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Abstract  15 
 16 

The microbiome plays an important role in maintaining human health. Despite multiple factors 17 
being attributed to the shaping of the human microbiome, extrinsic factors such diet and use of 18 
medications including antibiotics appear to dominate. Mucosal surfaces, particularly in the gut, are highly 19 
adapted to be able to tolerate a large population of microorganisms while still being able to produce a 20 
rapid and effective immune response against infection. The intestinal microbiome is not functionally 21 
independent from the host mucosa and can, through presentation of microbe-associated molecular 22 
patterns and generation of microbial-derived metabolites, fundamentally influence mucosal barrier 23 
integrity and modulate host immunity. In a healthy gut there is an abundance of beneficial bacteria that 24 
help to preserve intestinal homeostasis, promote protective immune responses and limit excessive 25 
inflammation. The importance of the microbiome is further highlighted during dysbiosis where a loss of 26 
this finely-balanced microbial population can lead to mucosal barrier dysfunction, aberrant immune 27 
responses, and chronic inflammation that increases the risk of disease development. Improvements in our 28 
understanding of the microbiome are providing opportunities to harness members of a healthy 29 
microbiome to help reverse dysbiosis, reduced inflammation and ultimately prevent disease progression.   30 
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Introduction 31 
 32 

The human body is inhabited by a highly diverse population of microorganisms (microbiota) that 33 
has co-evolved with their human hosts over many millennia (1). The human microbiome, a term more 34 
precisely used to describe the genomes of these microorganisms (2), is predominantly made up of bacteria 35 
(3), however archaea, viruses, and single-cell eukaryotes (e.g. fungi and protists) are also present (4-7). 36 
These microorganisms are at least as abundant as the number of human host cells (3, 8) and combined 37 
contain far more genes than the entire human genome (9). Over the past few decades, research related to 38 
the microbiome has intensified, facilitated by rapid advances in culture-independent, high-throughput 39 
genomic and metabolomic techniques (10-12). Consequently, a greater understanding of microbiota 40 
population composition and host-microbe interactions has been achieved, especially in the context of 41 
human health and disease (11, 13, 14). Whereas a balanced microbiota has been shown to play an 42 
important role in the maintenance of human health, impairment or imbalance in the makeup of the human 43 
microbiota (dysbiosis) can disrupt homeostasis and lead to the onset or exacerbation of human disease 44 
(15). Multiple factors are known to influence the microbiota however studies have shown that the 45 
microbiome is more strongly influenced by an individual’s environment (16, 17). There are significant 46 
similarities in microbiota composition of genetically unrelated individuals who share a household, with 47 
approximately 20% of inter-person microbiota variability associated with environmental factors such as 48 
diet, lifestyle, and medication (16).  49 

The human microbiome can be separated into compartment-specific ecosystems that exist on the 50 
skin and along mucosal surfaces such as those of the oral cavity, gastrointestinal tract, lungs, and 51 
genitourinary system (1). The largest concentration and diversity of microbiota can be found within the 52 
gut especially in the colon (1). The mucosa, which consists of a single cell thick epithelium overlaying a 53 
layer of connective tissue called the lamina propria, provides the interface between the host and the 54 
environment and is equipped with specialised features, particularly along its apical surface, to allow 55 
physiological function while also being in contact with the microbiota (18). The microbiota is however 56 
not functionally independent from the host mucosa and can fundamentally influence mucosal integrity, 57 
modulating host immune responses and mucosal inflammation. 58 

Here we review the relationship between the microbiota and the mucosa, especially in relation to 59 
gut homeostasis and mucosal inflammation. We first discuss factors that shape an individual’s 60 
microbiome and the impact the microbiome has on the intestinal mucosa during homeostasis.  We then 61 
explore how dysbiosis of the microbiome can lead to mucosal inflammation, resulting in the development 62 
of human disease, and highlight current and emerging therapies being used to suppress mucosal 63 
inflammation through targeting of the microbiome.  64 
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1. Factors Shaping the Microbiome  65 
 66 

There is increasing evidence to suggest that there is a core microbiome shared between all 67 
individuals (19). However, the composition and diversity of much of the gut microbiome varies greatly 68 
from person to person, adapting to both intrinsic and environmental factors (20, 21). Research to date has 69 
shown that environmental factors, mainly diet and medication, dominate over intrinsic factors, such as 70 
host genetics, in shaping the microbiome (16, 22). Age (23, 24), geography (25), and birthing practices 71 
(26, 27) are also known to be particularly important for determining microbiome composition (Figure 1). 72 
 73 

 74 
 75 
Figure 1. Factors that contribute to the shaping of the human microbiome.  76 
 77 

1.1 Diet  78 
 79 

 In the first year of life the gut microbiome is relatively unstable becoming progressively more 80 
stable following weaning, taking on an adult form typically around three years of age (28). Infant feeding 81 
practices as well as adult habitual diet play an important role in shaping the gut microbiome (29). Studies 82 
looking into the effect of diet on the make-up of the intestinal microbiota have to date mainly focused on 83 
the so-called ‘Western’ diet, which is characterised by high levels of fat, sugar and refined protein (30, 84 
31), and diets that are high in fibre and low in red meat, such as the Mediterranean diet (24, 32).  85 

Differences in gut microbiome composition prior to weaning have been observed between 86 
breastfed and formula-fed infants. Breastfed infants have a microbiome dominated by Lactobacilli and 87 
Prevotella, whereas formula-fed infants exhibit a more diverse microbial population, dominated by 88 
Enterococci, Enterobacteria, Bacteroides, Clostridia and Streptococci (33, 34). Breastmilk contains 89 
oligosaccharides which promote the growth of beneficial Bifidobacteria (35). Bifidobacteria play a major 90 
role in the fermentation and conversion of oligosaccharides into short-chain fatty acids (SCFA), such as 91 
butyrate and propionate, which promote healthy immune function (reviewed in detail in Section 2.1) (36). 92 
In addition to providing critical nutrients and bioactive compounds, human breast milk also plays an 93 
important role in the seeding of an infant’s gut microbiome, containing a variety of beneficial bacteria, 94 
including Lactobacilli and Bifidobacteria (37). After weaning, the microbiota becomes more diverse and 95 
is dominated by Bacteroidetes and Firmicutes (38).  96 
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Studies looking at the adult gut microbiome have found that individuals consuming a Western diet 97 
experience a decrease in the total number of gut bacteria, particularly Bifidobacteria and Eubacteria, and 98 
an increase in pro-inflammatory bacterial-derived compounds (39-41). A key aspect of the Western diet is 99 
a high intake of saturated fatty acids which has been linked to both a decrease in Gram-negative bacteria 100 
within the gut, particularly Bacteroidetes, and an increase in Lactococci (42, 43). Whilst there is currently 101 
a lack of consensus as to the precise effect of these dietary components on the microbiome, most studies 102 
have observed an overall decrease in bacterial diversity, a decrease in SCFA production, and an increase 103 
in harmful bacterial strains, such as pathogenic Escherichia coli (E. coli) (44, 45). In contrast to a 104 
Western diet, adults who consume a Mediterranean diet exhibit increased levels of Bifidobacteria, 105 
Lactobacilli, Eubacteria and Bacteroides (46, 47). Furthermore, individuals who consume a 106 
Mediterranean diet have been shown to have increased levels of SCFA-producing bacteria, such as 107 
Provetella (48). In addition to habitual diet, research has shown that dietary diversity, meal timing as well 108 
as short- and long-term dietary modifications can change the composition and activity of the adult gut 109 
microbiome (49-52). Caloric restriction, for example, which is a nutritional intervention of reduced 110 
energy intake, has a strong influence on the gut microbiota (53, 54). It has been found that caloric 111 
restriction can slow down age-related decline in the microbiome, increase both microbial diversity and 112 
Bacteroidetes/Firmicutes ratio, as well as change host microbial co-metabolites leading to a decrease in 113 
host lipid biosynthesis and an in increase fatty acid catabolism (55, 56). 114 
 115 

