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ABSTRACT: The primary event occurring during the E-to-Z photoisomerization reaction of retinal protonated Schiff base (rPSB)
is single-to-double bond inversion. In this work we examine the nuclear dynamics that occurs when the initial excited state is a
superposition of the S1 and S2 electronic excited states that might be created in a laser experiment. The nuclear dynamics is
dominated by double bond inversion that is parallel to the derivative coupling vector of S1 and S2. Thus, the molecule behaves as if it
were at a conical intersection even if the states are nondegenerate.

The “unlocking” of a double bond represents the truly
primary event occurring during an E-to-Z double-bond

photoisomerization reaction. Such an event has been widely
investigated in photobiological C=C isomerizations employing
both spectroscopic and computational methods. Past studies on
the retinal protonated Schiff base chromophore (rPSB) of
rhodopsin proteins show that the mechanism of the unlocking
event remains substantially unchanged when investigated using
minimal gas-phase models or in complex QM/MM models of
the entire protein,1 making rPSB an excellent target for
fundamental studies.
As illustrated in Figure 1, according to the usual Born−

Oppenheimer (BO) approximation picture, the C=C unlocking
mechanism of rPSB starts at the Franck−Condon (FC) point on
the first singly excited state (S1) of the molecule. Because S1 is a
charge-transfer state relative to the ground state (S0), the C=C
bond is instantaneously electronically unlocked via photon
absorption. The subsequent nuclear relaxation then leads in a
ca. 20 fs time scale to an inversion of the single and double bond
length alternation (BLA) along the conjugated chain to produce
an electronically and geometrically unlocked C−C bond. This
mechanism is supported by the comparison between the
CASSCF(6,6)/6-31g* optimized bond lengths computed for
the S0 and S1 equilibrium structures of the chromophore given in
the Supporting Information (Figure S1) where we provide the
equilibrium parameters of the rPSB model of Figure 2A.
Recently, it has been reported that, in certain rhodopsins

(Figure 2B), the initial nuclear motion effectively decreases the
energy gap between the S1 and a nearby S2 state which has a

nonreactive diradical (2Ag) character rather than a reactive
charge transfer (1Bu) character and thus could, in principle, alter
the unlocking event. Indeed, the S2 equilibrium structure
(Figure S1) of our rPSB model is consistent with a fully
delocalized π-system featuring geometrically semiunlocked
C=C bonds and therefore is different from the inverted BLA
seen in the S1 equilibrium geometry. Such a theoretical/
computational observation2,3 indicates that the mixing of the S1
and S2 states may play a role in controlling the dynamics and,
possibly, efficiency of the subsequent progression along the
twisting nuclear mode (α) describing the actual isomerization
event. While this mixing hypothesis is still under scrutiny,4,5,1 it
suggests that the modulation of the rPSB electronic structure via
a spectroscopically induced S2/S1 mixing could provide a novel
tool for the control of an important photobiological reaction.
Consistent with Figure 1, we normally assume that, as for

other elementary photochemical reactions, photoisomerizations
occur via sequential nuclear propagations along one or more
potential energy surfaces connected by conical intersections
(CoIns).6−12 This picture begins to change when one uses laser
pulses (e.g., extreme ultraviolet (XUV)) to create the initial
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conditions in a reaction.13−16 In this case, one excites a coupled
manifold of electronic excited states, and the traditional idea of a
potential energy surface is no longer valid. Rather the potential
energy surface experienced by the nuclei is effectively time-
dependent.17 The resulting mechanism involves only the
population of various electronic states and the amplitude of
the various vibrational normal modes as a function of time.
Furthermore, the electron and nuclear motion can occur
asynchronously. (A theoretical study can be found in two
recent papers18,19 on the Benzene radical cation.)
The objective of both experimental and theoretical work is the

