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Abstract 
In this paper we study the Generalized Parikh Vector of words over 
three letter alphabet. For Σ = {a, b, c} the GPVs of words lie in the 
tetrahedron whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (0, 0, 0). 
All GPVs of words of equal length lie on the same plane.  Plane 
languages and their language theoretical properties are studied. 
Further, the GPVs of words lying on surfaces are discussed.  The 
concepts of surface language, language surface and their properties 
are also studied in this paper. 
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1. INTRODUCTION

The concept of Generalized Parikh Vector (GPV) introduced 
by Siromoney et al. [4] proves to be a more powerful tool than the 
classical Parikh vector introduced by Parikh [1] as it gives the 
positions of the letters in a word w.  It has been proved that the 
GPVs of the words of the same length lie on a hyper plane [3].  In 
the case of a binary alphabet, the GPVs of words of same length 
lie on a straight line. The concept of line languages introduced by 
Sasikala et al. [2] is the motivation for this study of plane 
languages.  In this paper we extend the concept of line languages 
to define plane languages and study some of its language 
theoretical properties. In particular, we study the closure 
properties of quasi-plane languages and compare the languages in 
the quasi-plane family. We further investigate a new class of 
languages, namely Surface languages associated with curves on 
surfaces. 

2. PRELIMINARIES

Σ, a non-empty finite set of symbols is an alphabet.  The 
symbols in Σ are called letters. Any finite string over Σ is called a 
word over Σ.  The length of a word w is the number of symbols 
present in the word and it is denoted by |w|.  The empty word is 
denoted by λ and the set of all words over Σ is denoted by Σ*.  If 
|w| = ∞ then w is called an infinite word.  

The collection of all infinite words is denoted by Σω and 
Σ∞ = Σ*∪ Σω. 

Let u, v ∈ Σ+.  Then u is a factor or a subword of v, if v = w1uw2 
for some w1, w2 ∈ Σ*. u is a prefix of v if v = uw for some u ∈ Σ* 
and u is a suffix of v if v = wu for some u ∈ Σ*.  The catenation of 
two words u = a1 a2 … an and w = b1b2 … bn denoted by u·w is a1 

a2 … an b1 b2 … bn.  If w = a1 a2 … an with ai ∈ Σ then wR = an … 
a1 is called the reversal of w. 

The subsets of Σ* are called languages over Σ. Upon 
languages, the operations like union, intersection, catenation, 

reversal, complement and Kleene star are defined respectively as 
follows.  If L1 and L2 are two languages over Σ then, 
(i) L1 ∪ L2 = {w ∈ Σ* / w ∈ L1 or w ∈ L2}. 

(ii) L1 ∩ L2 = {w ∈ Σ* / w ∈ L1 and w ∈ L2}. 
(iii) L1 ◦ L2 = {w = w1 w2 ∈ Σ* / w1 ∈ L1 or w1 ∈ L2}. 
(iv) LR = {wR ∈ Σ* / w ∈ L}. 
(v) Lc = Σ* − L. 

(vi) *

0

i

i
L L

≥
= ∪ where Li = LLi−1 for i ≥ 1 and L0 = λ. 

A partial word of length n over Σ is a partial function 
u: {1, 2,…, n} → Σ.  For 0 < i ≤ n if u(i) is defined we say that i 
belongs to the domain of u denoted by i ∈ D(u).  Otherwise we 
say that i belongs to the set of holes of u denoted by i ∈ H(u).  A 
hole is denoted by ◊. 

