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Abstract 
Uncertainty Analysis (UA) and Sensitivity Analysis (SA) 
offer essential tools to determine the limits of inference of 
a model and explore the factors which have the most 
effect on the model outputs. However, despite a well-
established body of work applying UA and SA to models 
of individual buildings, a review of the literature relating 
to energy models for larger groups of buildings 
undertaken by Fennell et al. (2019) highlighted very 
limited application at larger scales. This contribution 
describes the efforts undertaken by a group of research 
teams in the context of IEA-EBC Annex 70 working with 
a diverse set of Building Stock Models (BSMs) to apply 
global sensitivity analysis methods and compare their 
results.  Since BSMs are a class of model defined by their 
output and coverage rather than their structure and inputs, 
they represent a diverse set of modelling approaches.  Key 
challenges for the application of SA are identified and 
explored, including the influence of model form, input 
data types and model outputs. This study combines results 
from 7 different modelling teams, each using different 
models across a range of urban areas to explore these 
challenges and begin the process of developing 
standardised workflows for SA of BSMs. 
Key Innovations 
A co-ordinated sensitivity analysis exercise was 
undertaken for 7 diverse BSMs.  
Practical Implications 
A framework for understanding how input uncertainties 
are applied in BSMs is established and different SA 
methods are evaluated, suggesting that Morris Method/EE 
is a good option for this type of model.   
Introduction 
As availability of processing power has increased, 
building stock energy models are emerging as powerful 
tools in urban planning, offering detailed insights into 
diagnosing energy consumption across a building stock, 
allowing energy efficiency interventions to be targeted at 
areas of greatest need. The impact of potential 
intervention strategies across the stock, including the 
application of renewable energy technologies, can be 

assessed, allowing competing strategies to be ranked.  A 
key benefit of these models is their potential to explore 
future scenarios, such as changing climate and different 
development pathways for the stock. 
 The wide range of potential applications coupled with the 
complexity of a modern city makes it essential to 
understand the limitations of the predictive power of such 
models. The process of model building is, by definition, 
one of simplification. No model can be a perfect 
representation of the system it aims to emulate and all 
models inevitably contain uncertainty (Refsgaard and 
Henriksen, 2004). Uncertainty can be defined as “any 
deviation from the unachievable ideal of completely 
deterministic knowledge of the relevant system(Walker et 
al., 2003). It is to be expected that as the systems being 
modelled increase in scale and complexity, the 
uncertainty in the model will also increase. Consequently, 
it is inevitable that building stock energy models will 
contain a considerable number of uncertainties. This 
should be cause for neither criticism nor alarm, as scale 
and complexity could also be utilised to hedge 
uncertainties. Such a discussion is taken in several fields, 
for instance, Leamer (2010) stated in relation to 
econometrics “If the range of inferences that can 
reasonably be supported by the data we have is too wide 
to point to one and only one decision, we need to admit 
that the data leave us confused.” Saltelli et al. (2019) warn 
that science in general faces a potential loss of credibility 
if these weaknesses in methodology are allowed to persist.  
Therefore, model uncertainties should be explored and 
reported to guarantee reliance on the model for decision 
support. The quantification of the level of uncertainty in 
the model output, is essential. Sensitivity analysis, while 
less fundamental, offers scope for significant insights by 
apportioning the uncertainty in the model output to 
individual input factors.   
Definitions 
Uncertainty Analysis (UA) characterises the uncertainty 
in model output while Sensitivity Analysis (SA) explores 
how that uncertainty can be apportioned to the different 
sources of uncertainty in the model inputs (Saltelli et al., 
2019). Both UA and SA are concerned with 
understanding the full range of model outputs. In contrast, 



Scenario Analysis focuses on the subset of model outputs 
which can be attributed to variations in a defined sub-set 
of model inputs. 
Applying uncertainty and sensitivity analysis in large 
scale models 
Uncertainty and sensitivity analysis of models for 
individual buildings is a well explored topic. In particular, 
Tian (2013) presents a detailed review of the subject, 
together with recommendations for appropriate methods 
for different problem settings. Mavromatidis (2017) 
presents a comprehensive review of approaches to input 
uncertainties in large scale models. However, as Naber et 
al. (2017) note, there has generally been limited 
application to urban and larger scale models. Traditional 
sensitivity analysis methods view the model as a clearly 
bounded “black-box” shown on the left in Figure 1.  
However, for urban scale models the mapping of inputs to 
outputs is often more complex, with sequential models 
and aggregation of sub-model results being common 
features as shown on the right.  

