= ∑
s1=±1

∑
s2=±1

· · · ∑
sN=±1

exp(βHs1)exp(βHs2) · · ·exp(βHsN)

= ∑
s1=±1

exp(βHs1) ∑
s2=±1

exp(βHs2) · · · ∑
sN=±1

exp(βHsN)

= (exp(βH)+ exp(−βH))N

= (2coshβH)N . (2.19)

This calculation is made simple by the absence of site interactions. Now that we have the
partition function we can use equation (2.14) to calculate the free energy per spin in this
system

F(T,H,N) =− 1
β

ln(2coshβH)N =−N
1
β

ln(2coshβH)

f (T,H) =− 1
β

ln(2coshβH) (2.20)

which is clearly analytic everywhere because coshx ≥ 1 for all x ∈ R. Due to this we can
conclude that this model cannot undergo a phase transition for any values of H and T . Thus,
by contradiction, in order to have a phase transition occur there must be interactions between
spins, J ̸= 0. For this non-interacting model the average magnetisation per spin can be
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calculated using equation (2.17) as follows

m(T,H) =−
(

∂ f
∂H

)
T
=

1
β

2sinhβH
2coshβH

β = tanhβH. (2.21)

From this we can see that for T > 0 the average magnetisation per spin can only be 0 at
H = 0. As T → 0 we know that β → ∞ and the tanh function approaches a step function
from −1 to 1. From this we can deduce there is no spontaneous magnetisation with no
external field in a system of non-interacting spins. This outcome is intuitive from the basic
description of the system but it’s important to be able to prove in order to move on to more
complicated energy models.

The next system to consider is one in which there is no external field applied and the
only component of the system energy is the interaction of neighbouring spins. As before
the system can be viewed as a competition to lower the free energy between thermal energy,
leading to entropy and a disordered system, and the interaction energy, J, attempting to
align neighbouring spins. Similarly to the system of non-interacting spins the behaviour
is strongly dependent on the relative contribution of each term to the minimisation of the
free energy equation, ⟨E⟩/T S ∝ Jβ . Thus at high temperature, Jβ ≪ 1, the free energy is
minimised by maximising systemic entropy, leading to a disordered system of randomised
spin orientations and conversely for low temperature systems Jβ ≫ 1 and free energy is
minimised by minimising the interaction energy in the system, causing the spins to align
orientations with their neighbours. At low temperature this system will be in an ordered
ferromagnetic configuration and at high temperature this system will be in a disordered
paramagnetic state and it can be shown that there is a critical temperature at which the free
energy contributions from the entropic term and the total energy term are relatively even and
we undergo a sudden phase transition as we pass through this temperature [9, 12].

In order to investigate this critical temperature we introduce Glauber dynamics and the
detailed balance condition. In the Glauber model, created by Roy J Glauber in 1963 [33],
spins are selected one at a time and have a probability of changing their spin state dependent
on the energy change this would cause. There are three different types of change; energy
neutral, energy lowering and energy increasing and we need to fix the rates for these. For this
we need to use the concept of detailed balance for a system in equilibrium which states that

psw j(s) = ps jw j(s j) (2.22)
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where s j is the state of the system derived from s with the spin at site j flipped and w j(s) is the
transition rate from s to s j. These rates are continuous and non-zero as even the unfavourable
state flips can occur. If we are considering a system of interacting spins with no external field
then our Hamiltonian from (2.3) is

H =− ∑
⟨i, j⟩

Ji, jsis j (2.23)

where the couplings of sites i, j can be ferromagnetic or antiferromagnetic, the strengths of
the bonds can vary and neighbours can be different from site to site. Equation (2.22) gives us

wi(s)
wi(si)

=
psi

ps
=

exp(−β si ∑Ji, js j)

exp(β si ∑Ji, js j)
=

1− si tanh
(
β ∑ j∈⟨i⟩ Ji, js j

)
1+ si tanh

(
β ∑ j∈⟨i⟩ Ji, js j

) (2.24)

where the sum is over the nearest neighbours of i , ⟨i⟩. The simplest set of rates satisfying
this equation is

wi(s) =
1
2

[
1− si tanh

(
β ∑

j∈⟨i⟩
Ji, js j

)]
, (2.25)

the rate proposed by Glauber. This is a continuous time Markov chain so it is a rate, however
in our modelling we have to work with discrete them so we will interpret this as choosing a
site at random and allowing it to flip orientation with probability

pflip =
1
2

(
tanh

β∆E
2

)
, (2.26)

where ∆E is the systemic energy change if that site were to flip. As expected energy
minimising flips are favoured and energy neutral flips have a probability of exactly a half.

In order to investigate the critical temperature at which a phase transition occurs we
introduce the mean field approximation which replaces the local interactions between spins
with a representative field. This allows is to rewrite the Hamiltonian from equation (2.3) as

H =−∑
i

hisi where hi =
1
2

J ∑
j∈⟨i⟩

s j (2.27)

so we can view the system as each spin being effected by a local inhomogenous field ema-
nating from its neighbours, j. The approximation occurs when we replace the neighbouring
spins by their mean value, the average local magnetisation mloc, so the local field hi can be
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replaced with the homogenous mean field h = Jzmloc/2 where z is the lattice coordination
number, the number of neighbours a site has. This removes the direct interaction between
linked neighbours and approximates it with a system of independent spins with the significant
change that neighbouring spins are now uncorrelated. This mean field approach is only
exact in case where every pair of sites in the system interact; in the case of the Ising model
that is the complete graph of N(N −1)/2 links on N sites. We want the system energy to
scale linearly with the system size so we choose the interaction strength to be inversely
proportional to N giving us the Hamiltonian

H =− 1
N ∑

i< j
sis j (2.28)

and the local field is the same as the magnetisation for all system sizes. The Glauber dynamics
for this give us the site transition rate for a spin to flip of

wi =
1
2

[
1− si tanh

(
β

N ∑
j ̸=i

s j

)]
. (2.29)

When N is sufficiently large, we can replace si with the average spin Si and the hyperbolic
term becomes tanhβm. Given that when a spin si flips it changes from 1 to −1 or vice versa,
the sum change to the system is −2si giving us the equation of motion for the average spin,
dSi/dt =−2siwi. It follows that

dSi

dt
=−2siwi =−2

(
1
2

si −
1
2

s2
i tanhβm

)
=−Si + tanhβm (2.30)

and finally summing this equation over all sites we know that the average magnetisation must
satisfy

dm
dt

=−m+ tanhβm. (2.31)

The equilibrium solution has dm
dt = 0 and as such there is an evident phase transition at

the critical β value of βc = 1. For β < 1 the only solution to this equation is m = 0,
corresponding to the previous result that a system with high temperature leads to randomised
spin orientations and zero average magnetisation. For β ≫ 1 the equation has two solutions
at m =±1 coinciding with the result that a system at low temperature has spin alignment,
either all up or all down. It is evident that a phase transition is occurring at this critical
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temperature since as we transition through it we go from a randomised system to an aligned
system.

For the two-dimensional Ising model with only nearest neighbour interactions and no
external field the critical temperature is also a solved problem. First Rudolf Peierls showed
in 1936 that there exists a phase transition by proving that at sufficiently low temperatures
the amount of boundaries between up and down spins must be low enough that the majority
of the system is aligned [34]. Then in 1944 Lars Onsager produced an analytical solution for
the two-dimensional Ising model [35], showing the critical temperature to take exact value

kBTc

J
=

2

ln
(

1+
√

2
) ≈ 2.269. (2.32)

The existence of a critical temperature and phase transitions is an important feature that we
use in later work.

2.2 Percolation

In this section we outline the concept of percolation and highlight some important definitions
and results. Percolation is related to the existence of spanning clusters across a system and is
a key idea in the research of spreading phenomena. Percolation is linked to the existence of
stripe states in Ising model [22] systems which we observe in chapter (3) and our research in
chapter (5) is similar to investigating percolation in a one dimensional system.

2.2.1 Percolation in One Dimension

In structured systems where sites can be in multiple states you often see the formation of
clusters in which neighbouring sites are aligned. In many fields, such as epidemic spread [36]
and networking and cascading effects [17], it is important to investigate these clusters and
their geometrical properties including size, shape and long range connectivity. Percolation
theory is the study of these connected clusters and their behaviours, allowing us to investigate
many phenomena on random graphs. Percolation theory has been thoroughly investigated
and there exists a plethora of literature on the subject [37, 38]. The first example we look at
is site percolation on an L×L lattice where each site is either in the up state with probability
p or in the down state with probability q = 1− p. We define a cluster on this lattice as a
group of nearest neighbour occupied sites in the same aligned state and let cluster size s be
the number of sites in a given cluster. Intuitively with p = 0 the lattice has no sites in the up
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(a) p = 0.3 (b) p = 0.7

Fig. 2.1 Percolation on a 2-D lattice with height and width of 8 units. For the subcritical
p value we see a largest cluster size of 5 whereas we see a percolating cluster for the
supercritical p value

state and as such there are no clusters of aligned up states and with p = 1 every site is up
and there is one up cluster of size s = L2. As expected the largest cluster in a given system
increases with p as we go through the range 0 < p < 1. A cluster is considered percolating if
it has infinite size. Therefore in a confined L×L system only clusters that span from either
left edge to right or top edge to bottom can possibly be percolating if the system was infinite
in size. Therefore at p = 1 the sole cluster is percolating and at p = 0 there is no cluster,
let alone a percolating one and it follows that there may exist a critical p, pc, at which a
percolating cluster begins to exist.

We begin considering percolation in one dimension where calculations can be made
exactly. The first consideration in a one dimensional system of length L is that of the
boundaries, as the sites on each end of the system have only one neighbour as opposed to
the normal two. For an up cluster to exist in the middle of the system it requires a down
site on both sides whereas at the boundary it only requires one down neighbour; however as
we increase L the proportion of boundary sites to total sites tends to zero and their impact
diminishes, eventually becoming non existent for an infinite system and we can ignore their
impact. The first property we can compute is the probability that a given site i belongs to
a cluster of size s, denoted by pi∈Cs . The site must be part of s consecutive up sites, bound
at both ends by down sites, and the site in question can be in any position in any of the s
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positions within that cluster giving us

pi∈Cs = s(1− p)2 ps. (2.33)

Next we can calculate the frequency of clusters of a given size in a system. There are L sites
in the system but with a cluster size of s we only have to apply the equation (2.33) on L/s

sites to be certain of the frequency of s sized clusters and as such the frequency of s sized
clusters is

N(s, p,L) = L(1− p)2 ps. (2.34)

However this is an undesirable quantity because it is dependent on the system size and we
want to consider the system becoming infinite in size. As such we can normalise by the
number of sites in the system to instead get the cluster size density

n(s, p) = (1− p)2 ps. (2.35)

In these equations sn(s, p) is the probability that a given site belongs to an s sized cluster.
From equation (2.35) it is clear that cluster size density n(s, p) is strictly decreasing with
increases in size s, thus for any fixed value of p larger clusters become rarer. As you can
see from figure (2.2), for all differing values of p the curve begins decreasing slowly for a
large range of s before dropping sharply for some characteristic value sξ which increases as
p approaches 1. We rewrite n(s, p) as

n(s, p) = (1− p)2 ps

= (1− p)2 exp(ln ps)

= (1− p)2 exp(s ln p)

= (1− p)2 exp(−s/sξ ), (2.36)

where we introduce the characteristic cluster size

sξ (p) =− 1
ln p

→ 1
1− p

for p → 1−. (2.37)

The characteristic cluster size, shown in figure (2.3) is the typical largest cluster in a system
and is an increasing function of p which diverges as p approaches 1.
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Fig. 2.2 A graph showing the cluster density against cluster size. The blue line represents
p = 0.5, green represents p = 0.95, yellow represents p = 0.995, red represents p = 0.9995
and grey represents p = 0.99995



2.2 Percolation 19

Fig. 2.3 A graph showing the characteristic cluster size against p. As p approaches 1 the
characteristic cluster size diverges and as p approaches 0 the characteristic cluster size tends
to 0.
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After calculating the characteristic cluster size the next quantity to consider is the average
cluster size, which we can gauge by considering what is the expected cluster size that a
random site with specific spin belongs to. The probability of choosing a specific site with
a chosen spin state is 1/Nocc where Nocc is the number of sites with chosen spin state. The
probability of a chosen site belonging to a specific s sized cluster is then s/Nocc. Using this
we can weight the clusters based upon their size and deduce that the average size of a cluster
that a random site of specific spin belongs to is

χ(p) =
1

Nocc

Nclu

∑
k=1

s2
k . (2.38)

In order to work with this quantity we can relate it to the cluster number density, n(s, p),
defined previously. The quantity χ(p) is a sum running over all clusters in a system but in
order to convert it in terms of cluster number density we instead want to view it as a sum
over all cluster sizes and the frequency at which those cluster sizes occur as follows

χ(p) =
1

Nocc

Nclu

∑
k=1

s2
k =

1
Nocc

∞

∑
s=1

s2N(s, p,L). (2.39)

The expected number of occupied sites within an L sized lattice is simply pL and the
probability of an arbitrary site being part of any finite sized cluster is just p for all p < 1.
Since sn(s, p) is the probability that an arbitrary site belongs to a cluster of size s then the
sum over all s values of sn(s, p) must be equal to p. Using this fact and equations (2.34) and
(2.35) we can show that

χ(p) =
∑

∞
s=1 s2N(s, p,L)

pL

=
∑

∞
s=1 s2n(s, p)

p

=
∑

∞
s=1 s2n(s, p)

∑
∞
s=1 sn(s, p)

. (2.40)
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Fig. 2.4 A graph showing the average cluster size against p. As p approaches 1 the average
cluster size diverges and as p approaches 0 the average cluster size tends to 0.

Finally by utilising the sum of a geometric series and (2.35) we can deduce that

χ(p) =
1
p
(1− p)2

∞

∑
s=1

s2 ps

=
1
p
(1− p)2

(
p

d
d p

)(
p

d
d p

)(
∞

∑
s=1

ps

)

=
1
p
(1− p)2

(
p

d
d p

)(
p

d
d p

)(
p

1− p

)
=

1+ p
1− p

. (2.41)

Clearly, χ(p) is an increasing function of p and this matches the physical behaviour of
the system since the more occupied sites that exist the larger the average clusters become.
Lastly in one dimension we introduce the correlation function, a quantity that measures the
probability that two sites belong to the same finite cluster given that one of those sites is
occupied. Let the site ri in question be occupied. It follows that it can only be in the same
finite cluster as site r j if r j is occupied along with all of the intermediate sites. Therefore the
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site-site correlation function g takes the form

g(ri,r j) = p|ri−r j| (2.42)

where r = |ri − r j| is the distance between the two named sites measured in lattice units.
Evidently g(ri,ri) = p0 = 1 and as the distance between chosen sites increases the correlation
function is strictly decreasing, which can be expected from the definition and from the result
in equation (2.35). Much like cluster sizes we can also have a characteristic correlation
length, ξ (p), given by

g(ri,r j) = exp(ln pr) = exp(r ln p) = exp(−r/ξ ) (2.43)

where

ξ (p) =− 1
ln p

∝
1

1− p
for p → 1−. (2.44)

This matches with the characteristic cluster size from equation (2.37) which is intuitive
in one dimension since the characteristic correlation length represents the typical radius
of the largest cluster. In higher dimensions these quantities will not match but are still
related. Similarly there exists the following relationship between the sum over all correlation
functions from site ri and the average cluster size,

∑
r j

g(ri,r j) = ∑
r j

p|ri−r j|

= . . .+ p3 + p2 + p+1+ p+ p2 + p3 + . . .

= 1+2p+2p2 +2p3 + . . .

= 1+
2p

1− p
=

1+ p
1− p

= χ(p).

2.2.2 Percolation in Two Dimensions

We now move onto looking at percolation in two dimensions and some necessary results
we will utilise later. While much work has been done on site percolation in two dimensions
there is no exact result for pc on a square lattice. Simulation and numerical work has honed
in on an approximation of around pc = 0.59275 which is supported by the images in figure
(2.5). There are still features of two dimensional systems that can be looked at however,
particularly in their behaviours around the critical occupation probability.
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(a) p = 0.3: Many spread, small finite clusters. (b) p = 0.55: Large clusters forming, close to
percolation.

(c) p = 0.6: A percolating cluster has formed
spanning from top to bottom

(d) p = 0.7: The percolating cluster fills more
space leaving less room for the smaller clusters

Fig. 2.5 Four lattices of size L = 100, each with a different occupation probability, to
demonstrate the onset of a percolating cluster
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Lattice Type z pc

d = 1 line 2 1
d = 2 triangle 3 0.6971
d = 2 square 4 0.592746
d = 2 hexagonal 6 0.5
d = 3 simple cube 6 0.3116
d = 4 hypercubic 8 0.1969
Bethe z 1/(1− z)

Table 2.1 Critical probabilities for the onset of a percolating cluster. z represents the number
of nearest neighbours for each site in the structure [9].

One property we can investigate is the probability that an arbitrary site on the lattice
belongs to a percolating cluster, P∞(p). For finite lattice systems P∞(p)> 0 for 0 < p ≤ pc

whereas in an infinite system P∞(p) = 0 for 0 < p ≤ pc, a distinct difference brought on by
the nature of a bounded system. As you increase the size of a finite system the increase in
P∞(p) as p approaches pc becomes sharper and more rapid. The probability P∞(p) is referred
to as the order parameter to percolation and its behaviour close to pc can be expressed as

P∞(p) ∝ (p− pc)
β for p → p+c . (2.45)

Many values for β for varying lattice structures and dimensions have been calculated,
including all two dimensional lattices where β = 5/36. Another quantity we can consider
in two dimensions is the average cluster size, χ(p). Given that the average cluster size can,
by definition, only include clusters of finite size we find that in two dimensions χ(p) is
increasing for p → p−c and decreases as p increases above pc because the onset of percolating
clusters leaves reduced space for finite clusters to form. For a finite lattice, χ(p) can not
diverge at pc as the cluster size is limited by the size of the system, whereas in an infinite
system χ(p) is divergent. This difference in behaviour between a finite and infinite system
is the reason the infinite limit is required. This divergence for p → pc is a power law with
exponent γ in terms of the difference between p and pc, that is

χ(p) ∝ |p− pc|−γ for p → pc. (2.46)

Much like for β this has been solved for multiple structures, including the two dimensional
lattice where γ = 43/18.



Chapter 3

Birdsong Models

3.1 Sparrow Model

There are many real world systems which exhibit similar dynamics to the Ising model [11–
13, 33], allowing us to use results from the Ising model research to explain the observable
quantities and behaviours we see in reality. The original inspiration for the Ising model was
ferromagnets but it has since been used in understanding tax evasion [39], human language
uptake [40] and segregation patterns [41, 42]. One such example of a natural system we
look at in this manner is the formation of birdsong dialects in different species [21, 43–
45]; we will focus predominantly on the puget sound white-crowned sparrow utilising field
observations by Nelson [4]. Almost all species of birds learn to sing songs [46, 47] as infants
and their learning process is shown be down to a combination of genetic factors [48, 49]
and learning from others [50, 51]. These learning processes can be of varying forms; some
species learn from their parents while some learn from others in their surrounding population
and some species can only learn as juveniles while others can learn and change at any point
in their lives. The underlying dynamics for each species can vary based on a multitude of
factors including social behaviours, learning styles, death rates and movement. However the
fundamental balance of order, learning from and aligning with nearby agents, set against
disorder, death of agents and dispersion, is consistent in many species meaning a comparison
to ferromagnetic spin states can prove to be a useful method of understanding the formation
of dialect territories and boundaries.

