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Abstract:  

Humans have long been fascinated by the opportunities afforded through augmentation. This 

vision depends not only on technological innovations, but also critically relies on our brain’s 

ability to learn, adapt and interface with augmentation devices. Here, we investigated 

whether successful motor augmentation with an extra robotic thumb can be achieved, and 

what are its implications on the neural representation and function of the biological hand. 

Able-bodied participants were trained to use the Third Thumb over 5 days, including both lab-

based and unstructured daily use. We challenged participants to complete normally bimanual 

tasks using only the augmented hand and examined their ability to develop hand-robot 

interactions. Participants were tested on a variety of behavioural and brain imaging tests, 

designed to interrogate the augmented hand’s representation before and after the training. 

Training improved Thumb motor control, dexterity and hand-robot coordination, even when 

cognitive load was increased or when vision was occluded. It also resulted in increased sense 

of embodiment over the Thumb. Consequently, augmentation impacted key aspects of hand 

representation and motor control. Thumb usage weakened natural kinematic synergies of the 

biological hand. Furthermore, brain decoding revealed mild collapse of the augmented hand’s 
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motor representation following training, even while the Thumb was not worn. Together, our 

findings demonstrate that motor augmentation can be readily achieved, with potential for 

flexible use, reduced cognitive reliance and increased sense of embodiment. Importantly 

though, augmentation may incur changes to the biological hand representation. Such 

neurocognitive consequences are crucial for successful implementation of future 

augmentation technologies. 

 

Summary: Skilful hand augmentation can be readily learned but may impact the user’s body 

representation and motor control. 
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Introduction  

Motor augmentation is a growing field aimed at extending our physical abilities. Engineers 

are currently developing extra robotic fingers and even entire arms created to augment our 

bodies by expanding our natural motor repertoire (1-6). These augmentative devices aim to 

change the way we interact with the environment, which entails changes to how we move 

and operate our biological body. Yet, despite the rapid advancements in augmentative 

technologies, little notice is given to the crucial question of how the human brain might 

support them. Here we asked whether human brain could accommodate motor control of an 

extra robotic finger, focusing on its impact on the neural representation of the biological 

hand.  

 

The hand has a well-established functional representation in the brain, with each of the 

fingers represented relative to the others. This neural fingerprint of the hand develops very 

early on (7, 8). It is highly consistent within (9) and across (10) participants and is preserved 

even after severe loss of motor functions due to e.g. stroke (10), spinal cord injury (11), 

disability (12) or even hand amputation (13-15). Similarly, recent studies on motor learning in 

adults show that while premotor and parietal regions show reorganisation of hand 

representation in the early stages (1st week) of intensive motor training, hand representation 

in the primary motor cortex (M1) remains stable throughout training (16, 17). At the same 

time, hand representation has been suggested to reflect daily hand use (10), with studies 

showing that it may be altered under constrained circumstances. Most notably in musicians’ 

dystonia, a clinical condition involving increased finger enslavement following intensive skill 



 
 

 4 

practice, the individualised representation of single fingers has been shown to collapse  (18, 

though see 19).  

 

Here we trained able-bodied people to use an extra robotic thumb (the Third Thumb, 

designed by Dani Clode (20), hereafter “Thumb”) over the course of 5 days, including both 

lab-based and ‘in-the-wild’, unstructured daily use. The Thumb is a supernumerary robotic 

finger, with two degrees of freedom, controlled by pressure exerted with the big toes, 

designed to extend the natural repertoire of hand movements (Fig. 1A-B; Fig. S1). We 

examined participants’ ability to develop motor skill and dexterity with the Thumb under daily 

life settings, across key aspects of hand-robot interactions, such as collaboration, shared 

supervision and individuation. During training, we also tracked (biological) finger co-use and 

compared it with normal hand use. We tested for changes in motor control and embodiment 

of the Thumb, as well as hand-Thumb coordination before and after training. Augmented 

participants were compared to a control group that underwent a similar training regime while 

wearing a static version of the Thumb. We also examined how neural hand and body 

representation changed following training. We hypothesised that successful hand-robot 

cooperation will promote changes to finger co-use, and thus modify both biological and 

artificial body representation.  
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Results  

The Third Thumb 

The Third Thumb is a 3D printed robotic thumb (20), originally designed as an augmentative, 

general-use tool for able-bodied people (see Video S2). The Thumb is worn over the ulnar side 

of the right palm, opposite to the user’s natural thumb (Fig. 1A-B). It is actuated by two 

motors, allowing proportional control of two independent degrees of freedom - 

flexion/extension and adduction/abduction. The motors are mounted on a wrist strap (Fig. 

1A-1) and powered by an external battery pack worn on the upper arm (Fig. 1A-2). The 

movement of the Thumb is controlled with pressure sensors fixed to the underside of the big 

toes of the user’s feet (Fig. S1). The pressure sensors are powered by the external batteries 

secured around each ankle (Fig. 1A-3). A wireless communication protocol is used to send the 

signal from the pressure sensors to the motors which actuate the Thumb. Pressure exerted 

with the right toe pulls the Thumb across the hand (flexion), while the pressure exerted with 

the left toe pulls the Thumb up towards the fingers (adduction). The extent of Thumb 

movement is fully proportional to the pressure applied. As such, the Thumb can be used when 

sitting or standing, but not while walking. The wireless design allows users to operate the 

Thumb in an unstructured environment, providing us with the unique opportunity to 

encourage participants to use the Thumb outside the lab and unsupervised.  

   

Daily training improves hand-Thumb coordination, even with reduced visual 

information and increased cognitive load 

We first characterised motor performance of the augmented hand throughout the 5 days of 

usage. Augmentation participants completed five daily in-lab training sessions (1.58±0.22hr; 
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mean±std) and were additionally encouraged to use the Thumb outside the lab in 

unstructured environment (2.61±1.18hr; self-reported). The average use time, as quantified 

by the automatic usage logs, was 2.95±0.84hr per day, out of which a total of 1.37±0.49hr 

involved active Thumb movement.  

 

During daily training sessions, participants were presented with a variety of reaching, grasping 

and in-hand manipulation tasks designed to introduce complex hand-robot interactions and 

to be purposefully challenging to perform with only one hand (see Video S1). In the 

collaboration tasks, participants had to use the extra Thumb together with another finger to 

pick up multiple objects. In the shared supervision tasks, participants had to use the extra 

Thumb to extend the natural grip of the hand and to free up the use of their biological fingers. 

Finally, in the individuation task participants had to work on the fine motor control of the 

Thumb, while having their hand fully occupied with a task-irrelevant object. Augmentation 

participants showed significant improvement on all the training tasks (main effect of time for 

all tasks: p<0.001, ηp
2>0.5 Fig. 1D).  
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Fig. 1. Experimental design. (A-C) The Third Thumb is a 3D-printed robotic thumb. Mounted on the 

side of the palm (1), the Thumb is actuated by two motors (fixed to a wrist band), allowing for 

independent control over flexion/adduction. The Thumb is powered by (2) an external battery, 

strapped around the arm and wirelessly controlled by (3) two force sensors fixed to the underside of 

the participant’s big toes. (D) Experimental design for the augmentation group. (E) Examples of the 

in-lab training tasks used for hand-Thumb collaboration, shared and Thumb individuation. 

Augmentation participants showed significant performance improvements on all of the tasks across 

training session. Asterisks denote significant effect of time at *** p<0.001. See Fig S2. For statistical 

quantification of the improvements seen in the control group. 

 

Motor control was further assessed using a hand-Thumb coordination task, requiring 

participants to oppose the Thumb to their biological fingertips. Even though controlling the 

Thumb with the big toes may seem unusual, participants were able to successfully perform 

the hand-Thumb coordination task even at baseline (Fig. 2B), though this performance was 
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significantly improved after training. Significant improvements were observed both during 

daily training (F(4,76)=28.24, p<0.001, ηp
2=0.6 Fig. 2A-C), and when comparing the 

performance pre- and post- the 5 days of training, using a sequential variation of the same 

task (see Materials and Methods). Here, augmentation participants showed significant 

improvements, not only with vision (t(19)=8.96, p<0.001, ηp
2=0.81), but also when 

blindfolded (t(19)=7.40, p<0.001, ηp
2=0.74, Fig. 2E), indicating improved Thumb 

proprioception.  

 

As the improvements described above could be skewed due to task repetition, we also tested 

a group of 11 control participants, who underwent similar pre- and post- tests and training 

regime but wore a static version of the Thumb for the same duration of time - 4.11±1.06hr 

per day (t(29)=0.526, p=0.6, BF=0.39), out of which 2.93±1.34hr were outside of the lab 

(t(29)=-0.697, p=0.49, BF=0.42 for wear-time group comparison). Similarly to the 

augmentation group, the control group, who had to develop 5-fingered solutions to the same 

problems, showed proportional improvements in nearly all training tasks (Fig. S2). As control 

participants did not have to learn to control a new robotic device, their training performance 

was significantly better, as compared to the augmentation group, with the exception of the 

shared supervision tasks. This indicates that given specific task demands, the extended motor 

ability provided by the Thumb can also increase participants’ functional efficiency. 

Importantly, the control group was only allowed to use the Thumb during the pre-post 

sequential hand-Thumb coordination test. Although control participants showed significant 

pre-post improvements (with vision: t(9) = 3.74, p=0.005, without vision: t(9) = 2.35, p=0.043), 

those were significantly lower than the ones observed in the augmentation group, both with 
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vision (significant effect of group revealed by ANCOVA F(1,27)=22.86, p<0.001, ηp
2=0.44) and 

blindfolded (F(1,27)=11.96, p=0.002, ηp
2=0.28).  

 

A key component for successful augmentation is being able to multi-task, even when not 

paying attention to controlling the device. Importantly, augmentation participants’ motor 

performance with the Thumb was not impacted by increased cognitive load. This was 

examined during the first and last days of training, using a dual-task (21, 22), requiring 

participants to perform simple arithmetic operations while simultaneously using the Thumb 

to complete a collaboration task (building a Jenga tower). We found no significant cognitive 

load x session interaction (F(1,16)=0.003, p=0.959, BF=0.34) and no main effect of cognitive 

load (F(1,16)=2.465, p=0.136, BF=0.32, Fig. 2D) on the motor performance. At the same time, 

participants made a modest number of arithmetic mistakes (on average 15-19% of trials per 

participant), showing that the dual task indeed increased the cognitive load demands.  

 

Together, these results indicate that participants learned to operate the Thumb under a 

variety of circumstances, extending beyond their specific training, and performed similarly 

with and without the increased cognitive load. Yet, with the exception of the shared 

supervision tasks, training performance of the augmentation group was reduced relative to 

controls, highlighting that extensive, long-term practice is needed in order to functionally 

benefit from motor augmentation.  

 

Training enhances subjective sense of Thumb embodiment  

We also assessed the perceived (phenomenological) sense of embodiment of the Thumb 

following the training period, relative to baseline. During pre- and post- testing sessions, 
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participants were asked to respond to statements relating to key embodiment features (23, 

24). Augmentation participants reported a significant increase of embodiment in each of the 

four categories (body ownership: t(13)=6.57, p<0.001, ηp
2=0.77; agency: t(13)=4.07, p<0.001, 

ηp
2=0.56; body image: t(13)=5.215, p<0.001, ηp

2=0.68; somatosensation: t(13)=6.032 

p<0.001, ηp
2=0.74; Fig. 2F). Importantly, the increased embodiment we found in the 

augmentation group significantly exceeded that reported in the control group (agency: 

F(1,21)=10.013, p=0.009, ηp
2=0.285; body image: F(1,21)=11.16, p=0.012, ηp

2=0.26; body 

ownership: F(1,21)=4.07, p=0.057, ηp
2=0.16). These results indicate that active usage is critical 

for developing proprioception and embodiment of the robotic Thumb. For the perceived 

somatosensation scores, the group comparison was nonsignificant (BF=0.48).  

 

Next, we examined potential changes to body image (perceptions and attitudes concerning 

one's body representation (25)). Those were tested while participants were not wearing the 

Thumb. We found no significant pre- to post- changes in tactile judgements (t(18)=0.164, 

p=0.87, BF=0.24).  Similarly, we did not observe any convincing evidence for visual judgement 

changes (see Supplementary Materials), as our findings were not specific to the augmented 

hand (main effect of time: F(1,16)=6.89, p=0.018; hand x session interaction F(1,16)=0.019, 

p=0.89, BF=0.326).  

 

Together, these findings indicate that while hand augmentation impacts the sense of 

embodiment over the device, it does not necessarily influence one’s own implicit body image. 
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Fig. 2. Behavioural correlates of hand augmentation. (A-C) Augmentation participants showed 

significant daily improvement on the hand-Thumb coordination task. (D) Motor performance with the 

Thumb was not impacted by increased cognitive load during the first and last training days.                          

