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Abstract  

Visual scene analysis imitates the way humans perceive the outside world, which 

is essential for achieving computer intelligence. This thesis narrows down the 

scope of visual scene analysis to two fundamental tasks, namely detecting and 

reconstructing the object of interest in a scene. For a general scene consisting of 

multiple objects, it’s a natural routine to screen out the most salient object first. 

For a human-centred scene, reconstructing the 3D geometry of the human face that 

occupies the central position in social communication and is highly deformable 

becomes one of the first priorities. Based on these two insights, the thesis studies 

the problems of saliency detection in a general scene and depth-to-3D face 

reconstruction in a human-centred scene. It deeply explores adapting the 

generative adversarial network – GAN that was initially proposed for image 

generation to solve the aforementioned problems. 

For saliency detection, the thesis proposes a novel perceptual loss-guided GAN 

called as PerGAN. PerGAN applies a multi-scale discriminator and is trained with 

a perceptual loss that measures misdetection errors on the semantic feature level 

rather than the common pixel level of the generated saliency map. This enables an 

improved utilization of features across different image resolutions and those are 

semantically meaningful. The proposed method has been validated on benchmark 

datasets and outputs competitive saliency detection accuracy against the state-of-

the-art.  

For 3D face reconstruction from a depth image, the thesis first proposes to use 

the GAN to bridge the facial voxel grid and the depth data. The attention 

mechanism is incorporated into the GAN to regulate the learning process to weight 

higher on the intermediate features that are more relevant to predicting facial 

voxels. The resulting attention-guided GAN, or AGGAN in short, is trained and 

evaluated on synthesized depth images. Comparing with the previous methods that 

rely on a costly optimization-based 3D reconstruction process, the learning-based 
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AGGAN is more efficient and robust to depth images with noises and large facial 

poses. What’s more, the use of synthetic data for training shows big potential on 

overcoming the shortage of depth images with 3D facial labels. Based on these 

results, the thesis continues to use the synthetic data for training the 3D face 

reconstruction network, meanwhile, incorporating unlabelled real depth images 

into the training procedure for obtaining a domain-adaptive reconstruction model. 

It employs a GAN to fill the domain gap between the synthetic and real depth 

images and learns a common feature embedding that is informative to both 

domains. The resulting reconstruction network shows a promising generalization 

ability to real-world depth images. Extensive experiments on mainstream real 

datasets demonstrate that the proposed domain-adaptive 3D face reconstruction 

method is competitive against the state-of-the-art.  

Through developing the aforementioned algorithmic solutions to visual 

saliency detection and depth-to-3D face reconstruction, the thesis also gains first-

hand experience on adapting GAN to different visual scene analysis tasks that are 

quite different from its familiar image generation task. The adaptation of GAN in 

this thesis ranges from binary saliency map generation, facial voxels prediction to 

domain alignment. This is supposed to be beneficial to propagate the GAN to a 

broader range of application scenarios that are not limited to visual scene analysis.  
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Chapter 1 

Introduction 

1.1 Background 

It’s not what you look at that matters, it’s what you see. 

H.D. Thoreau (1817-62) 

Glancing a new scene for no more than 250ms, we humans are able to describe the 

scene at the semantic level (M.C. Potter, 1976) such as name a few salient objects 

or recognize a human subject’s facial expression. This capability is known as 

visual perception, an essential piece of human intelligence, that shapes the way we 

interact with the complicated outside world. From this perspective, without visual 

perception, purely human-like intelligence can never be envisaged for computers. 

This motivated an interesting and important research branch in computer vision, 

which is termed as visual scene analysis. 

Visual scene analysis is a computer's version of visual perception, where the 

input stimulus becomes a digitized image and the perception is portrayed as image 

data processing. To analyse a visual scene, the computer must first identify objects 

and relationships between objects, labelling each correctly. This derives a more 

fundamental step which is about detecting the object of interest in an intricate 

scene or reconstructing the target object to recover its critical features as much as 

possible, thereby facilitating the aforementioned recognition task. At this stage, 

what act to do depends on the contents of the visual scene. This thesis divides the 

visual scene content into two categories, namely general and human-centred. For 

the general scene (see a. in Fig.1.1), it could consist of multiple objects in various 

categories without a unified focus, such as the traffic scene filled with vehicles, 

pedestrians, road signs, buildings and plants etc. In this case, the first priority of 

scene analysis would be finding out the most salient object. For the human-centred 
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Figure 1.1: The examples of visual scene analysis. 

scene, our attention will mostly be attracted by the human face as it plays a central 

role in social communication (Ekman & E. I. Rosenberg, 1997). Due to its 

anatomical diversity and high sensitivity, human face is rich with delicate features 

such as facial expressions and very informative, resulting that even a slight 

difference on its appearance could greatly affect the perception of the face. To 

attain those crucial facial features for further analysis, a promising way is to 

reconstruct the face as close as it was presented in the 3D physical space. This is 

particularly important when the input image is imperfect with noise, occlusion or 

observes a large head pose which makes facial features less identified. Based on 

these insights, the thesis addresses visual scene analysis by researching on two 

principal questions which are saliency detection for the general scene and 3D face 

reconstruction for the human-centred scene (see b. in Fig.1.1). More specifically, 

the research work concentrates on the most common setup – monocular visual 

scene capture, which in this thesis is a RGB image for saliency detection and a 

depth image for 3D face reconstruction. 

In recent years, the field of visual scene analysis has been booming since the 

use of deep learning (Deng et al., 2019; N. Liu et al., 2018; J. Pan et al., 2017; L. 

Wang et al., 2015; Zhong et al., 2020). Some state-of-the-art deep learning models 

achieve near or even super-human performance. Such a big success is attributed to 

the rapid development of deep learning techniques, which can be split into two 

main streams: one adopts the convolutional neural network (CNN) (Simonyan & 

Point Cloud Extracted 
from Depth Map 

Reconstructed Face Mesh 
Overlayed Point Cloud 

RGB Image Saliency Map 

a. General Scene  b. Human-centred Scene  
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Zisserman, 2014) to combine feature learning and output prediction into a 

hierarchical learning process, the other employs the generative adversarial network 

(GAN) (Goodfellow et al., 2014) to estimate generative models via an adversarial 

process. While the former method has been applied in a variety of visual detection, 

recognition and reconstruction tasks, the latter one is still centred around the image 

generation task. It is thus interesting to extend GAN to its unfamiliar tasks such as 

detection and reconstruction, a problem also remains largely unexplored. This 

motivates the thesis to adapt the GAN to solve the aforesaid saliency detection and 

3D face reconstruction problems. 

1.2 Problems and Challenges 

The problems and challenges this thesis encountered with are twofold. First, 

adapting the GAN to different visual scene analysis tasks itself is nontrivial since 

the output modality varies across tasks. For example, in 3D face reconstruction 

from a single depth image, the typical output is a 3D face represented in voxels or 

a 3D point cloud which differs a lot from the 2D image that GAN normally 

generates. To handle the high dimensionality of the 3D data, a straightforward 

solution is to increase the number of convolutional kernels in GAN, but this will 

accordingly introduce much more difficulties into the network training. Second, 

each visual scene analysis task has its own issues, which is elaborated as follows: 

1. Given a RGB image of a general scene, most existing studies (Hou et al., 

2017; N. Liu et al., 2018; L. Wang et al., 2015; T. Zhao & Wu, 2019) in the field 

of saliency detection apply the CNN coupled with a pixel-wise loss function for 

labelling salient objects. Whereas this kind of approach has reported promising 

detection results on benchmark datasets, the use of the pixel-wise loss function is 

arguable. That loss function treats each pixel independently without considering 

the holistic semantic information the pixel and its neighbours or all the pixels as a 

whole that convey. The semantic information such as those regarding the shape is 
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however critical in determining an object’s salient degree. As a result, it is essential 

to design a new loss function that effectively incorporates the holistic semantic 

information a salient region delivers to guide the saliency detection network 

training. 

2. When moving into the task of 3D face reconstruction from a single depth 

image of a human-centred scene, it can be found that the learning-based approach 

has rarely been studied. Previous methods (Martin et al., 2014; Newcombe et al., 

2011) are generally optimization-based, which reconstruct 3D face by fitting the 

input depth image with a parametric function where the 3D facial shape is either 

explicitly represented by a triangulated facial mesh(Amberg et al., 2007) or 

implicitly modelled by its level-set (Lorensen & Cline, 1987a). Those methods 

rely on a costly optimization procedure, let alone they are very sensitive to image 

noises, occlusions, big head poses that are common features of real-world depth 

images. As an alternative, learning-based approach builds the 3D face 

reconstruction function through an offline training process that learns the depth-

3D mapping from a corpus comprising numerous depth images. During the online 

inference, the approach only needs to call the pre-built reconstruction function, 

which is quite efficient. The leveraging of a large-scale training corpus also makes 

the reconstruction function more robust to the aforementioned image 

imperfections. However, as its inherent deficiency, learning-based approach is 

data-intensive. This poses a big challenge on developing the method, especially 

for the fields like 3D face reconstruction in which collecting depth images and 

their 3D facial shape labels is very expensive and laborious. In a word, it is very 

timely and of great potential to develop a robust learning-based depth-to-3D face 

reconstruction method, but should cope with the training data problem.  
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1.3  Contributions 

Targeting at tackling the aforementioned problems and challenges, the thesis 

develops three novel GAN-based networks for robust saliency detection and 

depth-to-3D face reconstruction. Its main contributions are as follows: 

1. It proposes a perceptual loss-guided GAN - PerGAN for saliency detection 

from a single RGB image. Different from the conventional loss that penalizes 

pixel-wise misdetection, the perceptual loss evaluates the detection error on the 

semantic feature level of the generated saliency map. This guarantees a full 

utilization of high-level semantic information such as the object shape that is 

important in determining the saliency. PerGAN is further enhanced with a multi-

scale discriminator and a two-level feature to saliency mapping that follows the 

coarse-to-fine strategy. Comparing against previous methods, the proposed 

PerGAN has shown improved detection accuracy on several widely-accepted 

benchmark datasets.  

2. It develops an attention-guided GAN - AGGAN to predict facial voxels from 

a single depth image. To the best of our knowledge, this is the first work of its kind 

that utilizes GAN to construct the mapping between the depth data and the 3D 

facial geometry. The incorporation of the attention mechanism into GAN has 

demonstrated to be effective on handling facial voxels’ spatial relationships both 

theoretically and experimentally. What’s more, the thesis proposes to synthesize 

depth images and the corresponding 3D faces for training AGGAN, which 

provides an efficient solution to overcome the shortage of labelled 3D facial data. 

In contrast with the-state-of-the-art optimization-based methods, the proposed 

AGGAN exhibits much higher reconstruction precision on synthesized depth 

images with noises and large head poses. Whereas AGGAN is trained and 

evaluated on the synthetic data, it showcases the potential of generalizing to real-

world depth images. 

3. Inspired by AGGAN, the thesis further proposes a novel domain-adaptive 

3D face reconstruction network. The proposed network accepts labelled synthetic 
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depth images and unlabelled real depth images that belong to different domains 

for training, and uses GAN to fill the synthetic-real domain gap while learning a 

common feature embedding. The resulting common embedding is domain-

adaptive, thus enabling accurate 3D face reconstruction for both synthetic and real 

depth images. Extensive experiments on mainstream real depth image datasets 

demonstrate that the proposed method is competitive with the state-of-the-art 3D 

face reconstruction approaches.  

4. The thesis also presents three successful adaptations of GAN beyond its 

familiar image generation task. It extends GAN to binary saliency map generation 

with a perceptual loss, 3D facial voxels prediction by incorporating the attention 

mechanism, and synthetic domain and real domain alignment, thereby strongly 

demonstrating the potential of GAN and providing first-hand experience on 

adjusting GAN to different visual scene analysis tasks. 

1.4  Outline 

The rest of the thesis is structured as follows: 

 Chapter 2 - Literature Review: This chapter provides an extensive review on 

the two targeted visual scene analysis sub-fields, namely visual saliency detection 

and depth-based 3D face reconstruction, and recaps the development of GAN in 

recent years.  

 Chapter 3 - Perceptual Loss-Guided GAN for Saliency Detection: It 

develops a novel perceptual loss-guided GAN - PerGAN for detecting salient 

objects from a general-scene image. Instead of employing a pixel-wise difference 

loss to optimize the detection network, PerGAN applies a perceptual loss built 

upon the semantic feature level of the generated saliency map. This innovative 

design is supposed to utilize the key semantic information of a salient object such 

as its shape when performing detection. To further strengthen the predictive 

capability of PerGAN, the chapter equips the GAN with a multi-scale 
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discriminator and a two-level coarse-to-fine feature to saliency mapping. 

Experimental results on six benchmark datasets show that the proposed PerGAN 

outputs higher saliency detection accuracy than previous methods.  

 Chapter 4 - 3D Facial Geometry Recovery from a Depth View with 

Attention Guided GAN: This chapter proposes an attention-guided GAN - 

AGGAN to solve the problem of 3D face reconstruction from a single depth image. 

Specifically, AGGAN encodes the 3D facial geometry within a voxel space and 

enhances the GAN with the attention mechanism to model the ill-posed 2.5D depth-

3D mapping. In contrast to previous works which are normally based on a costly 

optimization-based fitting procedure, AGGAN efficiently predicts a dense 3D voxel 

grid of the face from a single unconstrained depth view via a pre-trained inference 

network. To train and evaluate AGGAN, the chapter proposes to synthesize depth 

images and their ground-truth 3D face labels. Both qualitative and quantitative 

comparisons on synthetic depth images show that AGGAN recovers a more 

complete and smoother 3D facial shape, is able to handle a much wider range of 

view angles and resists more to image noise than those optimization-based methods. 

The experimental results also indicate that the AGGAN model trained with synthetic 

data has the potential of generalizing to noisy real depth images.  

 Chapter 5 - Domain Adaptive Single Depth Image 3D Face Reconstruction: 

It develops a domain-adaptive 3D face reconstruction network that works on both 

synthetic and real depth images. The proposed method requires only synthetic and 

unlabelled real depth images for training, while the trained network can generalize 

well to real images captured with commodity depth sensors. Its success can be 

mostly ascribed to a GAN that effectively regulates the learning of a feature 

embedding shared by synthetic and real depth images and makes the learned 

embedding domain adaptive. Both quantitative and visual comparisons on public 

datasets indicate that the proposed method produces competitive 3D face 

reconstruction results against the state-of-the-art methods.  

 Chapter 6 - Conclusions: This chapter summarises the thesis with an in-depth 

discussion on its contributions and the future work. 



Chapter 2: Literature Review 

 

8 

 

 

Chapter 2 

Literature Review 

Human’s strong ability of describing the scene in a quick glance is known as visual 

perception, shaping the way human interacts with the complex world. Visual scene 

analysis is a computer’s version of visual perception, which is a fundamental step 

for many recognition and classification tasks.  

 As mentioned in chapter 1, this thesis divides various images into general 

scene and human-centred scene. For general scene, the prior task of scene analysis 

is to find out the most salient object(s), a process named as saliency detection. In 

terms of another scene, 3D face reconstruction from the single depth image that is 

robust to illumination changes and occlusions, is a fantastic way for human-

centred scene analysis since face is informative. The detailed review of saliency 

detection and 3D face reconstruction will be provided in this chapter. In addition, 

the development of basic framework-GAN is demonstrated as well. 

The content of this chapter is organized as follows. Section 2.1 summarizes 

both the traditional and deep learning methods designed for detecting the salient 

objects from general scene. Section 2.2 concludes earlier and current models used 

for 3D face reconstruction from depth view for human-centred scene analysis. 

Section 2.3 introduces different variants of GAN which is the basic deep 

framework in this thesis. Section 2.4 concludes the literature review in both salient 

object detection and 3d face reconstruction. 

2.1 Salient Object Detection 

Salient object detection targets at locating pixels or regions which catch human 

attention most in a scene, is a fundamental and necessary step in visual scene 
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analysis. The outcomes provide primary visual cues to tasks such as object and 

activity recognition, thus facilitating a deep understanding of the target 

environment. Over the past two decades, the problem of saliency detection has 

been extensively studied in computer vision community with many approaches 

developed. Those approaches can generally be split into two categories, namely 

traditional methods and deep learning methods. Traditional methods focus on 

extracting handcrafted low-level features from images for saliency detection. In 

contrast, deep learning technologies instead utilize high-level semantic features 

and dramatically improve the saliency detection performance. This section will 

recap the representative studies regarding these two kinds of methods. 

2.1.1 Traditional Methods 

Most traditional methods first identify salient subsets from the given image, then 

integrate them to form complete salient objects. Salient subsets could be blocks 

which are image patches in a uniform and regular shape such as rectangle, or 

regions consisting of conceptually homogeneous image patches confined within 

sealed boundary. According to different salient subset types, traditional methods 

can be divided into two categories: block-based model and region-based model. 

The representative framework of each category can be seen in Fig.2.1 

a) Block-based Model 

Blocks-based models for salient object detection primarily were developed in the 

early stages. The seminal work which fosters salient object detection in a variety 

of communities was proposed by Itti et al. (Itti et al., 1998)  in 1998. It computes 

a saliency map from an input image by incorporating the feature maps of color, 

intensity and orientation at multiple scales using centre-surround operation 

Due to the lack of prior knowledge of salient objects, multi-scale feature 

contrast is often adopted for robust saliency detection. Ma et al. (Ma & Zhang, 

2003) propose to extract the local contrast information of color, texture and shape 

at different scales, and then derive the saliency map from extracted maps by fuzzy  
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growing approach. Observing more feature representations improve the 

performance of locating salient regions at the price of slowing down the 

calculation, Frintrop et al. (Frintrop et al., 2007) propose to compute the saliency 

maps by weighted combination of various feature maps extracted from different 

dimensions. The weight function is like a normalization operator presented in (Itti 

et al., 1998), promoting rare conspicuous maps while suppressing repetitive or 

similar maps. Unlike normalized weights, conditional random field is utilized to 

balance the multiple scale features of color and context to form the salient object 

(T. Liu et al., 2010). Valenti et al. (Valenti et al., 2009) propose to detect salient 

objects by exploring gradient slope information. The saliency maps generated 

using mentioned methods always are with high-contrast edges, to rise the response 

of salient object, Rosin et al. (Rosin, 2009) propose to produce multiple response 

maps with blobs from detected edge maps. It works for very simple salient objects. 

Based on aforementioned methods, the contrast of edge is more intensive than 

that of salient objects in most cases, which makes the edge to be misled as salient 

objects. Additionally, it is hard to maintain the edge of salient object well, 

especially the high-resolution blocks are used. To resolve these issues, a series of 

region-based models are proposed to compute regional saliency map. 

b) Region-based Model 

Region-based models take the structure of region into consideration and regard the 

homogeneous region as the basic element instead of pixels, which normally 

provide the potential to design the efficient and fast saliency detection. Generally, 

Figure 2.1: Examples of traditional salient object detection method. 
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it segments an input into regions first, and then calculate visual cues of each region 

to form final saliency map. The homogeneous regions can be produced by popular 

mean-shift (Comaniciu & Meer, 2002), graph-based segmentation (Felzenszwalb 

& Huttenlocher, 2004), SLIC (Achanta et al., 2012) or Turbopixels (Levinshtein 

et al., 2009). In this section, these segmentation methods and the corresponding 

representative works will be introduced in detail. 

Mean shift segmentation (Comaniciu & Meer, 2002) is an advanced and 

vertisale clustering technique. For each data point, mean shift defines a window 

around it and computes the mean value of point representations. Then it shifts the 

centre of window to the mean value and repeats the process until it converges. The 

initial trial of mean-shift segmentation-based saliency detection model is 

developed by Liu et al.(F. Liu & Gleicher, 2006). They propose to generate salient 

regions by segmenting the image based on the multi-scale color contrast of each 

pixels to enhance the saliency maps. Color (Z. Liu et al., 2010), texture and 

location (Q. Wang et al., 2012), spatial distribution (Ren et al., 2013) are also 

adopted to produce salient regions for saliency detection. 

