058£02024S8/Z+01°01/610710p//:SANY Je B|qejieA. S| UOISIaA-0)ep-0}-dn }SOW B "UOISIaA siy} soedal [im ‘paysiignd uaym ‘Jey pJodsy JO UOISIBA U} 8sn 0} pebeinoous aie noA “jduosnuepy pajdecoy Ue si siy] “sHoday 8ousiosolg

coNOULLP W N -

W) Check for updates

The Role of the Microbiome in Gastrointestinal Inflammation

David J. Sanders®, Saskia Inniss', Gregory Sebepos-Rogers’, Farooq Z. Rahman?, Andrew M. Smith™*

! Department of Microbial Diseases, UCL Eastman Dental Institute, Royal Free Campus, University College
London, London, United Kingdom.
2 Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, 250 Euston Road,
London NW1 2PG, United Kingdom.

*To whom correspondence should be addressed.
Email: andrew.m.smith@ucl.ac.uk

1.20g aunr g0 uo Jasn (70N) uopuo 86s)j09 Ausieniun Aq ypd-00G8€-0202-1SA/2LZ€ L 6/0S8E0202HSE/Z 0L 0 L/10p/ipd-ajoilie/daliosolq/wod ssaldpueiod//:dyy woly papeojumoq


https://crossmark.crossref.org/dialog/?doi=10.1042/BSR20203850&domain=pdf&date_stamp=2021-06-02

Y1 "spoday sousiosolg

058£02024S8/Z+01°01/610710p//:SANY Je S|qejieA. S| UOISIaA-0)ep-0}-dn }SOW B "UOISISA siy} 2oe|da [jim ‘paysiignd uaym ‘Jey} pJoday JO UOISIBA 8U} 8sn 0} pebeinoous aie noA “jduosnuepy peydecdy ue s si

NNNNNRRRRR
P WNPEPOOVOKONO WM

W ININNNN
O Vo NO WU,

Abstract

The microbiome plays an important role in maintaining human health. Despite multiple factors
being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of
medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly
adapted to be able to tolerate a large population of microorganisms while still being able to produce a
rapid and effective immune response against infection. The intestinal microbiome is not functionally
independent from the host mucosa and can, through presentation of microbe-associated molecular
patterns and generation of microbial-derived metabolites, fundamentally influence mucosal barrier
integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that
help to preserve intestinal homeostasis, promote protective immune responses and limit excessive
inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of
this finely-balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune
responses, and chronic inflammation that increases the risk of disease development. Improvements in our
understanding of the microbiome are providing opportunities to harness members of a healthy
microbiome to help reverse dysbiosis, reduced inflammation and ultimately prevent disease progression.
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Introduction

The human body is inhabited by a highly diverse population of microorganisms (microbiota) that
has co-evolved with their human hosts over many millennia (1). The human microbiome, a term more
precisely used to describe the genomes of these microorganisms (2), is predominantly made up of bacteria
(3), however archaea, viruses, and single-cell eukaryotes (e.g. fungi and protists) are also present (4-7).
These microorganisms are at least as abundant as the number of human host cells (3, 8) and combined
contain far more genes than the entire human genome (9). Over the past few decades, research related to
the microbiome has intensified, facilitated by rapid advances in culture-independent, high-throughput
genomic and metabolomic techniques (10-12). Consequently, a greater understanding of microbiota
population composition and host-microbe interactions has been achieved, especially in the context of
human health and disease (11, 13, 14). Whereas a balanced microbiota has been shown to play an
important role in the maintenance of human health, impairment or imbalance in the makeup of the human
microbiota (dysbiosis) can disrupt homeostasis and lead to the onset or exacerbation of human disease
(15). Multiple factors are known to influence the microbiota however studies have shown that the
microbiome is more strongly influenced by an individual’s environment (16, 17). There are significant
similarities in microbiota composition of genetically unrelated individuals who share a household, with
approximately 20% of inter-person microbiota variability associated with environmental factors such as
diet, lifestyle, and medication (16).

The human microbiome can be separated into compartment-specific ecosystems that exist on the
skin and along mucosal surfaces such as those of the oral cavity, gastrointestinal tract, lungs, and
genitourinary system (1). The largest concentration and diversity of microbiota can be found within the
gut especially in the colon (1). The mucosa, which consists of a single cell thick epithelium overlaying a
layer of connective tissue called the lamina propria, provides the interface between the host and the
environment and is equipped with specialised features, particularly along its apical surface, to allow
physiological function while also being in contact with the microbiota (18). The microbiota is however
not functionally independent from the host mucosa and can fundamentally influence mucosal integrity,
modulating host immune responses and mucosal inflammation.

Here we review the relationship between the microbiota and the mucosa, especially in relation to
gut homeostasis and mucosal inflammation. We first discuss factors that shape an individual’s
microbiome and the impact the microbiome has on the intestinal mucosa during homeostasis. We then
explore how dysbiosis of the microbiome can lead to mucosal inflammation, resulting in the development
of human disease, and highlight current and emerging therapies being used to suppress mucosal
inflammation through targeting of the microbiome.
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1. Factors Shaping the Microbiome

There is increasing evidence to suggest that there is a core microbiome shared between all
individuals (19). However, the composition and diversity of much of the gut microbiome varies greatly
from person to person, adapting to both intrinsic and environmental factors (20, 21). Research to date has
shown that environmental factors, mainly diet and medication, dominate over intrinsic factors, such as
host genetics, in shaping the microbiome (16, 22). Age (23, 24), geography (25), and birthing practices
(26, 27) are also known to be particularly important for determining microbiome composition (Figure 1).
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Figure 1. Factors that contribute to the shaping of the human microbiome.

1.1 Diet

In the first year of life the gut microbiome is relatively unstable becoming progressively more
stable following weaning, taking on an adult form typically around three years of age (28). Infant feeding
practices as well as adult habitual diet play an important role in shaping the gut microbiome (29). Studies
looking into the effect of diet on the make-up of the intestinal microbiota have to date mainly focused on
the so-called ‘Western” diet, which is characterised by high levels of fat, sugar and refined protein (30,
31), and diets that are high in fibre and low in red meat, such as the Mediterranean diet (24, 32).