1.2 Antibiotics and Drugs 116 
 117 

Antibiotics are medicines used in the treatment of bacterial infections. Whilst they have proved to 118 
be an effective treatment against many bacterial diseases, their antimicrobial action profoundly affects the 119 
composition and function of the gut microbiome, causing dysbiosis by killing both pathological and 120 
beneficial bacteria, and allowing the expansion of resistant microbes (57). The effects of antibiotics on the 121 
gut microbiome are potentially long-lasting, and their use in early life has been associated with an 122 
increased risk of developing several conditions including inflammatory bowel disease (IBD) and asthma 123 
(58, 59). 124 

Antibiotics can drastically reduce, or even fully eliminate, beneficial anaerobic bacterial species 125 
such as Bifidobacteria, Lactobacilli, Bacteroides and Clostridia (60). After only 7 days of antibiotic 126 
treatment, microbial diversity has been found to decrease by 25%, with core phylogenetic microbiota 127 
reducing from 29 to 12 taxa and antibiotic resistant Bacteroidetes increasing 2.5-fold (61). Consequently, 128 
antibiotic use can also result in reduced SCFA production (62). The effects of antibiotics on the 129 
microbiome are however dependent on the type of antibiotic used. Clindamycin, which is a broad-130 
spectrum antibiotic, can cause microbial changes that last for up to 2 years with no recovery in 131 
Bacteroides diversity (63). Clarithromycin and Ciprofloxacin, which are used against Helicobacter pylori, 132 
are associated with a decrease in Actinobacteria and Ruminococci, respectively (64, 65). Vancomycin, 133 
which is used to treat Clostridium difficile (C. difficile), causes an increase in Proteobacteria species and a 134 
decrease in Bacteroidetes, Ruminoccoci and Faecalibacteria levels, which can lead to both recurrent C. 135 
difficile infection and the growth of unwanted bacterial species, such as pathogenic E. coli (66, 67).   136 

Non-antibiotic drugs are also known to influence the composition and stability of the microbiome. 137 
A recent meta-analysis revealed that in addition to antibiotics, proton pump inhibitors (PPIs), metformin, 138 
and laxatives exhibit the greatest effects on gut microbiome composition and function (68). Proton pump 139 
inhibitors reduce microbial diversity and cause taxonomical changes in the gut. Metformin significantly 140 
increases E. coli abundance and effects the number of SCFA producing bacteria (68, 69). 141 
 142 

1.3 Birth Mode of Delivery 143 
 144 

Studies have shown that whereas vaginally delivered babies have a microbiome dominated by 145 
Lactobacilli and Prevotella, babies born by caesarean section (C-section) carry a microbiome dominated 146 
by Streptococci, Corynebacteria, and Propionibacteria (70, 71). Furthermore, babies born by C-section 147 
have been shown to have an abundance of potentially pro-inflammatory Klebsiella and Enterococcus 148 
bacteria (26). A recent study reported that the abundance of Klebsiella and Enterococcus species in C-149 
section born children at one week of life was associated with an increased number of respiratory 150 
infections over the first year (26). Additionally, babies delivered by C-section have been shown to have 151 
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lower total gut microbial diversity, delayed Bacteroidetes colonisation, and a subsequent immune system 152 
imbalance during the first two years of life which may result in the development of allergies (72, 73). 153 

 154 

1.4 Age 155 
 156 

Many studies have observed age-related changes to the gut microbiome. In infancy, the 157 
developing gut microbiome undergoes three distinct phases of progression: a developmental phase 158 
(months 3-14), a transitional phase (months 15-30), and a stable phase (months 31-46)  (74). Children and 159 
young adults have a higher abundance of Bifidobacteria and Clostridia, and a lower microbial diversity 160 
compared to adults (75). In general, healthy adults exhibit high levels of Bacteroidetes and Firmicutes, 161 
and low levels of Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia (20, 76, 77). 162 
Throughout life, intestinal levels of Firmicutes decrease while Bacteroidetes levels increase. Elderly 163 
people have a gut microbiome enriched with Bacteroidetes and Proteobacteria and depleted levels of 164 
Bifidobacteria and Lactobacilli (24, 78). The transition from healthy adult to healthy old age is 165 
characterised by a decrease in microbial diversity, as well as an accumulation of potentially pro-166 
inflammatory microbes and decrease of beneficial microbes (79). 167 
 168 

1.5 Development Geography 169 
 170 

To date, most studies investigating the link between the microbiome and geography have focused 171 
on differences in microbiome composition between three contrasting human populations: hunter 172 
gatherers, traditional farming or fishing communities, and Western industrialised communities (80-84). 173 
When comparing the microbiomes of hunter gatherers to those of more developed communities, hunter 174 
gatherers were found to have a higher microbial diversity, with enrichment of Prevotella, Treponema and 175 
Bacteroidetes (80, 81). In contrast, Western industrialised communities have higher levels of Bacteroides 176 
and Firmicutes, with an overall lower microbial diversity. Some studies suggest that the microbiomes of 177 
traditional farming and fishing communities exhibit an intermediate state between hunter gatherers and 178 
Western industrialised communities (82, 85). Factors thought to influence gut microbiome composition 179 
amongst hunter gatherers include a diet consisting of predominately starchy foods, limited access to 180 
modern medicine, and exposure to a wide variety of pathogens and parasites (82, 83). Traditional farming 181 
or fishing communities are thought to possess microbiomes with a relatively high taxonomic diversity, 182 
allowing the host to withstand pathogens and parasites, as well as to be able to respond to dietary 183 
fluctuations due to crop seasonality (83). In Western industrialised societies, the gut microbiome is 184 
thought to be largely determined by diets high in refined protein and fat, good sanitation and hygiene 185 
practices, and the habitual use of antibiotics and other medications (80, 81, 84). Some studies have also 186 
proposed that the lower microbiome diversity found in Western industrialised communities can be 187 
attributed to an overall loss of biodiversity due to industrialisation, pollution and use of chemicals (86, 188 
87). Furthermore, differences in sanitised drinking water may also have an effect on the composition of 189 
the gut microbiome (88, 89).  190 