(E) Augmentation participants showed greater improvement than controls on a hand-Thumb 

coordination task conducted before and after the training period. Participants showed improved 

performance even while blindfolded, indicating increased Thumb proprioception. (F) Self-reported 

Thumb embodiment increased significantly in the augmentation group following Thumb training. (G) 

Hand kinematics data collected during the training sessions. The first principal component 

(synchronised movement across all five fingers) captured less variance in the augmentation group 

compared to controls, indicating less synchronised movements. (H-I) The augmentation group showed 

lower inter-finger coupling, relative to controls during Thumb use, indicating change to the natural 

finger coordination. The bars depict group means, error bars represent standard error of the mean. 
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Individual dots correspond to individual subjects’ average inter-finger (D1-D5) coordination scores as 

predicted by the linear mixed model (see Materials and Methods). Asterisks denote significant effects 

at * p<0.05, ** p<0.01 and *** p<0.001. 

 

Hand augmentation impacts motor control of the natural hand  

Next, we investigated the impact of hand augmentation on motor control of the augmented 

(right) hand. We first examined the complexity of the hand movements (i.e. kinematic 

synergies) captured with a Cyberglove during the in-lab training. We found that in general 

more principal components were needed in the augmentation group, compared to the 

control group, to explain the 80% of the total variance of the hand movements (F(1,22)=5.52, 

p=0.03, ηp
2=0.2, Fig. S4B). This difference was, however, strongly driven by the amount of 

variance explained by the first principal component, corresponding to the coordinated flexion 

of all fingers (Fig. S4A). Indeed, the variance explained by this inter-finger synergy was 

significantly decreased in the augmentation group compared to controls (F(1,22)=6.27, 

p=0.02, ηp
2=0.22, Fig. 2G), while no difference was found between the first and the last days 

of training (F(1,22)=2.57, p=0.12, BF=0.62). Since the remaining principal components 

represent more intricate finger movements, the decrease of variance explained by the first 

kinematic synergy suggests more finger individuation in the augmentation group.  

 

To uncover more detailed changes in biological finger coordination, we assessed the degree 

of kinematic coupling between individual digit pairs. Here again, no differences in finger 

coordination were found between the first and the last days of training (main effect of time: 

F(1,23)=1.3, p=0.27, BF=0.17). For the augmentation group, this finding indicates that the 

strategies implemented for incorporating the Thumb into the motor repertoire during day 1 
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were generally preserved throughout training. This is likely a consequence of our 

experimental design involving repeating the same set of tasks over multiple days. Consistent 

with the PCA results, we found significant differences in finger coordination implemented 

across groups (group x finger-pair interaction: F(9,414)=2.66, p=0.005), with an overall 

decrease in inter-finger coupling in the augmentation group relative to controls (main effect 

of group: F(1,23)=6.98, p=0.01, Fig. 2H-I). Together these results demonstrate small, but 

robust changes to finger coordination, likely corresponding to more complex movement 

patterns acquired by the augmentation group during Thumb use.   

 

Changes in inter-finger motor control were further investigated through force enslavement 

(involuntary force production by non-instructed fingers), measured pre- and post- Thumb 

use. No significant group differences in force enslavement were found (F(1,27)=0.06, p=0.81), 

with the results providing only anecdotal evidence for the increase of enslavement caused by 

the biological thumb in the augmentation group, post- compared to pre- training 

(F(1,17)=3.36, p=0.08, see Fig. S5). Given the ambiguous nature of these results, no clear 

conclusions could be drawn.  

 

Biological hand’s representation shrinks following Thumb use 

Having observed altered finger coordination patterns in the augmentation group, as 

compared to controls, we sought to understand whether Thumb usage can impact the 

biological hand representation in the sensorimotor cortex. We used fMRI to compare neural 

hand representation before and after Thumb use, using the non-augmented (left) hand as a 

within-participants control condition. During the scans, participants were required to make 
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individuated finger movements with their biological fingers. Note that due to MRI safety 

considerations, participants were not wearing the Thumb during the scans.  

 

To investigate changes to the augmented hand’s representation, we estimated the 

dissimilarity between multivariate activity patterns elicited by individual fingers’ movements 

in the sensorimotor cortex, as measured using cross-validated Mahalanobis distance (26). 

Small inter-finger distances indicate that the representation of the two fingers is more 

similar/overlapping, while larger distances imply more individuated finger representation. 

This experimental approach is the current gold standard in the field, and has been extensively 

used to study plasticity and stability of hand representation (9, 10, 13, 14).   

 

Augmentation participants showed significantly reduced inter-finger distances of the 

augmented (right) hand’s representation in the sensorimotor cortex following Thumb use 

(t(25.1)=2.3, p=0.03, Fig. 3). In other words, the biological fingers became less distinctive from 

each other following training. This shrinkage effect was specific to the augmented hand, as 

demonstrated by a significant hand x time interaction (F(1,722)=12.89, p<0.001, Fig. 3C). 

These findings show that using the extra Thumb not only alters the motor control of the 

biological hand, but also impacts how that hand is represented in the brain. Crucially, this 

effect was observed while participants were not using or even wearing the Thumb. A 

computational simulation, elaborated in Fig. 4, confirmed that the observed results could be 

driven by both adaptive and maladaptive neural plasticity mechanisms. 
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Fig. 3. Biological hand’s representation shrinks following hand augmentation. (A) The sensorimotor 

hand area was defined anatomically, based on a primary motor cortex segmentation.  (B) Group mean 

dissimilarity matrix of the right (augmented) hand pre- and post- training. Each cell shows the 

Mahalanobis (cross-validated) distance between the representational pattern of two fingers.  (C) The 

average inter-finger distances of the right (augmented), but not the left (non-augmented) hand 

decreased significantly following Thumb use. The bars depict group mean, error bars represent 

standard error of the mean. Individual dots correspond to individual participants’ average distance as 

predicted by the linear mixed model (see Materials and Methods). (D) Multidimensional scaling (MDS) 

depiction of the left and right (augmented) hand representational structures. Ellipses indicate 

between-participant standard errors. Darker colours represent the post scan, whereas lighter colours 

represent the pre (baseline) scan. Red = D1, Yellow = D2, Green = D3, Blue = D4, Purple = D5. (E) SMA 

ROI was defined anatomically, based on BA6 segmentation (F) The distance between the hand and 
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the feet, quantified in SMA, decreases significantly for the right, but not the left hand. (G) MDS 

depiction of the inter-body-part distances in the SMA. Darker colours represent the post scan, 

whereas lighter colours represent the pre (baseline) scan. Blue = Toes, Orange = Hand, Black = Lips. 

Asterisks denote significant effects at * p<0.05, ** p<0.01 and *** p<0.001.  

 

We confirmed that the shrinkage of the augmented hand representation was not associated 

with net differences in overall activity levels in the hand areas (hand x time interaction: 

F(1,19)=1.95, p=0.18, BF=0.36), and that it did not impact the typicality of the 

representational structure (t(19)=1.12, p=0.277, BF=0.4); see Supplementary Materials). No 

significant changes to the hand representation were observed in the control group, as 

demonstrated both in a pre-post comparison of the right hand’s representational structure 

(t(10.4)=-0.245, p=0.81, BF=0.32) and the hand x time interaction (F(1,342)=0.71, p=0.4, 

BF=0.95, see Fig. S6). This further indicates that without Thumb use, the biological hand’s 

representation is relatively stable, as previously demonstrated in motor training studies (16, 

17). Note however, that the 3-way interaction (hand x time x group) did not reach significance 

(F(1,1064)=2.02, p=0.16), likely due to insufficient statistical power.  

 

To further test whether the observed shrinkage of the neural hand representation may 

depend on recent Thumb use, additional analysis was conducted using a partial dataset 

acquired in a follow-up scan (7-10 days after the end of training) from a sub-group of available 

participants (n=12). The original pre-post hand x time interaction remained significant even 

with this smaller subset of people (F(1,417.99)=4.8, p=0.03), though the initial difference 

between the pre- and post- representation of the right (augmented) hand was ambiguous 

(t(13.7)=1.36, p=0.19, BF=0.58). We found moderate Bayesian evidence (t(13.6)=0.45, p=0.66, 
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BF=0.31) for a null difference between the distances measured during pre- and follow-up 

sessions, suggesting that in the follow-up scan the reduction of the inter-finger distances was 

at least partially diminished. Note, however, that no significant difference between the 

augmented hand’s representation in post- and follow-up scans was observed (t(12.9)=0.71, 

p=0.5, BF=0.37).  

 

Hand-toes functional relationship in the primary sensorimotor cortex remains 

stable  

Finally, we ran a series of analyses exploring the relationship between neural representations 

of the hands and the toes – the body-part controlling the Thumb’s movements 

representations in the brain. We first focused on primary sensorimotor cortex and found no 

significant changes relating to Thumb training (Fig. S7). Specifically, we examined toes-specific 

net activity within the augmented hand area (t(19)=0.47, p=0.64, BF=0.26), dissimilarity 

between multivariate activity patterns elicited by hand and toes movements (hand x time 

interaction: F(1,19)=1.46, p=0.24, BF=0.38), and functional coupling between sensorimotor 

hand and feet areas (resting state functional connectivity (27), t(19)=1.375, p=0.185, 

BF=0.52). These results suggest that while augmentation might promote plasticity locally (i.e. 

between fingers), the neural representation of the body at large remains unchanged in the 

primary sensorimotor cortex.  

 

Lastly, we examined inter-body-part representations in the Supplementary Motor Area 

(SMA), involved in motor learning and coordination (28). SMA contains a much cruder body-

map compared to the sensorimotor cortex (28), providing a better substrate for exploring 

changes to inter-body-part relationships. Using cross-validated Mahalanobis distances, we 
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found a significant reduction in the hand-toes distance following training, specific to the 

augmented (right) hand (t(19)=3.56, p=0.002, ηp
2=0.4) and resulting in a significant hand x 

time interaction (F(1,19)=9.13, p=0.007, ηp
2=0.33, Fig. 4). We repeated this analysis with an 

additional body-part unrelated to Thumb’s control (lips) and again found a significant hand x 

time interaction (F(1,19)=9.1, p=0.007, ηp
2=0.35) with no significant three-way (hand x time x 

body-part) interaction F(1,19)<0.001, p=0.99, BF=0.31). In other words, the reduction in the 

inter-body-part distance was similar across hand-toes and hand-lips. This finding suggests an 

overall decrease in selectivity that could be attributed to increased tonic inhibition, as 

examined in our computational simulation, simulated the sensorimotor cortex (see Fig. 4). 

 

 

Discussion  

Here, we provide a comprehensive demonstration of successful motor integration of a robotic 

augmentation device (the Third Thumb) and explore how augmentation impacts the user’s 

hand function and representation. After only 5 days of Thumb use, participants showed 

significant improvements in augmented hand motor performance across multiple tasks. In 

addition to individuated control of the extra Thumb, participants were able to integrate 

Thumb motor control with the movements of their natural hand, requiring collaboration, 

shared supervision and hand-robot coordination. Motor performance was greatly improved 

even without visual feedback and remained stable under increased cognitive load, though 

note that increasing cognitive load demands even further is likely to eventually lead to 

increased interference with the motor performance (21). The ability to successfully 

coordinate between the Thumb and the biological hand across diverse task demands is crucial 



 
 

 19 

for successful adoption of augmentation devices. We further show that hand augmentation 

resulted in increased explicit sense of embodiment over the Thumb - a key goal for successful 

augmentation (29), while implicit body image was found to be stable. By demonstrating 

successful adaptation to motor augmentation under diverse settings, our findings extend 

earlier pioneering proof-of-concept accounts of successful usage of extra robotic fingers (1, 

4, 6, 30-32) or arms (3, 5) under restricted circumstances.  

 

Importantly, successful adoption of augmentative technologies relies not only on the user’s 

proficiency in operating the robotic device. A further challenge for augmentation is to ensure 

that the device usage will not impact users’ ability to control their biological body, especially 

while the augmentative device is not being used or even worn. Therefore, a critical question 

for anyone interested in safe motor augmentation is whether it would incur any changes to 

the user’s biological body representation. This concern is rooted in previous research of brain 

plasticity, demonstrating that our motor experience shapes the structure and function of the 

nervous system (10, 33). As such, since motor augmentation is designed to change the way 

we interact with the environment, it is reasonable to predict that it will reshape the neural 

basis of our biological body. Moreover, since we were not born with the innate capacity to 

control additional robotic body parts, successful motor augmentation likely requires 

extensive long-term practice, as highlighted in our training results. With that in mind, our 

investigation was focused on changes incurred to the body representation while the Thumb 

wasn’t being operated. This approach allows for our findings to be generalised to other forms 

of robotic thumb control.  
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Traditionally, body representation in the sensorimotor cortex is considered to be highly 

adaptive even in the adult brain (34, 35) however recent research contributes a new 

perspective on its malleability (13, 14). Tools have been suggested to update the biological 

body representation, for example by tool-body integration (36-38). Yet, tools are normally 

used to replace the capacity of the hand, rather than to accompany it. Therefore, when using 

a tool, one is not required to radically alter their hand function (for example, the user will 

choose a grip for the tool’s handle that fits the natural synergies of the fingers). As such, tool-

use does not entail an updated representation of the hand itself. Conversely, motor 

augmentation invites the user to reinvent the way they use their own body. Consequently, 

here, motor integration of the Thumb altered the natural finger coordination patterns 

(kinematic synergies) of the augmented hand, with the augmentation group showing more 

complex movement patterns than the control group. This challenge is more closely akin to 

the acquisition of a new and complex motor skill – e.g. learning to play the piano. Recent 

research has demonstrated that long-term training leads to changes in finger representations 

(39). Specifically, trained pianists (over the course of many years, starting in childhood) 

demonstrate altered hand representation (lower inter-finger representational distances) 

relative to novices. This evidence further emphasises the need to examine how long-term 

motor augmentation can impact the biological hand representation.   