 
Figure 1: Application of UA and SA to large scale models 

Input data is typically gathered from a variety of data 
sources such as taxation data, LiDAR surveys and utility 
company records. Since each data source has been 
compiled for different reasons often using bespoke 
definitions, considerable data processing is required to 
align the different elements of input data (See Evans et al., 
2017 for a detailed account of the case of London, UK).  
In this context, the boundary between data processing and 
modelling is defined subjectively, based on the 
perspective and objective of the modeller. One result of 
this complexity is a lack of clarity about how UA and SA 
can be applied to BSMs. 
Aims of this study 
To begin the process of addressing the gap in the 
application of SA to models of whole building stocks, an 
exercise was established as part of IEA-EBC Annex 70 to 
undertake a co-ordinated investigation to apply existing 
global sensitivity analysis methods to a diverse set of 
BSMs and datasets. Through this process the modelling 
teams aimed to explore: 
1. The challenges of defining input uncertainties for 

large scale models and collecting appropriate data 
2. The appropriateness of different SA techniques in 

terms of robustness of results and computing burden 
3. Key drivers of uncertainty in the models. 

Due to limitations of space, this contribution focusses on 
the high-level comparison of the intra and inter model 
results.  We begin by explaining the practical rationale for 
this approach before providing brief details of the models 
included in the study. A new framework is introduced for 
the definition of uncertainties and the challenges 
encountered in their definition and application. The 
sensitivity analysis methods used are then discussed and 
their performance compared, followed by a brief 
overview of the comparative results. We conclude with a 
summary of the lessons learned through the study. 
Methods  
Since BSMs are a class of model defined by their output 
and scope rather than their structure and inputs, they 
represent a diverse set of modelling approaches (Langevin 
et al., 2020). This diversity, coupled with the diversity in 
structure and coverage of input data sets in the possession 
and the computation expense of model evaluation led to 
the development of a comparison exercise driven by the 
research aims of each research team.  
Following collective review and appraisal of the literature 
and available toolboxes, each team selected the inputs and 
analysis methods which were most appropriate to their 
models and datasets with a common set of model outputs 
being agreed between the teams. This approach allowed 
each team to undertake analysis which fitted with their 
underlying research objectives while allowing key 
challenges for the application of SA to be identified and 
explored, including the influence of model form, input 
data types and model outputs. Results from 7 models 
covering European and US housing stocks and some non-
residential stocks are included in this paper. We begin 
with a brief description of each of the models and the 
input data sets used before detailing the sensitivity 
analysis methods and results and discussing their 
implications. We conclude with insights for other 
modelling teams and recommendations for further work 
in this field. 
The models 
Each of the models in this study is based on a 
disaggregated bottom-up building physics-based 
calculation of building stock energy consumption, three 
of the models (ECCABS, Invert and BSM) are dynamic 
stock simulations which are designed to evaluate 
competing policy options over the long-term. With the 
exception of SimStock which is based on direct 
representation of individual building geometry, the 
models take an archetype-based approach to the stock 
with a stock of archetypes aggregated up to form the 
representation of the whole stock. ECCABS, BSM and 
SimStock cover residential and non-residential building 
stocks while the other models focus on residential 
buildings.  Models were classified in line with Langevin 
et al. (2020). 
(A) ECCABS (Physics simulation and agent-based 

market share of technologies - Q4). Previous 
applications include assessment of the transformation 
of the residential building stock and non-residential 



building stock of Sweden and various EU-MS (Mata 
et al., 2013, 2018) 

(B) Delghust Model (Physics simulation  - Q4).  Previous 
applications include assessment of the effect of 
energy saving measures in terms of reducing energy 
consumption in relation to costs in the residential 
sector, and the development, impact assessment and 
comparison of different calculation methods and 
performance criteria in the context of regulatory 
energy performance calculations and policy (Bracke 
et al., 2019). 