Differences in gut microbiome composition prior to weaning have been observed between
breastfed and formula-fed infants. Breastfed infants have a microbiome dominated by Lactobacilli and
Prevotella, whereas formula-fed infants exhibit a more diverse microbial population, dominated by
Enterococci, Enterobacteria, Bacteroides, Clostridia and Streptococci (33, 34). Breastmilk contains
oligosaccharides which promote the growth of beneficial Bifidobacteria (35). Bifidobacteria play a major
role in the fermentation and conversion of oligosaccharides into short-chain fatty acids (SCFA), such as
butyrate and propionate, which promote healthy immune function (reviewed in detail in Section 2.1) (36).
In addition to providing critical nutrients and bioactive compounds, human breast milk also plays an
important role in the seeding of an infant’s gut microbiome, containing a variety of beneficial bacteria,
including Lactobacilli and Bifidobacteria (37). After weaning, the microbiota becomes more diverse and
is dominated by Bacteroidetes and Firmicutes (38).
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Studies looking at the adult gut microbiome have found that individuals consuming a Western diet
experience a decrease in the total number of gut bacteria, particularly Bifidobacteria and Eubacteria, and
an increase in pro-inflammatory bacterial-derived compounds (39-41). A key aspect of the Western diet is
a high intake of saturated fatty acids which has been linked to both a decrease in Gram-negative bacteria
within the gut, particularly Bacteroidetes, and an increase in Lactococci (42, 43). Whilst there is currently
a lack of consensus as to the precise effect of these dietary components on the microbiome, most studies
have observed an overall decrease in bacterial diversity, a decrease in SCFA production, and an increase
in harmful bacterial strains, such as pathogenic Escherichia coli (E. coli) (44, 45). In contrast to a
Western diet, adults who consume a Mediterranean diet exhibit increased levels of Bifidobacteria,
Lactobacilli, Eubacteria and Bacteroides (46, 47). Furthermore, individuals who consume a
Mediterranean diet have been shown to have increased levels of SCFA-producing bacteria, such as
Provetella (48). In addition to habitual diet, research has shown that dietary diversity, meal timing as well
as short- and long-term dietary modifications can change the composition and activity of the adult gut
microbiome (49-52). Caloric restriction, for example, which is a nutritional intervention of reduced
energy intake, has a strong influence on the gut microbiota (53, 54). It has been found that caloric
restriction can slow down age-related decline in the microbiome, increase both microbial diversity and
Bacteroidetes/Firmicutes ratio, as well as change host microbial co-metabolites leading to a decrease in
host lipid biosynthesis and an in increase fatty acid catabolism (55, 56).

1.2 Antibiotics and Drugs

Antibiotics are medicines used in the treatment of bacterial infections. Whilst they have proved to
be an effective treatment against many bacterial diseases, their antimicrobial action profoundly affects the
composition and function of the gut microbiome, causing dysbiosis by Killing both pathological and
beneficial bacteria, and allowing the expansion of resistant microbes (57). The effects of antibiotics on the
gut microbiome are potentially long-lasting, and their use in early life has been associated with an
increased risk of developing several conditions including inflammatory bowel disease (IBD) and asthma
(58, 59).

Antibiotics can drastically reduce, or even fully eliminate, beneficial anaerobic bacterial species
such as Bifidobacteria, Lactobacilli, Bacteroides and Clostridia (60). After only 7 days of antibiotic
treatment, microbial diversity has been found to decrease by 25%, with core phylogenetic microbiota
reducing from 29 to 12 taxa and antibiotic resistant Bacteroidetes increasing 2.5-fold (61). Consequently,
antibiotic use can also result in reduced SCFA production (62). The effects of antibiotics on the
microbiome are however dependent on the type of antibiotic used. Clindamycin, which is a broad-
spectrum antibiotic, can cause microbial changes that last for up to 2 years with no recovery in
Bacteroides diversity (63). Clarithromycin and Ciprofloxacin, which are used against Helicobacter pylori,
are associated with a decrease in Actinobacteria and Ruminococci, respectively (64, 65). Vancomycin,
which is used to treat Clostridium difficile (C. difficile), causes an increase in Proteobacteria species and a
decrease in Bacteroidetes, Ruminoccoci and Faecalibacteria levels, which can lead to both recurrent C.
difficile infection and the growth of unwanted bacterial species, such as pathogenic E. coli (66, 67).

Non-antibiotic drugs are also known to influence the composition and stability of the microbiome.
A recent meta-analysis revealed that in addition to antibiotics, proton pump inhibitors (PPIs), metformin,
and laxatives exhibit the greatest effects on gut microbiome composition and function (68). Proton pump
inhibitors reduce microbial diversity and cause taxonomical changes in the gut. Metformin significantly
increases E. coli abundance and effects the number of SCFA producing bacteria (68, 69).

1.3 Birth Mode of Delivery

Studies have shown that whereas vaginally delivered babies have a microbiome dominated by
Lactobacilli and Prevotella, babies born by caesarean section (C-section) carry a microbiome dominated
by Streptococci, Corynebacteria, and Propionibacteria (70, 71). Furthermore, babies born by C-section
have been shown to have an abundance of potentially pro-inflammatory Klebsiella and Enterococcus
bacteria (26). A recent study reported that the abundance of Klebsiella and Enterococcus species in C-
section born children at one week of life was associated with an increased number of respiratory
infections over the first year (26). Additionally, babies delivered by C-section have been shown to have
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lower total gut microbial diversity, delayed Bacteroidetes colonisation, and a subsequent immune system
imbalance during the first two years of life which may result in the development of allergies (72, 73).

1.4 Age

Many studies have observed age-related changes to the gut microbiome. In infancy, the
developing gut microbiome undergoes three distinct phases of progression: a developmental phase
(months 3-14), a transitional phase (months 15-30), and a stable phase (months 31-46) (74). Children and
young adults have a higher abundance of Bifidobacteria and Clostridia, and a lower microbial diversity
compared to adults (75). In general, healthy adults exhibit high levels of Bacteroidetes and Firmicutes,
and low levels of Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia (20, 76, 77).
Throughout life, intestinal levels of Firmicutes decrease while Bacteroidetes levels increase. Elderly
people have a gut microbiome enriched with Bacteroidetes and Proteobacteria and depleted levels of
Bifidobacteria and Lactobacilli (24, 78). The transition from healthy adult to healthy old age is
characterised by a decrease in microbial diversity, as well as an accumulation of potentially pro-
inflammatory microbes and decrease of beneficial microbes (79).

