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Abstract 

Background:  Legacy data are unique occasions for estimating soil organic carbon (SOC) concentration changes and 
spatial variability, but their use showed limitations due to the sampling schemes adopted and improvements may be 
needed in the analysis methodologies. When SOC changes is estimated with legacy data, the use of soil samples col-
lected in different plots (i.e., non-paired data) may lead to biased results. In the present work, N = 302 georeferenced 
soil samples were selected from a regional (Sicily, south of Italy) soil database. An operational sampling approach was 
developed to spot SOC concentration changes from 1994 to 2017 in the same plots at the 0–30 cm soil depth and 
tested.

Results:  The measurements were conducted after computing the minimum number of samples needed to have 
a reliable estimate of SOC variation after 23 years. By applying an effect size based methodology, 30 out of 302 sites 
were resampled in 2017 to achieve a power of 80%, and an α = 0.05.

A Wilcoxon test applied to the variation of SOC from 1994 to 2017 suggested that there was not a statistical difference 
in SOC concentration after 23 years (Z = − 0.556; 2-tailed asymptotic significance = 0.578). In particular, only 40% of 
resampled sites showed a higher SOC concentration than in 2017.

Conclusions:  This finding contrasts with a previous SOC concentration increase that was found in 2008 (75.8% 
increase when estimated as differences of 2 models built with non-paired data), when compared to 1994 observed 
data (Z = − 9.119; 2-tailed asymptotic significance < 0.001).

This suggests that the use of legacy data to estimate SOC concentration dynamics requires soil resampling in the 
same locations to overcome the stochastic model errors. Further experiment is needed to identify the percentage of 
the sites to resample in order to align two legacy datasets in the same area.
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Background
Soil organic carbon (SOC) is a main contributor to fer-
tility in agricultural soils, improving water accumula-
tion and biodiversity [1]. Baseline SOC estimates and 
maps are generally built on legacy data [2], whereas any 
new soil samples collection in the same legacy locations 
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are often scarce. Up to date SOC data and assessments 
are on the global agenda [3] and are necessary to evalu-
ate many ecosystem characteristics such as resilience, 
productivity, ability of soil to provide a wide range of 
ecosystem services [4], and to gain precious insight into 
policy measures for soil preservation [5].

Prior to a SOC assessment, a sampling campaign 
would be needed, and the number of samples would 
affect obtained results. Many sampling size determina-
tion strategies have been proposed in the last decades 
to spot SOC changes [6–10]. Most of these have been 
suggested for new data acquisition and to overcome the 
problem of inaccessible lands. There is now a strong 
and growing need to utilize legacy soil data sources for 
monitoring SOC changes [11–13]. Regions that have 
soil monitoring networks need periodic recollection of 
soil samples to evaluate changes over time. Such resam-
pling could be minimized to contain costs, but should 
be large enough to produce reliable estimates.

The need for long-term temporal paired sites is essen-
tial when aiming to depict SOC changes [14, 15]. Few 
countries have such monitoring schemes. The Euro-
pean Union (EU) started around 10  years ago with a 
Pan-European monitoring network to improve sustain-
able farming solutions and monitor soil pollution [16, 
17].

Soil and SOC conservation is critically important in 
semi-arid areas, where desertification risk is increasing 
[18]. For these areas, a recent increase in the output of 
literature regarding SOC accounting and spatial model-
ling [19], legacy databases [20], and digital soil mapping 
[21] has been noted.

Legacy soil data and soil maps could be integrated into 
a unified database. This would provide special insight 
into hard-to-sample areas, past and present trends, 
and insight into the application of proper modelling 
procedures.

Recently, the development of digital soil mapping and 
pedometrics, associated with the presence of an ample 
archive of historical soil data has allowed for the assess-
ment of SOC patterns at a country scale with relatively 
high accuracy [22, 23]. However, models can amplify 
uncertainty when the assessment is based on multiple 
predictors [24, 25].

In some areas of the world, a lack of recent SOC meas-
urements is prompting a rediscovery of legacy data which 
is in the process of being fully integrated into mapping 
methods at an operational level [26].

SOC distribution is determined by multiple factors 
[27], the importance of which vary mainly with biocli-
matic conditions. It is therefore hard to delineate general 
functions that explain the world SOC distribution using 
only geographical positions, although a general inverse 

correlation was found with average annual air tempera-
ture on a regional scale between 52° N and 40° S and a 
direct correlation beyond this region [28].

Land use and land use change is also a main driver of 
SOC stocks, although mechanisms of SOC dynamics 
seem to be often independent of the ecosystem type or 
land use [29]. Using a meta-analytic approach, Guo and 
Gifford [30] showed that around 50% of SOC is gained 
in the transition from cropland to secondary vegetation 
communities, and recent papers confirmed such a trend 
[31, 32].

Sommer and Bossio [34] hypothesized that SOC 
sequestration in arable land can show a 0.012–0.027% 
annual increase in the first two decades after the estab-
lishment of SOC preservation practices, after which a 
saturation occurs and the increase ceases. Following the 
same hypothesis, Zomer et  al. [34] presented a global 
assessment of cropland SOC under the aforementioned 
scenarios and found that the potential SOC sequestration 
in cropland is below 53% of the 4p1000 target [35].