 

Here, we used a variety of pre- to post- measures to study changes in body representation 

when the Thumb was not being used, or even worn. While some aspects of body 

representation (e.g., body image, large scale connectivity profile) were found to be stable, 

semi-intensive Thumb usage (2.3–6.3 hours per day) resulted in mild, yet significant changes 

to the hand representation. Specifically, we observed a shrinkage of the neural hand 
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representation in the sensorimotor cortex. This is likely a consequence of the motor 

adaptations that the users made to best cooperate with the augmentation device (10, 40, 41), 

as further supported by the follow-up scan taken 7-10 days after Thumb usage had ceased. 

As mentioned in the introduction, inter-finger representation is highly stable even after 

intensive motor training, so long as this training doesn’t introduce changed inter-finger 

coordination patterns (16). Conversely, shrinkage of inter-finger distances was recently 

reported in a finger ‘syndactyly’ study, causing abrupt and profound change to inter-finger 

coordination (9). The reduced inter-finger distance was associated with maladaptive 

perceptual consequences, i.e., reduced perceptual acuity to discriminate between tactile 

stimuli across the fingers. This is in stark contrast to a recent report of individuals who were 

born with a 6th (fully operational) finger and could harness processes of developmental 

plasticity to establish normal motor control across all six fingers (42).  

 

As illustrated through the computational simulation shown in Fig. 4, our findings are 

compatible with both adaptive and maladaptive plasticity mechanisms. As we originally 

hypothesised, the shrinkage effect observed here could be disruptive, e.g. akin to other 

studies reporting neural correlates of decreased motor control (18). It could also result from 

homeostatic plasticity mechanisms, aimed at stabilising brain activity in presence of abrupt 

input changes (43). This interpretation is supported by the reduced inter-body part distances 

found in the SMA. Alternatively, the shrinkage effect could also be directed at establishing 

optimal representation of the Thumb relative to the rest of the augmented hand, and as such 

involved in developing motor control over a new body part. For instance, by inducing new 

kinematic synergies, learning to use the extra Thumb may be pushing the network outside of 

its existing manifold (44) to allow for formation of new neural activity patterns. In other 
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words, the observed neural changes could be reflective of a more compact, but not 

necessarily less functional hand representation. At this early stage of research, it is not yet 

clear whether these changes are adaptive, maladaptive or epiphenomenal. The behavioural 

evidence, examining the impact of hand augmentation on finger enslavement, was 

unfortunately too ambiguous to determine the answer to this key question (see Fig. S5). Yet, 

regardless of the specific mechanism, our evidence nevertheless suggests that motor 

augmentation might incur some changes to the augmented hand’s representation. 

Considering that neuroimaging results have previously been shown as reliable biomarkers for 

behavioural outcomes, relating to both motor control (e.g. in stroke recovery, (45)) and pain 

(46), we believe it is crucial to consider whether the observed neural shifts in the biological 

hand representation could be incurred safely (29).  

 

 

Fig. 4. Outcomes of the computational simulation. The adoption of an extra robotic thumb by an 

adult with a stable hand representation promotes a change to existing brain organisation. Here, we 
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used computational simulations to explore multiple potential plasticity mechanisms that could trigger 

the observed shrinkage of the hand representation. First, based on information processing theories 

(47, 48),  the integration of a new additional finger into the hand’s motor control could impinge on 

the existing representation of the biological fingers (new digit model). Second, the change in finger 

coordination, observed during training, may also lead to abrupt changes in excitability profiles that 

can trigger homeostatic plasticity mechanisms and promote increased tonic inhibition (homeostatic 

inhibition model (49)). Thirdly, the change to finger coordination may also result in increased finger 

individuation, leading to increased cortical representation of individual fingers via Hebbian learning 

(cortical magnification model, (50)). Simulating “neuronal activity” over a fixed-size ROI split into 

finger specific areas, we found that each of these processes is conceptually capable of causing the 

observed reduction in representational selectivity. (A) Mean dissimilarity matrices computed from 

10000 simulations of each of the models. (B) Average distance (dissimilarity) is significantly decreased, 

as compared to the canonical hand representation in each of the models. Solid lines represent the 

mean of 10000 simulations, dashed lines denote the 1st and 3rd quartile of the data. Asterisks denote 

significant effects at *** p<0.001. 

 

To conclude, emerging technologies designed to assist, substitute and even augment our 

motor abilities hold tremendous promise for transforming the lives of both disabled and 

healthy communities. Hand augmentation could benefit diverse groups of people, from 

factory workers to surgeons, allowing them to perform their labour more safely, without 

having to coordinate their movements with assistants or external devices; from healthy 

individuals to those with temporary or chronic hand impairment (1), looking to improve 

decreased hand functionality. This vision depends not only on the exciting technological 

innovations, it also critically relies on our brain’s ability to learn, adapt and interface with 

these devices. Therefore, as technology becomes more integrated with the human body, we 
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see new challenges and opportunities emerging from neural and cognitive perspectives. 

Critical questions arise as to how such human-machine integration can be best achieved, 

given expected neurocognitive bottlenecks of brain plasticity. Here, we demonstrate that 

successful integration of motor augmentation can be readily achieved, with potential for 

flexible use, reduced cognitive reliance and increased sense of embodiment. Importantly 

though, such successful human-robot integration may have direct consequences on key 

aspects of body representation and motor control, be it adaptive or maladaptive, which need 

to be understood and explored further before this technology can be widely implemented.  

 

 

Materials and Methods 

 

Participants  

36 healthy volunteers (23 females, mean age = 23.1±3.89, all right handed – Edinburgh 

handedness inventory (EHI) score = 77.44±23.98) were recruited from internet-based 

advertisements and randomly assigned to either augmentation (n=24, 14 females, mean age 

= 22.9±4.12, EHI score = 80.52±17.71) or control (n=12, 9 females, mean age = 23.5±3.55, EHI 

score = 71.83±32.77) group. All participants were right-handed, between the ages of 18-35, 

did not have any known motor disorders and reported no counterindications for magnetic 

resonance imaging (MRI). Professional musicians were excluded from the study. Handedness 

was confirmed using the EHI. Ethical approval was granted by the UCL Research Ethics 

Committee (REC: 12921/001). All participants gave their written informed consent before 

participating in the study.  
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Due to scheduling conflicts, 1 control participant and 3 augmentation participants dropped 

out of the study. Additionally, due to technical problems during data collection, 1 

augmentation participant was discarded from the study. 

 

Experimental design 

To assess the effects of hand augmentation on body representation, we implemented a 

longitudinal experimental design (Fig. 1C), involving 8 experimental sessions conducted 

across 7-9 days. All participants undertook (i) a 1-hour familiarisation session, introducing the 

equipment and the behavioural tasks; (ii), a 4-hour baseline (pre-test) session consisting of 

behavioural testing and an MRI scan; (iii) 5 2-hour training sessions conducted over the 5 

subsequent days (1 session per day); (iv) a final 4-hour post-test session corresponding to the 

baseline session. Additionally, 12 of the participants from the augmentation group also 

undertook a secondary follow-up MRI session conducted 7-10 days after the end of training. 

Since the acquisition of the follow-up dataset was decided after the study onset, based on 

the preliminary results, we were unable to collect the data from all of the study participants. 

Due to scheduling issues, 1 augmentation participant and 1 control participant completed 

only 4/5 training sessions.  

 

All study participants were asked to wear an extra robotic thumb (the Third Thumb; Fig. 1A-

B) on their right-hand throughout the day. Participants were instructed to wear the Thumb 

during the in-lab training sessions and to continue wearing it outside of the lab for at least 4 

hours per day. The augmentation group had full motor control over the Thumb and needed 
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to actively use it to complete the training tasks. They were also encouraged to use it as much 

as possible outside of the lab for a free-style environment exploration (‘in the wild’). The 

control group wore a static (not-moving) version of the Thumb and completed the training 

tasks without being able to control it. Due to initial equipment issues,, the first 2 control 

participants did not wear the Thumb during training. 

 

Usage measures ‘in the wild’ 

To monitor Thumb usage outside the lab, self-reported wear time and Thumb usage examples 

were collected daily from all wearers/users. Daily reports were averaged across days and an 

independent samples t-test was used to test for differences in wear-time between the 

augmentation and control group. In addition, both pressure sensors were equipped with a 

SD-card data logger. While the Thumb was on, both sensors were logging the corresponding 

motor’s position and the associated timestamp to the SD cards. If the participant turned the 

Thumb off during the day, the recording was paused and resumed after the motor was 

restarted. Those recordings were used to further quantify the number of hours participants 

spent using the Thumb per day. Use time was defined as the time spent wearing the extra 

Thumb with the motors of the Thumb switched on, while movement time was defined as the 

time spent actively exerting pressure with the big toes while the Thumb was switched on. Due 

to initial equipment issues, the sensors’ data from first 3 augmentation participants were not 

recorded.  
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Training protocol 

During the training sessions, participants were asked to complete a set of reaching and 

grasping tasks. These tasks were designed to encourage the use of the Third Thumb and allow 

the participants to develop complex hand-robot interactions. The task execution was 

restricted to the augmented (right) hand. The augmentation group was instructed to use the 

extra Thumb to complete the training tasks. The control group, wearing the static version of 

the Thumb was instructed to complete the training tasks using only their natural fingers, i.e. 

without using the Thumb. Training tasks required participants to (i) use the Thumb in 

collaboration with another finger to pick up multiple objects (collaboration, e.g. building a 

Jenga tower); (ii) use the Thumb to extend the natural grip of the hand and to free up the use 

of the biological fingers (shared supervision, e.g. stirring cups); (iii) use the Thumb 

individually, while having their hand occupied with task-irrelevant objects (individuation, e.g. 

stacking tapes) or to (iv) oppose the robotic Thumb to one of the natural fingers (hand-Thumb 

coordination). For all of the tasks, participants were seated at a desk facing the camera 

recording their hand movements. Each task was conducted for 10-15 minutes and repeated 

on 2-4 separate training days, with the exception of the hand robot coordination task (see 

Supplementary Materials), which was performed during each of the training sessions.  

 

To quantify the improvement of the augmentation group on each of the training tasks, the 

outcome measure of each task was averaged for each participant and each training session. 

As different participants had slightly different training regimes, in terms of distribution of 

tasks across the days, we sorted the average scores based on the order of task repetition (i.e. 

1st, 2nd, 3rd time the task was repeated regardless of which days it was repeated on). These 

data were then analysed using a repeated measures ANOVA in SPSS. 



 
 

 28 

Numerical cognition  

To assess the cognitive load related to Thumb use, a numerical cognition task was performed 

twice, on the first and the last training session (21). The task was adapted from previous 

studies, showing that numerical cognition impacts motor performance while controlling a 

virtual prosthetic arm (22) or a brain-computer interface (51). Participants were asked to 

perform a cooperation task - building a Jenga tower (see Supplementary Materials), while 

simultaneously presented with a set of low and high pitch auditory tones played from a 

laptop. The tones were presented every 1-6s in a randomised order, for a total duration of 1 

minute per block. Starting with a number 10, participants were instructed to add 1 to the 

current number after hearing a high tone, and subtract 1 from the current number after 

hearing a low tone. After each mathematical operation, participants were instructed to 

verbally respond with the resulting number. In order to assure participants’ engagement with 

the dual task, participants were explicitly instructed to pay closer attention to the arithmetic 

operations, treating the motor task (Jenga building) as a secondary task. Participants 

performed 5 blocks of the numerical cognition task during each session. Numerical cognition 

blocks were always preceded and followed by 5 blocks of normal (baseline) building a Jenga 

tower task (5 baseline blocks, 5 numerical cognition blocks, 5 baseline blocks). Note that the 

first 3 participants did not complete the numerical cognition task.  

 

For each participant, the average number of Jenga floors built was calculated from all the 

numerical cognition blocks in which the correct mathematical operations were performed. 

