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Assessing a fit-for-purpose urban building energy modelling
framework with reference to Ahmedabad

ANMOL MATHUR'*, PAMELA FENNELL?, RAJAN RAWAL' @), AND IVAN KOROLIJA?

! Centre for Advanced Research in Building Science & Energy, CEPT University, Ahmedabad, India
’Energy Institute, University College London, London, UK

Urban building energy models (UBEM) are driving sustainable design and operations of cities by combining urban datasets
with energy simulations. UBEMs are developed from a range of inputs on the spatial and semantic details of the buildings,
and the systems affecting their energy performance. Large geographical scales with finer spatio-temporal details increase the
challenges of data processing for a reliable UBEM. Thus, it is essential to understand the impact of increasing the resolution
of model inputs on the outputs to balance the efforts spent on model development, filling data gaps and maintaining the
reliability of the results. This research introduces a Fit-for-Purpose modeling strategy and extends the concept of Levels of
Detail (LoD) used for 3D models, to UBEM characteristics including occupancy, geometry, context, modeling methodology,
and calibration with the proposed model characterization framework. A case study based on a 0.3km” area of Ahmedabad,
India, is presented to demonstrate the framework. The results highlight a need for a higher LoD in occupancy modeling for
the residential and educational buildings, whereas a higher LoD is more important for the commercial buildings’ envelope
characteristics. These insights will enable a highly targeted supplementary data collection approach for the UBEM of the

entire city.

Introduction

Urban development in India

India’s urbanization at a rate of 34% will bring 590 million
urban residents by 2030 (McKinsey 2010). This will put
immense pressure on the urban infrastructure systems, with
an additional 20 billion m? floor area required in the resi-
dential and 4 billion m? in the commercial sector (GBPN
CEPT. 2014; Kumar et al. 2010). Building operations
account for 31% (AEEE 2018) of India’s total energy con-
sumption,. Urban Local Bodies (ULBs) spend nearly 60% of
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their operational budget on the energy bills of municipal
services including water supply (Iyer et al. 2020). With 70%
of the building stock of 2030 yet to be constructed (GBPN
CEPT 2014), development through contemporary practices
will double the electricity consumed in buildings from 544
TWh to 1192 TWh (NITI 2015). Considering this, it is a
daunting task to achieve India’s Nationally Determined
Contribution of reducing emissions to 35% of the 2005 lev-
els, and the Sustainable Development Goals 7, 11 and 13.
Energy efficiency codes and policies like the Energy
Conservation Building Code (ECBC) (BEE 2017), and the
National Energy Policy will help to guide this sustainable
development (Khosla and Janda 2019). However, there is an
enormous gap in implementing these policies because of a
lack of assessment of their effect on urban buildings &
infrastructure dynamics, and the limited data currently avail-
able on a city’s building stock and energy consump-
tion patterns.

The role of UBEMs in developing policy recommendations

UBEMs (Urban Building Energy Models) are emerging as
powerful tools for addressing these challenges. UBEMs,
as described by Hong, Chen, et al. (2020) refer to the
computational modeling and simulation of the energy per-
formance of a group of buildings in the urban context in


http://crossmark.crossref.org/dialog/?doi=10.1080/23744731.2021.1941248&domain=pdf&date_stamp=2021-08-20
http://orcid.org/0000-0001-7914-6069
http://orcid.org/0000-0003-3153-6070
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/23744731.2021.1941248
http://www.tandfonline.com

1076

order to account for the interactions between buildings,
urban infrastructure and microclimate. The concept of
UBEM stems from the classification of Urban Energy
Models into top-down or bottom approaches by Swan and
Ugursal (2009). Its definition in literature extends from
being limited to only bottom-up physics-based simulation
models of a group of buildings in the urban context
(Reinhart and Cerezo Davila 2016); both bottom-up and
top-down approaches that can be subdivided into statis-
tical, data-driven or simulation based models (Hong,
Chen, et al. 2020). While both top-down statistical and
bottom-up data-driven UBEMs are widely used for esti-
mating urban energy use, they have two important limita-
tions: (1) accessibility of historic and current energy use
data and (2), inability to account for design modifications
(Abbasabadi and Mehdi Ashayeri 2019). For its applica-
tions Indian cities where such data are scarce (Shnapp and
Laustsen 2013), these challenges are insurmountable.
Combining the data generated in cities with energy simu-
lations, bottom-up simulation based UBEMs can help
assess the impact of energy efficiency codes, amend them
to suit the regional context and guide sustainable urban
development and governance policies. During the last dec-
ade, bottom-up simulation-based UBEMs have been exten-
sively researched for urban and regional analyses where
integrated energy supply-demand scenarios are being
investigated (Johari et al. 2020). Successful applications of
UBEMs include: energy benchmarking and retrofit strat-
egies with lifecycle cost (Hong et al. 2016), developing
energy performance based urban design (Bergerson et al.
2015), and designing district energy systems and munici-
pal service network (Fonseca et al. 2016). This paper is
focused on Bottom-up, simulation-based UBEMs due to
its growing popularity in research and practice for the
intended application in sustainable urban development.

Developing a UBEM requires both geometric and
semantic data (non-geometric) for the building stock. This
includes: (a) building geometry, floor area, glazing area;
(b) year built/refurbished; (c) geographical location, neigh-
boring context and climate; (d) building use type and
operational patterns; (¢) HVAC, lighting, equipment loads;
and (f) construction details. These models can also
account for the energy consumption in municipal services
required for building operations, like water-pumping,
waste disposal and common lighting provided inputs for
plug loads, capacity, and operational hours, are available.
Although bottom-up physics-based models are not solely
dependent on metered energy consumption data, it is use-
ful for wvalidating the simulation results and reducing
model uncertainties.

The need to extend the LoD concept

Biljecki (2013) introduced the concept of Level of Detail
(LoD) for geometric data, establishing a clearly defined
framework of different levels of granularity in the detail
provided about the geometric model. The LoD concept
facilitates comparison between models and allows
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assessment of the impact of increasing detail on model
results and accuracy. Like geometric model, various types
and resolution of semantic urban data and modeling
approaches have also been proposed by academics and
practitioners to develop a UBEM (Hong, Chen, et al. 2020;
Johari et al. 2020).

At present, there is a lack of consistency in nomenclature
of these modeling approaches and urban datasets; identifying
their resolution, and understanding their choice of selection
with respect to the desired UBEM applications and outputs
(Ferrando et al. 2020). While oversimplification of urban
data and modeling approach might cause large inaccuracies,
very detailed inputs are not always necessary to obtain con-
sistent results from a UBEM, as demonstrated by Chen and
Hong (2018), Monteiro et al. (2017), and Nouvel et al.
(2017). Their work indicates that there is no direct relation
between increasing the resolution and complexity of the
model inputs and methodology with the model accuracy or
desired outputs.

For contexts like India’s where the current data on build-
ing stock and energy use is unstructured with many gaps
(Shnapp and Laustsen 2013), maintaining data quality, col-
lecting additional data and managing UBEM complexity
with least uncertainty, becomes a huge challenge. To make
the best use of the available data and streamline the resour-
ces required to collect additional data, there is a need to
assess of how increasing detail in one aspect or characteris-
tic of the UBEM affects overall model results.

This presses to shift focus toward a “fit-for-purpose”
approach for developing a UBEM. Similar to the concept
introduced by Gaetani, Hoes, and Hensen (2016) for occu-
pant behavior modeling in building energy simulations, there
is a need to assess the best, most suitable LoD of the model
characteristics that provide the most reliable results for the
intended application of UBEM and cost the least in terms
of effort.