1.5 Development Geography

To date, most studies investigating the link between the microbiome and geography have focused
on differences in microbiome composition between three contrasting human populations: hunter
gatherers, traditional farming or fishing communities, and Western industrialised communities (80-84).
When comparing the microbiomes of hunter gatherers to those of more developed communities, hunter
gatherers were found to have a higher microbial diversity, with enrichment of Prevotella, Treponema and
Bacteroidetes (80, 81). In contrast, Western industrialised communities have higher levels of Bacteroides
and Firmicutes, with an overall lower microbial diversity. Some studies suggest that the microbiomes of
traditional farming and fishing communities exhibit an intermediate state between hunter gatherers and
Western industrialised communities (82, 85). Factors thought to influence gut microbiome composition
amongst hunter gatherers include a diet consisting of predominately starchy foods, limited access to
modern medicine, and exposure to a wide variety of pathogens and parasites (82, 83). Traditional farming
or fishing communities are thought to possess microbiomes with a relatively high taxonomic diversity,
allowing the host to withstand pathogens and parasites, as well as to be able to respond to dietary
fluctuations due to crop seasonality (83). In Western industrialised societies, the gut microbiome is
thought to be largely determined by diets high in refined protein and fat, good sanitation and hygiene
practices, and the habitual use of antibiotics and other medications (80, 81, 84). Some studies have also
proposed that the lower microbiome diversity found in Western industrialised communities can be
attributed to an overall loss of biodiversity due to industrialisation, pollution and use of chemicals (86,
87). Furthermore, differences in sanitised drinking water may also have an effect on the composition of
the gut microbiome (88, 89).

2. The microbiome and intestinal homeostasis

The intestinal mucosa is highly adapted to be able to tolerate a large population of
microorganisms and dietary antigens while preserving nutrient uptake and raising an effective immune
response to pathogenic infection or commensal intrusion into the underlying host tissue (90). For the most
part, the microbiota maintains symbiosis with the gut environment forming a mutually beneficial
relationship with the host. The gut provides a nutrient-rich habitat for the microbiota while the microbiota
stimulates the host’s immune system, aids digestion, and provides otherwise unobtainable metabolites. In
a normal healthy gut, the microbiota is diverse with an abundance of beneficial bacteria that help to
maintain gut homeostasis, promoting protective intestinal immune responses at the mucosal surface and
limiting excessive mucosal inflammation (91).

The microbiota can communicate directly with the host through host recognition of highly
conserved structural components, termed microbe-associated molecular patterns (MAMPS) (92), such as
lipopolysaccharides (LPS), peptidoglycan (PGN), and flagellin. Recognition of MAMPs are achieved
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primarily through binding to pattern-recognition receptors (PRRs) expressed by intestinal epithelial cells
(IECs) and immune cells. PPRs are a diverse family of transmembrane and cytoplasmic innate immune
receptors, that include Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-
like receptors (NLRs) (93). PPR stimulation triggers intracellular signalling cascades leading to the
expression of a range of immunomodulatory molecules that orchestrate early immune responses resulting
in mucosal inflammation and further activation of innate and adaptive immune processes (94). Whereas
activation of PRR by pathogens and pathobionts is known to initiate pro-inflammatory signalling
cascades that lead to mucosal inflammation, the commensal microbiota can use similar mechanisms to
dampen inflammation and promote intestinal homeostasis (95). For example, polysaccharide A (PSA)
from the ubiquitous gut commensal Bacteroides fragilis is recognised by the TLR1/TLR2 heterodimer, in
co-operation with the C-type lectin PRR Dectin-1, triggering a signalling cascade through the
phosphoinositide 3-kinase (PI3K) pathway to promote 3°,5’-cyclic adenosine monophosphate (CAMP)
response-element-binding protein (CREB)-dependent transcription of anti-inflammatory genes (96).
NOD2 stimulation by muramyl-dipeptide (MDP), a PGN motif, triggers intestinal leucine-rich repeat-
containing G-protein coupled receptor 5 (Lgr5)* stem cell survival and epithelial regeneration (97). In
addition to microbe specific constituents, there are also numerous microbiota-derived metabolites, such as
SCFA, that stimulate a range of signalling pathways to further regulate mucosal immune responses and
aid microbial symbiosis/tolerance (98).

2.1 Direct microbial maintenance of intestinal barrier integrity

The intestinal mucosa forms physical, biochemical, and immunological barriers which allows for
the symbiotic microbiota-host relationship to be maintained, controlling the microbial population and
reducing direct contact with the host (99). Maintenance of these barriers are essential for preventing
microbial invasion, excessive immune responses, and mucosal inflammation. As well as defending
against pathogens through competition for nutrients and production of anti-microbial molecules (100,
101), the gut microbiota also plays an active role in the maintenance of host mucosal barriers, which
further prevents colonisation by opportunistic pathogens, limiting excessive mucosal inflammation and
preserving gut homeostasis (99, 100).

The physical barrier consists of a wall of IECs that are held together by cell junctions, particularly
tight junctions (TJs), allowing only selective paracellular transport of water, ions, solutes, and some
nutrients, preventing passage of microorganisms (102). A mucus layer, predominantly formed of highly
glycosylated mucins secreted by goblet cells, covers IECs and further contributes to the physical barrier
preventing bacteria from interacting directly with host tissue (103). The mucus layer also provides
moisture and lubrication to protect IECs from dehydration and mechanical stress caused by the passage of
food and peristaltic forces (104). The small intestine contains one layer of mucus whereas the colon
contains two: a loose outer layer that is permeable to bacteria and a dense inner layer that is impermeable
and devoid of bacteria (105). In the small intestine particularly, secretory molecules such anti-microbial
peptides (AMPs) and immunoglobulin (Ig)A are released and concentrated in the mucus layer, which
further aid separation of the microbiota from the host mucosa (101, 106). In addition to targeting
microbes directly and sequestering key nutrients to control microbiota biodiversity, these barriers can also
modulate the host’s innate and adaptive immune responses (107, 108) and drive upregulation of mucin
and TJ protein expression in IECs to maintain intestinal barrier integrity (109, 110).

