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Abstract 
The vast number of different inputs required to model a 
complex urban environment makes it impossible to 
precisely quantify all inputs and complex energy flows 
within models must be simplified to achieve tractable 
solutions.  As a result, the outputs of these models 
inevitably have a significant range of variation.  Without 
understanding these limits of inference resulting policy 
advice is inherently defective.  Uncertainty Analysis 
(UA) and Sensitivity Analysis (SA) offer essential tools 
to determine the limits of inference of a model and 
explore the factors which have the most effect on the 
model outputs.  Despite a well-established body of work 
applying UA and SA to models of individual buildings, 
very limited work has been done to apply these tools to 
urban scale models.    
This study presents a systematic comparison of a range 
of three different variance-based SA methods to a high 
resolution, dynamic thermal simulation of a mixed-use 
neighbourhood in North London.  Accuracy, processing 
time and complexity of application of each SA method 
is evaluated to provide guidance which can inform the 
application of these methods to other urban and large-
scale building energy models.   

Key Innovations 
There is an urgent need for guidance on the relative 
performance of SA methods for large scale models with 
fine resolution and large numbers of uncertain 
parameters.  To address this need, this study evaluates 3 
different SA variance based-methods (Sobol’, 
Derivative-based Global Sensitivity Measure and 
Elementary Effects) applied to a dynamic thermal 
simulation of a neighbourhood model.   

Practical Implications 
This study suggests that the elementary effects method 
(an enhanced version of Morris Method) is the most 
appropriate Sensitivity Analysis method for Building 
Stock Energy Models due to its ability to the stepped 
nature of responses to temperature variations and the 
discrimination between scales of input parameters. 

Introduction 
Large scale building energy models capitalise on the 
increasing accessibility of large-scale urban data sets 
and allow the rapid evaluation of competing policy 

options.  The urgency of the need to reduce carbon 
emissions means there is little time left for trial and error 
and the has importance of targeting policy at the 
interventions which will have the greatest impact in 
reducing emissions is critical.  Building Stock Energy 
Models (BSEMs) are therefore a vital tool for urban 
responses to the climate emergency, enabling the 
translation of declarations and targets into meaningful 
action and effective public policy.  
In recent years the scale and complexity of these 
models has progressed rapidly with a trend away from 
bespoke, standalone models to  stock models “designed 
for wider applicability, allowing core modelling 
structures to be transferred to other cities or countries 
by varying model input data” (Langevin et al., 2020).   
Existing quality assurance approaches are increasingly 
inadequate when models are used in critical policy 
decision-making settings and applied to new contexts: 
model validation is typically applied to the aggregate 
annual output of the whole model, giving little insight 
into the ability of the model to capture the changes in 
emissions resulting from changes in different parts of 
the city building stock (Cerezo Davila, 2017). Further, 
such approaches cannot identify the most significant 
drivers for emissions.  The vast number of different 
inputs required to model a complex urban environment 
makes it impossible to precisely quantify all inputs and 
the complex energy flows within models must be 
simplified to achieve tractable solutions, as a result, the 
outputs of these models inevitably have a significant 
range of variation.  Without understanding these limits 
of inference, resulting policy advice is inherently 
defective and the potential for assumptions suitable for 
the original context to be erroneously carried through to 
the new context is high.  

Uncertainty Analysis and Sensitivity Analysis  
Uncertainty Analysis (UA) and Sensitivity Analysis 
(SA) offer essential tools to determine the limits of 
inference of a model and explore the factors which have 
the most effect on the model outputs.  UA does this 
through propagation of input uncertainties through the 
model to understand the resulting model output 
distribution and thus the limits of inference. SA is used 
to explore the relationship between input and output 
uncertainties.  By understanding which input factors 
have the greatest impact on outputs, data collection 
efforts can be focussed where they will have most 



impact and non-influential factors can be fixed.  
However, despite a well-established body of work 
applying UA and SA to models of individual buildings, 
a review of the literature relating to energy models for 
larger groups of buildings, undertaken by (Fennell et al., 
2019) highlighted very limited application.   

