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Gravitational wave (GW) and electromagnetic (EM) observations of neutron-star-black-hole (NSBH)
mergers can provide precise local measurements of the Hubble constant (H0), ideal for resolving the current
H0 tension. We perform end-to-end analyses of realistic populations of simulated NSBHs, incorporating
both GW and EM selection for the first time. We show that NSBHs could achieve unbiased 1.5%–2.4%
precision H0 estimates by 2030. The achievable precision is strongly affected by the details of spin
precession and tidal disruption, highlighting the need for improved modeling of NSBH mergers.
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Introduction.—The current expansion rate of the
Universe—the Hubble constant H0—is at the heart of a
significant cosmological controversy. Direct measure-
ments in the local Universe by the SH0ES team’s
Cepheid-supernova distance ladder [1] find H0 ¼
74.03� 1.42 km s−1 Mpc−1. This is discrepant at the
4.4-σ level from the 67.36� 0.54 km s−1Mpc−1 value
inferred from the Planck satellite’s observations of the
cosmic microwave background (CMB) anisotropies,
assuming the standard flat cosmological model [2].
There are two potential explanations for this discrepancy,

the most exciting of which derives from the model-
dependence of the CMB constraint: could the discrepancy
be due to physics beyond the standard model? Despite
extensive effort (e.g., Refs. [3,4]), consensus on a compel-
ling theoretical explanation has not been reached. The more
prosaic explanation posits undiagnosed systematic errors or
underestimated uncertainties; however, despite multiple
investigations of both the distance ladder [5] and CMB
[6] datasets, no study has found incontrovertible evidence
warranting a change of conclusions.
In the absence of conclusive evidence of systematic

errors or consensus on an extended model, independent
verifications of the two central measurements offer a
promising route to resolving the tension. Independent
verification of the CMB anisotropy constraints comes
from recent inverse distance ladder datasets [7]. Local
verification has, however, proven more challenging,
with some alternative analyses supporting the SH0ES
team’s findings [8] and others providing contradictory

conclusions of varying significance [9], in some cases
using the same data.
A direct, completely independent local measurement

with percent-level precision is therefore needed to resolve
the H0 tension. Combined gravitational-wave (GW) and
electromagnetic (EM) observations of nearby compact-
object mergers are ideal candidates to provide that
measurement, yieldingH0 estimates that depend on general
relativity alone [10–33]. Thanks to their accompanying EM
emission, the utility of binary neutron star (BNS) mergers is
well established [12–25], but less attention has been paid to
the potential contribution of as-yet undiscovered neutron-
star-black-hole (NSBH) mergers with EM counterparts
[13,16,34]. Using idealized, fixed-signal-to-noise simula-
tions at indicative parameter values, Vitale and Chen [34]
recently showed that catalogs of GW-selected NSBH
observations may constrainH0 as well as BNSs, depending
on the relative merger rates and BH spins. In particular,
they showed explicitly that luminosity distance estimates
could improve, as misaligned BH spins induce spin
precession, helping break the degeneracy between the
luminosity distance and inclination angle for some
NSBH systems.
Here, we determine the H0 constraints realistic NSBH

samples will achieve, by performing end-to-end analyses of
simulated NSBH samples incorporating fully specified
parent populations, combined GW and EM selection,
and a complete noise treatment. We use state of the art
GW waveforms [35,36] and EM outflow models [37], both
calibrated to a suite of numerical relativity simulations, for
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our GW and EM signals, and focus on the “Aþ” era of the
mid-to-late 2020s, assuming an expanded GW network
including LIGO India and KAGRA.
Simulations.—In this work we simulate the results