Trials in which a wrong number was given were discarded (on average 15-19% of trials were 

discarded per participant). Note however, that similar results were obtained when including 

the erroneous trials (see Fig. S3). To determine whether the extra cognitive load caused by 
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the numerical cognition task had any impact on participants’ motor performance when using 

the extra Thumb, the average score from the numerical cognition task was compared to the 

baseline score. This was done separately for the first and the last day of training. The baseline 

score was calculated as the average number of Jenga floors built across the two baseline 

blocks (10 trials) that proceeded and followed the numerical cognition task.  

 

Tracking hand movements 

To assess the changes in finger coordination across all training tasks, we tracked the 

kinematics of the augmented (right) hand using flex sensors embedded in a dataglove 

(CyberGlove, Virtual Technologies, Palo Alto, CA, USA). Note that finger kinematics have been 

previously shown to reflect the brain organisation better than EMG-derived measures (10). 

Here, the sensors of the dataglove were associated with 19 degrees of freedom and measured 

the joint angles of the metacarpal-phalangeal (MCP), proximal interphalangeal (PIP) and distal 

interphalangeal (DIP) joints of the four fingers, the carpometacarpal (CMC), metacarpal-

phalangeal (MCP) and interphalangeal joint (IP) of the biological thumb, the three relative 

abduction angles between the four fingers and the abduction angle between the biological 

thumb and the palm of the hand. Sensors were sampled continuously at 100 Hz using Shadow 

Robot’s (https://www.shadowrobot.com) CyberGlove interface for the Robot Operating 

System (ROS, https://www.ros.org). 

 

Participants wore CyberGlove underneath the extra Thumb throughout all of the training 

sessions. Kinematics associated with each of the training tasks performed during a given 

session were recorded onto a separate file. CyberGlove was calibrated for each participant at 
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the beginning of each training session, using a min-max pose calibration procedure provided 

with the ROS CyberGlove package (see Supplementary Materials). Due to initial equipment 

issues, the first 4 augmentation participants did not wear the CyberGlove during training. 

 

Hand kinematics analysis  

We focused the hand kinematics analysis on the data recorded during the first and last days 

of training. The joint angles were smoothed using a 3rd order Savitzky-Golay filter, with a 

window length of 151 samples. Angular velocities were then calculated from the first 

difference of the filtered joint angle data divided by the time step. Since most of the finger 

movements employed during the training tasks were executed using the PIP joints, to simplify 

the analysis (10), only data from these five joints were analysed, resulting in 5 timeseries 

signals per session per participant. Due to acquisition errors, for 2 augmentation participants 

and 2 control participants, the data recorded during the first day of training was unavailable. 

Therefore, for these participants, the data from the second day of training was used instead. 

Similarly, when the data from the last day of training was unavailable (3 augmentation 

participants, 2 control participants), the data from the penultimate day of training was used 

instead. Due to calibration issues, the hand kinematics data of 1 augmentation and 2 control 

participants were discarded from subsequent analysis. 

 

To quantify the complexity of the hand movements across both groups, we first conducted a 

Principal Components Analysis (PCA) of the angular velocities of the PIP joints. For each 

participant and session, the 5 angular velocities were z-normalised (52) and decomposed into 

subject- and session-specific kinematic synergies using PCA. 5 principal components (PCs) 

were computed for each participant and session. The extracted PCs were matched across 
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subjects using normalised scalar product (dot product) and ordered according to the amount 

of variance explained by each component. Consistent with the literature (53, 54), we found 

that the first PC accounted for more than 40% of total variance and reflected a coordinated 

movement of all the fingers (see Fig. S4 for all the PCs). To quantify the dimensionality of the 

hand movements, for each participant and day, we recorded the number of PCs needed to 

explain 80% of total variance (55). These were then compared across groups in a repeated-

measures ANOVA with time (day 1, day 5) as a within-subjects factor and group 

(augmentation, control) as between-subject factor. To quantify the contribution of the all-

digit movements to the complexity of the hand kinematics, we compared the amount of 

variance explained by the first PC across both groups using the same repeated-measures 

ANOVA design.  

 

Next, to interrogate more detailed changes to the finger cooperation pattern caused by the 

hand augmentation, we looked at the degree of coupling between digit pairs, adapting the 

methods used in (53). We used linear regression to fit the angular velocity data of a given digit 

as a function of the angular velocity of each of the other digits individually. This yielded a 

single determination coefficient (R2) for each digit pair, expressing the proportion of total 

variance of each digit’s angular velocity that could be explained by a linear reconstruction, 

based on its paired regression with each of the other digits. Qualitative comparison between 

the results obtained from the control group (who did not use the Third Thumb during the 

training) and outcomes of previous hand kinematics research conducted during free 

movement (10, 53),  confirmed that the conducted analysis resulted in a typical finger synergy 

profile. 
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To assess the effect of Thumb use on the finger coordination profile across groups, we 

performed a linear mixed model analysis (LMM) with fixed factors of time, group 

(augmentation vs controls) and digit pair, a random effect of participant and a random 

participant-specific slope of time. The LMM was evaluated in R (version 3.5.2) under 

restricted maximum likelihood (REML) conditions with Satterthwaite adjustment for the 

degrees of freedom. 

 

Pre-post testing protocol 

To assess the neural correlates of hand augmentation we used a set of pre- to post-training 

comparison measures, consisting of both behavioural and neuroimaging tasks. To 

characterise the emerging representation of the extra Thumb, we probed the proprioception 

and motor control of the Thumb using a sequential variation of the hand-Thumb coordination 

task. We also assessed perceived (explicit) embodiment of the Thumb using questionnaires. 

To interrogate changes to the natural hand representation, we measured biological finger co-

dependencies using finger kinematics and force-enslavement (see Supplementary Materials). 

Changes to body image were probed using tactile distance and hand laterality judgement 

tasks (see Supplementary Materials). Finally, fMRI was used to track the hand representation 

in the sensorimotor cortex of the brain and to interrogate changes to the relationship 

between the hand and feet representations. With the exception of the hand-Thumb 

coordination task, participants were not wearing the Thumb during testing.  
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Hand-Thumb coordination (sequential) 

To probe changes to implicit motor control of the Thumb, a sequential variation of the hand-

Thumb coordination (finger to Thumb opposition) task has been used. In this task, 

participants sequentially opposed the Thumb to the tip of each of the five fingers of their 

augmented hand, starting with the little finger. Participants were instructed to repeat this 

movement cycle as many times as possible within a 1-minute block, while maintaining high 

accuracy. The task consisted of 5 blocks. To assess the proprioception of the Thumb, 

participants were further asked to perform 5 blocks of the same task while blindfolded. The 

experimenter recorded the number of successful hits per block. For each participant, an 

average score (number of hits) was calculated separately for each session (pre, post) and 

vision condition (with vision, blindfolded). Due to a data acquisition mistake, 1 control 

participant was not included in the analysis.  

 

Embodiment questionnaires 

To assess changes in the embodiment of the Thumb, participants were asked to complete an 

embodiment questionnaire before the first and again after the last training session. The 

questionnaire was focused on the explicit (phenomenological) aspect of embodiment, 

concerned with whether the extra Thumb feels like a part of one’s hand (56). Due to data 

collection issues, 5 augmentation participants and 1 control participant only completed the 

post-training embodiment questionnaire. Participants were asked to rate their agreement 

with 12 statements (based on (24)) on a 7-point Likert-type scale ranging from -3 (strongly 

disagree) to +3 (strongly agree). Statements were clustered into 4 main categories, probing 
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different aspects of embodiment, namely: body ownership, agency, body image and 

somatosensation.  

 

For each participant, questionnaire scores were averaged within each embodiment category. 

Note that in the body ownership category, the opposite (negative) value of the ‘foreign body’ 

statement has been used while computing the average. 1 augmentation participant was 

discarded from this analysis, as their averaged agency score was classified as a statistical 

outlier (different from the mean score by more than 3 standard deviations). 

 

Table 1. Embodiment questions divided into 4 separate embodiment categories 

Body ownership 
1. “It seems like the robotic finger belongs to me” 
2. “It seems like the robotic finger is a part of my hand” 
3. “It seems like the robotic finger is a part of my body” 
4. “It seems like the robotic finger is a foreign body” (negative) 
5. “It seems like the robotic finger is fused with my body” 
6. “It seems like I have six fingers” 

Agency 
1. “It seems like I can move the robotic finger if I want” 
2. “It seems like I am in control of the robotic finger” 

Body Image 
1. “It seems like I am looking directly at my own finger, rather than a prosthesis” 
2. “It seems like the robotic finger begins to resemble my other fingers” 

Somatosensation 
1. “I can feel temperature in the robotic finger” 
2. “I can feel the posture of the robotic finger” 
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Statistical analysis 

All statistical analysis was performed using IBM SPSS Statistics for Macintosh (Version 24), R 

(for linear mixed models) and JASP (Version 0.11.1). Tests for normality were carried out using 

a Shapiro-Wilk test. Training data that were not normally distributed were log-transformed 

prior to further statistical analysis. With the exception of hand kinematics and force 

enslavement datasets, that were analysed using linear mixed models (LMM), all the within 

group comparisons were carried out using paired t-tests or repeated measures ANOVAs 

(training tasks data). Between group comparisons were carried out using ANCOVAs with 

group (augmentation, controls) as a fixed effect and the pre-score used as a covariate (57). 

All non-significant results were further examined using corresponding Bayesian tests under 

continuous prior distribution (Cauchy prior width r=0.707). 

 

Scanning procedures 

Both pre- and post- neuroimaging sessions were comprised of the following functional scans: 

(i) a resting state scan (see Supplementary Materials), (ii) a motor localiser scan (see 

Supplementary Materials) and (iii) four finger-mapping scans. Additionally, a structural scan 

and field maps were obtained during each scanning session.  

 

Finger-mapping scans 

Participants were instructed to perform visually cued movements of individual digits of either 

hand, bilateral toe movements and lips movements. The different movement conditions, as 

well as rest periods were presented in 9s blocks. The individual digit movements were 

performed in the form of button presses on MRI-compatible button-boxes (4 buttons per box) 
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secured on the participant’s thighs. The movements of either of the (biological) thumbs were 

performed by tapping them against the wall of the button box. Instructions were delivered 

via a visual display projected into the scanner bore. Ten vertical bars, representing the fingers 

flashed individually in green at a frequency of 1Hz, instructing movements of a specific digit 

at that rate. Toe and lips movements were cued by flashing the words “Feet” or “Lips” at the 

same rate of 1Hz. Each condition was repeated 4 times within each run in a semi-

counterbalanced order. Participants performed 4 runs of this task. Due to timing issues 3 

augmentation participants and 1 control participants completed only 3 runs of the finger-

mapping task. Additionally, due to a data acquisition issue, the finger-mapping data of 1 

control participant was discarded. 

 

MRI data acquisition 

MRI images were acquired using a 3T Prisma MRI scanner (Siemens, Erlangen, Germany) with 

a 32-channel head coil. Functional images were collected using a multiband T2*-weighted 

pulse sequence with a between-slice acceleration factor of 4 and no in-slice acceleration. This 

provided the opportunity to acquire data with high spatial (2mm isotropic) and temporal (TR: 

1450ms) resolution, covering the entire brain. The following acquisition parameters were 

used: TE: 35ms; flip angle: 70°, 72 transversal slices. Field maps were acquired for field 

unwarping. A T1-weighted sequence (MPRAGE) was used to acquire an anatomical image (TR: 

2530ms, TE: 3.34ms, flip angle: 7°, spatial resolution: 1mm isotropic). 
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MRI analysis 

MRI analysis was implemented using tools from FSL (58, 59) and Connectome Workbench 

(humanconnectome.org) software, in combination with Matlab scripts (version R2016a), both 

developed in-house (including FSL-compatible RSA toolbox (60)) and as part of the RSA 

Toolbox (26). Cortical surface reconstructions were produced using FreeSurfer ((61, 62), 

freesurfer.net). 

 

fMRI pre-processing 

Functional data was first pre-pre-processed using FSL-FEAT (version 6.00). Pre-processing 

included motion correction using MCFLIRT (63), brain extraction using BET (64), temporal high 

pass filtering, with a cut off of 150s for the finger-mapping scans and 100s for resting-state 

and motor localiser scans, and spatial smoothing using a Gaussian kernel with a FWHM of 

3mm for the finger-mapping and 5mm for resting-state and motor localiser scans. 

 To make sure that the scans from the two scanning sessions were well aligned, for each 

participant we calculated a midspace between their pre- and post- scans, i.e. the average 

space in which the images are minimally reoriented. Each scan was then aligned to this pre-

post midspace using FMRIB’s Linear Image Registration Tool (FLIRT, (63, 65)). See 

Supplementary Materials for details.  

 

Low-level task-based analysis  

For task-based datasets, voxel-wise General Linear Model (GLM) analysis was carried out 

using FEAT, to identify activity patterns related to the movement of each digit/body part. The 

design was convolved with a double-gamma hemodynamic response function (HRF) and its 
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temporal derivative. The six motion parameters were included as regressors of no interest.  In 

case of large movement between volumes (>1 mm) additional regressors of no interest were 

included in the GLM to account for each of these instances individually. 