Challenges of applying UA and SA to UBEMs 
As simulation models are always a simplification of real 
physical processes, all models inevitably contain 
uncertainty (Refsgaard & Henriksen, 2004).  
Uncertainty can be defined as ‘any departure from the 
unachievable ideal of complete deterministic knowledge 
of the system’ (Walker et al., 2003) and as the systems 
being modelled increase in scale and complexity, the 
uncertainty in the model will also increase. Simulation 
models on individual building level as well as at scale 
involve a broad spectrum of uncertain inputs (Calleja 
Rodríguez et al., 2013; Eisenhower et al., 2012) and 
model uncertainties (i.e.,model structural and model 
technical; (Refsgaard et al., 2007)).  
Existing conceptualisations of the application of 
sensitivity analysis (e.g. Saltelli et al., 2019) view the 
model as a simple black box, with clearly defined inputs 
and outputs and a simple workflow which consists of 
sampling from input distributions to create sets of model 
inputs, running the model and calculating the 
appropriate SA indicators from the resulting outputs.   
The limited application of SA to UBEMs is at least 
partly due to the inadequacy of this simple input-output 
process to describe the complexity of the UBEM work 
flow: 
• Models are typically amalgams 

UBEMs are a class of model defined by their 
outputs rather than their structure or inputs, 
consequently a very large variety of approachs 
exists.  In some UBEMs the unit of simulation is the 
neighbourhood, but in many, individual buildings 
are simulated and results aggregated with these 
aggregate results often being used as inputs for 
larger scale models.  Determining the level of model  
to which SA is to be applied and how these choices 
impact on final model sensitivities is important. 

• Model inputs are ill-defined 
For a city building stock comprising millions of 
premises it is not possible to specify the parameters 
of each premises individually and aggregation 
techniques must be used, typically this means 
defining clusters or groups with similar 
characteristics within the stock and assigning 
identical inputs for some or all aspects of the inputs 
to each member of the cluster.  These clusters are 
often referred to as archetypes.  Booth et al. (2012) 
introduce the concept of heterogeneity uncertainty 
which considered the variation between the value 
for a specific building and that which is assigned for 
the archetype.  For example, while the epistemic 
uncertainty around the u-value of a particular wall 
might be small, if the wall is part of archetype 

specification then the uncertainty which should be 
modelled is range of u-values for walls in all 
buildings assigned to that archetype.  It should be 
clear that this uncertainty is much greater since the 
number of archetypes is smaller than the potential 
variations in the stock and also that if the choice of 
archetypes is a subjective matter, there is unlikely 
to be precise data available for that range 

• Model inputs are highly diverse 
Characterising uncertainties in model inputs is 
challenging even for simple cases such as material 
properties due to limited data availability but the 
types of input data used in UBEMs are highly 
diverse, often including semantic data obtained 
from public records to determine the use of 
premises, national survey data to determine 
occupancy and usage profiles and LiDAR or similar 
data to determine geometric inputs.  Each of these 
forms of data has different input uncertainties which 
need to be characterised in different ways.  
Different inputs may be dealt with differently in the 
model with some, such as geometric inputs being 
deeply embedded in the model and challenging to 
access as a result.  

The practical consequence of this picture of complex 
and varied models which use data in different ways is 
that the application of UA and SA is necessarily highly 
tailored to the specific model, generally with the aim of 
answering a model specific question and that little 
research exists evaluating the suitability of different SA 
methods for use with UBEMs. 

Aims of this study 
The computational challenges of applying SA to 
UBEMs mean that while significant limitations exist in 
the characterisation of uncertainties as described above, 
the scale of the exercise is overwhelming.  As a result, 
it is necessary to proceed incrementally: 
1. Determine which SA methods offer the best trade-

off between precision and computational burden. 
2. Apply the resulting SA methods to determine which 

input factors can be fixed. 
3. Broaden the scope of SA to encompass the missing 

types of uncertainty in an interative process in 
which assumptions around factor fixing are 
sytematically retested. 