The observation that different birds have different songs and processes of social learning
was made as far back as 1773 [52] but it was Thorpe’s research into the song learning of
chaffinches [53, 54] that ignited deeper investigations into this area. Research into dialect
regions began in 1962 [55] and for the puget sound white-crowned sparrow Baptista [5]
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noted distinct dialect regions on the Pacific coast of California, Oregon and Washington. The
difference between dialects is classified by a variation in the terminal trill for which sample
sonograms are shown in figure (3.1). The process of song learning in the white-crowned
sparrow has been heavily researched including the required exposure time to adults and time
period from birth that song learning is possible [20, 56]. Nelson compiled and outlined much
of the puget sound white-crowned sparrow’s learning processes, movements and death rates
which form the foundation for our model [57]. During the breeding season the sparrows
migrate to their breeding grounds having traveled between 500 and 1900 kilometres from
their wintering grounds. Adult male sparrows are territorial and typically return back to
the same locations after their migration and continue to sing the same songs as they had
previously. The juveniles return later and fill in the vacant spaces in the territories left by
the sparrows that have deceased. While at the breeding grounds the juveniles overproduce
dialects, and on return to the nesting sites they sing multiple dialects. Field observation
and playback experiments demonstrate that juveniles selectively conform to local majority,
forgetting and removing the other dialects from their vocabularies. Once a yearling conforms
to one particular song it keeps it for life and will continue to sing it for all subsequent year. It
is this mechanism of selective learning that leads to the formation of distinct dialect domains
and this forms the basis of our model.

From figure (3.3) we see there are many dialects along the entirety of the coast with each
domain having a length of approximately 100 kilometres, whereas each bird only interacts
within a range of approximately 110 metres [58]. As such any juvenile arriving on the
coast will only feasibly encounter, at most, two variations of adult dialects, allowing us to
only consider two dialects in our model. We approximate the positioning of the birds by
considering a two dimensional lattice with one bird at each site and we can consider the
dialect of each bird to be a binary spin state at that location.

In our model each time step represents the yearly return of the birds from the breeding
grounds. With probability α a site will be replaced with a new juvenile and with probability
(1−α) the site will remain the same, representing the same returning adult singing the
same song. The probability α represents the death of the previous adult in that location with
α ≈ 0.4 based upon the species life expectancy of around 2.5 years. The returning process is
performed in two steps, firstly it is decided which adults survive and return, then secondly
the gaps are filled in with new juveniles that make their song choice based upon their already
returned neighbours, with this process sketched in figure (3.2).
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Fig. 3.1 Sound spectrograms of white-crowned sparrow songs. Shown are examples of the
common song types in the study area at Bullard’s Beach State Park, Oregon [3].
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Fig. 3.2 Schematic representation of the lattice model with single phase reoccupation. Adult
song states are either up or down. Grey squares represent territories vacated due to death
of an adult bird. The heavy line traces the audible neighbourhood of the central site in the
four neighbour model. Question marks represent equivocal information about local dialect
coming from yearlings. States that change between time steps are circled.
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Fig. 3.3 Approximate geographical extent of song dialects of the puget sound white-crowned
sparrow along the Pacific Northwest coast of the United States of America. Figure redrawn
from original data in [4–7]
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Fig. 3.4 A singing white-crowned sparrow in Stevens State Park, Oregon. Photo by Alex
Lamoreaux [8]
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3.1.1 Model Variations and Different Return Phase Structures

In the first version of the model for the puget sound white-crowned sparrow we look at the
simplest version of events in which all of the juveniles return at the exact same time and
only learn their songs from the previously existing adults in their immediate vicinity. In the
event that multiple juveniles arrive in neighbouring sites they will not have an impact on
each others song choice; the justification for this being that while the juveniles are adapting
to the local dialect they will be singing many varied songs from their overlearned vocabulary
and as such the net bias towards a specific song imparted on fellow juveniles should be
negligible. In this example a returning juvenile can essentially only see and hear the local
adults and, based on field observations, it is expected that they are highly likely to conform
to the majority dialect. In the event that both dialects have equal influence on the juvenile
they will make a choice with equal probability of 1/2 for their final decision.

We later incorporate the information that following the arrival of adult birds the juveniles
arrive throughout a window of approximately one month and that the median time to learn a
permanent dialect by discarding overproduced songs is roughly twelve days. This arrival time
difference allows for some early arriving juveniles to have an influence on the later territory
holders. In the multiple return phase model we explicitly account for the sequential arrival
of yearlings. We can divide the reoccupation portion of the model into n phases. During
each phase a portion of the empty sites are filled and all site holders settle on their permanent
dialect before the next phase arrives. Subsequent later phases are then able to make use of
the songs that the earlier yearlings have chosen in order to make their own selection of adult
song. The decision process is the exact same as the single return phase model; a yearling is
influenced only by the birds in the local vicinity that have already chosen a permanent adult
dialect but not from a yearling that arrives during the same phase as themselves. In the limit
n → ∞ the juveniles arrive one by one in a pure sequential model mimicking the physical
process of cooperative random sequential adsorption [59].

3.1.2 Simulations and Results

We begin by looking at the single return phase model for which it is evident that if we let
α = 0 then no adults would be replaced by juveniles and the system would be in a permanent,
fixed formation. Conversely if α = 1 then at each time step every site would be replaced
by juveniles and, with no adults to base their song choices on, the system would be an
entirely random collection of spins. However for sufficiently low, positive values of α we
see the formation of dialect domains and the formation of distinct boundaries. The cause
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Fig. 3.5 Example of a dialect domain. The highlighted sites are particularly vulnerable to
have a dialect switch after the next breeding season.

for the formation of distinct stripe states is highlighted in figure (3.5) and is a smoothing
of dialect boundaries into smooth, straight lines due to what is effectively surface tension.
The dynamics of the majority rule method is a well investigated topic [14, 27, 60, 61] and
is a reasonable description of consensus formation in a network of interacting nodes. The
majority rule method used here represents a nonlinear response to local dialects whereas
for contrast a proportional response would be to align to a randomly chosen neighbour as
is the case in the voter model [62]. However the voter model approach does not lead to the
formation of domains and boundaries due to a lack of surface tension and the importance of
a nonlinear learning rule has been identified in a non-spatial model of bird dialects [45].

Given that at low, positive values of α there are clear domain formations and at high α

values there is randomness we aim to investigate the critical α , αc, analogous to the Curie
temperature [63] in ferromagnets, at which the transition between an ordered and disordered
system occurs. To investigate this we introduce the correlation length, ξ , for a lattice of size
L with periodic boundary conditions. We let S(x,y) ∈ {−1,1} be the dialect of the bird at
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site (x,y), allowing us to define the correlation length as

ξ = E

[
L/2

∑
x′=1

S(x,y)S(x′,y)

]
, (3.1)

where E[·] denotes the expectation over the equilibrium probability distribution of system
states. The correlation function is a measure of order between two sites of a given distance
which decays over distance and equation (3.1) gives us a typical distance at which this
correlation substantially drops. Due to translational invariance on a lattice with periodic
boundary conditions ξ is independent of (x,y). It is clear from this definition that if the
system is solely made up of one dialect then ξ = L/2, if the system is entirely random and
there are no spatial correlations then ξ = 0 and if the system is made up of multiple finite
domains then the value of ξ will lie somewhere between.

In order to estimate the equilibrium value of ξ we first create a very stable system with a
high probability of being up, an initial condition of p(↑) = 0.95, and a very low death rate of
α = 0.01. We allow the system to reach equilibrium and calculated ξ by computing the sum

L/2

∑
x′=1

S(x,y)S(x′,y) (3.2)

at all sites in the system over a sequence of time intervals until the spatial and time averages
were fixed. Once the correlation length was confirmed we raise the death rate incrementally
and repeat the process to recalculate ξ . Using this incremental system applied to an already
stable system rather than reinitialising in a random state has two key benefits. Firstly α

plays a role similar to thermodynamic temperature in magnetic systems and in systems that
are quenched from an entirely random state you can have the formation of long lasting but
non-equilibrium stripe states that can break translational invariance and reduce the accuracy
in ξ . Simulations have suggested that in an L×L sub-critical system the average time to
reach equilibrium is proportional to L2 if no stripe state forms but this changes to L3.4 if a
stripe state forms [22]. We avoid this complication by starting in an already stable state. The
second motivation is that this approach greatly reduces computation time since the system is
already close to its equilibrium state as soon as α is raised. The results of this method are
shown for the four neighbour case and eight neighbour case in figure (3.6) and these results
match those for both systems with initially high α values that are lowered and also systems
that are reinitialised for each new α value, provided no spontaneous stripe states are formed.
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Fig. 3.6 Correlation length, ξ , shown as a function of death rate α in a 100 by 100 system
with periodic boundary conditions. Open circles represent the four neighbour model and
black dots represent the eight neighbour model. Dashed lines show analytical estimates
of critical death rates αc ≈ 0.418 (four neighbour model) and αc ≈ 0.657 (eight neighbour
model).
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From the results in figure (3.6) we see that for sufficiently low death rates the system is
made up of one single dialect domain. However as α increases we reach a critical value at
which the correlation length plummets and the system fragments into disorder. The critical
value is significantly higher in the eight neighbour model which is intuitive since you would
expect to need a greater fraction of the population to die in order for a majority change around
any given cell. Field observations indicate that in the case of the puget sound white-crowned
sparrow the number of neighbours varies between one and four, suggesting the four neighbour
model is a more accurate representation of the natural system. Interestingly from analysis
we will find αc ≈ 0.4178 in the four neighbour model which is remarkably close to the
actual observed death rate which would make the existing dialect formations highly unstable
since a slight increase in death rate due to a new invasive predator or disease could cause
fragmentation. Given that real world death rates will fluctuate around a long term average
and the multiple dialect territories along the coast have existed for a significant amount of
time it implies that the observable critical death rate is significantly greater than the actual
death rate.

This fact suggests that the extra information juveniles can receive in the multiple return
phase model from their early arriving counterparts plays a significant role in the stabilisation
of the system. In order to investigate this phenomenon we simulated the four neighbour
model with multiple return phases; the cases n = 2 and n → ∞. The results of these multiple
phase models can be seen in figure (3.7) and it is evident that in both cases the critical
death rate is shifted significantly above the previously seen 0.4178 and more importantly
significantly ahead of the observed death rate showing that these systems would lead to stable
domains.

Provided α < αc then, much like the Ising model with T < Tc, a system of one dialect is
safe from the invasion of a differing song. From figure (3.5) we can see that if you introduce
an invading cluster into a single dialect system the surface tension effects will cause the
shape of the cluster to gradually approach circular, at which point the convexity causes
boundary sites to switch to the original dialect and the cluster will shrink and disappear.
Despite the system being unable to escape from having a single dialect state it can be shown
that under the Ising model [12] systems can form stable states with the existence of multiple
domains with opposing states. These stable configurations take on the form of stripe states
[19], which because of their straight edges spanning across the system, are immune to the
surface tension effects which cause domains with convex borders to shrink and as such these
formations are extremely long lived. The probability of rectangular lattice systems forming
into stripe states is strongly dependent on the aspect ratio of the lattice in question, with
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Fig. 3.7 Correlation length as a function of death rate α in a 100 by 100 system with periodic
boundary conditions. Open circles correspond to the four neighbour, two-phase model, black
dots correspond to the Ising model and black squares correspond to the sequential model.
Dashed lines show estimated critical values from simulations, αc ≈ 0.53 (two phase) and
αc ≈ 0.58 (fully sequential).



3.1 Sparrow Model 37

long and thin high aspect ratio systems being prone to producing many more stripes across
the shorter dimension. From figure (3.3) we can see that the territories of the puget sound
white-crowned sparrow are incredibly long and thin with high aspect ratios and this offers a
plausible explanation for the striped formation of the dialect domains.

In order to investigate the typical size of a stripe domain in such shaped systems we
simulated the fully sequential model on high aspect ratio rectangles with the results shown
in figure (3.8). In sufficiently large systems, when domains become large, the dynamics
of their borders can be approximated as continuous curves and the specific length scale of
individual sites becomes irrelevant. In such cases only the relative sizes, rather than the
actual sizes, of the structures within the system are important. This scale free property allows
us to compare the aspect ratios of stripe domains in our modelled system to those of the real
dialect domains. We ran simulations on a 2000 by 50 system until it consisted of well-defined
stripes. We coarse-grained this system into 10 by 10 cells, to simplify the measuring and
counting, and found the domains had a mean aspect ratio, AR, of µs(AR) = 1.4 and standard
deviation of σs(AR) = 1.1. Using the maps of field observed dialects we have estimated the
length of the real coastal domains displayed in figure (3.3) and distribution maps show that
the breeding grounds for the puget sound white-crowned sparrow spread approximately 50
kilometres inland [7]. Combining these field observed results we can calculate that the real
dialect domains have a mean aspect ratio µ(AR) = 2.8 and standard deviation σ(AR) = 1.9,
with the removal of dialect 7, since it’s non coastal, and dialect 9, since it’s disconnected
on Vancouver Island, from these calculations. If we include dialect 9 then the calculation
gives µ(AR) = 2.5 bringing it closer to the simulated results. We still note however that
the standard error of the mean for the eight field observations is σ(AR)/

√
8 ≈ 0.7 so the

simulated resulted is only differing by approximately one standard error. While the results
don’t match perfectly they are close enough to support that the simulated model is comparable
to the real world and that the observed domains arise due to the processes modelled and fall
into the classification of stripe states.

3.1.3 Links to the Kinetic Ising Model

We have made use of an analogy between the territories of dialects made up by song
choices of birds and the domains of aligned spin states in ferromagnets but we now aim
to make this connection explicit by deriving Ising models with transition rates matching
those of our dialect system; allowing us to derive a relationship between the death rate α and
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Fig. 3.8 Evolution of the sequential four neighbour model with α = 0.4 on a 2000 by
50 lattice with wall boundary conditions along the horizontal sides (top and bottom) and
periodic boundary conditions at the vertical sides. Black sites represent the up dialect, white
sites represent the down dialect. The system is shown after 100× [2k − 1] iterations for
k ∈ {1,2, . . . ,9}.
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thermodynamic temperature. We can also demonstrate multiple phase arrival of the yearlings
can be viewed solely as extending the viewing range over which dialect choices are made.

Consider the four neighbour model, letting ⟨x,y⟩ denote the nearest neighbours of site
(x,y). We can then define

ψ(x,y) = ∑
⟨x,y⟩

S(x′,y′), (3.3)

where S(x′,y′) ∈ {−1,1} is the dialect at site (x′,y′) at the end of the breeding season. We
now suppose that site (x,y) is vacant at the start of the next arrival phase due to the occupying
agent in the model dying. The juvenile that occupies this site is unlikely to have access to
ψ(x,y) due to the non-return of some neighbours, instead only having access to a portion
of that information. This disruption in accessing the complete information plays the same
disordering role as temperature in the Ising model. We define an indicator function for the
return of an adult at a given site, (x,y) after as

R(x,y) =

1 with prob. 1−α

0 with prob. α .
(3.4)

Using this indicator function in conjunction with (3.3) we can compute the sum of dialects
a juvenile witnesses on its arrival at site (x,y) as

ψ(x,y) = ∑
⟨x,y⟩

R(x′,y′)S(x′,y′), (3.5)

and the juvenile will choose his dialect in accordance to the sign of this potentially incomplete
information term. We define the step function

f (z) =


1 if z > 0
1
2 if z = 0

0 if z < 1.

(3.6)

Given ψ(x,y) the probability that the juvenile will choose the ↑ dialect is

p↑(ψ) = P(ψ > 0)+
1
2
P(ψ = 0)

= E[ f (ψ)], (3.7)
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where the expectation is taken over all possible combinations of vacated sites. In order to
compute this expectation as a function of α we first note that N↑ and N↓, the numbers of
birds with the up and down dialects around site (x,y) after the adults have returned, meaning
some site may be vacant, conditional on ψ , are binomially distributed with probabilities

P(N↑ = u∩N↓ = v|ψ)

=

(
2+ ψ

2
u

)(
2− ψ

2
v

)
α

4−u−v(1−α)u+v. (3.8)

By noting that ψ = N↑−N↓ we can compute the expectation from equation (3.7) as

E[ f (ψ)] =
2+ψ

2

∑
u=0

2−ψ

2

∑
v=0

P(N↑ = u∩N↓ = v|ψ) f (u− v), (3.9)

allowing us to exactly compute the probability for the dialect at site (x,y) after a breeding
season:

p↑(ψ) =



α4

2 , if ψ =−4
3α2

2 −2α3 +α4, if ψ =−2
1
2 , if ψ = 0

1− 3α2

2 +2α3 −α4, if ψ = 2

1− α4

2 , if ψ = 4.

From figure (3.9) we can see that p↑(ψ) takes the form of a smoothed discrete version of
f (ψ).

We now make the link between this system of dialect spins at the end of a breeding season
and a system of Ising spins, evolving under Glauber dynamics [33, 64] at β , the inverse
thermodynamic temperature. In this Ising model case, sites on the lattice are selected one
at a time with equal uniform probability and that site will be set to the dialect up state with
probability

ω↑(ψ) :=
1+ tanhβψ

2
, (3.10)

which, like equation (3.10), is also a smoothed discrete version of f (ψ). If we now consider
a site (x,y) on a domain boundary then ψ(x,y) ∈ {−2,0,2}, meaning we can choose β such
that ω↑(ψ) and p↑(ψ) match for these values of ψ and the probability of those sites choosing
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Fig. 3.9 The discrete function p↑(ψ) for α ∈ {0.1,0.3,0.6} (open circles, filled cir-
cles, squares). Also shown as dashed lines are the continuous functions w↑(ψ) = (1+
tanh[β (α)ψ])/2.
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dialects is identical across both models. Our justification for this is that the most important
sites in determining system behaviour are those sites on or close to the boundaries, and those
sites are likely to have either equal up and down neighbours or a minor imbalance. We
can match our three target values with only one parameter because both expressions have
rotational symmetry around a fixed value at 0. It is important however to note that in the
dialect model the simultaneous updates across sites leads to a correlation between state flips
that isn’t present in Glauber dynamics, leading to a minor difference. If we match the values
of ω↑(ψ) and p↑(ψ), we find that the inverse temperature takes the form

β (α) =
1
2

tanh−1(1−3α
2 +4α

3 −2α
4). (3.11)

We can now make use of this approximate analytical relationship between death rate and
inverse temperature to estimate the critical death rate in the dialect model. Equating β (α)−1

to the exact critical temperature in the Ising model we deduce that

1
β (α)

=
2

ln(1+
√

2)
(3.12)

and solving for α gives us the critical death rate

αc ≈ 0.418 (3.13)

to three significant figures. If we compare this to the previous simulations for correlation
lengths, ξ in figure (3.6), we can acknowledge that this method of prediction is remarkably
close in the four neighbour case.