(C) Simstock (Physics simulation - Q4).  Previous 
applications include assessment of retrofit options for 
a medieval city centre in France (Claude et al., 2019) 
and schools in the UK (Grassie et al., 2018). 

(D) Invert/EE-Lab (Techno-socio-economic simulation - 
Q4).  Previous applications include assessment of the 
effects of different framework conditions (of 
economic and regulatory incentives) on the total 
energy demand, energy carrier mix, CO2 reductions 
and costs for space heating, cooling and hot water 
preparations in buildings (Müller, 2015). The model 
has been applied in more than 40 projects for the EU-
27 (+UK and selected neighbouring countries), 
covering residential and non-residential buildings 
(Kranzl et al., 2019). 

(E) BSM (Physics simulation and agent-based to model 
building stock dynamics - Q4).  Previous applications 
include state and transformation of the residential 
building stock of Switzerland (Nägeli et al., 2018, 
2020) as well as several European countries (Jakob et 
al., 2020b, 2020a; Ostermeyer et al., 2019a, 2019b). 

(F) ResStock (Physics simulation - Q4).  Previous 
applications include state-level energy efficiency fact 
sheets (https://resstock.nrel.gov/factsheets/ ), Single-
Family Housing EE Potential (Wilson et al., 2017) 
Low-income efficiency potential (Wilson et al., 
2019), and residential loads for LA100 - Los Angeles 
100% Renewable Energy Goals. Other applications: 
https://resstock.nrel.gov/page/publications.  

(G) NHM (Physics simulation - Q4).  UK Government 
Department of Business Energy and Industrial 
Strategy internal impact assessment model of stock 
implications. 

 
Input Uncertainties 
A variety of different classification schemes for 
uncertainty (not only in the field of building simulations) 
exist, for example: (Booth et al., 2013; Coakley et al., 
2014; Oberkampf et al., 2000; Walker et al., 2003). The 
principle aim of these classification schemes has been to 
map the diverse range of possible sources of uncertainty. 
These can be broadly grouped into input, model and 
output uncertainties as shown in Figure 2: 

 
Figure 2: Sources of uncertainty 

Fennell et al.’s review (2019) found an overwhelming 
focus on input uncertainties. All BSMs used in this study 
use bottom-up building physics-based calculations for 
energy consumptions. For these types of model consistent 
definitions of input uncertainties are complicated by the 
use of subgroups or archetypes as a means of reducing the 
complexity of model inputs (it should be noted that the 
probabilistic building characterisation method recently 
proposed by De Jaeger et al. (2021) allows a better 
representation of variation within the overall stock). The 
degree of information which is shared within an archetype 
sub-group varies between models:  
• Complete archetypes - members of an archetype sub-

group share all characteristics, e.g. ECCABS, NHM, 
ResStock 

• Partial archetypes - members of an archetype sub-
group share some characteristics (e.g. building fabric), 
but combine this with individual information for other 
characteristics (e.g. geometric data), e.g. SimStock. 

• Distribution archetypes - members of an archetype 
sub-group are defined based on a distribution of values 
for that sub-group e.g. Delghust Model, BSM. 

In each case, a large number of input parameters need to 
be defined at different (dis)aggregation levels: ranging 
from aggregated stock level (e.g., discount rates, climatic 
data) to the level of the individually calculated buildings 
(e.g., average insulation levels) or even further (e.g., 
insulation levels of walls, floors etc.).  Those input values 
will be drawn from different sources but, more 
importantly from a methodological point of view, they 
will be assigned across the units of the bottom-up BSM 
through different approaches. Three main approaches are 
identified based on how input parameter values are 
assigned across the units in the BSM, of which the second 



and third will result in a larger variation of input values 
within stock (and thus of spread of sub-results): 

a) a fixed value assignment, with a single value being 
assigned for that parameter to all members of the 
group (e.g., a fixed insulation level for all houses of a 
certain age) 

b) distribution based assignment of values across the 
members of the group (e.g., considering a normal 
distribution, mean and standard deviation) 

c) individual, discrete case-based assignment of different 
values across the members of the group based on a 
direct sampling from a (reference) stock dataset (e.g., 
selecting a reference sample of N cases and their 
discrete parameter values from a governmental energy 
performance database, assigning those to N calculated 
buildings within the BSM). 