 191 

2. The microbiome and intestinal homeostasis 192 

 193 
 The intestinal mucosa is highly adapted to be able to tolerate a large population of 194 

microorganisms and dietary antigens while preserving nutrient uptake and raising an effective immune 195 
response to pathogenic infection or commensal intrusion into the underlying host tissue (90). For the most 196 
part, the microbiota maintains symbiosis with the gut environment forming a mutually beneficial 197 
relationship with the host. The gut provides a nutrient-rich habitat for the microbiota while the microbiota 198 
stimulates the host’s immune system, aids digestion, and provides otherwise unobtainable metabolites. In 199 
a normal healthy gut, the microbiota is diverse with an abundance of beneficial bacteria that help to 200 
maintain gut homeostasis, promoting protective intestinal immune responses at the mucosal surface and 201 
limiting excessive mucosal inflammation (91).  202 

The microbiota can communicate directly with the host through host recognition of highly 203 
conserved structural components, termed microbe-associated molecular patterns (MAMPs) (92), such as 204 
lipopolysaccharides (LPS), peptidoglycan (PGN), and flagellin. Recognition of MAMPs are achieved 205 
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primarily through binding to pattern-recognition receptors (PRRs) expressed by intestinal epithelial cells 206 
(IECs) and immune cells. PPRs are a diverse family of transmembrane and cytoplasmic innate immune 207 
receptors, that include Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-208 
like receptors (NLRs) (93). PPR stimulation triggers intracellular signalling cascades leading to the 209 
expression of a range of immunomodulatory molecules that orchestrate early immune responses resulting 210 
in mucosal inflammation and further activation of innate and adaptive immune processes (94). Whereas 211 
activation of PRR by pathogens and pathobionts is known to initiate pro-inflammatory signalling 212 
cascades that lead to mucosal inflammation, the commensal microbiota can use similar mechanisms to 213 
dampen inflammation and promote intestinal homeostasis (95). For example, polysaccharide A (PSA) 214 
from the ubiquitous gut commensal Bacteroides fragilis is recognised by the TLR1/TLR2 heterodimer, in 215 
co-operation with the C-type lectin PRR Dectin-1, triggering a signalling cascade through the 216 
phosphoinositide 3-kinase (PI3K) pathway to promote 3’,5’-cyclic adenosine monophosphate (cAMP) 217 
response-element-binding protein (CREB)-dependent transcription of anti-inflammatory genes (96). 218 
NOD2 stimulation by muramyl-dipeptide (MDP), a PGN motif, triggers intestinal leucine-rich repeat-219 
containing G-protein coupled receptor 5 (Lgr5)

+
 stem cell survival and epithelial regeneration (97). In 220 

addition to microbe specific constituents, there are also numerous microbiota-derived metabolites, such as 221 
SCFA, that stimulate a range of signalling pathways to further regulate mucosal immune responses and 222 
aid microbial symbiosis/tolerance (98).  223 
 224 

2.1 Direct microbial maintenance of intestinal barrier integrity 225 
  226 
The intestinal mucosa forms physical, biochemical, and immunological barriers which allows for 227 

the symbiotic microbiota-host relationship to be maintained, controlling the microbial population and 228 
reducing direct contact with the host (99). Maintenance of these barriers are essential for preventing 229 
microbial invasion, excessive immune responses, and mucosal inflammation. As well as defending 230 
against pathogens through competition for nutrients and production of anti-microbial molecules (100, 231 
101), the gut microbiota also plays an active role in the maintenance of host mucosal barriers, which 232 
further prevents colonisation by opportunistic pathogens, limiting excessive mucosal inflammation and 233 
preserving gut homeostasis (99, 100). 234 

The physical barrier consists of a wall of IECs that are held together by cell junctions, particularly 235 
tight junctions (TJs), allowing only selective paracellular transport of water, ions, solutes, and some 236 
nutrients, preventing passage of microorganisms (102). A mucus layer, predominantly formed of highly 237 
glycosylated mucins secreted by goblet cells, covers IECs and further contributes to the physical barrier 238 
preventing bacteria from interacting directly with host tissue (103). The mucus layer also provides 239 
moisture and lubrication to protect IECs from dehydration and mechanical stress caused by the passage of 240 
food and peristaltic forces (104). The small intestine contains one layer of mucus whereas the colon 241 
contains two: a loose outer layer that is permeable to bacteria and a dense inner layer that is impermeable 242 
and devoid of bacteria (105). In the small intestine particularly, secretory molecules such anti-microbial 243 
peptides (AMPs) and immunoglobulin (Ig)A are released and concentrated in the mucus layer, which 244 
further aid separation of the microbiota from the host mucosa (101, 106). In addition to targeting 245 
microbes directly and sequestering key nutrients to control microbiota biodiversity, these barriers can also 246 
modulate the host’s innate and adaptive immune responses (107, 108) and drive upregulation of mucin 247 
and TJ protein expression in IECs to maintain intestinal barrier integrity (109, 110). 248 