This approach will enable a suitable tradeoff between the
LoD, and the efforts and resources spent on filling input
data gaps and complexity of model development, without
compromising  the  reliability @ of the intended
UBEM outcomes.

This research aims to develop a Model characterization
framework, leading to a Fit-for-Purpose UBEM approach.
This framework extends the LoD concept introduced for city
3 D models (Biljecki 2013) to a wider range of UBEM char-
acteristics and uses a detailed literature review to identify
the possible LoDs for each.

The “fitness” of the UBEM will vary contextually with
the availability of data, resources, the intended application,
and the objective of developing the UBEM for different
projects. Therefore, along with identifying these LoDs in the
model characteristics, this research introduces the concept of
Application Case Attributes and Level of Effort (LoE) and
ties all three of them in a broader perspective to approach
Fit-for-Purpose UBEMs (Figure 1).

The Model characterization framework is then applied to
a case study in the city of Ahmedabad. It assesses the
impact of increasing the LoD of certain characteristics on
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Fig. 1. The concept of Fit-for-Purpose UBEMs being developed as an optimum balance between Level of Detail, Application attributes

and Level of Effort.

the model outcomes against the effort required to simulate
these. This case study highlights the utility of the frame-
work and the Fit-for- purpose approach and facilitates the
development of targeted strategies for supplementary
data collection.

Developing the model characterization framework

This section describes the development of the model charac-
terization framework and the identification of different LoD
for each characteristic through the literature review.

Previous attempts to develop classification frameworks

The growing popularity and utility of UBEMs has led to the
development of various and wide ranged modeling approaches
to explain the differences between different models.

Nouvel et al. (2017) assessed the impact of data granular-
ity on UBEM results by increasing details in one aspect of
the model and comparing its results with a lesser detailed
model for a case study of Ludwigsburg. The selection of
input data for this comparison and the results obtained were
highly specific to the case study and the information avail-
able to the researchers. However, their approach to categor-
ize different UBEM simulation inputs based on their priority

or sensitivity, motivated the development of the framework
discussed in this paper. Ang, Berzolla, and Reinhart (2020)
addressed a similar problem of selecting an appropriate mod-
eling methodology for different applications, by introducing
a concept of a Minimum Viable UBEM. They identified
four typical UBEM applications and suggested suitable
details for geometry, archetype templates, weather data,
measured energy data and calibration methods for each
application through a literature review.

Ferrando, Causone, Hong, and Chen’s study (Ferrando
et al. 2020) focused on the main bottom-up physics-based
UBEM tools, comparing them from a user-oriented perspec-
tive,. They were classified based on: (i) the required inputs,
(i) the reported outputs, (iii) the exploited workflow, (iv)
the applicability of each tool, and (v) the potential users.
The review presented by them for the research and develop-
ments potential in the field of UBEM indicates the presence
of different modeling approaches in various aspects like
datasets for building geometry, occupant behavior, account-
ing for microclimate, inter-building heat exchange and
model calibration techniques. The review indicated the
impact of these approaches the model outcomes had in spe-
cific UBEM projects. They suggested that mixed used of
databases, dissimilar nomenclature of methodologies, lack of
structured framework and standardization for data collection
and modeling methodologies leads to a difficulty in choosing
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an appropriate UBEM tool, balancing the level of complex-
ity, accuracy, usability, and computing needs. Fennell et al.
(2019) aimed specifically to develop a framework which
would allow the characteristics of the UBEM, and adequacy
of the data to be assessed across different descriptors of the
model characteristics for a regional context, especially where
data is scarce. In their framework, eleven model characteris-
tics were defined that represent a typical UBEM across four
levels i.e., User, Building, Environment and Methodology as
shown in Figure 2. For each model characteristic a series of
descriptors were established from the literature review to
classify approaches of varying granularity.

While all these researchers have addressed a similar problem,
the challenge persists in formalizing the definition of the model
characteristics and their LoD that exist in theory and practice.

This study uses Fennell et al. (2019) as a starting point
and includes an additional model calibration layer. The lit-
erature review undertaken by Fennell et al. (2019) is
extended using a snowballing approach to encompass 85

—
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Geometry

O

Operation &
occupants
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UBEM studies. Figure 3 illustrates the geographic spread of
the studies and helps to identify the most relevant case stud-
ies for new projects in those regions. Descriptions of each
characteristic were recorded using Eppi Reviewer (ER4.5
2018) and were sorted into themes from which definitions
for different LoD were derived.

The complete details of the classification of each study
can be found in Appendix 1. The following sections detail
the updated categories of approach for each of the 11 model
characteristics identified in Fennell et al. (2019) and includes
a new characteristic — the level of application of calibration.
We begin by examining the use case of the UBEM before
moving on to the characteristic framework.

Use case of the UBEM

Figure 3 highlights the trend of models developed for spe-
cific cases before being repurposed for different contexts
and datasets. Consequently, it is anticipated that along with

e ™
e

Treatment of uncertainty \

Temporal resolution

User level Building level

Thermal zoning

Environmental level

Surroundings &
onentation

|

Mcthodological Icvcl/

Form of calculation

/
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~
—

—
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Fig. 2. Model characterization framework developed by Fennel et.al 2019.
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Fig. 3. Global coverage of the UBEM projects reviewed — color represents Climate Zone & radius represents number of studies in

that city.

the required degree of accuracy and intended spatial scale,
the use case of a particular UBEM will inform key decisions
about the types and granularity of data required. Hong,
Chen, et al. (2020) identified 4 distinct use cases:

Energy use benchmark

Existing building retrofits

Energy forecasting and performance-based design
District energy system design and optimization.

From the observation of statistics and the review of the
UBEM projects considered in this research it was found that
75% of the projects are developed to be used for End use
energy benchmarking or developing baseline energy models.
17% of the projects performed Energy retrofit studies, fol-
lowed by 6% projects for Future scenarios. Since data avail-
ability is a common challenge in most of the UBEM
exercises (Johari et al. 2020), baseline model calibration is
essential to minimize uncertainty in modeling assumptions
across different model characteristics, which is essential for
application in Retrofit and future scenario assessment. Apart
from this, only 2% projects worked on district energy sys-
tems and municipal service integration. Cities with detailed
urban datasets have been able to test advanced applications
of UBEM with certain confidence in results post calibration
(Romero, Fonseca, & Schlueter, 2017).

The model characteristics

Occupancy

Happle, Fonseca, and Schlueter (2018) indicated that occu-
pant behavior can be modeled as presence or activity that
represents operation of equipment, lighting, and other

systems. They categorized occupancy modeling methods as
— deterministic and stochastic, that can be space or person-
based. From these, only three combinations were practically
observed: (1) deterministic space-based, (2) stochastic space-
based, and (3) stochastic person-based approaches. Further
these approaches can have or not have diversity. Diversity
can again be space-based and may be introduced within the
building archetypes or person based accounted by the kind
of population, e.g., permanent v/s visitors. From this, 4 lev-
els of detail were established:

e Deterministic — single profile: These models use a
repeatable hourly schedule of a typical day in the year.
The same schedule is applied to all buildings from the
same archetype e.g., T. Hong, Chen, Piette, et al. (2018)
who use a DOE benchmark survey or Heiple and Sailor
(2008), who based occupancy schedules on the
ASHRAE benchmark survey. This approach lacks diver-
sity so is unsuitable for modeling peak loads but is easy
to define from reference buildings.

e Deterministic — multi-profile: extend the single profile
approach to include a variety of profiles for the same
archetype, e.g. Quan and Li (2015), which varies occu-
pancy density or which includes diversity across arche-
types. This approach is useful for creating seasonal
diversity, and creating diversity across buildings in
an archetype.

e  Stochastic space-based: Derived from statistical distribu-
tions to predict the occurrence of certain actions. The
probability of each action depends upon the previous
action. Richardson, Thomson, and Infield (2008) use a
Time of Use Survey (TUS) at 10minute interval for
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multiple spaces, occupants and buildings in an archetype
using several occupant surveys to derive stochastic pro-
files and create spatial & temporal variations.