If x is a word over Σ+, then x2 ∈ Σ+ is a strictly square word 
and x3 ∈ Σ+ is a strictly cube word.  w = 2

1 2 3w w w∗ ∗  ∈ Σ+ for w1, w2, 

w3 ∈ Σ+ is a word with a square and w = 3
1 2 3w w w∗ ∗  ∈ Σ+ is a word 

with a cube, for w1, w2, w3 ∈ Σ+. 
Let Σ = {a1, a2,…, an}. Then the Parikh vector of a word u is 

given by ( )
1 2

( ) , ,..., ,...,
i na a a a

u u u u uπ =  where 
ia

u represents 

the number of times ai occurs in u [1]. 
Let Σ = {a1, a2, a3} and x ∈ Σ∞. The Generalized Parikh Vector 

(GPV) of x denoted by p(x) is (p1, p2, p3) ∈ [0, 1]3, where,
1
2

i

i j
j A

p
∈

= ∑ , Ai ⊂ N (set of natural numbers) and Ai contains the

positions of ai (i = 1, 2, 3) in the word x. 

3. LINE LANGUAGES AND QUASI- LINE
LANGUAGES

We define the GPV for Partial words as follows. 
Definition 3.1: Let Σ = {a1, a2, a3} and u be a partial word over 
Σ.  The Generalized Parikh Vector (GPV) of u denoted by p(u) is 

(p1, p2, p3) ∈ [0, 1]3, where ∑
∈

=
iAj

ji 2
1p , Ai ⊂ N (set of natural 

numbers) and Ai contains the positions of ai (i = 1, 2, 3) in u, where 
the positions representing the holes are neglected. 

The following are a few examples for GPV of words over 
three letter alphabet. 
Example 3.1:  Let Σ = {a, b, c}. 

(i) For w = ababc, 

3 2 4 5

1 1 1 1 1 5 5 1( ) , , , , .
2 2 2 2 2 8 16 32

p w    = + + =   
   
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(ii)  For v = (cab)ω,  

2 5 8 3 6 9 6 9

1 1 1 1 1 1 1 1 1( ) , , ...
2 2 2 2 2 2 2 2 2
2 1 4, ,
7 7 7

p v  = + + + + + + + + + 
 
 =  
 

 

 

(iii)  For u = ◊a◊b◊c, 

2 4 6

1 1 1 ( ) , ,
2 2 2

p u  =  
 

 

Proposition 3.1: A point P(x, y, z) in space represents the GPV 
of 

(i) A finite word over Σ = {a, b, c} if and only if
2 1

2

n

nx y z −
+ + = . 

(ii) An infinite word over Σ={a,b,c} if and only if x + y + z = 1. 
Definition 3.2: A language L ⊂ Σ∞ is defined as a point language 
if |L| = 1.  
Note: Every singleton set is a point language.  
Definition 3.3: For Σ = {a, b}, a language L ⊂ Σ∞ is called a line 
language if there exists a line l in R2 such that L ={x ∈Σ∞: p(x) 
lies on l }. Then, l is said to be the language line of L. 
Definition 3.4: For Σ = {a, b}, a language L ⊂ Σ∞ is called a quasi-
line language if p(L) lies on a line in R2. We call the line l as a 
quasi- language line. 
Example 3.2: Let L1 = {ab2c}. For x = ab2c,  

2 3 4

1 1 1 1( ) , ,
2 2 2 2

p x  = + 
 

 

L1 is a point language and 1 3 1, ,
2 8 16

P  
 
 

 is the language point 

corresponding to L1. 
Example 3.3: Let L2 = {abω}.  For y = abω  

2 3

1 1 1 1 1( ) , ... ,
2 2 22 2

p y    = + + +∞ =   
   

 

L2 is a point language and 1 1,
2 2

P  
 
 

 is the language point. 

Theorem 3.1: The intersection of two language lines is a 
language point if they intersect. 
Proof: Let ℓ1 and ℓ2 be language lines. The intersection of two 
lines is a point. Thus the intersection of ℓ1 and ℓ2 gives a point 
which will correspond to the GPV of the word common to line 
languages corresponding to ℓ1 and ℓ2. 

Example 3.3: Let, ℓ1:
3
4

x y+ =  and ℓ2: 2y = x be two language 

lines. Their intersection is the point 







4
1,

2
1 . 