This study aims to address the first step in this process.  
Three different SA methods are applied to a high 
resolution dynamic thermal simulation of a 
neighbourhood to determine (i) number of model 
evaluations required to ensure robust results and (ii) the 
relative performance of the different methods. 
The following sections set out the SA methods which 
are applied and the framework which has been 
establised for assessing them.  The model and the study 
case are described and results are presented, followed by 
a discussion of the implications and limiatations of the 
results and the planned extensions of this work. 



Methods 
SimStock modelling platform 
SimStock is a modelling platform which combines data 
from multiple sources to automatically generate 
dynamic building energy simulation models ready to be 
executed by EnergyPlus, an open-source whole-
building energy modelling (BEM) engine. 
High Performance Computing (HPC) or cloud 
computing is used to allow a large number of models to 
be simulated in parallel. Simulation outputs are 
collected and post-processed automatically. 
SimStock allows the automatic creation of dynamic 
thermal simulation models of all buildings within an 
area of analysis; allowing a wide range of scenario 
analyses to be performed.  A key feature of the 
SimStock modelling platform is its ability to 
accommodate mixed-use buildings, and combined 
addresses through the use of the Self-Contained Unit 
(SCU) as the smallest division of the building stock.  
Evans et al. (2017b) define a SCU as the smallest unit 
which into which the stock can be disaggregated without 
splitting either premises or building polygons.  In the 
simplest case, a SCU might be a single building such as 
a single-family home but in dense urban centres, much 
more complex mixes of ownership and use need to be 
modelled.  The SimStock modelling platform 
automatically generates Energyplus input files from 
collections of SCUs bounded by roads or other natural 
breakpoints, these are referred to as built islands.  A 
single thermal zone is created per floor of each SCU.  
This approach results in a single EnergyPlus model for 
each built island.  Thermal exchanges are not considered 
between built islands but all buildings within a 25m 
radius are included as shading elements. 

Model case 
A mixed commercial and residential neighbourhood in 
North London was selected as the case for this study.  
Geometric and activity data is extracted from the 
3DStock model (Evans et al., 2017a).   
The study model comprises 41 built islands within 
which 4 use-types are defined: Office, Retail Sales, 
Restaurant and Dwelling.  SCUs are assigned to a use-
type based on the dominant use type identified in the UK 
property tax records.  Restricting the model to 4 use 
types requires some gross simplification, with less 
common uses such as education and religious facilities 
being included within the office use type and all food 
service premises being included within the single 
Restaurant use-type.  Such simplifications were 
considered necessary to reduce model complexity since 
the number of use-types drives the number of 
parameters and consequently the number of model 
evaluations required.   
In total the study area comprises 648 SCUs  in 1779 
thermal zones (84 Office, 119 Retail sales, 42 
Restaurant and 1534 Dwelling).  Occupancy and 
equipment usage schedules are derived from  National 
Calculation Method (NCM) (Department for 

Communities and Local Government, 2008) profiles.  
Variant high and low profiles are developed based on 
the NCM profiles and assigned stochastically to 
introduce an elementt of diversity in the levels of usage 
across the stock. 
The simulation models are configured to calculate 
heating and cooling demand based on ideal loads with 
equipment efficiency calculations added in post-
processing if required. 
 

 
Figure 1: Wireframe model of study area 

 
Figure 2: Satellite view of study area (Google Imagery, 

2020) 

Input uncertainties 
The choice of uncertainties is fundamental to any SA 
since parameters treated as fixed are, by definition, 
excluded from the analysis and the choice of which 
parameters to evaluate must reflect the aims of the study.  
Although geometric and model uncertainties are of 
considerable interest, and have received little attention 
in the literature, they have been deferred to a later stage 
of this study, to be explored once the most appropriate 
methods have been selected.  The uncertainties selected 
for evaluation in this study are limited to readily 
accessible input parameters which typically represent 
either choices made by occupants or building 
parameters which might be impacted by retrofits.  
Parameters which are variable across the stock are 
treated stochastically as described earlier. 