Agent based (Stochastic person based): Models every
individual’s presence, activities and actions based on prob-
ability distributions, for example Robinson et al. (2007)
developed occupancy models based on TUS with sensor data
for occupant presence, time of arrival and window opening
to account for mixed mode operations. Barbour et al. (2019)
proposed tracking the 3.5 million inhabitants of Boston from
mobile phone usage using a statistical Time-Geo
Framework. With this approach they observed that occu-
pancy patterns are 5 times lower from deterministic
approach. A difference of 15 to 21% was noted in the
energy consumption due to this.

Building geometry

3D city models are required to define building’s geometry,
envelop thermal properties, glazing ratio, ventilation rates,
inter-building heat exchange and mutual shading. This
geometry can be made available in the form of Semantic
City 3D models. Traditionally, 3D city models can be
developed with Levels of Detail ranging from 0 to 4
(Biljecki 2013). So far, no UBEM models have been devel-
oped with LoD4 due to high complexity and unnecessary
detailing. The commonly adopted geometry LoDs are:

e 2D geometry (CityGML LoDO0) — Buildings represented
as footprints or roof edge polygons, in absence of build-
ing geometry arbitrary box models are developed.
(Filogamo et al. 2014) used cubiod geometry based on
typical floor area to generate a scaled dynamic UBEM.
These approaches are suitable for statistical and data
driven calculation and are often used to explore solar
insolation potential, although over shadowing may com-
promise results.

e 2.5D extrusion (CityGML LoD1)- 2D geometry of the
building footprint extruded to their respective heights.
This is the most widely used approach for UBEMs.
Cerezo Davila, Reinhart, and Bemis (2016) combined a
2D GIS database with cadastral data for the number of
floors to extrude the 2.5D model. They observed that
the differences in conditioned volumes to the modeled
volume resulted in some errors when not combined with
other semantic details.

e 3D Geometry (CityGML LoD2) — represents the actual
3D geometry of the buildings accounting for different
shapes of the roofs as opposed to the prismatic flat roof
LoD1 geometry. Monien et al. (2017) used LiDAR data
and building reconstruction methods to develop the
same for Essen, Germany. They found an increase in
accuracy of 10% compared with LoD1. Nouvel et al.
(2017) also observed an increase of 15-20% in the
result accuracy for buildings with pitched roofs and
attics while modeling a 3D geometry as compared to
2.5D extrusion.

e 3D with external features (CityGML LoD3) — 3D mod-
els with detailed wall and roof structures including
doors, windows and other external features. Saretta,
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Bonomo, and Frontini (2020) used these models for
estimating the potential of BIPV on an urban district in
Switzerland. They found that exact glazing ratios and
shading elements improved model accuracy but resulted
in four times increased computational effort.

Thermal zoning

To perform thermal simulation, zones are created to repre-
sent and group interior spaces in a building with similar
exposure to outdoors, operational patterns, HVAC systems
and thermal conditions (set-point temperature, ACH etc) and
report their average results. Four classes of approach were
identified in the literature:

e Single Zone per building — each building volume is a
single thermal zone, e.g., (Robinson et al. 2009). This
approach is suitable when the entire building has similar
use and construction characteristics.

e Zone per floor/Space — Separate thermal zone to
account for the ground floor and top floor having differ-
ent adjacencies and exposure e.g., (Chen, Hong, and
Piette 2017). This is the most popular approach for
dynamic UBEMs and accounts for different uses in a
single building. Chen and Hong (2018) used a variant
approach in which floor multipliers are used to group
similar floors, reducing simulation time by 3 times with
marginal increase of 2.6% error.

e  Core-Perimeter zoning — Accounts for impact of differ-
ent orientations. Perimeter zoning along the fagade
within Sm depth, is also prescribed by ASHRAE 90.1x
G. Dogan, Reinhart, and Michalatos (2016) proposed an
autozoning algorithm to implement this approach. Chen
and Hong (2018) found an improved accuracy of pre-
dicted cooling & heating loads by 7.5% & 16.9%
respectively with this zoning approach.

e Detailed internal zoning — Further divides interiors
spaces following the building’s interior layout e.g., (Yi
and Peng 2019) and (Remmen et al. 2018). This
approach requires detailed information of the internal
layouts and is typically restricted to scaled dynamic and
reduced order models.

Building archetypes

Reinhart and Cerezo Davila (2016) indicated that develop-
ment of archetype requires segmentation and characteriza-
tion. In segmentation, the building stock is classified
according to the building’s shape, age, use, energy consump-
tion, systems, or other parameters. Characterization assigns a
complete set of thermal properties including construction
assemblies, schedules and building systems for the arche-
type. Johari et al. (2020) highlighted that most studies relied
on simple archetype development from the available data.
Clustering algorithms can also be used for classification
based on multiple parameters. They indicated that archetype
classification and characterization can be either deterministic
or probabilistic. Typically, classification by building use
type represents the operational profile and the building age
represents the construction materials and the systems. In this
proposed framework, Building Archetypes only considers
classification of archetypes. Characterization and calibration
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of the inputs is separately dealt with in the Treatment of
Uncertainty. Three classes of approach were found:

e Single criteria — based on use type (e.g., residential,
commercial etc.) or vintage. Building use types are
determined from literature or cadastral data. Archetype-
based inputs (e.g., operating schedules, building fabric)
are the same for all buildings, for e.g., (Darren
Robinson et al. 2009).

e  Multiple with a single criterion — a variety of different
archetypes are included within a single criterion, such
as building use type. However, each building within the
archetype uses the same inputs. To elucidate, residential
buildings may be divided into types such as attached,
detached, apartments, etc. The study conducted by
Davila (2017) found the error reduced from 16% to 4%
by having multiple residential archetypes based on
age group.

e  Multiple with multiple parameters — Multiple combina-
tions across different parameters e.g., Use type and age
— Apartment 20 yrs. old, Detached 40 yrs. etc. e.g.,
Monteiro et al. (2017), Coffey et al. (2015). This
approach required detailed data on building type and
class, age, roof shape, size, and neighborhood character-
istic. The need to create multiple archetypes depends on
the variability and the sensitivity of the parameters i.e.
when their representativeness toward energy use
is important.

Context

Effects of local shading, shared walls between buildings,
radiation from sky & neighboring buildings and wind pat-
terns can be accounted in a UBEM. The following
approaches were found in the reviewed projects:

e Standalone: Does not consider any urban context. They
are typically used in Scaled dynamic UBEM where City
3D model is unavailable, e.g. Berthou et al., (2019;
Bhatnagar et al. (2017)

e Contextual shading: Mutual shading and adjacencies are
considered in simulations. This requires 3D model of
contextual buildings. e.g., Krayem et al. (2019) included
potential shading surfaces for each building with height
H in a radius of 3.78H (calculated from the sun angles).
Chen and Hong (2018) used a pre-processing algorithm
to remove blocked surfaces, only considering effective
shading surfaces in the context. This improved simula-
tion time by 70%.

e Detailed contextual interaction: Includes long-wave radi-
ant exchange between buildings, and microclimatic
effects. This requires modeling surface properties of
contextual structures, additional algorithms, and simula-
tion tools. Hong, Ferrando, et al. (2020) used this
method to account for longwave radiant exchange and
waste heat from HVAC systems with the details of sys-
tem type and COP. Palme & Salvati, (2018), modeled
anthropogenic heat transfer and evapotranspiration rate,
urban microclimate co-simulated with UBEM, to
account for dynamic inputs. This method increases
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complexity of simulation and is typically adopted in
reduced order models.