Normal maturation and function of the mucus layer is strongly influenced by the gut microbiota, 249 
either through bacterial degradation and turn-over of mucin glycans or by bacteria-mediated processes to 250 
regulate host glycosylation of mucins (111). Additionally, microbial-derived signals and metabolites have 251 
been shown to protect the intestinal epithelial barrier, upregulating and strengthening cell junctions as 252 
well as promoting maintenance of the mucus layer and release of anti-microbial molecules (Figure 2). For 253 
example, indoles, which are microbiota-derived metabolites produced from the amino acid tryptophan 254 
have been shown to increase gene expression linked to TJ formation and mucus production (112, 113). 255 
Indoles further protect IECs through attenuation of tumour necrosis factor-alpha (TNF-α)-mediated 256 
activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), decreased 257 
expression of pro-inflammatory cytokine interleukin (IL)-8, reduced attachment of pathogenic E. coli, and 258 
increased expression of anti-inflammatory IL-10 (112). Studies using mice have shown that indole 3-259 
propionic acid (IPA) stimulates the pregnane X receptor (PXR) resulting in upregulation of TJ proteins in 260 
enterocytes and down-regulation of TNF-α (114). Urolithin A (UroA), a solely microbiota-derived 261 
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metabolite produced from polyphenolic compounds also enhances intestinal barrier integrity by 262 
increasing TJ proteins in IECs through activation of aryl hydrocarbon receptor (AhR)-nuclear factor 263 
erythroid 2-related factor 2 (Nrf2)-dependent pathways (115). SCFAs, in particular butyrate, are the main 264 
energy source for colonocytes and are known to promote epithelial barrier integrity (116-119). SCFAs are 265 
taken up by cells either by passive diffusion or facilitated by solute transporters such as monocarboxylate-266 
transporter 1 (MCT-1) and sodium-coupled monocarboxylate transporter 1 (SMCT1) where they can then 267 
be detected by intracellular receptors such as peroxisome proliferator-activated receptor gamma (PPAR) 268 
(120-122). Alternatively, SCFAs may signal through G-protein coupled receptors (GPRs), such as 269 
GPR41, GPR43, and GPR109A, to activate signalling cascades that regulate immune responses (123-270 
125). SCFAs directly promote mucosal barrier integrity through induction of genes encoding TJ proteins 271 
(126), mucins (127), and AMPs (128). The gut microbial-derived metabolite of polyunsaturated omega-6 272 
fatty acid linoleic acid, 10-hydroxy-cis-12-octadecenoic acid (HYA), is able to ameliorate intestinal 273 
barrier damage and changes to cell junction proteins partially via a GPR40-mitogen activated protein 274 
kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway (129). Secondary bile acids, 275 
such as lithocholic acid (48), produced by gut microbial conversion of primary bile acids, have also been 276 
shown to protect IECs from a TNF-α-induced decrease in TJ proteins through activation of the vitamin D 277 
receptor (VDR)(130). 278 

 279 
 280 
Figure 2. The direct effect of microbiota-derived metabolites on intestinal barrier integrity. 281 
Microbiota-derived metabolites play an important role in maintaining intestinal barrier integrity to 282 
prevent epithelial damage and limit mucosal inflammation. Metabolites of polyunsaturated fatty acids 283 
(PUFAs) via a GPR40-MEK-ERK pathway have been shown to prevent loss of TJ proteins. Indoles, 284 
SCFAs, UroA, and secondary bile acids have also been shown to increase expression of TJ proteins via 285 
pathways involving PXR, adenosine monophosphate activated protein kinase (AMPK), AhR-Nrf2, and 286 
VDR, respectively. Indoles and SCFAs promote the production and secretion of mucin, reinforcing the 287 
mucus layer. SCFAs activate a mechanistic target of rapamycin (mTOR)-signal transducer and activator 288 
of transcription (STAT) 3 pathway in a GPR43-dependent manner to induce production of AMPs.  289 
 290 

2.2 Mucosal immune regulation by the microbiota  291 

 292 
The mucosal immune system is fundamental to intestinal barrier integrity and inflammation. The 293 

microbiota plays a vital role, especially in early life, in the maturation and regulation of host immunity to 294 
ensure mucosal inflammation is controlled and that the host can differentiate between commensal and 295 
pathogenic bacteria (131). 296 

Commensal bacteria have long been associated with the correct development of mucosa-297 
associated lymphoid tissues (MALT), in particular the gut-associated lymphoid tissue (GALT) which 298 
includes Peyer’s patches. Early studies using germ-free (GF) mice have shown that the absence of a 299 
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commensal microbiota correlates with extensive defects in lymphoid tissue architecture and immune 300 
responses (132). A significant reduction in intra-epithelial lymphocytes (IELs), such as αβ and γδ IELs, as 301 
well as secretory IgA, is seen in GF mice (compared to their colonised counterparts), which can be 302 
reversed following microbial colonisation (133, 134). Gestational maternal colonization in mice has been 303 
shown to increase immune cell subtypes including intestinal group 3 innate lymphoid cells (ILC3s) and 304 
F4/80

+
 CD11c

+
 mononuclear cells (135). Pro-inflammatory IL-17

+
 CD4

+
 T helper (Th17) cells, which 305 

normally exist in large numbers in the lamina propria of the small intestine are absent in GF mice 306 
however they can be induced upon commensal colonisation (136-138). This is most notable with 307 
segmented filamentous bacteria (SFB), which upon adhesion to IECs, are known to stimulate T-cell 308 
responses as well as enhance IgA production (126, 139). PSA from B. fragilis aids cellular and physical 309 
maturation of the developing immune system in mice, correcting T-cell deficiencies and imbalances in 310 
CD4

+
 T helper 1 (Th1) and Th2 cell subtypes, directing lymphoid organogenesis (140). In neonatal mice, 311 

B. fragilis is also known to supplement the endogenous lipid antigen milieu with inhibitory sphingolipids, 312 
impeding invariant natural killer T (iNKT) cell proliferation in the colonic lamina propria, providing 313 
protection against iNKT cell-mediated mucosal inflammation and injury (141). Microbial colonization 314 
also influences the development of early B-cell lineages in the intestinal mucosa, modulating gut 315 
immunoglobulin repertoires (142). Sufficient intestinal microbiota diversity during early life colonisation 316 
has been shown to be essential for the establishment of an immunoregulatory network that protects 317 
against elevated induction of IgE at mucosal sites, which is linked to immune hypersensitivity, mucosal 318 
inflammation, and allergies (72). 319 