High spatial variability and temporal trends induced 
spatial modellers to design reliable sampling strategies [9, 
36, 37] and develop efficient methods to compare intra-
field and inter-field variations [38] with similar agro-eco-
logical conditions over the course of two decades [39]. 
Application of this technique was carried out to deter-
mine the effects of sampling density on interpolation 
accuracy [40] and uncertainty assessment [41, 42].

Cropland covers 12.6% of the world’s surface 
(FAOSTAT data, accessed in 2019). Cropland SOC con-
tent has been mapped on a global scale using the WoSiS 
database [34, 43, 44] and SOC maps were obtained 
by applying Generalized Additive Models (GAM) and 
machine learning methods.

At the European level, cropland plays an important 
role. Due to the large area covered, cropland acts as a 
potential carbon (C) sink. If considering a biomass return 
of up to 45 Mg C per year in raw organic materials, the 
biological potential of cropland for C storage is on the 
order of 90–120  Mg C per year [45, 46]. In particular, 
Smith [46] demonstrated that models of SOC changes 
should be used with statistical power analyses for plan-
ning sample design to determine density and time of 
sampling during experiments.

Little is known about long-term SOC changes in Medi-
terranean semi-arid arable lands, which are frequently 
dominated by winter-growing species (mostly cereals and 
legumes) in rotation with fallow periods characterized by 
various crop residue management practices. Field crop 
production in these areas can cause SOC depletion [47] 
and soil loss by erosion, especially when conventional 
tillage (e.g., ploughing) is continuously applied. Con-
versely, no-till has been shown to be strongly beneficial 
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compared to conventional tillage in semi-arid climates 
with an aridity index lower than 0.52 ± 0.03 [48]. Land 
management practices such as reduction of tillage inten-
sity [49], addition of manure and sowing cover crops 
could help to increase SOC contents and keep significant 
amounts of nutrients [50, 51].

In addition, in Mediterranean areas, frequent fire 
events can burn tons of biomass; this lowers the yearly 
C input derived from crop residues utilization while 
increasing SOC permanence, and affect the cycle of sev-
eral nutrients including nitrogen [52]. In these areas, 
short-term SOC changes due to management practices 
(and especially land use) can temporarily override back-
ground changes [53] since length of cultivation is a main 
driver of SOC variation [54]. Such information can allow 
for the determination of a minimum sample size to test 
a hypothesis effectively. Defining the sample size and 
location is required to enhance the power analysis while 
reducing laboratory costs and maximizing the accuracy 
of the assessment [55].

This experiment aimed at verifying whether or not a 
legacy estimation of SOC changes (1994–2008 model-
results) from non-paired data [56] matches the SOC vari-
ation measured in paired sites after 23 years (1994–2017).

Thirty temporal paired sites from Sicily (South of Italy) 
and under continuous crop cover were resampled [20] 
and included in the present study. The analysis focused 
on arable land as it represents the main land use in the 
study area. The land cover of these sites was verified 
using historical remote sensing imagery to confirm that 
each site was continuously cultivated during the inter-
vening period. Minimum sample size was determined 
and locations were randomly selected. Topsoil SOC con-
tents were determined using the same laboratory method 
as in 1994 and 2008 (Walkley and Black, 1934).

Methods
Study area
Sicily (25,286 km2) is the largest Mediterranean 
island,  belong to the semi-arid to arid climates, charac-
terised by prolonged droughts from mid or late spring 
to early or mid-fall, with high energy storms in fall and 
winter.

Sicily has an highly variable geomorphological set-
ting, resulting from sedimentary processes, tectonics, 
climatic changes, and human activity [58]. Fantap-
piè et  al. [58] classified the geomorphological macro-
areas into five typical assemblage of landforms and 
geomorphological processes: (i) volcanic landscape, 
craters, lava flows, and volcanic ash fields, the slopes 
of these areas are commonly characterized by anthro-
pogenic terraces, used for viticulture, orchards, and 
fruit trees; (ii) coastline; (iii) hyblean platform: in the 

south-eastern part of the region which is a carbonate 
plateau between 450 and 600 m, characterized by many 
fluvial valleys and karst features; (iv) calcareous moun-
tains and hills mainly in the southern coast and Inland 
hills characterized by clay deposits and flysch forma-
tions; (v) steep slopes ridges of Nebrodi and Peloritan 
mountains which are mainly hills formed on arenites 
and metamorphic rocks.