After initial testing with a range of material parameters 
demonstrated that stable results were not possible within 
the available computational resources due to the large 
number of uncertain parameters (103), only a single 
parameter for each material was retained.  In total 50 
uncertain parameters were evaluated.  Parameters were 
characterised with triangular distributions to avoid 
introducing technically infeasible values in the tails of 
distributions and to ensure that extreme values were not 
over-emphasised.  Space constraints preclude a full 
listing of input distributions, a summary is provided in 
table 1 with the full listing available on request from the 
authors. 

Table 1: characterisation of input uncertainties 

Parameter type Instances Uncertainties 
considered 

Set point 
temperatures 

(heating, 
cooling, natural 

ventilation 

Defined separately 
for the 4 use-types 

(12 total)  

Heterogeneity 
across the use-

type 

Occupant 
density 

Defined separately 
for the 4 use-types 

(4 total) 

Heterogeneity 
across the use-

type 
Ventilation rates Defined separately 

for the 4 use-types 
(4 total) 

Heterogeneity 
across the use-

type 
Power densities 
(equipment & 

lighting) 

Defined separately 
for the 4 use-types 

(8 total) 

Heterogeneity 
across the use-

type 
Material 

conductivity 
Defined per 

material (14 total) 
 

Aleatory 
uncertainty 

Glazing 
transmittance & 

emissivity 

Defined per 
material (4 total) 

Aleatory 
uncertainty 

Infiltration rates Defined separately 
for the 4 use-types 

(4 total) 

Heterogeneity 
across the use-

type 

SA methods 
SA methods can be either local (focussed at a single 
point in the input space) or global (assessing sensitivity 
across the full range of the input space).  While local 
methods, which involve varying a single parameter at a 
time to assess the effect on the output, are appropriate 
for linear, additive models, they do not account for the 
interaction between parameters making them generally 
unsuitable for non-linear models such as UBEMs.  
Three methods are evaluated in this study: 
• Sobol’ analysis (Saltelli et al., 2010) – global 

method in which all parameters are varied 
simulataneous and the output variance is 
decomposed into first and higher-order effects, thus 
accounting for interactions between parameters.  
This method is implemented using the SALib 
library (Herman & Usher, 2017)  The Saltelli 
implementation is similar in form to the EER 
method and requires (k+2)*N model evaluations, 

where k is the number of parameters and N the 
desired number of estimates. 
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• Elementary effects (EER) (Campolongo et al., 
2007) – a repeated One At a Time design which 
averages estimates calculated at different points in 
the input space and thus accounts for parameter 
interactions. 
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• Derivative based (DGSM) (Becker et al., 2018) – 
Similar to EER, this method uses a smaller 
increment. 
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Where: 
N is the total number of estimates required 
X is a matrix in which each column represents a vector 
containing the model inputs 
𝑥*	  is the jth set of model inputs 

𝑥*
'"!)	is a point which differs from 𝑥*	  only in value of 

𝑥*
("	) 

𝑥*
'"!!)	is a point which differs from 𝑥*	  only in value of 

𝑥*
("	) by only a small increment (1x10-5 when sampling 

with respect to the unit hypercube).  In equations (2) and 
(3), the difference between inputs is normalised to take 
account of the very different scales of different 
parameters. 
Sobol sequences are used for sampling to ensure good 
coverage of the input space and SA measures were 
applied by use-type and for the overall model. 