Beyond infancy, the gut microbiota continues to influence the host immune system to maintain 320 
host-microbiota symbiosis and intestinal homeostasis (Figure 3). For example, MAMPs and microbiota-321 
derived metabolites can signal through activation of NLR complexes, called inflammasomes, to shape 322 
host immune responses and regulate mucosal barrier function. The microbiota induces NOD-, Leucine 323 
rich repeat (LRR)-, and pyrin domain containing 6 (NLRP6) inflammasome signalling to promote steady-324 
state pro-inflammatory IL-18 mucosal secretion, which in turn activates AMP and mucin production in 325 
the intestinal mucosa, refining microbiota composition (143). SCFAs signal through GPR43 and 326 
GPR109A also activate NLRP3 leading to IL-18 mucosal secretion (124). Members of the microbiota, 327 
specifically Proteus mirabilis, can induce robust IL-1β production via the NLRP3 inflammasome to 328 
promote intestinal mucosal inflammation, mediated by monocytes that are recruited to the intestine in 329 
response to epithelial injury (144). The sensing of PGN fragments and PGN from intact commensal 330 
bacteria through multiple PPRs is necessary for the proper development and activation of immune cells. 331 
Phagocytes sense internalised PGNs through NLRs and inflammasome complexes (e.g. NLRP3) which 332 
induce secretion of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-1β, and IL-18) as well as increase 333 
antimicrobial responses, such as reactive oxygen species (ROS) and AMP production (145). Macrophages 334 
play a vital role as innate immune effector cells to maintain intestinal homeostasis, being able to initiate 335 
both pro-inflammatory and anti-inflammatory signalling pathways. In mice, intestinal microbial 336 
colonisation has been shown to drive continuous replenishment of macrophages in the intestinal mucosa 337 
by monocytes that express C-C chemokine receptor type 2 (CCR2) (146).  Helicobacter hepaticus induce 338 
an early IL-10 response in intestinal lamina propria-resident macrophages and produce a large soluble 339 
polysaccharide (LSP) that activates a specific mitogen and stress-activated protein kinase (MSK)/CREB-340 
dependent anti-inflammatory signalling cascade via TLR2, aiding tolerance and mutualism (147).  341 
Butyrate drives monocyte to macrophage differentiation through histone deacetylase 3 (HDAC3) 342 
inhibition to promote an anti-microbial state without inducing pro-inflammatory cytokine production 343 
(148). Trimethylamine N-oxide (TMAO), the oxidated product of gut microbiota-derived trimethylamine, 344 
triggers M1 macrophage polarisation via NLRP3 inflammasome activation in mice resulting in Th1 and 345 
Th17 differentiation (149). Furthermore, TMAO has been shown to prime the NLRP3 inflammasome and 346 
increase generation of ROS via inhibition of autophagy in colonic epithelial cells contributing to mucosal 347 
inflammation (150).  348 

Innate lymphoid cells (ILCs) are a heterogenous innate cell population that specialise in rapid 349 
secretion of polarising cytokines and are involved in the initiation of mucosal inflammation to fight 350 
infection and inflammatory resolution for mucosal tissue repair (151, 152). Many of the functions of ILCs 351 
are mediated by the microbiota (152, 153). For example, proliferation and function of colonic ILC3s is 352 
regulated by SCFA activation of GPR43. GPR43 agonism differentially activates protein kinase B (AKT) 353 
and ERK signalling, leading to increased colonic ILC3-derived IL-22, ensuring correct mucosal mucin 354 
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and AMP production from IECs (154, 155). Dichotomous regulation of ILCs has been observed by a pair 355 
of Helicobacter species, activating ILCs but negatively regulating proliferation of ILC3s (156).  356 

PSA mediates the conversion of CD4
+
 cells into anti-inflammatory forkhead box P3 (Foxp3)

+ 357 
regulatory T (Treg) cells and subsequent production of IL-10, both via TLR2, to suppress mucosal 358 
inflammation (157). SCFAs, such as butyrate and propionate, also induce Treg generation via HDAC 359 
inhibition (158). Microbiota-derived secondary bile acids have recently been shown to regulate colonic 360 
retinoic acid receptor-related orphan receptor gamma (RORγ)+ Treg induction and homeostasis (159). 361 
Indoles, such as indole-3-aledhyde, signal through AhR in immune cells to regulate IL-22 production and 362 
promote mucosal immune homeostasis (160). Bacteria-derived B vitamins have an impact on many 363 
aspects of immunological maintenance (161). Vitamins B1 and B2 act as cofactors for enzymes involved 364 
in the TCA cycle and are important for immunometabolism and immune cell differentiation (161, 162). 365 
Vitamin B2 is also associated with ROS generation in phagocytic immune cells through priming 366 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) (163). The vitamin B2 367 
metabolite, 6-hydroxymethyl-8-D-ribityllumazine, bound to major histocompatibility complex (MHC) 368 
class I-related protein (MR1) on antigen-presenting cells (APC), activates mucosal-associated invariant T 369 
(MAIT) cells to promote production of pro-inflammatory interferon-gamma (IFN-γ) and IL-17 (164). In 370 
contrast, the vitamin B9 metabolite, acetyl-6-formylpterin, inhibits activation of MAIT cells (165). 371 
Vitamin B3 binds to GPR109A on macrophages and dendritic cells leading to an increase in anti-372 
inflammatory cytokines and Treg differentiation (166). Vitamin B7 (biotin) suppresses the production of 373 
pro-inflammatory cytokines (167, 168). Vitamin B9 (folate) binds to the folate receptor 4 (FR4) on 374 
differentiated Tregs, promoting cell survival (161). Vitamin B12 is required for CD8

+
 T cell 375 

differentiation and NK cell activation (169). 376 
 377 

 378 
 379 
Figure 3. Regulation of mucosal immunity by the intestinal microbiota. The mucosal immune system 380 
is complex with crosstalk between both innate and adaptive components that are primed to counter 381 
pathogens and preserve mucosal barrier integrity. MAMPs and microbial-derived metabolites (MDMs) 382 
can directly influence this network, aiding the development of host immune responses against pathogens 383 
while also limiting excessive mucosal inflammation to ensure microbiota tolerance. 384 
 385 

As detailed, the intestinal microbiota is not functionally independent from the host mucosa, 386 
playing an important role in gut homeostasis. When there is a perturbation in this finely-balanced 387 
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relationship, loss of mucosal barrier integrity and a rise in abnormal immune responses can occur leading 388 
to a risk of sustained pathogenic inflammation and development of disease.  389 

 390 

3. Dysbiosis and Disease  391 
 392 

Environmental changes as well as host genetic susceptibility can contribute to dysbiosis (170, 393 
171). In a dysbiotic state, altered relative abundances of certain microbial species and/or microbiota-394 
derived metabolites can lead to the disruption of intestinal barrier integrity and host immune responses.  395 
Dysregulated mucosal immune responses are often characterised by an upregulation of Th1, Th2, and 396 
Th17 cells and a downregulation of Tregs and IgA (172, 173). Dysbiosis is linked to the development of 397 
numerous disease states including IBD, rheumatoid arthritis (RA), multiple sclerosis (MS), and metabolic 398 
syndrome (172, 174)(Figure 4). However, it is worth noting that many of the studies to date, particularly 399 
those highlighting immunological pathways, have been solely based on findings from rodent models, 400 
which have inherent limitations (175). 401 
 402 