of a circa-2025 GW detector network, consisting of
LIGO Aþ, Virgo AdVþ, KAGRA, and LIGO India
[38,39] observing for tobs ¼ 5 yr with duty cycle of
Δobs ¼ 0.5. We assume a constant rest-frame NSBH
merger rate Γfid ¼ 610 yr−1Gpc−3 (corresponding to the
90% upper limit of Ref. [40]), and cosmological parameters
matching Ref. [2], with H0 ¼ 67.36 km s−1 Mpc−1 and
q0 ¼ −0.527. Each simulation proceeds by drawing the
total number of mergers from a Poisson distribution with
mean λ ¼ ΔobstobsVΓfid, where V is the redshifted volume
calculated using a third-order cosmographic comoving
volume element (see Supplemental Material [41] for
details). To reduce computation time, the volume integral
can be truncated at some redshift zmax where there is
negligible probability of even the loudest merger being
detected: we find that zmax ¼ 0.44 suffices for our setting.
For our fiducial parameter set, the mean number of mergers
λ ¼ 25160; our particular Poisson draw yields a preselec-
tion total of 25 241.
For each merger, we draw a cosmological redshift z,

assuming a constant source-frame rate [see, e.g., Eq. (28) of
Ref. [24] ], along with an isotropically distributed angular
sky position, inclination angle phase, and polarization
angle. We draw uniformly distributed BH masses from
PðmBHÞ ¼ Uð2.5 M⊙; 40 M⊙Þ, taking the upper limit from
low-metallicity binary population synthesis simulations
[42] (using solar metallicities would reduce this upper
limit to 12 M⊙) and extending to low masses to reflect the
detection of objects in the purported NS/BH mass gap [43].
NS masses are drawn from PðmNSÞ ¼ Uð1 M⊙; 2.42 M⊙Þ,
with an upper limit chosen to match that of the DD2
equation of state (EOS) [44]. Dimensionless BH and NS
spin magnitudes are drawn from the uniform distributions
PðaBHÞ ¼ Uð0; 0.99Þ and PðaNSÞ ¼ Uð0; 0.05Þ and
are assumed to be isotropically oriented. Following
Refs. [37,45], we use the component masses, NS compact-
ness, and BH spins to calculate the baryonic mass ejected
by each merger. This formula requires the assumption of a
NS EOS (we again use DD2) and has been calibrated using
simulations without precession due to misaligned BH
spins. We use the same EOS to calculate tidal deform-
abilities for the NSs, and set the BH deformabilities to zero
[46]. Finally, we generate a peculiar velocity v for each
merger from a zero-mean normal with a standard deviation
of 500 km s−1.
With the NSBH parameters in hand, we generate mock

data for each merger and apply our selection criteria.
To determine the impact of different physical effects
on our results, we simulate two populations using
different waveform approximants: the BNS-calibrated
IMRPhenomPv2_NRTidal [35] and NSBH-specific

SEOBNRv4_ROM_NRTidalv2_NSBH [36] (hereafter
IMRPhenom and SEOBNR). We refer the reader to the
Supplemental Material [41] (which includes Refs. [47–49])
for a complete discussion of the differences between the
two waveforms. The SEOBNR waveform requires aligned
or antialigned spins, so we set the transverse NS and BH
spins to zero after sampling them isotropically (mimicking,
in some sense, spins becoming aligned over time). For each
merger, we generate a 32-sec segment of noisy (using
spectra from Ref. [39]) GW data x̂ per waveform using the
same random seed and a frequency range of 20–2048 Hz,
considering it detected if the network signal-to-noise ratio
(SNR) is at least ρ� ¼ 12. We assume that the GW detectors
operate in concert with an EM follow-up program capable
of detecting all mergers with ejecta mass greater than
m�

ej ¼ 0.01 M⊙, modeling for the first time a hybrid GW-
EM selection function for NSBHs. This ejecta material is
assumed to produce EM emission in the form of a gamma-
ray burst, kilonova and/or afterglow, as opposed to the
“battery” effect of Ref. [50]. Finally, we generate noisy
measured redshifts and peculiar velocities by drawing from
PðẑjzÞ ¼ Nðz; 0.001Þ and Pðv̂jvÞ ¼ Nðv; 200 km s−1Þ,
respectively. Of the 25 241 simulated mergers, 2477
(2954) are detected in GWs using the IMRPhenom
(SEOBNR) waveform, 99 (75) of which have sufficient
ejecta to be detected in EM; 62 appear in both samples. The
SNRs for SEOBNR waveforms are, on average, 5.9% larger
than their IMRPhenom counterparts, resulting in the
GW-detected SEOBNR sample containing ∼500 more
objects. (We hypothesise that this is due to the effects of
generic spin precession on the IMRPhenom population.
Differences in the lengths of GW signals within the
detector frequency bands due to the two waveforms’
different merger frequencies would tend to boost the
IMRPhenom SNRs.) Setting the transverse spins to zero
for use with the SEOBNR waveform, however, has the side
effect of reducing the typical ejecta mass [37] and hence the
final GWþ EM-detected sample.
The impact of our selection function is illustrated in