Normal maturation and function of the mucus layer is strongly influenced by the gut microbiota,
either through bacterial degradation and turn-over of mucin glycans or by bacteria-mediated processes to
regulate host glycosylation of mucins (111). Additionally, microbial-derived signals and metabolites have
been shown to protect the intestinal epithelial barrier, upregulating and strengthening cell junctions as
well as promoting maintenance of the mucus layer and release of anti-microbial molecules (Figure 2). For
example, indoles, which are microbiota-derived metabolites produced from the amino acid tryptophan
have been shown to increase gene expression linked to TJ formation and mucus production (112, 113).
Indoles further protect IECs through attenuation of tumour necrosis factor-alpha (TNF-a)-mediated
activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-xB), decreased
expression of pro-inflammatory cytokine interleukin (IL)-8, reduced attachment of pathogenic E. coli, and
increased expression of anti-inflammatory IL-10 (112). Studies using mice have shown that indole 3-
propionic acid (IPA) stimulates the pregnane X receptor (PXR) resulting in upregulation of TJ proteins in
enterocytes and down-regulation of TNF-a (114). Urolithin A (UroA), a solely microbiota-derived

1.20g aunr g0 uo Jasn (70N) uopuo 86s)j09 Ausieniun Aq ypd-00G8€-0202-1SA/2LZ€ L 6/0S8E0202HSE/Z 0L 0 L/10p/ipd-ajoilie/daliosolq/wod ssaldpueiod//:dyy woly papeojumoq



262
263
264
265
266
267
268
269
270
271
272

alﬁavr%s! w '55519}1:9‘3
»w

i3
NN NN
0N U

N 10" S| e 9|qB[IBAR S| HOISIOA-8]BP:0+ W 8y "uoisian siy) aoe(dal [Im ‘paysiignd usym ‘Jey) piooay JO UOISIBA Y} asn o) pabeinoous aie noA 1duosnu
NOSWU%Q/VH}@ RE‘/ w1ﬁsliﬁw “PN)C"R%O YL "uor 14} @0€(dal |IIm “paysi|q um Jeyy p. o ¥ ISISA By} } P A 1L

metabolite produced from polyphenolic compounds also enhances intestinal barrier integrity by
increasing TJ proteins in IECs through activation of aryl hydrocarbon receptor (AhR)-nuclear factor
erythroid 2-related factor 2 (Nrf2)-dependent pathways (115). SCFAs, in particular butyrate, are the main
energy source for colonocytes and are known to promote epithelial barrier integrity (116-119). SCFAs are
taken up by cells either by passive diffusion or facilitated by solute transporters such as monocarboxylate-
transporter 1 (MCT-1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) where they can then
be detected by intracellular receptors such as peroxisome proliferator-activated receptor gamma (PPARY)
(120-122). Alternatively, SCFAs may signal through G-protein coupled receptors (GPRs), such as
GPR41, GPR43, and GPR109A, to activate signalling cascades that regulate immune responses (123-
125). SCFAs directly promote mucosal barrier integrity through induction of genes encoding TJ proteins
(126), mucins (127), and AMPs (128). The gut microbial-derived metabolite of polyunsaturated omega-6
fatty acid linoleic acid, 10-hydroxy-cis-12-octadecenoic acid (HYA), is able to ameliorate intestinal
barrier damage and changes to cell junction proteins partially via a GPR40-mitogen activated protein
kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway (129). Secondary bile acids,
such as lithocholic acid (48), produced by gut microbial conversion of primary bile acids, have also been
shown to protect IECs from a TNF-a-induced decrease in TJ proteins through activation of the vitamin D
receptor (VDR)(130).
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Figure 2. The direct effect of microbiota-derived metabolites on intestinal barrier integrity.
Microbiota-derived metabolites play an important role in maintaining intestinal barrier integrity to
prevent epithelial damage and limit mucosal inflammation. Metabolites of polyunsaturated fatty acids
(PUFAS) via a GPR40-MEK-ERK pathway have been shown to prevent loss of TJ proteins. Indoles,
SCFAs, UroA, and secondary bile acids have also been shown to increase expression of TJ proteins via
pathways involving PXR, adenosine monophosphate activated protein kinase (AMPK), AhR-Nrf2, and
VDR, respectively. Indoles and SCFAs promote the production and secretion of mucin, reinforcing the
mucus layer. SCFAs activate a mechanistic target of rapamycin (mTOR)-signal transducer and activator
of transcription (STAT) 3 pathway in a GPR43-dependent manner to induce production of AMPs.

2.2 Mucosal immune regulation by the microbiota

The mucosal immune system is fundamental to intestinal barrier integrity and inflammation. The
microbiota plays a vital role, especially in early life, in the maturation and regulation of host immunity to
ensure mucosal inflammation is controlled and that the host can differentiate between commensal and
pathogenic bacteria (131).

Commensal bacteria have long been associated with the correct development of mucosa-
associated lymphoid tissues (MALT), in particular the gut-associated lymphoid tissue (GALT) which
includes Peyer’s patches. Early studies using germ-free (GF) mice have shown that the absence of a
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commensal microbiota correlates with extensive defects in lymphoid tissue architecture and immune
responses (132). A significant reduction in intra-epithelial lymphocytes (IELs), such as aff and yo IELS, as
well as secretory IgA, is seen in GF mice (compared to their colonised counterparts), which can be
reversed following microbial colonisation (133, 134). Gestational maternal colonization in mice has been
shown to increase immune cell subtypes including intestinal group 3 innate lymphoid cells (ILC3s) and
F4/80" CD11c" mononuclear cells (135). Pro-inflammatory IL-17" CD4" T helper (Th17) cells, which
normally exist in large numbers in the lamina propria of the small intestine are absent in GF mice
however they can be induced upon commensal colonisation (136-138). This is most notable with
segmented filamentous bacteria (SFB), which upon adhesion to IECs, are known to stimulate T-cell
responses as well as enhance IgA production (126, 139). PSA from B. fragilis aids cellular and physical
maturation of the developing immune system in mice, correcting T-cell deficiencies and imbalances in
CD4" T helper 1 (Th1) and Th2 cell subtypes, directing lymphoid organogenesis (140). In neonatal mice,
B. fragilis is also known to supplement the endogenous lipid antigen milieu with inhibitory sphingolipids,
impeding invariant natural killer T (iNKT) cell proliferation in the colonic lamina propria, providing
protection against iINKT cell-mediated mucosal inflammation and injury (141). Microbial colonization
also influences the development of early B-cell lineages in the intestinal mucosa, modulating gut
immunoglobulin repertoires (142). Sufficient intestinal microbiota diversity during early life colonisation
has been shown to be essential for the establishment of an immunoregulatory network that protects
against elevated induction of IgE at mucosal sites, which is linked to immune hypersensitivity, mucosal
inflammation, and allergies (72).