 403 
 404 
Figure 4. Linking dysbiosis and disease. Several diseases have been linked to dysbiosis. A dysbiotic 405 
state is often characterised by a loss of beneficial microbes, increased levels of pathobionts and a decrease 406 
in microbial diversity. Changes in relative bacterial abundance, as well as microbial-derived metabolites, 407 
are thought to cause dysregulation in host gut permeability, leading to a compromised immune response 408 
and in turn the development of disease.   409 
 410 
 411 

3.1 Inflammatory Bowel Disease 412 

 413 
IBD is an umbrella term encompassing a group of complex chronic inflammatory disorders of the 414 

gastrointestinal tract (176). Most commonly in the form of Crohn’s disease (CD) and ulcerative colitis 415 
(UC), IBD has been associated with changes in gut microbiota. However, it is not clear whether these 416 
changes contribute to disease pathogenesis or develop because of disease-related inflammation. IBD 417 
patients exhibit a reduction in microbiota size, functional diversity, and stability compared to healthy 418 
controls. In general, the microbiome of IBD patients show a decrease in Firmicutes of the Clostridium 419 
leptum group, particularly Faecalibacterium prausnitzii (F. prausnitzii), and an increase in Bacteroidetes 420 
and Proteobacteria such as Desulfovibrio desulfuricans (D. desulfricans) and E. coli (177-179). On 421 
average IBD patients harbour 25% less microbial genes than a healthy person (180).   422 
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The changes observed in the gut microbiome of IBD patients have been linked to bacteria known 423 
to have a role in either supressing or promoting inflammation. Individuals with CD have a lower 424 
abundance of F. prausnitzii, a SCFA-producing bacterium, that promote good gut health through 425 
upregulation of Tregs and anti-inflammatory cytokines (181, 182). In humans, a reduction of F. 426 
prausnitzii is associated with an increased risk of postoperative recurrence of CD (182). Furthermore, in 427 
IBD patients, an increase in the abundance of the sulfate-reducing bacteria, such as D. desulfuricans, is 428 
attributed to increased production of hydrogen sulfate, which can damage intestinal epithelial cells and in 429 
turn induce mucosal inflammation (183, 184). Several human studies have also reported a mucosa-430 
associated E. coli richness in CD patients (179, 185), leading to increased gut permeability and 431 
inflammation (186). Both human and murine models have found that a reduction in tryptophan levels are 432 
also associated with IBD (187, 188). In IBD patients, tryptophan serum levels were found to inversely 433 
correlate with IL-22 levels and disease activity (187). 434 

 435 

3.2 Coeliac Disease 436 
 437 

Coeliac disease, prevalent in 1%-2% of the global population, is an immune-mediated 438 
inflammatory disorder that primarily affects the small intestine and is initiated following ingestion of 439 
gluten in genetically predisposed individuals (189, 190). Research has suggested that dysbiosis plays a 440 
role in triggering coeliac disease with a dysregulated immune response and failure to maintain intestinal 441 
barrier integrity, leading to mucosal inflammation (191). However, like IBD, it remains unclear as to 442 
whether the dysbiotic state characteristic of coeliac disease is a cause or consequence of a dysregulated 443 
immune response.  444 
 As coeliac disease generally presents in childhood and young adulthood, most studies looking at a 445 
link between coeliac disease and the microbiome have focused on children (191). Rod shaped bacteria, 446 
including Clostridia, Provotella, and Actinomyces, are more frequently found in the small bowel of 447 
children with active coeliac compared to healthy controls (192).  Whilst no consistent microbial signature 448 
has been determined for patients with coeliac disease, most studies report an imbalance between Gram-449 
negative and Gram-positive bacteria, characterised by both an increase in Gram-negative Bacteroides and 450 
Proteobacteria, and a decrease in Gram-positive Lactobacilli and Bifidobacteria, which have a protective 451 
anti-inflammatory effect (193, 194). Experimental murine models have reported that some Bacteroidetes 452 
species are involved in the disruption of intestinal barrier integrity, exhibiting pro-inflammatory effects 453 
(46, 195, 196). Both mice and human studies have shown that Lactobacilli and Bifidobacteria may play a 454 
role in modifying the immunogenic potential of gluten, through breakdown of both gluten and its peptide 455 
derivatives (197, 198). For example, Lactobacilli can detoxify gliadin peptides after their partial digestion 456 
by human proteases. Both mice and human studies report that Bifidobacterium strains also play a role in 457 
reducing the epithelial permeability triggered by gluten, diminishing pro-inflammatory cytokine synthesis 458 
and decreasing jejunal barrier damage (199-201).  459 
 Whilst the exact mechanisms involved in coeliac disease remain unclear, studies in mice have 460 
shown that a dysbiotic microbiota can result in increased levels of LPS in the intestine, which result in a 461 
dysregulation of the immune response through the activation of both IELs and IECs, triggering the 462 
production of AMPs and mucin (202, 203). Additionally, mouse studies have linked alterations in 463 
microbial metabolites to the induction of Treg cells and dendritic cells, which produce IL-10 and retinoic 464 
acid and thereby contribute to the activation of various cellular inflammatory processes within the lamina 465 
propria (158, 204).  466 
 467 

3.3 Other Autoimmune Diseases 468 
 469 

RA is a systematic autoimmune disorder that results in joint destruction, affecting approximately 470 
0.5%-1% of the global population (205). Patients with RA exhibit decreased gut microbial diversity and 471 
microbial gut dysbiosis characterised by an abundance of Prevotella, Lactobacilli and Collinsella (206-472 
208). Mouse models show that Prevotella and Collinsella can induce a pro-inflammatory Th17 response 473 
and increase gut permeability (206). Colonisation of K/BxN mice, an established RA model, with 474 
segmented filamentous bacteria was shown to induce Th17 cell proliferation, ultimately leading to the 475 
differentiation of B cells and the production of autoantibodies (209). It is thought that these 476 
autoantibodies target joints, leading to the inflammation seen in RA. 477 
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MS is a neurodegenerative autoimmune disease that affects the central nervous system (CNS) 478 
(210). Whilst a typical microbiota phenotype for MS has not yet been described, patients with active 479 
disease generally exhibit decreased species richness, an abundance of Anaerostipes, Faecalibacteria and 480 
Psuedomonas, and decreased levels of Bacteroides, Prevotella, Parabacteroides and Adlercreutzia (211, 481 
212). An autoimmune encephalomyelitis (EAE) GF mouse model, which is also a model for MS, showed 482 
lower levels of IL-17 in both the gut and CNS, and an increase in peripheral Tregs (213). Furthermore, 483 
disease severity in EAE models is also closely related to altered intestinal permeability, reduced 484 
submucosa thickness and altered tight junction expression in IECs (214, 215).  485 
 486 