Graph-based segmentation (Felzenszwalb & Huttenlocher, 2004) generally 

represents the problem in term of a graph consisting of vertices and edges, and 

then cut the graph into pieces. The vertex corresponds to a pixel in the image and 

the edge refers the connection between neighbouring pixels. A weight is associated 

with each edge based on some property (eg. color, motion, location or difference 

in intensity) of the pixels that it connects. Jiang et al. (H. Jiang et al., 2011) propose 

to use the multiple scale context contrast to set edge weight and infer the regional 

saliency cues. Besides, the shape prior is extracted to be aligned with salient 

contour for fine saliency map estimation. Continuing in the same direction, color 

histogram (Cheng, Mitra, Huang, Torr, et al., 2014), spatial distribution (Z. Jiang 

& Davis, 2013), texture distinctiveness (Scharfenberger et al., 2013) and edge 

density (Jia & Han, 2013) are utilized to reconstruct saliency map. 

SLIC(Achanta et al., 2012) is short for simple liner iterative clustering, which 

can be regarded as a special graph-based method. It uses a five-dimensional vector 
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which stores each pixel’s positions in the CIELAB colour space and the image 

plane, and adopts the K-means to cluster pixels into super-pixels by evaluating two 

pixels’ similarity in the aforementioned 5D space. SLIC has been applied in many 

works (B. Jiang et al., 2013; Singh et al., 2018; V.Singh et al., 2020; L. Wang, 

Jiang, et al., 2019; C. Yang et al., 2013) result from the fast calculation.  After 

segmentation, Jiang et al.(C. Yang et al., 2013) propose a manifold ranking method 

to calculate both foreground and background visual cues of each super-pixel in 

CIE LAB color space. Similarly, both boundary and centred salient information 

are used to form regional cues via absorbing markov chain (B. Jiang et al., 2013). 

Recently, Gaussian mixture model (Singh et al., 2018; V.Singh et al., 2020) and 

progressive graph ranking method (L. Wang, Jiang, et al., 2019) are adopted for 

calculate the regional saliency. 

Turbo-pixels(Levinshtein et al., 2009) segments an image into a lattice-like 

structure of compact regions (super-pixels) compactness constraint. Recent works 

(L. Xu et al., 2014; L. Zhang et al., 2018) adapted it to produce regular and compact 

super-pixels. After segmentation, the same features including color, texture, 

spatial distribution used in above methods are utilized to extract visual cues. 

2.1.2  Deep Learning Methods 

With the promising performance in image classification task(Krizhevsky et al., 

2012) in 2012, deep learning-based techniques have been springing up for a variety 

of vision tasks. Currently, deep learning-based model is becoming the mainstream 

direction of salient object detection. According to the architecture of deep network, 

we categorize the deep salient object detection models into four classes, namely 

MLP-based, FCN-based, hybrid network-based and GAN-based. Fig.2.2 displays 

the simple frameworks of each model. 

MLP-based model means to map the saliency cues of each super-pixel via MLP 

from their deep features extracted from CNN. As an initial attempt, He et al. (He 

et al., 2015) present to regress the salient value of each segmented region by 

feeding the deep features extracted from their color contrast to MLP-based model.  
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Kim et al.(Kim & Pavlovic, 2016) propose a two-stage framework consisting of  

two MLP-based model to predict saliency map. During the first stage, unlike the 

saliency score prediction, the salient shape of each region is classified to produce 

a coarse saliency map. The shape class of each image batch is assigned through 

the selective research and clustering method. To guarantee the boundary 

information, the coarse map is refined in second stage by predicting saliency score 

of hierarchical segmented regions. Similarly, Zhao et al. (R. Zhao et al., 2015) 

propose a two-branch architecture which explores both local and global context 

via two MLP-based subnets. Compared with traditional salient object detection 

methods, MLP-based models improve the performance dramatically. But it 

ignores the global information of image since it relies on the segmented regions. 

Besides, One-by-one processing of super-pixels is quite time-consuming. 

To address the shortcomings of MLP-based model, FCN-based model is 

proposed for pixel-wise saliency estimation is an end-to-end manner. Zhang et 

al.(P. Zhang, Wang, Lu, Wang, & Yin, 2017) designed a single-stream network 

based on encoder-decoder architecture for saliency detection. The developed 

network predicts the pixel-wise probabilistic map which highlights salient subject 

from the whole input image directly. It is the classical architecture of FCN-based 

model for saliency detection. To learn the multiple scale feature representations, 

Convolutional layer Fully-connected layer Data flow 

0.5   0.4   0.9  

Hybrid Net-based Model FCN-based Model 

0.5   0.4   0.9  

MLP-based Model 

Real  Fake 

GAN-based Model 

Figure 2.2: Simple examples of deep salient detection model. 
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Li et al. (G. Li et al., 2017) proposed a multi-stream framework consisting of three 

single-stream networks, in which three scales of outputs are mapped from 

corresponding inputs and fused together to produce saliency map. Instead of 

reconstructing the saliency map through the last layers’ output of single-frame 

network, Hou et al.(Hou et al., 2017) propose to fuse the outputs of each layer to 

generate the saliency map. Compared with the classical architecture, the deep side-

outputs assist shallow layer to identify salient regions, and shallow side-outputs 

enrich details for deep layers as well. In (N. Liu et al., 2018), short connections are 

established between the output of deep layers and symmetric shallow layers based 

on a single-stream network. The combined features are refined recurrently in a top-

down pathway to enhance the final output. In a follow-up work, attention model is 

integrated with classical model to select the most efficient channels and spatial 

information for saliency detection in (X. Zhang et al., 2018).  

Considering the super-pixel level and pixel-wise saliency are predicted 

separately, many researchers propose to predict edge-preserving outcome with 

multi-scale context via hybrid network-based mode combing MLP- and FCN-

based models together. Wang et al. (L. Wang et al., 2015) both local and global 

feature representation for more accurate salient cues prediction. A local pixel-wise 

estimation is established based on single-stream FCN-based subnet. Be combined 

with the geometric information of original input, the output of local branch is 

segmented and further fed to MLP-based global research branch to estimate the 

regional saliency values. Finally, the top K candidate regions are weighted and 

summarized to produce final saliency map. Similarly, (G. Li & Yu, 2016; Tang & 

X. Wu, 2016) also adopted hybrid network-based models for salient object 

detection. 

GAN-based model can be regarded as a special hybrid network-based model, 

in which the MLP-based model deals with the whole input image instead of the 

segmented regions. As we all know that the training of GAN is a competing game 

between generator and discriminator. For GAN-based salient object detection 

model, the generator used for saliency map generation is based on FCN-based 
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model and the discriminator used for evaluate the generated results is based on 

binary MLP-classifier. The model has been adopted in many works (Cai & Yu, 

2018; Ji et al., 2018; Mukherjee et al., 2019). Cai et al. (Cai & Yu, 2018) and Ji et 

al. (Ji et al., 2018) designed the generator by incorporating classical FCN-based 

model and short connections together for saliency detection. Based on this, 

(Mukherjee et al., 2019) propose to predict salient objects via minimizing cycle 

consistency loss. Additionally, a generator integrating capsule-module with FCN-

based model is developed by (C. Zhang et al., 2019) for salient cues generation. 

2.2 3D Face Reconstruction 

Monocular 3D face reconstruction aims to recover 3D facial geometry from a 

single image. It is essential for face-centred visual scene understanding as face 

conveys message, emotion and intent, and occupies key place in human visual 

perception (M.Zollhöfer et al., 2018). RGB-based face reconstruction that relies 

on the texture and colour information provided by 2D images has been well studied 

(Feng et al., 2018; Gecer et al., 2019; Jackson et al., 2017; F. Liu et al., 2019). 

However, the performance cannot be guaranteed when the input image was 

captured under a poor lighting environment. Different from RGB image, depth 

image recording the distance between face surface and viewpoint is robust to 

illumination changes and occlusion. This thesis mainly focuses on reconstructing 

3D face from the depth image.  

 This section is organised as follows. Section 2.2.1 describes the popular depth 

senor - Microsoft Kinect used for collecting depth data. Section 2.2.2 summarizes 

the widely used 3D face representations. Section 2.2.3 and 2.2.4 reviews the 

traditional and deep learning-based 3D face reconstruction method separately. 
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2.2.1 Kinect Sensor 

Microsoft Kinect is an RGB-D sensor which equipped with both RGB and depth 

cameras. It is originally released as gaming peripheral allowing users to naturally 

interact with a computer. Its appearance has revolutionized the way people play 

games and how they experience entertainment. Recently, Kinect’s impact has 

extended far beyond the gaming industry due to its low price and robust 

performance. It is a popular sensor nowadays, and many researchers utilize it to 

capture 3D face data (Baltrušaitis et al., 2012; Cao et al., 2013; Fanelli et al., 2011) 

for research. 

Kinect sensor not only provides a size of 640×480 colour image from an RGB 

camera, but only offers the same size of depth map from depth sensor. The depth 

map records the distance between the surface of object and sensor. Currently, four 

versions of Kinect are available. But in this thesis, we just focus on Kinect V1 and 

V2 which has been used for depth image collection. Kinect V1 computes the 

distance based on the active structure light technology. To be specific, it projects 

a known pattern onto the scene and calculate the distortion of pattern to estimate 

the distance of points. Similarly, Kinect V2 is also based on the active ranging 

named time of flight (TOF) technology, but the emitted energy is different. With 

the known speed of light, TOF usually computes the duration time between the 

emission of a laser light and its return to the sensor after being reflected by a 

subject to infer the distance. To this end, the Kinect is with an energy projector, a 

depth camera and a RGB camera. An example structure is showed in Fig.2.3.  

 

Infrared Projector 

RGB Camera 

Depth Camera 

Figure 2.3: The structure of Microsoft Kinect V1. 
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Figure 2.4: The samples captured by RGB and depth cameras (J. Luo et al., 2019). 

Compared with traditional RGB cameras which are sensitive to light conditions, 

the depth camera (Kinect sensor) is robust to the illumination changes and 

occlusions. No matter how poor the lighting is, the depth camera can well capture 

the 3D Information. The examples of RGB image and corresponding depth map 

collected in different light condition can be seen in Fig.2.4. 

2.2.2 3D Face Representation 

In this section, we spotlight the 3D/2.5D face representations that widely used in 

deep learning nowadays. The example of each representation is showcased in Fig. 

2.5. 

a) Point Cloud 

Point cloud is a group of vertices in world space. Each vertex is constituted with 

x, y and z coordinates, which record the physical location of the vertex in 3D space. 

It is a simple and direct data representation. But it is not in a uniform distribution. 

The region closed to view point usually is dense, while the far area is sparse. This 

feature results in irregular and unordered data format. 

Deep learning methods are good at dealing with the regular data format like 

signal sequences, images, videos. Therefore, the irregular data format makes point 

cloud not a desired data format for deep learning until PointNet (Qi et al., 2017) 

was proposed. Instead of regarding the point cloud as a vector, PointNet ignores 



Chapter 2: Literature Review 

 

18 

 

 

 

the data structure and processes each point separately. Later, Liu et al. (F. Liu et 

al., 2019) present to model the regular face point cloud from the unorganised data 

with the help of PointNet. Lombardi et al. (Lombardi et al., 2018) propose to 

predict the point cloud of face directly using variation autoencoder. What needs to 

be mentioned here is that the point cloud they used is extracted from synthetic data 

and is in regular data format. 

b) Voxel Occupancy Grid 

Voxel occupancy grids are the spatial representation of 3D face and environment. 

The occupancy grid is typically acquired through voxelization (Cohen-Or & 

Kaufman, 1995; Karabassi et al., 1999). It converts a continuous geometric shape 

into a set of voxels with each depicts the occupancy state of the corresponding 

point on the 3D face. Generally, the voxel stores a Boolean occupancy status 0 or 

1, where 0 means the background cells while 1 reflects the face region cells, so it 

does not record the physical location. But it is easy to get the geometry of the 

object/face from voxel occupancy grid by inferring the location of a voxel based 

on its location relative to others. 

 Figure 2.5: The examples of different face representations. 
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Depth Map UV Position Map 
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Compared with irregular and unordered point cloud, occupancy grid is a 

regular data format, which contributes to a popular 3D data representation for deep 

neural networks (Jackson et al., 2017; B. Yang et al., 2017). Jackson et al. (Jackson 

et al., 2017) proposed to reconstruct 3D face in voxel space.  Many existing works 

also applied occupancy grid to represent the object for 3d object reconstruction 

can refer to the comprehensive survey (B. Yang et al., 2017). In addition, the 

voxelized data (S.Shi et al., 2020; C. Wang, M.Cheng, et al., 2019) have also been 

used in many 3D object segmentation and recognition tasks. Fig.2.5 shows a 

sample of face in voxel space. It can be seen obviously that the surface of face is 

non-smooth, which can be resolved by increasing the resolution of grid. But the 

high resolution creates a huge unnecessary demand for computer storage and 

computational cost. That is why voxel-based representation is not suitable for 

representing high-resolution data. 

c) Mesh 

A mesh is a collection of vertices, edges and faces that defines the topology of a 

polyhedral object. Different from the unordered vertices in point cloud, each vertex 

in mesh is assigned with an index which is helpful for building edges and faces. 

The face consisting of the connection list (edges) and index (vertices) reports how 

object coordinates exist in 3D space. The face mesh sample can be seen in Fig.2.5. 

 It is also a popular data format for 3D face (object) reconstruction and has been 

widely used to deform from pre-defined mesh templates, limiting them to fixed 

mesh topologies. Specifically, (Tan et al., 2018; Yuan et al., 2020) propose to 

deform the facial meshes by using edge and normal information which are the 

distinctive attributes of the mesh. In contrast, Gkioxari et al. (Gkioxari et al., 2019) 

propose to predict the accurate mesh of object directly by fusing multiple 3D shape 

representations. 

d) 2.5D Image 

There are two kinds of 2.5D images which are able to store 3D face information. 

One kind is depth map recording the depth of visible points, and the other is UV 
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position map storing the location of all points. This section will separately 

introduce depth map and UV position map in detail at this section.  

Depth map is an image or image channel that stores data with respect to the 

distance between a viewpoint and the surfaces of a face. It can be captured by 3D 

scanner or synchronized using Z-buffer from 3D mesh. Each pixel value in depth 

map only depends on the distance between sensor and face, which makes depth 

map robust to illumination changes and keep rich geometric information than RGB 

pictures. (Y. Guo et al., 2018; X. Zhu et al., 2017) propose to use a 3-channel 

position (depth) map storing x, y and z coordinates to represent 3D face and have 

got a better performance than single-channel depth image in reconstruction. The 

main deficiency of depth map is that only information of visible points is kept. 

Recovering the complete face geometry from a single depth map with large pose 

is still a difficult problem due to massive information missing. 

UV map is the flat representation of the 3D model used for warping texture. It 

offers the accurate correspondence with the 3D face vertices and resolve the 

challenging occlusion problem resulted from head poses. Inspired by this 

phenomenon, Feng et al. (Feng et al., 2018) present a UV position map, which is 

a UV map recording the position information of 3D face and providing dense 

correspondence to the semantic meaning of each point.  Recently, this new data 

format has attracted increasing interest in 3d face modelling (Bagautdinov et al., 

2018). The only downside is that the UV map needs to be designed by artist 

manually. 

2.2.3 Traditional Methods 

In the last few years, many traditional methods had been developed for 3D face 

reconstruction from depth maps. Existing methods (Donne & Geiger, 2019; Fang 

et al., 2019; Newcombe et al., 2011) were able to obtain the promising 3D shape 

by fusing multiple views of depth maps. However, it is not applicable for the 

practical application because of the complexity of multiple depth maps acquisition.  

This thesis mainly focuses on monocular 3D face reconstruction. As mentioned in 
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section 2.2.2, depth image recording the depth information is a kind of 3D data 

representation. With the given intrinsic matrix of camera, it is easy to get the point 

cloud according to the process of projection. The problem is thus converted into 

recovering the object/face surface from the point cloud projected from a single 

depth view. The recovering methods can be roughly classified into two categories:  

zero set method and non-rigid registration. Both Marching Cubes and Screened 

Poisson are zero set method. Some recovered examples are reported in Fig.2.6.  

Zero-set methods usually reconstruct the surface by designing a distance 

function which assigns to each point a signed distance to the surface. The 

definition of the appropriate function with a zero value for the sampled points and 

different to zero value for the rest can be regarded as polygonal representation of 

the object. In terms of the output, the methods can be broadly split into two parts, 

generating either a discrete surface, or an implicit function. For the former method 

(discrete surface), marching cubes (Lorensen & Cline, 1987b) is a typical and 

representative work. It extracts the surface of object/face by finding intersections 

between the input points and cubes of fitted grid, which voxelized the unordered 

input. Newman et al. (Newman & Yi, 2006)  have extended it to improve the 

performance. The latter method (implicit function) typically utilizes the 

knowledge of the exterior and interior of the surface with an implicit function for 

reconstruction. Taking poisson reconstruction (Kazhdan et al., 2006)as an example, 

Figure 2.6: The visual results reconstructed by traditional methods. 

Depth View               Marching Cubes         Screened Poisson         Nonrigid Registration   
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the implicit function is defined using poisson equation to adjust the input point set. 

Functions such as moving least squares, basic functions with local support 

(C.Walder et al., 2006), poisson equation have been proposed to define the implicit 

function as well. Loss of the geometry precision in areas with extreme curvature, 

i.e., corners, edges is one of the main issues encountered. Moreover, pretreatment 

of information, by adopting some kind of filtering technique, also impacts the 

definition of the corners by softening them. 

Unlike aforementioned methods, the reconstruction problem can be converted 

into the 3D non-rigid registration task, which aims to transfer the change in shape 

exhibited by raw input deformation onto the shape prior. It can be considered as 

warping the shape reference onto the raw point cloud. A typical solution is to 

register a facial template mesh to the given depth view using a deformation model 

based on smooth local affine transforms. Reliable correspondences which find the 

semantic mapping between the template and 3D points are required to indicate 

which parts of the two shapes should deform similarly. False correspondence can 

cause strong shape distortions that are inconsistent with the desired facial shape. 

Amberg et al. (Amberg et al., 2007) propose an optimal step Nonrigid Iterative 

Closest Point (NICP) framework for registration. To be specific, the nearest-point 

search was used to estimate the preliminary correspondence first. Then the 

deformation of the reference shape and the active stiffness is calculated according 

to fixed correspondence. The optimal deformation continues by searching new 

mappings from the displaced template vertices, which results in the dense 

correspondence. Alternatively, the best-known 3D Morphable Model (3DMM) 

proposed by Blanz and Vetter (Blanz & Vetter, 1999) is also used in 3D face shape 

recovery. It is a linear parametric model of 3D face shape and texture in low 

dimension space. To recover the face shape, the key is to fit the model to face 

images / face scans of previously unseen subjects. In initial 3DMM (Blanz & 

Vetter, 1999), Blanz and Vetter reduce the non-rigid registration problem into an 

image registration task by cylindrically unwarping the 3D facial mesh into 2D UV 

space. The dense one-to-one correspondence are established automatically through 
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finding the corresponding points in 2D images using gradient-based optical flow 

algorithm. They only align the facial meshes of 200 subjects with similar ethnicity 

and age. Beyond this constrained setting, the proposed method is fragile. To 

resolve this issue, Patel and Smith (Patel & Smith. W., 2009) suggest to manually 

annotate several key points of 3D face for alignment first, and then employ a Thin 

Plate Splines (TPS) (Bookstein & Green, 1993) warp to register the face scan into 

a reference shape in UV space.  Some following-up works (Z. Fan et al., 2018; 

Gerig et al., 2018; Gilani et al., 2017; C. Zhang et al., 2016) have been proposed. 

Additionally, Rodala and Cosmo (Rodolà et al., 2017) propose to compute partial 

functional correspondence according to the perturbation analysis of Laplacian 

matrices. This method is resilient to missing parts or incomplete data in object 

reconstruction. But it has not been used in human face. 

The non-rigid registration methods deeply rely on the correspondence which 

are prone to cause errors due to the unprecise estimation caused by iterative closet 

point or hand-selected facial features. Furthermore, such correspondences are 

inaccessible when the given depth view is noisy and non-frontal with partial facial 

regions occluded. In addition, the approximate alignment between input and facial 

template also needs to be done before registration. All these issues make 3D 

reconstruction from a single unconstrained depth view intractable with existing 

non-rigid registration methods. 