electronic control of chemical reactivity. Thus, by creating a
bespoke superposition of electronic states one may drive the
reaction path by populating selected specific vibrational modes
in a reaction coordinate. Experimentally, one may excite a
superposition of states as the initial conditions,13−16 or one may
control reactivity by using a control pulse at a later time.20 We
will focus on the first aspect, and we shall demonstrate that by
populating S1 and S2 differently at the FC point of rPSB one can
modulate the mode corresponding to the initial, C=C unlocking
part of the isomerization reaction (Figure 1) and therefore alter
the BLA coordinate. To do so, we focus on the four-conjugated
double bond model all-trans octa-3,5,7-trieniminium cation
(Me-PSB4) displayed in Figure 2A.
Both the experiments and theoretical computations in this

regime are challenging. The nonadiabatic dynamics computa-
tions to be discussed in this Letter were performed with the
Quantum-Ehrenfest (Qu-Eh) method22 which combines a
CAS-CI formulation of the Ehrenfest method for the electronic
motion,23 implemented within a development version of
Gaussian24 and the Direct Dynamics variational Multi-
Configuration Gaussian (DD-vMCG)25 algorithm for nuclear
dynamics as implemented in Quantics.26,27 The initial electronic
structure was chosen to be a coherent superposition of the S1
and S2 adiabatic states of the model rPSB, which was then
propagated as a solution of the time-dependent Schroedinger

equation in the Ehrenfest algorithm. The Ehrenfest propagation
itself used a CAS(6,6)-CI in a 6-31G* basis. For the nuclear
motion, we used 47 Gaussian wavepackets (gwp), which were
chosen to span stretches, hydrogen-out-of-plane modes, bends,
and torsions. Each initially unpopulated gwp is associated with
an “excitation” of a normal mode from the ground-state wave
function.
A feature of our implementation of the Ehrenfest method is

that the full derivative coupling is included in the expression for
the analytic gradient23 so it should not be regarded as a mean
field approach. The gradient (or force) that drives the
nonadiabatic dynamics of a coherent superposition has 2 types
of components: intrastate and interstate. The latter (off-diagonal
gradients that arise from the mixing) are the derivative couplings
and have the form ⟨ψI |∂/∂QiĤe|ψII⟩ where the I and II are two
adiabatic states and ∂/∂QiĤe is the gradient operator for the ith
normal mode. Thus, the dynamics that arises from the mixing of
two states is very similar to the forces that act at a conical
intersection where one force component is directed along the
derivative coupling. Indeed, one may make a prediction about
the course of the nuclear dynamics as a result of state mixing by
computing the derivative coupling, as we shall presently show.
We now discuss the results obtained within the computational

framework described above. More specifically, we present and
compare the dynamics initiated at the FC point on either a pure
S1 state or a 50:50 superposition of the S1 and S2 states. We also
have the results relative to a 75:25 superposition of S1 and S2.
However, these lie nicely between the first two results; therefore,
they are not discussed here but reported in the Supporting
Information (Figure S3). We have used a sudden approximation
to start our dynamics. Thus, we have ignored the rise and fall in
the populations that would be included in a laser experiment.
The nuclear motion problem needs the S0 normal modes to
define the initial conditions. These were computed at the DFT
level of theory using a B3LYP optimized geometry in a 6-31G*
basis. Finally, such computations are demanding in terms of

Figure 1. Schematic representation of the reaction coordinate for the rPSB photoisomerization. The Lewis formulas represent the electronic character
of the ground state and first two singlet excited states. The conical intersection (CoIn) corresponds to a 1Bu/1Ag crossing delivering the chromophore
to S0. Notice during the initial BLA nuclear relaxation the 2Ag and 1Bu states transit in the vicinity of a 2Ag/1Bu CoIn, become nearly degenerate, and
mix.
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computer time. Each step in the propagation of the 47 gwp needs
47 different CASSCF, gradient, and Hessian computations. We
used a time-step of 0.1 fs. However, because our objective is to
show where the initial vibrational energy is deposited during the
first 10−20 fs, a short simulation is adequate.
The results of a simulation started on S1 and presented in

