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ABSTRACT

The depth maps captured by RGB-D cameras usually are
of low resolution, entailing recent efforts to develop depth
super-resolution (DSR) methods. However, several problems
remain in existing DSR methods. First, conventional DSR
methods often suffer from unexpected artifacts. Secondly,
high-resolution (HR) RGB features and low-resolution (LR)
depth features are often fused in shallow layers only. Thirdly,
only the last layer of features is used for reconstruction. To
address the above problems, we propose Coupled U-Net (CU-
Net), a new color image guided DSR method built on two
U-Net branches for HR color images and LR depth maps, re-
spectively. The CU-Net embeds a dual skip connection struc-
ture to leverage the feature interaction of the two branches,
and a multi-scale fusion to fuse the deeper and multi-scale
features of two branch decoders for more effective feature re-
construction. Moreover, a channel attention module is pro-
posed to eliminate artifacts. Extensive experiments show that
the proposed CU-Net outperforms state-of-the-art methods.

Index Terms— Guided depth super-resolution, convolu-
tional neural network, feature fusion, U-Net network, feature
reconstruction

1. INTRODUCTION

Depth information plays a pivotal role in many applications,
such as virtual reality, human-computer interaction and scene
reconstruction. However, consumer-level depth cameras gen-
erally are of low resolution, which greatly limits their applica-
tions in the above fields. Fortunately, although the depth im-
age resolution is 512×424 pixels, the corresponding RGB im-
age is with a high resolution of 1920×1080 pixels for Kinect
V2 camera. Therefore, recently many studies have been de-
voted to exploiting the high-resolution (HR) color image to
guide the depth super-resolution (DSR), with the aim of re-
constructing a super-resolution (SR) depth map from the in-
put low-resolution (LR) depth map.

The existing DSR methods can be divided into three cat-
egories: regularization-based methods, filtering-based meth-
ods and learning-based methods.

In the regularization-based methods, the DSR is formu-
lated as an optimization problem, the objective function of
which is often composed of a loss term and a regulariza-
tion term. The loss term is to ensure the structural consis-
tency between the reconstructed SR features and the input
LR features, while the regularization term is to constrain the
ill-posed SR problem. Ferstl et al. [1] proposed to use to-
tal variation regularization (TGV) to avoid surface flattening
and introduced a numerical algorithm based on a primal-dual
formulation that can be efficiently parallelized. According
to both the LR depth map and the nonlocal similarity in the
corresponding high-quality color image, Yang et al. [2] used
an adaptive color-guided autoregressive model as the regular-
ization term. The regularization-based methods usually take
more time to solve and cannot work well with images con-
taining complex texture.

The filtering-based methods employ filters to replace the
center point depth value with a locally weighted depth value.
Tomasi et al. [3] proposed bilateral filters, whose weights de-
pend on both the distance and the similarity between pixels.
To improve the low-quality and low-illuminance image via
a guide reference image, a joint bilateral filter was designed
by Eisemann et al. [4]. Liu et al. [5] replaced the Euclidean
distance with the geodesic distance to eliminate unexpected
artifacts. The filtering-based methods only consider the lo-
cal information of the image, hence producing only limited
super-resolution performance.

The learning-based methods apply additional datasets to
train the model for mapping LR depth maps into HR depth
maps. These methods can be further divided into two types:
DSR without and with color map guidance. The methods
without color map guidance take a single image as input, sim-
ilar to single image super-resolution (SISR) [6]. Riegler et
al. [7] combined deep convolutional networks with variational
methods to recover accurate HR depth maps. Song et al. [8]
proposed a framework based on iterative residual learning to
tackle real-world degradation. However, such methods can-
not reconstruct accurately the HR edges because the single
LR map loses too many edge details. In contrast, the meth-
ods with color map guidance can learn edge information eas-
ier with the help of the HR color image. Li et al. [9] got a
suitable dictionary for generating HR images based on sparse
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Fig. 1. Overviews and comparison of the DepthSRNet and the proposed CU-Net. (a) DepthSRNet is a single U-Net
structure, where the RGB shallow features are directly fused with the LR encoder features. (b) CU-Net is a Coupled U-Net
structure, where the LR depth map and the HR RGB image are respectively used as the inputs of two U-Nets. A mechanism
of dual skip connection (DSC) is designed to realize the interaction of information between the two U-Nets, and the output of
each level of the decoder is fed into a multi-scale feature reconstruction module (MSFR).