3.4 Metabolic syndrome 487 
 488 

Metabolic syndrome describes a group of risk factors, including obesity, hyperglycaemia, 489 
hypertension, and dyslipidaemia, which can lead to the development of various conditions including 490 
cardiovascular disease. The pathogenesis of metabolic syndrome is linked to a variety of factors such as 491 
insulin resistance, chronic low-grade inflammation in metabolic tissue, and oxidative stress (216). In 492 
recent years, gut dysbiosis has been identified as a risk factor for metabolic syndrome (217). It is believed 493 
that environmental factors, such as a high fat diet, linked to decreased microbial diversity, promotes both 494 
general and metabolic tissue inflammation that may lead to the development of metabolic syndrome.  495 

The links between the gut microbiota and both obesity and type 2 diabetes (T2D) have been most 496 
extensively studied. Studies in mice have shown that transplantation of gut microbiota from obese to lean 497 
GF mice resulted in an obesogenic phenotype (218). Furthermore, GF mice fed a high fat, high sugar diet 498 
were found to be resistant to weight gain (219). Studies in humans suggest that compared to lean 499 
individuals, obese individuals have increased levels of Firmicutes and decreased levels of Bacteroidetes 500 
(220, 221). In both humans and murine models, Roux-en-Y gastric bypass surgery has been found to 501 
rapidly change the gut microbiota, with gut microbiota normalising close to non-obese controls (222, 502 
223). Patients with T2D typically exhibit reduced microbiome diversity, reduced SCFA-producing 503 
bacteria, and an increased number of opportunistic pathogens (224). Rodent studies have found that 504 
SCFA play a key role in metabolic disorders, particularly in obesity and T2D. The SCFAs, propionate and 505 
acetate, were found to influence gut motility, intestinal transit rate and caloric energy extraction from the 506 
diet through GPR41 activation (225). Increased insulin sensitivity and increased satiety was also observed 507 
in mouse models, thought to be linked to the induction of glucagon-like peptide (GLP)-1 secretion 508 
through the activation of GPR43 and GPR41 (226). Butyrate provides energy to enterocytes by exerting a 509 
trophic effect and inducing GLP-2 synthesis that in turn strengthens the gut barrier function (227).  510 
It has been suggested that the gut microbial dysbiosis experienced in metabolic disorders leads to 511 
impaired intestinal cell function and increased gut permeability, partly induced by a high fat diet (228). 512 
Rodent studies have reported an increase in Gram-negative bacteria, including Proteobacteria, leading to a 513 
local increase in LPS in the mucosal layer (229, 230). MAMPs and microbiota-derived metabolites, 514 
including LPS, can translocate through the epithelial layer and reach the lamina propria where they are 515 
internalised by phagocytes. Furthermore, it has been hypothesised that microbial gut dysbiosis impairs 516 
communication between phagocytes and other immune cells in animal models, allowing the translocation 517 
of bacterial components to metabolic tissue (231, 232). In the metabolic tissue of mice, bacterial 518 
components trigger inflammation by promoting the proliferation of preadipocytes and macrophages, 519 
increasing ILC3 frequency and increasing the infiltration of B and T lymphocytes. Associated pro-520 
inflammatory cytokines can also contribute to reduced insulin signalling, exacerbating the effects of 521 
diabetes.   522 
 523 

4. Microbiota-targeted therapies  524 
 525 

As detailed previously, dysbiosis in the gut is implicated in multiple gastrointestinal and non-526 
gastrointestinal diseases. Intervention aiming to ameliorate this pathological environment with the 527 
delivery of targeted beneficial or wholesale bacterial populations in the form of probiotics and faecal 528 
microbiota transplantation (FMT), respectively, has been in clinical practice for many years (233, 234). 529 
The various mechanisms by which probiotics and FMT exert their therapeutic effect has been reviewed in 530 
detail elsewhere (235-237), but centre on their interaction with the host mucosal immune system via 531 
MAMPs (238, 239) or extracellular vesicles (240-242), the surrounding microbiota via AMPs (243), 532 
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microbial cross-feeding (244) or nutrient competition, and their contribution to the broader mucosal 533 
metabolic environment (118, 148). Here we review the latest developments and innovations in probiotics 534 
and FMT.  535 
 536 

4.1 Probiotics 537 
 538 

The main probiotic genera, including Lactobacilli, Bifidobacteria, Saccharomyces and 539 
Streptococci, as well as combination commercial probiotics, have been researched extensively and touted 540 
as potential therapies for many diseases or symptoms (245). Certain probiotic strains have discrete effects 541 
on mucosal immune function, such as that seen with Lactobacillus plantarum TIFN1010 which 542 
modulates gene transcription pathways related to cell-cell adhesion and mucosal healing processes (238). 543 
However, robust clinical data to support their use remains limited, with systematic reviews in IBD (246-544 
248), Irritable bowel syndrome (IBS) (249) and C. difficile-associated diarrhoea (CDAD)(250) showing 545 
neutral or only qualified evidence for use. Similarly, practice guidelines do not recommend the routine 546 
use of probiotics (233), partly due to uncertainty regarding species or strain-dependent effects (251, 252).  547 

Recent advances in genomic sequencing and metabolic modelling have offered a way to reduce 548 
microbial uncertainty and the chance to optimise probiotic use through genetic engineering tools such as 549 
CRISPR-Cas (253-256).  For example, genetic modification of Lactobacillus casei (L. casei) to 550 
overexpress the mcra gene, and so enhance bioactive compound production, such as conjugate linoleic 551 
acid, can result in elimination of Campylobacter jejuni, an important diarrhoea-associated pathogen (257). 552 
As well as optimising established probiotic species such as L. casei, confirmation of species such as 553 
Akkermansia muciniphilia (A. muciniphilia) as probiotic therapeutic candidates has become possible 554 
through the use of genome-scale modelling. Using this method, the complete microbial genome sequence 555 
can be screened to predict genes that influence particular metabolic pathways (258). For A. muciniphilia, 556 
genes linked to sugar degradation and vitamin biosynthesis, as well as SCFA production, were predicted 557 
using this approach and validated by transcriptomic and proteomic analysis in vitro (259). Antibiotic 558 
resistance and metabolic variation can also be assessed by whole-genome assembly undertaken on 559 
patient-derived stool samples (260). Genomic sequencing technology has also been used to identify 560 
individuals resistant to probiotic colonisation at the mucosal level (261), allowing therapy to then be 561 
tailored, reducing treatment variability currently seen with probiotics (262).  562 

Overall, whilst significant advances in probiotic therapy have been made, there is a need for a 563 
greater understanding of probiotic formulation, in addition to a requirement for more robust human 564 
clinical trial data to justify its routine use.  565 