The assignment of physical parameters to different 
archetypes or variations of the archetype within the BSM 
is an obvious illustration of this categorisation of 
approaches, but this categorisation also applies to other 
aspects that can be disaggregated within a building stock 
(e.g., the heating habit or income of households). It is 
important to note that the three approaches can be used 
together within a single BSM, having e.g., a fixed 
insulation level for all houses of a certain age (approach 
(a)), a distribution-based assignment of air tightness 
values based on field studies in literature (approach (b)) 
and a discrete, sampling-based definition of geometrical 
properties of individual houses taken directly from the 
governmental cadastre database or GIS (approach (c)). 
Approaches (a) and (b) are strongly related. In one way, 
the deterministic approach (a) could be defined as a 
specific, simplified case of approach (b): considering a 
distribution with a variance of zero. The other way 
around, most often, the distributions in approach (b) could 
be defined by means of individual input parameters fixed 
at group level (e.g., a mean and a standard deviation), 
requiring only a random generator within the modelling 
engine to generate the matching discrete values for each 
individual group member. This latter translation of 
distributions into characterizing, discrete distribution 
parameters at stock level allows for them to be included 
in common methods of uncertainty and sensitivity 
analysis, by varying those discrete values across stocks 
when generating the required BSMs for applying e.g., the 
Sobol or Morris Method.   
Sensitivity Analysis Methods 
As noted earlier, after collective review and debate, each 
research team selected the methods which they felt best 
fitted their models. The teams focussed on variance-based 
GSA methods as these are the most prevalent in the 
literature with one team applying a machine-learning 
based approach. In each case the output of interest is 
calculated at the stock level rather than at the archetype 
level (although one team used preliminary SA of 
archetypes to identify inputs for the stock level model 
which was ultimately the subject of a stock level SA). The 
methods selected and application details are summarised 
in the following sections. 

One-at-a-Time (OAT) methods or differential sensitivity 
methods investigate local sensitivity about the base case 
values. The computational cost of the analysis is low but 
the fraction of the input space assessed is small. OAT 
methods were explored for ECCABS, Delghust model 
and NHM. The other methods used can be classed as 
global sensitivity analysis measures meaning they explore 
the full input space of the model with all parameters free 
to vary simultaneously. In principle, this should mean 
more reliable results.   
Sobol’ method is based on decomposing the variance in 
the model output into the fractions which can be attributed 
to the different input parameters. First-order effects are 
those attributable to variance in each input on its own. 
Higher order effects are attributable to interactions 
between inputs. Total effects encompass all the 
interaction terms. Sobol’ method was employed  on 
ECCABS, Delghust, SimStock and NHM (Saltelli’s 
implementation in each case). 
Morris Method/EE uses a design of experiments approach 
to maximise the coverage of the input space for as small 
a computational cost as possible. The approach is 
effectively an OAT design which is repeated at different 
points in the input space and averages the results from 
each point. Campolongo et al. (2007) improved and 
extended the method, referring to it as Elementary Effects 
(EE). 
Derivative-based Global Sensitivity Measure (DGSM) is 
the integral of the squared partial derivatives which is 
very similar in form to Saltelli’s implementation of the 
Sobol total effects measure but is based on an increment 
between samples of the order of 1x10-5.   
FAST (Fourier Amplitude Sensitivity Test) – uses multiple 
Fourier series expansions of the output function to 
decompose the output variance into the conditional 
variances. 
RDP-FAST (Random Balance Design – FAST) uses a 
more computationally efficient extension to FAST by 
exploring a subset of the input space and scrambling 
inputs. 
Sobol’, Morris/EE. FAST and RBD-FAST all belong to 
the variance-based class of sensitivity measures. As such 
they focus on the first moment of the output distribution 
(i.e., the variance) with the inherent assumption that the 
output distribution is Gaussian in nature.  The indices 
calculated as a result may not be accurate when model 
outputs are non-Gaussian (Razavi et al., 2020), for 
example non-symmetric distributions or showing higher 
kurtosis.   
DMIM (Delta Moment Independent Measure) seeks to 
address the focus on variance as the sole descriptor of the 
output distribution by using a moment independent 
measure. 
The final method used in this analysis was the application 
of Random Forest feature importance method to explore 
pre-simulated data by studying the impact of adding 
features to a machine learning model.  This approach was 
used on the largest model due to its computational 