representation. Proposed by Hui et al. [10], MSG-Net is the
first CNN structure designed for DSR which integrates multi-
scale feature maps of the depth image and the color image to
ensure the full integration of texture and structure. Then Guo
et al. [11] proposed DepthSRNet based on MSG-Net and U-
Net, which adopts a pyramid structure to input multi-scale LR
depth images and color images into the encoder and the de-
coder respectively. To estimate structural details and regress
filtering results, a deformable kernel network (DKN) was de-
signed by Kim et al. [12].

The learning-based methods generally have better perfor-
mance than those based on regularization or filtering. How-
ever, there are three issues with them. First, when the RGB
image is inconsistent with the depth map texture, the DSR
result will create unexpected artifacts. Secondly, HR RGB
features and LR depth features are often fused in shallow lay-
ers only. Thirdly, only the last layer of features is employed
for reconstruction, The last two issues result in insufficient
exploitation of HR and LR features during the DSR.

To tackle these three issues, we propose Coupled U-Net
(CU-Net), a new color image guided DSR method built on
two branches of U-Nets to improve the state-of-the-art Depth-
SRNet. As shown in Fig.1, the CU-Net comprises three parts:
an LR branch U-Net, an RGB branch U-Net, and a multi-scale
feature reconstruction (MSFR) module. Specifically, our so-
lutions to the three issues are summarized as follows.

First, to address the first issue, we design into the U-Nets
a channel attention module, which considers the feature in-
terdependence based on the residual channel attention block
(RCAB) proposed in RCAN [13]. This module aims to re-
duce the channel weights that may cause artifacts. Secondly,
to tackle the second issue, the proposed CU-Net fuses deeper
feature maps level by level at the two decoders. Unlike the
DepthSRNet, which directly employs the pyramid structure
to fuse feature maps, the CU-Net can produce a more effec-

tive fusion of deeper features. Moreover, in order to let skip
connections convey more valuable information, we introduce
dual skip connection (DSC), as shown in the blue solid box
of Fig.1(b), which divides each skip connection into two parts
fed into the two different U-Nets. Thirdly, to attend to the
third issue, we propose the MSFR module to integrate each
level of the decoders for the final reconstruction.

In short, the main contributions of this work are:
• We propose Coupled U-Net (CU-Net), a new color im-

age guided DSR method built on two branches of U-
Nets, to improve the state-of-the-art DepthSRNet.

• We design DSC to ensure the feature interaction of the
two branches, which can fully fuse LR depth feature
maps and deep color feature maps during decoding. We
propose the MSFR module to exploit deeper and multi-
scale features to improve the final reconstruction. We
leverage channel attention to eliminate artifacts created
by the DepthSRNet.

• Extensive experiments show that the proposed CU-Net
outperforms state-of-the-art methods.

2. THE PROPOSED METHOD: CU-NET

2.1. Overall structure of CU-Net

As shown in Fig.1(b), the proposed CU-Net consists of three
parts: an LR branch U-Net (the black dashed frame), an RGB
branch U-Net (the yellow dashed frame), and a multi-scale
feature reconstruction (MSFR) module (the green dashed
frame). In addition, there is a DSC structure (the blue frame)
between the two branch U-Nets. The LR branch U-Net takes
the LR depth map as input and the multi-scale deep features
of the decoder as output. The RGB branch U-Net takes the Y
channel of the YUV image as input and aims to get the deep
features of a color image. The output features of each level



Fig. 2. Architecture of the LR branch U-Net. Different colored blocks indicate different features, and different colored
arrows indicate different operations.

of the decoders are fed into the MSFR module for integrating
the features and producing the reconstructed SR depth map.

2.2. Dual skip connection (DSC)

In the CU-Net, DSC executes the first fusion of LR depth fea-
tures and HR color features and enables features to be trans-
ferred from encoders to decoders. The DSC can achieve two
main purposes. First, it directly transfers the features from the
encoder to the corresponding decoder in each branch, which
prevents the loss of discriminative features during the down-
sampling process of the encoder. Secondly, the features of
the LR depth map and the RGB image are integrated with
each other, enriching the feature diversity of the two branches
without introducing more parameters.