2.2.4 Deep Learning Methods 

Currently, there are two main kinds of deep models for reconstructing the 3D 

shape from a single depth map. One predicts the 3D shape from the depth map 

directly. The other instead predicts the deviation between the input and a shape 

prior, which is inspired by the non-rigid registration method mentioned above.  

As an early attempt, data-driven methods are widely used in 3D object 

reconstruction. Many approaches (H. Fan et al., 2017; R.Girdhar et al., 2016; Wu 

et al., 2015) reconstruct objects in 3D voxel grid by combining the semantic labels 

of objects using CNNs. Without the category information, (Sharma et al., 2016) 
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and (B. Yang et al., 2018) proposed to learn the volumetric 3D object using 

autoencoder and conditional GAN separately. Instead of reconstructing 3D shape 

in voxel space, the deformation model (Yu et al., 2018) predicts the point cloud of 

3D shape directly. Specifically, (Yu et al., 2018) propose to estimate new positions 

for all vertices of a reference shape according to the deform changes in input 3D 

data. In contrast, (Groueix et al., 2018; W. Wang, Ceylan, et al., 2019) infers the 

per-vertex displacement of the template, and then map them to each vertex for 3D 

shape reconstruction. Recently, a cage-based deep model is proposed to deform 

the input source object to target shape (Y. Wang et al., 2020). These mentioned 

methods are efficient in 3D object/human body reconstruction. However, they 

could not be used directly for 3D face reconstruction result from the complex and 

detailed structure of human face. 

In terms of deep deformation models in 3D face reconstruction, most of the 

algorithms are developed for dense correspondence prediction via 3D-to-3D 

model fitting. Both (Tan et al., 2018) and Abrevaya et al. (Abrevaya et al., 2018) 

propose an autoencoder-based multilinear model which can accurately predict the 

3D face mesh and decouple identity and expression variations. Specifically, a 

CNN-based encoder extracts the latent feature representations of depth data, from 

which the decoder performs a multilinear transformation to conduct 3D face fitting. 

However, both methods require 3D faces with an initial correspondence as input 

and the correspondence problem is considered in the restrictive space expressed 

by the model. To overcome the limitation, Liu et al.(F. Liu et al., 2019) propose 

an innovative framework to jointly learn a nonlinear face model from a diverse set 

of raw 3D scan databases and establish dense point-to-point correspondence 

among their scans. To be specific, as the most researcher usually do, they explore 

the use of PointNet (Qi et al., 2017) architectures for converting unordered point 

clouds to latent feature representations. These representations embed the facial 

identity and expression information separately, from which the decoder networks 

recover the new positions for all vertices of a face identity and the point-wise 

displacement for expressions accordingly. Since no correspondence label for real 
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scans are available, a self-supervised loss based on chamfer-distance between 

output and real scan is defined to optimize the final reconstruction in the training 

process. Although this method deals with the point cloud, with the given intrinsic 

matrix, it could recover the 3D facial geometry from a single depth map. However, 

this approach ignores the head pose information due to the data pre-processing 

which normalizes all the input point cloud into a unit sphere. 

Compared with expensive and laborious ground truth generation for real 

collected data, synthetizing 3D facial mesh using existing statistical model and 

rendering them into depth image using classical Z-buffer is convenient and fast, 

and can supply unlimited mesh-depth image pairs. But the model solely trained on 

synthetic data usually perform poorly when tested on real collected depth map due 

to domain mismatch. Recently, domain adaptation which aims to align data that 

are sampled from different distributions has drawn a lot attention. Zhong et al. 

(Zhong et al., 2020) propose a cycleGAN-based domain adaptation framework to 

regress the 3D face geometry. The framework can be seen in Fig.2.7. Only paired 

synthetic samples and real depth image are fed to the network, no labels of real 

data are required. Instead of predicting the direct 3D face representation, it 

estimates the coefficients of the existing parametric face model. Point-wise 

Figure 2.7: The framework of prior art method (Zhong et al., 2020) for face reconstruction from 

single depth image. 
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correspondences are extracted to guarantee the shape consistency between the 

output and input real depth. It is the first attempt to recover 3D facial geometry 

from real single depth image. Currently, very few explorations about leaning-

based method have been made on monocular face reconstruction from depth image. 

2.3 Generative Adversarial Network 

This section recaps the generative adversarial network which is the deep learning 

framework used in this thesis. It is a group of artificial intelligence and is drawing 

growing interest due to its promising performance in image, speech, text 

generation tasks. GAN is built based on a distinctive framework, in which the 

generative models are built through an adversarial process. Specifically, the 

framework includes two parts: a generator capturing the data distribution, and a 

discriminator predicting the probability that a sample came from the input rather 

than output. During training, the connection between these two models is 

established via an adversarial process: generator tries to maximize the probability 

of discriminator making a mistake, while the discriminator aims to distinguish the  

 real or fake. Both modules are optimized to improve their learning abilities over 

time. According to the research purposes, massive extensions have been made in 

the past few years. The representative architecture contributing to the major waves 

in the chronicle are shown in Fig. 2.8 and will be introduced in this section. 

 Original GANs (Goodfellow et al., 2014) is proposed by Goodfellow and his 

colleagues in 2014. For the architecture, fully-connected neural networks were 

adopted in both generator and discriminator, and the maxout function (Goodfellow 

et al., 2013) was employed in the discriminator while the ReLU activations (Jarrett 

et al., 2009) were used for all the layers except the final one with a sigmoid non-

linear function in the generator. In order to avoid the overfitting of discriminator, 

the authors suggest to update discriminator K times and update generator once. 
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This architecture variant can generate simple images, and was evaluated on 

MNIST, CIFAR-10 and Toronto face dataset. It does not demonstrate good 

generalization performance for more complex image types. 

 Conditional GANs (Mirza & Osindero, 2014) extends the original GAN to a 

conditional model by feeding the extra auxiliary information including class labels 

or other semantic text to both discriminator and generator. The extra auxiliary 

information is combined with the prior input noise to feed to generator, which 

generates the conditional real-looking images. Meanwhile, the discriminator also 

takes the labels, which enhances the distinguishing ability. This type of GAN can 

generate the images conditioned on class labels, and was tested on MNIST, Yahoo 

Flickr Creative Common 100M datasets. 

Laplacian Pyramid GANs (Denton et al., 2015) utilizes a cascade of 

convolutional networks within a Laplacian pyramid framework to generate images 

Fully-connected Network 2014 

Conditional structure 2014 

Laplacian pyramid framework 2015 

Deconvolutional operation 2016 

Auxiliary classifier in discriminator 2017 

Autoencoder for discriminator 2017 

Training with large batch size 2019 

Self-attention mechanism 2018 

Original GAN 
Goodfellow et al. 
 

CGAN 
Mehdi et al 
 

LAPGAN 
Denton et al. 
 

DCGAN 
Radford et al. 
 

ACGAN 
Augustus et al. 
 

BEGAN 
Berthelot 
 

BigGAN 
Brock et al. 
 

SAGAN 
Han et al. 

Figure 2.8: Timeline of GAN’S architecture-variants introduced in this thesis. 
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in a coarse-to-fine manner. It combines the conditional GAN model with a 
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Figure 2.9: The structure of different GAN variants. 
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Laplacian pyramid representation which is used to up-sample the image. There are 

a set of generators and discriminators to make the multiscale generation. The first 

generator usually produces a very small image, which can eliminate the unstable 

issue. And then the generated image is up-sampled through using Laplacian 

pyramid before feeding to the next generator. Each conditional generator produces 

the particular levels of details of an image in a Laplacian pyramid representation. 

Similarly, the discriminator distinguishes the real or fake samples from multiscale. 

What needs to be mentioned here is that the generators generally generate the 

image difference for the high-resolution images, which is much less complicated 

that the same size raw images. This structure benefits more stable training and 

high-resolution modelling. Extensive experiments have been done on three public 

datasets to prove its performance. 

Deep Convolutional GANs (DCGANs) (Radford et al., 2015) adopts the 

convolutional networks in both generator and discriminator. Compared with 

original GAN, it mainly has three critical modifications, which results in stable 

training and high-resolution modelling. Firstly, all sampling operation are 

conducted using fractional-strided convolutions for generator and strided 

convolutions for discriminator rather than pooling layer. Secondly, to reduce the 

impact on poor initialization, batch normalization(Ioffe & C. Szegedy, 2015) is 

suggested to make input of each layer in a normal distribution. Thirdly, ReLU 

activation function (Jarrett et al., 2009)is utilized in generator for all layers except 

final one, which adopted Tanh as the non-linear function, while LeakyReLU 

activation(Maas et al., 2013) is utilized for all layers of discriminator. Compared 

with Relu ignoring the negative neuros, the LeakyRelu activation takes these 

neuros into consideration, which avoids the network to stuck a “dying state” 

circumstance (e.g., inputs smaller than 0 in ReLU). DCGANs are evaluated on 

Large-scale Scene Understanding (LSUN), ImageNet and the customized-

assembled face dataset, and has got promising performance. It is a very important 

milestone in the GANs history and the deconvolution becomes the main 

architecture used in the generator. Due to the limit of the model capacity and the 
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optimization used in DCGAN, it is only successful on low-resolution and less 

diverse images. 

Boundary Equilibrium GAN (BEGAN) (Berthelot et al., 2017) adopts an 

autoencoder architecture rather than general encoder framework in the 

discriminator. The structure of both generator and discriminator in BEGAN are 

very similar to the generator in DCGAN. Different from the general discriminator 

defined as a binary classifier, the discriminator in BEGAN is designed to 

reconstruct the input images. The distinguishing problem is converted to match the 

reconstruction loss distribution, which is an effective indirect method of matching 

data distributions and has been confirmed experimentally in the paper (Berthelot 

et al., 2017). In other words, the objective of the discriminator is to maximize the 

difference of the data distribution of the reconstruction losses of real samples and 

produced samples. Following the energy-based GAN (J. Zhao et al., 2016), 

Wasserstein distance is used to measure the difference. With the help of this 

equilibrium enforcing method, the BEGAN balances the generator and 

discriminator, especially at the early training stage. The model is trained on 

CelebA dataset and have got promising results. 

ACGAN (Odena et al., 2017) is a new variant of the GAN architecture named 

auxiliary classifier GAN. It is an extension of CGAN, changing the discriminator 

to estimate the class label of a given image instead of receiving the label as input. 

In other words, the discriminator in ACGAN not only needs to predict whether the 

input image is real or fake as general discriminator usually do, but also must 

estimate the class label of the input. Compared with existing models, this variant 

is not absolutely novel, but it generates high-quality results and appears to stabilize 

training while learning a representation in the latent space that is independent of 

the class label. The model trained on CIFAR-10 and the ImageNet for all 1000 

classes has improved the visual quality of the produced samples. However, the 

improvements highly rely on large-scale labelled database, which might cause 

challenges in real-world application. 
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Figure 2.10: Self-attention module proposed by (H. Zhang et al., 2019). 

Self-attention GAN (H. Zhang et al., 2019) is also a new variant of GAN. 

Compared with aforementioned GANs only capture the local spatial information 

and the receptive filed may not cover enough structure, it adopts the self-attention 

mechanism in both generator and discriminator to ensure large receptive field and 

without sacrificing computational efficiency. This mechanism can be described as 

mapping a query and a set of key-value pairs to an output, where the query, keys, 

values, and output are all vectors. The output is computed as a weighted sum of 

the values, where the weight assigned to each value is computed by a compatibility 

function of the query with the corresponding key. Benefiting from this mechanism, 

SAGAN (H. Zhang et al., 2019) is able to learn global, long-range dependencies 

for generating images. It has achieved great performance on multi-class image 

generation based on the ImageNet datasets. 

Recently, a new GAN variant named BigGAN (Brock et al., 2018) has been 

proposed and has shown outstanding, large scale, indistinguishable, and high-

quality image generation capacity. The training setting of BigGAN follows the 

SAGAN, in which the learning rate was halved and train two D steps per G step. 

This section summarizes following operations which make BigGAN scale-up the 

architecture: (1) Self-attention module contributing to the model diversity and 
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Hinge loss boosting more stable training. (2) the class information provided to the 

generator model via class-conditional batch normalization. (3) Update 

discriminator more than generator. (4) Moving average of model weights. More 

details can be referred to the original paper. This model can train bigger neural 

networks even with more parameters; create a more extremely detailed image with 

remarkable performance. 

2.4 Conclusion 

This chapter has briefly summarized the relative fields to the thesis. It comprises 

the literature on: 

 The methods of salient object detection for general scene analysis,  

 The approaches of 3D face reconstruction from single depth view for human-

centred scene analysis, 

 The variants of generative adversarial network provided the basic framework 

for this thesis.  

To sum up, earlier saliency detection methods usually extract the salient object 

using the low-level features like pixel, color or texture. This kind of methods do 

not perform well on complex scenes such as complicated background and multi-

objects. Currently, deep learning-based methods have been proposed and have got 

improvements. However, these methods generally take the pixel errors into 

consideration for saliency map generation, which ignores the shape and semantic 

information of the salient object. For 3D face reconstruction, traditional methods 

usually are optimized-based, which is not efficient for large poses and occlusions. 

Until to recent advance, very few efforts were made on learning-based technology 

to explore the 3D face reconstruction from single depth image. 

Overall, compared with human performance, significant advances have been 

made on visual scene analysis, but it still remains challenging at current stage. The 
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aim of this thesis is to explore the potential of GAN for bridging the gap between 

human intelligence and algorithms of visual scene analysis. 
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Chapter 3  

Perceptual Loss-Guided GAN for Saliency 

Detection 

3.1 Introduction 

Saliency detection attempting to highlight salient objects or regions by human 

visual and cognitive systems (Borji & Itti, 2012) is one of the key fundamental 

problems in psychology and computer vision. It has various applications including 

image segmentation (Zeng et al., 2019), object recognition (Zeng et al., 2019; Z. 

Q. Zhao et al., 2019) and visual scene understanding (Jeon & Kim, 2018) in 

computer vision. During the past few years, significant advances have been made 

on these tasks using both conventional classic methods (Cheng, Mitra, Huang, Torr, 

et al., 2014; Jian et al., 2018; Q. Liu et al., 2017; Ogasawara et al., 2017) and deep 

learning technologies (L. Wang et al., 2016; C. Zhang et al., 2019; P. Zhang, Wang, 

Lu, Wang, & Yin, 2017). Most of existing conventional saliency detection 

methods (Jian et al., 2018; Q. Liu et al., 2017; Ogasawara et al., 2017) mainly 

devotes to design the low-level saliency cues including color contrast, edge, 

pattern and texture, or extract the middle-level object information such as spatial 

context, shape and contour. However, these handcrafted features cannot make 

obvious contrast between background and the salient region if salient object 

located in complex scene scenarios. Deep learning methods including  

Convolutional Neural Network (CNN) (L. Wang et al., 2018, 2016; P. Zhang, 

Wang, Lu, Wang, & Yin, 2017) and Generative Network (GAN) (Cai & Yu, 2018; 

J. Pan et al., 2017; C. Zhang et al., 2019) were proposed to solve the existing  

problem due to its powerfulness of extracting high-level feature representations. 
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Figure 3.1: The salient object detection results using different loss functions. From b to e, the results 

are generated by the proposed structure guided by adversarial loss (b), adversarial loss and low-

level feature measurements (c), adversarial loss and high-level feature measurements (d), 

adversarial loss and perceptual loss (e) respectively. 

These kinds of network usually improve the accuracy and precision of prediction 

by minimizing the difference between the output and the target saliency map. 

Generally, the difference is represented by the loss function which is a significant 

part of improving the deep learning models performance. An appropriate loss 

function can not only help to speed up the convergence of gradient descent but 

also improve the naturalism and realism of the saliency map. For example, WGAN 

(Martin Arjovsky & Bottou, 2017) proposed to define the loss function by using 

Earth Mover Distance (EMD) instead of Jensen-Shannon divergence, which 

improved the performance of GAN deeply by making the network more stable and 

easier to train. However, how to choose or design an appropriate training loss for 

saliency detection is still an open problem. 

 A loss function usually consists of distance measurement methods and the 

feature representations of the sample. Currently, the deep learning methods (Cai 

& Yu, 2018; J. Pan et al., 2017) mainly focus on defining the loss function by 

calculating the mean square error or binary cross entropy between the generated 

and ground truth saliency map. Obviously, only the pixel difference is taken into 

consideration to optimize the deep model. But it is not robust enough to ensure the 

  a.  Image             b. Adversarial       c. Low-level    

     d.  High-level       e.  Perceptual            f. GT            
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shape and detailed information of the salient object. Recent work has demonstrated 

that the perceptual loss function based on feature loss extracted from several layers 

of the pretrained deep model can boost the high-quality image generation (Johnson 

et al., 2016). 

 To this end, this work pays attention to the profit of perceptual loss to generate 

high-quality saliency maps using GAN. In GANs, training is a competing game 

between two neural networks: the generator synthesizes samples to match with the 

training data; the discriminator distinguishes the real sample from the fake 

synthesized by the generator. In this chapter of the thesis, the real sample stands 

for the pair of input RGB image and the corresponding ground truth saliency map. 

Similarly, the fake means the pair of input image and the predicted saliency map. 

Specifically, GAN’s generator consisting of deep convolutional neural network is 

trained for rough saliency map generation. Instead of only using L1 cost function 

relying on pixel values, a perceptual loss function depending on both high-level 

representations and low-level information extracted from the pretrained deep 

model is adopted, to measure the semantic and appearance difference between the 

salient object extracted by filtering input image with the output and the target 

saliency map. As shown in the Fig.3.2, the encode part of generator is initialized 

with the pretrained VGG-16 model (Simonyan & Zisserman, 2014) to get the high-

level feature maps and the decoder  produces a rough saliency map directly than 

convert the feature map to a latent feature vector. The rough saliency map was first 

refined by 2 fully convolution layers in generator and then further refined with a 

multiscale discriminator network which is trained to distinguish the real sample 

from the fake one. 

 In short, the contributions can be concluded as follows: 

 A novel perceptual loss guided GAN (PerGAN) is developed for salient 

object prediction in still images. The perceptual loss is defined based on 

both low-level content cue and high-level semantic representation, which 

ensures more detailed information in edge localization and the 

completeness of the salient objects respectively. 
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 A multiscale discriminator is designed to distinguish the real and fake 

samples at different scales for further improving the learning ability of 

generator. Furthermore, the quality of output saliency map is guaranteed. 

Experimental results show that the multiscale discriminator performs 

between than general one.  

 The simple coarse-to-fine strategy is adopted to convert the feature map to 

saliency map at the last two layers with  1 × 1 kernels in generator.  

3.2 Related Work 

3.2.1 Saliency Detection 

Detecting salient objects has attracted much attention for past decades. In the early 

stages, the methods based on the hand-crafted feature representations like 

boundary (Q. Liu et al., 2017), color contrast (Ogasawara et al., 2017), texture 

pattern (Jian et al., 2018) were designed to estimate the salient objects. Generally, 

these low-level features are good at keeping the object structure and boundary 

information, but they are not able to represent the semantic information of the 

object. 

 More recently, deep learning models (W. Wang, Lai, et al., 2019) have shown 

superior performance in many image processing and analysis tasks including 

detecting salient objects over other state-of-the-art techniques. Previous deep 

models (Lee et al., 2017; L. Wang et al., 2015) typically chose the salient objects 

from the saliency score which was regressed using CNNs. Currently, fully 

convolutional networks were adopted to generate pixel-wise saliency maps in a 

direct end-to-end manner. Specifically, Hou et al.(Hou et al., 2017) present to 

embed the skip-layer with short connections within the holistically-nested edge 

detector architecture, which shared more spatial information with target maps. 