 

For the finger-mapping scans, 14 contrasts were set up: each digit versus rest, all left/right 

hand digits against rest, feet against rest and lips against rest. The estimates from the four 

finger mapping scans were then averaged voxel-wise using fixed effects model with a cluster 

forming z-threshold of 3.1 and family-wise error corrected cluster significance threshold of 

p<0.05, creating 14 main activity patterns for each session and participant.  

 

For the motor localiser scans, 4 main contrasts were set up: right/left hand against lips, 

right/left foot against lips. The activity patterns associated with those 4 contrasts were then 

used to define functional regions of interest (functional ROIs, see Supplementary Materials). 

 

Regions of Interest (ROIs) definition 

Changes to representational structure of the hand were studied using anatomical ROIs, as 

previously practiced in related studies (14, 66, 67). Structural T1 images, registered to the 

structural midspace, were used to reconstruct the pial and white-grey matter surfaces using 

Freesurfer. Surface co-registration across hemispheres and participants was done using 

spherical alignment. Individual surfaces were nonlinearly fitted to a template surface, first in 

terms of the sulcal depth map, and then in terms of the local curvature, resulting in an overlap 

of the fundus of the central sulcus across participants (68). The anatomical sensorimotor ROI, 

used for the multivariate analysis were defined on the group surface using probabilistic 
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cytotectonic maps aligned to the average surface (69). These ROI was then projected into the 

individual brains via the reconstructed individual anatomical surfaces. Since we were 

primarily interested in the motor representation of the hand, we have focused our anatomical 

ROI on M1, selecting all surface nodes with the highest probability for BA4 spanning a 2cm 

strip medial/lateral to the anatomical hand knob (14, 70). However, we note that, given the 

probabilistic nature of these masks, the dissociation between S1 and M1 is only an estimate, 

and thus our ROI should be treated as a sensorimotor one. SMA was defined as all surface 

nodes along the medial wall with the highest probability for BA6 (16, 17).  

  

For our univariate analyses (resting state connectivity, net activity analysis), we also defined 

a separate set of functional ROIs based on the sensorimotor representations of the left/right 

hand and feet of each participant. See Supplementary Materials for details.  

 

Multivariate representational structure of the hand (RSA) 

We used RSA (71) to assess the multivariate relationships between the activity patterns 

generated across digits and sessions. RSA was also used to quantify dissimilarity between 

multivariate activity patterns elicited by hand and toes movements (see Supplementary 

Materials). The dissimilarity between activity patterns within the M1 anatomical hand ROI 

was measured for each digit pair using the cross-validated squared Mahalanobis distance 

(26). We calculated the distances using each possible pair of imaging runs within a single 

scanning session (pre, post) and then averaged the resulting distances across run pairs. Before 

estimating the dissimilarity for each pattern pair, the activity patterns were pre-whitened 

using the residuals from the GLM. Due to the cross-validation procedure, the expected value 
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of the distance is zero (or below) if two patterns are not statistically different from each other, 

and larger than zero if the two representational patterns are different. The resulting 10 

unique inter-digit representational distances were put together in a representational 

dissimilarity matrix (RDM). 

 

To assess the effect of 5-day Thumb usage on the overall representation structure 

(dissimilarity), we performed a linear mixed model analysis (LMM) with fixed factors of time, 

hand and digit pair, a random effect of participant and a random participant-specific slope of 

time. The LMM was evaluated in R (version 3.5.2) under restricted maximum likelihood 

(REML) conditions with Satterthwaite adjustment for the degrees of freedom.  

 

As an aid to visualising the RDMs, we also used classical multidimensional scaling (MDS). MDS 

projects the higher-dimensional RDM into a lower-dimensional space, while preserving the 

inter-digit dissimilarity values as well as possible. MDS was performed on data from individual 

participants and averaged after Procrustes alignment (without scaling) to remove arbitrary 

rotation induced by MDS. Note that MDS is presented for intuitive visualisation purposes only, 

and was not used for statistical analysis.  



 
 

 41 

References 

1. G. Salvietti, I. Hussain, D. Cioncoloni, S. Taddei, S. Rossi, D. Prattichizzo, Compensating 

Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger. IEEE Trans 

Neural Syst Rehabil Eng 25, 142-150 (2017). 

2. F. Y. Wu, H. H. Asada, in ASME Dynamic Systems and Control Conference. (San Antonio, 

TX, 2014). 

3. T. Sasaki, M. Y. Saraiji, C. L. Fernando, K. Minamizawa, M. Inami, paper presented at 

the ACM SIGGRAPH 2017 Emerging Technologies,  2017. 

4. N. S. Meraz, M. Sobajima, T. Aoyama, Y. Hasegawa, Modification of body schema by 

use of extra robotic thumb. Robomech J 5,  (2018). 

5. C. I. Penaloza, S. Nishio, BMI control of a third arm for multitasking. Science Robotics 

3,  (2018). 

6. A. Shafti, S. Haar, R. M. Zaldivar, P. Guilleminot, A. A. Faisal, Learning to play the piano 

with the Supernumerary Robotic 3&lt;sup&gt;rd&lt;/sup&gt; Thumb. bioRxiv, 

2020.2005.2021.108407 (2020). 

7. M. J. Arcaro, P. F. Schade, M. S. Livingstone, Body map proto-organization in newborn 

macaques. Proc Natl Acad Sci U S A 116, 24861-24871 (2019). 

8. S. Dall'Orso, J. Steinweg, A. G. Allievi, A. D. Edwards, E. Burdet, T. Arichi, Somatotopic 

Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cereb 

Cortex 28, 2507-2515 (2018). 

9. J. Kolasinski, T. R. Makin, J. P. Logan, S. Jbabdi, S. Clare, C. J. Stagg, H. Johansen-Berg, 

Perceptually relevant remapping of human somatotopy in 24 hours. Elife 5,  (2016). 



 
 

 42 

10. N. Ejaz, M. Hamada, J. Diedrichsen, Hand use predicts the structure of representations 

in sensorimotor cortex. Nature Neuroscience 18,  (2015). 

11. S. N. Flesher, J. L. Collinger, S. T. Foldes, J. M. Weiss, J. E. Downey, E. C. Tyler-Kabara, 

S. J. Bensmaia, A. B. Schwartz, M. L. Boninger, R. A. Gaunt, Intracortical 

microstimulation of human somatosensory cortex. Sci Transl Med 8, 361ra141 (2016). 

12. F. Mancini, A. P. Wang, M. M. Schira, Z. J. Isherwood, J. H. McAuley, G. D. Iannetti, M. 

I. Sereno, G. L. Moseley, C. D. Rae, Fine-Grained Mapping of Cortical Somatotopies in 

Chronic Complex Regional Pain Syndrome. J Neurosci 39, 9185-9196 (2019). 

13. S. Kikkert, J. Kolasinski, S. Jbabdi, I. Tracey, C. F. Beckmann, H. Johansen-Berg, T. R. 

Makin, Revealing the neural fingerprints of a missing hand. Elife 5,  (2016). 

14. D. B. Wesselink, F. M. van den Heiligenberg, N. Ejaz, H. Dempsey-Jones, L. Cardinali, 

A. Tarall-Jozwiak, J. Diedrichsen, T. R. Makin, Obtaining and maintaining cortical hand 

representation as evidenced from acquired and congenital handlessness. Elife 8,  

(2019). 

15. M. Bruurmijn, I. P. L. Pereboom, M. J. Vansteensel, M. A. H. Raemaekers, N. F. Ramsey, 

Preservation of hand movement representation in the sensorimotor areas of 

amputees. Brain 140, 3166-3178 (2017). 

16. P. Beukema, J. Diedrichsen, T. D. Verstynen, Binding During Sequence Learning Does 

Not Alter Cortical Representations of Individual Actions. J Neurosci 39, 6968-6977 

(2019). 

17. E. Berlot, N. J. Popp, J. Diedrichsen, A critical re-evaluation of fMRI signatures of motor 

sequence learning. Elife 9,  (2020). 



 
 

 43 

18. T. Elbert, V. Candia, E. Altenmuller, H. Rau, A. Sterr, B. Rockstroh, C. Pantev, E. Taub, 

Alteration of digital representations in somatosensory cortex in focal hand dystonia. 

Neuroreport 9, 3571-3575 (1998). 

19. N. Ejaz, A. Sadnicka, T. Wiestler, K. Butler, M. Edwards, J. Diedrichsen, paper presented 

at the Society for Neuroscience Annual Meeting,  2016. 

20. D. Clode, The Third Thumb. 2018 

(https://www.daniclodedesign.com/thethirdthumb). 

21. H. J. Huang, V. S. Mercer, Dual-task methodology: applications in studies of cognitive 

and motor performance in adults and children. Pediatr Phys Ther 13, 133-140 (2001). 

22. H. J. Witteveen, L. de Rond, J. S. Rietman, P. H. Veltink, Hand-opening feedback for 

myoelectric forearm prostheses: performance in virtual grasping tasks influenced by 

different levels of distraction. J Rehabil Res Dev 49, 1517-1526 (2012). 

23. R. O. Maimon-Mor, E. Obasi, J. Lu, N. Odeh, S. Kirker, M. MacSweeney, S. Goldin-

Meadow, T. R. Makin, Communicative hand gestures as an implicit measure of 

artificial limb embodiment and daily usage. medRxiv, 2020.2003.2011.20033928 

(2020). 

24. M. R. Longo, F. Schuur, M. P. Kammers, M. Tsakiris, P. Haggard, What is embodiment? 

A psychometric approach. Cognition 107, 978-998 (2008). 

25. F. de Vignemont, Body schema and body image--pros and cons. Neuropsychologia 48, 

669-680 (2010). 

26. H. Nili, C. Wingfield, A. Walther, L. Su, W. Marslen-Wilson, N. Kriegeskorte, A toolbox 

for representational similarity analysis. PLoS Comput Biol 10, e1003553 (2014). 



 
 

 44 

27. P. Kieliba, S. Madugula, N. Filippini, E. P. Duff, T. R. Makin, Large-scale intrinsic 

connectivity is consistent across varying task demands. PloS one 14, e0213861-

e0213861 (2019). 

28. J. Ruan, S. Bludau, N. Palomero-Gallagher, S. Caspers, H. Mohlberg, S. B. Eickhoff, R. J. 

Seitz, K. Amunts, Cytoarchitecture, probability maps, and functions of the human 

supplementary and pre-supplementary motor areas. Brain Struct Funct 223, 4169-

4186 (2018). 

29. T. R. Makin, F. de Vignemont, A. A. Faisal, Neurocognitive barriers to the embodiment 

of technology. Nature Biomedical Engineering 1, 0014 (2017). 

30. F. Y. Wu, H. H. Asada, in Robotics: Science and Systems X. (Berkley, USA, 2014). 

31. J. Cunningham, A. Hapsari, P. Guilleminot, A. Shafti, A. A. Faisal, in 2018 7th IEEE 

International Conference on Biomedical Robotics and Biomechatronics (Biorob). 

(2018), pp. 665-670. 

32. Y. Zhu, T. Ito, T. Aoyama, Y. Hasegawa, Development of sense of self-location based 

on somatosensory feedback from finger tips for extra robotic thumb control. 

ROBOMECH Journal 6, 7 (2019). 

33. H. Dempsey-Jones, D. B. Wesselink, J. Friedman, T. R. Makin, Organized Toe Maps in 

Extreme Foot Users. Cell Reports 28, 2748-2756.e2744 (2019). 

34. M. M. Merzenich, J. H. Kaas, J. Wall, R. J. Nelson, M. Sur, D. Felleman, Topographic 

reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following 

restricted deafferentation. Neuroscience 8, 33-55 (1983). 

35. R. J. Nudo, G. W. Milliken, W. M. Jenkins, M. M. Merzenich, Use-dependent alterations 

of movement representations in primary motor cortex of adult squirrel monkeys. J 

Neurosci 16, 785-807 (1996). 



 
 

 45 

36. A. Iriki, M. Tanaka, Y. Iwamura, Coding of modified body schema during tool use by 

macaque postcentral neurones. Neuroreport 7, 2325-2330 (1996). 

37. A. Maravita, A. Iriki, Tools for the body (schema). Trends Cogn Sci 8, 79-86 (2004). 

38. L. E. Miller, L. Montroni, E. Koun, R. Salemme, V. Hayward, A. Farne, Sensing with tools 

extends somatosensory processing beyond the body. Nature 561, 239-242 (2018). 

39. K. Ogawa, K. Mitsui, F. Imai, S. Nishida, Long-term training-dependent representation 

of individual finger movements in the primary motor cortex. Neuroimage 202, 116051 

(2019). 

40. M. S. Graziano, T. N. Aflalo, Mapping behavioral repertoire onto the cortex. Neuron 

56, 239-251 (2007). 