2.3. LR branch U-Net

Even though the LR branch U-Net and the RGB branch U-Net
have different inputs, their structures are the same, so only the
LR branch U-Net is introduced here, as shown in Fig.2.
Pyramid features F i

lr. As with that in the DepthSRNet [11],
a pyramid strategy is used to explore data input, which turns
the LR depth map into multiple scales and attains multi-level
receptive fields. Specifically, the maxpooling layer is applied
N times to the original LR depth map (N is the number of
times for U-Net downsampling; e.g., N = 4 in Fig.2), where
each maxpooling layer reduces the length and width of the LR
map to 1/2 of the original, and then the features of each scale
are extracted by convolution layers:

P i
lr = maxpool(P i−1

lr ), (1)

F i
lr = σ(W i

lr P
i
lr + bilr), (2)

where P 0
lr is the input interpolated LR map; P i

lr, i ∈
{1, . . . , N}, is the LR map after i times of maxpooling; F i

lr is
the shallow features extracted from P i

lr; and W i
lr and bilr are

the weight and the offset in the ith convolution operation, re-
spectively. Such a pyramid branch can make full use of input

features of various scales, preventing the encoder from losing
key texture information.

Fig. 3. Channel attention module. The channel attention
module consists of a convolution layer and two residual chan-
nel attention blocks (RCABs). An RCAB contains a residual
block and a channel attention block, which can extract more
information between channels.

Encoder features Ej
lr. The encoder produces a set of hier-

archical features for the decoder. The encoder features are
obtained by applying a channel attention module to the con-
catenation of the pyramid features and the lower-resolution
encoder features. As shown in Fig.3, a channel attention mod-
ule is designed and embedded in the U-Net for exploiting the
inter-dependencies between channels and eliminate artifacts.
Let fCAM (·) denote CAM operations. Then the encoder fea-
tures can be obtained through

E0
lr = fCAM (P 0

lr), (3)

Ej
lr = fCAM (C(F j

lr, E
j−1
lr )), (4)

where C(F j
lr, E

j−1
lr ), j ∈ {1, . . . , N}, represents the con-

catenation of features F j
lr and Ej−1

lr .
Decoder features Dk

lr. With the help of DSC, the decoder
can fuse the decoder features with the features from both the
RGB encoder and the LR depth encoder:

D3
lr = fCAM (C(E3

lr,deconv
(
E4

lr

)
, E3

rgb)), (5)

Dk
lr = fCAM (C(Ek

lr,deconv
(
Dk+1

lr

)
, Ek

rgb)), (6)

where k ∈ {N − 2, . . . , 0}; deconv (·) is the deconvolution
operation with upsampling scale 2; and Ek

rgb denotes the en-



coder features from the RGB branch U-Net. It is worth noting
that Dk

lr and Ej
lr have the same dimension when k is equal to

j. Similarly, the decoder features in the RGB branch U-Net
can be represented as Dm

rgb, where m ∈ {0, . . . , N − 1}.

2.4. Multi-scale feature reconstruction (MSFR) module

Fig. 4. MSFR module. The input of MSFR is the decoder
features from two U-Nets, and the final SR image is obtained
after multi-scale features fusion and reconstruction.

The LR decoder features (D3
lr D

2
lr D

1
lr D

0
lr) and the RGB

decoder features (D3
rgb D

2
rgb D

1
rgb D

0
rgb) are the input of

MSFR module. The MSFR fuses the various scales decoder
features of two U-Nets for the final reconstruction. The struc-
ture of MSFR is shown in Fig.4, the fusion features can be
expressed as

F 3
fus = fCAM (C(D3

lr, D
3
RGB)), (7)

Fn
fus = fCAM (C(deconv(Fn+1

fus ), Dn
lr, D

n
RGB)), (8)

where F 3
fus is obtained by fusing the features of two de-

coders; and Fn
fus, n ∈ {N − 2, . . . , 0} for N = 4, is fused

from the features of two decoders and the upper-level fusion
features. When the upsampling scale is small (2×, 4×), we
replace the channel attention with ordinary convolution.