Wang et al. (L. Wang et al., 2015) proposed a recurrent fully convolutional 

networks based deep model for saliency detection. It resolved the gradient vanish 
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problem caused by very deep networks. Zhang et al. (P. Zhang, Wang, Lu, Wang, 

& Ruan, 2017) proposed to aggregate multi-level convolutional feature maps for 

salient object detection, which is efficient and flexible. To further explore the 

efficiency of the convolutional feature maps, Zhao et al. (T. Zhao & Wu, 2019) 

applied an attention strategy for choosing the features maps which were useful for 

saliency map generation since not all the feature maps include the salient cues. All 

aforementioned methods used low-level differences such as pixel errors to guide 

the network for training, which cannot ensure the high-level information for salient 

object prediction. Inspired by (Johnson et al., 2016), we propose a perceptual loss 

guided network, which reduces not only the appearance difference but also the 

semantic errors between the predicted and target saliency maps in optimization 

process, to generate necessary details for salient objects. 

3.2.2 Generative Adversarial Network 

Generative adversarial networks (GAN) (Goodfellow et al., 2014) has gained 

many promising performances in various visual analysis tasks, including high-

resolution image generation (T. C. Wang et al., 2018) , font generation (Hayashi 

et al., 2019), 3D object reconstruction (B. Yang et al., 2018) and so on. It has been 

adopted for salient object detection as well. Cai et al. (Cai & Yu, 2018) proposed 

to adapt conditional GAN which integrated the u-net and skip-connections for 

saliency map generation. To reduce the blurred contour result from that the mean 

squared error filters the high spatial frequency, SalGAN (J. Pan et al., 2017) 

proposed to use the binary cross entropy to measure the pixel difference between 

the synthetic and marked saliency maps. Instead of using general discriminator to 

classify fake or real, Pan et al. (H. Pan et al., 2020) proposed to take the category 

label of the image into consideration and designed a supervised classifier for 

classification. But the downside is that the class labels were required. To improve 

the feature learning ability in a direct manner, Zhu et al. (Hu et al., 2018) developed 

a Laplacian pyramid-based generator to produce the smooth saliency maps. 

Recently, Zhang et al. (C. Zhang et al., 2019) was proposed to estimate the salient 
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object by adding capsule blocks in generator and discriminator. All these 

aforementioned networks were updated by minimizing the original adversarial 

losses which based on low-level feature representations. In terms of the 

optimization function, the perceptual loss has not been paid attention to by all the 

mentioned methods. Moreover, there has been less previous evidence for GAN 

with a multiscale discriminator in saliency detection.  

3.2.3 Perceptual Loss Function 

Loss function which depending on feature representations and measurement plays 

an important role in deep network. How to choose the feature representations and 

how to measure the feature difference are still open issues in saliency detection. 

Low-level feature representations presenting the color, boundary, texture 

information are widely used to ensure the edge information since salient object has 

the obvious contrast with the simple background. A number of recent works (Gatys 

et al., 2015; Jetley et al., 2016; Johnson et al., 2016; C. Wang et al., 2018) have 

optimized the loss function based on feature representations extracted from pre-

trained network to generate high-quality images. Various information such as edge, 

colour, shape and semantic category was embedded in feature loss, which makes 

the output reasonable. To the best of our knowledge, the saliency detection issue 

has never been explored by GAN which is optimized by perceptual loss function. 

In this paper, the perceptual loss is considered to ensure the completeness of the 

object by understanding what it is. Specifically, the perceptual loss defined based 

on the high-level semantic information and low-level features is calculated to 

measure the perceptual difference between the colourful object maps, extracted via 

filtering the background information from the input RGB images. Of course, the 

perceptual difference is used for network optimization. 
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3.3 Perceptual Loss-Guided GAN 

In this paper, to tackle the problem of salient objects detection, the GAN with 

perceptual loss is developed. Fig.3.2 illustrates the overall architecture of proposed 

PerGAN in detail. The designed PerGAN mainly has two components: the 

generator as in upper part and the multi-scale discriminators showed in lower half 

 

Figure 3.2: The framework of proposed PerGAN. 
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space. The training process is the competing game between two convolutional 

neural networks: a generator network which generates the salient map, and a 

discriminator network which aims at distinguishing the real sample between the 

ground truth saliency maps and generator’s output. Furthermore, this section 

provides details on aforementioned module’s structures and the objective loss 

functions used to guide the network. 

3.3.1 Generator 

The generator consists of an autoencoder structure and the skip connections 

between the encoder and decoder. Specifically, the encoding part comprises five 

convolutional layers whose filter size and stride step is 3 × 3  and 1 × 1 

respectively. To down sample the output feature maps, the max pooling operation 

with 2 × 2 filter follows each convolutional layer, which make the size of feature 

scale with a factor ½ at each layer to reduce from 224 to 14.  In contrast, the output 

channel of max pooling layer begins with 64, doubling at each subsequent layer to 

rise to 512. In order to extract the feature maps efficiently, the pre-trained VGG-

16 model was imported to initialize the variables, which also saves lots of 

computing resources during training. Inspired by (T. Zhao & Wu, 2019) , the 

output of encoder is directly fed to decoder directly rather use linear transformation 

to convert them to hidden latent space. The decoding part is a symmetric structure 

with encoder. It has 5 transposed convolution layers with the strides of 2 × 2 

replacing the up-pooling operation for generating the salient features maps and 2 

fully convolutional layers with the size 1 × 1 of filters to fine-tune the coarse 

outputs. Instead of using the same filter of convolutional layer in encode, the filter 

size is increased to 5 × 5  for receiving more fields of salient objects. Both 

encoding layers and decoding layers are followed by a ReLU activation function 

(Jarrett et al., 2009) except for the last layer with a logistic regression converting 

the data distribution to [0, 1]. Skip-connection between encoder and decoder 

guarantee propagation of local structures. What needs to be emphasised here is 
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that the autoencoder is unable to learn desirable saliency map without the last two 

fine-tune layers. In training process, the generator was fed with RGB images and 

supervised by corresponding target saliency maps. In testing phase, only RGB 

images are required. 

3.3.2 Discriminator 

The discriminator devotes to distinguish estimated maps from the group of 

generator’s outputs and target maps. In order to improve the distinguishing ability, 

a multiscale network structure is designed to extract the feature representations of 

input pairs at three different scales. Particularly, the discriminator has 3 sub-

networks (named as 𝐷1, 𝐷2and 𝐷3) with 4, 3, 2 convolutional layers separately. 

The input pair are directly fed to 𝐷1, and then is down sampled by stride 2 and 4 

in width and height to feed to 𝐷2  and 𝐷3  separately. Similar to the encoder in 

generator, all sub-networks have an identical encoding architecture. Rather than 

max pooling operation, the down sampling of feature maps was conducted by 

convolution operation with strides 2 × 2 . Every convolutional layer only was 

followed with the ReLU activation operations (Jarrett et al., 2009) except the last 

layer. The large filter with size 5 × 5  in 𝐷1  and 𝐷2 is also used to get big receptive 

field of salient objects for ensuring the overall cues of fake pairs is in line with the 

real pairs. In contrast, small kernels with shape 3 × 3  was adapted in 𝐷3  to 

guarantee the local detailed information of fake samples. 

3.3.3 Loss Functions 

The total loss used to optimize the network includes three weighted components: 

an adversarial loss, a L1 loss based on per-pixel for generator, and a perceptual 

loss. 

a) Adversarial Loss 
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The adversarial loss, which is a reflection of how the generator could maximally 

deceive the distinguisher and how well the distinguisher could discriminate 

between real and fake samples, is developed as: 

 ℒ𝑎𝑑𝑣 =  ∑ 𝐸(𝑥,𝑦)[log(𝐷𝑘(𝑥, 𝑦))]3
𝑘=1 + 𝐸(𝑥,𝑦′)[log(1 − 𝐷𝑘(𝑥, 𝐺(𝑥)))] (3-1) 

 As mentioned in the earlier section, 𝐷𝑘  refers to the 𝑘𝑡ℎ discriminator and 

𝐺() stands for the generator. The feeding image is defined as 𝑥 , and its 

corresponding saliency map is defined as 𝑦 . In each iteration of our training 

process, two generator updates are performed followed by a discriminator update. 

The weight of the first element (adversarial loss) in total loss is 𝜔𝑎𝑑𝑣. 

b) L1 Loss 

Compared with L2 loss, the per-pixel loss can reduce the artifacts of depth map 

and saliency map. The L1 cost function between the target map 𝑇 and the produced 

sample 𝐺(𝑥) is calculated as follows: 

 ℒ𝑙1 =  |𝐺(𝑥) − 𝑇|  (3-2) 

To balance different losses, it is contributed to the total loss with weight ω𝐿1. 

c) Perceptual Loss 

The perceptual loss function used in this work includes two parts. One is the 

content loss function used for measuring the image-specific difference, the other 

is the style loss function aimed for calculating the difference between textures, 

shapes and colors. Both of them depend on the feature extracted from VGG-16 

model. The feature examples can be seen in Fig.3.3.  

 Content loss: As mentioned in (Johnson et al., 2016), compared with matching 

the low-level pixel difference, the estimated salient objects and target RGB objects 

which were filtered out by saliency map S (or G(x))  and target map T is 

encouraged  to have similar feature representations extracted from the deep model. 

To extract the feature representation of the generated and target salient objects, the 
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pre-trained VGG-16 is employed. The content loss of the two filtered images, after 

passing through a convolutional layer can be calculated as follows:  

 ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =  
‖𝑉(𝑇∗𝑥) − 𝑉(𝑆∗𝑥)‖2

𝑐∗𝑙∗𝑤
   (3-3) 

 Here, c, l and w means the output’s channels, length and width separately. V() 

represents the non-linear transformation, which is performed by the VGG-16 

network.  

 Style loss: The content loss is defined based on the shallow features which 

mainly contains edge and boundary information. Inspired by the recent work 

which built the style reconstruction loss (Gatys et al., 2015) through measuring the 

style feature representation between two different images, the style differences in 

patterns, shapes and colors between the predicted salient objects and the target 

salient objects is also computed, which will further ensure the salient region of the 

output maps. The style feature of a convolutional layer can be represented by the 

correlation between different feature maps of this layer. The correlation between 

a group of maps usually was stored in a Gram matrix. For the input 𝑓, the output 

𝜑𝑗(𝑓) of 𝑗𝑡ℎ layer is with size 𝐶𝑗 × 𝐻𝑗 × 𝑊𝑗. The components of Gram matrix are 

described by: 

 𝐺𝑀𝑗(𝑥) =  
1

𝐶𝑗∗𝐻𝑗∗𝑊𝑗
∑ ∑ 𝜑𝑗(𝑓)ℎ,𝑤,𝑐

𝑊𝑗

𝑤

𝐻𝑗

ℎ 𝜑𝑗(𝑓)ℎ,𝑤,𝑐′ (3-4) 

 And the size of Gram matrix is 𝐶𝑗 × 𝐶𝑗 . The outputs of Conv1_2, Conv2_2, 

Conv3_3 and Conv4_3 are utilized to reconstruct 4 correlation matrices.  Thus, the 

style reconstruction loss between the Gram matrices of the colourful predicted 

salient objects and target objects is defined by: 

 ℒ𝑠𝑡𝑦𝑙𝑒 =  ∑ ‖𝐺𝑀(𝑉𝑛(𝑆 ∗ 𝑓) − 𝐺𝑀(𝑉𝑛(𝑇 ∗ 𝑓) )‖𝐹
24

𝑛=1   (3-5) 

 The perceptual loss is defined by weighting style loss and content loss as below: 

 ℒ𝑝𝑒𝑟𝑐𝑒𝑝 =  ℒ𝑐𝑜𝑛𝑡𝑒𝑛𝑡 +  𝜆ℒ𝑠𝑡𝑦𝑙𝑒 (3-6) 
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Figure 3.3: The feature map examples extracted from VGG-16. The output of Conv1_2 was 

adapted for building content loss. All feature maps were used to reconstruct the style loss. 

Obviously, the shallow layer usually extracts the obvious edge and shape information. While the 

deep layer records somewhat semantic information. 

Filter Image / 

Saliency Map 

Conv1_2 

Conv2_2 

Conv3_3 

Conv4_3 
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 It is a necessary part of total loss as well. The weight for it in total loss is 

𝜔𝑝𝑒𝑟𝑐𝑒𝑝. 

 Overall, the loss function used for guiding the whole network is as following: 

 ℒ𝑡𝑜𝑡𝑎𝑙 =  𝜔𝑎𝑑𝑣 ∗  ℒ𝑎𝑑𝑣 +  𝜔𝑙1 ∗  ℒ𝑙1 +  𝜔𝑝𝑒𝑟𝑐𝑒𝑝 ∗  ℒ𝑝𝑒𝑟𝑐𝑒𝑝  (3-7) 

3.4 Experimental Results 

3.4.1 Datasets 

Six public benchmark databases are used to demonstrate our experimental 

performance following the settings mentioned in (T. Zhao & Wu, 2019). 

 ECSSD (Yan et al., 2013) includes 1, 000 structurally complicated images 

obtained online. The corresponding binary ground truth saliency maps were 

annotated by five subjects. It is the extended dataset of CSSD (Yan et al., 2013). 

 PASCAL-S (Y. Li et al., 2014) covers 850 natural pictures with corresponding 

saliency segmentation masks which were annotated by twelve participants. We set 

the threshold as 0.5 to acquire binary ground truth saliency maps as mentioned in 

(G. Li & Yu, 2015).  It also provides the eye fixation information of each image. 

In this paper, we just use binary saliency segmentation maps to measure our 

generated salient objects. 

 DUTS (L. Wang et al., 2017) is the largest dataset including 15572 complex 

images and the corresponding per-pixel annotations. It covers varied image 

contents, such as indoor, outdoor, human, animals and vehicles. The dataset is 

divided into two parts, 10552 for training and the remining 5019 images for testing. 

  DUT-OMRON (C. Yang et al., 2013) contains 5167 natural images. It not only 

provided the bounding boxes but also offered the corresponding pixelwise 

annotations. However, different observers have different opinions on the 

annotations, which contribute it to a challenging dataset. Most of the existing 

saliency models have not predicted very accurate saliency maps for this dataset. 



Chapter 3: Perceptual Loss-Guided GAN for Saliency Detection 

 

47 

 

 

 HKU-IS (G. Li & Yu, 2015) covers 4447 pixelwise annotation ground truths 

which are in line with the natural RGB images. It is a challenging dataset since 

most images have more than two salient objects and inapparent colour contrast. 

The author grouped the database into three subsets: training set including 2450 

samples, validation set containing 500 specimens and testing set comprising the 

resting 1447 pairs. 

 THUR15K (Cheng, Mitra, Huang, & Hu, 2014) includes 15k images and only 

about 6k images are with accurate pixelwise annotation. These annotated images 

were divided into 5 groups covering butterfly, coffee mug, dog, giraffe and plane. 

Most of the existing saliency prediction methods have not achieved a high 

accuracy on this dataset since it has many complex scene scenarios. 

3.4.2 Training Process 

The whole MSRA-10k dataset (Ogasawara et al., 2017) is used for the training 

process. To extend the training data, the data augment including flip and rotation 

is conducted. Approximately 80K images which are size of 224*224 were fed to 

the network to learn the mapping from RGB images to saliency maps. For the 

network setting, the optimization strategy mentioned in (Cai & Yu, 2018) is 

followed. The ωadv, ωl1, ωpercep mentioned in total loss are set as 1, 100 and 100 

respectively, and the λ controlling the style loss is set as 10. The batch size is set 

to be 1. Adam optimizer is adopted with the momentum of 0.5 and the step size of 

0.0002. The whole training process took about 50 hours (180k iterations) on a PC 

with a 4GHz Intel i7 processor and a Nvidia GTX 1080 GPU (8G RAM). 

3.4.3 Evaluation Metrics 

a) Measures 

Four widely used performance measurements including precision (P), recall (R), 

F-measure score (𝐹𝛽) and mean absolute error (MAE) were adopted to evaluate 

the proposed method. The threshold was changed from 0 to 255 to produce 256 
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values of every measurement per saliency map. All the evaluation performances 

were obtained via averaging the measures over saliency maps in the whole dataset. 

 Precision is to measure the quality of our predictions only based on what our 

network claims to be positive. In other worlds, it demonstrates the proportion of 

the predicted salient regions (PSR) within the target salient regions (TSR) over the 

predicted regions. In contrast, recall is to measure such with respect to the mistakes 

we did. It calculates the percentage of the number of detected salient object regions 

inside the target regions over those of the target regions. Both precision (P) and 

recall (R) are defined by: 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑃𝑆𝑅 ∩ 𝑇𝑆𝑅

𝑃𝑆𝑅
 (3-8) 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑃𝑆𝑅 ∩ 𝑇𝑆𝑅

𝑇𝑆𝑅
 (3-9) 

 Generally, precision and recall do not take the true negative salient scores into 

consideration. A balanced and complementary measurement calculating the 

average pixel-wise difference is needed. MAE is the classical and popular 

measurement to evaluate the difference. In our case, MAE between predicted 

saliency map S and its corresponding ground truth T is computed as: 

 𝑀𝐴𝐸 =  ∑  
|𝑆−𝑇|

𝑙∗𝑤

𝑙∗𝑤
𝑖=1  (3-10) 

 The parameter 𝑙  and 𝑤  stands for saliency map’s length and width, 

respectively. According to measurement criterion both S and T are converted to [0, 

1]. Besides, the overall performance F-measure taking precision and recall into 

consideration is also used for measurement. It is defined as: 

 𝐹𝛽 =  
(1+𝛽2)∗ 𝑃∗𝑅

𝛽2∗𝑃+𝑅
 (3-11) 

 𝛽2=0.3 is set to highlight more precision as mentioned in (G. Li & Yu, 2015). 

What needs to be mentioned is that the mean F-measure scores is calculated for 

comparison by averaging the value of precision and recall. 
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 The proposed method is compared with more than ten state-of-the-art salient 

object detection methods including Amulet (P. Zhang, Wang, Lu, Wang, & Ruan, 

2017) , BL (Tong et al., 2015), CBGAN (C. Zhang et al., 2019), CF (Hassan et al., 

2019),  DCL (G. Li & Yu, 2016), DHS (N. Liu & Han, 2016),  DMCN (Sun et al., 

2019), DRFI (H. Jiang et al., 2013), DS (X. Li et al., 2016), ELD (Lee et al., 2017), 

KSR (T. Wang et al., 2016), LAWS (Qian et al., 2019), LEGS (L. Wang et al., 

2015), MCDL (R. Zhao et al., 2015), MDF (G. Li & Yu, 2015), RFCN1 (L. Wang 

et al., 2016), RFCN2 (L. Wang et al., 2018), MSNSD (Liang et al., 2019), UCF (P. 

Zhang, Wang, Lu, Wang, & Yin, 2017) on six aforementioned datasets. For fair  

 

 

Figure 3.5: Comparisons among eleven deep learning-based salient object detection approaches on 

four challenging public datasets. Each row relates to a dataset. The left and middle columns are the 

precision-recall curves and the F-measure-threshold curves of different methods. The right column 

shows the average precision, recall and F-measure scores. The proposed method is comparable to 

the state-of-the art methods under all measurements. 
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comparisons, saliency maps used in this chapter is provided by the authors or 

generated by the recommended parameters and released code of existing methods. 

Fig.3.4 shows visual maps generated by mentioned state-of-the-art approaches and 

proposed technique. It can be seen that the proposed method completely highlights 

the salient objects even in very challenging scenes. In the fifth row of Fig.3.4, 

almost all methods could not disregard complex wall as the salient objects. Only 

UCF (P. Zhang, Wang, Lu, Wang, & Yin, 2017) and the proposed method detected 

the jumping man accurately and our method produced a smooth and detailed edge 

information. This is because the perceptual loss profits our method extracting both 

edge cues and semantic information to ensure the accurate saliency detection. 

 As shown in Fig.3.4, the results of proposed method have fewer missing pixels 

in predicted salient regions and have more detailed information in boundary 

localization. This is because the feature extracted by pre-trained VGG-16 not only 

includes the high-level semantic feature representations but also covers the low-

level edge information. It is obvious that the feature maps in first two rows mainly 

capture the boundary localization and edge information and those in last two rows 

represent the abstract sematic information, which corresponds with the low-level 

feature representations and high-level feature representations, respectively.  