Soil systems were derived from the ‘Soil map of Italy’ 
[59, 60]. Soils of the north-eastern part, developed on 
igneous and metamorphic rocks and are mainly Cambi-
sols and Leptosols. The Etna volcano influenced a large 
part (30 km radius) of the island; soils of this territory 
are mainly Leptosols, Cambisols, Regosols and Ando-
sols, whereas towards the south of the Volcano a fluvial 
alluvial until the coastal plains of are mainly Cambisols, 
Calcisols, Luvisols and Vertisols. Northern coastal and 
alluvial plains soils developed on tertiary calcareous 
rocks and sediments originated Cambisols, Vertisols and 
Luvisols. A different soil series can be observed on the 
hills and mountains on lime-stone and igneous rocks of 
south east Sicily (Hyblean plateau) with Cambisols, Lep-
tosols and Andosols. From the south coast to the west 
coastal and hilly lands, the soils developed from clayey 
flysch, limestone, sandstone, gypsum and coastal plains 
and are mainly Luvisols, Vertisols and Regosols with high 
carbonates content.

Rainfed arable land selected using the CORINE code 
211 is the most common land cover class in the area 
under study with roughly 300,000 ha yearly under culti-
vation with durum wheat [61].

Rainfed arable lands represented the target land cover 
in the study area as they represent 60% of the surface in 
this region. Thus, it is a primary candidate for C seques-
tration and mitigation of the anthropogenic impact on 
the landscape [62, 63]. The land is predominantly under 
private ownership and the average farm size is around 
6  ha, in general family-run businesses (all farm types), 
with approximately 10% of foreign labour [61].

Sampling campaign
In the rainfed arable lands of Sicily, the seedbed is gen-
erally prepared by soil ploughing during late summer 
and one or two harrowing in early fall. The amount of 
nitrogen (N) applied in non-legume field crops is usu-
ally between 80 and 100 kg ha−1 year−1 and durum wheat 
yield is between 2 and 4 Mg  ha−1 (with a harvest index 
ranging from 45 to 55%, and therefore with a similar 
straw yield). Land cover data was derived from  aerial 
imagery found in the Geographic information system of 
Sicily (SITR; http://​www.​sitr.​regio​ne.​sicil​ia.​it/).

http://www.sitr.regione.sicilia.it/
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Expected SOC difference assumptions and sampling size 
determination
Data obtained from a sampling campaign carried out in 
1993–1994 were used in the present work. In particular, 
data about the rainfed arable land (CORINE code 211) 
were identified using the optimization procedure shown 
in Schillaci et  al. (2019). Briefly, the whole legacy data-
base consists of 6674 checked samples. Samples falling 
into the CORINE Land use 2 (agricultural lands which 
comprises, rainfed and irrigated arable soils, olive grove, 
vineyards and fruit trees cultivation) were 5471  (pedo-
logical profiles) from 2886 locations. Within these 2886 
locations, samples from the sole CORINE Land use 2.1 
(rainfed arable land) were 2162 from 880 locations.

A power analysis [64] was used to find the minimum 
number of samples needed to determine the SOC change 
with time (from 1994 to 2017). The expected change with 
time was derived from a modelled SOC variation (1994 
to 2008) at the regional level, as observed in Schillaci 
et al. [56]. In particular, samples from the same soil layer, 
land use and sub-area were used (Fig. 1).

To define the effect size, means and standard deviation 
of the oldest SOC survey (1993) and the hypothesized 
change after 15  years  (2008) were used. The effect size 
was computed at different degree of confidence (0.1, 0.05, 
0.01) using the G-Power software [65]. The estimated 
change comes from the difference between the average 
topsoil SOC concentration (0–30 cm) measured in 1994 
and the estimated values at the same location in 2008 
(predicted) at a 1-km spatial scale [56]. This allows for 
six sets of data (Table 1) used as raw or log10 transformed 
data, none of which was normally distributed after a Sha-
piro–Wilk test of normality (Table 2). 

The expected difference between  1994 (measured data 
in LEG-SOC94) and 2008 (estimated data in EST-SOC08) 
was subjected to the effect size computation (i.e., Cohen’s 
d). Standard deviation of legacy data was computed. 
Cohen’s d provided the minimum number of sites to be 
sampled in the 2017 survey on the original locations of 
the 1994 (LEG-SOC94) to ascertain if a change in SOC 
content occurred. When this number was achieved, the 
sampling consisted in the collection of topsoil (0–30 cm) 
in 30 randomly selected sites for which coordinates were 
reported with up to six digit precision (thus with an 
error < 30 m; Schillaci et al. 2019). This random selection 
was performed within the set of locations were SOC was 
determined in 1994 (SOC94).

A two-tailed paired Wilcoxon-test was performed using 
IBM SPSS software 26 [66],  because, despite previous 
findings [56], there was uncertainty regarding the pattern 
of differences between SOC17 and SOC94. Such uncer-
tainty derived from the internal variability of the model 
used in Schillaci et al. (2017) suffered by the absence of 

paired locations. Indeed, dynamics of the difference from 
the data in 1994 (measured in LEG-SOC94) to 2008 (esti-
mated in EST-SOC08) was on average positive for each 
land use, but with a high variation.