efficiency but has the potential for bias due to focus on 
continuous or high-cardinality categorical variables. 
The methods and use cases applied to each model are 
summarised below: 
ECCABS  
(A1a) OAT (Firth et al., 2010) energy need module, 1% 
variation; residential and non-residential stock of France, 
Germany, Spain and the UK (Mata et al., 2014), (A1b) 
OAT, energy need module, +/-10% variation; residential 
stock of  France (72 building archetypes), (A2a) Sobol’ 
method (Saltelli et al., 2010) energy need module: 11 
variable inputs, (A2b) Sobol’ method, delivered energy 
module: 3 variable inputs. 
Delghust Model 
(B1) OAT (Firth et al., 2010), (B2) Sobol (Saltelli et al., 
2010), (B3)    FAST (Saltelli et al., 1999), (B4)    RDP-
FAST (Tarantola et al., 2006), (B5) DMIM (Borgonovo, 
2007). Sample sizes of 20, 100 &1000 buildings for each 
method. 
SimStock 
(C1) Sobol’ method, (C2) Derivative-based Global 
Sensitivity Measure (DGSM) (Becker et al., 2018), 
(C3) Elementary Effects (Morris Method) (Campolongo 
et al., 2007), 51 variable parameters in an urban district in 
North London. Each method evaluated at 10, 20 and 50 
estimates. 
Invert/EE-Lab 
Elementary Effects (Morris Method) applied to four 
country cases (FRA, ESP, CZE, SWE) using two kinds of 
variation: (D1) a general variation: sample within a -
/+ 30% margin and (D2) a variation within a range based 
on expert guess for each of the parameters. 11 variable 
technical, economical and behavioural input parameters 
for a reference scenario simulation of national residential 
and service sector building stock development from 2012 
to 2030, three evaluated output variables (installed power 
of heat pumps in the year 2030, share of final energy use 
in heat pumps in 2030, final energy consumption for gas 
for space heating and hot water in 2030) 
BSM 
Morris Method applied to two cases using grouped input 
parameters (E1) Status quo of the residential building 
stock (2017) and non-residential building stock. 
(E2) Model dynamics until 2040 of the non-residential 
stock. 13 groups of parameters for the national residential 
building stock of Switzerland. 13 groups of parameters for 
the national non-residential building stock of 
Switzerland. 13 groups of parameters for the national 
non-residential building stock of Switzerland. Outputs are 
aggregate useful and final energy demand as well as total 
resulting gas emissions. 
ResStock 
(F1) Morris Method applied to individual archetypes used 
to determine most influential parameters for electricity 
and gas demand. 100 buildings in Chicago, Miami and 
Los Angeles ~30 parameters per building. 116 parameters 
selected and included in stock model.  (F2) Random 

forest trained for each output quantity of interest and input 
parameters rerun for each of 116 parameters of interest. 
Applied to all US homes by region. 
NHM 
(G1) Sobol’ (Saltelli et al., 2010), (G2) Morris Method.  7 
Parameters applied in (1) and (2) using 2 methods (a, b) 
of manipulating underlying model inputs. (G3) OAT 
(Firth et al., 2010) 
Relative computational cost 