 566 

4.2 Postbiotics 567 
 568 
An important additional consideration regarding probiotic preparations is the intrinsic effect of 569 

microbial cell surface components and metabolites. Whereas, by definition, probiotics are live 570 
microorganisms (263), there is also a role for postbiotics, as inanimate microorganisms and/or their 571 
components (264), prepared specifically for their health benefits on the host. These narrow criteria 572 
exclude purified microbial metabolites applied in isolation and instead focus on thermal inactivation and 573 
quantification of products that possess microbial effector molecules such as bile salt hydrolase (265) and 574 
exopolysaccharides (239). 575 

Murine studies have shown the effect of postbiotics on gastrointestinal mucosa in a Citrobacter-576 
induced colitis model (266), whereas the mechanistic impact on mucosal inflammation in humans is more 577 
limited to specific metabolites such as butyrate as in the case of diversion colitis (267). However, clinical 578 
studies focussing on subjective outcomes such as symptom scores have shown benefit of postbiotics in 579 
IBS (268).  580 

To date, the application of postbiotics in gastrointestinal disease remains limited with the mainstay 581 
of evidence (269, 270) and regulation (271), centred on secondary prevention of respiratory infections. 582 
Further mechanistic and clinical trial data is required to characterise the effect of specific postbiotics on 583 
gastrointestinal inflammation.  584 
 585 

4.3 Faecal Microbiota Transplantation 586 
 587 
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FMT, the delivery of donor stool into the gastrointestinal tract of a patient, is an established and 588 
guideline-supported intervention for recurrent C. difficile infection (rCDI) (234, 272, 273), independent of 589 
route of delivery (274), and a potential option in severe primary CDI (275).  Meta-analysis has indicated a 590 
positive association between FMT and the treatment of IBD, particularly with active UC (276, 277). 591 
Further trials are currently underway (278) to confirm FMT efficacy before being adopted into routine 592 
clinical practice (279).  Similarly, with CD, there is evidence supporting the benefits of FMT (280), 593 
however, it has not yet been recommended for clinical use (281). Evidence remains lacking for routine 594 
use of FMT in IBS (282) with evidence for only conditional use in metabolic syndrome (283, 284) and 595 
hepatic encephalopathy (285). The use of FMT in non-gastrointestinal diseases is an area of ongoing 596 
study with randomised clinical trials in type 1 diabetes showing promise (286). FMT clinicals trials are 597 
also underway to assess effectivity in treating Coeliac disease (NCT 04014413), RA (NCT03944096), 598 
Sjogren’s syndrome (NCT03926286) and MS (NCT03183869; NCT03975413; NCT04150549), building 599 
upon prior animal and uncontrolled human studies (287). It is in malignancy, and specifically anti-cancer 600 
immunotherapies, where microbiota and their manipulation have shown great promise, building on 601 
evidence that certain genera, for example, Bifidobacteria (288) or Bacteroides (289), can affect the 602 
efficacy of malignant melanoma treatments. A recent clinical trial revealed that some patients refractory 603 
to anti-programmed cell death protein 1 (PD-1) immunotherapy could overcome this resistance to therapy 604 
by undergoing FMT from donors who were responders to the same anti-PD-1 immunotherapy (290). PD-605 
1 is an immune checkpoint receptor on T cells that prevents overstimulation of immune responses and 606 
contributes to the maintenance of immune tolerance to self-antigens. The fact that FMT impacts on anti-607 
PD-1 melanoma therapy demonstrates that the composition of the microbiota influences host systemic 608 
immune responses. FMT is now being applied to metastatic hormone-resistant prostate cancer 609 
(NCT04116775) and to ameliorate chemotherapy-induced toxicity (NCT04040712). 610 

An important factor in FMT is the role of viruses and mycobiota given that whole stool 611 
transplantation involves a transfer of these microorganisms to the new host along with bacteria. 612 
Bacteriophages contribute to host immunity by adhering to mucosal mucus creating an additional 613 
antimicrobial layer that reduces bacterial attachment and colonisation of the mucosa (291). Both 614 
Caudovirales (292) and Saccharomyces (293) have been shown as important drivers for successful 615 
treatment of rCDI by FMT. Faecal filtrate transfer (FFT), a supernatant composed of bacterial debris, 616 
AMPs, metabolic products and oligonucleotides, but not live bacteria, was also seen to improve outcomes 617 
in rCDI (294).  618 

A limitation of widespread FMT use outside of the trial setting is the conceptual acceptability of 619 
single or pooled donor stool being transferred to a patient. Synthetic microbiomes can be cultured from 620 
donors and purified, or compiled from metagenomic studies (295). Purified intestinal bacterial culture 621 
have been shown to be as effective in treating rCDI in a proof-of-principle study (296). A recent 622 
randomised-controlled trial reported that a 12-strain bacterial mixture cultured from donor stool was 623 
inferior to conventional FMT but equivalent to using vancomycin for the treatment of rCDI (297). FMT 624 
using freeze-dried or lyophilised matter has been shown in observational studies to also be effective in 625 
treating rCDI (298), with a propagated, lyophilised and encapsulated formulation currently under 626 
investigation in clinical trials for the treatment of rCDI (NCT02865616), UC (NCT03832400) and other 627 
diseases. These technologies, if efficacy is confirmed, herald the opportunity of a ‘post-FMT’ treatment 628 
model centred on highly selected donors yielding a purified, standardised and cryopreserved microbiota 629 
preparation for systematic clinical use.  630 
 631 

Conclusion 632 
 633 

The microbiome is a metabolically and immunologically active presence within the 634 
gastrointestinal tract that plays a vital role in the maintenance of human health. This population of highly 635 
diverse microorganisms is shaped by numerous factors, most notably, diet and the use of medications 636 
such as antibiotics. The intestinal mucosa provides an important interface between the microbiota and 637 
host, where the microbiota not only aids development of effective host immune responses against 638 
pathogens and injury but also limits excessive mucosal inflammation to promote tolerance and stability of 639 
the gut environment. Microbial components and microbial-derived metabolites contribute to both mucosal 640 
barrier integrity and the regulation of underlying immune responses to preserve intestinal homeostasis. 641 
When there is a loss of this balanced relationship, as seen in dysbiosis, then there is a risk of sustained 642 
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pathogenic inflammation and the development of numerous diseases. As our understanding of the 643 
microbiome and microbiota-host interactions has improved, so has our ability to harness members of the 644 
microbiota to reverse dysbiosis, reduce mucosal inflammation, and prevent disease progression. The 645 
outcome of ongoing clinical trials and mechanistic studies will hopefully extend our current knowledge of 646 
the microbiome and further our understanding of the role it plays in mucosal inflammation.  647 
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