The line languages of ℓ1 and ℓ2 are L1 = {a2, b2, ab, ba} and  
L2 = {ab, (ab)2, …, (ab)n, …} i.e., {(ab)n / n ≥ 1} respectively.  

The point of intersection of ℓ1 and ℓ2 is 







4
1,

2
1 which, is the GPV 

of the word ab and ab is common to both L1 and L2. 

4. PLANE LANGUAGES AND QUASI-PLANE 
LANGUAGES 

The following are some observations about GPVs of words 
over three letter alphabet. 

1. GPVs of all infinite words over  Σ = {a, b, c} lie on the 
plane x + y + z = 1 and conversely for each point on the 
plane x + y + z = 1, there exists a word in Σω whose GPV 
is that point. 

2. All words of length n over Σ = {a, b, c} lie on the plane 
2 1.

2

n

nx y z −
+ + =  

3. The number of words of length n over Σ = {a, b, c} lying 

on the plane 
2 1

2

n

nx y z −
+ + =  is 3n. 

4. GPVs of all words over Σ = {a, b, c} lie in the region 

bounded by the two planes 1
2

x y z+ + =  and x + y + z = 1 

and the coordinate planes. 
5. GPVs of all words lie on and outside the boundary of the 

cube OABCDEF x = 0, y = 0, z = 0, x = 1/2, y = 1/2, z = ½ 
[see Fig.1].  

 
Fig.1. GPVs of words over three letter alphabet 

Throughout this paper, we consider Σ to be a three letter 
alphabet.  That is, Σ = {a, b, c}.  The Generalized Parikh Vectors 
of words over Σ lie in space. This leads to the following 
definitions. 
Definition 4.1: A language L ⊂ Σ∞ is defined as a Plane language 
if there exists a plane S in R3 such that, L = {x ∈Σ∞: p(x) lies on 
S}. Then S is said to be the Language Plane of L. 
Definition 4.2: A language L ⊂ Σ∞ is defined as a quasi-Plane 
language if p(L) lie on  a plane in R3 . 
Definition 4.3: A Plane language L is said to be a finite Plane 
language if it contains only finite words. 
Definition 4.4: Given a plane S, if there are words over Σ = {a, b, 
c} such that their GPVs lie on S. we call S as a quasi-language 
plane. 
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Definition 4.5: A Plane language L is said to be a ω-plane 
language if it contains only ω-words (infinite words). The 
cardinality of the set L may be finite or infinite. 
Definition 4.6: An infinitary Plane language contains both finite 
and infinite words. 
Example 4.1: Let L = {a2, b2, c2, ab, ba, ca, ac, bc, cb}. L is a 

Plane language and its Language plane is
2

2

2 1 3
2 4

x y z −
+ + = = . 

This is a finite Language plane of L. 
Example 4.2: Σω is a ω - plane language and the corresponding 
Language plane is x + y + z = 1. 
Remark 4.1: Any plane of the form x + y + z = c can be classified 
into two categories with respect to Plane languages. 

1. If c = 1, then the plane x + y + z = 1 corresponds to the ω - 
plane language. 

2. If
2 1

2

n

nc −
= , then 

2 1
2

n

nx y z −
+ + =  corresponds to the 

finite Plane language consisting of words of length n. 

Theorem 4.1: A Language plane 
2 1

2

n

nx y z −
+ + =  contains 

strictly square words only if n = 2m, m = 1, 2, 3,…, . 
Proof: For every word w ∈ Σ+ of length m, the strictly square 
words w2 ∈ Σ+ are of length 2m and their GPVs lie on the 

Language plane
2

2

2 1
2

m

mx y z −
+ + = .  

Example 4.3: Strictly square words of length 2 are {a2, b2} and 

they lie on 3
4

x y z+ + = . 