 
Figure 3: Model evaluations and variable parameters 

The relative computational cost of each SA method is 
assessed by comparing the number of model evaluations 
required for the analysis in relation to the number required 
for a single iteration of the BSM (in some instances a 
single iteration of the BSM comprises multiple 
aggregated sub-model runs). For all of the methods 
considered, the number of evaluations is closely linked to 
the number of variable parameters.  This results in a trade-
off between complexity of SA (defined by number of 
variable parameters) and the resources required for the 
results to reach an appropriate validation metric. This 
trade-off was most evident for the most complex models, 
those based on dynamic rather than quasi-steady state 
energy balances (c.f. SimStock (C) vs the Delghust Model 
(B)). For model E, this trade-off was managed by 
grouping parameters. The Sobol’ method was the most 
computationally expensive method employed, followed 
by Morris/EE and DGSM.  FAST and RDP-FAST offered 
significant savings in computation time. 
For model F, sensitivity analysis was done at the 
individual model level to identify potentially important 
EnergyPlus inputs that weren’t specified by the larger 
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stock model. Additionally, model F trained a random 
forest on a set of model inputs and outputs to identify the 
relative importance of stock-level distributions (e.g. 
heating fuel, equipment efficiency, wall material, etc.) to 
key quantities of interest in the output (e.g. annual total, 
average daily peak timing and magnitude by season, 
etc.).  These identified variables informed an ongoing 
calibration process of model F.  
Validation of results 
Approaches to validation of results varied across the 
teams, with the three most common approaches being (1) 
inclusion of dummy variables (BSM, Invert/EELab), (2) 
use of boot-strapped confidence intervals to establish 
discrete sets of influential and non-influential parameters 
(screening threshold 0.05) (SimStock) and (3) 
convergence of sensitivity indices in line with Sarrazin et 
al. (2016) (BSM, Delghust Model).  In some cases, e.g., 
SimStock, complete convergence was not possible within 
the limit of available processing power. 
Intra-method comparisons 
Intra-method comparisons were undertaken on four 
models: ECCABS (A), Delghust model (B), SimStock (C) 
and NHM (G). Results from the Delghust model 
highlighted the value of nested sampling schemes (e.g., 
Sobol’ sequences) allowing the addition of extra 
evaluations until convergence is reached when carrying 
out initial analysis compared with space-filling designs 
which preclude this (e.g., Latin Hypercube Sampling). 
Intra-method comparisons on the Delghust model 
(Sobol’, Morris, FAST, RBD-FAST, DMIM) suggested 
that the parameter ranking of sensitive parameters have 
similar results for all tested methods. Delghust model 
results show that DMIM produced slightly different 
results from the variance-based methods, but needs much 
fewer model evaluations to reach convergence of indices. 
Overall DMIM seems to have more potential as a 
screening method. SimStock results suggested that 
DGSM performed poorly due to the stepped nature of 
responses to changes in temperature, while the risk of 
false negatives in screening (incorrectly assigning 
influential parameters to the non-influential set) was 
reduced when using the Morris/EE methods compared 
with the Sobol’ method. Analysis of NHM suggested that 
OAT analysis had some value for initial screening of large 
numbers of parameters.   
Sensitivity Analysis Results 
The primary focus of this exercise has been on the 
practical challenges of applying SA to BSMs. Early 
analysis of model structures and input definitions quickly 
highlighted the impossibility of rigorous inter-model 
comparisons and drove a focus on intra-model 
methodological comparisons and practical 
considerations. As a result, much of the analysis 
referenced in this study is exploratory in nature with only 
small numbers of variable inputs considered and wide 
variation in the robustness of the underlying data sources 
between models. While ResStock and NHM draw their 
inputs from large datasets, others have relied more heavily 
on modeller experience to determine ranges for 

parameters for which a large evidence base does not 
currently exist. Nonetheless, it is clear from these 
preliminary analyses that temperature set-points are a key 
driver in most models.     
In the Delghust model and BSM, the internal temperature 
or heating set point results to be the most sensitive 
parameter on the total building energy use and final 
energy demand, respectively. In the Delghust model, the 
effect seems much larger compared to the BSM. In the 
NHM model, on the other hand, the wall U-value has the 
largest sensitivity on the total energy demand, followed 
by the set point temperature. The SimStock model 
investigates the sensitivity of the output parameters 
heating and cooling of different building types or whole 
building stocks. Still, the minimum temperature and 
cooling setpoint show the largest sensitivity on the whole 
stock heating and cooling, respectively.  