Figure 2C show the population of S1 and S2 as a function of time.
Even starting on a pure adiabatic state one can see some
population of S2 after a few femtoseconds pointing to non-
negligible nonadiabatic coupling between the two states. After a
few femtoseconds, one can begin to observe the single−double
bond inversion (Figure 2D) typical of a BLA mode that
completes a full oscillation in about ca. 15 fs. Remarkably, such a
result is consistent with the BLA progression obtained from
quantum−classical trajectory calculation (Figure 2B) performed
using a full QM/MM model of bR, a result found to be
consistent with the spectroscopic observations.2,3

In Figure 2E we show the effect of mixing S1 and S2 in equal
amounts. One can observe that the S2 population rapidly
increases and then persists on an S1/S2 mixture with a dominant
S2 component. In Figure 2F we can see that the bond-order

inversion increases, similar to what is seen in Figure 2D, but then
persists for the entire simulation time featuring elongated, and
thus geometrically unlocked, double bonds. These bond lengths
do not appear to be related to either pure S2 or S1 states but
indicate a different regime and, more specifically, a reduction of
the S1 restraining force causing the oscillatory motion seen in
Figure 2D and a far from harmonic behavior. Of course, because
of the time constraint of such calculations, here we are looking at
only the initial stage of the reaction.
We hypothesize that the behavior described above is

connected with a time-dependent progression of the electronic
structure. It is apparent from the comparison of of panels D and
F of Figure 2 that the coherent superposition of S1 and S2 creates,
similar to the evolution starting on S1, nuclear motion
corresponding to bond-order inversion within 4 fs. However,
such a superposition is then conserved during the rest of the
simulation, causing a deviation from the S1 motion.
In Figure S2 of the Supporting Information we display the S2/

S1 derivative coupling vector ⟨ψI |∂/∂QiĤe|ψII⟩ computed at the
FC point and compare it with the gradient of the 50:50 S1/S2
superposition. Both vectors are dominated by a type of bond-

Figure 2. Relaxation dynamics. (A) The model chromophore structure adopted in the present work. (B) The semiclassical dynamics reported2 for
light-driven proton-pump bacteriorhodopsin (bR) showing oscillations in both the S2−S1 energy gap (red line) and BLA progression (black line). The
first 15 fs related to the simulation reported in the present Letter and corresponding to the first single BLA period are framed. (C) Time-dependent
adiabatic state population calculated with a Qu-Eh simulation started at FC point on S1 (of course the chemical interpretation changes with time). The
adiabatic state occupancy is averaged over 47 gwp (using gross populations).21 (D) The corresponding relevant averaged single and double C−C bond
lengths. (E) As for panel B but using 50:50 superpostion of S1 and S2 F. The corresponding progression of single and double C−C bond lengths. Note
that the simulation time in panel F is slightly shorter than that in panel D.
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order inversion coordinate. Therefore, the coherent super-
position of S1 and S2 at the FC geometry stimulates a nuclear
motion in a direction different from the BLA direction seen
when only S1 is dominating the molecule electronic structure.
This is expected because theory suggests that one component of
the initial gradient should contain the derivative coupling. Thus,
the nuclear dynamics that results from a coherent superposition
of S1 and S2 has some similarities to the dynamics that occurs at
an S2/S1 CoIn (see Figure S1 for the main geometrical
parameters of such intersection), even though the two states
are nondegenerate.
It is concluded that attochemistry16 generated by laser science

(which has been mainly applied to charged species) might
provide a method in the future for controlling PSB isomer-
ization. The nuclear dynamics that occurs when the initial
excited state is a superposition of the S1 and S2 electronic excited
states of a PSB model is similar to that which occurs at a conical
intersection. Thus, it is evident that the electronic state mixing
creates conical intersection (CI-like) conditions have a large
impact on the bond-length-alternation coordinate motion, but
the exact mechanism would need to be clarified by further
investigations. Furthermore, while our short simulations cannot
tell us how long the electronic coherence would last, the
electronic coherence creates a vibrational coherence that can
control the reactivity. Finally, we should mention that recent
theoretical work28 has shown that state mixing, similar to that
used in this study, but near a conical intersection can be achieved
with control options that rely on the carrier envelope phase of a
few-cycle IR pulse.
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