Strictly square words of length 4 are {a4, b4, abab, baba, bcbc, 

cbcb, acac, caca} and all these lie on the plane
4

4

2 1.
2

x y z −
+ + =  

Theorem 4.2: A Language33 plane 2 1
2

n

nx y z −
+ + =  contains 

strictly cube words only if n = 3m for all m ≥ 1. 
Proof. For every word w ∈ Σ+ of length m, the strictly cube word 
w3 ∈ Σ+ is of length 3m.  Clearly, these words lie on the plane 

3

3

2 1
2

m

mx y z −
+ + = . Thus any strictly cube word lies on a 

Language plane 2 1
2

n

nx y z −
+ + =  with n = 3m, m = 1, 2, 3,… . 

Remark 4.2: The Generalized Parikh Vectors of all words over Σ 
lie on the boundary and inside the region of the two planes 

1
2

x y z+ + =  and x + y + z = 1 and the coordinate planes. This 

region is said to be the WP-region. 
Theorem 4.3: A plane ax + by + cz = d is an infinitary language 
plane if (i) it intersects x + y + z = 1 in the WP-region (ii) it 
contains the GPVs of all words of a Plane language. 
Theorem 4.4: The intersection of three Language planes π1, π2 
and π3 is a language point if they intersect. 

Proof: If three planes intersect, they have a common point of 
intersection.  This point P lies on π1, π2 and π3.  Since all three 
planes are Language planes that contain the GPVs of words over  
Σ = {a, b, c}, their point of intersection will also correspond to the 
GPV of a word.  Hence it is a language point. 
Theorem 4.5: The intersection of two Language planes is a 
language line if they intersect. 
Proof: Let π1 and π2 be two Language planes such that π1 and π2 
are non-parallel.  Then the intersection of π1 and π2 is the line ℓ.  

This line lies in the region 1 1
2

x y z≤ + + ≤  and contains the 

GPVs of all words common to the planes π1 and π2, thus satisfying 
the conditions of a language line. 

Example 4.4: Let π1 be 7
8

x y z+ + =  and π2 be x − 2y − 4z = 0. 

The intersection of π1 and π2 is the line 14 72 , 5 , 3
24 24

t t t − + − 
 

.  

Since the planes are in three dimensions, the equation of the line 
of intersection is given in parametric form. 
Definition 4.7: A language L ⊂ Σ∞ is said to be a surface language 
if there exists a surface S in R3 such that  
L = {x ∈ Σ∞ : p(x) lies on the non-planar surface S} and S is said 
to be a Language surface. 
Definition 4.8: A language L ⊂ Σ∞ is said to be a quasi-surface 
language if p(L) lies on a surface in R3. 
Definition 4.9: Given a surface Q, if there are words over Σ = {a, 
b, c} such that their GPVs lie on Q, we call Q as a quasi- language 
surface. 
Definition 4.10: A language L ⊂ Σ∞  is defined as a curve 
language if there exists a curve C containing non-collinear and 
non-planar points such that L = {x ∈ Σ∞ : p(x) lies on C}.  The 
curve C is said to be the Language curve. 
Example 4.5: 

1. Consider the twisted cubic curve, x = t, y = t2, z = t3. The 

points 2 3

1 1 1, ,
2 2 2

 
 
 

, 2 4 6

1 1 1, ,
2 2 2

 
 
 

, 3 6 9

1 1 1, ,
2 2 2

 
 
 

, 

4 8 12

1 1 1, ,
2 2 2

 
 
 

corresponds to the GPV of the words abc, 

◊a◊b◊c, ◊◊a◊◊b◊◊c and ◊◊◊a◊◊◊b◊◊◊c. 
The above four points lie on the curve and are non-planar.  
Hence there is a surface S containing the curve, x = t, y = 
t2, z = t3, and is called the Language surface.  The surface 
language corresponding to S is {◊na◊nb◊nc / n ≥ 0}. 

2. The paraboloid y = x2 is another example for Language 
surface. S = {(x, y, z)/y = x2} is a Language surface and its 
corresponding surface language is {◊n−2ca◊n−1b / n ≥ 2} ∪ 
{cn-1acn-1bc*: n ≥ 1}. 