Climate

Usually, a single typical meteorological year (TMY) weather
data either for the location or the closest city is used. Only a
few models account for micro-climate data (T. Hong, Chen,
et al. 2020). The following approaches for addressing cli-
mate in UBEMs were found:

e Steady state — Long-range average values for outdoor
weather conditions using historic weather data, e.g.
Gupta (2009).

e Typical Meteorological year (TMY) — Weather data
obtained from historic measurements, e.g. Reinhart et al.
(2013). This approach is the most wused in
dynamic UBEMs.

e  Urban Microclimate — Microclimate can either be meas-
ured from a local weather station or can be generated in
the simulation model or separately. This approach can
account for urban heat island when recorded for a long-
time duration. Reduced average error in simulations to
10% as opposed to TMY were observed by using a
Local weather station by Nouvel et al. (2017). Hong
and Luo (2018) used simulated Microclimate data and
observed reduced simulated energy values by 2—-11% as
opposed to TMY, but with a 15% increased simula-
tion time.

Municipal services
Most of the reviewed projects do not account for energy
consumption for municipal services. A UBEM can account
for total municipal service energy derived from the publicly
available dataset or calculations with or without Spatio-tem-
poral simulations:

e Included without spatial mapping — Energy use is calcu-
lated from total load, operational hours and benchmark
values without spatially locating the services, e.g.
Amado et al. (2018). This method can be used to esti-
mate energy consumed by services like street lighting,
water supply and waste-water treatment.

e Included with spatial mapping — energy use is calculated
from mathematical models considering spatial configur-
ation & layout, e.g. the studies conducted by Agugiaro,
Robineau, and Rodrigues (2017), Fonseca and Schlueter
(2015). This approach requires details of metered data
for individual units and network layouts and is typically
used with reduced order models and for calculating
energy consumed by district heating or cooling and
other renewable energy systems.

Stock dynamics
Depending upon the nature of the investigation, the building
stock can be modeled as either static or dynamic:

e Static — point in time/snapshot. Most of the reviewed
models are static models.

e Dynamic- Depicting temporal changes. Rawal and
Sharma (2019) presented a scaled-dynamic UBEM for
Ahmedabad city, predicting future energy consumption
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scenario till the year 2047. Fonseca et al. (2016) pre-
sented four development scenarios of an industrial
neighborhood in Zug, Switzerland and predicted energy
saving potential till the year 2040. Wang et al. (2018)
presented CESAR, a dynamic UBEM for predicting
future scenario for Switzerland till 2050. They studied
the effect of future weather on the dynamic building
stock and potential energy & carbon savings by adopt-
ing retrofits also analyzing economic aspects.

Form of calculation

Hong, Chen, et al. (2020) classified the existing UBEM

methodologies as i) Physics based dynamic simulation, ii)

Reduced order & iii) Data-driven models. Simulation based

models can also be of different granularities with significant

implications for computing time:

e Scaled Dynamic — Prototype building for each archetype
is dynamically simulated and results are scaled to the
entire urban area e.g., Bhatnagar et al. (Bhatnagar et al.
2017) used this approach for modeling national level
commercial building stock of India. Caputo, Costa, and
Ferrari (2013) observed that using this approach with
more archetype simulation error reduced to 4%. They
required the total building stock area in each archetype
and prototype building geometry and characteristics for
this approach. Nagpal and Reinhart (2018) compared
this method to dynamic simulation UBEM for the MIT
campus and observed the simulation time reduced by
57% with marginal loss of accuracy.

e Shoe box model — Clusters the building’s facade and
creates smaller representative zones based on weighted
area for each facade for ease of simulation e.g., Dogan
and Reinhart (2017) reported this approach to be 200
times faster than the dynamic method. Marginal error of
11-20% RMSE from metered energy data was
observed. Zhu et al. (2019) reported this method to have
inaccuracy in capturing interbuilding effects like shading
due to pre-simulated results for typical zones.

e Reduced order simulation — Simplified thermal network
model represented by nodes for each building surface
like walls, roofs & floors. They also use mathematical
models to speed up simulation time. Remmen et al.
(2018) used Modellica libraries & building geometry,
reported that loss of accuracy in results was traded-off
against large time savings. Emmanuel and Jérome
(2015) used thermal network equations and building
geometry. Performing Bayesian calibration in their
model reduced result errors from 25% to 8%. Fonseca
et al. (2016) used Building 3D models with context.
Solar insolation was calculated on actual geometry to
improve accuracy and use actual surface temperatures at
input nodes. Nagpal et al. (2019) combined model
geometry with machine learning model and training
data. Models were auto calibrated to improve simula-
tion accuracy.

e Dynamic simulation — This involves simulating each
building individually and allows spatial diversity and
contextual interactions to be accounted for e.g., Cerezo
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Davila, Reinhart, and Bemis (2016) and Chen, Hong,
and Piette (2017). This approach offers improved accur-
acy but increased time due to complexity of calculations
and may require high performance computing resources.

Temporal resolution

UBEM can cover temporal scales from an hour to a day, a
week, a month, a year, and one or multiple decades (Hong,
Chen, et al. 2020). Many projects report the results in
Annual Energy use intensity (EUI) kWh/m2 (Chen, Hong,
and Piette 2017; Fonseca et al. 2016; Perez, Kampf, and
Wilke 2011). Some report monthly or bi-monthly energy
consumption values to establish trends (Cerezo et al. 2017;
Krayem et al. 2019). Cerezo Davila, Reinhart, and Bemis
(2016) reported hourly energy data to perform peak demand
optimization scenarios.

Treatment of uncertainty

To reduce the discrepancies between predicted energy
demand and actual measurements, calibration methods are
needed in building energy studies. Uncertainty in the input
data is reduced through model calibration and subsequently,
the assumptions must be validated for consistency in
obtained results. The approaches for treating uncertainty
were classed as:

e Deterministic —An unstructured approach involving
manual adjustment of a few uncertain parameters to a
fixed defined value. It requires some metered energy
data and typically observed range of values of these
uncertain parameters. Krayem et al. (2019) performed
manual calibration and post-processing simulation
results to improve result accuracy. Berthou et al., (2019)
followed an iterative process of calibrating the most
sensitive parameters.

e  Probabilistic — Uncertain inputs adjusted based on prob-
ability distributions of a range of values e.g., Cerezo
Davila et al. (2017) used this approach with the range
of values for input parameters, their probability of
occurrence and sensitivity toward the results. Their
approach leads to the creation of thousands of paramet-
ric combinations to simulate. The errors reduced error
to 4% but with 40 times increase in simulation time.

e Bayesian calibration — Combines probabilistic distribu-
tions of input parameters with prior knowledge of out-
puts. Cerezo et al. (2017) found this to be the approach
with the highest accuracy but with 5 times increase in
simulation time as compared to the probabilistic
approach. C. K. Wang et al. (2020) found significant
improvements in the performance of reduced order mod-
els following Bayesian Calibration with less than 5%
errors in results

Model calibration level

To improve reliability of simulation results, UBEMs are
calibrated to match metered energy data. However, a large
no. of UBEM projects were found to not being calibrated
due to lack of available data (Ang, Berzolla, and Reinhart
2020). UBEM can be calibrated at multiple temporal and
spatial scales e.g., annual, monthly, or hourly on the
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building, block, or district. Calibration data for different
UBEM projects ranges from 10 minutes time step at building
level through monthly data to annual aggregate data
(Berthou et al., 2019). The level must depend on the use
case, temporal resolution and, more importantly, to the
measured energy data available to the modeler (Davila
2017). The granularities in calibration level are: -

e Archetype level — UBEMs are calibrated to match the
extremes, average and distribution of benchmark or rep-
resentative energy consumption values e.g.,Cerezo
Davila, Reinhart, and Bemis (2016), Berthou et al.,
(2019). This approach is the most frequently used in the
absence of granular data. Typically, annual metered
energy bills of sample buildings and national level mon-
itoring campaign data is used for calibration. Cerezo
Davila, Reinhart, and Bemis (2016) observed that due to
variation in building level results the Archetype values
average out to give error in the range of 1-20%.
However, high inaccuracy in the range of 12-55% were
observed at regional scale and 5-99% at the
urban scale.