41. H. Dempsey-Jones, V. Harrar, J. Oliver, H. Johansen-Berg, C. Spence, T. R. Makin, 

Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural 

use relationships. J Neurophysiol 115, 1088-1097 (2016). 

42. C. Mehring, M. Akselrod, L. Bashford, M. Mace, H. Choi, M. Bluher, A. S. Buschhoff, T. 

Pistohl, R. Salomon, A. Cheah, O. Blanke, A. Serino, E. Burdet, Augmented 

manipulation ability in humans with six-fingered hands. Nat Commun 10, 2401 (2019). 

43. D. Muret, T. R. Makin, The homeostatic homunculus: rethinking deprivation-triggered 

reorganisation. Current Opinion in Neurobiology,  (2020). 

44. E. R. Oby, M. D. Golub, J. A. Hennig, A. D. Degenhart, E. C. Tyler-Kabara, B. M. Yu, S. 

M. Chase, A. P. Batista, New neural activity patterns emerge with long-term learning. 

Proc Natl Acad Sci U S A 116, 15210-15215 (2019). 

45. C. M. Stinear, Prediction of motor recovery after stroke: advances in biomarkers. 

Lancet Neurol 16, 826-836 (2017). 



 
 

 46 

46. K. H. Brodersen, K. Wiech, E. I. Lomakina, C. S. Lin, J. M. Buhmann, U. Bingel, M. Ploner, 

K. E. Stephan, I. Tracey, Decoding the perception of pain from fMRI using multivariate 

pattern analysis. Neuroimage 63, 1162-1170 (2012). 

47. N. M. Timme, C. Lapish, A Tutorial for Information Theory in Neuroscience. eneuro 5, 

ENEURO.0052-0018.2018 (2018). 

48. R. Alonso, I. Brocas, J. D. Carrillo, Resource Allocation in the Brain. The Review of 

Economic Studies 81, 501-534 (2013). 

49. V. Lee, J. Maguire, The impact of tonic GABAA receptor-mediated inhibition on 

neuronal excitability varies across brain region and cell type. Frontiers in neural circuits 

8, 3-3 (2014). 

50. G. H. Recanzone, M. M. Merzenich, W. M. Jenkins, K. A. Grajski, H. R. Dinse, 

Topographic reorganization of the hand representation in cortical area 3b owl 

monkeys trained in a frequency-discrimination task. J Neurophysiol 67, 1031-1056 

(1992). 

51. M. D. Guthrie, L. J. Brane, A. J. Herrera, M. L. Boninger, J. L. Collinger, paper presented 

at the American Association of Physical Medicine and Rehabilitation Annual Meeting, 

San Antonio, TX,  2019. 

52. N. J. Jarque-Bou, A. Scano, M. Atzori, H. Muller, Kinematic synergies of hand grasps: a 

comprehensive study on a large publicly available dataset. J Neuroeng Rehabil 16, 63 

(2019). 

53. J. N. Ingram, K. P. Kording, I. S. Howard, D. M. Wolpert, The statistics of natural hand 

movements. Exp Brain Res 188, 223-236 (2008). 

54. M. Santello, M. Flanders, J. F. Soechting, Postural Hand Synergies for Tool Use. The 

Journal of Neuroscience 18, 10105-10115 (1998). 



 
 

 47 

55. N. Lambert-Shirzad, H. F. Van der Loos, On identifying kinematic and muscle synergies: 

a comparison of matrix factorization methods using experimental data from the 

healthy population. J Neurophysiol 117, 290-302 (2017). 

56. F. de Vignemont, Embodiment, ownership and disownership. Conscious Cogn 20, 82-

93 (2011). 

57. G. J. Van Breukelen, ANCOVA versus change from baseline: more power in randomized 

studies, more bias in nonrandomized studies [corrected]. J Clin Epidemiol 59, 920-925 

(2006). 

58. M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, S. M. Smith, Fsl. 

Neuroimage 62, 782-790 (2012). 

59. S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens, H. Johansen-

Berg, P. R. Bannister, M. De Luca, I. Drobnjak, D. E. Flitney, R. K. Niazy, J. Saunders, J. 

Vickers, Y. Zhang, N. De Stefano, J. M. Brady, P. M. Matthews, Advances in functional 

and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1, 

S208-219 (2004). 

60. D. Wesselink, R. Maimon-Mor, rsatoolbox, version 20fbe05. 2017 

(https://github.com/ronimaimon/rsatoolbox). 

61. B. Fischl, A. Liu, A. M. Dale, Automated manifold surgery: constructing geometrically 

accurate and topologically correct models of the human cerebral cortex. IEEE Trans 

Med Imaging 20, 70-80 (2001). 

62. A. M. Dale, B. Fischl, M. I. Sereno, Cortical surface-based analysis. I. Segmentation and 

surface reconstruction. Neuroimage 9, 179-194 (1999). 



 
 

 48 

63. M. Jenkinson, P. Bannister, M. Brady, S. Smith, Improved optimization for the robust 

and accurate linear registration and motion correction of brain images. Neuroimage 

17, 825-841 (2002). 

64. S. M. Smith, Fast robust automated brain extraction. Hum Brain Mapp 17, 143-155 

(2002). 

65. M. Jenkinson, S. Smith, A global optimisation method for robust affine registration of 

brain images. Med Image Anal 5, 143-156 (2001). 

66. S. A. Arbuckle, A. Yokoi, J. A. Pruszynski, J. Diedrichsen, Stability of representational 

geometry across a wide range of fMRI activity levels. Neuroimage 186, 155-163 

(2019). 

67. A. Yokoi, S. A. Arbuckle, J. Diedrichsen, The Role of Human Primary Motor Cortex in 

the Production of Skilled Finger Sequences. The Journal of Neuroscience 38, 1430-1442 

(2018). 

68. B. Fischl, N. Rajendran, E. Busa, J. Augustinack, O. Hinds, B. T. Yeo, H. Mohlberg, K. 

Amunts, K. Zilles, Cortical folding patterns and predicting cytoarchitecture. Cereb 

Cortex 18, 1973-1980 (2008). 

69. T. Wiestler, J. Diedrichsen, Skill learning strengthens cortical representations of motor 

sequences. Elife 2, e00801 (2013). 

70. T. A. Yousry, U. D. Schmid, H. Alkadhi, D. Schmidt, A. Peraud, A. Buettner, P. Winkler, 

Localization of the motor hand area to a knob on the precentral gyrus. A new 

landmark. Brain 120 ( Pt 1), 141-157 (1997). 

71. N. Kriegeskorte, M. Mur, P. Bandettini, Representational similarity analysis - 

connecting the branches of systems neuroscience. Front Syst Neurosci 2, 4 (2008). 



 
 

 49 

72. C. Knight Fle, M. R. Longo, A. J. Bremner, Categorical perception of tactile distance. 

Cognition 131, 254-262 (2014). 

73. H. H. Schutt, S. Harmeling, J. H. Macke, F. A. Wichmann, Painfree and accurate 

Bayesian estimation of psychometric functions for (potentially) overdispersed data. 

Vision Res 122, 105-123 (2016). 

74. L. M. Parsons, Imagined spatial transformations of one's hands and feet. Cogn Psychol 

19, 178-241 (1987). 

75. D. N. Greve, B. Fischl, Accurate and robust brain image alignment using boundary-

based registration. Neuroimage 48, 63-72 (2009). 

76. A. Hahamy, S. N. Macdonald, F. van den Heiligenberg, P. Kieliba, U. Emir, R. Malach, 

H. Johansen-Berg, P. Brugger, J. C. Culham, T. R. Makin, Representation of Multiple 

Body Parts in the Missing-Hand Territory of Congenital One-Handers. Curr Biol 27, 

1350-1355 (2017). 

77. A. Hahamy, T. R. Makin, Remapping in Cerebral and Cerebellar Cortices Is Not 

Restricted by Somatotopy. The Journal of Neuroscience 39, 9328 (2019). 

78. F. M. Z. van den Heiligenberg, T. Orlov, S. N. Macdonald, E. P. Duff, D. Henderson 

Slater, C. F. Beckmann, H. Johansen-Berg, J. C. Culham, T. R. Makin, Artificial limb 

representation in amputees. Brain 141, 1422-1433 (2018). 

79. S. B. Eickhoff, K. E. Stephan, H. Mohlberg, C. Grefkes, G. R. Fink, K. Amunts, K. Zilles, A 

new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional 

imaging data. Neuroimage 25, 1325-1335 (2005). 

80. Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correction method 

(CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90-101 (2007). 



 
 

 50 

81. S. Whitfield-Gabrieli, A. Nieto-Castanon, Conn: a functional connectivity toolbox for 

correlated and anticorrelated brain networks. Brain Connect 2, 125-141 (2012). 

82. Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through a hidden 

Markov random field model and the expectation-maximization algorithm. IEEE Trans 

Med Imaging 20, 45-57 (2001). 

 



 
 

 51 

Acknowledgements 

We thank Dominic Stirling, Samuel Cousins, Lydia Mardell, Maria Kromm and Mathew 

Kollamkulam for their help with data collection; Ekaterina Tupitsyna for developing the script 

for the kinematic data analysis;  James Kilner for providing us access to the Cyberglove; Joern 

Diedrichsen for the custom-made force keyboards; Howard Bowman for introducing us to 

information theory measures; Gionata Salvietti for invaluable technical help during piloting; 

Silvestro Micera, Juan Alvaro Gallego and Daan Wesselink for helpful comments on the 

manuscript; Hunter Schone for proof-reading the manuscript; Domenico Prattichizzo for 

inspiring discussions about supernumerary fingers; and our participants for taking part in this 

study. Funding: This work was supported by an ERC Starting Grant (715022 EmbodiedTech), 

awarded to TRM, who was further funded by a Wellcome Trust Senior Research Fellowship 

(215575/Z/19/Z) and by Sir Halley Stewart Charitable Trust (580). Authors contributions: P.K., 

R.M and T.M. conceived and designed the study; D.C. designed the Third Thumb; P.K. and D.C. 

performed the experiments; P.K. and R.M. analysed the data; P.K and T.M wrote the 

manuscript with input from all co-authors. Competing interests: Authors declare no 

competing interests. Data and materials availability: The data that support the findings of 

this study will be available from the Open Science Framework upon publication.  

 

 

 

 

 



 
 

 52 

List of Supplementary Materials 

Materials and Methods 

Table S1. Parameters used for the numerical simulation of cortical magnification, 

homeostatic inhibition and addition of a new digit 

Fig S1. Force sensors set-up. 

Fig. S2. Training outcomes in augmentation (orange) and control (blue) groups. 

Fig. S3. Motor performance with the Thumb is not impacted by thee additional cognitive load 

(numerical cognition task). 

Fig. S4. Kinematic synergies captured during Thumb use. 

Fig. S5. Outcomes of the force enslavement testing. 

Fig. S6.  Biological hand’s representation of the control groups remains stable. 

Fig. S7.  Hand-toes functional relationship in the primary sensorimotor cortex remains stable 

Video S1. Examples of the in-lab training tasks 

 

 

 

  



 
 

 53 

Supplementary Materials for 

Robotic hand augmentation drives changes in neural hand representation 

Paulina Kieliba, Danielle Clode, Roni O Maimon-Mor, Tamar R Makin 

Correspondence to: t.makin@ucl.ac.uk 

 

This PDF file includes: 

 

Materials and Methods 

Table S1. Parameters used for the numerical simulation of cortical magnification, 

homeostatic inhibition and addition of a new digit 

Fig S1. Force sensors set-up. 

Fig. S2. Training outcomes in augmentation (orange) and control (blue) groups. 

Fig. S3. Motor performance with the Thumb is not impacted by thee additional 

cognitive load (numerical cognition task). 

Fig. S4. Kinematic synergies captured during Thumb use. 

Fig. S5. Outcomes of the force enslavement testing. 

Fig. S6.  Biological hand’s representation of the control groups remains stable. 

Fig. S7.  Hand-toes functional relationship in the primary sensorimotor cortex remains 

stable 

 

Other Supplementary Materials for this manuscript include the following:  

 

Video S1. Examples of the in-lab training tasks 



 
 

 54 

Materials and Methods 

 2 

Training tasks 

During the training sessions, participants were asked to complete a set of reaching and 4 

grasping tasks. These tasks were designed to be purposefully challenging when performed 

with only one hand (Fig. 1D). The task execution was restricted to the augmented (right) hand. 6 

The augmentation group was instructed to use the extra Thumb to complete the training 

tasks. The control group, wearing the static version of the Thumb was instructed to complete 8 

the training tasks using only their natural fingers, i.e. without using the Thumb. 

 10 

Collaboration tasks 

In the collaboration tasks, participants had to use the extra Thumb in collaboration with 12 

another finger to pick up multiple objects. The collaboration tasks included building a Jenga 

tower, sorting Duplo blocks, sorting shapes and manipulating multiple balls. 14 

 

Building a Jenga tower 16 

A mixed jumble of wooden Jenga blocks was placed in a shallow box. Augmentation 

participants were instructed to pick up 2 Jenga blocks at a time, using the Thumb to hold or 18 

support one of the blocks, and build a 2x2 Jenga tower. Control participants were instructed 

to use their biological fingers to hold and support both of the picked up Jenga blocks. The 20 

experimenter recorded the number of 2-block floors built in 1 minute.  