Fig. 1, in which we plot histograms of our full population
(dotted lines), GW-selected events (dashed lines), and
GWþ EM-selected mergers (colored bars) for a subset
of our parameters. The prior curves are identical in both
cases apart from the BH spin magnitudes, where zeroing
the transverse spins has made the SEOBNR population’s
distribution nonuniform. The primary impact of the GW
SNR threshold is, as expected, to select nearby mergers; it
also imparts very slight preferences for low mass ratios
and prograde BH z spins [51]. It is interesting to note that
the GW-selected SEOBNR distance distribution is broader
than that of IMRPhenom and peaked at slightly higher
distances: this is a direct consequence of the SEOBNR
injections’ systematically higher SNRs. Further, the
presence of spin precession permits the detection of more
edge-on IMRPhenom waveforms.
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The ejecta-mass threshold (i.e., EM selection) strongly
impacts the observed distributions. The GWþ EM-detected
distributions are shifted to even smaller distances, particu-
larly for the SEOBNR waveform, as the low-mass-ratio
systems which produce significant ejecta mass can only
be detected nearby. There is a very strong preference for
mass ratios under 10 (again, especially so for SEOBNR) and
large spins [37,45], and the preference for positive z spins is
much more pronounced. (Populations with ∼solar metal-
licities produce NSBHs with lower BH masses [42] and
hence more GWþ EM-detectable mergers.) As expected
from Refs. [37,45,50], the bulk of detected systems have BH
masses below 10 M⊙. The differences between the two
waveforms’ GWþ EM-selected distributions are slightly
obfuscated by the small sample sizes, but the SEOBNR
sample is shifted towards lower distances and mass ratios.
As the SEOBNR mergers’ BH spin magnitudes are smaller
than those of their IMRPhenom counterparts, they require
smaller mass ratios to produce significant ejecta [37], and the
resulting systems are harder to detect at distance. Our
implementation of EM selection captures the current best
understanding of the dependence on ejecta mass, but we note
that a fully self-consistent model of EM selection does not
yet exist. This selection does not, for example, incorporate
any viewing-angle dependence (see Ref. [52] for a treatment
in BNS mergers) or EM survey selection effects [53–56].
Methods.—The probabilistic inference of the Hubble

constant from catalogs of compact object mergers has been
described in detail in the literature [10,12–14,16,19,
21–25,57,58]. In the following, we adopt a slight variant
of the formalism set out in Ref. [24], whose Fig. 9 depicts a
network diagram for the model we use to describe the data.
(The only addition required to the network diagram of

Ref. [24] is the dependence of the selection S on an intrinsic
parameter: the merger’s ejecta mass.) The precise posterior
we evaluate is defined in the Supplemental Material [41].
We infer the parameters of this model in two parts, using

two sampling methods. First, we process each merger
individually in order to obtain the GW likelihoods mar-
ginalized over all parameters θi other than the luminosity
distance d to the merger (θi here comprising the ith
merger’s component masses, spin magnitudes and orienta-
tions where used, inclination, polarization angle, NS tidal
deformability, and time and phase at coalescence). We
adopt priors identical to the distributions used in the
generative model for all parameters other than the masses.
Convergence is greatly improved by sampling chirp masses
and mass ratios instead of component masses, and we
therefore sample using interim priors that are uniform in
these parameters (over the ranges permitted by our com-
ponent-mass extrema), before importance sampling the
outputs to reinstate our desired component-mass priors.
The marginal GW likelihoods are sampled with the
pypolychord nested sampler [59], wrapped by
bilby [60], using 1000 live points and bilby’s
marginalize_phase, _time and _distance set-
tings. Each 15 (11)-dimensional IMRPhenom (SEOBNR)
sampling run takes 6–14 (4–6) days to complete on one
Intel Xeon 2.7 GHz CPU.
Given the marginal GW likelihoods, we use No-U-Turn