Calculations of the legacy topsoil SOC
Original legacy SOC data were collected at various 
depths. To compare SOC data sampled in the 2017 at a 
uniform depth to the ones sampled in 1993, the Hobley 
and Wilson (2016) method was used to uniform the SOC 
concentration of the former sampling campaign. Such a 
method is based on an exponential generalized function, 
as follows:

where d is the depth (expressed in meters), SOC0 is the 
concentration of SOC at the soil surface (%), and k is 
the depletion constant (m−1). The Hobley and Wilson 
(2016) method first fits this model and finds an optimal 
k and SOC0for each location, then computes SOC at any 
depth (d). Note that in the original work [67], Eq. (1) also 
contains an additional term (i.e., SOC∞) modelling the 
concentration of residual SOC to a soil depth tending to 
infinity. In this study, SOC∞ was assumed to be null.

In this work, the Hobley and Wilson (2016) method 
was applied as follows: in location (10 locations) where > 2 
layers were sampled, the model was directly fitted apply-
ing a SOC(0.30  m) depth threshold. For those locations 
where the number of layers sampled was ≤ 2 (292 loca-
tions) the function could not be fit. In this case, the above 
model was first fit on all locations in order to find an 
expected SOC0 and k values. This resulted in k = 0.4815 
and SOC0 = 1.4396. Then, using only the k found, SOC-
0was computed for each location using Eq. (1) as follows:

where d′ is the depth of one data point of the locations 
for which SOC concentrations are known. The accu-
racy of the fitted depth functions was expressed with the 
Root Mean Square Error (RMSE) and the Mean Absolute 
Error (MAE).

Historical land use and soil type in resampled sites
Web Mapping Services (WMS) from the regional 
geodata service (http://​www.​sitr.​regio​ne.​sicil​ia.​it/), 
consisting of aerial photograph surveys, were used to 
check the historical land cover. Sites were checked to 
ascertain that these sites maintained the same land use 
during the intervening period. To ensure this, aerial 

(1)SOC(d) = SOC0 × e
−k×d

(2)SOC0=SOC
(

d
′
)

×

[

e
−0.4815×d′

]

−1

http://www.sitr.regione.sicilia.it/
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Fig.1  Study area and main soil systems from the Italian soil information system http://​www.​soilm​aps.​it/. The samples collected only in 1994 (black 
dots) and both in 1994 and 2017 (red triangles) were projected on the map

http://www.soilmaps.it/
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photographs of at least 3 surveys carried out from 1994 
to 2017 (Fig.  2) were consulted. To avoid sites being 
temporarily converted to short-term grassland or bare 
soil or abandoned, local farmers were also interviewed.

Soil samples from the selected sites, rainfed arable 
land (N = 302) derived from the 1994 sampling cam-
paign, and the resampled soils (N = 30) had a con-
sistent distribution among the main soil systems 
according with the Soil map of Italy (59) (Fig.  1). 
Around 80% of sites were Vertisols or Cambisols or 
Regosols according with the World Reference Based 
WRB [68]. All of these soils frequently showed calcic 
or calcaric subgroups.

Soil organic carbon determination
SOC17 measurements were carried out using the Walk-
ley–Black method [69], i.e., a chromic acid wet oxidation 
method. Briefly, oxidizable organic C in the soil is oxi-
dized by 0.167 mol L−1 potassium dichromate (K2Cr2O7) 
solution in concentrated sulphuric acid (H2SO4). The 
excess dichromate in the extract was then titrated with 
0.5 mol L−1 iron (II) sulfate heptahydrate (FeSO4 7H2O). 
The heat of reaction raises the temperature which is suf-
ficient to induce substantial oxidation. The SOC values 
so obtained were within the range of LEG-SOC94. In 
LEG-SOC94, soil data were georeferenced, and this has 
allowed for the resampling at exact (field site) location.

Computation of SOC differences between 1994 and 2017 
by means of ad hoc sampling
Since the residues from the means of the logarithm10 of 
SOC94 and SOC17 were normally distributed (Table 2), 
the log10-SOC variation from 1994 to 2017 was tested 
for difference from zero by means of a paired t–test 
[70]. This does not assume that observations within each 
group are normal, but only that their residuals are nor-
mal [71, 72] (Table 2). Such assumptions were only partly 
met, since the log distribution were normal, whereas the 
differences between log were not normal but its skewness 
was comprised between − 1.96 and  + 1.96. To overcome 
such problems, a bootstrap ANOVA was performed [73]. 
Changes in cropland SOC content have previously been 
accounted for with the same statistical approach [74] 
where no subsampling was carried out to assess the SOC 
change.

Results
Power analysis
Farmer interviews confirmed that the land use of sam-
pling sites did not change, i.e., they have been continu-
ously cultivated during the intervening period. The crop 

Table 1  Datasets use in the present experiment

log10 of each of these databases were also computed

Abbreviation Number 
of sites

Description

LEG-SOC94 302 Data of measured topsoil SOC collected in the 1994 in land use CORINE 2.1 also used in [56] after a normalization 
procedure for depth. See further for explanation of the normalization process

EST-SOC08 302 Data of estimated topsoil SOC in land use CORINE 2.1 extracted in the coinciding location of the LEG-SOC94 after 
the BRT modelling built with samples taken in 2008 and provided in [56]