Aggregate level — Single aggregate demand values used
to calibrate models of complete districts, typically measured
annually for validation, e.g., Cerezo Davila, Reinhart, and
Bemis (2016) used total metered energy consumption at ZIP
code level from all buildings, and reported average errors of
5-20% at the annual level. Remmen et al. (2018) reported
5.6% average discrepancy after calibration at annual level
from the District level energy consumption data.

e Building Level — Metered energy data for each build-
ing being simulated in UBEM used for calibration
building by building. Cerezo et al. (2017) used annual
consumption while Krayem et al. (2019) used bi-
monthly data.

The model characterization framework

The LoDs for each model were defined based on the evalu-
ation of the literature. Two more characteristics were added
to the framework proposed by Fennell et al. (2019) in a new
‘Model Calibration’ layer, representing the level & data used
for calibration, leading to 13 Model characteristics. Based on
increasing complexity, the approaches within each character-
istic were assigned a LoD from 0 to “n”, 0 being the sim-
plest, and “n” being the most complex. As shown in Table
1, the first, second & subsequent rows represent the layers,
the characteristics & the LoDs for each characteristic,
respectively. A UBEM can be defined by combination of
any of these LoDs across all model characteristics.

The section ahead will demonstrate how the different
model characteristics relate to UBEM attributes in
the literature.

Patterns of application

After reviewing each study and assigning a Level of Detail
for the approach to each characteristic, the results for all

Table 1. Model characterization framework expanded from Fennell et al.’s study into level of details, with the addition of the model calibration layer.

Model Calibration

Methodology

Environment

Building

User

Layers
Model

charac-

Temporal

Spatial

Temporal Treatment of Form of

Stock
dynamics resolution uncertainity calculation resolution resolution

Municipal

teristics

LoD

services

Geometry  Zoning  Archetypes Climate Context

Occupancy

Deterministic =~ Scaled No Annual

Snapshot  Annual

Not

included
Contextual Included Dynamic Monthly/

Steady state Standalone

Single

Single zone /

2D
geometry

Deterministic

dynamic calibration

building

Zone/floor
or use type

single profile

Deterministic
multiple profile extrusion

Shoebox Archetype Monthly/

Probabilistic

™Y

Multiple

2.5D

Bi-monthly

Bimonthly

without
spatial
mapping

Detailed Included

shading
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interaction

with
single
parameter
Multiple

Daily/
Hourly

Bayesian | Reduced

Hourly /

Urban
Microc-

Core &

3D

Stochastic
space based geometry

order

Daily

with

spatial
mapping

with
multiple
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zoning
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Detailed

3D with
external

features

Agent based

internal
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Each Layer is assigned a color palate to differentiate from the table. Thus each model characteristic is denoted with a color. The hues of the color of the Model

characteristics become darker as the LoD increases.
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LoD frequency in Literature review
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Fig. 4. Distribution of reviewed projects having different LoDs in each model characteristics.

studies were compared. Figure 4 summarizes these summa-
rizes these observations:

1. Four characteristics: Occupancy, Temporal resolution,
Treatment of Uncertainty, Calibration level, Municipal
services and Stock dynamics have over 50% projects
with LoD 0 indicating coarser details due to
lower complexity.

2. Only eight projects have incorporated municipal services
showing that projects are focused more on building’s
operational energy.

3. Point in time assessment of energy consumption is
preferred over dynamic stock which may need a lot of
historical data & future prediction on how the building
stock & respective energy use would change.

4. Reduced order and Dynamic method are popular choices
for form of calculation.

5. Overall LoD 0 and 1 are preferred in a greater
percentage across all model characteristics.

Application case attributes

The most appropriate LoD for each model characteristic will
depend on the specific application case of the UBEM pro-
ject. These specifics of each project have been termed as
“Application Case Attributes” in this research. These attrib-
utes include: i) Location and climate of the project, ii)
Spatial scale, iii) Use case/application of the UBEM, iii)
Source of urban datasets, iv) Required/Desired model accur-
acy with respect to measured data and v) Modeling infra-
structure available including computation power and time,
data collection equipment, meters, sensors etc.

Influence of application case attributes on model
characteristics

Three Application Case Attributes were selected for further
analysis based on their significant influence on the selection of
LoDs as observed with the literature review conducted for this
research — 1) Scale of the project; It was found to influence the
level of effort, model complexity and model accuracy (C. F.
Reinhart and Cerezo Davila 2016), 2) Use case of the UBEM;-
impacts the sensitivity of different model characteristics, as
observed by Ang, Berzolla, and Reinhart (2020), and 3) Result
accuracy desired or obtained; which is largely affected by the
granularity or Level of Detail of the various inputs (Nouvel
et al. 2017) and methodologies (Cerezo et al. 2017). Based on
the learnings from different projects in the literature review, the
model characteristics that were most sensitive were studied for
their relationship with these application case attributes.

This understanding can help formulate a relationship
between the LoDs and the factors that govern their relevance
and guide the future development of new UBEM projects.

Scale of the project

The scale of each project in the literature review was
recorded and compared, from these three groups of UBEM
scales were identified: i) Block level — up to 500 buildings,
ii) Neighborhood level — 500 to 5000 buildings, iii) City
level —5000-1,00,000 buildings iv) Regional/National level
— beyond 1,00,000. These scales are further subdivided to
distinctly represent different urban levels. It was observed
that choice of form of calculation is greatly affected by the
scale of the project. Figure 5 suggests that maximum proj-
ects are conducted on block-level with less than 100 build-
ings with dynamic & reduced-order models. For scales
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greater than 100,000 buildings, Reduced Order & Scaled Use case of the model
Dynamic method is preferred more than Dynamic simula- The scale of the model was also found to influence the use
tions. This may be for faster simulation and less importance case of the UBEM, as indicated in Figure 6. 57% of retrofit
on finer details. Shoebox method is still being developed & projects are performed on the neighborhood scale & 28% on
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Percentage error vs Treatment of uncertainty
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Fig. 7. Relation between Percentage error and treatment of uncertainty.

LoDs. 80% of Future scenario UBEM work on neighbor-
hood scale. Only 2 projects have used the UBEM for
District Energy systems. One on less than 100 buildings
(Fonseca et al. 2016) and one on City scale (Agugiaro,
Robineau, and Rodrigues 2017).

Model accuracy

The metrics used for reporting a model’s accuracy were
observed as: Percentage Error, KS test and Mean Absolute
Percentage Error & Correlation Coefficient. Over 70% of
projects reported percentage errors. Figure 7 shows the range
of errors observed with different treatment of uncertainty for
only these projects that reported model accuracy in percent-
age error. It was observed that the mean error in
Deterministic method is more as compared to Bayesian and
probabilistic methods. However, this trend may also be
affected by other model characteristics having differ-
ent LODs.