 For quantitative evaluation, P-R curves, F-measure curves and mean F-

measure scores are illustrated in Fig.3.5. The Fig.3.5 obviously demonstrates that 

the proposed method is competitive over other methods on these four datasets 

under all evaluation metrics. Furthermore, F-measure score is the overall 

performance measurement as mentioned above, so a quantitative comparison 

MAE and mean F-measure is reported in Tab.3.1. It shows that the proposed 

approach locates in the first place on almost all datasets. In terms of F-measure 

scores, the PerGAN outperforms the rank 2 model by 0.7%, 0.8%, 0.5% over 

ECSSD, DUTS-test, HKU-IS respectively. For MAE, the proposed approach 

reduces the value by 0.2%, 0.4%, 0.3%, 0.3%, 1.1%, 0.1% on ECSSD, PASCAL-

S, DUTS-test, DUT-OMRON, HKU-IS, THUR15K respectively. 
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Figure 3.6: Visual examples generated by guiding with and without the perceptual loss (PL).  

 

Figure 3.7: The bar chart of MAE (closer to zero is better) and F-measure (closer to one is better) 

with and without perception loss calculated from our method.  

Table 3.2: The F-measure based on RGB images and binary saliency maps (SM) and MAE from 

the proposed method. 

Dataset ECSSD PSACAL-S 
DUTS- 

test 
DUT-

OMRON 
HKU-IS 

Fβ 
SM 0.8991 0.8094 0.7633 0.8871 0.7108 

RGB 0.9024 0.8111 0.7767 0.8904 07228 

MAE 
SM 0.0517 0.0909 0.0673 0.0410 0.0908 

RGB 0.0519 0.0909 0.0638 0.0408 0.0855 

 

Map without PL Image GT Map with PL 
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Table 3.3: Ablation study with different components combinations on ECSSD dataset. 

CGAN 
Multi-

Discriminator 
Fine-
Tune 

Perceptual 
Loss 

MAE Fβ 

    0.108 0.778 

    0.0762 0.823 

    0.0611 0.851 

    0.0519 0.878 

 

b) The Effectiveness of Perceptual Loss 

The perceptual loss is employed to guide GAN for learning more detailed salient 

objects including both boundary localization and the shape completion.For the 

better visual perception, the saliency maps generated with and without the 

perceptual loss is showed in Fig.3.6. Note that perceptual loss not only ensures the 

completeness of the salient object but also obtains the detailed edge information. 

Fig. 3.7 shows the MAE and F-score measure calculated from PerGAN with and 

without perceptual loss. These results illustrate that the perceptual loss improves 

saliency prediction model deeply. Besides, salient RGB maps are nearly same as 

the binary saliency maps in providing feature representation for building the 

perceptual loss is concluded from Tab.3.2. The output of different layers for both 

filtered image and the saliency map are displayed in Fig.3.3. These feature maps 

are generally similar, which indicates that the saliency maps rely more on the 

boundary localization and shape information than colors, textures and other 

patterns. 

c) Ablation Study 

To investigate the importance of different modules in proposed approach, the 

ablation study is conducted. The corresponding measurements are displayed in 

Tab.3.3. The model containing all components (multi-scale discriminator, fine-

tune operation and perceptual loss) achieves the best performance, which 

demonstrates that these three components are all necessary for the proposed 

approach to get the promising salient object detection result. 
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3.5 Conclusion 

In this work, a novel method named PerGAN is designed for salient object 

detection. In particular, the perceptual loss is adopted to guide the GAN for 

learning the completeness and the detailed boundary localization of the salient 

objects. The loss function designed to optimize the network takes information of 

both the output saliency maps and the RGB salient objects into consideration. This 

design improves the network’s performance effectively, especially in locating 

correct boundary and keeping the completeness of the saliency map. To further 

improve the learning ability of PerGAN, a multiscale discriminator is developed 

to distinguish the real and fake pairs at different scales. Experimental results on 

four challenging databases illustrate that the proposed approach is competitive 

over state-of-the-art methods. 
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Chapter 4 

3D Facial Geometry Recovery from a Depth 

View with Attention-Guided GAN 

4.1 Introduction 

A number of artificial intelligent systems such as robots and agents are designed 

for interacting with humans via multiple facial sensing techniques and learning 

methods. In some of those systems, reconstructing 3D facial geometry from 

integrated depth sensors is a fundamental step to achieve accurate facial expression 

capture and recognition.  With the continuously increasing sensing precision and 

portability, depth camera is becoming a critical tool in capturing 3D objects 

including the human face. For example, the Apple’s TrueDepth camera has been 

successfully deployed in mobile devices to support 3D facial applications. This 

motivates an important research stream which aims to reconstruct 3D facial 

geometry from 2.5D depth views. Existing methods (Donne & Geiger, 2019; Fang 

et al., 2019; Newcombe et al., 2011) were able to obtain the promising 3D shape 

by fusing multiple views of depth maps. However, it is not applicable for the 

practical application because of the complexity of multiple depth maps acquisition. 

Compared with these approaches, recovering geometry from a single view is more 

feasible and convenient in real applications. Nevertheless, it is very challenging to 

recover 3D facial geometry precisely if there is only one depth view available. This 

is mainly because partial observation can be theoretically associated with an 

infinite number of possible 3D facial information, especially when the depth view 

is non-frontal with the depth information of the occluded facial parts missing (see 

Fig.4.1). 
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Figure 4.1: AGGAN can recover the complete 3D facial geometry from a noisy and non-frontal 

depth view. 

 The problem above can be interpreted as reconstructing a facial surface from 

3D point cloud projected from the given depth view. This is a long-lasting research 

topic that has been extensively studied in computer graphics (Berger et al., 2014; 

Bernardini et al., 1999; Guennebaud & Gross, 2007; Hoppe et al., 1992; Kazhdan, 

2005; Kazhdan & Hoppe, 2013; Lorensen & Cline, 1987a). Typical solutions 

reconstruct the surface by either fitting the points with a discrete grid (Guennebaud 

& Gross, 2007; Lorensen & Cline, 1987a) or using the zero set of an implicit 

function (Hoppe et al., 1992; Kazhdan, 2005; Kazhdan & Hoppe, 2013) such as 

the indicator function defining the interior and exterior of the object surface. 

However, these approaches degenerate sharply when dealing with noisy and non-

frontal depth views, and normally can only recover partial 3D facial geometry. The 

problem can also be cast to 3D shape non-rigid registration (Amberg et al., 2007; 

H. Li et al., 2009; C. Luo et al., 2019; Sumner & Popović, 2004; Zollhöfer et al., 

2014) which is also pervasive in computer graphics. Generally, non-rigid 

registration methods first build dense point correspondences between the projected 

3D point cloud and a template 3D facial mesh, and then conforms the template 

mesh to the point cloud using the built correspondences. Whereas a complete 3D 

facial geometry can be acquired with such methods, facial parts occluded or 

missing in the depth view can rarely be warped correctly on the template because 

AGGAN  

Depth View 
Noisy and Incomplete  

3D face 
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false correspondences are prone to being found for them. Furthermore, these 

methods usually require certain hand-selected facial feature points to rigidly align 

the template with the point cloud for a promising registration initialization. In 

summary, existing methods can hardly handle imperfections in the given depth 

view such as the noise and missing data. 

 Existing methods merely utilize noisy 3D information embedded in the given 

imperfect depth view, while making no attempt to build and exploit a 3D facial 

point distribution which covers various facial geometries. With such a distribution, 

the reconstruction problem becomes generating or sampling 3D facial points from 

that distribution given a depth view as a conditional input, which could be solved 

efficiently by Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). 

Accordingly, in this study a new variant of GAN named AGGAN is proposed to 

learn the highly-complicated conditional distribution of 3D facial geometry given 

its depth view from thousands of synthetic depth-3D pairs. First, the 3D facial 

geometry is encoded within a high-resolution voxel grid which has shown 

robustness in depicting 3D shapes (Jackson et al., 2017; J. W. Li et al., 2018; Woo 

et al., 2018; B. Yang et al., 2018). Then the GAN is guided to extract features that 

are more sensitive and discriminative in locating 3D facial points by incorporating 

the attention mechanism which has been validated in many other computer vision 

tasks (Jyoti et al., 2020; T. Zhao & Wu, 2019; Z. Zhu et al., 2019) . To build a 

generative model covering a variety of natural depth-3D mappings, large 

variations in head pose and facial expression together with random noise are 

introduced during synthesizing training depth views. 

 Compared with existing methods on data generated from benchmark facial 

image datasets, the proposed data-driven AGGAN recovers a more complete and 

smoother 3D facial shape, while being able to handle a much wider range of view 

angles and more resistant to noise in the input depth view. Overall, the main 

contributions of this chapter are as follows: 
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 To the best of our knowledge, this is the first work of its kind that utilizes 

GAN to recover 3D facial geometry from a single unconstrained depth 

view. 

 The incorporation of the attention mechanism into GAN can improve the 

precision of 3D facial geometry prediction is validated.  

 This chapter showcases that using synthetic facial depth views for training 

is helpful in generalizing AGGAN to real depth views captured from depth 

cameras. 

4.2 Related Work 

4.2.1 3D Surface Reconstruction from Point Cloud  

The area of 3D surface reconstruction has witnessed impressive progress in the 

last two decades (Berger et al., 2014). From the perspective of the reconstruction 

output, the proposed solutions can be broadly divided into two categories, 

producing either a discrete surface (Guennebaud & Gross, 2007; Lorensen & Cline, 

1987a) or an implicit function (Hoppe et al., 1992; Kazhdan, 2005; Kazhdan & 

Hoppe, 2013). The first kind of solutions typically fits a regular grid to the given 

points such as the well-known Marching Cubes (Guennebaud & Gross, 2007; 

Lorensen & Cline, 1987a) which extracts the surface by finding intersections 

between the cubes of the grid and the points. The latter type utilizes the knowledge 

of the exterior and interior of the surface with an implicit function for 

reconstruction. The implicit function can have various forms such as a signed 

distance field (Hoppe et al., 1992) or an indicator function (Kazhdan, 2005), 

whereby the reconstructed surface is found by isocontouring for an appropriate 

isovalue. However, when the point density is low, there are outliers or missing 

data, these methods are prone to generating an incomplete surface that poorly 

approximates the desired object shape. As a result, they can hardly deal with a 

single unconstrained facial depth view which is often noisy and with a head pose. 
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4.2.2 3D Shape Non-rigid Registration   

The concerned reconstruction problem can be projected into the 3D non-rigid 

registration framework (Amberg et al., 2007; H. Li et al., 2009; Sumner & Popović, 

2004; Zollhöfer et al., 2014) if there is a facial geometry prior available. A typical 

solution is to register a facial template mesh to the given depth view using a 

deformation model based on smooth local affine transforms. Primarily, the 

registration process has to estimate reliable correspondences between the template 

and 3D points projected from the depth view for warping the template to match 

the underlying geometry of the captured depth data. False correspondence can 

cause strong shape distortions that are inconsistent with the desired facial shape. 

However, such correspondences are inaccessible when the given depth view is 

noisy and non-frontal with partial facial regions occluded. Moreover, a promising 

correspondence estimation often requires hand-selected facial feature 

correspondences (Amberg et al., 2007; Sumner & Popović, 2004) or a rigidly-

aligned shape prior (H. Li et al., 2009; Zollhöfer et al., 2014) that offers a strong 

approximation of the target facial geometry. This is against with the most general 

setting where no facial geometry prior and feature point correspondences are 

available. All these issues make 3D reconstruction from a single unconstrained 

depth view intractable with existing non-rigid registration methods. 

4.2.3 3D Reconstruction from a Single Depth View with Deep 

Learning  

Whereas learning the 3D facial shape from a single depth view with data-driven 

deep neural networks remains almost unexplored, there are several studies (Dai et 

al., 2017; Song et al., 2017; Varley et al., 2017; Wu et al., 2015; B. Yang et al., 

2018; Zou et al., 2017) working on single depth view 3D object reconstruction. 

However, the early approaches (Varley et al., 2017; Wu et al., 2015) apply a low 

resolution voxel grid (≤40×40×40) which can only preserve the coarse shape 

information of the object. To solve this problem, Dai et al. (Dai et al., 2017) 
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propose a two-stage pipeline: first using the neural network to predict a shape prior 

encoded with a 32×32×32 voxel grid from the given depth view, then synthesizing 

a higher resolution shape based on a pre-built shape database. Such a shape 

database is however very difficult to construct, especially for the human face 

which has extensive shape variations. The SSCNet (Song et al., 2017) extends the 

reconstruction to 3D indoor scene which contains multiple object categories and 

requires a much higher-resolution volumetric space for representation. The method 

leverages the synthetic scene data which provides both the depth view and the 

ground-truth voxel-level occupancy annotations, which significantly reduces the 

expense for collecting the high-resolution training data. Inspired by these studies, 

we propose to solve the ill-posed single depth view 3D face reconstruction with 

deep neural networks. To model the complex non-rigid facial shape motions and 

deformations within the network, we synthesize a large amount of training data by 

altering along the dimensions such as facial identity, expression and head pose. 

4.3 Methodology 

In contrast with existing methods focusing on modelling only the given imperfect 

depth data, the ill-posed single depth view 3D face reconstruction is proposed to 

be solved in a more data-driven manner. Specifically, an attention-guided GAN 

named as AGGAN (see Fig.4.2) is designed to model the complex 2.5D depth-3D 

relationship by learning from a large amount of synthesized training pairs. The 

generator of AGGAN approximates the real conditional distribution of 3D facial 

surface given its depth view. This data-driven prior is supposed to be more robust 

than manually specialized priors (e.g. distance field function (Hoppe et al., 1992), 

indicator function (Kazhdan, 2005) or template 3D facial mesh (Amberg et al., 

2007; Sumner & Popović, 2004) used in previous methods on addressing 

challenging data imperfections such as noise, missing/occluded facial parts. In the 

following sessions, the proposed AGGAN and the training data synthesise are 
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Figure 4.2: The architecture of AGGAN. 

introduced in detail. 

4.3.1 AGGAN 

From previous work (Jackson et al., 2017; B. Yang et al., 2018) on 3D shape 

reconstruction, the voxel representation shows a promising ability in depicting 3D 

geometry and can be seamlessly processed by deep neural networks. Thus, 3D 

facial geometry is encoded within a 3D voxel grid whose voxel occupancy (1 for 

facial point and 0 for non-facial point) indicates if the current point belongs to the 

facial surface or not. The voxel grid resolution is set as 128×128×128 which was 

determined after balancing the grid’s representation capability and the network’s 

processing consumption.  

 Fig.4.2 illustrates the structure of AGGAN. During training, the generator G 

tries to learn the ground-truth 3D voxel grid which encodes the facial geometry 

from a 128×128 facial depth view. Coupling with the corresponding depth view, 

both G’s prediction and its ground truth counterpart are then fed into the 

discriminator D for training a classifier to distinguish real reconstruction pairs (the 

pair of a depth view and its ground-truth voxel grid) from fake reconstruction pairs 
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(the pair of a depth view and its G prediction). G’s outputs are forced to not only 

get close to the ground truth voxel grid but also maximize the probability of D 

making a mistake. This adversarial learning drives G to recover a faithful 3D facial 

geometry that matches the input depth view. Given a new facial depth view, 𝐺 will 

be called to predict the 3D voxel grid that encodes the facial geometry. 

a) Generator and Discriminator 

The generator is a fully convolutional encoder-decoder network with skip-

connections. The encoder consists of seven convolutional layers, each of which 

uses a bank of 5×5 filters with 2×2 strides and is followed with a Leaky ReLU 

activation (Maas et al., 2013). Without specification, the remaining network 

applies the same filter setup. From the first convolutional layer to the last one, the 

number of feature map channel is 64, 128, 256, 256, 256, 512 and 512 respectively. 

On the other side, the decoder comprises eight transpose-convolutional layers, the 

first seven of which are followed with Leaky ReLU activations, while the last one 

is followed with a sigmoid function to regulate the final output as the voxel 

occupancy probability. The number of each transpose-convolutional layer’s output 

channel is 32, 32, 64, 64, 128, 128, 256 and 128. The last transpose-convolutional 

layer is for fine-tuning purpose and uses a bank of 1×1 filter with 1×1 stride. Skip-

connections are built between encoder and decoder to guarantee the information 

sharing and prevent the gradient vanishing problem. 

 The discriminator accepts a 128×128×129 tensor concatenated by a facial 

depth view and a 3D voxel grid as input, and outputs a single scalar whose value 

is between 0 and 1 to specify the probability that the voxel grid fully matches the 

depth view.  Excluding the input and the last layer, it has a same structure as the 

generator’s encoder. The last layer calculates the mean of a 1×1×512 feature vector 

output from the previous layer. This mean feature is shown effective in stabilizing 

the adversarial training (B. Yang et al., 2018).      
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Figure 4.3: The attention modules in AGGAN. 

b) Attention Mechanism 

 Spatial Attention. In general, the face occupies only a partial region in the 

depth view. The left background region is noisy and might mislead the neural 

network to learn less informative features for 3D facial geometry prediction. To 

force the network to focus more on the foreground facial region during feature 

learning, a spatial attention mechanism is incorporated into AGGAN’ generator. 

After the first layer activation layer of the generator’s encoder, two convolutional 

layers followed with a softmax function are applied on the low-level feature maps 

to generate a spatial weighting map (see Fig. 3): 

 𝑺𝑨 = 𝐹𝑠𝑎(𝒇𝑙, 𝑾𝑠𝑎) (4-1) 

 𝐹𝑠𝑎(𝒇𝑙, 𝑾𝑠𝑎) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑣2𝑠𝑎(𝑐𝑣1𝑠𝑎(𝒇𝑙 , 𝑾𝑠𝑎
1 ), 𝑾𝑠𝑎

2 )) (4-2) 

where 𝒇𝑙 ∈ ℝ𝐶×𝐻𝑊  stacks 𝐶  reshaped 1 × 𝐻𝑊  low-level feature vectors output 

from the previous layer, 𝐹𝑠𝑎 is the mapping function whose parameters are denoted 

as 𝑾𝑠𝑎  and 𝑺𝑨. 𝑺𝑨 refers to the generated 𝐻 × 𝑊 × 1 spatial weighting map. 
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𝑐𝑣1𝑠𝑎(∙)  and 𝑐𝑣2𝑠𝑎(∙)  represent two convolutional layers which use 
𝐶

8
 𝐶 × 1 

filters and a 
𝐶

8
× 1 filter respectively, and whose parameters are 𝑾𝑠𝑎

1  and 𝑾𝑠𝑎
2 . 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙)  refers to the Softmax function. The final outputs of the spatial 

attention module can be obtained by weighting each previous feature map with 𝑺𝑨 

(see Fig.4.3). 

 Channel-wise Attention. As reported in previous studies (Woo et al., 2018), 

different feature channels generated within convolutional neural networks 

correspond to different semantic information. Hence, the channel-wise attention 

mechanism is incorporated into AGGAN to weight heavier on feature channels 

that show higher relevance in predicting 3D facial voxel grid. The channel-wise 

attention module is adhered to the second-to-last transpose-convolutional layer of 

the generator’s decoder, aiming to produce a weighting vector for feature channels 

(see Fig. 4.3):  

 𝑪𝑨 = 𝐹𝑐𝑎(𝒇𝑝, 𝑾𝑐𝑎)  (4-3) 

 𝐹𝑐𝑎(𝒇𝑝, 𝑾𝑐𝑎) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑐𝑣2𝑐𝑎(𝑐𝑣1𝑐𝑎(𝒇𝑝, 𝑾𝑐𝑎
1 ), 𝑾𝑐𝑎

2 ))  (4-4) 

where 𝒇𝑝 ∈ ℝ𝐶×1  is the feature vector obtained by max-pooling feature maps 

output from the previous layer, 𝐹𝑐𝑎 is the mapping function whose parameters are 

denoted as 𝑾𝑐𝑎  and 𝑪𝑨  is the generated 1 × 1 × 𝐶  channel weighting vector. 