 22 

 

 24 
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Sorting Duplo blocks 

Participants were presented with a set of colourful Duplo blocks and four colour-coded boxes. 2 

The goal of the task was to sort all the Duplo blocks into the matching colour boxes. 

Augmentation participants were instructed to pick up four blocks at a time (one of each 4 

colour), with one block being held or supported with the extra Thumb. Control participants 

were instructed to use their biological fingers to hold and support all of the Duplo blocks. The 6 

experimenter recorded the time taken to complete the task 

 8 

Sorting shapes 

Participants were given a wooden box with differently shaped holes and a set of wooden 10 

blocks matching the shapes. Picking up two blocks at a time, one with their biological fingers 

and one with the extra Thumb, augmentation participants had to sort the blocks into the 12 

corresponding holes. Control participants were instructed to used their biological fingers to 

hold and support both of the blocks. The experimenter recorded the time taken to complete 14 

the task. 

 16 

Manipulating multiple balls  

3 small foam balls were placed in shallow boxes in front of the participants. All participants 18 

were asked to pick up all 3 balls with their right hand, starting from the ball in the rightmost 

box, and to place them down in a different configuration. Augmentation participants were 20 

instructed to use the extra Thumb to pick up and hold one of the balls. Control participants 

were instructed to pick up and hold all of the balls with their biological fingers. The 22 

experimenter recorded the number of shuffles performed in 1 minute.  

 24 
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Shared supervision tasks 

In the shared supervision tasks, participants had to use the extra Thumb to extend the natural 2 

grip of the hand and to free up the use of their biological fingers. Shared supervision tasks 

included picking up multiple wine glasses, plugging cables and stirring cups. 4 

 

Stirring cups 6 

3 small marbles were placed in 3 plastic cups. All participants were asked to pick up one cup 

at a time and scoop out the marble with a plastic spoon, whilst holding the cup in the air. 8 

Augmentation participants were instructed to hold the cup using the Thumb. Control 

participants were instructed to only use their biological fingers. After the first day of training, 10 

the cups were filled with the Styrofoam balls to increase the difficulty of the task. The 

experimenter recorded the time taken to scoop out each of the marbles. 12 

 

Wine glasses 14 

5 plastic wine glasses were placed upside-down in front of the participants. All participants 

were instructed to pick up all 5 glasses with their right hand and to place them upright in a 16 

row, on the marked positions. Augmentation participants were instructed to use the extra 

Thumb to hold one of the glasses. Control participants were instructed to only use their 18 

biological fingers. The experimenter recorded the time taken to place all 5 of the glasses on 

the correct positions, the number of glasses that were dropped and the accuracy of the 20 

placement.  

 22 

 

 24 
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Plugging cables 

Participants were given 4 long USB cables and a USB hub with 4 separate ports. All participants 2 

were instructed to pick up the USB hub and plug in all 4 USB cables, while holding the hub in 

the air. Augmentation participants were instructed to use the extra Thumb to complete the 4 

task. Control participants were instructed to only use their biological fingers. The 

experimenter recorded the time needed to plug in all of the USB cables. Due to inconstancies 6 

in task execution, this task was excluded from further analysis. 

 8 

Robotic Thumb individuation task  

 10 

Stacking tape rolls 

In the individuation task participants had to work on the fine motor control of the Thumb, 12 

while having their hand fully occupied with a task-irrelevant object. Specifically, participants 

were given 6 tape rolls, a foam ball and a wooden pole fixed to the desk. While holding the 14 

ball with their biological fingers, augmentation participants had to use the extra Thumb to 

pick up the tape rolls and place them on the wooden pole. Control participants were 16 

instructed to use their biological thumb to pick up the tapes while holding the ball with the 

remaining digits. The experimenter recorded the time taken to place all the tapes on the 18 

wooden pole and the number of dropped tapes per trial.  

 20 

Hand-Thumb coordination (Thumb opposition) 

To monitor daily changes in hand-Thumb coordination, we used a finger opposition task 22 

(previously used to monitor hand function in healthy and clinical cases, as well as robotic 
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finger operation, (4, 13, 14)). This task was conducted at the start of each training session. 

Participants were seated in front of a computer screen that displayed task stimuli. 2 

 

Augmentation participants were instructed to move the Thumb to touch the tip of a randomly 4 

specified finger on the augmented (right) hand. Control participants performed a modified 

version of this task in which they were instructed to use their biological thumb to oppose the 6 

remaining digits of the right hand. All participants were instructed to attempt to make as 

many successful hits as possible within a 1 minute block. Participants completed a total of 10 8 

blocks. A MATLAB script was used to randomly select a target finger (thumb, index, middle, 

ring or little) and to display the finger name on the computer screen in front of the participant. 10 

The experimenter manually advanced the program to the next stimulus when the participant 

successfully touched the tip of the target finger with the extra Thumb or with biological thumb 12 

(hit); or when a wrong finger has been touched (miss).  

 14 

Cyberglove calibration  

The CyberGlove was calibrated for each participant at the beginning of each training session, 16 

using a min-max pose calibration procedure provided with the ROS CyberGlove package. 

During the calibration, participants were presented with a set of carefully selected hand poses 18 

and given a few seconds to shape their hand accordingly. For each hand pose, the sensor 

values were sampled and averaged over one second of recording. Averaged sensor values 20 

were then saved alongside the actual joint angles, determined based on the hand 

configuration. Once all hand poses have been recorded, a linear regression was used to 22 

calculate the mapping from the sensor-values to the joint angles. Recorded data from the 

CyberGlove sensors were then calibrated using the established mapping. 24 
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Force enslavement 

To estimate the degree of co-dependency across the biological fingers, a custom-built 2 

keyboard (previously used in (10)) was used to measure isometric finger forces generated 

during individuated finger presses. During the pre and post testing sessions, participants 4 

performed individuated force presses with instructed fingers, while forces produced with all 

of the fingers were recorded. Following the methods described in (10), the experiment began 6 

by estimating the strength of each finger, by measuring two repetitions of the maximum 

voluntary force (MVF) of each digit. All subsequent trials required the production of isometric 8 

fingertip forces at a 75% of the maximum voluntary force for the instructed digit (10). At the 

start of every trial, a force target-zone (target-force ± 25%) was highlighted in green in the 10 

visual display. This cued participants to make a short force press with the instructed finger in 

order to match and maintain the target-force for 1s while keeping the uninstructed fingers as 12 

stable as possible. The trial was stopped if force of the instructed digit did not reach the 

target-zone within the 2s following the stimulus onset. Single trials, presented in a 14 

randomised order were grouped in blocks, with each block consisting of 40 trials (8 trials per 

finger). Participants performed 4 force-enslavement blocks during each session. The data of 16 

two augmentation participants were excluded from the subsequent analysis, as those 

participants produced extraordinarily low MVF forces (below 2N). 18 

 

For each participant, the recorded force data was first filtered with a 3rd order Savitzky-Golay 20 

filter with a window length of 51 samples. The data was then separated into individual trials 

(finger presses). Trials in in which the force produced with the instructed finger did not reach 22 

the target force were discarded from the analysis. Within each trial, a linear regression was 

used to fit the force generated by the instructed digit as a function of the force generated by 24 
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each of the other digits. The resulting determination coefficients (R2) were averaged across 

trials to yield a 5x5 matrix force enslavement matrix, expressing the involuntary force changes 2 

across non-instructed fingers during the presses of the instructed finger.  

 4 

To estimate gross changes to finger co-dependency, we performed a linear mixed model 

analysis (LMM) with fixed factors of time, group (augmentation vs controls) and digit pair, a 6 

random effect of participant and a random participant-specific slope of time. The LMM was 

evaluated using the same parameters as the ones used for hand kinematics analysis. To test 8 

the assumption that having an extra robotic Thumb would impact the independence of the 

biological thumb, a similar linear mixed model was created using only the force enslavement 10 

caused by the thumb (4 values, one for each enslaved finger). 

 12 

Tactile distance perception 

To examine whether Thumb usage would lead to incorporating it into the body 14 

representation, we tested participants’ ability to discriminate between tactile distances 

applied over their wrist and forearm. The design was inspired by a previous study (72) 16 

showing greater biases in spatial tactile perception when tested across a joint. Prior to the 

experiment, the experimenter marked the midpoint of the participant’s forearm, as well as 18 

the basepoint of the extra Thumb with a pen.  

 20 

During the experiment, participants were seated in an armchair, with their right elbow rested 

on an elevated foam padding with the forearm at full flexion and their left hand placed on a 22 

mouse connected to the experimental computer. The tactile stimuli (hereafter distances) 
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comprised of custom-made callipers with acrylic pins fixed at distances of 50, 60 and 70 mm. 

In each trial, two distances were presented sequentially – one over the marked basepoint of 2 

the Thumb, one over the midpoint of the ventral side of the forearm (both in the same 

orientation). The experimenter presented the distances manually ensuring that the two 4 

points of each calliper touched the skin simultaneously. Participants were instructed to 

indicate which of the distances they perceived as larger by pressing the left (distance over the 6 

Thumb’s base perceived as larger) or right (distance over the forearm perceived as larger) 

mouse button with their left hand. The task consisted of 3 blocks. Each block included 5 8 

presentations of each of the following ratios of distances in a randomised order: 50/70mm, 

50/60mm, 60/70mm, 60/60mm, 70/60mm, 60/50mm, and 70/50mm). 10 

 

Following the methods described in (72), we measured the proportion of responses in which 12 

the stimuli applied over the basepoint of the Thumb was judged as larger, as a function of the 

ratio of the length of the stimuli. Cumulative Gaussian curves were fitted to the data using 14 

psignifit 4 (73) Matlab (v. 2017b) toolbox. For each fit, four parameters were estimated: 

threshold, width, lapse rate and lower asymptote. Point of subjective equality (PSE) was 16 

calculated separately for each participant and session, as the ratio of stimuli at which the 

psychometric function crossed the 50%. Additionally, the interquartile range (IQR) – that is 18 

the difference between the points on the x-axis where the psychometric function crosses 25% 

and 75% - was calculated as a measure of the precision of participant’s judgements. One 20 

augmentation participant and two control participants were excluded from further analysis 

due to poor goodness of fit coefficient (R2<0.15) for the psychometric function in the pre- 22 

session. The remaining R2 scores, averaged across participants, showed an excellent fit to the 

data (R2=0.88±0.15).  24 
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Hand Laterality Judgement 

To examine whether Thumb usage leads to changes in body image, participants were 2 

presented with drawings of hand outlines, adapted from (74) and asked to decide whether 

the hand drawings corresponded to a right or a left hand. Participants were instructed to 4 

respond verbally by indicating the hand laterality (left or right) of each presented image as 

fast as possible, while maintaining high accuracy. The stimuli included drawings of left and 6 

right hands, presented in four different postures (dorsal view, palm view, side from thumb 

view, and palm from wrist view) and at 7 different angles (upright 0°, 30°, 90°, 150°, 210°, 8 

270°, and 330° in a clockwise direction). Participants completed four experimental blocks, 

each including all of the 56 hand images. Hand images were presented in a random order 10 

using Psychopy software. Participants were seated comfortably in front of a laptop computer 

with their hands obstructed by a black cape. Each hand drawing was preceded by 1 second 12 

presentation of a fixation cross and disappeared either after a verbal response was provided 

or after 10 seconds of no response. Time from the start of the image display to voice onset 14 

was recorded as the participants’ reaction time (RT). Audio files with participant’s responses 

were recorded for off-line accuracy analysis. Due to equipment malfunction, 2 augmentation 16 

participants and 1 control participant did not complete the hand laterality judgement task. 

 18 

All audio recordings and the appropriate classification of reaction-times were verified offline 

by a naive experimenter. Trials with noisy recordings were excluded from further analysis. 20 

Accuracy was computed as the proportion of correct response of all valid trials. Only trials 

with correct responses were included in the RT analysis. RTs were logarithmically 22 

transformed in order to correct for the skewed RT distribution and to satisfy the conditions 

for parametric statistical testing. Transformed RTs deviating more than 3 standard deviations 24 
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from the participants’ means (separately for each session) were discarded. The RTs were then 

averaged separately for each participant, hand and session and analysed using repeated 2 

measures ANOVA with hand and session used as within-subject factors. 

 4 

Resting state scan 

Participants were instructed to let their mind wander while keeping their eyes loosely focused 6 

on a fixation cross for the duration of the scan (5 min). 