Beyond infancy, the gut microbiota continues to influence the host immune system to maintain
host-microbiota symbiosis and intestinal homeostasis (Figure 3). For example, MAMPs and microbiota-
derived metabolites can signal through activation of NLR complexes, called inflammasomes, to shape
host immune responses and regulate mucosal barrier function. The microbiota induces NOD-, Leucine
rich repeat (LRR)-, and pyrin domain containing 6 (NLRP6) inflammasome signalling to promote steady-
state pro-inflammatory IL-18 mucosal secretion, which in turn activates AMP and mucin production in
the intestinal mucosa, refining microbiota composition (143). SCFAs signal through GPR43 and
GPR109A also activate NLRP3 leading to IL-18 mucosal secretion (124). Members of the microbiota,
specifically Proteus mirabilis, can induce robust IL-1 production via the NLRP3 inflammasome to
promote intestinal mucosal inflammation, mediated by monocytes that are recruited to the intestine in
response to epithelial injury (144). The sensing of PGN fragments and PGN from intact commensal
bacteria through multiple PPRs is necessary for the proper development and activation of immune cells.
Phagocytes sense internalised PGNs through NLRs and inflammasome complexes (e.g. NLRP3) which
induce secretion of pro-inflammatory cytokines (e.g. TNF-a, IL-6, IL-1B, and IL-18) as well as increase
antimicrobial responses, such as reactive oxygen species (ROS) and AMP production (145). Macrophages
play a vital role as innate immune effector cells to maintain intestinal homeostasis, being able to initiate
both pro-inflammatory and anti-inflammatory signalling pathways. In mice, intestinal microbial
colonisation has been shown to drive continuous replenishment of macrophages in the intestinal mucosa
by monocytes that express C-C chemokine receptor type 2 (CCR2) (146). Helicobacter hepaticus induce
an early IL-10 response in intestinal lamina propria-resident macrophages and produce a large soluble
polysaccharide (LSP) that activates a specific mitogen and stress-activated protein kinase (MSK)/CREB-
dependent anti-inflammatory signalling cascade via TLR2, aiding tolerance and mutualism (147).
Butyrate drives monocyte to macrophage differentiation through histone deacetylase 3 (HDACS3)
inhibition to promote an anti-microbial state without inducing pro-inflammatory cytokine production
(148). Trimethylamine N-oxide (TMAOQ), the oxidated product of gut microbiota-derived trimethylamine,
triggers M1 macrophage polarisation via NLRP3 inflammasome activation in mice resulting in Th1 and
Th17 differentiation (149). Furthermore, TMAO has been shown to prime the NLRP3 inflammasome and
increase generation of ROS via inhibition of autophagy in colonic epithelial cells contributing to mucosal
inflammation (150).

Innate lymphoid cells (ILCs) are a heterogenous innate cell population that specialise in rapid
secretion of polarising cytokines and are involved in the initiation of mucosal inflammation to fight
infection and inflammatory resolution for mucosal tissue repair (151, 152). Many of the functions of ILCs
are mediated by the microbiota (152, 153). For example, proliferation and function of colonic ILC3s is
regulated by SCFA activation of GPR43. GPR43 agonism differentially activates protein kinase B (AKT)
and ERK signalling, leading to increased colonic ILC3-derived IL-22, ensuring correct mucosal mucin
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and AMP production from IECs (154, 155). Dichotomous regulation of ILCs has been observed by a pair
of Helicobacter species, activating ILCs but negatively regulating proliferation of ILC3s (156).

PSA mediates the conversion of CD4" cells into anti-inflammatory forkhead box P3 (Foxp3)®
regulatory T (Treg) cells and subsequent production of IL-10, both via TLR2, to suppress mucosal
inflammation (157). SCFAs, such as butyrate and propionate, also induce Treg generation via HDAC
inhibition (158). Microbiota-derived secondary bile acids have recently been shown to regulate colonic
retinoic acid receptor-related orphan receptor gamma (RORy)+ Treg induction and homeostasis (159).
Indoles, such as indole-3-aledhyde, signal through AhR in immune cells to regulate I1L-22 production and
promote mucosal immune homeostasis (160). Bacteria-derived B vitamins have an impact on many
aspects of immunological maintenance (161). Vitamins B1 and B2 act as cofactors for enzymes involved
in the TCA cycle and are important for immunometabolism and immune cell differentiation (161, 162).
Vitamin B2 is also associated with ROS generation in phagocytic immune cells through priming
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) (163). The vitamin B2
metabolite, 6-hydroxymethyl-8-D-ribityllumazine, bound to major histocompatibility complex (MHC)
class I-related protein (MR1) on antigen-presenting cells (APC), activates mucosal-associated invariant T
(MAIT) cells to promote production of pro-inflammatory interferon-gamma (IFN-y) and I1L-17 (164). In
contrast, the vitamin B9 metabolite, acetyl-6-formylpterin, inhibits activation of MAIT cells (165).
Vitamin B3 binds to GPR109A on macrophages and dendritic cells leading to an increase in anti-
inflammatory cytokines and Treg differentiation (166). Vitamin B7 (biotin) suppresses the production of
pro-inflammatory cytokines (167, 168). Vitamin B9 (folate) binds to the folate receptor 4 (FR4) on
differentiated Tregs, promoting cell survival (161). Vitamin B12 is required for CD8" T cell
differentiation and NK cell activation (169).
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Figure 3. Regulation of mucosal immunity by the intestinal microbiota. The mucosal immune system
is complex with crosstalk between both innate and adaptive components that are primed to counter
pathogens and preserve mucosal barrier integrity. MAMPs and microbial-derived metabolites (MDMs)
can directly influence this network, aiding the development of host immune responses against pathogens
while also limiting excessive mucosal inflammation to ensure microbiota tolerance.
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As detailed, the intestinal microbiota is not functionally independent from the host mucosa,
playing an important role in gut homeostasis. When there is a perturbation in this finely-balanced
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relationship, loss of mucosal barrier integrity and a rise in abnormal immune responses can occur leading
to a risk of sustained pathogenic inflammation and development of disease.