𝑐𝑣1𝑐𝑎(∙) and 𝑐𝑣2𝑐𝑎(∙) represent two convolutional layers which use 
𝐶

4
 𝐶 ×1 and 𝐶 

𝐶

4
× 1 filters respectively, and whose parameters are 𝑾𝑐𝑎

1  and 𝑾𝑐𝑎
2 . 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙) 

refers to the Softmax function. Then, each previous feature map is weighted by the 

specific channel weighting value in 𝑪𝑨 (see Fig.4.3). 

c) Objective Functions 

The overall objective function of AGGAN consists of two parts: an adversarial 

loss ℒ𝑎𝑑𝑣  for the whole network and an additional 3D face reconstruction loss 

ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑 for the generator.  
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Adversarial Loss - ℒ𝑎𝑑𝑣. To train a generator that is able to predict an accurate 

3D voxel grid 𝒚 from a depth view 𝒙, the loss function of generator is shown in 

Eq.4-5. For the discriminator, the well-known WGAN-GP (Gulrajani et al., 2017) 

loss function is adopted (see Eq.4-6):  

 ℒ𝑎𝑑𝑣
𝑔

= −𝚬[𝐷(𝒚|𝒙)] (4-5) 

 ℒ𝑎𝑑𝑣
𝑑 = 𝚬[𝐷(𝒚|𝒙)] − 𝚬[𝐷(𝒚̂|𝒙)] +  𝜆𝚬 [(‖∇𝒚′𝐷(𝒚′|𝒙)‖

2
− 1)

2

] (4-6) 

where 𝒚̂ is the ground-truth 3D voxel grid corresponding with the input depth view 

𝒙  and 𝒚′ = 𝜖𝒚̂ + (1 − 𝜖)𝒚 , 𝜖~𝑈[0, 1] . 𝜆  balances between optimizing the 

gradient penalty and the original objective in WGAN. 

3D Face Reconstruction Loss - ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑. Since the face only occupies a small 

part of the overall volume, most voxels in the grid tend to be empty and the 

estimated voxel occupancy is prone to false positive. Inspired by this observation, 

a modified binary cross-entropy loss function (Song et al., 2017; B. Yang et al., 

2018) is utilized to weight the penalty on false positive estimations and the penalty 

on false negative estimations in terms of the ratio of occupied voxels in the ground 

truth grid: 

 ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑
𝑐𝑒 = − ∑ [

(1 − 𝜔)𝑦̂𝑖 log 𝑦𝑖 +

𝜔(1 − 𝑦̂𝑖) log(1 − 𝑦𝑖)
]ℎ×𝑤×𝑑

𝑖=1  (4-7) 

where ℎ, 𝑤, 𝑑 is the voxel grid’s height, width and depth respectively. For voxel 

𝑖, 𝑦̂𝑖 is the ground truth occupancy state and 𝑦𝑖 is the estimated occupancy state. 

𝜔 denotes the ratio of occupied voxels in the ground truth grid. To further avoid 

false positive estimations, the  𝐿1 sparsity constraint is imposed on the predicted 

voxel grid 𝒚:  

 ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑
𝑠𝑝𝑎𝑟𝑠𝑒 = |𝒚|1 (4-8) 

Overall, the loss functions for generator and discriminator in AGGAN are as 

follows: 

 ℒ𝐺 = 𝛼ℒ𝑎𝑑𝑣
𝑔

+ 𝛽ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑
𝑐𝑒 + 𝛾ℒ𝑟𝑒𝑐𝑜𝑛𝑠3𝑑

𝑠𝑝𝑎𝑟𝑠𝑒
 (4-9) 
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 ℒ𝐷 = ℒ𝑎𝑑𝑣
𝑑  (4-10) 

where 𝛼, 𝛽 and 𝛾 are used to balance different loss terms, and their values are set 

empirically.  

4.3.2 Data Synthesis 

Collecting real facial depth views and their precise 3D data in a volume sufficient 

for training a deep network is laborious and expensive. However, it’s easy to get a 

depth view given a 3D face, head pose and camera projection matrix. Considering 

there are many high-quality 3D face datasets (X. Zhang et al., 2013; X. Zhu et al., 

2016) which cover a wide range of facial identities and expressions, synthesizing 

depth views from the known 3D facial data for training and validating AGGAN is 

proposed. 

 The dataset - 300W-LP proposed in (X. Zhu et al., 2016) is adopted for data 

synthesis. 300W-LP contains in-the-wild face images from four independent 

benchmark databases including HELEN (Zhou et al., 2013), LFPW (X. Zhu & 

Ramanan, 2012), IBUG (Sagonas et al., 2013), AFW (S. Zhu et al., 2015), and 

their 3D faces reconstructed by 3DMM fitting (X. Zhu et al., 2016). The 

reconstructed 3D faces capture the facial identity and expression exhibited in the 

images well and are represented with triangulated meshes that have a uniform 

topology. To introduce more variations in head pose, 300W-LP rotated the 

reconstructed 3D faces with multiple view angles and generated the corresponding 

RGB face images through image warping. This yields a dataset which contains 

more than 122K face images and their corresponding 3D face data. 300W-LP also 

provides the weak perspective projection to align each 3D facial mesh with the 

face in the image: 

 𝑉𝑝 = 𝑓 × 𝑃𝑟 × 𝑅 × 𝑉 + 𝑇2𝑑 (4-11) 

where 𝑉𝑝  is the projected 3D face with its depth channel removed, 𝑉  is the 

reconstructed 3D face, 𝑅  is the rotation matrix, 𝑃𝑟  is the orthographic matrix 
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(1 0 0
0 1 0

), 𝑓 is the scale factor and 𝑇2𝑑  is the translation vector defined on the 2D 

image plane.  

 With Eq.4-11, the 2D image pixel coordinates of each 3D facial vertex can be 

easily found. For a pixel in the depth view, this chapter finds out the 3D vertex that 

is projected onto it and visible to the camera using Z-Buffer, then fill in the pixel 

value with the found 3D vertex’s depth value. A depth view aligned with the face 

image can be acquired after going through all pixels with the operation above. To 

reduce the size of AGGAN for more efficient training, all synthetic depth views 

are resized to 128 × 128 and the aligned 3D facial meshes are shrunk accordingly. 

Considering real-world depth views are noisy, random Gaussian noise is further 

added to the synthesized depth views. For the facial mesh, the neck and the ear 

part are removed to focus on the main face region. The resulting mesh contains 

about 35K vertices. Inspired by previous work on 3D shape reconstruction 

(Jackson et al., 2017; B. Yang et al., 2018), the voxel grid is used to preserve the 

3D facial geometry. In particular, the facial mesh is voxelized to a 

128 × 128 × 128 grid aligned with the depth view. Comparing with the vector, 

the voxel grid models 3D geometry in a way much closer to the real-world 

representation. 

4.4 Experiments 

4.4.1 Experimental Setup  

a) Datasets  

Depth views synthesized from HELEN are used for training AGGAN, while the 

rest depth views synthesized from 300W-LP (X. Zhu et al., 2016) are used for 

testing. In total, there are 75,352 training samples and 47,098 testing samples. As 

mentioned in Data Synthesis, 300W-LP includes a variety of natural facial 

expressions and has been augmented to cover a wide range of head poses, e.g. with 
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yaw angles ranging from−90° to 90°. The synthetic depth views have also been 

perturbed with random Gaussian noise to further simulate imperfections in real 

depth views. 

b) Implementation Details 

The generator and discriminator of AGGAN are optimized in an alternate manner. 

The discriminator is updated with one gradient descent step, after which the 

generator is updated with two gradient descent steps. λ is set as 5 for gradient 

penalty in ℒ𝑎𝑑𝑣
𝑑 . α, β and γ are set as 20, 100 and 20 respectively, which produces 

promising results in our experiment. The Adam solver is used for both the 

generator and discriminator with a batch size of 1. 

c) Evaluation Metrics 

Two metrics are used to quantify the difference between the predicted 3D facial 

voxel grid and the ground truth.  

1) Mean Intersection-over-Union (IoU) (B. Yang et al., 2018): 

 𝐼𝑜𝑈 =
∑ [𝐶(𝑦𝑖>𝑇)×𝐶(𝑦̂𝑖)]𝑁

𝑖=1

∑ [𝐶(𝐶(𝑦𝑖>𝑇)+𝐶(𝑦̂𝑖))]𝑁
𝑖=1

 (4-12) 

where 𝐶(∙) is an indicator function, 𝑦𝑖 is the predicted occupancy state of the 𝑖th 

voxel, 𝑦̂𝑖 is the corresponding ground truth, 𝑇 is the threshold for voxelization, and 

𝑁 is the number of voxels in the grid. 𝑇 is set as 0.5 in our experiments. The higher 

the IoU value, the better the 3D facial geometry recovery.  

2) Mean value of standard Cross-Entropy loss (CE) (B. Yang et al., 2018):  

 𝐶𝐸 = −
1

𝑁
∑ [𝑦̂𝑖 log(𝑦𝑖) + (1 − 𝑦̂𝑖) log(1 − 𝑦𝑖)]𝑁

𝑖=1  (4-13) 

where 𝑁,  𝑦𝑖 and 𝑦̂𝑖 are the same as in (4-12). The lower the CE level is, the closer 

the 3D prediction to be either ‘0’ or ‘1’, which indicates a more robust and 

confident prediction.  
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Figure 4.4: Example results of AGGAN for depth views with large head pose, facial expression 

and noise. 

Table 4.1: IoU and CE values of testing results. 

 IoU CE 

AFW (10414 samples) 0.9916 0.0517 

IBUG (3572 samples) 0.9937 0.0490 

LFPW (33112 samples) 0.9913 0.0523 

 

4.4.2 Results 

IoU and CE values calculated on the predictions of LFPW, IBUG and AFW in 

300W-LP are reported in Tab. 4.1. Meanwhile, in Fig. 4.4 there are some visual 

results of the recovered 3D facial geometry for qualitative evaluation. As shown 

in Fig. 4.4, AGGAN can recover the 3D facial geometry well for different head 

poses, facial identities and expressions, and even when there are random noises or 

problematic holes in the given depth view. Hausdorff distance (two sets are close 

in the Hausdorff distance if every point of either set is close to some point of the  

      Large Head Pose                            Facial Expression                                                    

Noise 
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Figure 4.5: Comparison between the AGGAN prediction and the ground truth (GT). The Hausdorff 

distance between the GT and prediction is calculated and colorized on the predicted 3D face. Please 

note that the distance value increases from red to blue. 

other set) between the predicted voxel grid and its ground truth is calculate and 

visualized (see Fig. 4.5, the distance value increases from red to blue). To further 

prove the accuracy of the facial identity prediction, the 3D results predicted from 

depth views with an identical facial identity but projected under different head 

poses are shown in Fig.4.6. 

Comparison with Existing Methods. The proposed AGGAN is compared with 

some representative 3D surface reconstruction and non-rigid registration methods, 

including Marching Cubes (MC) (Lorensen & Cline, 1987a), Screened Poisson 

Surface Reconstruction (SPSR) (Kazhdan & Hoppe, 2013) and non-rigid ICP 

(NICP) (Sumner & Popović, 2004). For algorithms such as NICP that require 

connectivity, the Ball-Pivoting algorithm (Bernardini et al., 1999) is used to 

compute a triangle mesh interpolating the given facial point cloud. To get a  

                                                                AGGAN                            Hausdorff  

           Depth View                  GT          Prediction                           Distance   
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Figure 4.6: Results of AGGAN predicted from depth views with an identical facial identity 

however with different head poses. 

promising result for NICP (Sumner & Popović, 2004), ICP is first applied to 

rigidly align the facial template with the given facial point cloud, then initialized 

the non-rigid registration with hand-selected facial landmarks. Since each 

aforementioned method reconstructs the 3D face in a distinct topology whose 

vertex amount and connectivity are different from each other, thus cannot be 

compared using IoU and CE. Alternatively, the visual comparison results are 

showcased in Fig.4.7. It can be seen 3D faces recovered by previous methods are 

severely distorted (Fig.4.7), when the input depth view is in a large head pose, 

incomplete and with prominent artefacts. In contrast, AGGAN is much more 

robust to data imperfections in the depth view and able to generate a complete and 

smooth 3D facial geometry with facial identity and expression well preserved. 

What’s more, as shown in the third and fifth row in Fig.4.7, AGGAN can normally 

generate a 3D face smoother and denser than the ground truth since it predicts the 

probability of each voxel occupancy within the range of [0, 1] continuously. 

Identity-1 

 

Identity-2 
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Figure 4.7: Comparison between AGGAN and existing methods on challenging depth views. 

Table 4.2: Results of ablation study on a subset of IBUG. 

Attention Sparsity IoU CE 

  0.9917 0.1151 

  0.9932 0.0940 

  0.9928 0.0995 

  0.9927 0.1004 

 

Ablation Analysis. The importance of the sparsity constraint and the attention 

module is investigated. Specifically, four different AGGAN models which cover 

all possible combinations (with/without sparsity and with/without attention) of the 

 Depth View       GT                   MC               SPSR               NICP                    AGGAN 
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two modules were trained on HELEN (Zhou et al., 2013) and tested on a subset of 

IBUG (Sagonas et al., 2013)- a challenging dataset which contains facial images 

of very large head pose and facial expression. IoU and CE levels of these four 

models on the testing set are listed in Tab.4.2. It can be found that both sparsity 

and attention help improve AGGAN’s prediction accuracy when they work 

independently. Moreover, the model with the attention module outputs the best 

result, which verifies the significance of attention in AGGAN and implies that 

there might conflict between sparsity and attention during the network learning 

process. 

4.4.3 Limitations and Prospect 

A few artefacts can be observed around the facial boundary in the predictions of 

AGGAN. For example, as shown in Fig.4.4, the inner mouth region cannot be fully 

recovered when the facial expression is a big open mouth. This is mainly due to 

that the voxel grid used is not dense enough. When voxel occupancy states were 

predicted mistakenly, the resulted due to that the voxel grid used is not dense 

enough. When voxel occupancy states were predicted mistakenly, the resulted 

artefacts would be obvious. This problem can be alleviated by using a denser voxel 

grid or applying a better prior to restrict the voxel occupancy state for forming a 

reasonable face, e.g. using a mean face with neutral facial expression as a template 

grid and driving AGGAN to predict the difference between the template and the 

target face. Although AGGAN has been validated on the synthetic data, it shows 

its potential for the application of real depth views captured from depth cameras. 

For example, as shown in the 3rd and 4th column of Fig.4.4, AGGAN can recover 

3D facial geometry accurately when there are random noises or even problematic 

holes (please note that these holes were not simulated in the training data) in the 

depth view. To fill in the gap between the synthetic data and real data, a promising 

direction is to train a network learning the common feature representation of the 

synthetic and real depth views.  In this way, the synthetic data can be sufficiently 

utilized while much less real depth views will need to be collected. 
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4.5 Conclusion 

This chapter proposes to model the ill-posed 2.5D facial depth-3D mapping with 

a novel attention-guided GAN structure - AGGAN in a data-driven manner. 

AGGAN is validated on synthetic depth views which cover a wide range of facial 

identities, expressions and head poses. When dealing with noisy and non-frontal 

facial depth views, AGGAN is still capable of recovering the 3D structure of the 

missing/occluded facial parts with facial identity and expression being accurately 

preserved, and thus significantly outperforms previous methods. Moreover, 

AGGAN is resilient to data imperfections in the depth view such as random noise 

and problematic holes, and hence has a potential of being applied to real depth 

views captured by depth cameras. 
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Chapter 5 

Domain Adaptive Single Depth Image 3D 

Face Reconstruction 

5.1 Introduction 

Reconstructing dense 3D facial geometry from visual input is crucial for many 

face applications such as face manipulation (Thies et al., 2016)and facial animation 

(Cao et al., 2015). The vast majority of existing approaches are developed for 

reconstruction from ubiquitous RGB face images(Lin et al., 2020; W. Zhu et al., 

2020). However, those approaches cannot cope well with image degradations 

induced by poor lighting, let alone the corresponding 2D-to-3D reconstruction 

process is ill-posed by nature and prone to generating implausible results when the 

head pose is large. In contrast, reconstruction from depth images is more robust to 

adverse lighting and pose conditions, since the depth image directly captures 3D 

geometric information. It tends to be one of the key technologies required in 

consumer face applications, especially after the advent of more advanced and 

lightweight depth cameras, e.g. Apple TrueDepth. However, depth-based 3D face 

reconstruction is challenging due to the imperfect depth data caused by device 

noise and natural modes of variations such as head pose and expression. It becomes 

more intractable if there is only a single depth image available, a setting that is 

common in real-world applications. 

The problem above is mostly about adapting a source 3D face to fit with the 

target depth image. The 3D face can be represented as a mesh (Paysan et al., 2009), 

a group of discrete voxels (Jackson et al., 2017) or the level set of an implicit 

function (e.g. signed distance function) (Q. Xu et al., 2019). Traditional 

approaches (Amberg et al., 2007) address the fitting problem with an optimization 
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process constrained by hand-crafted priors, e.g. point-to-point correspondences 

between the source and the target. In practical settings, valid priors are difficult to 

acquire in a purely automated manner, as the real depth image is normally noisy, 

sparse and contains occlusions. More recent methods (Zhong et al., 2020) instead 

use deep neural networks to learn such prior knowledge from a training corpus, 

and exploit it for accurate inference (or reconstruction) from an unconstrained 

depth image during testing. However, the data-driven learning framework they 

applied usually consumes a great amount of depth-3D training pairs, whose 

collection procedure is expensive and laborious. This problem can be alleviated by 

utilizing synthetically generated depth images for training, but closing the 

synthetic-real domain gap is nontrivial.  

To tackle the aforementioned issues, a novel domain-adaptive 3D face 

reconstruction method is proposed in this chapter. The proposed method requires 

only synthetic and unlabelled real depth images for training, while the trained 

model can generalize well to images captured with commodity depth sensors such 

as Kinect. Its core is a disentangled domain-adaptive neural network which 

consists of two sub-networks – PoseNet and ShapeNet for predicting head pose 

and facial shape under a canonical pose respectively. In 3D facial geometry, head 

pose represents the rigid component, while facial shape represents the non-rigid 

component. It implies that these two geometry attributes lie in different fields. 

Based on this insight, this chapter proposes to tailor the domain adaptation 

approach for training the two sub-networks. Specifically, PoseNet is trained with 

synthetic data first, then fine-tuned on real depth images. ShapeNet instead 

employs a more complicated adversarial domain adaptation framework during 

training (Sankaranarayanan et al., 2018). This disentangled learning process 

differs from the previous methods(Zhong et al., 2020) which applied a unified 

domain-adaptive network for pose and shape estimation. It effectively simplifies 

the source (synthetic) and target (real) distributions, thus reducing the complexity 

of the domain shift problem (S. J. Pan & Q. Yang, 2009). 

Inspired by (Y. Guo et al., 2018), the depth image was converted into 3D point 
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coordinates in camera space with a known camera intrinsic matrix before being 

fed to the reconstruction network. In this way, the network can directly infer head 

pose from the corresponding position image. On the network’s output side, the 3D 

vertex offsets from a neutral mean face are adopted for a more concentrated data 

distribution to reduce the learning difficulty. These two operations naturally adapt 

the reconstruction network to 3D data.  

The proposed method is extensively evaluated on challenging benchmark 

datasets – FaceWarehouse (Cao et al., 2013), Biwi (Fanelli et al., 2011), ICT-

3DHP (Baltrušaitis et al., 2012), which contain noisy real depth images covering 

a wide range of head poses and facial expressions. The experimental results show 

proposed method outperforms the state-of-the-art (Deng et al., 2019; Lin et al., 

2020; Martin et al., 2014; Zhong et al., 2020) in both pose and expression 

estimation. In summary, the main contributions in this chapter are: 

 A novel disentangled domain-adaptive network is proposed for single 

depth image 3D face reconstruction. The proposed network decouples the 

prediction of head pose and facial shape into two subnetworks which are 

trained with different unsupervised domain adaptation methods.  

 A robust reconstruction pipeline is designed, explicitly handling 3D data 

by using the position image as input and 3D vertex offsets as output.  

 The successful reconstructions of 3D facial meshes from very sparse and 

noisy real depth maps with the proposed method is evaluated. 