The proposed MSFR has four deconvolution layers with
different upsampling scales and one 1×1 convolution layer.
The deconvolution layers are to up-sample the fusion features
to make their sizes the same as the output image. In order
to increase the scale diversity of features and consider more
scale features to avoid the loss of low-scale information, we
adopt 1×1 convolution for the final reconstruction.

3. EXPERIMENTS AND ANALYSIS

3.1. Implementation details

Network setting. The kernel size of all Conv layers is set to
3×3 (zero-padding) except in the channel attention module
and during reconstruction. The scale level of the U-Net is set
to N = 4. The 2× Deconv kernel size is set to 2×2 (with
stride 2); the 4× Deconv kernel size is 4×4 (with stride 4);
and the 8× Deconv kernel size is 8×8 (with stride 8).

Dataset. As with that for MSG-Net [10], the dataset used
contains 92 RGB-D images obtained from the MPI Sintel
depth dataset [14] and the Middlebury dataset [15–17], with
82 for training and 10 for validation. For fair comparison, no
other datasets were used and no pre-training.
Training setting. For the color images, only the Y channel
from the YUV format is retained; and the LR depth images
are obtained by bicubic downsampling to the HR images. Be-
fore training, all inputs and labels are split into patches. When
upscaling factors are [2, 4, 8, 16], the sizes of patches are [96,
96, 128, 128] and overlapping pixels are [48, 48, 64, 64]. Af-
ter useless patches are excluded, the number of patches are
[48,901, 48,901, 26,245, 26,245]. To make full use of the
dataset, the training data are augmented with random hori-
zontal (vertical) flips and 90°, 180°, 270° rotations, and the
intensity of patches is normalized to the range [0, 1]. During
training, the batch size is set to 64, and Adam [18] (β1 = 0.9,
β2 = 0.999) is chosen as the network optimizer. The initial
learning rate is set to 10−4 and decays to 0.9 every 20 epochs.
The mean squared error (MSE) is chosen as the loss function
of the network. After 200 epochs of training, the loss of the
validation set no longer decreases. In addition, all network
parameters are initialized by the “Xavier” method [19]; all
experiments are performed on PC with 2080Ti GPUs.

3.2. Ablation studies
Table 1. The ablation study results for 4× SR

Structure M1 M2 M3 M4
CAM ×

√ √ √

MSFR
√

×
√ √

DSC
√ √

×
√

Average RMSE 0.75 0.67 0.66 0.65
We perform ablation studies on the effectiveness of three

key CU-Net modules: channel attention modules (CAMs),
multi-scale feature reconstruction module (MSFR) and Dual
skip connection (DSC). The results are listed in Table 1.

In M1, the CAM is replaced with two 3×3 convolutions,
which leads to 15% relative drop in performance from M4
(RMSE increased from 0.65 to 0.75). In M2, the MSFR mod-
ule is removed and only the feature of the last layer of LR
decoder (D0

lr) is kept for reconstruction. Due to the lack of
decoder features of various scales, the performance of M2
drops by 3% relatively from M4 (RMSE increased from 0.65
to 0.67). In M3, the feature interaction (DSC) is canceled
between the LR branch and the RGB branch, which results
in a relative performance drop of 1.5%. Therefore, it can be
concluded that each CU-Net module is helpful to improve the
network performance.

3.3. Comparison to state-of-the-art methods

We compare our CU-Net with the simple Bicubic method and
the following state-of-art methods:



Table 2. SR results (in RMSE) on Middlebury. The lowest RMSE results among all methods are in bold.

method Art Book Dolls Laundry Moebius Reindeer
2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16× 2× 4× 8× 16×

Bicubic 2.63 3.87 5.46 8.16 1.04 1.60 2.33 3.34 0.91 1.31 1.86 2.63 1.60 2.40 3.45 5.10 0.87 1.33 1.97 2.86 1.92 2.80 3.98 5.85
JBU 2.69 4.04 5.23 7.13 1.11 1.88 2.49 3.96 1.02 1.49 1.85 2.52 1.60 2.64 3.44 5.96 0.91 1.52 2.18 3.08 1.87 2.86 3.60 4.38
GF 3.47 4.76 6.78 9.95 1.43 1.97 2.77 4.15 1.22 1.64 2.26 3.45 2.08 2.88 4.08 6.29 1.23 1.73 2.46 4.16 2.50 3.45 4.81 7.18