Evaluating the different methods and cases 
The SA literature relies of the use of test functions for 
which analytical solutions are availble to evaluate the 
performance of different SA methods.  Since there is no 
analytical solution for the case considered here, in line 
with Saltelli et al. (2008), the baseline performance was 
set by the Sobol’ analysis with the highest number of 
model evaluations.  For this study the highest practical 
number of evaluations was 40, which represents a total 
of 86,920 individual simulations requiring a total of 
6,793 hours of CPU processing time.  Two metrics are 
used to compare SA results for different number of 
model evaluations and different methods with this 
baseline: 



• Ranking performance - Kendall’s rank correlation 
(t) (Kendall, 1938) is a non parametric measure of 
the correspondence between two rankings.  Values 
close to one indicate strong agreement between the 
two rankings. 

• Screening performance - Becker et al. (2018) 
propose the number of parameters wrongly 
identified as influential as a fraction of the number 
of influential parameters as a test of the accuracy of 
screening.  In this study, wrongly excluding 
influential parameters is considered less desireable 
than wrongly including non-influential parameters 
and so the fraction of false negatives is also 
calculated.  The set of influential parameters is 
defined as the minimum set of parameters which 
accounts for 95% of the total sensitivity. 

The following cases were considered in this study: 
• Sobol’ method with 40 evaluations (the baseline) 
• Sobol’ method with 20 and 10 evaluations 
• Elementary Effects method with 20 and 10 

evaluations 
• DGSM with 10 evaluations. 

Results 
Validation of the baseline result 
Bootstrapping with replacement was used to resample 
the results to construct the 95% confidence interval for 
sensitivity results.  The number of model evaluations 
would be considered sufficient when all influential 
parameters are captured at the 95% confidence level.  
Error! Reference source not found. shows the Sobol 
sensitivity indices with confidence intervals ranked and 
normalised by the most sensitive parameter for the 
whole stock for heating and cooling energy respectively.  
It can be seen that while the indices for cooling energy 
for the whole stock are relatively stable, those for 
heating are not.  This partial validation of the screening 
results suggests that more model runs should have been 
undertaken.  However, additional runs were considered 
to be beyond the limit of availble resources.   It can also 
be seen that the ranking of parameters is affected by the 
make-up of the stock with parameters relating to the 
least common use- type, restaurants (4% of thermal 
zones) having significantly less influence in the whole 
stock. 

 
Figure 3: Most influential parameters for heating and 

cooling energy across the whole stock 

Ranking performance 
The rank correlation between the baseline results for the 
whole stock (Sobol’ 40 evaluations) and each 
subsequent set was used to assess the relative 
performance of the different methods and numbers of 
evaluations. Figure 4 shows results for both heating and 
cooling energy with relative computational burden 
(measured as CPU hours) shown on the x-axis. The 
results for heating and cooling are identical. Reducing 
the number of evaluations for Sobol’ method has only a 
small effect on the ranking performance, with a rank 
correlation of   EER results offer marginal time savings 
but perform less well.  Results for DGSM show poor 
performance. 



 
Figure 4: Ranking performance  

Screening performance 
Screening the input parameters to identify the most 
influential is a key application of SA. Errors in screening 
can be either type I: incorrectly identifying a non-
influential parameter as influential (false positives) or 
type II: missing influential parameters (false negatives) 
The picture of screening performance shown in Figure 
5 is similar, to the results for the ranking performance 
with both EER results and the Sobol’ 20 results showing 
no false negatives.   It should be noted that while the 
relative performance of the methods is the same for both 
heating and cooling outputs, the fraction of false 
negatives is lower.   

 
Figure 5: screening performance (fraction of false negatives)  

Figure 6 shows the other side of this picture, with EER 
methods identifying significantly more false positives 
than Sobol’ and DGSM methods. 