5.2 Related Work 

5.2.1 3D Face Reconstruction from a Single Depth Image 

a) Traditional Methods 

In traditional computer graphics approaches, the reconstruction problem is solved 

with an optimization process that adapts a voxel grid, an implicit function or a 3D 

facial mesh to fit with the point cloud embedded in the depth image. Accordingly, 
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the reconstructed 3D face is the intersection between the voxel grid and the point 

cloud (Lorensen & Cline, 1987b) , an iso-surface represented by the level set of 

the implicit function (Kazhdan & Hoppe, 2013), or a deformed 3D mesh (Amberg 

et al., 2007). For the first two cases, it will output an implausible reconstruction 

result (e.g. incomplete or unsmooth 3D facial surface), when the given depth image 

is noisy, sparse or contains a big head pose. For the last case, it requires valid point-

to-point correspondences to constrain the highly nonlinear fitting process, a 

problem also known as non-rigid shape registration. Reliable correspondences 

usually have to be obtained by hand annotation, especially when the depth image 

is imperfect with a lot of noise and a large facial pose. However, this prerequisite 

cannot be satisfied in a fully automated reconstruction pipeline, where no manual 

intervention is allowed. 

b) Deep Learning Methods 

In recent years, using deep neural networks to reconstruct a watertight 

surface/mesh from an unordered set of sparse, noisy 3D points (e.g. those captured 

with the commodity depth sensor) is attracting increased interest (Chibane et al., 

2020; Groueix et al., 2018; W. Wang, Ceylan, et al., 2019; Y. Wang et al., 2020). 

The relevant methods first encode the target point cloud using a latent feature 

vector, from which they then predict the 3D shape deformation represented by 

either per-vertex displacements from the source shape (Groueix et al., 2018; W. 

Wang, Ceylan, et al., 2019) or an implicit field (Chibane et al., 2020; Y. Wang et 

al., 2020). Typical feature encoders are PointNet (Qi et al., 2017) for unstructured 

point cloud or a common convolutional neural network for discrete voxels and 

images (Chibane et al., 2020). It can be found that existing methods rarely did pose 

estimation during reconstruction. Instead, they required the source and target 

shapes to be rigidly aligned with each other beforehand. This conflicts with most 

real-world scenarios in which the pose is unknown and should be estimated as well. 

What’s more, most of the methods was designed to reconstruct 3D shape for 

objects and human/animal bodies, recovering only coarse-grained shape features. 

It is unclear if they can also handle the human face, whose fine-scale geometry 
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details are essential to maintain its expressive power and should be well preserved 

during reconstruction. 

To the best of our knowledge, there is only one method (Zhong et al., 2020) 

has been developed till now for learning 3D face from a single depth image. The 

method employed a CycleGAN-based domain adaptation framework to learn 

domain-invariant features from synthetic and real depth images for estimating 3D 

facial geometry parameters. The learned network showed good 3D reconstruction 

performance when testing on noisy real depth images. However, the method 

adopted a unified domain-adaptive network for inferring head pose and facial 

shape, which actually have different distributions as they encode rigid and non-

rigid geometry components respectively. This chapter proposes to decouple the 

pose and shape estimation with two different domain-adaptive networks. 

Specifically, the fine-tuning strategy is utilized to fill the synthetic-real domain 

gap when training the pose prediction network, while applying the adversarial 

domain adaptation approach to train the more intractable facial shape prediction 

network. 

5.2.2 Unsupervised Domain Adaptation  

Unsupervised domain adaptation (Wilson & D. J. Cook, 2020) aims to learn a 

predictive model that can perform well on target domain using only labelled source 

and unlabelled target samples for training. It is helpful to many practical learning 

tasks where the target data labels are difficult to acquire, e.g. in our case, obtaining 

the ground-truth 3D facial geometries of depth images is costly and tedious. A 

popular approach to this problem is constructing a common representation space 

in which the two domains are close to each other. In the context of deep learning, 

this can be achieved by either fine-tuning a pre-trained network on unlabelled 

target data (K. Wang et al., 2020) or applying an adversarial loss in the 

representation space (Sankaranarayanan et al., 2018), depending on the severity of 

domain shift. Experimental results show that directly applying the head pose 

prediction network trained on synthetic data to real depth images already can 
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produce promising results. After tuning the network on real depth images, the pose 

prediction accuracy can be further improved to a much higher level. It can be 

ascribed to the rigid nature of head pose, which makes the conditional probability 

distributions of pose given a depth image are naturally close to each other between 

the synthetic and real domains. However, this intuitive strategy doesn’t work on 

training the facial shape prediction network which models non-rigid geometry 

variations. To solve this problem, following (Sankaranarayanan et al., 2018), an 

auxiliary GAN is adopted to further push the shared feature embedding to be 

domain invariant. Specifically, the generator is trained to produce source-like 

images from the embedding, while the discriminator is trained to not only 

distinguish input source images from generated images, but also force the 

generated image to preserve the same shape label as that of the input source image. 

With this disentangled domain adaptation learning framework, the 3D face 

reconstruction network is able to generalizes well to real depth images.  

5.3 Method 

This section elaborates the proposed method from the following four aspects: 3D 

face representation, depth image pre-processing and domain-adaptive 3D 

reconstruction network. 

5.3.1 3D Face Representation 

In this chapter, a dense triangle mesh is applied to represent 3D facial shape. The 

mesh is the combination of a point cloud 𝐕 = [𝐯1
𝑇 , 𝐯2

𝑇 , ⋯ , 𝐯𝑛
𝑇]𝑇 of 𝑛 = 29,678 

vertices 𝐯𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇 and a predefined connectivity (Paysan et al., 2009). For 

head pose, the quaternion 𝐪 ∈ ℝ4 is utilized to represent rotation and 𝐭 ∈ ℝ3 is 

used to represent translation respectively.  

5.3.2 Depth Image Pre-processing 
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Figure 5.1: The pre-processing and presentation of input data. 

Directly feeding depth image and camera intrinsic parameters into the 

reconstruction network is intuitive and feasible. However, the semantic meanings 

of camera parameters and their relationship with the depth data are somewhat 

obscure to the network. To tackle this issue, this chapter follows (Y. Guo et al., 

2018) and adopts an additional pre-processing step on the original depth image 

with the camera intrinsic matrix, which converts all pixel values into the 

corresponding 3D points’ coordinates in camera space. This results in a position 

image (see Fig.5.1) that explicitly stores 3D geometric information, while can be 

easily processed with 2D convolutions by the reconstruction network. 

5.3.3 Domain-adaptive 3D Reconstruction Network 

Harvesting real depth images with accurate 3D facial geometry label is time-

consuming and expensive. This makes it impractical to develop a robust 3D face 

reconstruction network with fully supervised training. To address this problem, 

this chapter develops a novel domain adaptation framework that utilizes 

synthetically generated data and unlabelled real depth images to train the 

reconstruction network (see Fig.5.2). Considering head pose (rigid) and facial 

shape (non-rigid) model different components of 3D facial geometry, the 

developed framework decouples the prediction of these two attributes into two 

Depth 
Map 
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Data 

Synthetic 
 Data 
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Map 
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subnetworks – ShapeNet and PoseNet, with each is trained by a custom domain 

adaptation method. The resulting 3D reconstruction network is domain-adaptive 

and can generalize well to noisy real depth images captured with commodity depth 

cameras. It achieves competitive accuracy in predicting both the head pose and 

facial shape when comparing with the state-of-the-art approaches(Deng et al., 

2019; Feng et al., 2018; Jackson et al., 2017; Lin et al., 2020; Zhong et al., 2020). 

a) ShapeNet 

The geometric variation is diverse and spans widely in 3D space. To narrow down 

its distribution, we factor out the rigid component – head pose and concentrate on 

predicting 3D shape in this subnetwork - ShapeNet. To further reduce the learning 

difficulty, ShapeNet is designed to predict vertex displacements ∆𝐕 =

[∆𝐯1
𝑇 , ∆𝐯2

𝑇 , ⋯ , ∆𝐯𝑛
𝑇]

𝑇
 from a reference 3D face 𝐕̅ under a canonical pose. The 

reference face is the mean face calculated from the Basel Face Model 

(BFM)(Paysan et al., 2009), and being rotated along the X axis by 𝜋 to make it 

head up and face towards the negative Z axis. 

Intuitively, the overall goal of ShapeNet is to learn from the position image 

space 𝐗 = {𝑥𝑖}
𝑖=1

𝑁
 a feature embedding map 𝐹: 𝐗 → ℝ𝑑𝐹 and a regression function 

𝑅: ℝ𝑑𝐹 → 𝐘  ( 𝐘 = {∆𝐕𝑖}
𝑖=1

𝑁
). 𝐹  and 𝑅  can be easily modelled as deep neural 

networks and trained in a fully supervised manner given synthetic position images 

(position images of synthetic depth images) and their ground-truth shape labels. 

However, the model trained purely on the synthetic domain can hardly be applied 

to real position images (position images of real depth images) due to the domain 

gap between the synthetic and real data. To make the model adaptive to different 

domains particularly the real domain, this chapter employs a generate-to-adapt 

method (Sankaranarayanan et al., 2018)  which augments 𝐹  and 𝑅  with an 

auxiliary GAN during training (see Fig.5.2). The auxiliary GAN is mainly tasked 

with generating synthetic-like images from the joint feature embedding output 

from 𝐹 for both synthetic and real position images. It doesn’t require ground-truth 

shape labels for real position images. Within such a training process, the joint 
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Figure 5.2: The Framework of proposed approach. 

embedding continuously incorporates information from the real domain, while 

keeping aligning with the synthetic domain. In the test phase, the auxiliary GAN 

model is discarded and only the trained 𝐹 -  𝑅  pair is used to do 3D face 

reconstruction (see Fig.5.2). To better align with the context of domain adaptation, 

in the following, the terms source and target domains (images) are used to 

represent the aforementioned synthetic and real domains (images) respectively. 

For consistency, the source images, their ground-truth shape labels and the target 

images are then denoted as 𝐗𝑠 = {𝑥𝑠
𝑖}

𝑖=1

𝑁𝑠
, 𝐘̂𝑠 = {∆𝐕̂𝑠

𝑖}
𝑖=1

𝑁𝑠
 and 𝐗𝑡 = {𝑥𝑡

𝑖}
𝑖=1

𝑁𝑡
. 

The original generate-to-adapt method proposed in (Sankaranarayanan et al., 

2018) adopts an auxiliary classifier GAN (AC-GAN) (Odena et al., 2017), which 

is designed for classification purpose. To solve the regression problem in this study, 

the multi-class classifier in AC-GAN is replaced with a regressor customed for 

predicting ∆𝐕  and propose the auxiliary regressor GAN (AR-GAN). The key 

features of AR-GAN are as follows: 
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(a) The generator 𝐺 accepts the concatenation of the feature embedding 𝐹(𝑥), 

a random noise 𝑧 ∈ ℝ𝑑𝑧  sampled from 𝒩(0,1)  and a one hot vector 𝑙 ∈ ℝ2 

encoding whether the position image 𝑥 is from the source domain or not as input. 

Note that explicitly conditioning 𝐺  with the one hot vector is to exclude the 

information of image type (source or target) from the feature embedding. It is 

supposed to facilitate the learning of a common, semantically-consistent 

representation of source and target position images, thereby enhancing the 

generalization ability of the subsequent shape regression 𝑅. 

(b) The discriminator 𝐷 takes the source position image 𝑥𝑠 or the generated 

image 𝐺([𝐹(𝑥), 𝑧, 𝑙]), 𝑥 ∈ {𝐗𝑠, 𝐗𝑡}  as input (for clarity, we use 𝑥𝑠𝑔 =

𝐺([𝐹(𝑥𝑠), 𝑧, 𝑙]) and 𝑥𝑡𝑔 = 𝐺([𝐹(𝑥𝑡), 𝑧, 𝑙]) to represent the image generated from 

𝑥𝑠 and 𝑥𝑡 respectively), and makes two predictions: i) 𝐷𝑎𝑑𝑣(𝑥) - the probability of 

𝑥 being a real source image, which is the core outcome of the GAN’s adversarial 

training procedure. ii) 𝐷𝑟𝑒𝑔(𝑥𝑠𝑔) - the ∆𝐕 regressed from the generated image. It 

is designed for source generated image 𝑥𝑠𝑔 only whose ground-truth shape label 

∆𝐕̂𝑠 is available. As shown in previous studies(Odena et al., 2017), forcing 𝐷 to 

predict side information (∆𝐕 in our case) can improve the model’s performance on 

the original image generation task. The corresponding gradients can further be 

propagated to update the parameters of 𝐹. 

Training ShapeNet is nontrivial as it involves four components (𝐹, 𝑅, 𝐷, 𝐺) 

and two different kinds of training data (labelled synthetic position images and 

unlabelled real position images). In this study, the AR-GAN which lies at the core 

position of aligning the two domains is optimized in the first place, then move on 

to optimizing 𝐹 and 𝑅. 

Based on the two predictions of 𝐷, the loss function of 𝐷 - 𝐿𝐷 comprises two 

parts - 𝐿𝐷𝑎𝑑𝑣
 and 𝐿𝐷𝑟𝑒𝑔

: 
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 𝐿𝐷𝑎𝑑𝑣
= {

𝔼𝑥𝑠~𝐗𝑠
− [log(𝐷𝑎𝑑𝑣(𝑥𝑠)) + log (1 − 𝐷𝑎𝑑𝑣(𝑥𝑠𝑔))]

+  𝔼𝑥𝑡~𝐗𝑡
− [log (1 − 𝐷𝑎𝑑𝑣(𝑥𝑡𝑔))] 

} (5-1) 

 𝐿𝐷𝑟𝑒𝑔
= 𝔼𝑥𝑠~𝐗𝑠

[smooth𝐿1
(𝐷𝑟𝑒𝑔(𝑥𝑠𝑔) − ∆𝐕̂𝑠)] (5-2) 

𝐷 is trained to minimize 𝐿𝐷 = 𝐿𝐷𝑎𝑑𝑣
+ 𝐿𝐷𝑟𝑒𝑔

. 𝐺 is then updated to generate 

realistic source images while preserving their original shape labels by 

minimizing the following loss function: 

 𝐿𝐺 = 𝔼𝑥𝑠~𝐗𝑠
[

log (1 − 𝐷𝑎𝑑𝑣(𝑥𝑠𝑔))

+ smooth𝐿1
(𝐷𝑟𝑒𝑔(𝑥𝑠𝑔) − ∆𝐕̂𝑠)

] (5-3) 

After optimizing 𝐷 and 𝐺, we update 𝑅’s parameters using source images and 

their shape labels in a fully supervised manner. The loss function for minimization 

is as follows: 

 𝐿𝑅 = 𝔼𝑥𝑠~𝐗𝑠
[smooth𝐿1

(𝑅(𝐹(𝑥𝑠)) − ∆𝐕̂𝑠)] (5-4) 

Finally, 𝐹  is updated using the gradients back-propagated from the 

optimization procedures of 𝐷, 𝐺 and 𝑅. The overall objective of 𝐹 is to learn a 

feature embedding that not only keeps the dominant information of shape labels, 

but also is shared by the source domain and the target domain. Such an objective 

can be concretized as learning an embedding that maximizes the prediction 

accuracy of 𝑅 and makes the images generated by 𝐺 indistinguishable from each 

other (in this study, this is achieved by making all the generated images source-

like). The resulting objective function is defined as follows: 

 𝐿𝐹 = 𝐿𝑅 + 𝜆1𝐿𝐷𝑎𝑑𝑣,𝑡
+ 𝜆2𝐿𝐷𝑟𝑒𝑔

 (5-5) 

 𝐿𝐷𝑎𝑑𝑣,𝑡
= 𝔼𝑥𝑡~𝐗𝑡

− [log (1 − 𝐷𝑎𝑑𝑣(𝑥𝑡𝑔))] (5-6) 

Minimizing the first item of 𝐿𝐹  encourages the learned embedding to 

incorporate the essential shape information, while minimizing the last two items 

leads the embedding to be domain-invariant. Specifically, minimizing 𝐿𝐷𝑎𝑑𝑣,𝑡
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makes the image generated from the target domain as source-like as possible. 

Similarly, minimizing the discriminative loss 𝔼𝑥𝑠~𝐗𝑠
[log (1 − 𝐷𝑎𝑑𝑣(𝑥𝑠𝑔))] will 

force the image generated from the source domain to be source-like, which can 

also be used to update 𝐹. However, such a loss cannot guarantee that the learned 

source embedding keeps the original shape information. To solve this problem, we 

use the regression loss 𝐿𝐷𝑟𝑒𝑔
 instead to update 𝐹. In equation (5-5), 𝜆1 and 𝜆2 are 

weighting coefficients for balancing the three energy items. They are empirically 

set in our experiments. According to the updating order above,  𝐷, 𝐺, 𝑅, 𝐹 are 

updated iteratively until the corresponding loss converges to an acceptable level. 

b) PoseNet 

From the perspective of rigid head pose, the domain gap between the source and 

target position image distributions is assumed to be small. Based on this hypothesis, 

instead of using the complex adversarial domain adaptation method, we propose 

to fine-tune a neural network pre-trained on labelled source data with unlabelled 

target data to achieve domain-adaptive head pose estimation from a single position 

image. The resulting network 𝑃  (see Fig.5.2) is named as PoseNet. It is a 

convolutional neural network which accepts a position image as input and outputs 

a rotation quaternion 𝐪 and a translation vector 𝐭. The training of PoseNet involves 

two stages. At the first stage, we use source images 𝐗𝑠 = {𝑥𝑠
𝑖}

𝑖=1

𝑁𝑠
 and their pose 

labels {𝐪̂𝑠
𝑖 , 𝐭Ƹ𝑠

𝑖 }
𝑖=1

𝑁𝑠
 to train PoseNet by minimizing the following loss function: 

 𝐿𝑃
𝑠 = 𝔼𝑥𝑠~𝐗𝑠

[smooth𝐿1
((𝑃(𝑥𝑠) − [𝐪̂𝑠; 𝐭Ƹ𝑠]) ∘ [𝛼; 1])] (5-7) 

𝛼 is a weighting coefficient for balancing between the rotation quaternion and the 

translation vector. The primed PoseNet is then tuned with unlabelled target images 

𝐗𝑡 = {𝑥𝑡
𝑖}

𝑖=1

𝑁𝑡
 via minimizing the landmark-based Chamfer distance,  

 𝐿𝑃
𝑡 = ∑ min

𝐯𝑡∈𝐕𝑡

‖𝐯𝑡 − Φ(𝐯̅𝑖)‖2
2𝑚

𝑖=1  (5-8) 
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where 𝐕𝑡 is the noisy point cloud extracted from the target position image 𝑥𝑡, 𝐯̅𝑖 is 

the 𝑖th landmark (see Fig.5.2 (PoseNet) for the applied landmark markup) of the 

transformed reference 3D face 𝐕̅  and Φ(∙)  represents the rigid transformation 

driven by the predicted pose vector 𝑃(𝑥𝑡). When min
𝐯𝑡∈𝐕𝑡

‖𝐯𝑡 − Φ(𝐯̅𝑖)‖2
2 > 𝜖, 𝐯𝑡  is 

treated as a noisy point. The corresponding Chamfer distance is thus invalid and 

will not be counted. Through registering the two groups of landmarks as shown in 

the equation (5-7), PoseNet can be updated towards predicting more accurate head 

pose parameters, which in turn will facilitate the seeking of more matchable 

landmarks on the target point cloud 𝐕𝑡. As this self-supervised training procedure 

iterates, PoseNet continuously generalizes to target position images. 

5.4  Experiments 

The proposed method is evaluated in this section. It is validated on three 

mainstream public datasets and compared with the state-of-the-art in both 3D 

facial shape reconstruction and head pose estimation. 

5.4.1 Implementation Details 

a) Network Structure 

As illustrated in Fig.5.2, the proposed ShapeNet comprises four parts - 𝐹, 𝑅, 𝐷 

and 𝐺: 

(a) 𝐹 is an encoder that accepts a 160x160x3 position image of a human face 

as input and outputs a 512-dim feature vector. It consists of 11 convolutional layers, 

with each except for the last layer is followed by batch normalization(Ioffe & C. 