TGV 3.17 3.71 7.02 11.55 1.32 1.65 2.08 3.80 1.17 1.42 2.05 4.44 1.84 2.20 3.92 6.75 1.14 1.45 2.41 5.41 2.41 2.67 4.29 8.80
MRFs 2.75 3.80 5.24 7.92 1.16 1.70 2.32 3.54 1.04 1.39 1.82 2.69 1.67 2.34 3.39 6.15 0.92 1.37 2.07 3.27 1.93 2.64 3.71 5.57

JID 1.25 2.01 3.23 5.74 0.65 0.92 1.27 1.93 0.70 0.92 1.26 1.74 0.75 1.21 2.08 3.62 0.64 0.89 1.27 2.13 0.92 1.56 2.58 4.64
MSG-Net 0.56 1.40 2.42 4.17 0.26 0.46 0.88 1.70 0.37 0.73 1.10 1.63 0.37 0.79 1.51 2.63 0.31 0.58 0.94 1.69 0.42 0.98 1.76 2.92

FDKN 1.53 2.10 3.16 9.46 0.50 0.73 1.21 3.93 0.70 0.93 1.30 3.21 0.88 1.26 2.00 5.95 0.60 0.79 1.24 4.26 1.09 1.50 2.27 6.53
RCAN 1.01 1.51 2.20 - 0.37 0.56 0.85 - 0.47 0.70 1.02 - 0.55 0.86 1.33 - 0.43 0.60 0.88 - 0.72 1.08 1.57 -

DepthSRNet 0.53 1.22 2.27 3.91 0.43 0.61 0.90 1.54 0.49 0.81 1.11 1.54 0.44 0.79 1.31 2.34 0.44 0.68 0.96 1.56 0.52 0.97 1.57 2.44
CU-Net 0.27 1.05 2.27 3.67 0.16 0.35 0.73 1.45 0.22 0.61 0.97 1.43 0.19 0.59 1.15 2.25 0.20 0.48 0.77 1.31 0.24 0.82 1.51 2.38

• Three regularization-based methods: total generalized
variation (TGV) [1], MRFs [20], joint intensity and
depth co-sparse coding (JID) [21].

• Two filtering-based methods: guided filter (GF) [22],
joint bilateral upsampling (JBU) [23].

• Four learning-based methods: RCAN [13], MSG-Net
[10], DepthSRNet [11], FDKN [12].

We evaluate our methods on the Middlebury dataset, just
as other learning-based methods. Specifically, the noise-free
dataset B in MSG-Net is used for the experiments, and the
results for scaling factors of 2×, 4×, 8×, 16× are listed in
Table 2. Experimental results show that the learning-based
methods have better performance than both traditional regu-
larization and filtering based methods. It can be also observed
that the proposed CU-Net has achieved the best results in most
images. Moreover, the CU-Net achieves the remarkable per-
formance when the scaling factor is low or the texture of the
test image is complicated (like the textures at panes and cubes
in images Laundry and Moebius).

For intuitive visual comparison, the SR results of different
methods for 8× SR are shown in Fig.5. The MSG-Net and
DepthSRNet create unexpected artifacts when the depth of
the test image changes, while our CU-Net has no such issue.
This is because the CU-Net uses deeper features and applies
the CAM after feature fusion to reduce the channel weights
that may cause artifacts. Compared with the MRFs, RCAN
and FDKN, our CU-Net only has errors at individual points
on edge, attributed to multi-scale input and reconstruction.

4. CONCLUSIONS

In this paper, we propose Coupled U-Net (CU-Net) for color
guided depth map super-resolution. The CU-Net has two U-
Net branches to process the LR depth features and the HR
color features, respectively. A channel attention module is de-
signed to exploit the dependency between channels and am-
plify important features. To make the dual-branch features
more tightly integrated, we introduce a multi-scale feature
reconstruction module (MSFR) and a dual skip connection

(DSC). Ablation studies and extensive comparative experi-
ments verify the effectiveness and superiority of CU-Net.
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