SOC94 30 Random samples from the LEG-SOC94 in land use CORINE 2.1 after control for stability of land use until the 2017. 
See further for explanation of the strategy to establish the number of samples and location

SOC17 30 Samples taken in April 2017 in coinciding locations of the C94

EST-SOC08- LEG-SOC94 302 Differences between data estimated in 2008 in the same locations of data collected in 1994

SOC17- SOC94 30 Differences between data measured in 2017 in the same locations of data selected in 1994

Table 2  Results of the Shapiro–Wilk for the raw and log- 
transformed data of the 1994, 2008, and 2017

According to the Shapiro-Wilk test, chosen the alpha level 0.05 and the p-value 
is less than 0.05, thenull hypothesis that the data are normally distributed 
is rejected. If the p-value is greater than 0.05, then the null hypothesis isnot 
rejected. Values in bold indicated normality

Please see Table 1 for a description of each dataset
a degrees of freedom = 302
b degrees of freedom = 30

Shapiro–Wilk Stat Sign

Raw—LEG-SOC94a 0.903  < 0.001

Raw—EST-SOC08a 0.798  < 0.001

log-LEG-SOC94a 0.980  < 0.001

log-EST-SOC08a 0.883  < 0.001

Differences of raw data (EST-SOC08-LEG-SOC94)a 0.961  < 0.001

Differences of log data (EST-SOC08-LEG-SOC94)a 0.960  < 0.001

Raw—SOC94b 0.833  < 0.001

Raw—SOC17b 0.809  < 0.001

log—SOC94b 0.951 0.183
log—SOC17b 0.965 0.404
Differences of raw data (SOC17-SOC94)b 0.886 0.004

Differences of log data (SOC17-SOC94)b 0.824  < 0.001
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rotation generally consisted of durum wheat (Triticum 
durum Desf.) followed by broad beans (Vicia faba L.), 
or other pulses alternated with fallow. The sampling 
campaign LEG-SOC94 involved 302 sites, with a SOC 
concentration in the CORINE land use 2.1 (arable) of 
1.01 ± 0.59% (mean ± s.d.; Table 3) after normalization to 
0.3 m depth.

This value was significantly lower than the mean 
SOC in the 30 sites selected in 1994 (i.e., the SOC94, 
1.31%; Table  3), but very close to its median (1.05%). 
Mean (predicted) SOC of the EST-SOC08 database was 
1.38 ± 0.39% (mean ± s.d., with a median of 1.25%). SOC 
was expected to vary in the cropland between the 1994 
and the 2008 values when using original data or log10 
data (Table 4). Such variation was due to an increase in 
SOC in 75.8% of the sites (2008). The SOC  calculated 
effect size was 0.54 for the original data and 0.69 for the 
log10 data (Table 5). According to Cohen [75] such effect 
sizes correspond to ‘medium to high’ effect, which needed 
a minimum sample size ranging from 15 to 45 samples to 
be able to detect a SOC variation. 

Given this effect size and the power chosen for the 
Wilcoxon test, which is by default set to 80%, and a sig-
nificance level of 5%, the calculated sample size required 
would be 30 samples. Such a value could sound quite 

small; the reason is the huge difference expected, i.e., 
when a smaller difference need to be spotted a larger 
number of samples will be needed. These were identified 
in LEG-SOC94 and collected in their respective paired 
locations SOC17.

In 2017, only 12 sites showing a SOC concentration 
higher than 1994 were found, so SOC variation from 
1994 to 2017 depended more on the SOC difference 
within each pair of samples than on the % of samples in 
2017 having a SOC higher than in 1994.

Descriptive statistics of SOC and SOC variation from 1994 
to 2017
SOC distribution in the datasets used in the present 
experiment had different means and standard deviations, 
but similar skewness and kurtosis (Table 3). SOC94 had a 
mean of 1.31 ± 0.96% (mean ± s.d.), whereas in the LEG-
SOC94 sites, mean was 1.01 ± 0.59% (Fig. 3). The SOC17 
mean was on average significantly lower than EST-
SOC08, but with similar distribution properties to both 
the SOC94 and LEG-SOC94. Also, the SOC17 mean was 
slightly lower (− 6.1% relative change, − 0.08% abso-
lute change) than the mean of SOC94, but not than the 
EST-SOC08. The accuracy of the fitted depth functions 
was expressed with the RMSE and MAE resulting in 

Fig. 2  Example of checking of the actual land use along the course from the 1994 to the 2017 in a sampling location by means of a visual 
interpretation of the Orthophoto taken from a Web Mapping Services (WMS)
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0.36 and 0.23 respectively. Transformation to logarithms 
improved the distribution properties in term of skewness 
and kurtosis, especially for SOC17 (Fig. 4). According to 
the Wilcoxon test, the change in SOC between SOC94 
and SOC17 did not appear different from zero (Table  6 
and Fig. 5). We underline that different sub-samples can 
bring to similar results but regional patterns of SOC may 
influence the sub-sample mean.