We naturally extend this to the eight neighbour model by redefining ψ(x,y) to be the sum
of the eight nearest neighbours of site (x,y). In this eight neighbour case

P(N↑ = u∩N↓ = v|ψ)

=

(
4+ ψ

2
u

)(
4− ψ

2
v

)
α

8−u−v(1−α)u+v. (3.14)
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We now let p8↑(ψ) represent the probability that of a juvenile selecting the up dialect in the
eight neighbour model and repeating the previous calculations we find that

p8↑(0) =
1
2

(3.15)

p8↑(2) = 1−5α
2 +20α

3 −45α
4 +64α

5 − 115α6

2
+30α

7 −7α
8 (3.16)

p8↑(4) = 1− 15α4

2
+24α

5 −34α
6 +24α

7 −7α
8 (3.17)

p8↑(6) = 1− 7α6

2
+6α

7 −3α
8 (3.18)

p8↑(8) = 1− α8

2
(3.19)

with p8↑(ψ) = 1− p8↑(−ψ) allowing us to compute the remaining four terms simply. As
before we match up p8↑(ψ) and ω↑(ψ) for ψ ∈ {−2,0,2} and see

β8(α) =
1
2

tanh−1(2p8↑(2)−1). (3.20)

As before we equate this quantity with the known series estimate for the critical temperature
in the eight neighbour Ising model, Tc ≈ 5.2599, to obtain the approximate critical death rate
of

αc ≈ 0.657. (3.21)

When we compare this to the approximate critical death rate of αc ≈ 0.651 from the correla-
tion simulations in figure (3.6) we see that this is an effective estimation method with a minor
inaccuracy. We postulate that this discrepancy is derived from the fact that not all sites on
domain boundaries have identical probabilities of changing dialect between the two models.

3.1.4 Multiple Return Phases

As previously shown in figure (3.7) the concept of multiple return phases offers both a greater
comparison to the real world observed behaviours and also a more reasonable critical death
rate given the long term stability of the dialect domains. As before we aim to form a link
between the two phase, four neighbour model and the Ising model. In the case of the two
phase model a juvenile has the potential to have its dialect decision be influenced by the
dialects of a greater number of adults within the local vicinity. As seen in figure (3.10) if the
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central site is occupied by a juvenile returning in the second phase then it is possible that one
of the four nearest neighbours is occupied by a juvenile that returned in the first phase. In
that case the agents in the outer sites will have a second hand influence on the decision of
the central juvenile. With reference to figure (3.10) we let ψ1,ψ2 and ψ3 be the sum of the
dialects in, respectively, the sets of nearest neighbours, next nearest neighbours and next next
nearest neighbour sites of a new central territory holder:

ψ1 := S1 +S2 +S3 +S4,

ψ2 := S5 +S6 +S7 +S8, (3.22)

ψ3 := S9 +S10 +S11 +S12.

There is a notable difference between the sites of ψ2 and the sites of ψ3 because, while both
terms can only have second hand influence on the central agent, the agents in the sites of ψ2

have the potential to influence the central agent through two different immediate neighbours.
We refer to the sets of sites as the first, second and third rings. In the two phase model,

after each breeding season, there are three different cases to consider at each site. Firstly
an adult can return to a location and no more consideration needs to be made. Secondly
the site can be occupied by a juvenile that returns during the first reoccupation phase; in
which case the probability of this agent picking a given dialect is solely dependent on ψ1

and is identical to the previously solved single phase model. It is in the event that a site is
reoccupied by a juvenile during the second return phase that we must make these additional
considerations of rings two and three. We define p↑(ψ1,ψ2,ψ3) = P(↑ |ψ1,ψ2,ψ3) to be the
probability of the central agent choosing the up dialect. We can compute this probability if
we assume that all dialect arrangements within each ring are equally probable. We adopt the
site numbering used in figure (3.10) and let

−→
S = (S1,S2, . . . ,S12) represent the song states

at the end of the previous breeding season,
−→
R = (R1,R2, . . . ,R12) be the indicators for the

return of adults at the start of the next breeding season and −→r = (r1,r2,r3,r4) be the indicator
for yearlings arriving in the first return phase in the four nearest neighbour sites. Lastly we
let

−→
B = (B1,B2,B3,B4) be a vector of Bernoulli variables Bi ∈ {−1,1} which indicate the

song choices of the agents in these sites in the event that these sites are occupied by first
phase returners with equivocal dialect information. This vector of Bernoulli variables is only
required for first phase returners in the nearest neighbour ring with equivocal information
because those are the only sites that make a ‘coinflip’ decision that can also have a bearing
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Fig. 3.10 Sites, outlined bold, that can influence the dialect of the central 0 site in the two
phase return model.
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on the central site’s final decision. With these indicator functions we get

P(Ri = 0) = α

P(Ri = 0∩ ri = 0) =
α

2
P(Ri = 0∩ ri = 1) =

α

2
P(Ri = 1) = 1−α

P(Ri = 1∩ ri = 0) = 1−α

P(Ri = 1∩ ri = 1) = 0. (3.23)

We also define

ψ1(
−→
S ) :=

4

∑
k=1

Sk

ψ2(
−→
S ) :=

8

∑
k=5

Sk

ψ3(
−→
S ) :=

12

∑
k=9

Sk. (3.24)

In order to compute p↑(ψ1,ψ2,ψ3) we condition on the central site being empty and then
consider the two cases corresponding to each phase in which the territory becomes occupied.

In the first case the central site is reoccupied during the first return phase and we define
p1(↑ |

−→
S ,

−→
R ) to be the probability of the central site choosing the up dialect conditional on

−→
S and

−→
R . We define the influence this agent receives from existing nearest neighbour adults

to be

X0 =
4

∑
k=1

SkRk (3.25)

and it follows that

p1(↑ |
−→
S ,

−→
R ) = I{X0>0}+

1
2

I{X0=0}, (3.26)
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where the indicator function IA of the event A is defined as

IA =

1 if A occurs

0 otherwise.
(3.27)

These equations are a rewriting of equations (3.5) and (3.7) utilising the new notation that we
need for the multiple return phase model.

In the more complex case, in which the central site is occupied by a juvenile during the
second return phase we define p2(↑ |

−→
S ,

−→
R ,−→r ,

−→
B ) to be the probability of the central agent

choosing the up dialect conditional on
−→
S ,

−→
R ,−→r and

−→
B . We then define

Xk = ∑
i∈⟨k⟩

SiRi k ∈ {1,2,3,4}, (3.28)

where ⟨k⟩ denotes the nearest neighbours around site k. Xk is a random variable representing
the sum of all states around site k at the beginning of the current season. The crucial quantity
that determines the final dialect choice of the central agent is the sum of states in sites
{1,2,3,4} at the end of the first phase. We let {sk}4

k=1 be these states where sk ∈ {−1,0,1}.
If Rk = 1 then site k is occupied by the returning adult and sk = Sk. If Rk = 0 and rk = 1 then
the site is occupied by a first phase returner and bases its dialect on Xk. Lastly if Rk = rk = 0
then the site is a fellow second phase returner and as such has no influence and sk = 0. From
these statements it follows that

sk = RkSk + rk[I{Xk>0}− [Xk < 0]+BkI{Xk=0}]. (3.29)

We can now define

x0 =
4

∑
i=1

si, (3.30)

then

p2(↑ |
−→
S ,

−→
R ,−→r ,

−→
B ) = I{x0>0}+

1
2

I{x0=0}. (3.31)
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Since a site with a non-returning adult is equally likely to be filled during the first phase
as it is in the second phase, then conditional on

−→
S ,

−→
R ,−→r and

−→
B we have

P(↑ |−→S ,
−→
R ,−→r ,

−→
B ) =

1
2
[p1(↑ |

−→
S ,

−→
R )+ p2(↑ |

−→
S ,

−→
R ,−→r ,

−→
B )]. (3.32)

In order to compute this conditional probability we must first define

fRr(u,v) = P(Ri = u∩ ri = v),

fR(u) = P(Ri = u). (3.33)

The joint probability mass function of
−→
R and −→r is then

f (−→u ,−→v ) := P(−→R =−→u ∩−→r =−→v )

= Π
4
k=1 fRr(uk,vk)Π

12
k=5 fR(uk). (3.34)

We now make the assumption that conditional on the values of ψ1,ψ2,ψ3 that all complying
iterations of

−→
S are equally likely. We let S be the set of all values of

−→
S and define

A(y1,y2,y3) = {−→S ∈ S|ψ1(
−→
S ) = y1,ψ2(

−→
S ) = y2,ψ3(

−→
S ) = y3}. (3.35)

Since
−→
B is a set of four Bernoulli variables all sixteen values are equally probable and as

such

p↑(y1,y2,y3) =
1

16|A| ∑
−→
S ∈A,−→u ,−→v ,

−→
B

f (−→u ,−→v )p(↑ |−→S ,−→u ,−→v ,
−→
B ). (3.36)

The summation over A is required because, while we have assumed that all complying
iterations of

−→
S are equally likely, they do not all lead to the same probability of the central

site being up. To compute all permutations requires summing over 232 combinations of song
states

−→
S , arrival times (

−→
R ,−→r ) and decision variables

−→
B . These results were achieved using

a simple Python program and the full results can be found in Appendix A with a sample
result here,

p↑(0,2,4) =
3

256
α

11 − 5
128

α
10 +

1
256

α
9 − 7

128
α

7 (3.37)

+
1
4

α
6 − 3

8
α

5 +
9

64
α

4 − 3
16

α
2 +

1
4

α +
1
2

(3.38)
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Fig. 3.11 The influence of second and third ring sites in the case where ψ1 = 0 and α = 0.4
the field observed death rate. Open circles: p↑(0,ψ,ψ), closed circles: p↑(0,ψ,0) and
squares: p↑(0,0,ψ).

These results have been verified by Monte Carlo simulation and for assurance the simple
cases α = 1 and α = 0 equate exactly. For instance

p↑(0,2,4)|α=0 = p↑(0,2,4)|α=1 =
1
2
, (3.39)

where for α = 1 all neighbouring adults return and only ψ1 matters, which in this case is 0
leading to each dialect being chosen with equal probability and for α = 0 all adults perish,
all information is lost and every site makes a random choice.

To quantify the importance of the outer rings we refer to figure (3.11), illustrating the
effect the outer ring values can have on p↑ when the information ψ1 from the inner ring is
equivocal. We see that the influence provided from the outer rings can influence the final
decision of the central agent by a factor of 3

2 .
By selecting sites at random from the lattice and updating them using the probabilities

p↑(ψ1,ψ2,ψ3) which may be viewed as a form of Glauber dynamics with appropriately
chosen Hamiltonian we obtain the correlation lengths shown in figure (3.7). This plot shows
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us that, while their impact is weak, the outer rings in the two phase model create a significant
increase in dialect domain stability that better aligns with the real world observations of long
term stable domains in spite of fluctuations in adult death rate.

3.2 Birdsong Model Conclusion

Using observed data on the learning processes and nesting behaviours of the puget sound
white-crowned sparrow [57], we have constructed a simple lattice model in order to explain
and justify the existence of large dialect domains in their coastal breeding grounds. We
have shown that the ordering effect of juvenile song conformity and the disordering effect
of adult death can be compared to spin interactions and thermodynamic temperature in
two dimensional ferromagnetic materials. In utilising this analogy we have shown how the
distinct dialect domains and boundaries can be viewed as stripe states, calculated a critical
death rate at which the existence of stable dialect regions would destabilise and we have
shown how a variation in the return structure of juveniles can impact the long term stability
due to an increase in the local region for which a site may consider in its majority rule
calculations. Birdsong dialects are widely observed and take on a variety of forms [51]; we
suggest that the analogy to ordering in physical systems may be usefully applied to other
species and potentially related to the study of observed and historical human dialect domains
[65].

The work in this chapter was a joint effort between myself and my supervisor, Dr James
Burridge, and resulted in the publication of the paper ‘Birdsong dialect patterns explained
using magnetic domains’[23]. The analysis and formulation of ideas were all produced
in weekly meetings and simulations were constructed by both of us independently with
comparison between results as confirmation.



Chapter 4

Interface Motion in Two Dimensions

In this chapter we investigate the spread of an interface on a two dimensional lattice structure.
These models represent systems in which there is an invasive idea or opinion and the
information spreads through the system. We look at models with nearest neighbour exchanges
of information between fixed sites, resembling a system of face-to-face interactions between
agents with low mobility. Concepts that exhibit this type of spreading include the adoption of
new language and culture [66–68] and the erosion of surfaces [69, 70]. The intent is to gain
a deeper quantitative understanding of how ideas spread and how the shape of the interface,
determined by randomness in features of the agents, can impact wave speed.

4.1 Interface Shape and Speed

In this chapter we introduce the concept of memory into an invading opinion model on a two
dimensional lattice. We investigate how individual sites in a network possessing a memory,
and making their choices based upon it, impacts the velocity and shape of the invading
wave. Memory has been shown to effect the behaviour of many mathematical models of
social systems, including in games [71–75], language models [76, 77], spreading phenomena
[78, 79], opinion dynamics [80] and it has also been studied in the context of the Ising Model
[18]. In the work we present here, memory length may also be viewed as a threshold for a
change of state. Threshold models [17, 81, 82] have applications in social dynamics [13],
and also in physical settings such as rock weathering [69], where the threshold (or memory
length) of a lattice site may be viewed as its strength, and the impact of wind or dust as
the flow of social information. A fundamental concept to these models is that of surface
roughening. We consider a smooth interface between two regions with different opinions, one
of which is superior and invasive, one which is weaker and being usurped, and an exchange
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of opinions across the interface. As the weaker opinion sites adopt the new opinion the
interface roughens, surface area of the interface increases and the spread accelerates. The
growing of a random surface can be described using the Kardar-Parisi-Zhang (KPZ) equation
[25, 26]

We begin with simplified starting conditions and build upon that by looking at more
complex arrangements, and the impact these changes have upon the dynamics of the system.
We begin with an m× n lattice with each location occupied by one agent possessing a
memory. After each time step the agents inspect the current opinions of their four nearest
neighbours and remember them. They store that information for a limited memory length,
with newer information replacing the oldest. This approach to site memory could be viewed
as a threshold and is comparable to the dosage memory of a site in the generalised Watts
model [83]. At the end of each time step the agents look over all opinions stored in their entire
memory and make a conformist decision on what their opinion should be. This decision may
be viewed as a modified form of majority (or minority) rule [14, 16, 60], but averaged over
the memory of the decision maker. In the standard definition of the majority rule, agents
inspect the current states of their neighbours, and make a decision based on these states. In
our case we think of each agent as carrying a historical record of these states, and matching
their state to the majority opinion in their historical record. Formally, we can define the
model as follows. Letting Si(t) ∈ {0,1} be the state of lattice site i then the memory of this
site is

mi(t) =
1

4τi

τi−1

∑
s=0

∑
j∈⟨i⟩

S j(t − s) (4.1)

where τi is memory length of site i and ⟨i⟩> denotes the four nearest neighbours of this site.
This memory is an analogue of the dosage memory in the Watts model [17, 83]. The state of
site i is then given by

Si(t) =

1 if mi(t)≥ 1
4

0 otherwise .
(4.2)

The system has periodic boundary conditions at the vertical (left and right) edges with fixed
boundaries along the horizontal edges. Initially the opinion setup of all agents is the down
(‘0’) opinion except the agents on the bottom row which possess the invading up (‘1’) opinion.
We initialise the system with all sites having a full memory of only their current state, that
is to say that for sites in the bottom row mi(t) = 1 and for all other sites mi(t) = 0. This
setup causes the first state flips to take some time rather than happen immediately at the
first time step and makes a better comparison to a new idea invading a territory that has
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only ever known the old idea. Due to the nature of the system’s construction we need the
agents to flip opinions when 1/4 of their memory is filled with the invading up opinion or
the wave would be incapable of moving. This is due to the fact that the first sites that flip
from state 0 to 1 can at most only ever reach a value of m = 1

4 as they have only have one
up-state neighbour from below and three down-state neighbours. As a consequence of this it
is impossible for an agent to flip away from the up opinion once adopted as there is no way
for a new interaction memory to have less up-states in it than the oldest memory it replaces.
Thus the invading wave is always connected and we can’t have dispersed clusters of varying
opinions or isolated agents changing opinion. If for each column we consider the highest
agent of the up (‘1’) opinion to be at the front of the wave then we are interested in two main
features: the velocity of the wave and the shape of the wave-front. Given that the agents all
flip at the same memory proportion then the only variable that can influence these features is
the individual agent’s memory lengths.

4.1.1 Simplistic Model Construction

Throughout this section we will be looking at systems where individual agents have one of
two memory lengths, the shorter α or the longer β . We begin by considering the simplest
case of all; that is that all agents have the same memory length, say α . This model requires
no simulation as we can simply deduce that after α time steps every agent in the lowest
‘unflipped’ row will convert to the invading opinion and after every subsequent α time steps
the entirety of the next row will also flip. In this system it is simple to see that the velocity
of the wavefront is the reciprocal of the memory length and that the invading wavefront is
a constant flat line. In this simplest model every agent with the down opinion only ever
receives influence of the new opinion from the agent directly behind them since, even though
they observe the opinions of their neighbours to the side, they will be changing opinions at
the exact same time step. It is this potential influence from the side neighbours that can lead
to more interesting wave dynamics in systems with varied memory length patterns.

The next arrangement we consider is one in which the agents have a randomised mixture
of both memory lengths α and β . Each agent is assigned memory length α with probability
p or memory length β with probability (1− p). We know the velocity and wave shape for the
system when p = 0 and p = 1 but are interested in the wave dynamics as p varies between
these values. We ran these simulations on a 200×200 lattice as it is large enough to dampen
the effect of variance, but keeps the simulation time short, and set our memory lengths to
α = 20 and β = 40. As for the wave shape in this system we will be concerned with the
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Fig. 4.1 Line plots showing the invasion progress over time for five randomised setups. The
possible memory lengths are α = 20 and β = 40 for which p is the probability of a site
having memory length α and (1− p) is the probability of a site having memory length β .
Plotted systems are p = 0.1(diamonds), 0.3(squares), 0.5(empty circles), 0.7(filled circles)
and 0.9(triangles). Higher p values correspond to faster invasion speeds .

roughness of the leading wave, calculated as the mean square distance between the front
of each column and the mean wavefront. From the initial conditions it is clear that we can
expect a flat line with some noise since there’s no structured pattern to make the wave adopt
a particular shape. The results are shown in plot (4.1).

The simulations show us that rather than the velocity being linear in relation to the
mean memory length it speeds up with the presence of mixed memory lengths and once the
proportion of short memory agents is high enough the wave travels at the fastest velocity.
This is due to the previously mentioned feature that once memory lengths are mixed you have
agents on the same row flipping opinions at different times, with the early flipping agents
passing their influence on to their side neighbours and accelerating their opinion change.
Thus not only do the shorter memory length agents speed up the wave by themselves flipping
sooner but they also cause the longer memory agents to flip sooner. Another result to note
here is that the roughness of the wavefront takes time to stabilise but eventually remains
fixed.
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Fig. 4.2 Line plot showing the average height of the invading wave with respect to time.
The orange steeper line corresponds to the stripe state system and the blue shallower line
represents the system with alternating cells.