The concept of level of effort

The Fit-for-Purpose model will identify the most suitable
LOD for each model characteristic that serves the intended
application case with the least level of effort. The effort
spent in performing a UBEM project can be conceptually
divided into three stages as indicated in Figure 8; i) Efforts

1. Data Collection

*Gathering geometric and
semantic data from public
and private sources for:-
Building geometry,
Building information (use,
occupancy etc), Archetype
(construction, loads,
schedules), Infrastructure
and Energy use data.

J

2. Data Pre-processing

and UBEM Development

*Pre-processing the Urban
data for:-

eDeveloping 3D model eg-
model reconstruction
from LiDAR data;
Geotagging semantic
information to building
geometry; Preparing
energy simulation inputs;
Generating a UBEM

in Data collection, ii) Efforts in Pre-processing the data
which includes Model development, preparing simulation
inputs, validating the assumptions and iii) Efforts in Post
processing which includes reducing uncertainty and analyz-
ing the results for decision making. These efforts can be
both manual e.g., — surveys, data collection and computa-
tional. As observed from the Literature review, for each
UBEM project the degree or Level of Effort (LoE) across
these three stages can significantly vary based on the avail-
ability of resources, technical know-how and the application
case attributes. Thus, for each UBEM project the modeler
will have to assess their own LoE across these three stages
and decide rationally upon the usability of a higher LoD in
the Model characteristics.

Observations from literature review

An attempt was made to group similar projects based on
their LoD in different characteristics using K-modes cluster-
ing algorithm, however no coherent groups were formed.
The observations show that it is unlikely that a meaningful
relation between the LoD and modeling objectives can be
established through literature. At present each research group
makes its assessment of what is the required LoD for their
purposes and depending on the other UBEM attributes. This

3. UBEM Post

processing

N\
*Post-processing the
UBEM including:-
Computational effort for
model simulation; Model
calibration and treatment
of uncertainty; Analysis of
and reporting of results.

Fig. 8. The three stages of effort required for a UBEM project.
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Fig. 9. Characteristics of the pilot study area of 0.3km2 of Ahmedabad.

is often implicit within their work and may be driven by
practical considerations of data availability, rather than the
actual requirements of the study. Parallel research is focused
on developing new tools and methods to reduce simulation
time and complexity. This indicates that the framework is
essential in guiding newer research to optimize their resour-
ces to achieve what is desired.

Application of the model characterisation
framework to Ahmedabad

This section attempts to understand the existing data and
infrastructure available for Ahmedabad and identify the
application of the developed framework studying the impact
of various LoD to develop supplementary data collection
approach for the UBEM of the entire city. The city of
Ahmedabad in Gujarat has been one of the most important
trade centers in western India and a major industrial and
financial hub. Owing to a rapid development at a
Compounded Annual Growth Rate (CAGR) of 3.18 for com-
mercial & 3.61 in residential stock respectively (Rawal,
Pandya, and Shukla 2018), robust planning through UBEM
is required for achieving energy efficiency, analyzing the
impact of implementing different policies and tailor them to
suit both the existing and the upcoming building stock
of Ahmedabad.

Public datasets in Ahmedabad

CEPT Geomatics Lab used the administrative data along
with satellite imagery to extract building footprints and
develop a GIS database. The plot’s details on its permis-
sible use, Floor Space Index (FSI), setbacks & year of
ownership were used to derive building use, footprint,
building height & building age. However, there were

several gaps and inaccuracies in this available dataset as
identified by Rawal, Sharma, Poola, Ruyssevelt, & Fennell
et al. (2019).

1. The extracted building footprints didn’t match the plot
boundaries and overestimated building area by including
projections like balconies, porch, temporary structures
and unoccupied areas like lift/staircase cores, shafts
& corridors.

2. Building heights were estimated based on maximum
permissible FSI and not on the actual existing building.

3. The Address on the tax assessment data did not locate
the property on the GIS map for many properties.

4. Archetype characteristics were assigned from literature
studies due to a lack of actual surveyed data
for Ahmedabad.

5. Energy bills were inaccessible due to data privacy
regulations. Only total energy sales in Ahmedabad were
known from reports published by the electricity
Distribution Company (DISCOM).

To overcome these challenges and fill the data gaps, the
model characterization framework is applied to identify the
impact of higher LoD in different characteristics on the
simulation results. This will enable identifying the most sen-
sitive parameters for different archetypes and inform where
a higher LoD is beneficial. The test case presented here
deals with identifying the effort in the Post processing stage
and uses Simulation time against which the impact of differ-
ent LoDs is assessed.

Test case

A UBEM for 0.3km? area of the Central Business District
of Ahmedabad comprising 250 buildings was developed, as
shown in Figure 9. The area is distinguished into three clus-
ters of buildings, referred to as 1) Zome A has 87%
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Fig. 10. UBEM simulation workflow.

residential use. 2) Zone B has a diverse mix of uses with
18% commercial office, 25% retail and 47% residential. 3)
Zone C has 32% educational buildings. The building ages
have been classified into 3 categories less than 20 years,
20-50years and older than 50years. Age of the building
determines the construction materials and efficiency of sys-
tems. Building heights will make an impact on
mutual shading.

Simulation workflow

The UBEM is created through a customized python script,
SimStock (Korolija 2020) shown in Figure 10. The GIS
data collected and developed by the Department of
Planning at CEPT University contains shapefiles of the
buildings with important data like building use, number of
floors, age, linked with a unique building ID. Archetype
characterization with occupancy, equipment, lighting, and
HVAC details are associated with the building use. The
building shapes and number of floors are then used to
extrude a LoD1 geometry and glazing ratios are defined by
use type to create thermal zones. After this construction,
templates are assigned to the buildings based on archetypes
or based on age. Once all the input data for thermal simula-
tions is linked with the GIS data, IDF files are generated
for each building with context buildings as shading objects.
These IDF files are then batch simulated in Energy Plus
using the SimStock python script.

Input data sources

The inputs for the UBEM were largely derived through lit-
erature review as cited in Table 2. Some sample electricity
bills were collected for residential buildings in an online
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survey and a walkthrough survey of the site was performed
to note the discrepancy in the GIS data and to collect infor-
mation on construction materials, glazing ratios and win-
dow shading.

Assessing the impact of increasing levels of detail

A baseline UBEM referred to as Iteration 1 was developed
with LoD across each iteration for which data was available.
Subsequent iterations (highlighted in green) were developed
by incrementally changing LoDs in three key characteristics,
i.e., Occupancy, Archetypes, and treatment of uncertainty, as
shown in Table 3; to study their impact on the UBEM
results with respect to addition in simulation time.

The data required to develop the higher LoDs was
sourced from field surveys and modelers assumption. The
results discuss the EUI (kWh/m2) values for Residential,

Education & Commercial Buildings across these
combinations.
Iterations] & 2 compare the difference between

Deterministic single and multi-profile occupancy schedules
with temporal diversity only. In iteration 2 for residential
buildings, seasonal operation of air conditioners and evap-
orative coolers is included. For educational buildings, the
vacations were considered and for commercial buildings
working Saturdays were considered once a month.

Iterations 2 & 3 compare the impact of multiple arche-
types based on age & building use. The construction enve-
lope was changed based on the age of the building.

Iterations 3&4 compare the impact of probabilistic assign-
ment of Window to Wall Ratio based on use types. Finally,
in iterations 5&6 the comparison between Deterministic
assignment of 0.5m deep overhangs v/s Probabilistic with
overhangs from 0.3 to 0.6m depth was made. In iteration 5
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Table 2. Sources of input data for the UBEM exercise.