 
Figure 4:  Most influential parameters 

Lessons learned 
A key objective of the exercise was a practical exploration 
of the challenges and benefits of undertaking SA of 
BSMs.  For all the participating teams, initial application 
required detailed consideration of the model structure to 
determine the most efficient application strategy. In the 
case of SimStock and the Delghust model, this 
highlighted changes to the model input structures which 
would be necessary to allow all parameters to be accessed 
easily for analysis. In the case of NHM, SA allowed the 
identification of a number of legacy model input variables 
which were in fact overwritten by default values during 
model evaluation. 
The importance of the scale of the building stock being 
assessed depended on the model form, models which were 
based on complete archetypes were much less sensitive to 
the scale of the stock than those which were based on 
partial archetypes in which each unit within the stock was 
evaluated independently (albeit based on some shared 
information).   
Most of the teams undertook SA using modified versions 
of existing toolboxes (e.g.,(Herman and Usher, 2017)).  A 
common theme raised was the need for careful scrutiny of 

0 2 4 6

heating setpoint
Wall U-value

window opening
hot water

internal gains
boiler efficency

plug loads
lighting

carbon intensity of…

Count

Pa
ra

m
et

er

most sensitive second most sensitive



sampling algorithms to ensure that the most appropriate 
strategy was being applied.  
The methods of UA and SA discussed in this study are 
exemplary of sampling-based forward uncertainty 
analysis approaches, as systematised by Tian et al.(2013)  
Their application raises the confidence that the built stock 
energy models developed in a bottom-up manner 
correctly represent the essential aspects of the 
phenomenon. The synthesis of this knowledge with the 
empirical findings made with inverse methods, e.g. 
exemplified by Zhuravchak et al. (2021) may be of 
significant further interest for large-scale building energy 
research. 
Conclusions 
In the context of IEA-EBC annex 70, seven modelling 
teams undertook a co-ordinated Sensitivity Analysis 
exercise in order to explore the practical challenges of SA 
of BSMs. The exercise undertaken was a preliminary 
exploration, focussed on methodological issues rather 
than inter-model comparison. The majority of the 
methods applied were variance-based although a machine 
learning approach and a moment-based method were also 
applied. The machine learning based random forest 
method was the only tractable solution to SA of the US 
residential building stock. 
A key benefit of SA was the systematic interrogation of 
the model and its results with the teams developing much 
better understanding of the underlying models and 
potential model improvements being identified.  It should, 
however, be emphasised that the conclusions made 
through SA explain the mechanism of the model, not the 
phenomenon itself.  
The methodological comparisons undertaken suggest that 
Morris Method/EE offers a good trade-off between 
computational cost and accuracy of results.  OAT analysis 
may have a small role to play in the initial screening of 
large numbers of parameters.   
Computational cost is strongly driven by the number of 
parameters and the size of the underlying stock when 
partial archetypes are used. When complete archetypes 
are used the influence of stock size is reduced. 
The variation in models and data used, coupled with the 
limited numbers of variables included in some studies, 
make it inappropriate to draw firm conclusions about the 
most sensitive parameters across the stock. However, the 
dominance of set-point temperatures and the importance 
of hot-water operation in models which included it as a 
variable are notable. 
Although much work remains to be done to explore 
additional forms of uncertainty (e.g., model uncertainty 
and geometrical uncertainty), the challenges of non-
Gaussian outputs and correlated parameters, the benefits 
of even exploratory analysis were clear and it is hoped that 
further work will enable robust and efficient workflows to 
be established for the application of SA to BSMs.  
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