We next consider how we can manipulate the wave front velocity by choosing which
agents receive the long and short memories, rather than a randomised assignment. It is appar-
ent that the presence of short memory agents alongside their longer memory counterparts can
accelerate the flipping process so we would expect different arrangements and configurations
to produce different wave velocities and wavefront shapes. We begin with the two simplest
arrangements possible, both with memory proportion p = 0.5, and with the same memory
lengths as before, α = 20 and β = 40. We will have a lattice with width of 200 and length of
400 for which system A will be a checkerboard pattern, where the memory length in every
cell is different to its 4 nearest neighbours, and system B will be 2 distinct stripes in which all
agents in columns 1-100 will have memory length α and all agents in columns 101-200 will
have memory length β . You can see these results for the systems in plots (4.2) and (4.3).

The contrast between the two results show the importance of the lattice arrangement to
the dynamics of the opinion wave. The two differing arrangements begin with the same
velocity but once stabilised the stripe state accelerates to match the maximum potential
velocity of 1/α . If we look at the shape of the invading wave in figure (4.4) we can garner a
greater understanding of what is occurring at the wavefront boundary to cause this behaviour.
Initially the wave invades faster through the short memory agents and slower through the
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Fig. 4.3 Line plot showing the variance in invasion height across the width of the system with
respect to time. The orange line represents the stripe state system and the blue line represents
the alternating system. Both systems converge to a constant variance with the stripe state
being significantly greater. The variance in the stripe state system eventually drops to zero as
the wave reaches the end of the lattice.
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Fig. 4.4 Matrix plot of the invading wave travelling downwards on a striped system where
orange sites are up and white sites are down. Columns 1 to 100 are short memory agents and
columns 101 to 200 are long memory agents. These represent the system after 500, 1500,
2500 and 3500 time steps.

longer memory agents causing the wave variance to increase and the velocity to match the
mean. As the system develops the long memory agents on the border of the stripe begin
receiving twice as much influence as before, from below and the already flipped short memory
agents to the side, causing the wave to pass through them at the same rate as the short memory
agents. Once the two two slopes of up sites in (4.4) meet all of the long memory agents on
the boundary are receiving twice the influence and the wave passes through every agent with
maximum velocity.

We further investigate this effect by looking at the most extreme case; a similar system
except this time with just one column of short memory agents with all other agents having
the longer memory. We see in figures (4.5), (4.6) and (4.7) that this system exhibits the
same behaviours. In this system the velocity begins as the lowest because the majority of
the agents have a long memory and are only receiving the invading opinion from below,
however once the system stabilises it reaches the same maximum velocity as the half striped
system. Thus showing we can reach maximum velocity with a miniscule proportion of the
population having the shorter memory length. These models highlight that, for systems with
a repeated memory length pattern, eventually the roughness of the invading wave converges
to a fixed point because the leading wavefront takes on a consistent shape. Since the wave
shape converges to a fixed shape, and any column made of solely short agents must travel
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Fig. 4.5 Matrix plot of the invading wave on a slim striped system. Column 1 is made up of
short memory agents and columns 2 to 200 are long memory agents. This shows the system
after 500, 1500, 2500 and 3500 time steps.

at the maximum velocity, it is intuitive that once the system has been running long enough
to become stable that the velocity of the wave will be at its maximum in all places. If this
were not the case, because in some areas the wave travelled at a sub-maximal speed, then the
wavefront shape would continue to deform.

In order to further investigate this phenomenon we take a closer look at the gradient of the
invading wavefront on the boundary between long and short memory agents. From figures
(4.4) and (4.5) it is clear in these systems that the gradient of the invading wave through
the long memory agents is 1. Intuitively once the wavefront is stabilised the shape remains
constant and makes a step up every α time steps, since it is travelling with maximum velocity.
For a long memory agent on the border of the wavefront they will only receive influence from
one side agent that flips before them and the agent behind them. Given that the wavefront
has to move up every α time steps we know that every agent will receive exactly α influence
in their stored memory from the agent behind them. Since they must get β encounters in
their memory in order to flip it is apparent they must have β −α encounters with the already
flipped agent to the side. This microscopic behaviour is illustrated in figure (4.8) and from
this we can deduce that the slope gradient, the steepness of the boundary, in a striped system
is (β/α −1).
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Fig. 4.6 Line plot showing the average height of the invading wave for three systems. The
orange line represents a striped system with half short memory and half long memory, the
green line represents a single column stripe setup and the blue line represents a system of
alternating sites.

4.2 Tiled Systems

In order to further investigate the behaviour of a traveling wave through a large lattice system,
still with two potential site thresholds, and randomised allocations we will begin by making
the approximation that the system is made up of a smaller repeated square tile with width
and height n. Intuitively as n grows large the number of tiles required to cover a specific
large lattice reduces and the accuracy of this approximation increases until the point that the
tile in consideration matches the original lattice and the tiled approximation will be exact.
Due to the periodic boundary conditions on the side borders for this system we only ever
need to consider the wave traveling through one column of tiles since all columns of tiles
will behave identically. It also follows that once the wave travels through a small number of
vertically stacked tiles it falls into a cyclical shape and velocity; only taking time to reach
this state because the spread of the new idea at the bottom of the first tile is fixed and uniform
whereas the influence spread on the transition between two tiles is dependent on the threshold
allocations in the tile. Because the transfer of information into the first tile is different to the
information transfer into subsequent tiles it is important to consider multiple tiles for the
wave to reach a stable pattern.
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Fig. 4.7 Line plot showing the variance in invasion height across the width of three different
systems. The orange line represents a striped system with half short memory and half long
memory, the green line represents a single column stripe setup and the blue line represents a
system of alternating sites.

Fig. 4.8 Image depicting the wave boundary between long and short memory stripes of
α = 10 and β = 40. Blue cells are long memory agents, red cells are short memory agents,
cells under the black line have converted and the value in the cell denotes the number of
interactions with the invading opinion the agents have encountered.
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Fig. 4.9 An illustration of an example 3×3 tile. Example tile 1.

We begin with three example systems in which n = 3 with a fixed proportion of long
and short memory sites and looking at the velocity of the wave in each case. For these
examples the proportion of short memory agents is a fixed 4

9 . The tiles used for comparison
are illustrated in figures (4.9), (4.10) and (4.11) and when running an invading wave through
a vertical set of ten of each tile we get the graph (4.12) highlighting the average height of the
wavefront against time.

As expected from the previous section the steady velocity of the system made up of the
first tile is 1

20 given that it will consist of one column made up entirely of short memory
agents. As previously shown this column will travel at the highest possible velocity and the
rest of the system will be pulled along to match it. This is an inherent issue with attempting
to use tiles with smaller values of n to approximate the wave behaviour in a bigger system;
with random tiles there are minimal patterns for the short and long memory agents to take
and the disparity between different patterns is substantial. For comparison the velocity of
the wave in systems comprised of tiles two and three is approximately 1

27 , a discrepancy of
over 30% from the fastest tile. As we increase the value of n the likelihood of a tile having a
column with only short memory agents drops significantly. Due to this we would expect this
tiled system approach to be highly accurate and for the majority of randomised tiles to have
very comparable results.

Using this tiled approach we do find a consistent trend; the wave velocity and shape
enters a fixed pattern after traveling through the first two tiles. As previously mentioned the
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Fig. 4.10 An illustration of an example 3×3 tile. Example tile 2.
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Fig. 4.11 An illustration of an example 3×3 tile. Example tile 3.
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Fig. 4.12 A graph showing the average height of the invading wave through a vertical set of
10 of each example tile taken at every time step. Blue represents tile 1, red represents tile 2
and orange represents tile 3.

initial wave spread into the first tile is uniform whereas the information spread between the
top of the first tile and the bottom of the second tile is dependent on the times at which the
sites in the top row of tile one flipped. However in all observed cases this minor impact is
eliminated before the wave reaches the top of the third tile. As such the difference in flip
times between identical sites at the top of the second and third tiles can already give us the
velocity of a system. An example of this is shown in figure(4.13) where the time differential
between sites three rows behind has reached 80 and remains fixed at that value.

Given a randomised tile of sufficiently low n it is simple to calculate the exact flip times
for the earlier rows by hand. Ideally we can find an optimal tile size for which calculating by
hand is efficient and quick and the accuracy to an entirely randomised large lattice is high and
sufficient. In order to compare the accuracy of tiled systems we first simulate a large lattice
with height 1000 and width 100 and a probability of 0.4 for any given site to possess a short
memory. In the previous examples with the 3 by 3 tiles the patterns were chosen specifically
to have four short memory sites and five long memory states to get an understanding of the
process. In this new construction each site has a probability of having a long or short memory
so the exact number of long and short memory sites can vary. The height progression of this
system is shown on the graph (4.14) and gives us an average wavefront velocity, to three
significant figures, of 0.0399 rows per unit time. This system size is chosen as it is large
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Fig. 4.13 An illustration of the exact flip times for sites from the bottom of a system made up
of tile 2. In this example the wave has already reached its fixed velocity on the second row of
the third tile.
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Fig. 4.14 A graph illustrating the height of an invading wave into a large lattice with variable
thresholds. Sites can have short memory with probability p = 0.4 and long memory with
probability (1− p) = 0.6. Short memory sites have threshold 20 and long memory sites have
threshold 40.

n Average Velocity Standard Deviation

4 0.03931 0.006015
6 0.03884 0.003285
8 0.04047 0.002688
10 0.03991 0.002491

Table 4.1 Table showing the average wavefront velocity and standard deviations for ten
simulated systems with varied tile size n. All values to 4 significant figures.

enough to remove any small number effects and repeated simulations at this system size
generate similar results.

We want to compare how accurate the tiled approach is for differing values of n to this
entirely randomised large scale lattice. In order to do this we created randomised tiles, still
with p = 0.4 as the proportion of short memory sites, for n = 4,n = 6,n = 8 and n = 10. We
aim to calculate the velocity of the wave through a sample of systems with each of these tile
sizes and compare the behaviour of the velocities in each case. Graphs for height progression
over time for 10 systems at each tile size can be seen in plots (4.15a), (4.15b), (4.15c) and
(4.15d). Table (4.1) contains the information for the average velocity for systems of each tile
size and the standard deviation across the 10 systems.
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(a) Tiles of size n = 4.
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(b) Tiles of size n = 6.
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(d) Tiles of size n = 10

Fig. 4.15 Four graphs showing the wave front height over time of systems with randomised
tiles for four different tile sizes n. In each case p = 0.4 is fixed, the proportion of sites with
short memories.
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These results highlight how effective the tiled approach is at generating an approximation
of the wavefront velocity for a system of much larger size. As you average over a sufficient
number of randomised tiles the approximate velocity is highly accurate even for tiles of size
4. Intuitively the standard deviation and variance of wavefront velocities is greater in smaller
tiled systems since there is a distinct possibility of randomly creating tiles with entirely short
agents making the wave rapid in comparison to the average. As such in order to use smaller
tiles to approximate large scale behaviour you would ideally use a greater number of tiles.
However given the simplicity of calculating the flip times by hand for small tiles this method
is still incredibly efficient.

4.3 Interface Motion with Disorder

The previous systems highlight the impact of variable memory thresholds on the shape of the
wavefront and the impact this has on the wave velocity. However all of those models looked
at systems with only two potential memory lengths which is a significant restriction. If we
are to consider the wave as an opinion traveling through a living population then it would be
more reasonable to consider threshold length as a normally distributed attribute with a mean
for the population and standard deviation allowing for variability between individuals. We
will continue looking at the wave traveling through a two dimensional lattice with the same
method and neighbour interactions as previous models.

In the construction of this model with equation (4.1) we declare each agent to have a
memory length, τ , and as such they store 4τ pieces of information from observing each of
the nearest neighbours. However due to the previous restriction of a site having to flip as
soon as 1/4 of its memory was filled with the new invading wave it is not possible for a site
to replace a memory of the invading wave before it has flipped. That is to say that a site in the
down state, that first encounters the invading wave at time t, will always flip at or before time
t + τi, before that first interaction is forgotten. As such a site with memory length τ with a
required memory proportion to flip of 1/4 is analogous to a site with an interaction threshold
of τ . For simplicity we will continue the analysis by using the idea of a site threshold in
which a down site will flip state once it encounters the new wave τ times.

As we are now considering sites to have their own thresholds, taken from a distribution
rather than being assigned a binary choice of long or short, we will be more concerned with
the exact thresholds at certain locations and the correlation between neighbours. As such
we will begin using (i, j) notation for positioning to more accurately describe specific sites.
We begin by letting τi, j = ⌊z⌋ , where z ∼ N (µ,σ2) be the individual threshold at location
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Fig. 4.16 Illustration of the time differential between sites flipping states and the directions
representing the positive direction for the delta function and influence given.

(i, j) and Ti, j be the flip time for site (i, j), the time step at which the opinion at the site flips
to the dominant invading idea. By choosing µ to be substantially large we can approximate
τi, j as a continuous normal distribution. Intuitively if σ = 0 then all sites have threshold
µ and the wavefront is flat and the wave is always at minimal speed of 1/µ . By choosing
low values of σ relative to µ we can be sure that the wave will be unable to bypass around
low threshold sites and as such Ti+1, j > Ti, j for all sites. For example if sites have a mean
threshold of 1,000,000 with a standard deviation of 50 then the possibility that a site can flip
states before the one behind it is infinitesimally small.

We define the following delta terms to represent the flip time differentials between
neighbouring sites, horizontally and vertically, as illustrated in (4.16).

∆
H
i, j = Ti, j −Ti, j−1 (4.3)

∆
V
i, j = Ti, j −Ti−1, j. (4.4)

Given that the system has periodic boundary conditions on the edges it must be the
case that the sum of all ∆H terms must be 0 and as such E[∆H ] = 0. Since ∆V is the time
differential between vertically aligned neighbours it is the case that E[∆V ] = 1/v, where v

is the velocity of the invading wave. We aim to calculate the velocity of the invading wave
given the mean and variance of the original approximate threshold distribution, τi, j = ⌊z⌋ ,
where z ∼ N (µ,σ2).
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From the definition of the system, site (i, j) will flip to the invading opinion once it
encounters the invading opinion τi, j times from its nearest neighbours. A site will receive
influence of the new opinion from all neighbours that flip at an earlier time step and, since
the sites in a column flip in ascending order, a site can not receive influence from above.
As such we need only consider potential influence from the agent below the two horizontal
neighbours. We define the piecewise function J as

J(x) =

0 if x < 0

x if x ≥ 0
(4.5)

and therefore

τi, j = ∆
V
i, j + J(∆H

i, j)+ J(−∆
H
i, j+1). (4.6)

Each J(∆H) represents the influence received from a horizontal neighbour and ∆V repre-
sents the vertical flip time differential and as such the influence received from the site below.
This is because at the time of flipping a site begins spreading influence at a rate of 1 per unit
time. As such the time differential between neighbouring sites flipping is the influence that
will be transferred between them. However this influence transfer is only in the direction of
the earlier flipper passing influence on to the later flipper, hence the piecewise function J.
Since the sites in a column will always flip in order, ∆V will always be positive and J is not
required there. Since the three terms on the right hand side of (4.6) represent the influence
received from the relevant neighbours of (i, j) it follows that these must sum to an individual
site’s threshold in order for it to flip. In order to continue to analysis we make the reasonable
assumptions that the delta terms are normally distributed with mean and variance as follows

∆
V ∼ N (1/v, σ

2
V ) (4.7)

∆
H ∼ N (0, σ

2
H). (4.8)

We can utilise this expression for J(∆H) to take moments of the equation (4.6) and
calculate some approximations for the velocity for the wave in terms σ and µ . Firstly we
compute the first three moments of J(∆H) as follows

E[J(∆H)] =
∫

∞

0

∆

σH
√

2π
e
− ∆2

2σ2
H d∆ =

σH√
2π

, (4.9)
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E[J2(∆H)] =
∫

∞

0

∆2

σH
√

2π
e
− ∆2

2σ2
H d∆ =

σ2
H
2
, (4.10)

E[J3(∆H)] =
∫

∞

0

∆3

σH
√

2π
e
− ∆2

2σ2
H d∆ =

√
2
π

σ
3
H . (4.11)

In our first approximation for the velocity of the wave we will make the optimistic
assumption that the delta terms in equation (4.6) are independent. Doing so allows us to take
simple expectations as follows.

E(τi, j) = E[∆V
i, j + J(∆H

i, j)+ J(−∆
H
i, j+1)]

µ =
1
v
+

2σH√
2π

, (4.12)

E(τ2
i, j) = E[(∆V

i, j + J(∆H
i, j)+ J(−∆

H
i, j+1))

2]

µ
2 +σ

2 =
1
v2 +σ

2
V +

4σH

v
√

2π
+(1+

1
π
)σ2

H , (4.13)

E(τ3
i, j) = E[(∆V

i, j + J(∆H
i, j)+ J(−∆

H
i, j+1))

3]

µ
3 +3µσ

2 =
1
v3 +

3σ2
V

v
+6(σ2

V +
1
v2 )

σH√
2π

+
3
v
(1+

1
π
)σ2

H +
7σ3

H√
2π

. (4.14)

If we solve these equations simultaneously for values of µ and σ we get a first estimate
for the velocity of the wave. Unfortunately solving these equations for µ = 100 and σ = 10
produces the solution that 1

v = 100. This would imply that the variation in site memory
thresholds, and the subsequent surface roughening, has no accelerating effect on the wavefront
which we know to be incorrect. We first attempt to resolve this by removing the assumption
that adjacent horizontal delta terms are uncorrelated, which seems intuitive, since we would
expect that if a site has a low threshold and flips early then its corresponding deltas would be
correlated.
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Instead let us now assume that adjacent horizontal delta terms are part of a bivariate half
normal distribution, K(x,y) with probability density function

1

2πσ2
H

√
1−ρ2

e
− x2+y2−2xyρ

2σ2
H (1−ρ2) , (4.15)

for non-negative x and y and 0 < ρ < 1. In this equation x = J(∆H
i, j), y = J(−∆H

i, j+1) and ρ

is the correlation between the adjacent deltas. In order to take moments as before we need to
calculate some additional expectations, A and B.

E[K(x,y)] =
∫

∞

0

∫
∞

0

xy

2πσ2
H

√
1−ρ2

e
− x2+y2−2xyρ

2σ2
H (1−ρ2) dxdy

A(σH ,ρ) =
ρσ2

H

(
π +

√
−1+ 1

ρ2 − arccos[ρ]
)

2π
, (4.16)

E[K(x2,y)] =
∫

∞

0

∫
∞

0

x2y

2πσ2
H

√
1−ρ2

e
− x2+y2−2xyρ

2σ2
H (1−ρ2) dxdy

B(σH ,ρ) =
(1+ρ)2σ3

H

2
√

2π
. (4.17)

By utilising these bivariate expectations we can recalculate the moments from equations
(4.12)-(4.14) this time under the assumption of correlated horizontal deltas.

E(τi, j) = E[∆V
i, j + J(∆H

i, j)+ J(−∆
H
i, j+1)]

µ =
1
v
+

2σH√
2π

, (4.18)

E(τ2
i, j) = E[(∆V

i, j + J(∆H
i, j)+ J(−∆

H
i, j+1))

2]

µ
2 +σ

2 =
1
v2 +σ

2
V +σ

2
H +

4σH

v
√

2π
+2A(σH ,ρ), (4.19)
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Fig. 4.17 A plot of the smoothed distribution for ∆H against a Gaussian normal with the same
mean and standard deviation. The orange plot represents ∆H from simulated results and the
blue plot represents the normal distribution.