Szegedy, 2015) and leaky ReLU(Maas et al., 2013). For the first 10 convolutional 

layers, there are two types of convolutions. One uses a kernel of 4x4 and a stride 

of 2, the other uses a kernel of 3x3 and a stride of 1. The two different convolution 

operations are called in an alternating manner. 𝐹’s last convolutional layer applies 

a kernel of 5x5 and a stride of 1, and is followed by leaky ReLU only. 
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(b) 𝑅 is a three-layer MLP. It maps the concatenation of the 512-dim feature 

embedding output from 𝐹, a random noise vector and a one hot vector, first to a 

1024-dim vector, and then to an 89,034-dim vector which saves the 3D vertex 

displacements. 𝑅’s last layer and its previous layer is connected by leaky ReLU. 

(c) 𝐺 is implemented with a convolutional neural network whose structure is 

mostly symmetric to the 𝐹’s. The main difference is that 𝐺’s last convolutional 

layer is followed by a Tanh function instead of the leaky ReLU for the activation 

unit. 

(d) 𝐷 first applies a 𝐹-like structure to learn from the generated position image 

a 512-dim feature embedding. Then it maps the embedding to not only the 

probability of being a real position image through a fully connected layer and a 

sigmoid function, but also an 89,034-dim displacement vector through a MLP that 

has the same structure as that of 𝑅. 

PoseNet is a typical convolutional neural network, which can be viewed as a 

combination of ShapeNet’s 𝐹  and 𝑅 . PoseNet’s first part applies the same 

structure as that of 𝐹, while its second part is a three-layer MLP similar as 𝑅. The 

MLP maps the 512-dim feature embedding sequentially to a 256-dim vector and a 

7-dim vector which can directly be divided into a rotation quaternion and a 

translation vector. 

b) Training 

The proposed networks require both labelled synthetic (source) data and 

unlabelled real (target) data for training. For ShapeNet training, a batch of 

synthetic position images along with their labels are first fed into it to update its 

𝐷, 𝐺, 𝑅, 𝐹 sequentially by minimizing the losses defined in Eq.5-1 to Eq.5-5. Then, 

keeping 𝐺 and 𝑅 fixed, 𝐷 and 𝐹 are further updated using a batch of real position 

images. When updating 𝐹 , the weighting coefficients 𝜆1  and 𝜆2  in Eq.5-5 are 

empirically set as 0.03 and 0.1. The batch size is set to 16 through this and all the 

following experiments. ShapeNet is optimized via Adam with an initial learning 

rate of 0.0005 which is decreased at least by half every 10 epochs. In our 
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experiments, ShapeNet can produce satisfactory results after 30 training epochs 

applying the following combination of learning rates – {0.0005, 0.0001, 0.00005}. 

For PoseNet, we first use labelled synthetic data to optimize the network by 

minimizing the loss defined in Eq.5-6, where the weighting coefficient 𝛼 

compensating for the numerical scale difference between the rotation quaternion 

and the translation vector is set to 350. The network is then updated using 

unlabelled real data by minimizing the self-supervised loss defined in Eq.5-7 

where the threshold 𝜖  for finding valid matching landmarks is set as 30(mm). 

Similar to ShapeNet, PoseNet is also optimized via Adam, but with a fixed learning 

rate of 0.0001. It is able to produce accurate pose estimation in about 150 training 

epochs with the first 100 epochs trained with synthetic data and the last 50 epochs 

fine-tuned with real data. 

During the experiment, reusing the real data in each training epoch can 

facilitate the learning of a domain-adaptive model. It is very important especially 

when the number of real data is limited such as in our case. To achieve this goal, 

several copies of real position images are created in the training set and synthesize 

the same amount of position images for training. This means that each real position 

image will be used more than one time in an epoch and make more contributions 

to optimizing the network. Experimental results show that using a real position 

image three times in an epoch makes a good trade-off between the training cost 

and the resulting model’s prediction ability. 

c) Datasets 

To train and evaluate the proposed domain-adaptative 3D face reconstruction 

method, three public datasets (see Tab.5.1) – FaceWarehouse (Cao et al., 2013), 

Biwi (Fanelli et al., 2011) and ICT-3DHP (Baltrušaitis et al., 2012) are used. The 

three datasets provide numerous real-world depth images which cover a wide 

range of facial expressions, head poses and identities. FaceWarehouse consists of 

3,000 640x480 depth images captured from 150 human subjects. For each subject, 

20 different facial expressions ranging from neutral expression, mouth stretch to 

eye closed, while posed near-frontally to the camera were captured with the Kinect  
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Table 5.1: The details of real datasets and synthetic datasets. 

 

 

 

 

 

 

 

 

sensor. Biwi contains 15,678 640x480 depth images of 20 people turning their 

head with almost the same facial expression while captured by a range scanner. Its 

head pose range covers about ±90°  yaw and ±45° pitch rotations. Similarly, ICT-

3DHP contains 10 depth sequences (about 1,400 640x480 frames in each sequence 

and 14,202 frames in total) of 10 people turning their head while captured by the 

depth sensor. In this study, due to its diversity in facial expression, FaceWarehouse 

(Cao et al., 2013) is mainly used to assess the 3D facial expression reconstruction 

performance of the proposed method. Biwi (Fanelli et al., 2011) and ICT-3DHP 

(Baltrušaitis et al., 2012) instead are mainly used to assess the method’s head pose 

estimation performance. In addition, these two datasets provide an accurate head 

pose label for each depth image, hence enabling precise quantitative evaluation on 

pose estimation. 

This chapter also synthesizes depth images which are available with correct 3D 

facial geometry labels for training. BFM (Paysan et al., 2009) is applied to model 

facial identity and blendshapes generated from FaceWarehouse (Cao et al., 2013) 

to model facial expression. To ease the training difficulty of unsupervised domain 

adaptation, a specific dataset is synthesized to simulate and pair with each of the 

three real datasets. Such a synthetic dataset applies blendshape coefficients, head 

pose parameters and the camera intrinsic matrix which are estimated from (or 

provided by) the corresponding real dataset for 3D face generation and depth 

Dataset Subjects Expressions Pose 
Total 

Numbers 

FaceWarehouse 150 20 
Near 

Frontal 
3,000 

BiWi 20 X Various 15,678 

ICT-3DHP 10 X Various 14,202 

SynData1 450 20 
Near 

Frontal 
9,000 

SynData2 165 3 Various 47,034 

SynData3 143 3 Various 42,606 
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image rendering. The synthetic datasets are named as SynData1, SynData2 and 

SynData3 which correlate with FaceWarehouse, Biwi and ICT-3DHP respectively. 

Tab.5.1 lists their details. It can be found from the table that the synthesized depth 

images are three times more than the real depth images. As discussed in the 

“Training” part, this is for reusing the real data during network optimization. 

5.4.2 Results on Face Reconstruction 

a) Comparison on FaceWarehouse 

 

 

Figure 5.3: Comparison with depth-based method proposed by Zhong et al. (Zhong et al., 2020). 

The RGB image is shown only for better comparison. 

Input Proposed FDR 
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As forementioned, FaceWareHouse (Cao et al., 2013) is mainly used to assess the 

3D facial expression reconstruction performance due to its diversity in facial 

expressions. The proposed approach is firstly compared with FDR (Zhong et al., 

2020), a recent and unique depth-based approach with self-supervised learning that 

estimates unrestricted face shapes. Based on the results provided by FDR (Zhong 

et al., 2020), three subjects from FaceWarehouse are displayed in Fig.5.3. From 

the Fig.5.3, the proposed approach produces detailed faces with the better identity 

and more accurate expressions. For example, the third subject in is cheek-bulging 

which the result of proposed approach reveals, however, the FDR (Zhong et al., 

2020) is just pouting. Moreover, some artifacts from FDR (Zhong et al., 2020) can 

be observed around mouth region while results of proposed approach are much 

more pleasing. 

The proposed method is then compared, with five deep RGB-based models of 

VRN (Jackson et al., 2017), PRN (Feng et al., 2018), Deng et al. (Deng et al., 

2019), 3DDFA2 (J. Guo et al., 2020), and GCN (Lin et al., 2020). Both GCN (Lin 

et al., 2020) and Deng et al. (Deng et al., 2019) generate the same face shape since 

GCN adopts the Deng et al. for shape regression, so just results of Deng et al.(Deng 

et al., 2019) are showcased in Fig.5.4. The displayed samples were selected 

randomly. All visual results of compared methods are generated though the 

released pre-trained models. What needs to be mentioned here is that five key 

points (two eye centres, nose centre and two mouth corners) are required to be 

marked manually before the image are fed to Deng et al. (Deng et al., 2019). As 

exhibited in Fig.5.4, all the prior art RGB-based methods cannot perform well or 

even fail to reconstruct the 3D face with the unsymmetric facial expressions, while 

our method is still able to reconstruct the promising 3D face expressions thanks to 

the depth information. 

Comparison on Biwi and ICT-3DHP. To further evaluate the proposed 

approach under large pose and occlusions, the recovered shapes are compared on 

two public datasets covering various poses information: Biwi (Fanelli et al., 2011)  
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Figure 5.4: Visual results of state-of-the-art RGB-based methods and the proposed approach. The 

RGB image is shown only for better comparison. 

and ICT-3DHP (Baltrušaitis et al., 2012), with fore-mentioned RGB-based 

approaches. However, the demo of VRN (Jackson et al., 2017) cannot detect the 

face from the profile images. Here, the visual results of PRN (Feng et al., 2018), 

3DDFA2 (J. Guo et al., 2020) and Deng et al. (Deng et al., 2019)are showcased in 

Input                  VRN                PRN           Deng et al.       3DDFA2      Proposed 
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Figure 5.5: Comparison with prior art under large pose and occlusions. Not that the input to Deng 

et al. (Deng et al., 2019) needs to be marked 5 key points manually. The RGB image is shown only 

for better comparison.  

Table 5.2: Evaluations on Biwi Dataset. ‘A’ means All sequences and ‘P’ means Partial sequences. 

The top three results are marked with Red, Green and Blue. 

 

 

 

 

 

 

 

 

 

 

Methods 
Testing  

Set 

Data Errors 

Depth RGB 
Pitch 

(°) 
Yaw 
(°) 

Roll 
(°) 

RF A   8.5 8.9 7.9 

Martin A   2.5 3.6 2.6 

CLM-Z A   12 14.8 23.3 

TSP A   3.0 3.9 2.5 

PSO A   6.6 11.1 6.7 

Li* A   1.7 2.2 3.2 

Ours A   2.6 2.5 2.6 

Poseidon* P   1.6 1.7 1.8 

FDR P   2.7 2.9 3.0 

Ours P   2.1 2.1 2.3 

RGB 

image 

PRN Deng et al. 3DDFA2 Proposed 
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Fig.5.6. By visual inspection, the proposed method is comparable with the state-

of-the-art RGB-based methods even no rough landmark information needs to be 

provided. 

5.4.3 Results on Head Pose Estimation 

The proposed approach is also compared on both Biwi and ICT-3DHP datasets, 

with the state-of-the-art depth-based head pose estimation methods (Baltrušaitis et 

al., 2012; Fanelli et al., 2011; S. Li et al., 2015; Martin et al., 2014; P.Padeleris et 

al., 2012; Papazov et al., 2015; Zhong et al., 2020). Tab.5.2 Shows the mean 

average errors about the rotation (Euler) angles on Biwi Dataset. Similarly, the 

rotation errors about ICT-3DHP dataset are displayed in Tab.5.3. Note that the 

results of the reference approaches are taken directly from the corresponding 

papers. 

Among all the depth-based head pose estimation algorithms, the proposed 

approach delivers almost the lowest errors on Biwi dataset. Partially, this can be 

due to that the position map fed to the network embeds the pose information in a 

more explicit way than the original depth map that is commonly used by the 

previous methods. The results demonstrate the superiority of the proposed method  

Table 5.3: Evaluations on ICT-3DHP Dataset. ‘A’ means All sequences and ‘P’ means Partial 

sequences. * means deal with both RGB and depth images. The top three results are marked with 

Red, Green and Blue. 

 

 

 

 

 

 

 

Method 
Testing 

set 

Errors 

pitch yaw roll 

RF A 9.4 7.2 7.5 

CLM-Z A 7.1 6.9 10.5 

Li* A 3.1 3.3 2.9 

Ours A 6.5 7.1 5.7 

Poseidon* P 4.9 4.4 5.1 

Ours P 4.6 4.7 5.1 
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Figure 5.6: The examples of head pose estimation by the reconstructed face model. 

which neither requires labelled data for training (Fanelli et al., 2011; Martin et al., 

2014) or a compute-intensive optimization step during model adaptation  

(Baltrušaitis et al., 2012; S. Li et al., 2015; Martin et al., 2014; P.Padeleris et al., 

2012). Although no appearance information is utilized, the developed approach is 

comparable with the prior art Li (S. Li et al., 2015) and Poseidon(Borghi et al., 

2017) that employed both depth and RGB data. Similarly, the conclusion can be 

made on the ICT-3DHP dataset. The proposed approach achieves very pleasing 

performance for the translation on Biwi dataset as well. Moreover, the model of 

PoseNet only needs 135s to test all the samples from Biwi, which means it can be 

used in real-time head pose estimation benefit from the fast speed (more than 100 

frames per second). 

To further demonstrate the robustness of our PoseNet, the reconstructed 3D 

meshes overlayed with input point cloud (extracted from position maps) on BIWI 

and ICT-3DHP datasets are provided for visual inspection in Fig.5.6. The 

developed approach is robust to the large poses and occlusions, not only can handle 

rotation information under large pose, but also estimate the good translation data. 

What’s more, it is also effective to the facial expression variations. 

RGB Image Reconstructed 3D Meshes 
Overlayed with Point Cloud 

Frontalized
Point Cloud 
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5.4.4 Ablation Study 

The ablation experiments are conducted to explore the effectiveness of different 

elements in head pose estimation. Two main elements including training strategy 

and training data have been taken into consideration for head pose estimation. The 

effect of each element is evaluated on Biwi dataset in Tab.5.4. The results from 

the self-supervised model only trained on real data has not been produced since 

the model was non-convergence. This is due to that the noisy information from 

depth (position) image confused the model during the training. Obviously, the self-

supervised finetuning manner performs best among all the strategies. The self-

supervised fine-tune model improves the performance largely than the supervised 

model trained on synthetic data. The reason can be explained by following: the 

synthetic data and real data are in the similar feature domain, but the noise of real 

data is easy to mislead the feature learning. Fortunately, self-supervised fine-

tuning based on chamfer distance is effective to extract the useful feature in real 

depth since it is good at finding the correspondence between different point clouds 

and matching them. Compare with domain adaptation, the self-supervised fine-

tuning not only save the training time but also reduce the computation cost. 

Table 5.4: The training details of head pose estimation models on Biwi dataset. 

Learning 
Framework 
(Manner) 

Supervised       

Self-supervised       

Domain 
Adaptation 
(ShapeNet) 

     

Data 
(Position 

Map) 

Synthetic       

Real       

Training Cost 
Per Epoch(s) 120 135 650 120 135 

Epochs 150 150 35 100 50 

Model Size (M) 19.5 19.5 106.3 19.5 

Errors 

Pitch 8.9 - 2.5 2.6 

Yaw 5.1 - 2.6 2.5 

Roll 5.3 - 3.1 2.6 
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5.5 Conclusion 

This chapter proposes a learning-based approach for 3D face reconstruction from 

a single depth map collected by the economic depth sensor Kinect. Specifically, 

the proposed approach mainly includes two parts: ShapeNet designed to predict 

the displacement of each vertex for reconstructing the 3D face and PoseNet 

developed to estimate head pose. The ShapeNet is designed inspired by generate-

to-adapt domain adaptation framework and trained on source domain (labelled 

synthetic data) and target domain (un-labelled real data). Similarly, the PoseNet is 

also trained on these two kinds of data, but the structure is based on deep neural 

network. Both quantitive and qualitative experiments are conducted on three 

public datasets to evaluate proposed method which outperforms the compared 

prior art. 
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Chapter 6 

Conclusion and Future Work 

This thesis focused on two fundamental tasks in visual scene analysis which are 

saliency detection for the general scene and depth-based 3D face reconstruction 

for the human-centred scene. After extensively reviewing the principal studies in 

related areas, it identified problems and challenges of each task and resorted to the 

generative adversarial network - GAN for robust solutions. Its main contributions 

are summarised as follows: 

In Chapter 3, the thesis proposed a perceptual loss-guided GAN – PerGAN for 

saliency detection from a general-scene RGB image. PerGAN is trained with a 

perceptual loss that measures misdetection on the semantic feature level rather than 

the pixel level of the estimated saliency map. It explicitly incorporates high-level 

semantic information like the object shape into salient object inference. PerGAN 

is further strengthened with a multi-scale discriminator for extracting useful 

information from the input image and the generated saliency map in different 

resolutions. Experimental results on four challenging databases demonstrated that 

PerGAN is competitive against the state-of-the-art methods. More specifically, 

PerGAN delivers improved performance on locating the salient object’s boundary 

and preserving its completeness.  

From Chapter 4, the thesis turned to address another important visual scene 

analysis task, namely 3D face reconstruction from a depth image of a human-

centred scene. It proposed to use GAN to learn directly from the depth image a 

facial voxel grid that explicitly depicts the 3D facial shape with a number of 

discrete voxels. It further integrated the attention mechanism into the GAN for 

weighting heavier on those intermediate features that show higher relevance in 

predicting the facial voxel grid. The resulting network is named as Attention-
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guided GAN - AGGAN. After being trained on a large-scale dataset of synthesized 

depth images that cover a wide range of facial expressions and head poses, 

AGGAN is able to accurately predict the facial voxel grid given a new depth image 

with big facial poses and noises. This provides an efficient learning-based 

alternative to existing solutions that normally rely on a costly optimization-based 

3D surface recovery process and are sensitive to image noises and facial poses. 

Experimental results also indicated that the AGGAN model trained on the 

synthetic data has the potential of generalizing to noisy real depth images.  

Encouraged by the outcomes of Chapter 4, the thesis continued to synthesizing 

depth images to train the 3D face reconstruction network in Chapter 5. For 

adapting the reconstruction model to real depth images, it proposed to apply both 

labelled synthetic data and unlabelled real data for model training, while 

employing the domain adaption technique to learn a common feature embedding 

that is informative to both real and synthetic domains. The core of the proposed 

method is two independent domain-adaptive convolutional neural networks for 

predicting head pose and a normalized 3D facial shape respectively. To achieve 

domain-adaptive, the former network is trained with a fine-tuning method, while 

the latter one is trained with a GAN-based generate-to-adapt method. The GAN 

here is used to fill the domain gap between the synthetic and real data. This is 

fundamentally different from the previous two methods where GAN directly forms 

the predictive model. The proposed domain-adaptive 3D face reconstruction 

network has been validated on three public real datasets, and showed state-of-the-

art performance on both 3D facial shape recovery and head pose estimation.  

In conclusion, the thesis developed novel and robust algorithmic solutions to 

both visual saliency detection and depth-to-3D face reconstruction. It also 

validated GAN’s performance in three different scenarios (generating binary 

saliency map, predicting facial voxel grid and align different domains) that deviate 

a lot from its familiar area (image generation). This provides valuable experience 

on adapting GAN to various visual scene analysis tasks, which we believe is 

beneficial to the further development of GAN. 
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As future works, there are at least two promising directions to extend this thesis: 

1) For saliency detection, it can be found that the current method is object-

agnostic. In other words, it does not split the detected salient region into objects 

when there are two or more objects included. However, humans are capable of 

detecting saliency at instance level. It is therefore important to achieve instance-

level saliency detection. To this end, a future research could be attaching an 

auxiliary network to the proposed PerGAN for further segmenting the detected 

salient regions to objects. A correct object segmentation can in turn improve the 

saliency detection accuracy.  

2) In Chapter 5, the current method applies two independent networks 

(ShapeNet and PoseNet) for predicting head pose and normalized 3D facial shape 

respectively. This reduces the overall learning difficulty to some extent, but also 

cuts off some useful communications between these two networks. For example, 

an accurate 3D facial shape output from the ShapeNet instead of a mean shape can 

improve the effectiveness of the Chamfer distance-based loss applied for training 

the PoseNet. From this point, it is interesting and promising to liaise these two 

networks at the training phase. Specifically, the outputs of one network can be 

used to construct the loss for updating the other network. Theoretically, the two 

networks can be updated in an alternating manner until both of them reach to a 

stable point. 
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