Sampling as implemented by the pystan package [61] to
infer the cosmological and population parameters. To
connect to the cosmological parameters, we adopt a
third-order distance-redshift relation matching our volume
element [62], with H0 and q0 allowed to vary but the jerk
set to one. We assume a broad Gaussian prior on H0,

FIG. 1. Distributions of a subset of parameters from our SEOBNR (top) and IMRPhenom (bottom) samples, as drawn from the prior
(dotted), selected by GW SNR (dashed) and selected by GW and EM emission (colored histograms). The bins are colored by the
fractional H0 uncertainty the mergers within the bin achieve: the yellowest and lightest bins are most informative.
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PðH0Þ ¼ Nð70; 20Þ km s−1 Mpc−1, a truncated Gaussian
prior on q0, Pðq0Þ ¼ Θðq0 þ 2ÞΘð1 − q0ÞNð−0.5; 0.5Þ,
and a log-uniform prior on the rate, PðΓÞ ∝ 1=Γ. To use
pystan, we must be able to sample all parameters from
analytic distributions. We therefore perform a Gaussian
mixture model fit to each merger’s marginal distance
likelihood using pomegranate [63]. We fit each like-
lihood with an integer grid of 2–10 mixture components,
repeating 10 times at each grid point and selecting the best
fit using the Akaike information criterion [64].
Finally, we must evaluate the expected number of

detected mergers N̄ at each sampled value of the cosmo-
logical and population parameters. We do so by resimulat-
ing the catalogs 100 times at each point of a 5 × 5 grid in
fH0; q0g assuming our fiducial rate, Γfid, and interpolating
the results using a 2D fourth-order interpolation. The
dependence on the sampled rate is captured by multiplying
the interpolation coefficients by Γ=Γfid. The resulting 153
(193)-dimensional pystan inference runs take less than a
minute to generate 20 000 well converged samples on a
3.1 GHz Intel Core i7 CPU. The set of true redshifts and
peculiar velocities are uninteresting for the purposes of
cosmology inference, and we marginalize over these
parameters when quoting the results below.
Results.—Processing the simulated SEOBNR and

IMRPhenom catalogs through our two-stage inference
pipeline produces the cosmology and population parameter
posteriors shown in the Supplemental Material [41]. In both
cases, the recovered H0, q0, and rate posteriors are
completely consistent with the input values, indicating,
as expected, that the selection effects are correctly
accounted for [24]. The 68% credible intervals
on the near-Gaussian H0 marginal posteriors are 68.8�
1.6 km s−1Mpc−1 for the SEOBNR sample and 66.5�
1.0 km s−1Mpc−1 for IMRPhenom. As the IMRPhenom
sample contains 99 objects to the SEOBNR sample’s 75, we
should therefore expect that the IMRPhenom sample’s H0

posterior be roughly 13% narrower than that of the
SEOBNR sample. The remaining reduction, therefore,
reflects the ability for precessing spins to break the
distance-inclination degeneracy [21,65–67]. This addi-
tional constraining power is equivalent to an approximate
doubling of the catalog size.
The H0 uncertainties we find for both waveforms are

comparable to the current Cepheid-SN distance ladder
precision [1]. NSBH populations—should they produce
EM counterparts and occur at rates roughly matching our
assumptions—will therefore strongly inform the outcome
of the currentH0 tension, particularly when combined with
accompanying BNS populations, likely of comparable size
[21,23,24,34]. (We note that comparable H0 precision had
been hoped for by 2023 from catalogs of BNS mergers
[21]. That timescale, however, now appears optimistic
due to the lack of EM counterpart detections following
GW170817.) The mergers are also informative about the

deceleration parameter, q0, shrinking its uncertainty from
0.5 to 0.32 or 0.27, depending on the waveform. This
further implies that NSBH catalogs will be able to begin
constraining parameters such as the matter density and dark
energy EOS (in the context of ΛCDM and extended
models), complementary to BBH results from higher red-
shifts [31,33,68]. The merger rates are recovered with
roughly 10% precision [40,43,69,70].
To obtain a picture of the parameter combinations that