E(τ3
i, j) = E[(∆V

i, j + J(∆H
i, j)+ J(−∆

H
i, j+1))

3]

µ
3 +3µσ

2 =
1
v3 +

3σ2
V

v
+6(σ2

V +
1
v2 )

σH√
2π

+
3
v

σ
2
H +

4σ3
H√

2π
+

6
v

A(σH ,ρ)+6B(σH ,ρ).

(4.20)

Unfortunately in solving this new set of simultaneous equations for known values of µ

and σ we still produce the only viable solution that 1
v = 100, which we know to be incorrect.

Given that this method should be correct it must be the case that some of our underlying
assumptions are false. In order to test this we simulated a system with width of 50 and height
of 1000 with µ = 100 and σ = 5 to observe the actual distributions of ∆H and ∆V .

Evidently from plots (4.17) and (4.18) the assumption of normality, especially in the
case of ∆H is erroneous since it appears to be bi-modal, which would have a significant
impact on the moments taken in all previous equations. The assumption of normality appears
reasonable in the case ∆V however. In order to use the moments technique above we would
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Fig. 4.18 A plot of the smoothed distribution for ∆V against a Gaussian normal with the same
mean and standard deviation. The orange plot represents ∆V and the blue plot represents the
normal distribution.
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l x r

a b c

Fig. 4.19 An illustration of the tiles with an important impact on the time differential tx.

need to ascertain the exact distribution for ∆H , something beyond the current scope of this
work.

We will instead look at an alternative method of approximating the velocity for this
system based upon a mean field approach. Let us consider an arbitrary point in the middle
of our system, site x, and let tx be the time differential between site x flipping and the site
behind flipping. The expected velocity of the wave is simply 1

tx
. We begin by considering

the simplest version of the system and then progressively introduce the variability in site
thresholds that cause the complexity in calculating the velocity. From figure (4.19) we are
interested in tx and will begin with all named sites having fixed thresholds before introducing
distributions for them. For each version of the system we attempt to compute tx analytically
allowing us to compare each approximation to the realised simulation results. We will begin
with the assumption that fixed threshold sites have a threshold of τ = µ and variable sites
have threshold τ = µ +b where b is taken from any distribution of choice. We again make
the assumption that µ is substantially large and our discrete system can be treated as though
it is continuous.

With this in mind let us again consider the simplest possible system in which every
site (i, j) on the lattice has fixed threshold τi, j = µ . If we say that site x is on row n of the
system then we know that all other agents on the same row flip at time t = µn, all sites
on the line below flip at t = µ(n−1) and so on. Evidently in this system tx = µ since, as
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previously discussed, this system will exhibit no accelerated velocity and the wave will
progress through the system as a uniform flat line. Thus in this version of the system, the
zero order approximation, the velocity of the wave is exactly 1/µ .

Next let us consider τx being variable while all other sites remain with fixed thresholds.
Given all the other sites have fixed thresholds of µ there are two cases to consider; τx < µ

and τx > µ . We define Ix(t) to be the cumulative dose of the invasive opinion that site x has
received at time t where

Ix(t) =
t

∑
s=0

∑
j∈⟨i⟩

S j(t − s) (4.21)

and we define Tx to be the exact time at which site x flips. Therefore tx = Tx −Tb. If we let
Ix(t) be the information received at site x at time t then we know that once Ix(t) = τx site x

flips. It τx < µ we know that site x flips before its neighbours and as such it will only receive
influence from the site directly below, which flipped at time t = µ(n−1). If τx > µ then the
site x will receive influence from the site behind until t = µn, at which point the neighbours
will flip and the amount of influence being received is tripled. At the time of site x flipping

Ix(Tx) = τx =

(Tx −µ(n−1)) if τx ≤ µ

(Tx −µ(n−1))+2(Tx −µn) if τx > µ

(4.22)

and noting that tx = Tx −Tb where Tb = µ(n−1) allows us to rearrange to get

tx =

τx if τx ≤ µ

µ + τx−µ

3 if τx > µ.
(4.23)

From our definition τ = µ + b where b is from any distribution. If, for example, we
allow b to be from a normal distribution with mean 0 and standard deviation σ then we can
introduce a variable p ∼ N (0,σ) = (τ −µ). Clearly in this case

tx =

µ + p if τx ≤ µ

µ + p
3 if τx > µ

(4.24)
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enabling us to perform the following integrations over the correct limits,

∫ 0

−∞

pe
−p2

2σ2

σ
√

2π
d p =− σ√

2π∫
∞

0

pe
−p2

2σ2

3σ
√

2π
d p =

σ

3
√

2π
. (4.25)

This allows us to make an analytical approximation for the time differential between site x

and the site behind and with it a first approximation for the velocity of the wave using v = 1
tx

,

v =
(

µ − 2σ

3
√

2π

)−1

. (4.26)

As an indicator of the accuracy of this approximation we make comparisons to the results
from simulation. For a system with τ ∼ N (100,5) this approximation gives us v = 1/98.7
whereas the simulated result is v = 1/96.5 indicating that this approximation technique
begins to predict an acceleration in wave speed but has a large room for improvement. In
order to do this we increase the number of sites with variable thresholds.

We now extend on this by introducing threshold variability in more sites to create a
second order approximation. We begin by looking at the case in which τx,τl and τr are
variable with all other sites having mean threshold and attempt to calculate how accurate of
an approximation this makes. In this case we immediately know Ta = Tb = Tc = µ(n−1)
since there is no stochasticity in the system at this time. There are multiple cases that we
need to consider in order to be exhaustive of which sites will be making an impact on tx.

1. Site x flips before sites l and r and as such only receives influence from site b. This
occurs when τx < min(τl,τr).

2. Site x receives influence from site l which also received influence from its outer
neighbour and behind. µ < τl < τx < τr.

3. Site x receives influence from site r which also received influence from its outer
neighbour and behind. µ < τr < τx < τl .

4. Site x receives influence from site l which only received influence from behind. τl <

τx < τr and τl < µ .

5. Site x receives influence from site r which only received influence from behind. τr <

τx < τl and τr < µ .
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6. Site x receives influence from sites l and r which both only received influence from
behind. µ > max(τl,τr) and τx > max(τl,τr).

7. Site x receives influence from sites l and r which both received influence from outer
neighbours and behind. µ < min(τl,τr) and τx > max(τl,τr).

8. Site x receives influence from sites l and r which both received influence from behind
and only l received influence from the outer neighbour. (τr < µ < τl) and τx >

max(τl,τr).

9. Site x receives influence from sites l and r which both received influence from behind
and only r received influence from the outer neighbour. (τl < µ < τr) and τx >

max(τl,τr).

Clearly there are many cases, but we can reduce them by acknowledging the horizontal
symmetry which leads to multiple pairs of cases being identical. Those pairs are cases 2 and
3, cases 4 and 5 and cases 8 and 9. For each unique case we need to calculate tx in order to
get an overall approximation for the system velocity. We use Ix(t) to denote the influence
received by site x at time t.

Case 1: We can simply calculate tx using the influence received by site x at time of flip is

Ix(Tx) = τx = Tx −Tb

= tx

and so

tx = τx. (4.27)

Case 2: In this case we use ll to denote the outer neighbour of site l. The influence
received by site l at the time of its flip can be expressed as

Il(Yl) = τl = (Tl −Ta)+(Tl −Tll)

= Tl −µ(n−1)+Tl −µn

and so

Tl = µn+
τl −µ

2
. (4.28)



4.3 Interface Motion with Disorder 78

With the flip time of site l we can now consider the influence received by site x at the moment
it flips, shown to be

Ix(Tx) = τx = (Tx −Tb)+(Tx −Tl)

= Tx −µ(n−1)+Tx − (µn+
τl −µ

2
)

and so utilising tx = Tx −µ(n−1) we can rearrange for

tx = µ +
τx −µ

2
+

τl −µ

4
. (4.29)

Case 4: We can use case 1 above to give us Tl = µ(n−1)+ τl , from which it follows
that, at the time of site x flipping,

Ix(T ) = τx = (Tx −Tb)+(Tx −Tl)

= Tx −µ(n−1)+Tx − (µ(n−1)+ τl)

and we can rearrange to get

tx = µ +
τx −µ

2
+

τl −µ

2
. (4.30)

Case 6: We again utilise case 1 to give us Tl = µ(n− 1)+ τl and Tr = µ(n− 1)+ τr

which means that when site x flips

Ix(Tx) = τx = (Tx −Tb)+(Tx −Tl)+(Tx −Tr)

= tx +Tx − (µ(n−1)+ τl)+Tx − (µ(n−1)+ τr)

and so

tx = µ +
τx −µ

3
+

τl −µ

3
+

τr −µ

3
. (4.31)

Case 7: We can use case 2 to give us Tl = µn+ τl−µ

2 and Tr = µn+ τr−µ

2 and thus when
site x flips

Ix(Tx) = τx = (Tx −Tb)+(Tx −Tl)+(Tx −Tr)

= tx +Tx − (µn+
τl −µ

2
)+Tx − (µn+

τr −µ

2
)
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and rearranging gives us

tx = µ +
τx −µ

3
+

τl −µ

6
+

τr −µ

6
. (4.32)

Case 8: From previous cases Tl = µn+ τl−µ

2 and Tr = µn+(τr −µ). When site x flips

Ix(Tx) = τx = (Tx −Tb)+(Tx −Tl)+(Tx −Tr)

= tx +Tx − (µn+
τl −µ

2
)+Tx − (µn+(τr −µ))

and lastly rearranging gives us

tx = µ +
τx −µ

3
+

τl −µ

6
+

τr −µ

3
. (4.33)

By listing and solving the cases exhaustively we can now define t(x) as

tx(τx,τl,τr) =



τx if τx < min(τl,τr)

µ + τx−µ

2 + τl−µ

4 if µ < τl < τx < τr

µ + τx−µ

2 + τr−µ

4 if µ < τr < τx < τl

µ + τx−µ

2 + τl−µ

2 . if τl < τx < τr and τl < µ

µ + τx−µ

2 + τr−µ

2 . if τr < τx < τl and τr < µ

µ + τx−µ

3 + τl−µ

3 + τr−µ

3 if µ > max(τl,τr) and τx > max(τl,τr)

µ + τx−µ

3 + τl−µ

6 + τr−µ

6 if µ < min(τl,τr) and τx > max(τl,τr)

µ + τx−µ

3 + τl−µ

6 + τr−µ

3 if (τr < µ < τl) and τx > max(τl,τr)

µ + τx−µ

3 + τl−µ

3 + τr−µ

6 if (τl < µ < τr) and τx > max(τl,τr).

(4.34)

As in the first order evaluation we let b be from a normal distribution with mean 0 and
standard deviation σ and let p = (τx −µ),y = (τl −µ) and z = (τr −µ). We now integrate
each case in equation (4.34) over the given range to see how much tx deviates from the fully
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fixed zeroth order system as follows:

∫
∞

−∞

∫
∞

−∞

∫ min(y,z)

−∞

p
e
−p2−y2−z2

2σ2

(2π)
3
2 σ3

d pdydz =− σ

2
√

π
(4.35)

∫
∞

0

∫
∞

y

∫
∞

p
(

p
2
+

y
4
)
e
−p2−y2−z2

2σ2

(2π)
3
2 σ3

dzd pdy =
σ

(
π −4

√
2arctan 1√

2
+2

√
2arctan

√
2
)
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√

2π
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2

(4.36)

∫ 0

−∞

∫
∞

y

∫
∞

p
(

p
2
+

y
2
)
e
−p2−y2−z2

2σ2

(2π)
3
2 σ3

dzd pdy =
−πσ4 −2

√
2πσ4 +2

√
2σ4 arctan 1√

2

16
√

2π
3
2 σ3

(4.37)

∫ 0
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∫ 0
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∫
∞
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p
3
+

y
3
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z
3
)
e
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3
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6
√

2π
(4.38)
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y
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(4.39)
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0

∫ 0

−∞

∫
∞

max(y,z)
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p
3
+

y
6
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z
3
)
e
−p2−y2−z2

2σ2

(2π)
3
2 σ3

d pdzdy =
σ

48
√

π
. (4.40)

All of these integrals are solvable immediately except the integral from case 7 in which the
final integration needs to be done by parts.

In order to calculate the velocity we must first define f (σ), the effect of variable thresh-
olds on flipping time, calculated by summing all possible cases in (4.35) as follows

f (σ) =− σ

2
√

π
− σ

6
√

2π
+

σ

(
π −4

√
2arctan 1√

2
+2

√
2arctan

√
2
)
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√

2π
3
2
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−πσ4 −2
√

2πσ4 +2
√

2σ4 arctan 1√
2

8
√

2π
3
2 σ3

+
σ

24
√

π
+

σ

(
(2+

√
2)π −4arctan

√
2
)

48π
3
2

,

(4.41)

and our approximation for the velocity in this system is simply v = 1/(100+ f (σ)). In order
to assess the performance of the approximation we compare it to the realised results from sim-
ulation. We simulated a system with all sites having a variable threshold with τ ∼N (100,σ)

for a range of sigma values. A plot of this approximation against simulation results is shown
in figure (4.20). As we can see from these results this method of approximation performs
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Fig. 4.20 A plot showing the velocity of the wave front in a system with mean threshold
100 and standard deviation σ . The red plot represents the simulation results and purple plot
represents the τl,τx,τr variable approximation.

reasonably well for low σ values but we seek a more accurate approximation. We note that
as σ gets large the velocity in the simulated systems increases at a much larger rate than the
approximation, which is due to the wavefront shape being erratic when the thresholds have
large relative differences. As such these approximations are mostly useful in low variance
systems.

In this approximation we have made a simple attempt at a mean field approach; assuming
some variable behavior among a sea of average behaviour. The next extension of this
approach would be to consider sites a,b,c, l,r,x as variable, with all other sites having mean
threshold, allowing us to include the accelerating impact of more variable thresholds in the
local neighbourhood.

4.4 Tiled Approach to the Variable Threshold System.

In this final section we look at using the previous tiled approach in order to approximate
the velocity of a wavefront in a system for which the sites have variable thresholds. The
predominant advantage of approximating the system as being made up of a given tile repeated
many times over is that it is possible to calculate an exact result while having the option to
increase the tile size to improve accuracy. We begin by looking at the system as a repetition
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(1,1)
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Fig. 4.21 An illustration of the tiled system with the labeling of the 4 sites with variable
thresholds that are repeated through the whole system.

of a 2×2 tile as illustrated in figure (4.21) where the row number, k, represents the positional
height of the tile in the system and the wave is traveling vertically upwards.

In this system we know the wavefront will have stable velocity v and we define γ = 2
v to

be the time taken for the wave to travel through a tile. We define Tk,i, j, the flip time of site
(i, j) in tile row k with expression

Tk,i, j = γk+ xi, j (4.42)

where xi, j is the additional time it takes site (i, j) to flip once the first site in a tile has flipped.
We again utilise the J function defined in (4.5) to denote the influence received between sites
based upon their flip time differences. We assume the thresholds are from distributions that
are close to one another and with sufficiently low variances such that the sites in any given
column all flip in ascending order and the wavefront behaviour is predictable. With this
reasonable restraint we can generate equations for the thresholds in terms of the influence
each site receives from its neighbours as follows

τ2,1 = x2,1 − x1,1 + γ +2J(x2,1 − x2,2)

τ2,2 = x2,2 − x1,2 + γ +2J(x2,2 − x2,1)

τ1,1 = x1,1 − x2,1 +2J(x1,1 − x1,2)

τ1,2 = x1,2 − x2,2 +2J(x1,2 − x1,1). (4.43)
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Given the reflective symmetry of the tile structure and repetition in the structure of the
system there are 4 tile cases we are concerned with,

1. x1,2 < x1,1 and x2,2 < x2,1 if τ1,2 < τ1,1 +
1
3(τ2,1 − τ2,2) and τ2,2 < τ2,1

2. x1,1 < x1,2 and x2,1 < x2,2 if τ1,1 < τ1,2 +
1
3(τ2,2 − τ2,1) and τ2,1 < τ2,2

3. x1,2 > x1,1 and x2,2 < x2,1 if τ1,2 > τ1,1 +
1
3(τ2,1 − τ2,2) and τ2,2 < τ2,1

4. x1,1 > x1,2 and x2,1 < x2,2 if τ1,2 > τ1,1 +
1
3(τ2,2 − τ2,1) and τ2,1 < τ2,2,

where the first 2 and last 2 cases have the same solution. The first 2 cases represents a tile in
which the sites in one column always flip before the other column whereas the second case
represents the first site to flip on each line coming from alternating columns. We begin by
getting an expression for γ in each unique case.

For case 1

τ2,1 = (x2,1 − x1,1)+ γ +2(x2,1 − x2,2)

τ2,2 = (x2,2 − x1,2)+ γ

τ1,2 = (x1,2 − x2,2)

τ1,1 = (x1,1 − x2,1)+2(x1,1 − x1,2)

x2,2 = 0, (4.44)

which we can solve for γ to get
γ1 = τ2,2 + τ1,2 (4.45)

which is intuitive since the time taken to travel through a tile in which one column always
flips first should simply be the sum of said column’s thresholds.

For case 3

τ2,1 = (x2,1 − x1,1)+ γ +2(x2,1 − x2,2)

τ2,2 = (x2,2 − x1,2)+ γ

τ1,2 = (x1,2 − x2,2)+2(x1,2 − x1,1)

τ1,1 = (x1,1 − x2,1)

x2,2 = 0, (4.46)
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which we again solve for γ to get

γ2 =
1
4
(3τ1,1 +3τ2,2 + τ1,2 + τ2,1). (4.47)

For an example approximation we will let all thresholds be from a Gaussian normal dis-
tribution with mean µ and standard deviation σ . We can then express each threshold as
τi, j = µ +ui, j and we see that

γ1 = 2µ +u2,2 +u1,2

γ2 = 2µ +
1
4
(3u1,1 +3u2,2 +u1,2 +u2,1). (4.48)

In order to calculate γ and the velocity of the wave in a given case we need to perform the
integration

∫
D
(2µ + f (u1,1,u1,2,u2,1,u2,2))

e−
u2

1,1+u2
1,2+u2

2,1+u2
2,2

2σ2

(2π)2σ4 du1,1 du1,2 du2,1 du2,2, (4.49)

where D is the domain over which the integration is performed and f is some linear combi-
nation of u terms.