The t-test applied to the log10 of SOC17 and SOC94, in 
which residues were normally distributed, provided simi-
lar results compared to the Wilcoxon test carried out on 
the same data (SOC difference =  + 0.03300 ± 0.27659, 

mean ± s.d.; C.I95%  − 0.07028 to + 0.13628; t =  + 0.653; 
2-tails significance = 0.52). The bootstrap ANOVA also 
provided consistent results compared to the Wilcoxon 
test (Table 7), but notably, the difference in the log-SOC 
between the sampling campaigns had 95% confidence 
intervals marginally overlapping zero.

Discussion
This work was aimed at assessing the reliability of esti-
mations of topsoil SOC changes with non-paired data 
using time-paired sampling. According to our results, the 

Table 3  Descriptive statistics and main quantiles of each of the dataset used in the present study

a for logs, mean of log represent the arithmetic mean of the logarithms10 of the SOC values expressed in %
b such an estimation is from the 302 sites in which a measure was available 1994 and applying the 1-km resolution estimation process used in the 2008 described in 
[56]

SOC94 SOC17 log of SOC94 log of SOC17 LEG-SOC94 
(measured)

EST-SOC08 
(estimated)b

log of LEG-
SOC94 
(measured)

log of 
EST-SOC08 
(estimated)b

Meana 1.31 1.23 0.00550 0.03800 1.01 1.38 − 0.06983 0.12939

Standard deviation 0.96 0.67 0.33708 0.20808 0.59 0.39 0.26742 0.10394

Variance 0.93 0.45 0.11362 0.04330 0.35 0.15 0.07151 0.01080

Kurtosis 3.55 3.28 1.22 0.52 4.40 3.10 0.57 0.96

Skewness 1.76 1.78 − 0.69 0.36 1.53 1.79 − 0.55 1.23

n 30 30 30 30 302 302 302 302

Quantiles

 Min 0.120 0.400 − 0.9208 − 0.3979 0.100 0.953 − 1.000 − 0.021

0.010 0.149 0.429 − 0.8445 − 0.3698 0.150 1.001 − 0.824 0.000

0.025 0.193 0.473 − 0.7300 − 0.3277 0.215 1.012 − 0.667 0.005

0.050 0.270 0.545 − 0.5783 − 0.2654 0.300 1.027 − 0.523 0.012

0.250 0.780 0.803 − 0.1079 − 0.0956 0.560 1.142 − 0.252 0.058

0.500 1.050 1.100 0.0205 0.0414 0.945 1.253 − 0.025 0.098

0.750 1.633 1.353 0.2128 0.1310 1.328 1.487 0.123 0.172

0.950 3.343 2.830 0.5240 0.4493 2.099 2.219 0.322 0.346

0.975 3.699 3.128 0.5648 0.4952 2.260 2.477 0.354 0.394

0.990 4.156 3.171 0.6155 0.5012 2.820 2.773 0.450 0.443

 Max 4.460 3.200 0.6493 0.5051 4.330 2.969 0.636 0.473

Table 4  Wilcoxon test for the difference between the soil organic carbon (SOC) of the arable lands (CORINE 2.1) in the 0–30 cm layer 
in 1994 (LEG-SOC94) and estimated SOC in 2008 (EST-SOC08) in the coinciding locations of the samples taken in 1994

Raw log
Ranks N Mean ranks Sum of ranks Mean ranks Sum of ranks

Negative ranks (EST-SOC08 < LEG-SOC94) 73 123.6 9026 100.3 7320

Positive ranks (EST-SOC08 > LEG-SOC94) 229 160.4 36,727 167.8 38,433

Ties (EST-SOC08 = LEG-SOC94) 0

Test statistics based on positive ranks (Wilcoxon)

 Z based on negative ranks − 9.119 − 10.243

 Asymptotic significance (2-tailed)  < 0.001  < 0.001
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previous regional SOC estimates must be reconsidered 
as almost unchanged for rainfed arable, and the expected 
increase found in 40% of the sites after the 23-year time-
frame can be traced back to the lower fire occurrence and 
the sediment redistribution.

This findings can be considered more accurate com-
pared to the previous estimate [56] thanks to the use of 
temporal paired-sites instead of estimates based on dif-
ferent locations. Locations were further checked for land 
use continuity. The previous analyses based on modelled 
data over a 15-year span (from 1994 to 2008) predicted 
a mean relative increase of around the 21% of SOC con-
tent in arable lands, but such an increase was affected by 
a strong variability in the real plot scale land use when 
survey data was reviewed. By using a monitoring network 
spanning 30  years, Gubler et  al. [76] found that SOC 
dynamic is more determined by a change in land use 
than other predictors in a colder climate (Switzerland) 
agro-ecosystem.