Archetype Data source Granularity
Residential 1. Load research for residential & Annual schedules, Average EUI (kWh/m?),
commercial establishments in Gujarat Lighting cooling & equipment loads
(Garg, Maheshwari, and
Upadhyay, 2010)
2. Residential Buildings in India: Energy
use projections & savings potential
(GBPN CEPT, 2014)
3. Residential design guidelines
(BEE 2014)
Commercial & retail 1. Energy appliance transformation in Hourly profile for surveyed buildings
commercial buildings in India (Garg
et al. 2017)
2. BEE Benchmark (BEE 2010) EUI (kWh/m?)
3. ECBC 2017 Hourly schedules
Education 1. Energy appliance transformation in Lighting cooling & equipment loads
commercial buildings in India
2. ECBC 2017 Hourly schedules
Hotels 1. Exploratory Data Analysis of Indian Annual Data
Hotel Benchmarking Dataset (Sarraf,
Anand, and Mathew 2014)
2. ECBC 2017 Hourly schedules
Health 1. Energy appliance transformation in Annual Data

commercial buildings in India
2. ECBC 2017
3. Best practice guide for Energy
efficiency in Hospitals (USAID
India, 2009)

Hourly schedules
Lighting cooling & equipment loads

the overhangs were added to residential and educational Results
buildings only and in iteration 6 overhangs are also added to
commercial buildings older than 50years. The details of
input parameters varied across different iterations are

reported in Figure 11.

The simulated EUI (kWh/m2) of all the buildings in dif-
ferent zones were compared to a baseline reference value
derived from the literature data noted in Table 3, to check

Iteration 1vs 2

Comparison between single & multiple occupancy
profiles.

Iteration 1 (11) - Single Profile—

same schedule throughout the year &

Iteration 2 (12) -Multiple Profile —

* Seasonal variation in the schedule. The effect of
varying AC & Evaporative cooler schedule in
Residential buildings.

* Summer / Winter vacations added in Educational
schedules

* Last Saturday of the month made working for
Commercial buildings

Annual
6am-1pm & Spm-11pm
AALWAYS ON (follows occupancy)

Evaporative cooling OFF
Air Conditioning | 1pm ~ 4pm & 10pm-1am
ingle profile HVAC schedule- Residential

Natural Ventilation
Fans

Tablel-

Feb  Mer  Apr  May n il
REM  REM  REM  REM  REM  REM
ON

oat
Natural Ventiation REM REM  REM  REM
Fans. ON

4pm | dpm
& | &
10pe- | 10pm-
6am

ON__ON
12pm-| 12pm-

Iteration2vs 3

Comparison between single & multiple
archetypes based on age.

Iteration 2 (12) - Single Archetype —
Assumes same construction envelop
(Basic construction) and infiltration rate
for all buildings across all building ages

Iteration 3 (13) -Multiple Architypes
¢ 3 construction age groups were
defined :- a) <20 years — Good
b) 20-50 year — Average c) >50 — Basic
The material properties of the envelop
were varied according to the age

Basic const.
Wallu—
2.66 W/m2K

Improved const
Wallu-—
0.72W/m2K

Fig. 11. Variation in parameters across different model iterations.

Iteration3vs 4

Comparison between deterministic &
Probabilistic Glazing ratio (WWR) Iteration
based on use type

Iteration 3 (I3) - Deterministic—

Assumes same WWR for all buildings in a
Use category

Iteration 4 (14) —Probabilistic

Assigns WWR randomly within a range of
defined values with equal probability to
different buildings in the same use type

Probabilistic
WWR

Deterministic
WWR

Use Types

20% 10-20%

(interval of 10)

Residential

60% 50-70%

(interval of 10)

Commercial

30% 20-30%

(interval of 10)

Education

Iteration4vs5 & 6

Comparison between deterministic &
Probabilistic assignment of Overhangs on
windows

Iteration 4 (14) - Deterministic—

Assumes No overhangs for shading

Iteration 5 (15) —Deterministically

Assigns Overhangs of 0.5m depth to all
Residential and Education buildings and
only to commercial buildings older than
50 vyears

Iteration 6 (16) —Probabilistic

Randomly assigns Overhangs of within a
range of 0.3-0.6m depth on the above
mentioned building types
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Violin plot for Adjusted EUI distribution across different use types from all 6 Iterations (11-6)

Residential

Iterations

i
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EUI (kWh/m2)
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pt

Commercial

EUI (kWh/m2)

= = =~ Baseline= 180 kWh/m2

| ———

i-
R I =

20

Education
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EUI (kWh/m?2)
— — — Baseline= 80 kWh/m2

Fig. 12. Violin plots depicting the simulated EUI (kWh/m2) for the different iterations across three building types.

Kolmogorov Smirnov test result — For overall site (combined for all 3 zones)
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Fig. 13. Comparison of EUI distribution for Residential buildings accross sucessive LoD iterations.
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the consistency of the results. The simulation considers
the entire building area air-conditioned due to a single
zone per floor. This overestimates the cooling energy
since not over 80% in commercial and 50% in Residential
& Education buildings is conditioned. Thus, simulation
results were calibrated deterministically to bring the EUI
values closer to the baseline. The adjusted EUls for the
different use types across all iterations (I1-16) depicted
through a Violin plot in Figure 12 shows the distribution
shape with the median & interquartile range shown as
dashed lines. The colored dashed line shows the baseline
EUI value for each use type.

Significance of differences between EUIs

The Kolmogorov Smirnoff (KS) test was used to assess the
significance of differences between results for each iteration
for the different building classes. In the KS test, p-value
greater than 0.05 means the null hypothesis that the two
samples are drawn from the same distribution is rejected. If

Science and Technology for the Built Environment

the null hypothesis is not rejected, the lesser complex LoD
in that case would be adopted.

Residential & educational buildings

Figure 13 suggests Iterations 1 & 2 have maximum differ-
ence for Residential buildings due to seasonal operation of
ACs. At the neighborhood level there is a difference
between iteration 2 & 3 due to variation in building ages
distributed in the area. Other iterations do not have a signifi-
cant difference. Like residential buildings, the educational
buildings are also affected the most with iterations 1-2 & 2-
3, due to occupancy profiles and construction details
(Figure 14).

Commercial buildings

Figure 15 suggests that for Commercial buildings occupancy
patterns do not have significant variation seasonally thus
iterations 1&2 have no comparable difference. At the neigh-
borhood level there is a difference between iterations 2 & 3
due to variation in building ages distributed in the area. This

Kolmogorov Smirnov test result — For overall site (combined for all 3 zones)
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Fig. 14. Comparison of EUI distribution for educational buildings across successive LoD iterations.
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Kolmogorov Smirnov test result — For overall site (combined for all 3 zones)
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implies differences in construction materials make more
impact than other parameters.

Evaluating the fit-for-purpose iterations

The effective difference between two LoD combinations
represented by the p-value from the KS test is reported
against the difference in simulation time in Table 4. This
comparison will give a suitable tradeoff between different
LoDs and suggest the path for maximum benefit with the
least effort for this test case. On the graph, in Figure 16
the X-axis represents the difference in simulation time
and the Y-axis represents the P-value. The iteration is
defined by different shapes and colors across use types
as shown in the Table 4. Based on the results we can
divide this graph into 5 segments. i) Preference 1 — on
the lower left corner represents extremely significant
change with least effort, thus this change must be incor-
porated. ii) Preference 2 — top left below the gray band,

2
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Fig. 15. Comparison of EUI distribution for Commercial buildings across successive LoD iterations.

has an acceptable change and does not cost much effort.
iii) Preference 3 — on the bottom right corner has
extremely significant change but requires more effort and
needs a call for decision. iv) Preference 4 — the least pri-
ority to iterations having an acceptable change but
extremely high time. At last, the values in the gray band
are insignificant and may be avoided. Thus, the iterations
highlighted in green in Table 4 are the ones selected for
different building types.