In order to calculate the integral (4.49) we use the change of variable

zi, j =
ui, j

σ
with dui, j = σ dzi, j (4.50)

so that the original integration in equation (4.49) becomes

∫
D′
(2µ +σ f (z1,1,z1,2,z2,1,z2,2))

e−
z2

1,1+z2
1,2+z2

2,1+z2
2,2

2
(2π)2 dz1,1 dz1,2 dz2,1 dz2,2 (4.51)

with D′ being the new domain to integrate over.
This integration can now be separated into two parts. The first part is

∫
D′

2µ
e−

z2
1,1+z2

1,2+z2
2,1+z2

2,2
2

(2π)2 dz1,1 dz1,2 dz2,1 dz2,2, (4.52)
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which when we sum over the whole domain by adding all 4 cases together, simply sums to
2µ . The second part

σ

∫
f (z1,1,z1,2,z2,1,z2,2))

e−
z2

1,1+z2
1,2+z2

2,1+z2
2,2

2
(2π)2 dz1,1 dz1,2 dz2,1 dz2,2, (4.53)

is a linear term in σ where the integral is a constant K which we can solve for numerically in
each case. We can numerically evaluate the integral for all cases with the domains defined
by the τ inequalities in equation (4.4) and the function f from the equations in (4.48). We
let K1 be the solution for cases 1 and 2 and K2 be the solution in cases 3 and 4 and through
numerical integration we get the results

K1 =−0.319459 (4.54)

K2 =−0.115127. (4.55)

By combining the results for equations (4.52) and (4.53) we can get an expression for γ

which is linear in µ and σ as follows

γ = 2µ +2σ(K1 +K2)

= 2µ −0.869172σ . (4.56)

We plot this approximation against realised simulation results in graph (4.22) where we
see that for such a simple and small tile the approximation is reasonable. We conclude that,
of all the approximation methods presented in this chapter, that this tiled approximation is the
superior approach. It is simple to scale up by increasing the tile size, either to 3×3, or even
just 3×2 and the number of cases required to go through to reach a solution is significantly
fewer than the alternative approaches. The following work for this content in preparation for
a publication would be to extend the number of variable locations in each approximation to
see the effects of early flipping sites over a larger distance. An area of further investigation is
also the shape of the wavefront within a tiled system as surface roughening is a key factor in
wave acceleration.

4.5 Interface Spreading Conclusion

By utilising a memory and threshold model on a two dimensional lattice with nearest
neighbour interactions we created multiple approximation methods to calculate the velocity
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Fig. 4.22 A line plot for the γ of a system against σ for both a simulated system and the tile
approximation. The red line represents the simulation result and the purple line represents
the tile approximation.

of the wave. We explored the basic behaviour of the traveling wave through simple site
threshold setups noting that velocity is not proportional to the mean system threshold and
is instead more closely linked to the fastest possible route. We highlighted how some low
threshold sites can accelerate the wave by increasing the surface area through which influence
is spread and how this relates to the gradient of the wavefront. We have shown that the
behaviour of a large system can be accurately approximated using repetition of a small tile
where the exact velocity of the wave is much simpler to compute while demonstrating how
very small tiles can exhibit high variance in this method.

We then proceeded to look at systems with variable memories or thresholds and utilising
the time differences between flips of neighbouring sites to approximate the wave velocity.
In doing so, we established the non-normality of the distribution from which the flip time
differentials originate. We used mean field approximations of progressively higher order
to estimate the velocity of the wavefront, acknowledging the results were promising but
higher order systems, in which more sites are considered to have variable thresholds, may
be required to reach a more accurate result. Finally we combined the previous tiled system
analysis with the variable threshold system and calculated analytical approximations for the
wave travel time based upon the time to travel through one tile in a self replicated system.



Chapter 5

Threshold Spreading in One Dimension

The investigation of how ideas spread through communication networks is a heavily re-
searched area due to the impact of social networks on modern society. The understanding of
how people can be influenced and who or where to target efforts [84] offers huge potential
benefits to those wishing to effectively spread ideas; ranging from advertisers being able to
get their products positively seen by more people [85, 86] to the spread of political ideas
[87, 88] and ‘fake news’ [89]. While this field of research often involves complex networks
in this chapter we will look at the spread of an invasive idea in much simpler systems to inves-
tigate their behaviour with the possibility of the results and techniques being able to upscale
to different systems. We focus on one dimensional systems in which agents communicate
with others within a given range with the main consideration being how far an invasive idea is
expected to spread and what connectivity features can stop it. Spreading effects on networks
can have many varied contagion methods [90]. Our system is a susceptible infectious (SI)
model [91, 92], meaning all sites are in one of two states, either susceptible or infectious.
The similar but distinctly different alternative models would be the susceptible, infectious,
susceptible (SIS) model [93] in which infected sites can revert back to susceptible or the
susceptible, infectious, recovered (SIR) model [94] where infected sites can recover or be
refractory and have an immunity. We choose the SI model as it exhibits the features we are
concerned with and lacks unnecessary complexity.

We start by looking at a simple toy model to introduce the setup, notation and basic
concepts and move on to calculate the range of site connectivity, firstly using a martingale
approach and secondly a clustered system approach. We conclude by considering the system
to be analogous to a mean-field random walk and investigating the distribution of connections
which allow the invading wave to propagate indefinitely.
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5.1 One-Dimensional Fixed Neighbour Threshold Model

The first model we will look at is very simple but it has some important features and requires
certain techniques to solve that will be useful in more complex situations. We take a line
with agents at sites i, i ∈ Z≥0 and define a connection between two sites to be a reciprocal
communication in which they can pass on influence of an idea. We define a site i as either
being in the ‘up’ opinion state, Si = 1, denoting that they have adopted the new invasive idea
or in the ‘down’ opinion state Si = 0 in which they follow the original standard idea. At the
beginning of the system all sites are in the ‘down’ opinion state except a small cluster at the
start of the line that have adopted the new invasive idea, and all sites have a threshold, τ , a
measure of their resistance to adopt the new idea. Once a down site interacts with τ up sites
they will flip their opinion state and begin to spread influence of the new idea themselves.
The key distinction between the systems in this chapter and the previous chapter is that
these models require a site to communicate to τ unique sites in order to flip, whereas in the
previous chapter a site could flip after enough time of communicating to just one neighbour
with the invasive idea. There is a system parameter r, the link range, which indicates the
number of sites in the neighbourhood of a site that it can and does communicate with. The
application of threshold rules as a simplistic comparison to social influence is an established
area of research with many models having been created including the Watts model [17] and
the Centola-Macy model [95]. Our system is highly comparable to these models in which
sites have a fixed and permanent threshold taken from some distribution and each node can
be in a binary state at a given time. Sites then update their state based upon the number of
connected neighbours exceeding or remaining below the threshold. The key distinction of
this work is introducing new methods to approach the model which can then be applied to
other systems.

In this first model each site interacts with a cluster of r sites in its neighbourhood with the
possibility of looking slightly forwards or backwards. This system allows us to enumerate
the connectivity of a site depending on which of the sites in its neighbourhood it is connected
to. We define the connection state si of site i as the difference between the number of
forward connections and the number of backward connections. Examples of connection
states are shown in figure (5.1). Note the distinction between the opinion state of i, Si and
the connection state of i, si. Given that the links between sites in this system are reciprocal,
and the connection blocks are dense, it means that the connectivity state of site i has a direct
impact on the connectivity states of all the sites within range r and in fact further as we will
show.
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A

C

B

Fig. 5.1 An example of the restricted connectivity of the initial model. The leading diagonal
represents sites on the one dimensional line and green squares represents reciprocal connec-
tions. Only 3 sites in the system are shown as an example. In this case r = 5,sA = 3,sB =−3,
and sC = 3.
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D

Fig. 5.2 A system in which r = 3 and sD−4 = r = 3. The red square highlights a site which
can’t represent a connection due to this, forcing the connection states SD = 3.

Evidently for a system with a link range r there are r+1 possible connection states for a
site to be in, ranging from only communicating forwards to only communicating backwards.
We begin by considering a site i in the system in connection state si = r, that is that they
communicate only with agents in front of them. Due to the reciprocal nature of links we
know that site (i+ r) must communicate r sites backwards and as such their only possible
connection state is si+r = −r. It follows that if si+r = −r then site (i+ r+ 1) can not be
communicating to any backwards sites and thus si+r+1 = r. This idea is illustrated in figure
(5.2). From this position it is clear that the system is now in a series of disjoint clusters and
any invading ideas will never be able to exceed the threshold at site (i+ r+1) giving us our
first rule in this model; (i+ r) is an upper bound for the travel distance of the wave where
site i is the first site in the system in connection state r.

In the case where r = 3 therefore we have confirmed that if we ever see a site i for which
si = 3 then the future nature of the system is fully decided, likewise if si =−3. Given that
the only two other states possible are 1 and −1 we shall consider a system limited to only
those two options. For simplicity let si = 1 and in only considering the agents in front, we
know site i has reciprocal links to sites (i+1) and (i+2). We now consider the state at site
(i+2); we have already determined that they must connect to site i and since in this case we
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have disallowed the extreme connection states the only option becomes si+2 =−1. If now
we next consider site (i+1) we have two options and both are valid, however whichever state
(i+1) is in must be the opposite of state (i+3). If si+1 = 1 then, using the same justification
we used to explain si =−si+2, we can say si+1 =−si+3. If si+1 =−1 then it does not have
a link to site (i+3), but (i+3) does link to (i+2) and thus si+3 = 1. For the system with
extreme cases disallowed it is true that si =−si+2 for all i ∈ Z≥0.

This leads to two more rules. Firstly if we draw out the system in the way shown in figure
(5.1) and figure (5.2) then the system has an intuitive line of reflection across the leading
diagonal due to the reciprocal nature of the links. This graphically demonstrates the fact that

∑
∞
k=i sk = 0 as every connection forward for one site is a connection backwards for another. In

fact we can expand on this rule and assert ∑
i+r+1
k=i sk = 0 showing that for all possible systems

si = si+r+1 and the system will always enter cycles of length r+1. Secondly because the
connection blocks are reciprocal and dense it is not possible for site (i+1) to communicate
further back than site i communicates. Thus in order for sites to exceed their threshold and
change opinion to the new invading idea they must always do so in order. Due to this fact,
and because in order to flip ideas you must interact with τ sites with the new opinion, every
single site must interact with at least τ agents from behind or the invading wave breaks down.
Combining these rules gives us a very strict pattern of acceptable cycles that can allow a
wave to continue indefinitely.

If we take for instance r = 4 and τ = 2 we know from the above rules that ∑
i+r+1
k=i sk = 0,

the states are in a cycle of 4 and that all sites must link to at least 2 sites from behind. Thus
the only viable configuration for this wave to continue unrestricted is (0,0,0,0, . . .). While
this model is rather trivial and solvable it introduces some important concepts and acts as the
prelude to much more interesting models.

5.2 One-Dimensional Ranged Interaction Model

The greatest restriction of the previous model is that each site interacts with a fixed cluster of
neighbours and because of this the states of ahead agents are predetermined and the system
is easily understood. We now expand on that system by allowing sites the possibility of
connecting or not connecting to a site within a fixed radius around them but keeping the
property of a site threshold. In this system the links are still reciprocated in the sense that if
site i passes influence to site j then site j passes influence to site i, but because sites don’t
have the fixed cluster of connections there isn’t a forced cycle of site states. This difference
in the system leads to some fundamental behaviour changes for the traveling wave, most
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Fig. 5.3 A sample system with link range r = 3 and threshold τ = 1. This example exhibits
two important features of this model; firstly that the wave is still traveling despite site 3 not
having flipped and secondly that the wave has traveled forward, backwards and then forwards
again. Since sites 0,1 and 2 start in the up state the order of sites flipping is 5,8,11,10,7,4,6
and lastly 9.

notably that for site i to take on the new invasive idea it is not required for site (i−1) to have
already switched. In fact it is entirely possible for a site to never switch opinions but for the
wave to travel past them or for the wave to travel past but come back and influence them at a
later time step. It is because of these traits that the analysis becomes more complicated.

We begin by looking at a system with link range r = 3, threshold τ = 1 and probability
of making a link, p, the simplest system that exhibits some of these behaviours. We begin
all systems with the first r sites having the new invasive idea and all other sites having the
standard weaker idea, this way the invasive opinion begins at its strongest since it has the most
possibilities to pass on. The question we attempt to answer is how far will the wave travel
before no longer influencing any new sites to flip? As shown in figure (5.3) the wave can
travel forwards, then influence sites behind and then travel forwards again and, although the
probability of these long sequences occurring becomes very low, they are possible. Therefore
in calculating the expectation that an arbitrary site will eventually adopt the new invasive
idea you have to look at the connections in both directions for a large distance. This makes
any approach involving calculating the expected opinion of sites incredibly complicated.

For these reasons we need to use a new approach beginning with adjusting the enumera-
tion of the site states. Due to the reciprocal nature of links between sites if we start at site 0
they can only connect to the r sites in front of them with 2r permutations. If we then consider
site 1 it is already determined whether it connects to site 0 and as such we need again only
consider the r sites in front. We can repeat this process and notice that all configurations of
network connections can be created by only determining the forward connections of each
site. In order to enumerate this we simply allow a sites state to be the binary expansion of its
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X 4 2 1

Fig. 5.4 An example of the forward connection enumeration on a system with link range r.
In this example the dotted line represents no link and as such node X has link state 5.

forward connections as shown in figure (5.4). As such all possible network configurations
can be expressed as a series of integers between 0 and 2r −1 and as an example if we look at
figure (5.3) we can say (s0,s1, . . . ,s10,s11) = (6,0,1,0,3,1,1,1,1,1,4,0).

With this structure in place, instead of looking directly at how far a wave travels, we can
consider which sequences of network connections (site states) cause the invading wave to get
pinned.

5.2.1 Stopping Sequences

We begin by looking at the case where p = 0.5 and as such all possible states for a single
nodes connections are equally likely. At time of creation our system has S0 = S1 = S2 = 1
and Sk = 0 for all k > 2. As the system evolves over time the wave propagates through
the system and some of the down sites will become up, with the opposite switch being
impossible. Consider a site in the system i, i ̸= 0 for which sites Si = Si+1 = Si+2 = 1. In our
consideration of sequences that cause the wave to stop we can truncate off all of the sites
before site i since the system is essentially re-originated at this point. A second consideration
in this model is that for the wave to stop there must be a furthest forward up site j such that
S j = 1 and Sk = 0 for all k > j. The state of all sites above j become irrelevant to the wave
stopping since the invading opinions never reaches them or goes beyond. This gives us our
definition of a stopping sequence.



5.2 One-Dimensional Ranged Interaction Model 94

4 0 2 1 0 - - -

Fig. 5.5 Stopping sequence (4, 0, 2, 1, 0). Whenever this sequence of forward links occurs
the wave is guaranteed to stop.

Definition. Stopping Sequence : A stopping sequence for a system is the sequence of site

states (si,si+i, . . . ,si+r, . . . ,s j−1,s j) in which site i is the greatest site in the system for which

Si = Si+1 = . . .= Si+r = 1 and S j = 1, Sk = 0 for all k > j.

In our system with r = 3,τ = 1 and p = 0.5 the simplest stopping sequence to consider is
(0,0,0), three sites in a row that make no forward links and as such the wave can never reach
past them. For this system there happens to be 8 stopping sequences of length 3, 72 sequences
of length 5 and an exponentially growing number of longer sequences. Shorter sequences are
universally more likely to occur and cause a wave to stop than longer sequences, however
not all stopping sequences of the same length are equally probable even though all site states
have equal probability of 1/8. An example of this are the two stopping sequences shown in
figures (5.5) and (5.6); in which both sequences contain the same number of links yet the
sequence (4 1 0 2 0) is almost twice as likely as (4 0 2 1 0) to be the sequence to stop a wave,
with respective probabilities of 0.01871 and 0.0096.

The reason for there being no stopping sequence of size four is due to the definition of a
stopping sequence. The final site j of a stopping sequence has to be in the up state, that is
S j = 1, and therefore s j = 0. We then consider site j−1; if site j−1 does not connect to
sites j+1 or j+2 then it doesn’t matter which value S j−1 takes. If site j−1 does connect
past site j then S j−1 = 0 which puts restrictions on the connection states s j−4,s j−3 and s j−2.
Likewise if site j−2 does not connect to site j+1 then S j−2 can take either value and if site
j−2 does connect to site j+1 then S j−2 = 0 and the connection states s j−5,s j−4 and s j−3

matter. In short the stopping sequences of length three occur when sites j−1 and j−2 make
no connections beyond site j. In systems where sites j−1 and j−2 do make connections
past site j then the stopping sequence must go as far back as at least site j−4, making the
sequence have length of at least five.
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4 0 21 0 - - -

Fig. 5.6 Stopping sequence (4, 1, 0, 2, 0). Whenever this sequence of forward links occurs
the wave is guaranteed to stop.

Table 5.1 Probability that three given sequences are first finished at each time step given no
current flips.

Time step 1 2 3 4 5 6

Current flip sequence - - - - - -
Prob. of HTHT first ending 0 0 0 1

16
1

16
3

64
Prob. of THTT first ending 0 0 0 1

16
1

16
1

16
Prob. of TTTT first ending 0 0 0 1

16
1

32
1

32

Our explanation for the difference in probability of occurrence as a stopping sequence,
for different sequences of the same length, comes from Penney’s game [96], named after its
inventor Walter Penney, in which a fair coin is tossed and you gamble on the occurrence of
sequences. The game is non-transitive because for three sequences you often find that betting
on sequence A occurring before sequence B is profitable, betting on sequence B occurring
before sequence C is profitable and betting on sequence C occurring before sequence A is
profitable. This non-transitivity has some interesting results that follow over to our work.

5.2.2 Penney’s Game

In order to understand the difference in probabilities for sequences of the same length we
begin by considering sequences of coin flips in which there are only two possible results
at each site rather than the eight of the network model. Before any coin is flipped it is true
that for all sequences there is a 1/16 chance of the sequence finishing at the fourth coin flip.
However as the coin flip results start coming in the probability of sequences being completed
at given time steps can vary wildly as shown in tables (5.1), (5.2), and (5.3).
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Table 5.2 Probability that three given sequences are first finished at each time step given
heads was the result on the first flip.

Time step 1 2 3 4 5 6

Current flip sequence H - - - - -
Prob. of HTHT first ending 0 0 0 1

8
1
16

1
32

Prob. of THTT first ending 0 0 0 0 1
16

1
16

Prob. of TTTT first ending 0 0 0 0 1
16

1
32

Table 5.3 Probability that three given sequence are first finished at each time step given the
first coin flip was a head and the second was a tails

Time step 1 2 3 4 5 6 7

Current flip sequence H T - - - - -
Prob. of HTHT first ending 0 0 0 1

4 0 0 1
16

Prob. of THTT first ending 0 0 0 0 1
8

1
16

1
16

Prob. of TTTT first ending 0 0 0 0 1
8 0 1

32

From these examples it is evident that the expected wait time for a given sequence is not
consistent for each sequence and fluctuates as the results come in. In order to calculate the
expected wait time until we encounter a given sequence we introduce a thought experiment.
Imagine a fair gambling game, run by a casino in which we repeatedly toss a coin until we
hit a required sequence at which point the game ends. At every coin toss a new gambler
arrives and bets £1 on the first result of a sequence; if he loses he leaves disappointed and
if he wins he remains and bets everything on the next result. For instance if the sequence
we are considering is HTTT every gambler will bet on H for their first bet and if they win
they will bet on T for the second flip etc. figure (5.7) is a graphic representation for the total
winnings for all gamblers that are still involved when the game ends for the sequences HTHT
and THTT.