 
Figure 6: Screening performance (fraction of false positives)  

The DGSM method performs least well of all those 
considered.  This seems to be due to the underlying 
nature of the model - Becker et al. (2018) demonstrated 

that allow the DGSM method performs well on smooth 
functions, the small increment results in poor 
performanc in step-functions.  It is likely that the 
setpoint temperature regime for heating and cooling 
demand represents a significant enough step to make 
this method unsuitable for use with building energy 
simulation.  
The results presented in Figure 4, Figure 5 and Figure 6 
indicate that the EER method output performs Sobol’ at 
lower numbers of evaluations.  Although the methods 
are very similar in approach, a key difference is the 
inclusion of the input difference in calculating the µ* 
index as shown in equation (2).  Including this input 
difference means that parameters are highlighted as 
influential when a small perturbation in the input 
parameters results in a relatively large change in the 
output even if the overall change in the output is not 
enough to indicate influence on its own.   
These results suggest that the widely differing scales of 
input parameters in UBEMs are more effectively 
explored using the EER method. 

Influential parameters by use-type  

 
Figure 7: parameter influence by use-type and whole stock 

Figure 7 contrasts the influential parameters for the 
whole stock, shown in the final column in each plot with 
those for the individual use-types.  This highlights the 
dominance of the Dwelling use-type and the importance 
of assessing parameter sensitivity at a more granular 
scale as well as at the whole stock level to ensure that 
weak signals from smaller segments are not lost. 
Care has been taken in this document to avoid focussing 
on the parameters which have been identified as 
influential.  The aim of this exercise has been to evaluate 
the performance of different methods rather than to 
undertake a comprehensive sensitivity analysis for this 



particular building stock.  Nonetheless, some notes 
about which parameters are identified as influential are 
important: Firstly, only those parameters which were 
included in the study can be shown to be influential, this 
does not mean that other parameters are non-nfluential, 
only that they were not included.  Factors such as 
glazing ratio and storey height are assumptions within 
the model but embedded within the model code.  This 
lack of accessibility led to their exclusion from this 
study although it might be expected that they would 
have been shown to be influential if included.  Secondly, 
care also needs to be taken with the specification of 
input parameters, glazing emissivity shows more 
influence than other building parameters but this is 
likely to be related to how materials are specified across 
the stock – the glazing is common to much of the stock 
while other materials are not included in as many 
buildings and thus show little influence at the stock 
level. 

Suitability of OAT methods 
Fennell et al. (2019) highlighted the predominance of 
OAT methods within the literature for BSEMs despite 
the warnings in the broader SA literature that OAT 
methods are unlikely to be suitable for these projects, 
this was supported by Cheng and Steemers’ (2011) 
finding that similar models (DECM) were only linear in 
small ranges about the baseline values.  Since EER is a 
repeated OAT method, the evolution of parameter 
rankings as successive estimates are added gives an 
insight into the validity of OAT methods for the model 
in question.  Figure 8 shows how ranks for each 
parameter vary in each estimate for heating energy.  It is 
clear that the stability of the ranking varies considerably 
depending on the parameter, with some varying little 

and others moving considerably.  This confirms the 
caution with which OAT analysis of BSEMs should be 
treated. 

Conclusion and further work 
The results of this study highlight the importance of 
choosing sensitivity measures which are well-suited to 
the underlying model.  For a BSEM based on bottom-up 
dynamical thermal simulation, two important 
considerations emerged: (i) the need to incorporate 
widely differening scales of input parameter and (ii) the 
stepped nature of responses to changes in temperature.  
Together these considerations suggest that EER is most 
appropriate method.   
It is also clear that the outputs for which sensitivity 
indices are calculated need to be carefully considered, in 
this case, much information is lost if results are 
considered only at the whole stock level and not at the 
level of use types. 
The performance of the EER method has been shown to 
be acceptable at fairly low numbers of evaluations (10 
evaluations for each index).  However, this since each 
evaluation requires (k+1) simulations, where k is the 
number of input parameters this still requires a total of 
1600 of CPU time meaning that access to high 
performance computing resources is required. 
The aim of this study has been to evaluate the relative 
performance of a subset of SA methods for a fine 
spatial grain of UBEM based on dynamic thermal 
simulation.  The methods evaluated here belong to the 
same class of variance-based methods and further work 
remains to be done to compare the performance of 
other classes of SA method including regression 
methods. 

 
Figure 8: Evolution of parameter ranks over successive iterations 
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