Let, 1
1
2

t = , 2
1
4

t = , 3
1
8

t = ,…, 1

1
2n nt += . The points 









2
1,

16
1,

4
1 , 








4
1,

64
1,

8
1 , 








8
1,

256
1,

16
1  & 









16
1,

1024
1,

32
1 all lie on the paraboloid. i.e., The points 
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{(tn, (tn)2, tn−1)} lie on the paraboloid y = x2 and is a 
Language surface, whose Surface language is L = 
{◊n−2ca◊n−1b / n ≥ 2} ∪ {cn-1acn-1bc*: n ≥ 1}. 

Remark 4.3:  
1. Structures with linear expression are language points and 

language lines whereas; language planes, language 
surfaces and language curves are structures with non-
linear expressions. 

2. Surface languages are languages of partial words over  
Σ = {a, b, c}. 

5. CLOSURE PROPERTIES  

In this section we study some of the closure properties of 
Quasi-plane languages such as union, intersection, catenation, 
reversal and Kleene closure. 
Theorem 5.1: Let L1 and L2 be two Quasi- Plane languages. The 
union of L1 and L2 is also a Quasi-Plane language if and only if 
p(L1)  and p(L2) lie on the same plane. 
Proof: L1 and L2 be two Quasi-Plane languages having the same 
Quasi- Language plane S. p(L1) and p(L2) lie on that same Quasi-
Language plane S. Clearly L1 ∪ L2 is a Quasi-Plane language. 

Conversely, if L1 ∪ L2 is a Quasi-Plane language then p(L1 ∪ 
L2) lies on S. clearly, p(L1) and p(L2) lie on that same Quasi-
Language plane S. 
Theorem 5.2: The intersection of two Quasi- Plane languages L1 
and L2 is also a Quasi-Plane language if and only if p(L1) and p(L2) 
lie on the same plane. 
Proof: Let L1 and L2 be two Quasi-Plane languages having their 
corresponding Quasi-language plane S. Then p(L1), p(L2) and p(L1 
∩ L2) all lie on S. Thus L1 ∩ L2 is a Quasi-Plane language whose 
Quasi-Language plane is S. 
Theorem 5.3: L1 and L2 be two Quasi-Plane languages. Then 
L1◦L2 is also a Quasi-Plane language if and only if their 
corresponding Quasi-Language planes are either, 

(i) 2 1
2

k

kx y z −
+ + =  and 2 1

2

m

mx y z −
+ + = , k, m ∈ N 

or 
(ii) The same for both L1 and L2 and are of the form 

2 1
2

n

nx y z −
+ + =  

Proof: Let L1 and L2 be two Quasi-Plane languages. 
Case (i):  

If L1 has Quasi-Language plane 2 1
2

k

kx y z −
+ + =  then all 

elements of L1 are words of length k and p(L1) lie on the above 
plane. 

If L2 has Quasi-Language plane 2 1
2

m

mx y z −
+ + = , then all 

elements of L2 are words of length m and p(L2) lie on 
2 1

2

m

mx y z −
+ + = .  

Then p(L1◦L2) = {p(x) + 1
2 x p(L2 ): x ∈ L1} and all  are of 

length k + m.  
Clearly L1◦L2 is again a Quasi-Plane language whose elements 

are words of length k + m, and their corresponding Quasi-

Language plane is 
( )

( )

2 1
2

k m

k mx y z
+

+

−
+ + = .  

Case (ii):  
If L1 and L2 are two Quasi-Plane languages having the Quasi-

Language plane 2 1
2

n

nx y z −
+ + = , then both L1 and L2 have 

elements which are words of length n.  Clearly L1◦L2 is a Quasi-
Plane language with the corresponding Quasi-Language plane

2

2

2 1
2

n

nx y z −
+ + = . 