are most important for the H0 constraints, we return to
Fig. 1. Here, the colors of the histogram bins indicate the
fractional H0 uncertainty the mergers within each bin
attain, with the most-constraining bins colored yellow
and the least-constraining blue. For both waveforms, the
bulk of the H0 constraining power comes from mergers out
to roughly 700 Mpc, not just the very nearest (∼200 Mpc),
loudest events. For the IMRPhenom mergers, all mass
ratio bins less than ∼8 M⊙ contribute equally, despite the
frequency dropping rapidly with mass ratio. For the
SEOBNR mergers, the constraints are instead driven by
the lowest-mass ratio events [65,66]. From the
IMRPhenom spin panels, it is clear that highest-spin
events constrain H0 most strongly, with the full H0

constraint coming almost entirely from the highest-spin
(and most populated) bin. The SEOBNR constraint, on the
other hand, is sourced by events with a broader range of
spins, though this is likely driven by the prior.
We further highlight the importance of precession in

breaking the distance-inclination degeneracy in Fig. 2. In
the first three panels we plot distance and inclination
constraints for a selection of mergers when using the
SEOBNR (red, filled) and IMRPhenom (grey, filled) wave-
forms. For the first two mergers, detected with high SNR,
the long degeneracies present in their SEOBNR posteriors
are almost completely broken when using the IMRPhenom
waveform, in which the spins precess. We illustrate this
point further by re-running the IMRPhenom case assuming
aligned spins, having set the transverse spins to zero. These
results are overlaid as dashed dark red contours. Both
distance-inclination degeneracies blow up, increasing the
distance uncertainties by a factor of over three, with
commensurate consequences for the mergers’ ability to
constrain H0. In the third panel, we show equivalent
posteriors for the IMRPhenom merger whose BH spin
is closest to being aligned: the effect of switching wave-
forms here is markedly reduced. The impact on the
population level is clear from the right-hand panel of
Fig. 2, in which we plot the distributions of individual
mergers’ fractional errors on distance (dashed) and H0

(solid) when using the SEOBNR (red) and IMRPhenom
(gray) waveforms. The SEOBNR distributions are shifted to
significantly higher errors than their IMRPhenom counter-
parts, despite the SEOBNR mergers typically having higher
SNRs. The smallest percentage error for any individual
merger is 2.8% for the IMRPhenom case and 6.1% for
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SEOBNR; the medians are 13.2% and 17.3%, respectively.
The H0 constraints imparted by both “golden” and normal
events are therefore stronger when spins precess signifi-
cantly. Finally, we note from the lower limits of the dashed
curves that peculiar velocity and redshift uncertainties
strongly suppress the constraining power of the nearest
and loudest events.
Conclusions.—In this Letter, we present the results of the

first end-to-end inference of H0 from realistic simulated
catalogs of NSBH mergers incorporating GW and EM
selection effects. The precision we should expect from
such catalogs is very promising for resolving the current
H0 tension, with five years of Aþ era observations
yielding H0 uncertainties of 1.5%–2.4%. We find, however,
that the detailed physics of the NSBH waveforms
strongly impacts the achievable precision. Using the
SEOBNRv4_ROM_NRTidalv2_NSBH waveform with
nonprecessing BH spins results in boosted SNRs, and an
increase of ∼500 GW-detected NSBHs. However, including
precessing spins using the IMRPhenomPv2_NRTidal
waveform markedly increases the typical ejecta mass and
hence the number of combined GWþ EM detections.
Critically, precessing spins also break the distance-
inclination degeneracy in the resulting GW parameter
posteriors, yielding a significant improvement (∼40% after
accounting for differing catalog sizes) in the resulting H0

constraint. Our results strongly highlight the need for
improved modeling of NSBH signals in both gravitational
waves (see, e.g., Ref. [71]) and the electromagnetic spectrum.

The Python simulation and inference software developed
for this analysis are publicly available [72].
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