According to a hypothetical linear growth, the 
increase expected from 1994 to 2017, which was the 
target period of the present study, was predicted to be 

Table 5  Output parameters of the a priori power analysis 
computation process at varying the α (0.10; 0.05; or 0.01)

The process was carried out through the G-Power software with the Wilcoxon 
test for non-normal distributed datasets [65]. Input data were from 302 
measured samples of SOC in 1994 and modelled SOC in 2008, each of which 
expressed as either raw or log10 data. Minimum power was set to 0.80

α 0.10 0.05 0.01

Raw data

 Noncentrality parameter δ 2.6008000 2.9077828 3.5612921

 Critical t 1.7174255 2.0495831 2.6981518

 Degrees of freedom 21.9183118 27.6478898 41.9718346

 Minimum sample size needed 24 30 45

 Actual power 0.8090485 0.8010923 0.8005742

log10 data

 Noncentrality parameter δ 2.6384055 3.0465682 3.6685540

 Critical t 1.7676466 2.1001020 2.7730806

 Degrees of freedom 13.3239449 18.0985932 26.6929601

 Minimum sample size needed 15 20 29

 Actual power 0.8040250 0.8216418 0.8056966

Fig. 3  Study area, original soil data (dots) and original compared to new soil samples (histograms, background mask the Arable land cover from 
CORINE 2000, code 211 (yellow). Blue bars for SOC94, red bars for SOC17
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Fig. 4  Distribution of the 30 samples of SOC 94 (blue bars) and SOC17 (red bars) and relative probability distribution function. Upper panels are for 
raw data, lower panels for log

Table 6  Results of the Wilcoxon tests of the mean difference of 30 samples of soil organic carbon measured in the 2017 (SOC17) and 
1994 (SOC94) as difference of the raw data or log-transformed

Positive mean indicates a mean increase in SOC with time

Ranks Raw logs

N Mean ranks Sum of ranks N Mean ranks Sum of ranks

Negative ranks (SOC17 < SOC94) 18 14.42 259.5 16 12.75 204

Positive ranks (SOC17 > SOC94) 12 17.13 205.5 12 16.83 202

Ties (SOC17 = SOC94) 0 2

Test statistics based on positive ranks 
(Wilcoxon)

Z based on negative ranks − 0.556 − 0.023

Asymptotic significance (2-tailed) 0.578 0.982
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a relative SOC increase of around 30%. In this study, no 
evidence of this magnitude of increase was found, and 
no such difference was seen in neither the original data 
nor in the log transformed data. When using a similar 
amount of data from meadows, Gubler et al. [76] found 
that the minimum detectable change in 10 to 100 years 
(at a power of the 80%, such as in the present study) 
spanned from approximately 2 to 6%, respectively. Bel-
lamy et  al. [15] showed that variation in time strongly 
depended on the initial SOC content, e.g., sites with 
low SOC had more opportunity to increase their SOC 
than sites with high SOC. However, both these latter 
studies were conducted in wetter climates than that 
of the present study. Using data from 20 regions in 
the world, Minasny et  al. [35] showed a tendency of a 
higher C sequestration potential on croplands with low 
initial SOC stock (≤ 30 t C / ha at 0–30 cm) compared 
to grasslands, which already have a high initial SOC 
stock, although a general decrease of the stock rate 
with time was also reported.

In addition, most of the samples in the present study 
were derived from the thermo-Mediterranean bio-
climatic area [77], so these results can also reflect the 
latency of SOC variation in these areas, which even 
under soil abandonment showed limited increases in 

SOC when compared to other bioclimates in the same 
region [78].

Therefore, such an approach gave us the chance to 
show that there was no significant increase from 1994 
to 2017 when compared to the estimated increase from 
1994 to 2008; this was partly expected given that a SOC 
mean of the SOC94 extracted from the LEG-SOC94 was 
slightly higher than that of the complete LEG-SOC94 
dataset. In few exceptions (3 samples out of 30) there 
was an increase in SOC concentration that can also be 
due to sediment redistribution and deposition following 
erosion from the sites at higher altitudes or step slopes 
[79–81], changes in tillage depth or soil compaction [82]. 
In addition, in this area soil respiration due to increasing 
temperatures [83] may have offset any potential increase 
in SOC, and the 23-year time span may have not been 
sufficient to detect a SOC change, as pointed by Saby 
et  al. (2008). Soil management with ploughing and the 
increasing mean temperature [83] are not conducive to 
SOC sequestration [85, 86]. In particular, Goidts and van 
Wesemael [86] showed that ploughing may override the 
increase in SOC over time. Also, an increase in SOC in 
ploughed soils is hard to achieve unless high quantities 
of organic residues and N are provided [87]. These two 
latter conditions are very limited in Sicily due to the low 
crop yield, the low amount of residues returned to the 
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Fig. 5  Distribution of the difference between pairs of the 30 samples of SOC17-SOC94 (expressed as raw data, green bars; or their logs, purple 
bars) and relative probability distribution function. Differences between the 302 original data (LEG-SOC94) and the 302 estimated data of 2008 
(EST-SOC08) is also shown (grey bars). Positive values indicate an increase in SOC with time

Table 7  Results of the bootstrap ANOVA on the differences between each pair of dataset

Bootstrap samples were 10,000

N = 30
a C.I. confidence interval

s Bias Std. Error Sig. (2-tailed) Lower 95% C.I.a Upper 95% C.I

Differences of raw data 
(SOC17-SOC94)

0.0013 0.1049 0.4780 − 0.2923 0.1167

Differences of log data 
(SOC17-SOC94)

0.0007 0.0505 0.5400 − 0.0583 0.1394
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soil and scarce fertilization. Davidson and Janssens [88] 
showed that slight increases in temperature and water 
availability ratio may contribute in reducing SOC. In 
the present work, this may have occurred and may be 
what can be seen when comparing the expected change 
from 1994 to 2008 to the measured change from 1994 to 
2017. In addition, the ratio between water availability and 
temperature may be increasing in the area under study, 
despite the fact that no direct report is available [83].