Observations from test case simulation results

The simulation and data collection exercise for the pilot
study in Ahmedabad indicates the need to focus on the fol-
lowing areas:

1. The impact of urban morphology in terms of density,
height, age, & mixed use which is heterogeneous in the
city. Similar areas and building types need to be grouped
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Table 4. Difference in simulation time and P value on
comparing different iterations of LoDs across building
use types.

Residential
Tteration Time difference P value Symbol
11-2 8.89 5.71E-87 A
12-3 3.97 6.85E-13 ]
13-4 1.32 0.996 O
14-5 21.12 0.009 O
15-6 5.44 0.433

Commercial
Iteration Time difference P value Symbol
11-2 1.59 0.67268
12-3 0.71 3.12E-05 [ |
13-4 0.24 0.6726 ()
14-5 3.78 1 @
15-6 0.97 0.6726 X

Educational
Iteration Time difference P value Symbol
11-2 1.12 1.21E-08
12-3 0.50 0.000104 [
13-4 0.17 0.99416 )
14-5 2.67 0.449 3
15-6 0.69 1 X

The Green highlighted values represent the significant change
in P-value and those iterations for which the P-value cell is
colored green is selected.

and the archetype definition must account for these
differences.

2. Economic status is also vital while defining archetypes
as it relates to appliance ownership, air-conditioned area
and overall energy use (Garg, Maheshwari, and
Upadhyay, 2010)

3. Not accounting mixed mode operation, the UBEM
overestimate cooling energy use by 1.5-2 times in many
buildings. Thus, data on operation of ACs needs to be
collected in more detail especially in residential
buildings. Core and perimeter zoning can separate
conditioned and non-conditioned zones to account for
spatial mixed mode.

Science and Technology for the Built Environment
Conclusion

The extensive literature analysis of 85 UBEM projects con-
ducted in this research suggests:

There is no standardization made for data requirement
for developing UBEMs. Each research group works
with  their available resources and technical
know-how.

2. A lack of standardized nomenclature and classification of
model inputs, methodologies, modeling objectives and
consistency of metrics to report simulation results makes
it challenging to compare or correlate different UBEM
projects. This makes it difficult for new users to find
relevant case studies and adopt standardized workflows
to develop a UBEM.

The proposed model characterization framework in this
research takes a step forward to bridge this gap. The
application of this framework as demonstrated in the case
study for Ahmedabad serves three purposes: — 1. It ena-
bles to identify the LoD of the existing data 2. Through
pilot study of a sample area the modeler can identify
suitable LoD across different Model characteristics
required for different building types, 3. These pilot proj-
ects can help identify requirements of additional data
which can then be prioritized by the modeler or the
research group.

The developed framework and the application of the
same through the case of Ahmedabad suggested that
the choice selecting a higher LoD for different model
characteristics may vary across building use types and
the urban morphology. Also, these Model characteris-
tics may not be consistently sensitive on all urban
areas. Thus, it is important to conduct pilot projects
with more granular data to understand this relationship
on a particular urban context before scaling up the
exercise. While different LoD may be suitable for dif-
ferent building types and locations, there needs to be a
consistency in LoD on the overall UBEM of the city.
Thus, the pilot projects will allow understanding the
variation and address this problem by selecting the
LoD that is more predominantly observed to maintain
consistency.

This framework has a potential to be revised and updated
with newer characteristics and LoD as processes change,
data availability improves, and new methods are developed.

Appendix 2 gives a visual description of the framework
and step-by-step application exercise, that can be used and
scaled up to develop a fit-for-purpose UBEM for the
entire city.

Application of the model characterization framework
various UBEM projects

The Model characterization framework and the approach
toward Fit-for-purpose UBEMs as presented in this research
can be adopted by upcoming projects in the follow-
ing manner:
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Fig. 16. Simulation time v/s P value to evaluate tradeoff between effectiveness of the results and simulation time.

1.

Use the framework to study the most appropriate
literature reference through its model characteristics and
other attributes that match the application case
attributes of your project.

Evaluate the available data through the framework to
identify the LoDs that are achievable and gaps in
the data.

Study the city’s urban morphology & use patterns to
identify a few representative zones for conducting pilot/
test projects. The zones are unique from each other but
can represent other similar zones in the city.

A detailed analysis of these zones as pilot projects
can help scale the modeling process for the entire
city most effectively. These zones have distinct
urban characteristics and must be dealt with
individually.

. For each zone through the framework of achievable

LoDs, perform Urban simulations with different
iterations possible through all characteristics.

Difference between the energy use patterns from
subsequent iterations can be studied with respect to the
effort spent. This enables the selection of different
iterations to be adopted with a suitable tradeoff with
different stages of effort; whichever is most significant
for the user. Like in the test case presented in this
research, simulation time was used to assess the

tradeoff. The modeler may select any other quantifiable
metrics to evaluate the level of effort.

For each representative zone, this detailed study helps
in identifying the best LoD combinations through all
characteristics for different building use types.

With the most suitable LoDs for each building type in
each representative zone, we can now scale up the
modeling exercise.

Suitable LoDs for each representative zone can now
streamline data collection and modeling efforts for
other zones like them.

10. Scale up the study and develop a Fit-for-purpose
UBEM of the entire city with the least effort for the
maximum benefit.
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Appendix 1

Classification of the reviewed UBEM projects in the Model Characterization framework. The color indicates the LoD in

respective Model characteristic.
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Appendix 2

Application of the proposed Model characterization framework

FRAMEWORK  Stepl.

LITERATURE LAYERS USER BUILDING ‘ ENVIRONMENT METHODOLOGY MODEL CALIBRATION DATA AVAILABLE
Medel
MUNICIPAL | STOCK | TEMPORAL [TREATMENTOF  FORMOF | SPATIAL | TEMPORAL
L GLOMETRY ARCHETYPES CLIMATE | CONTEXT RESOLUTION| 03 ¥ lCALCTE {REsOLYTION N
2D Geometry Single ¥ m‘“"" included| Snapshot
Included
25D Muhtiple with ithou
e smgle Dynausic

T™Y
parmcter
Multiple with|  Urba

HITHEH 21

3D geometry wltple ";'.?' Bayesian
parameters. e
3D with
external
features. X
Location & No. of buildings / Source of input data Accuracy of Simulation time & Purpose / Use o
climate type Urban scale (literature/survey etc.) the model computational the model
power
Step2.
ACHEIVABLE LoD WITH THE DATA
LAYERS USER BUILDING ENVIRONMENT METHODOLOGY
CHARACTERISTICS | OCCUPANCY | GEOMETRY | ZONING | ARCHETYPES |  CUMATE 0 I et B ool Lissisdamanbind Bemplin®
Deterministic- Single Zone Stand
LoD1 Sncie mrone. | 25D extrusion | SnE Single Steady state . Notincuded| Snapshot Annual | Deterministic | Reduced order
Multiple with Included
Deterministic- Zone / fioor or use Contextas shading | without Monthly/
LoD2 Multi il 3D geometry use type type/age/other ™Y only spatial Time series 80 hi Probabilistic | Scaled Dynamic
ch mapping
Detalled 30 with| Zone/ floor or | Multiplewith | 0 o e with
LoD3 Probabilistic |  external | usetype core & "‘m"" (measured/ | Treesforshading | spatial Dynamic | Hourly/Daily | Bayeslan Shoebox
features perimeter calculated) mapping
Detailed with Detailed internal
LoD4 AgontBased | oriorlayout |  zoning

REPRESENTATIVE ZONES IN THE CITY
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PERFORM DIFFERENT ITERATIONS OF LOD P-VALUE VS TIME

10 20 30 40 50

l Step 5.

SUNTABLE LoDs FOR EACH REPRESENTATIVE ZONE IN THE CITY
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