3. Dysbiosis and Disease

Environmental changes as well as host genetic susceptibility can contribute to dysbiosis (170,
171). In a dysbiotic state, altered relative abundances of certain microbial species and/or microbiota-
derived metabolites can lead to the disruption of intestinal barrier integrity and host immune responses.
Dysregulated mucosal immune responses are often characterised by an upregulation of Thl, Th2, and
Th17 cells and a downregulation of Tregs and IgA (172, 173). Dysbiosis is linked to the development of
numerous disease states including IBD, rheumatoid arthritis (RA), multiple sclerosis (MS), and metabolic
syndrome (172, 174)(Figure 4). However, it is worth noting that many of the studies to date, particularly
those highlighting immunological pathways, have been solely based on findings from rodent models,
which have inherent limitations (175).
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Figure 4. Linking dysbiosis and disease. Several diseases have been linked to dyshiosis. A dysbiotic
state is often characterised by a loss of beneficial microbes, increased levels of pathobionts and a decrease
in microbial diversity. Changes in relative bacterial abundance, as well as microbial-derived metabolites,
are thought to cause dysregulation in host gut permeability, leading to a compromised immune response
and in turn the development of disease.
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3.1 Inflammatory Bowel Disease

IBD is an umbrella term encompassing a group of complex chronic inflammatory disorders of the
gastrointestinal tract (176). Most commonly in the form of Crohn’s disease (CD) and ulcerative colitis
(UC), IBD has been associated with changes in gut microbiota. However, it is not clear whether these
changes contribute to disease pathogenesis or develop because of disease-related inflammation. IBD
patients exhibit a reduction in microbiota size, functional diversity, and stability compared to healthy
controls. In general, the microbiome of IBD patients show a decrease in Firmicutes of the Clostridium
leptum group, particularly Faecalibacterium prausnitzii (F. prausnitzii), and an increase in Bacteroidetes
and Proteobacteria such as Desulfovibrio desulfuricans (D. desulfricans) and E. coli (177-179). On
average IBD patients harbour 25% less microbial genes than a healthy person (180).
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The changes observed in the gut microbiome of IBD patients have been linked to bacteria known
to have a role in either supressing or promoting inflammation. Individuals with CD have a lower
abundance of F. prausnitzii, a SCFA-producing bacterium, that promote good gut health through
upregulation of Tregs and anti-inflammatory cytokines (181, 182). In humans, a reduction of F.
prausnitzii is associated with an increased risk of postoperative recurrence of CD (182). Furthermore, in
IBD patients, an increase in the abundance of the sulfate-reducing bacteria, such as D. desulfuricans, is
attributed to increased production of hydrogen sulfate, which can damage intestinal epithelial cells and in
turn induce mucosal inflammation (183, 184). Several human studies have also reported a mucosa-
associated E. coli richness in CD patients (179, 185), leading to increased gut permeability and
inflammation (186). Both human and murine models have found that a reduction in tryptophan levels are
also associated with IBD (187, 188). In IBD patients, tryptophan serum levels were found to inversely
correlate with IL-22 levels and disease activity (187).

3.2 Coeliac Disease

Coeliac disease, prevalent in 1%-2% of the global population, is an immune-mediated
inflammatory disorder that primarily affects the small intestine and is initiated following ingestion of
gluten in genetically predisposed individuals (189, 190). Research has suggested that dysbiosis plays a
role in triggering coeliac disease with a dysregulated immune response and failure to maintain intestinal
barrier integrity, leading to mucosal inflammation (191). However, like IBD, it remains unclear as to
whether the dysbiotic state characteristic of coeliac disease is a cause or consequence of a dysregulated
immune response.

As coeliac disease generally presents in childhood and young adulthood, most studies looking at a
link between coeliac disease and the microbiome have focused on children (191). Rod shaped bacteria,
including Clostridia, Provotella, and Actinomyces, are more frequently found in the small bowel of
children with active coeliac compared to healthy controls (192). Whilst no consistent microbial signature
has been determined for patients with coeliac disease, most studies report an imbalance between Gram-
negative and Gram-positive bacteria, characterised by both an increase in Gram-negative Bacteroides and
Proteobacteria, and a decrease in Gram-positive Lactobacilli and Bifidobacteria, which have a protective
anti-inflammatory effect (193, 194). Experimental murine models have reported that some Bacteroidetes
species are involved in the disruption of intestinal barrier integrity, exhibiting pro-inflammatory effects
(46, 195, 196). Both mice and human studies have shown that Lactobacilli and Bifidobacteria may play a
role in modifying the immunogenic potential of gluten, through breakdown of both gluten and its peptide
derivatives (197, 198). For example, Lactobacilli can detoxify gliadin peptides after their partial digestion
by human proteases. Both mice and human studies report that Bifidobacterium strains also play a role in
reducing the epithelial permeability triggered by gluten, diminishing pro-inflammatory cytokine synthesis
and decreasing jejunal barrier damage (199-201).

Whilst the exact mechanisms involved in coeliac disease remain unclear, studies in mice have
shown that a dysbiotic microbiota can result in increased levels of LPS in the intestine, which result in a
dysregulation of the immune response through the activation of both IELs and IECs, triggering the
production of AMPs and mucin (202, 203). Additionally, mouse studies have linked alterations in
microbial metabolites to the induction of Treg cells and dendritic cells, which produce IL-10 and retinoic
acid and thereby contribute to the activation of various cellular inflammatory processes within the lamina
propria (158, 204).

3.3 Other Autoimmune Diseases

RA is a systematic autoimmune disorder that results in joint destruction, affecting approximately
0.5%-1% of the global population (205). Patients with RA exhibit decreased gut microbial diversity and
microbial gut dysbiosis characterised by an abundance of Prevotella, Lactobacilli and Collinsella (206-
208). Mouse models show that Prevotella and Collinsella can induce a pro-inflammatory Th17 response
and increase gut permeability (206). Colonisation of K/BXN mice, an established RA model, with
segmented filamentous bacteria was shown to induce Th17 cell proliferation, ultimately leading to the
differentiation of B cells and the production of autoantibodies (209). It is thought that these
autoantibodies target joints, leading to the inflammation seen in RA.
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MS is a neurodegenerative autoimmune disease that affects the central nervous system (CNS)
(210). Whilst a typical microbiota phenotype for MS has not yet been described, patients with active
disease generally exhibit decreased species richness, an abundance of Anaerostipes, Faecalibacteria and
Psuedomonas, and decreased levels of Bacteroides, Prevotella, Parabacteroides and Adlercreutzia (211,
212). An autoimmune encephalomyelitis (EAE) GF mouse model, which is also a model for MS, showed
lower levels of IL-17 in both the gut and CNS, and an increase in peripheral Tregs (213). Furthermore,
disease severity in EAE models is also closely related to altered intestinal permeability, reduced
submucosa thickness and altered tight junction expression in IECs (214, 215).