The lack of increase in SOC concentration found here 
(from 1994 to 2017), compared to those estimated in the 
period from 1994 to 2008, could also be due to a SOC 
reduction from 2008 to 2017 which cannot be excluded 
using the present data. Such a reduction from 2008 to 
2017 might possibly be connected with the decoupling of 
EU Common Agricultural Policy (CAP) payments regard-
ing agriculture in 2005 (Regulation EEC 1782/2003). 
Before this year, wheat was the continuous primary crop 
for arable lands and after this point crop rotation with 
legumes or fallow land was encouraged by new regula-
tions. Notably, continuous wheat has been shown to 
favour SOC accumulation when compared to a high per-
centage of wheat-legume rotations or wheat-fallow rota-
tions, in the same or similar environments [51, 89, 90]. 
Lastly, differences between the previous estimation (1994 
to 2008) and the present measurements (1994 to 2017) 
can also depend on the differences between direct and 
indirect measurement [91], or transient changes in cul-
tivation history that may have influenced the previous 
estimates [54], the latter of which was discarded here by 
an ad-hoc sampling in continuously ploughed soils with 
field crops.

Variability and confidence intervals regarding SOC 
suggest that the estimated change in the previous work 
[56] could have been affected by outliers or errors in the 
measurements related to analytical methods used [92], 
especially when used for highly alkaline soils with scarce 
SOC [69, 93], such as in the present study. These issues 
may have produced an apparent pattern of SOC accumu-
lation from 1994 to 2008 that was not detected between 
1994 and 2017. Problems in the estimate due to the sam-
pling strategy [10, 94] were excluded, since the selection 
method used here provided a dataset with similar statisti-
cal properties to the original SOC distribution, and thus 
allowed for a maximum reduction in sampling sites.

Mitigation strategies and international projects have 
contributed to a debate regarding SOC sequestration. 
These traits are increasingly being taken into account in 
EU subsidies to the agricultural sector [95, 96].

There were different ongoing discussions following the 
paper by Sommer and Bossio [33] and more recently after 
the Soil 4 × 1000 initiative [35], all of which are above all 
pivotal to a reliable estimation of SOC dynamics. Zomer 

et al. [34] modelled the estimated increase in SOC con-
centration and stocks at a global scale in croplands and 
found that an average increase of approximately + 26%, 
which is similar to the estimated value found from 1994 
to 2008. However, the estimation of [34] may not be suit-
able for small scale assessment and mapping and the use 
of legacy information can be crucial to confirm these 
trends.

Conclusions
In conclusion, the SOC change in arable lands estimated 
from 1994 to 2008 through models built with non-
paired data in the study area [56] was not confirmed by 
the measurement using paired sites in the 1994–2017 
timespan. The discrepancies between the present data 
compared to the previously published estimates may 
depend on various factors, including: (i) possible errors 
in 1994 measurements and 2008 estimates, (ii) changes in 
land use, (iii) soil erosion. However, SOC concentration 
reduction from 2008 to 2017 cannot be excluded.

This result has a direct implication for the SOC moni-
toring network in the mid-term (e.g., 15–25  years) and 
its implication in a C accounting system. Results also 
encourage to support legacy data measurements of soil 
properties by reliable information on the land use, land 
use changes and soil management practices. These latter 
aspects were taken into account here, although indirectly, 
by choosing sites with no change in the land use or soil 
management, and could be used to correct the effect of 
other environmental traits (e.g., rainfall, slope). Direct 
information regarding the variation in SOC concentra-
tion and SOC stock in topsoil and subsoil in areas that 
are  prone to degradation are urgently needed to drive 
policy making.

A debate on subsidies should take into account the 
information from the present work to ensure that subsi-
dies will foster the landscape and regional environmental 
sustainability and provision of ecosystem services and to 
minimize regional differences due to unpaired data col-
lection and analysis.

Further works should aim at: (1) increasing the num-
ber of sites to be resampled which would be derived from 
both the legacy collections of 1994 and 2008, (2) gather-
ing information regarding land use dynamics in paired 
sites, (3) quantifying the effect of soil erosion in the flow 
of SOC within and among catchments; (4) gathering 
information on the change of soil properties in homo-
geneous areas at varying the land use or soil and crop 
managements.

Further scopes include, but are not limited to, study-
ing a) errors in the determination methodologies of SOC 
concentrations in soils from different climatic regimes, 
and especially aridity and carbonate concentrations; b) 
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changes in bulk density with time, depth, and soil and 
crop management practices; and c) the influence of wild-
fire and arson.
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