Theorem 5.4:  Let L1 and L2 be two Plane languages. Then, L1◦L2 
is also a Plane language only if their corresponding Language 
planes are either of the form, 

(i) 2 1
2

k

kx y z −
+ + =  and 2 1

2

m

mx y z −
+ + = , k, m ∈ N. 

or 

(ii) 2 1
2

n

nx y z −
+ + =  and x + y + z = 1 for L1 and L2  respectively 

Proof:   
Case (i):  

All words lying on 2 1
2

k

kx y z −
+ + =  are of length k and those 

on 2 1
2

m

mx y z −
+ + =  are of length m.  Then, p(L1◦ L2) = {p(x) + 

1
2 x

  p(L2 ): x ∈ L1 } and all  are of length k + m. 

Clearly, L1◦ L2 is also a Plane language. 
Case (ii):  

2 1
2

n

nx y z −
+ + =  and x + y + z = 1 are Language planes for L1 

and L2 respectively.  
Then all words of L1 are of length n and those of L2 are of Σω.  
L1◦ L2 = Σω and is a Plane language. 

Theorem 5.5: If L is a Plane language then LR is also a Plane 
language only if its Language plane is either of the form 

2 1
2

n

nx y z −
+ + =  or the coordinate axes. 

Proof: Let L be a Plane language with Language plane
2 1

2

n

nx y z −
+ + = .  Then all the elements of L are words of length 

n. The GPVs of their reversals lie on the same plane
2 1

2

n

nx y z −
+ + = . All words lying on the coordinate axes x = 0, 

y = 0, z = 0 are respectively an, bn and cn: n ≥ 1. 
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Theorem 5.6: If L is a Quasi-Plane language then LR is also a 
Quasi-Plane language only if its Quasi-Language plane is of the 

form 2 1
2

n

nx y z −
+ + = or the coordinate axes. 

Proof: Let L be a Quasi- Plane language. p(L) lies on 
2 1

2

n

nx y z −
+ + = . Then p(LR) are all of  length n and hence lie on 

2 1
2

n

nx y z −
+ + = . If for the Quasi-Plane language, p(L) lies on 

the coordinate axes, then p(LR) also lies on  the coordinate axes. 
Example 5.1: Let L = {abc, aab, bab, cca}. Then its Language 

plane is 7
8

x y z+ + = . LR = {aba, baa, bab, acc} also lies on the 

same Language plane. 
Theorem 5.7: A Quasi- Plane language L is not closed under 
Kleene closure. 

Proof: Let L be a Quasi- Plane language. The *

0

i

i
L L

≥
= ∪ , where Li 

= LLi−1 for i ≥ 1 n and so L* is a language that contains words over 
Σ of various lengths. There is no plane that contains p(L*). 
Theorem 5.8: A Plane language L is not closed under the 
operation ‘complement’. 
Proof: Let L be a Plane language.  Then its complement, namely 
Lc is a language having all words over Σ = {a, b, c} other than 
those in L. Hence it is not possible to find a Language plane 
consisting of all the words of Lc. 
Theorem 5.9: A Quasi-Plane language L is not closed under the 
operation ‘complement’. 
Proof: Argument same as that of proof of Theorem 5.8. 

6. CONCLUSION 

In this paper we have introduced the concept of Plane 
languages, Language plane, Quasi-Plane languages, Quasi-

language planes and have studied some geometrical properties of 
the same. Closure properties such as union, intersection, 
catenation, reversal, complement and Kleene star of Plane 
languages and Quasi- Plane languages have been discussed. 

Closure properties such as union, intersection, catenation, 
reversal, complement and Kleene star of Plane languages and 
Quasi- Plane languages have been discussed. 

All words over the three letter alphabet lie on various planes, 
all within the region between the two planes x + y + z = ½ and x 
+ y + z = 1 and the coordinate planes.  The study of plane 
languages is interesting with the discussion of their combinatorial 
properties.  We plan to extend the study of combinatorial 
properties to Surface languages. 
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