As we can see in the case of HTHT the gamblers have a combined final winnings the
gamblers have a combined winning of £20 and in the case of THTT the gamblers have final
winnings of £18, remembering that since this is the first time the sequence has occurred
any gamblers that played before this point must have lost. Given that the game is fair, by
definition the expected net gain to the casino must be 0. Since the gamblers bet a new £1
at every time step the expected number of flips to encounter THTT must be 18 and the
expected number of flips to encounter HTHT must be 20. However it can be shown that the
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Fig. 5.7 Illustration of the gamblers fortunes when the sequences THTT and HTHT first
occur and the game ends. Each row represents a gambler and the bets they make if they are
still in the game, while the number at the end of each row is the gamblers fortune when the
game finishes.
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odds are 9 to 5 in favour of seeing HTHT before THTT. In the original version of Penney’s
game we have two players A and B competing to guess a sequence that will occur first.
Player A chooses a sequence to bet on, reveals it and then player B chooses their sequence.
Provided the sequences are of length three or greater it is always possible for player B to pick
a sequence that gives them favourable odds of winning with this being shown in figure (5.8)

An intuitive explanation for these results is that unless player A wins at the earliest
possible chance, on the third coin flip, then at any point in time at which they could win on
the next coin flip there is a high chance that player B has just won. This is because the player
B intentionally chooses a sequence that ends with the first two flips in the sequence chosen
by A. This is the most apparent in the case where player A chooses TTT (or HHH); if their
sequence is completed on the third coin flip then they immediately win and their choice was
unbeatable. If their sequence is to complete at any time, t > 3, then it must be true that the
sequence HTT (or THH) was completed at time t −1. Thus if player A chooses TTT they
have a 1/8 chance of still winning against HTT by winning on flip three, but after that they
can never win. It is this behaviour that contributes to the HTHT sequence being a 9 to 5
favourite to be seen before THTT despite having a longer expected wait time. It is also worth
noting that this game is non-transitive in the sense that if strategy A beats strategy B and
strategy B beats strategy C then strategy A doesn’t necessarily beat strategy C, meaning that,
unless you have prior information to your opponents choice, there isn’t an optimal choice
that guarantees you are favourite to win.

In order to calculate the expected wait time to encounter any sequence from a list and
also calculate the probability for any given sequence to be the first to occur we refer to a
paper by Shuo-Yen Robert Li [97] in which a method is outlined to exactly calculate such
values. We let Z be a discrete random variable (the theory works for an arbitrary discrete
distribution so one may pick their favourite), Σ be the set of all possible values of Z and let
Z1,Z2, . . . be a sequence of independent random variables with the same distribution as Z. Let
A = (a1,a2, . . . ,am) be a sequence over Σ and B = (b1,b2, . . . ,bn be a sequence over Σ that
is not a connected sub-sequence of (a1,a2, . . . ,am−1). We denote NB to be the waiting time
until the sequence B occurs in a run of the process Z1,Z2, . . .. We previously calculated NB in
the coin system for sequence B = (H,T,H,T ) given a new system with no current gamblers.
Now imagine we arrive to the game late and we already see the sequence A = (H,T ) is on
the table; this changes the expected time to now see sequence B. We define E[NAB] to be the
expected wait time to see sequence B given the sequence A as a starting point. Clearly in this
case when we arrive at the table the gambler that began playing two steps before currently
has a fortune of £4 and all other gamblers have lost. Given we know the gamblers have
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Fig. 5.8 Table showing the probability of B winning given the players choose the given
sequences. Cells highlighted in gold correspond to the optimal choice for B, given the choice
made by A, and cells highlighted green are alternate winning selections. These numbers are
derived from Penney’s game.
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a fortune of £20 at the game’s conclusion we expect them to gain another £16. Since the
game is fair, by definition, if we expect the gamblers to win £16 more then we also expect
them to gamble £16 more and since £1 is added at each time step we can deduce that for
B = (H,T,H,T ) and A = (H,T ) we have E[NAB] = 16.

Let A = (a1,a2, . . . ,am) and B = (b1,b2, . . . ,bn be two sequences over Σ. For every pair
of integers (i, j), let

δi, j =

P(Z = b j)
−1 if 1 ≤ i ≤ m,1 ≤ j ≤ n, and ai = b j

0 otherwise.
(5.1)

We then define

A∗B =
m

∑
k=1

m−k

∏
j=0

δk+ j, j+1 = δ1,1δ2,2 · · ·δm,m +δ2,1δ3,2 · · ·δm,m−1 + . . .+δm,1 (5.2)

It follows from our previous example that E[NB] = B∗B, which gives us the expected
wait time for sequence B to occur given no starting sequence, and E[NAB] = B∗B−A∗B

which gives us the expected wait time for sequence B given starting sequence A with B not
being a connected sub-sequence of B. From this we can re-derive the main result from Li’s
paper [97] which we will utilise in our network problem.

Let A1,A2, . . . ,AN be sequences over Σ. For each sequence Ai we want to calculate the
probability that Ai is realised in the sequence Z1,Z2, . . . before the other n− 1 sequences.
As before we consider the situation where a sequence A is given to begin the process and
write Ni for NAA. We then let N be the minimum stopping time among all the stopping times
N1,N2, . . . ,Nn. We want to compute P(N j = N) for each j. To avoid the case of ties we
assume that no sequence contains another as a sub-sequence. Given the starting sequence A,
let pi be the probability that Ai precedes all other sequences.

From this description we have

E[Ni] = E[N]+E[Ni −N]

= E[N]+
n

∑
j=1

p jE[Ni −N|N = N j] (5.3)
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and given that E[Ni] = Ai ∗Ai−A∗Ai and E[Ni−N|N = N j] = Ai ∗Ai−A j ∗Ai from previous
work we can substitute these into equation (5.3) to conclude that

Ai ∗Ai −A∗Ai = E[N]+
n

∑
j=1

p j(Ai ∗Ai −A j ∗Ai)

= E[N]+Ai ∗Ai −
n

∑
j=1

p j(A j ∗Ai) (5.4)

and thus

A∗Ai =
n

∑
j=1

p j(A j ∗Ai)−E[N]. (5.5)

In matrix form we can write this as

0 1 1 . . . 1
−1 A1 ∗A1 A2 ∗A1 . . . An ∗A1

−1 A1 ∗A2 A2 ∗A2 . . . An ∗A2
...

...
...

...
...

−1 A1 ∗An A2 ∗An . . . An ∗An





E[N]

p1

p2
...

pn


=



1
A∗A1

A∗A2
...

A∗An


,

and, provided that we can calculate all the terms in the coefficient matrix M, we can solve for
the values of E[N] and pi for all i.

Now let us relate all of this work back to our network model with r = 3 and connection
probability p. The probability of a site being in a given state is a function of its forward
connections with

p(0) = (1− p)3

p(1) = p(2) = p(4) = p(1− p)2

p(3) = p(5) = p(6) = p2(1− p)

p(7) = p3. (5.6)

For simplicity in the current calculations we will use p = 0.5 so all states have equal
probability of 1/8 and as such the ‘gamblers payoff’ is 8 times the stake if they are to guess
the correct site state. The shortest possible stopping sequence is of length three for obvious
reasons in this system and beyond that they can be of any length except four. However
while there are infinitely many potential stopping sequences of ever increasing length the
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Table 5.4 Results of a Monte Carlo simulation of 5×107 iterations for a system in which
r = 3,τ = 1 and p = 0.5 showing all stopping sequences of length three.

Stopping Sequence Count Approximate probability

(0,0,0) 3004361 0.0600872
(0,4,0) 5301726 0.106035
(2,0,0) 5771157 0.115423
(2,4,0) 6083482 0.12167
(4,0,0) 3059938 0.0611988
(4,4,0) 6080914 0.121618
(6,0,0) 6081648 0.121633
(6,4,0) 6081213 0.121624

probability of the longer sequences occurring becomes infinitesimally low. In order to
generate an extensive list of potential stopping sequences one can simply set up a system
in its initial format with the first sites being a sequence to test and run the wave through
the connected system for all possible configurations. In table (5.4) you see the results of a
Monte Carlo simulation of 5×107 iterations for a system in which r = 3,τ = 1 and p = 0.5
showing all stopping sequences of length three. Over those 5× 107 iterations there were
26425 distinct stopping sequences with the longest sequence being 23 sites long; however
the eight sequences of length three account for 82.9% of all results and all sequences of
length three and five account for 95.4%. Importantly from our Monte Carlo simulation we
deduce that the expected waiting time, given no initial sequence, for a stopping sequence to
occur is 62.281.

In order to utilise the method outlined in the paper by Li we must calculate the coefficient
matrix using the previously described product method and then solve given there is no starting
sequence. This process is computationally demanding since as you increase the stopping
sequence length in consideration the number of potential sequences grows exponentially and
the number of calculations involved in producing the coefficient matrix grows quadratically.
In this work we computed the full list of results for all sequences up to length 10 which
produces an incredibly close approximation to the Monte Carlo results as shown in table
(5.5). The full list of results for the Monte Carlo and the matrix calculations have been
produced but are too large to include in this work.

The matrix calculation method produces an expected wait time of 62.3005 to encounter
a stopping sequence of length ten or lower. Given that this is an approximate method,
considering only a truncated set of possible stopping sequences, the result is satisfyingly
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Table 5.5 Table showing probabilities of length three stopping sequences occurring. The
matrix calculation is performed using all sequences of length ten or lower.

Stopping Sequence Monte Carlo Matrix Calculation

(0,0,0) 0.0600872 0.060112
(0,4,0) 0.106035 0.106056
(2,0,0) 0.115423 0.115498
(2,4,0) 0.12167 0.121681
(4,0,0) 0.0611988 0.0611718
(4,4,0) 0.121618 0.121681
(6,0,0) 0.121633 0.121681
(6,4,0) 0.121624 0.121681

accurate. Running a Monte Carlo simulation for a high number of iterations can be very
time inefficient as is computing a full list of stop sequences up to a given length to then
perform the matrix calculation method. A better solution to generating a fast approximation
is a hybrid of both methods; run a short Monte Carlo simulation to generate a list of the most
common stopping sequences and then perform the matrix calculation on that shorter list.

It is important to note that using the matrix calculation technique will always produce
an upper bound for the expected wait time. We let Bn = {A1,A2, . . . ,An} be the set of all
stopping sequences considered in our matrix calculation, B∞ be the infinite set of all possible
stopping sequences and C = B∞\Bn. Let Z1,Z2, . . . be a sequence of independent identically
distributed random variables as before and let NB, NC and N∞ be the waiting time until a
sequence from those sets occurs in the process Z1,Z2, . . .. If NB < NC then NB = N∞ since
Bn ⊂ B∞. If NC < NB then NB > N∞. Since C is non-empty and all sequences can occur first
it must be true that E[N∞]≤ E[NB].

This technique is usable for systems with greater link ranges and thresholds by simply
adjusting the stopping sequences considered and recalculating the coefficient matrix. Like-
wise for adjustment in the connection probability, p, the ‘gamblers payoff’ will vary so the
values in the coefficient matrix calculation will change but the process remains consistent.

5.3 Cluster Model

While the previous technique deals with many of the complications of a one dimensional
network it has a significant drawback of requiring large computational time. Once you scale
the system up in size the ability to calculate accurate approximations becomes more and
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1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5.9 A sample set of connections demonstrating the coarse grained cluster approach.
S0,2 = {3,5,6,7,8} , S1,3 = {5,6,7,8,11} and thus the overlap is non-empty and B0,3 has
occurred.

more unfeasible due to time constraints. In order to create a more robust model we used the
concept of clustering agents into groups and instead of considering the progress of the wave
through individual sites we can instead look at the wave progression through coarse-grained
clusters. The benefit to clustering agents together into clusters of size r, where r is the range
of communication, is that you bypass the previously stated complication of the wave passing
by a site only to return to it later. It would not be possible for a cluster Cn to be influenced by
an invading opinion without cluster Cn−1 having been influenced prior.

As with the previous model we will use r = 3 and τ = 1 for simplicity. We let Ci denote
a given cluster and let Bi,i+k denote the event that a given cluster Ci is connected to cluster
Ci+k through all intermediary clusters. In order to approximate the traveling of an opinion
wave over large systems we need to consider how the connections pass through multiple B

terms with common connections. For example if B0,2 occurs and B1,3 occurs then those B

terms both include the connections between C1 and C2 and we need to know what this says
about the probability of B0,3 occurring. Let Si,i+2 be the set of all sites in clusters Ci,Ci+1

and Ci+2 involved in or connected to the sites involved in Bi,i+2. If the intersection of Si,i+2

and Si+1,i+3 is non empty then there is an overlap and we know that B0,3 has occurred. This
is highlighted in figure (5.9) We define the overlap term, O, as follows.

Oc
i, j = Bi, j ∩B j−1, j+1 ∩Bc

i, j+1 (5.7)

Oi, j = Bc
i, j ∪Bc

j−1, j+1 ∪Bi, j+1. (5.8)

We first define the complement of an overlap from the understanding of what it means
for an overlap to not occur, to which we can apply De Morgans law to get the overlap term.
By using a combination of B and O terms chained together we can make approximations
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 5.10 An example system in which B0,2,B1,3,B2,4,O0,2 and O1,3 all hold but B0,4 does
not occur.

for the connectivity of much longer systems. This approximation allows us to calculate the
probability of much longer range connections by repeatedly using small range probabilities
which are easily calculable.

P(Bi, j+1) = P(Bi, j ∩Oi, j ∩B j−1, j+1)

= P(B j−1, j+1 ∩Oi, j|Bi, j)P(Bi, j)

≈ P(B j−1, j+1 ∩O j−2, j|Bi, j)P(Bi, j) (5.9)

The reason this method is only an approximation is because it is possible for all of the B and
O terms in a chain to be satisfied but the wave would be stopped if it wasn’t for the coarse
grained approach as shown in figure (5.10).

The error that leads to this method being an approximation is due to having multiple
routes through the same clusters and the overlaps connecting to the ‘wrong’ path through.
As shown in the previous section however attempting to calculating these waves without
using an approximation is not feasible since even calculating B0,9 with r = 3 requires running
through approximately 2×1024 permutations. As later results show waves can travel through
thousands of clusters making exact calculations completely impossible.

We can rewrite the approximation in equation (5.9) using the definition of the overlap
term in equation (5.7).

P(Bi, j+1)≈P(B j−1, j+1 ∩O j−2, j|B j−2, j)P(Bi, j) (5.10)

=
P(B j−1, j+1 ∩B j−2, j ∩ (Bc

j−2, j ∪Bc
j−1, j+1 ∪B j−2, j+1))

P(B j−2, j)
P(Bi, j) (5.11)

=
P(B j−1, j+1 ∩B j−2, j ∩B j−2, j+1)P(Bi, j)

P(B j−2, j)
(5.12)

=
P(B j−2, j+1)P(Bi, j)

P(B j−2, j)
(5.13)



5.3 Cluster Model 106

Repeating the process for the P(Bi, j) term until it reduces to P(Bi,i+2), and assuming spatial
homogeneity, we can show that for n ≥ 3

P(B0,n) =
P(Bi,i+3)

n−2

P(Bi,i+2)n−3 (5.14)

This is a rigorous and new derivation for the usage of overlapping clusters to describe the
kinetics of a lattice model outlined by ben-Avraham [28]. This gives us an approximation
for the probability of connecting from Ci to C j+1. In order to calculate the expectation for
how far a wave travels we also need to include the probability that a wave stops at a certain
cluster, say C j+1. In order for that to occur we need to first reach C j+1 and then one of two
situations. Either to not have the connection B j, j+2 or have that connection but not have the
overlap term O j−1, j+1.

(B j, j+2 ∩Oc
j−1, j+1)∪Bc

j, j+2 =(B j, j+2 ∪Bc
j, j+2)

∩ (Oc
j−1, j+1 ∪Bc

j, j+2)

=Bc
j, j+2 ∪Oc

j−1, j+1

=(B j, j+2 ∩O j−1, j+1)
c (5.15)

We can define L to be a random variable corresponding to the furthest forward cluster
a wave connects to, starting from C0. We may deduce the expectation of L by calculating
P(L = n) for all n ≥ 0

P(L = n) =



P(Bc
i,i+1) n = 0

P(Bi,i+1 ∩Bc
i,i+2) n = 1

P(Bi,i+2)P((Bi+1,i+3 ∩Oi,i+2)
c|Bi,i+2) n = 2

P(Bi,i+3)
n−2

P(Bi,i+2)n−3P((Bi+1,i+3 ∩Oi,i+2)
c|Bi,i+2) n ≥ 3.

(5.16)

It follows that

E(L) =P(Bi,i+1 ∩Bc
i,i+2)+

2P(Bi,i+2)P((Bi+1,i+3 ∩Oi,i+2)
c|Bi,i+2)+

P((Bi+1,i+3 ∩Oi,i+2)
c|Bi,i+2)

∞

∑
n=3

nP(Bi,i+3)
n−2

P(Bi,i+2)n−3 (5.17)
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These expressions are all exactly calculable in terms of p for all combinations of link range,
r, and threshold, τ . For a system of four clusters, in which the states of only the first three
clusters are important and with our example values of r = 3,τ = 1, we can simulate the
system for all 827 permutations and get the wave progression counts shown in table (B.1) in
the appendices. The probability of each B event can be calculated exactly using said table
where each expression is the sum over the relevant column where each individual term has the
number of permutations as a coefficient multiplied by p raised to the power of connections
made and (1− p) raised to the power of unmade connections. As an example, from the
column titled ‘no progression’, we get

P(Bc
i,i+1) =1p0(1− p)27 +21p1(1− p)26 +210p2(1− p)25 +1330p3(1− p)24+

5985p4(1− p)23 + . . .+210p19(1− p)8 +21p20(1− p)7 +1p21(1− p)6.

(5.18)

When we apply this process to each B event and simplify each expression we get the
following,

P(Bc
i,i+1) = (1− p)6, (5.19)

P(Bi,i+1 ∩Bc
i,i+2) =(1− p)6 p(6+11p−20p2 −58p3 +185p4 −218p5+

135p6 −44p7 +6p8), (5.20)

P(Bi,i+2) =p2(10+16p−122p2 −97p3 +1668p4 −5018p5 +8563p6 −9758p7+

7834p8 −4488p9 +1808p10 −489p11 +80p12 −6p13), (5.21)

P(Bi,i+3) =− p3(−15−78p+62p2 +1356p3 +282p4 −21654p5 +28502p6+

236937p7 −1317827p8 +3636910p9 −6789919p10 +9406120p11−

10071638p12 +499938p13 −5696602p14 +3027774p15 −1264000p16+

406453p17 −97327p18 +16365p19 −1726p20 +86p21), (5.22)
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Table 5.6 Table showing the expected furthest forward location for an invading opinion wave
using different approximation methods in comparison to a Monte Carlo simulation.

p Matrix Calculation Monte Carlo Cluster Model Monte Carlo

0.1 4.24570 4.246450±0.00092082 1.59889 1.599207±0.000376435
0.2 6.42674 6.424702±0.00195299 2.41172 2.410474±0.00069223
0.3 11.0823 11.06076±0.00419497 4.0036 3.995358±0.00141711
0.4 23.1918 23.14034±0.0101898 8.05982 8.038073±0.00340359
0.5 62.3897 62.2819±0.0297835 21.144 21.09976±0.00993008
0.6 229.760 229.7294±0.185438 76.9642 76.90930±0.0618138
0.7 1299.9 1299.941±1.05747 433.722 433.6470±0.35249
0.8 15154.8 15153.84±21.3473 5052.09 5051.613±7.11576
0.9 991109 989261.3±1400.51 330469 329754.1±466.838

P(Bi,i+2 ∩ (Bi,i+3 ∩Oi,i+2)
c) =(−1+ p)6 p2(10+61p+16p2 −654p3 −70p4+

4119p5 −291p6 −36342p7 +110574p8 −181112p9+

195745p10 −148513p11 +80336p12 −30567p13+

7815p14 −1210p15 +86p16) (5.23)

and lastly using the definition of conditional probability

P((Bi,i+3 ∩Oi,i+2)
c)|Bi,i+2) =

P(Bi,i+2 ∩ (Bi,i+3 ∩Oi,i+2)
c)

P(Bi,i+2)
. (5.24)

By substituting equations (5.19), (5.20), (5.21), (5.22), (5.23) and (5.24) into equation (5.17)
we can compute the expected furthest forward cluster that the invading wave will reach
before becoming pinned. We include these results alongside Monte Carlo simulations and
the matrix calculation method from the previous section for comparison, see table (5.6).