3.4 Metabolic syndrome

Metabolic syndrome describes a group of risk factors, including obesity, hyperglycaemia,
hypertension, and dyslipidaemia, which can lead to the development of various conditions including
cardiovascular disease. The pathogenesis of metabolic syndrome is linked to a variety of factors such as
insulin resistance, chronic low-grade inflammation in metabolic tissue, and oxidative stress (216). In
recent years, gut dysbiosis has been identified as a risk factor for metabolic syndrome (217). It is believed
that environmental factors, such as a high fat diet, linked to decreased microbial diversity, promotes both
general and metabolic tissue inflammation that may lead to the development of metabolic syndrome.

The links between the gut microbiota and both obesity and type 2 diabetes (T2D) have been most

extensively studied. Studies in mice have shown that transplantation of gut microbiota from obese to lean
GF mice resulted in an obesogenic phenotype (218). Furthermore, GF mice fed a high fat, high sugar diet
were found to be resistant to weight gain (219). Studies in humans suggest that compared to lean
individuals, obese individuals have increased levels of Firmicutes and decreased levels of Bacteroidetes
(220, 221). In both humans and murine models, Roux-en-Y gastric bypass surgery has been found to
rapidly change the gut microbiota, with gut microbiota normalising close to non-obese controls (222,
223). Patients with T2D typically exhibit reduced microbiome diversity, reduced SCFA-producing
bacteria, and an increased number of opportunistic pathogens (224). Rodent studies have found that
SCFA play a key role in metabolic disorders, particularly in obesity and T2D. The SCFAs, propionate and
acetate, were found to influence gut motility, intestinal transit rate and caloric energy extraction from the
diet through GPR41 activation (225). Increased insulin sensitivity and increased satiety was also observed
in mouse models, thought to be linked to the induction of glucagon-like peptide (GLP)-1 secretion
through the activation of GPR43 and GPR41 (226). Butyrate provides energy to enterocytes by exerting a
trophic effect and inducing GLP-2 synthesis that in turn strengthens the gut barrier function (227).
It has been suggested that the gut microbial dysbiosis experienced in metabolic disorders leads to
impaired intestinal cell function and increased gut permeability, partly induced by a high fat diet (228).
Rodent studies have reported an increase in Gram-negative bacteria, including Proteobacteria, leading to a
local increase in LPS in the mucosal layer (229, 230). MAMPs and microbiota-derived metabolites,
including LPS, can translocate through the epithelial layer and reach the lamina propria where they are
internalised by phagocytes. Furthermore, it has been hypothesised that microbial gut dysbiosis impairs
communication between phagocytes and other immune cells in animal models, allowing the translocation
of bacterial components to metabolic tissue (231, 232). In the metabolic tissue of mice, bacterial
components trigger inflammation by promoting the proliferation of preadipocytes and macrophages,
increasing ILC3 frequency and increasing the infiltration of B and T lymphocytes. Associated pro-
inflammatory cytokines can also contribute to reduced insulin signalling, exacerbating the effects of
diabetes.

4. Microbiota-targeted therapies

As detailed previously, dysbiosis in the gut is implicated in multiple gastrointestinal and non-
gastrointestinal diseases. Intervention aiming to ameliorate this pathological environment with the
delivery of targeted beneficial or wholesale bacterial populations in the form of probiotics and faecal
microbiota transplantation (FMT), respectively, has been in clinical practice for many years (233, 234).
The various mechanisms by which probiotics and FMT exert their therapeutic effect has been reviewed in
detail elsewhere (235-237), but centre on their interaction with the host mucosal immune system via
MAMPs (238, 239) or extracellular vesicles (240-242), the surrounding microbiota via AMPs (243),
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microbial cross-feeding (244) or nutrient competition, and their contribution to the broader mucosal
metabolic environment (118, 148). Here we review the latest developments and innovations in probiotics
and FMT.

4.1 Probiotics

The main probiotic genera, including Lactobacilli, Bifidobacteria, Saccharomyces and
Streptococci, as well as combination commercial probiotics, have been researched extensively and touted
as potential therapies for many diseases or symptoms (245). Certain probiotic strains have discrete effects
on mucosal immune function, such as that seen with Lactobacillus plantarum TIFN1010 which
modulates gene transcription pathways related to cell-cell adhesion and mucosal healing processes (238).
However, robust clinical data to support their use remains limited, with systematic reviews in IBD (246-
248), Irritable bowel syndrome (IBS) (249) and C. difficile-associated diarrhoea (CDAD)(250) showing
neutral or only qualified evidence for use. Similarly, practice guidelines do not recommend the routine
use of probiotics (233), partly due to uncertainty regarding species or strain-dependent effects (251, 252).

Recent advances in genomic sequencing and metabolic modelling have offered a way to reduce
microbial uncertainty and the chance to optimise probiotic use through genetic engineering tools such as
CRISPR-Cas (253-256). For example, genetic modification of Lactobacillus casei (L. casei) to
overexpress the mcra gene, and so enhance bioactive compound production, such as conjugate linoleic
acid, can result in elimination of Campylobacter jejuni, an important diarrhoea-associated pathogen (257).
As well as optimising established probiotic species such as L. casei, confirmation of species such as
Akkermansia muciniphilia (A. muciniphilia) as probiotic therapeutic candidates has become possible
through the use of genome-scale modelling. Using this method, the complete microbial genome sequence
can be screened to predict genes that influence particular metabolic pathways (258). For A. muciniphilia,
genes linked to sugar degradation and vitamin biosynthesis, as well as SCFA production, were predicted
using this approach and validated by transcriptomic and proteomic analysis in vitro (259). Antibiotic
resistance and metabolic variation can also be assessed by whole-genome assembly undertaken on
patient-derived stool samples (260). Genomic sequencing technology has also been used to identify
individuals resistant to probiotic colonisation at the mucosal level (261), allowing therapy to then be
tailored, reducing treatment variability currently seen with probiotics (262).