 8 

Motor localiser scan 

Participants were instructed to move the right/left hand (all fingers flexion and extension), 10 

right/left foot (unilateral toe movements), or lips (blowing kisses) as paced by visual cues 

projected into the scanner bore. Each condition was repeated four times in a semi-12 

counterbalanced protocol alternating 12s of movement with 12s of rest. Participants were 

trained before the scan on the degree and form of the movements. To confirm that 14 

appropriate movements were made at the instructed times, task performance was visually 

monitored online. Due to data acquisition error, motor localiser data from pre scan of 1 16 

augmentation participant was discarded from the analysis. 

 18 

fMRI co-registration procedures 

To make sure that the scans from the two scanning sessions were well aligned, for each 20 

participant we calculated a midspace between their pre- and post- scans, i.e. the average 

space in which the images are minimally reoriented. Each scan was then aligned to this pre-22 

post midspace using FMRIB’s Linear Image Registration Tool (FLIRT, (63, 65)). This registration 
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was performed separately for the structural, motor localiser, resting state and finger mapping 

scans, resulting in 4 separate midspaces per participant. All the within-subject analyses were 2 

done in the corresponding functional midspace. To allow for the co-registration of the 

functional data and the anatomical ROIs (see Materials and Methods) the functional 4 

midspaces were then aligned to each participant’s structural midspace using FLIRT, optimised 

using Boundary-Based Registration (BBR, (75)). Finally, when interrogating finger-specific 6 

activations on the group-level, the individual structural midspaces were transformed into MNI 

space using FMRIB’s Nonlinear Image Registration Tool (FNIRT, (65)). 8 

 

Functional ROIs definition 10 

For our univariate analyses (resting state connectivity, net activation analysis), we defined a 

set of functional ROIs based on the sensorimotor representations of the left/right hand and 12 

feet of each participant. Unlike the cross-validated RSA analysis, these analyses require more 

spatially-restricted ROIs. We therefore used condition-specific contrasts from the motor 14 

localiser scans (as previously practiced in e.g. (13, 76-78)). To this extend, the relevant 

(right/left hand vs lips, right/left foot vs lips) low-level contrasts were first averaged across 16 

both (pre and post) scans. To create left/right hand ROIs, for each participant, the 200 most 

active voxels were selected from the averaged left/right hand vs lips contrast. For the 18 

individual feet ROIs, a similar procedure was employed, selecting the 100 most active voxels 

from the averaged left/right foot vs lips contrast. Voxel selection was restricted to the primary 20 

somatosensory (S1) and motor (M1) cortices as derived from the maximum probabilistic maps 

(thresholded at 25%) of the Juelich Histological Atlas (79). Voxels from both feet ROIs were 22 

combined into a single region of interest that was then used in the subsequent analyses. Note 
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that for 1 augmentation participants, with a missing pre motor localiser scan, only the post 

scan data was used to create all functional ROIs. 2 

 

Resting state analysis 4 

To account for non-neuronal noise that might bias functional connectivity analyses (80, 81), 

we regressed out the six motion parameters, as well as the BOLD time series of white-matter 6 

and cerebrospinal fluid (CSF) from the pre-processed resting state data. For this purpose, the 

T1-weighted structural scans, registered to anatomical midspace, were segmented into grey 8 

matter, white matter, and CSF, using FSL FAST (82). To avoid the inclusion of grey matter 

voxels in the nuisance masks, the resulting masks included only voxels identified as white 10 

matter/CSF with probability of 1, and were eroded by one voxel in each direction. For both 

the white matter and CSF maps, the first five eigenvectors were then calculated using the 12 

unsmoothed resting state time series (80, 81). Together with the motion parameters, these 

16 regressors of no interest were regressed out from the pre-processed resting state time 14 

series. The resulting time series (residuals) were used in all the subsequent resting state 

analyses.  16 

 

The level of resting-state coupling (functional connectivity) between the augmented (right) 18 

hand ROI (functional) and the feet ROI (functional) was examined by correlating the time-

course of the augmented hand ROI with the time-course of the feet ROI, while partialling out 20 

the time-course of the left-hand ROI. The resulting sets of partial correlations were Fisher z-

trasformed, and group-level statistical comparisons were conducted using two-tailed paired 22 

t-tests. 

 24 



 
 

 66 

Typicality of the hand representation 

We assessed potential changes to typicality of the representational structure (14) of the 2 

augmented hand, by calculating the Spearman’s rho correlation between each participant’s 

RDM and the group average computed from the pre-scan data using a leave-one-out 4 

procedure. The typicality values were then z-normalised and the typicality of the 

representational structure of the pre-scan was then compared to the typicality of the 6 

representational structure from the post-scan using paired t-test. Because the 

representational structure can be related to behavioural aspects of hand use and is highly 8 

invariant in healthy individuals (average correlation r = 0.9, (10)), this measure serves as a 

proxy for how ‘normal’ the hand representation is.  10 

 

Multivariate relationship between hand’s and toes’ representation (RSA) 12 

The dissimilarity between activity patterns within the M1 anatomical hand ROI, as well as 

within the SMA ROI, was measured for each body-part (right/left hand, toes, lips) using the 14 

cross-validated squared Mahalanobis distance (26). Notice that here, all fingers of each hand 

were modelled using a single ‘hand’ predictor. We calculated the distances using each 16 

possible pair of imaging runs within a single scanning session (pre, post) and then averaged 

the resulting distances across run pairs. Before estimating the dissimilarity for each pattern 18 

pair, the activity patterns were pre-whitened using the residuals from the GLM.  

 20 

To assess the effect of Thumb usage on the multivariate relationship between the hand and 

toes’ representations, we extracted the hand-toes and hand-face dissimilarity, quantified in 22 
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the ROI contralateral to the given hand. We then performed a repeated mesures ANOVA with 

the within-participants factors of hand, time and body-part (lips, toes).  2 

 

Numerical modelling of inter-digit dissimilarity 4 

To aid the interpretation of the neuroimaging findings, we have created a simple numerical 

simulation, modelling the potential effects of: (i) cortical magnification, (ii) inhibition and (iii) 6 

adding a new digit representation; onto the canonical hand representational structure. 

 8 

We aspired to simulate activity patterns within the hand ROI by creating an abstract structure 

(comprised of 3000 “voxels”), divided into 5 equisized finger-selective regions, and simulating 10 

activity elicited by individuated movements of each of the fingers. During each trial 

(simulation run), the moving finger activated the “voxels” within the assigned finger-selective 12 

region (with inherent noise), while also partially activating the “voxels” assigned to the other 

4 fingers. More specifically, within a trial, the activity of each “voxel” was randomly sampled 14 

from a Gaussian distribution, with mu=1 for trials involving the “voxel’s” preferred finger and 

ranging from 0.1408 to 0.3846 for trials involving a movement of a different finger. The values 16 

of mu were chosen based on the inter-finger relationship derived from the average 

representational structure (RDM) of the dominant hand of an independently acquired cohort 18 

of participants (14). The noise level (sigma=0.5) was constant across all trials and activations.  

The simulation was run 10,000 times, separately for each of the 5 fingers, resulting in 50,000 20 

patterns of finger specific “activations”. 

 22 

To model the cortical magnification phenomenon, we increased the mu values associated 

with all the non-moving fingers by 10% (activation modifier, see Table S1). This introduced 24 
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the idea that increased individuation of the finger movements (see Fig. 2) results in increased 

representation of the fingers (50). Similarly, modelling the homeostatic inhibition, we 2 

decreased all the mu values by 10% (see Table S1). This interrogates the idea that any changes 

triggered by the changed finger co-use would be offset by tonic inhibition, that will impact 4 

the entire hand map (49). Finally, to investigate the theoretical effect of accounting for a new 

(6th) digit representation added into the hand representational structure, we decreased the 6 

number of “voxels” assigned to each of the 5 fingers, in order to create a new equisized digit-

specific region. Since we didn’t have any a priori assumptions on the representational 8 

relationship between the extra Thumb and the rest of the fingers, this area was set to be 

activated equally in all trials, with mu set to an average activation value for the not-moving 10 

fingers (sigma=0.5, mu=0.2193). 

 12 

For each simulation run and each model, we computed the Euclidean distances between the 

activity patterns associated with each digit’s movement. We then averaged the distances 14 

across all 10 digit pairs to obtain an average dissimilarity measure (Fig. S7). Finally, we 

compared the average distances computed for each of the models to the ones calculated for 16 

the canonical hand model, using independent samples t-tests. 

 18 

 

 20 
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Table S1. Parameters used for the numerical simulation of cortical magnification, homeostatic 

inhibition and addition of a new digit. 2 

 
  4 

Parameters / 

simulation 
Canonical 

Cortical 

magnification 

Homeostatic 

inhibition 
New digit 

Number of voxels 

per digit 
600 600 600 500 

Noise level (sigma) 0.5 0.5 0.5 0.5 

Mean activation of 

the moving finger  
1 1 0.9 1 

Activation modifier 

for the non-moving 

fingers 

1 1.1 0.9 1 
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Fig. S1. Force sensors set-up. Force sensors are taped underneath the big toes of the user’s feet and 2 
powered by the external batteries strapped around the ankles. Pressure exerted with the right toe 
controls flexion of the Thumb while the pressure exerted with the left toe controls the abduction. The 4 
extent of Thumb movement is fully proportional to the pressure applied. As such the Thumb can be 
used when sitting or standing, but not while walking. 6 
 

 8 
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 14 
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Fig. S2. Training outcomes in augmentation (orange) and control (blue) groups. Both groups showed 2 
significant performance improvement on nearly all of the training tasks. With the exception of one of 
the collaboration tasks (sorting Duplos; F(2,52) = 7.95, p<0.001) and the individuation task (stacking 4 
tapes; F(2,52)=3.62, p=0.034), no significant group x time interactions were identified, indicating 
learning rate were not different across groups. Similarly, except for two shared supervision tasks 6 
(stirring cups: F(1,25)=1.98, p=0.17, BF=1.75 and wine glasses: F(1,26)=1.41, p=0.24, BF=0.67), the 
control group generally showed better baseline performance than the augmentation group. This 8 
indicates that during shared supervision tasks participants benefit the most from the hand 
augmentation. Asterisks denote significant effect of time at * p <0.05, ** p<0.01, *** p<0.001. 10 
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Fig. S3. Motor performance with the Thumb is not impacted by the additional cognitive load 2 
(numerical cognition task). (A) Trials with both correct and incorrect arithmetical results included (B) 
Only trials with arithmetical mistakes included.  4 
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Fig. S4. Kinematic synergies captured during Thumb use. (A) Average weights of all the five synergies 2 
extracted from the training data. The first principal component (PC) reflects coordinated 
flexion/extension of all digits, while remaining PCs correspond to more individualised patterns of 4 
finger cooperation. (B) In the augmentation group, more principal components are needed to explain 
the same amount of variance as in the control group.  6 
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 2 
Fig. S5. Outcomes of the force enslavement testing. (A) Participants performed individuated key 
presses with an instructed finger, while the forces exerted with the non-instructed fingers were 4 
measured to obtain a 5x5 force enslavement matrices, based on force co-production. (B) Group 
average force enslavement matrices. While no significant group differences and no significant changes 6 
in the average pattern of force enslavement were observed, in the augmentation group there was a 
trend towards increased enslavement caused by the biological thumb, following the extra Thumb use 8 
(F(1,17)=3.36, p=0.08, first column of the pre-post difference matrix. However, this effect was not 
robust, as demonstrated by a lack of significant time x group interaction when comparing the 10 
augmentation group with controls (F(1,27)=1.5, p=0.23, BF=0.57).  
 12 
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Fig. S6.  Biological hand’s representation of the control groups remains stable. (A) Group mean 2 
dissimilarity matrix of the right hand pre- and post- training. Each cell shows the Mahalanobis (cross-
validated) distance between the representational pattern of two fingers.  (B) The average inter-finger 4 
distances of the right and left hand remain stable following training. The bars depict group mean, 
error bars represent standard error of the mean. Individual dots correspond to individual 6 
participants’ average distance as predicted by the linear mixed model (see Materials and Methods). 
(C) Multidimensional scaling (MDS) depiction of the left and right hand representational structures. 8 
Ellipses indicate between-participant standard errors. No significant pre-post differences in right 
hand’s representation were found (t(10.4)=-0.245, p=0.81, BF=0.32), similarly no significant hand x 10 
time interaction was observed (F(1,342)=0.71, p=0.4, BF=0.95)Darker colours represent the post 
scan, whereas lighter colours represent the pre (baseline) scan. Red = D1, Yellow = D2, Green = D3, 12 
Blue = D4, Purple = D5.  
  14 
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 2 
Fig. S7.  Hand-toes functional relationship in the primary sensorimotor cortex remains stable (A) 
Toes-specific net activity within the augmented hand area remains stable after training. (B) Hand-4 
toes distance in the sensorimotor cortex decreases for the right (augmented), but not the left (not-
augmented) hand. Note however, that the hand x time interaction is not significant. (C) Functional 6 
connectivity between sensorimotor (augmented) hand and toes areas is not impacted by training. 
Asterisks denote significant effect of time at * p <0.05. 8 
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