As we see from table (5.6) the results for both methods have a very high level of accuracy
in the systems chosen. Each approximation has a level of inaccuracy but the source of
inaccuracy in each case is different allowing a choice of approximation depending on the
requirements. The matrix calculation approximation has inaccuracy due to the inability to
be exhaustive over all cases, however the user can choose how accurate they want to make
the method depending on how long they are willing to wait and how much computational
power they have access to. The cluster model approach has inherent inaccuracy involved in
the overlap term which is unavoidable, however the time taken to calculate an approximation
is very low which makes it a useful method to get a fast estimate.
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(a) B0,3: The probability of connecting three
clusters forward.
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(b) B0,5: The probability of connecting five clus-
ters forward.
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(c) B0,8: The probability of connecting eight
clusters forward.
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(d) B0,10: The probability of connecting ten
clusters forward.

Fig. 5.11 The results of four, one million iteration, Monte Carlo simulations. Plots show
the probability of connecting a set number of clusters forward against rp, the average links
forward that each agent makes. Purple corresponds to a system with r = 20, green represents
r = 10, blue represents r = 5 and orange represents r = 3.

Finally in this section we acknowledge the impact that link range and connection proba-
bility have on the long range connectivity of the network. With link range r and connection
probability p we know that rp is the expected number of forward sites a connection makes.
Intuitively as the cluster size increases there are more possible connections between clusters
and thus the probability of clusters being connected increases. We would expect that if rp

remains fixed then, as cluster size increases, the wave will travel through more clusters and
likewise if rp increases the wave will travel through more clusters. The connectivity over a
range of clusters for different cluster sizes is displayed in the set of graphs (5.11).

From these plots there is an early indication that as cluster size, or link range, increases
there is a critical value of rp for traveling a specific distance. With a value of rp lower than
this critical point the probability of reaching the distance is miniscule whereas with a greater
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rp you are almost certain to reach the given distance. Interestingly this criticality is very
similar to a percolation effect something which is impossible in one dimension, suggesting
that the cluster approximation approach is in many ways comparable to a higher dimensional
problem due to the ability for the wave to bypass isolated resistant sites.

5.4 Mean Field Random Walk Approach

In this section we outline a different approach to analysing the behaviour of the wave when
the cluster size becomes significantly large. As indicated from the cluster model results we
would anticipate that for a given link range or cluster size n and some arbitrary distance D

there is a critical connection probability p at which point the wave becomes highly likely to
travel said distance. However in the cluster model, unless p = 1, there is always a chance
that the wave is halted at any point due to specific sequences of states. In this final method
we take a mean field approach, which bypasses this chance that a progressing wave gets
‘unlucky’.

In order to use this approach we first show that the model can be defined exactly using a
random walk approach. In the previous definition of the model when the sites have threshold
τ = 1 if the wave spreads to a new site x at time t then we know that if x is connected to a
non-flipped site y then y flips at time t +1. Given that the link connections between sites
in the system remain fixed from initiation if site x has no connected ‘down’ sites then that
part of the wave essentially stops there. We can picture a freshly flipped site as having a
random walker at that location. This walker can split and move to any number of ‘unflipped’
sites within range n at the next time step, with each split having equal probability, p, or
the walker dies in this location. If two random walkers in the system land on the same site
simultaneously they coalesce into one. The behaviour of coalescing random walks has been
investigated previously [98, 99] but with focus on time taken to coalesce rather than the
distance and velocity of node exploration.

We next consider the sites themselves and the states that they can be in. For the afore-
mentioned τ = 1 case each site in the system can be in one 3 states at a given time t. The
potential states for a site are

1. No random walker has visited this site. Site is ‘unflipped’.

2. A random walker is currently at this site. Site has ‘flipped’.
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3. A random walker has been at this site but is no longer here. Site has ‘flipped’.

Let the state of a site x at time t be defined as Sx(t) ∈ {1,2,3}. The state of the entire
system can be denoted as S(t) = (S1(t),S2(t),S3(t), ...).

As n becomes large we are interested in p ≪ 1
n since we anticipate the critical p value

will be very small. We define the indicator function I(A),

I(A) =

1 if A is true

0 if A is false.
(5.25)

With these stated definitions and the understanding of the magnitude of p we can define the
probabilities of a site being in a given stats at time t = 1 as

P(Sx(t +1) = 3|S(t)) = I(Sx(t) = 2)+ I(Sx(t) = 3) (5.26)

P(Sx(t +1) = 2|S(t)) = I(Sx(t) = 1)(1− (1− p)∑
y=x+N
y=x−N I(Sy(t)=2))

≈ pI(Sx(t) = 1)
y=x+N

∑
y=x−N

I(Sy(t) = 2) as p → 0 (5.27)

P(Sx(t +1) = 1|S(t)) = I(Sx(t) = 1)(1− p)∑
y=x+N
y=x−N I(Sy(t)=2)

≈ I(Sx(t) = 1)(1− p
y=x+N

∑
y=x−N

I(Sy(t) = 2)) as p → 0, (5.28)

where we use the approximation that (1− p)l ≈ 1− pl + p2

2 O(l2) for 1
p ≪ l which holds

since l is of order n.
These equations represent a system for which the connection kernel is uniform, that is that

the probability of connection between any sites in range is a fixed p. We can however replace
that kernel with any probability distribution of our choosing. Later we will consider the kernel
to be Gaussian which maintains the connection symmetry but makes closer connections more
likely than distant ones. The overall behaviour of the system with these differing kernels
should be similar just with different exact solutions.

For systems with any distribution kernel we let pk = probability of a jump with displace-
ment k ∈ Z then we can rewrite the probability of a site not being connected to a site with a
random walker (state 2) as

P(not being connected to a 2) =
∞

∏
y=−∞

(1− px−y)
I(Sy(t)=2) (5.29)
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We can now use this to begin looking at how the system changes over time as the wave
progresses. First we note

exp
(

ln
[

∞

∏
y=−∞

(1− px−y)
I(Sy(t)=2)

])
= exp

(
∞

∑
y=−∞

ln(1− px−y)I(Sy(t) = 2)
)

= exp
(
−

∞

∑
y=−∞

px−yI(Sy(t) = 2)
)

≈ 1−
∞

∑
y=−∞

px−yI(Sy(t) = 2) (5.30)

using the approximation that e−x ≈ (1− x) for sufficiently small values of x.
We then define

ψk(x, t) = E[I(Sx(t) = k)] = P(Sx(t) = k) (5.31)

for which the discrete time derivative is

ψ̇k(x, t) = ψk(x, t +1)−ψk(x, t)

= P(Sx(t +1) = k)−P(Sx(t) = k)

= E
[
E[I(Sx(t +1) = k|S(t)]

]
−ψk(x, t) (5.32)

Now, for the different k values we have, neglecting correlations between sites,

ψ̇1(x, t) = ψ1(x, t)(1−
y=x+n

∑
y=x−n

px−yψ2(y, t))−ψ1(x, t)

=−ψ1(x, t)
y=x+n

∑
y=x−n

px−yψ2(y, t) (5.33)

ψ̇2(x, t) = ψ1(x, t)
y=x+n

∑
y=x−n

px−yψ2(y, t)−ψ2(x, t) (5.34)

ψ̇3(x, t) = ψ2(x, t). (5.35)

These results are observable from the definition of the system. The rate of change between
sites in state 1 between time steps is simply the amount of sites in state 1 that change to state
2. The change in sites in state 2 is caused by all previous state 2 sites transitioning into state
3 with some state 1 sites transitioning into state 2. The limits in equations (5.33) and (5.34)
are truncated versions of the limits in (5.30) because pk is only non-zero for sites in range.
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We now promote space and time to continuous variables to get the integral equations

ψ̇1(x, t) =−ψ1(x, t)
∫

∞

−∞

px−yψ2(y, t)dy (5.36)

ψ̇2(x, t) = ψ1(x, t)
∫

∞

−∞

px−yψ2(y, t)dy−ψ2(x, t) (5.37)

omitting the equation for ψ3(x, t) due to it having no impact on the wave behaviour. We now
replace the p notation in equations (5.36) and (5.37) with φ representing any probability
kernel and perform the integration∫

∞

−∞

φ(x− y)ψ2(y, t)dy =
∫

∞

−∞

φ(u)ψ2(x−u, t)du

≈
∫

∞

−∞

φ(u)
[
ψ2(x, t)+

u2

2
ψ

′′
2 (x, t)

]
du

= npψ2(x, t)+
ψ ′′

2 (x, t)
2

∫
∞

−∞

φ(u)u2du, (5.38)

where we use the substitution u = (x− y), and used the Taylor series for ψ2(x− u) about
x = u with the assumption that higher derivatives of ψ2 are sufficiently small. Therefore if φ

is a Gaussian kernel the integral has solution

∫
∞

−∞

φ(x− y)ψ2(y, t)dy = npψ2(x, t)+
pn3

2
ψ

′′
2 (x, t) (5.39)

and we get the pair of derivatives

ψ̇1 =−npψ1

[
ψ2 +

n2

2
ψ

′′
2

]
(5.40)

ψ̇2 = npψ1

[
ψ2 +

n2

2
ψ

′′
2

]
−ψ2. (5.41)

We can solve these simultaneous equations using the method of lines [100, 101] to see how
the proportions of each state in the system progress over time. We omit state 3 for these
results since it is easily derived from the other results. We begin with a cluster of sites in
state 2 at the centre of the system with all other sites in state 1 and allow the wave to spread
through the system. The results for systems with n = 20 and p = 0.03 and 0.06 are shown in
figures (5.12) and (5.13).

In the case p = 0.03 we see the wave begins spreading but the size of the propagating
cluster is progressively whittled down until the wave stops moving. In the case of p= 0.06 we
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(d) Site proportions after three time steps.

Fig. 5.12 The results for the method of lines on a system with n = 20 and p = 0.03. The
blue line represents the proportion of the system in that state 2, the red line represents the
proportion of the system in state 1.
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Fig. 5.13 The results for the method of lines on a system with n = 20 and p = 0.06. The
blue line represents the proportion of the system in that state 2, the red line represents the
proportion of the system in state 1.
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see the propagating cluster converges to a shape which it then maintains forever as the wave
will never stop. These results give us a strong indicator that for this set of equations there is
a critical np value close to 1 at which point the wave is expected to continue forever. We
acknowledge however that this approach ignored correlation between sites and the equations
of motion were predicated on small number approximations at the beginning.

5.5 One-Dimensional Network Threshold Model Conclu-
sion

In this chapter we investigated the spread and size of a propagating spread on a one dimen-
sional network. We introduced a toy model to demonstrate the enumeration of site connection
states on a simplistic network. We also introduced a close range reciprocal network in one
dimension and presented how all network configurations can be expressed as a sequence
of integers, which each number representing the binary expansion of each site’s forward
connections. We demonsrated the idea of stopping sequences, consecutive arrangements of
site connection states that guarantee a disconnect in the systems connectivity and thus the
ending of an idea spread. We utilised Penney’s game [96] and a martingale approach to the
study of sequence patterns [97] to compute the expected time for a wave to stop and compared
this to simulation results. We then took an alternative approach to estimating the size of a
spreading wave by considering a coarse-grained clustering approach. We acknowledge the
benefits of this clustered system in terms of computational efficiency and simplicity in how
the wave only travels in one direction but also the inherent inaccuracy of the system due to a
required approximation. We continued by demonstrating how both approaches are highly
accurate in comparison to a Monte Carlo simulation. Finally we considered how this system
is analogous to a mean field random walk in one dimension and established a set of site states
and transition rates and used numerical methods to show how the proportion of sites in each
state varies over time as the wave spreads.



Chapter 6

Conclusion

The aim of this thesis has been to apply models and techniques from Statistical Physics to the
spatial ordering and spreading of opinions and exchange of information [12, 13]. We began
by modelling the song learning of birds and the way in which they formed distinct dialect
boundaries, with particular focus on the Puget Sound White-crowned sparrow [4–6, 57].
Through the use of two dimensional lattice models with localised information exchange we
were able to make direct comparisons between the observed field results and the established
Ising model [29]. We demonstrated how the boundaries of dialect regions form in the same
manner as magnetic domain walls, and how the formation of distinct vertical dialect regions
is analogous to the emergence of stripe states in ferro-magnets [19]. We were able to examine
the stability of the dialect regions against the destabilising impacts of death by making a
direct relationship between the thermodynamic temperature and the death rate of the sparrow.
The approach of analysing the song learning and behaviour of birds in comparison to the
Ising model of thermodynamics is novel and has potential applications in other species [51].

We investigated interface motion [25, 92] on a two dimensional lattice with site specific
memory and nearest neighbour interactions [17, 82]. Our intent was to gain a deeper
understanding of the velocity of interface spreading, in particular the impact that variation in
site specific memories could have. We attempted to highlight how the structure and pattern
of longer and shorter memory agents can have a substantial effect on the the interface shape,
roughness and velocity. We demonstrated how approximating the behaviour of a large system
can be achieved by considering the system to be a repetition of a much smaller tile for which
you can find the velocity analytically. We analysed the system using a collection of low order
approximations, giving promising early results. These methods can be extended to look at
progressively more sites in order to increase accuracy. Treating this system as the repetition
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of smaller tile was a new approach and yielded promising approximations with the potential
to be improved.

We created models of opinion spread through a one dimensional random network and
analysed the spreading process [13, 16]. We utilised the enumeration of sites in our network
in order to generate lists of sequences that were certain to cause a wave to stop and then used
martingale methods to calculate the expected stopping time [97]. This method produces a
rigorous upper bound on the stopping time which is a close approximation to the simulated
Monte Carlo. Lastly we aimed to investigate a cluster approach to approximating expected
travel time in our one dimensional random network [28]. As part of our calculations we
exactly calculated the probability of connecting between neighbouring clusters and identified
an approximation for longer range connections. We tested this cluster approximation for
the distance travelled in a random one dimensional network against the previous martingale
approach and Monte Carlo simulation. All results were close and suggest both approximation
methods are of high accuracy at moderate link ranges.

The overarching theme that is consistent through all chapters of the thesis is that of
interfaces. Interfaces are found in nearly all systems in which there is a transfer of information
or conformity of ideas, either through local interactions in space or on a network. The shape
of the interface in all of these systems controls the rate and locations in which information
is exchanged and it is the understanding of how this interface moves, adjusts over time and
eventually gets pinned that allows us to predict the long term system behaviours. Chapter
3, the birdsong chapter, has a heavy focus on the original formation of these interfaces, the
smoothing of the interface through effects similar to surface tension and the locations of these
interfaces within a system. The threshold models in Chapter 4 allow us to begin looking at
the speed of a travelling interface through a system with a particular focus on the accelerating
effect of surface roughening, in this case driven by individual site variability. In Chapter 5
we begin to work on the understanding of the interface motion on a simple network with a
particular focus on pinning and restraints that cause an interface to get stuck.

The results we have found have differing levels of generality ranging from applicable in
many areas to very specific to the case we have focused on. The formation of dialect domains
in the puget sound white-crowned sparrow and understanding of this through comparison
to the Ising model is a technique that can be utilised in many different areas. Since the
publication of the paper that Chapter 3 is based upon [23] similar techniques have already
been used on human dialects. It is reasonable to consider that this comparison between learnt
behaviours through close range interactions and the Ising model would be applicable in
many areas but that would need further investigation. Certainly the smoothing of interfaces
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through surface tension and the pinning of these interfaces in geographical locations is a
generalised phenomenon. The results in Chapter 4 are likely the most general due to the
model construction being very broad and unspecific. Being able to calculate the velocity
of a travelling interface as some function of a variable localised resistance would have
applications in a vast amount of physical systems ranging from the aforementioned dialect
spread but also physical effects such as acid erosion. The work in Chapter 5 would likely
be the least applicable in other areas as the results are very specific to that specific system
and its constraints. The largest drawback to applying that work generally is simply the
computational power required to construct an approximation; however potentially with faster
processing speeds the enumeration and stopping sequence techniques could be expanded to
much more complex systems eventually.

In order to build upon the work in this thesis one would predominantly look at expanding
on the mean-field random walk approach in the final chapter and the tiled approach to
interface velocity in Chapter 4. The birdsong and Ising model work is interesting but it
feels like there are less places in which to expand upon it without just applying the same
technique to different behaviours and species. The mean-field random walk approach to
explain the information transfer and site states on a one-dimensional network should enable
some understanding of long term interface behaviours in much larger systems than the earlier
techniques in that chapter can handle. While Chapter 4 has the least conclusive results the
tiled approach to approximating interface motion is certainly the broadest topic and the most
applicable in a variety of real world applications. Expanding the approximation techniques
by looking at progressively larger tiles and perhaps constructing an algorithm to compute
the wave velocity, as opposed to going through case by case by hand, could yield some
significant results.
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Appendix B

Connections Connections No progression Stops in C1 Stops in C2 Reaches C2 Reaches C3
Made Not Made

0 27 1 0 0 0 0
1 26 21 6 0 0 0
2 25 210 131 10 10 0
3 24 1330 1329 251 266 15
4 23 5985 8303 2824 3262 438
5 22 20349 35868 18641 24513 5872
6 21 54264 114194 80178 127552 47374
7 20 116280 278893 238409 492857 254448
8 19 203490 536728 515833 1479857 964024
9 18 293930 829133 847866 3563762 2715896
10 17 352716 1041164 1093966 7042405 5948439
11 16 352716 1071323 1133267 11613856 10480589
12 15 293930 906978 955578 16182952 15227374
13 14 203490 631949 660000 19222861 18562861
14 13 116280 361062 373322 19580958 19207636
15 12 54264 167759 171820 17161837 16990017
16 11 20349 62488 63486 12955058 12891572
17 10 5985 18241 18414 8412059 8393645
18 9 1330 4025 4044 4681470 4677426
19 8 210 632 633 2219233 2218600
20 7 21 63 63 887946 887883
21 6 1 3 3 296006 296003
22 5 0 0 0 80730 80730
23 4 0 0 0 17550 17550
24 3 0 0 0 2925 2925
25 2 0 0 0 351 351
26 1 0 0 0 27 27
27 0 0 0 0 1 1

Table B.1 Table showing the counts for the final wave condition for the 827 different configu-
rations of site state connectivity.
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