Overall, whilst significant advances in probiotic therapy have been made, there is a need for a
greater understanding of probiotic formulation, in addition to a requirement for more robust human
clinical trial data to justify its routine use.

4.2 Postbiotics

An important additional consideration regarding probiotic preparations is the intrinsic effect of
microbial cell surface components and metabolites. Whereas, by definition, probiotics are live
microorganisms (263), there is also a role for postbiotics, as inanimate microorganisms and/or their
components (264), prepared specifically for their health benefits on the host. These narrow criteria
exclude purified microbial metabolites applied in isolation and instead focus on thermal inactivation and
quantification of products that possess microbial effector molecules such as bile salt hydrolase (265) and
exopolysaccharides (239).

Murine studies have shown the effect of postbiotics on gastrointestinal mucosa in a Citrobacter-
induced colitis model (266), whereas the mechanistic impact on mucosal inflammation in humans is more
limited to specific metabolites such as butyrate as in the case of diversion colitis (267). However, clinical
studies focussing on subjective outcomes such as symptom scores have shown benefit of postbiotics in
IBS (268).

To date, the application of postbiotics in gastrointestinal disease remains limited with the mainstay
of evidence (269, 270) and regulation (271), centred on secondary prevention of respiratory infections.
Further mechanistic and clinical trial data is required to characterise the effect of specific postbiotics on
gastrointestinal inflammation.

4.3 Faecal Microbiota Transplantation
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FMT, the delivery of donor stool into the gastrointestinal tract of a patient, is an established and
guideline-supported intervention for recurrent C. difficile infection (rCDI) (234, 272, 273), independent of
route of delivery (274), and a potential option in severe primary CDI (275). Meta-analysis has indicated a
positive association between FMT and the treatment of IBD, particularly with active UC (276, 277).
Further trials are currently underway (278) to confirm FMT efficacy before being adopted into routine
clinical practice (279). Similarly, with CD, there is evidence supporting the benefits of FMT (280),
however, it has not yet been recommended for clinical use (281). Evidence remains lacking for routine
use of FMT in IBS (282) with evidence for only conditional use in metabolic syndrome (283, 284) and
hepatic encephalopathy (285). The use of FMT in non-gastrointestinal diseases is an area of ongoing
study with randomised clinical trials in type 1 diabetes showing promise (286). FMT clinicals trials are
also underway to assess effectivity in treating Coeliac disease (NCT 04014413), RA (NCT03944096),
Sjogren’s syndrome (NCT03926286) and MS (NCT03183869; NCT03975413; NCT04150549), building
upon prior animal and uncontrolled human studies (287). It is in malignancy, and specifically anti-cancer
immunotherapies, where microbiota and their manipulation have shown great promise, building on
evidence that certain genera, for example, Bifidobacteria (288) or Bacteroides (289), can affect the
efficacy of malignant melanoma treatments. A recent clinical trial revealed that some patients refractory
to anti-programmed cell death protein 1 (PD-1) immunotherapy could overcome this resistance to therapy
by undergoing FMT from donors who were responders to the same anti-PD-1 immunotherapy (290). PD-
1 is an immune checkpoint receptor on T cells that prevents overstimulation of immune responses and
contributes to the maintenance of immune tolerance to self-antigens. The fact that FMT impacts on anti-
PD-1 melanoma therapy demonstrates that the composition of the microbiota influences host systemic
immune responses. FMT is now being applied to metastatic hormone-resistant prostate cancer
(NCTO04116775) and to ameliorate chemotherapy-induced toxicity (NCT04040712).

An important factor in FMT is the role of viruses and mycobiota given that whole stool
transplantation involves a transfer of these microorganisms to the new host along with bacteria.
Bacteriophages contribute to host immunity by adhering to mucosal mucus creating an additional
antimicrobial layer that reduces bacterial attachment and colonisation of the mucosa (291). Both
Caudovirales (292) and Saccharomyces (293) have been shown as important drivers for successful
treatment of rCDI by FMT. Faecal filtrate transfer (FFT), a supernatant composed of bacterial debris,
AMPs, metabolic products and oligonucleotides, but not live bacteria, was also seen to improve outcomes
in rCDI (294).

A limitation of widespread FMT use outside of the trial setting is the conceptual acceptability of
single or pooled donor stool being transferred to a patient. Synthetic microbiomes can be cultured from
donors and purified, or compiled from metagenomic studies (295). Purified intestinal bacterial culture
have been shown to be as effective in treating rCDI in a proof-of-principle study (296). A recent
randomised-controlled trial reported that a 12-strain bacterial mixture cultured from donor stool was
inferior to conventional FMT but equivalent to using vancomycin for the treatment of rCDI (297). FMT
using freeze-dried or lyophilised matter has been shown in observational studies to also be effective in
treating rCDI (298), with a propagated, lyophilised and encapsulated formulation currently under
investigation in clinical trials for the treatment of rCDI (NCT02865616), UC (NCT03832400) and other
diseases. These technologies, if efficacy is confirmed, herald the opportunity of a ‘post-FMT’ treatment
model centred on highly selected donors yielding a purified, standardised and cryopreserved microbiota
preparation for systematic clinical use.

Conclusion

The microbiome is a metabolically and immunologically active presence within the
gastrointestinal tract that plays a vital role in the maintenance of human health. This population of highly
diverse microorganisms is shaped by numerous factors, most notably, diet and the use of medications
such as antibiotics. The intestinal mucosa provides an important interface between the microbiota and
host, where the microbiota not only aids development of effective host immune responses against
pathogens and injury but also limits excessive mucosal inflammation to promote tolerance and stability of
the gut environment. Microbial components and microbial-derived metabolites contribute to both mucosal
barrier integrity and the regulation of underlying immune responses to preserve intestinal homeostasis.
When there is a loss of this balanced relationship, as seen in dysbiosis, then there is a risk of sustained
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pathogenic inflammation and the development of numerous diseases. As our understanding of the
microbiome and microbiota-host interactions has improved, so has our ability to harness members of the
microbiota to reverse dysbiosis, reduce mucosal inflammation, and prevent disease progression. The
outcome of ongoing clinical trials and mechanistic studies will hopefully extend our current knowledge of
the microbiome and further our understanding of the role it plays in mucosal inflammation.
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